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Abstract

Objective: We provide a survey of recent advances in biomedical image analysis and 

classification from emergent imaging modalities such as terahertz (THz) pulse imaging (TPI) and 

dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) and identification of their 

underlining commonalities.

Methods: Both time and frequency domain signal pre-processing techniques are considered: 

noise removal, spectral analysis, principal component analysis (PCA) and wavelet transforms. 

Feature extraction and classification methods based on feature vectors using the above processing 

techniques are reviewed. A tensorial signal processing de-noising framework suitable for 

spatiotemporal association between features in MRI is also discussed.

Validation: Examples where the proposed methodologies have been successful in classifying 

TPIs and DCE-MRIs are discussed.

Results: Identifying commonalities in the structure of such heterogeneous datasets potentially 

leads to a unified multi-channel signal processing framework for biomedical image analysis.

Conclusion: The proposed complex valued classification methodology enables fusion of entire 

datasets from a sequence of spatial images taken at different time stamps; this is of interest from 

the viewpoint of inferring disease proliferation. The approach is also of interest for other emergent 

multi-channel biomedical imaging modalities and of relevance across the biomedical signal 

processing community.
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1. Introduction

The aim of this study is to provide a brief account of recent advances in time series analysis 

and imaging, in order to identify the commonalities between terahertz (THz) pulse imaging 

(TPI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) modalities 

as both approaches are complementary in their ability to identify and assess disease 

proliferation. A further aim of this work is to suggest some future directions for machine 

learning approaches that potentially lead to the automation of diagnostic processes. To 

clarify these concepts, the paper is structured as follows: Section 1 provides an introduction 

to THz-transient spectrometry as this is the more well-established modality for building THz 

imaging systems, together with an account of recent advances in MRI clarifying 

commonalities in both systems when inferring de-excitation lifetimes at the molecular level. 

In Section 2, both THz pulsed imaging and DCE-MRI techniques are placed into a common 

physicochemical analytical sciences basis. We introduce the image formation in relation to 

THz and DCE-MRI datasets involved in this research, discuss their properties and 

acquisition parameters, outline their experimental setups, and highlight advantages and 

drawbacks of both types of images. Additionally, sparse data acquisition methodologies that 

can lead to an accelerated data acquisition are discussed. This is currently most relevant to 

MRI in clinical practice, but can benefit the TPI community, especially if such systems are 

developed for clinical applications. Section 3 discusses generic signal de-noising 

methodologies, applicable to both systems and feature extraction methods using linear 

transforms. These discussions effectively focus on robust feature extraction from a single 

pixel perspective. We also discuss recent advances in different classifier methodologies, with 

an emphasis in complex ELM approaches. The methodology may be naturally extended to 

multi-pixel or voxel images. In addition to supervised learning, the current clustering 

techniques for segmenting THz images are briefly reviewed. In Section 4, we present current 

DCE-MRI image analysis algorithms. A brief discussion of algorithms relevant to both 

imaging modalities is provided in the context of future developments in tensorially based 

feature extraction. Extensions to multi-channel classifiers are considered, as these are 

necessary to account for specific geometrical features observed across an image and enable 

data fusion from heterogeneous sources. In addition, such multi-channel approaches enable 

the fusion of information acquired from multiple images at different time stamps, thus 

potentially elucidating disease proliferation. This section also discusses image registration 

issues. Section 5 provides some concluding remarks. The work aims to highlight progress 

towards a generic framework for the automated quantitative assessment of disease 

proliferation using both sensing modalities.
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1.1. Concise introduction to fundamental physicochemical processes associated with 
interactions of waves with matter across the THz region of the EM spectrum

Investigations at the THz or T-ray part of the electromagnetic (EM) spectrum loosely defined 

between 100 GHz and 10 THz are of much relevance to biomedical science, because 

complementary information to traditional spectroscopic measurements on low-frequency 

bond vibrations, hydrogen bond stretching and torsions in liquids and gases may be obtained 

(Fig. 1). The vibrational spectral characteristics of bio-molecules, which lie in this range 

(wavenumbers between 3.3 and 333 cm−1) make T-ray imaging systems a promising sensing 

modality for clinical diagnosis. Since THz photons have significantly lower energies (e.g., 

only 1.24 meV at 300 GHz) than X-rays, they have been considered by many as non-

invasive. Although non-linear interactions between biological tissue and coherent THz 

radiation have been predicted by Fröhlich [1] and experimentally verified by the careful 

work of Grundler and the analysis of Kaiser [2] in the 90s, the widely held view at the 

moment is that any measurement technique that operates at THz frequencies should be 

evaluated using current guidelines on specific absorption rates; these are only associated 

with the thermal effects of the radiation with the tissue so from a clinical perspective can be 

considered as non-invasive. Such a view is also further supported by noting that, the Gibbs 

free energy conveyed in the THz light beam is insufficient to directly drive chemical 

reactions. For example, the molar energy at a frequency f of 100 GHz would be given from 

E = Nhf where N = 6.023 × 1023 mol−1, (Avogadro’s number), and h = 6.626 × 10−34 Js 

(Planck’s constant), resulting in a calculated value of only E = 0.04 kJ mol−1 which is so low 

(approximately 100 times lower than the amount of molar energy required for ATP 

hydrolysis) that for most practical purposes we may assume that the interference with 

biochemical processes would be minimal.

Further advantages of performing imaging based on the optical properties of biological 

tissue with THz radiation are the improved penetration depth within the tissue and the 

comparatively lower scattering than infrared light. Organ differentiation on the basis of 

tissue water content using microwave transmission or reflection measurements is often 

impractical because the diffraction limited minimum spot size related to a free-space beam is 

rather large, and as a consequence there is significant beam spill-over around most tissues 

and organs. This has limited the further proliferation of microwave imaging techniques to 

the biomedical field.

From a technological point of view, THz imaging is an emergent complementary imaging 

modality of much interest within the biomedical community. Its proliferation has been 

somehow delayed because it often needs to compete with positron emission tomography 

(PET) imaging that is capable of picomolar sensitivity but has poor spatial resolution and 

magnetic resonance imaging (MRI), which provides millimolar sensitivity with high spatial 

resolution. A diffraction limited imaging system operating at 2 THz would have a spatial 

resolution of 150 µm, which may be considered limiting for many biomedical applications 

for which this imaging modality offers niche applications (e.g. differential imaging of cancer 

cells in breast tissue of pregnant or lactating women). From a clinical perspective, tumours 

need to be identified at the earliest possible developmental stage and unless suitable THz 

super-resolution techniques can be developed, it is unlikely current systems will be adapted 
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by clinicians. If, however, imaging systems with sufficient signal-to-noise ratio (SNR) could 

be developed to operate at 10 THz, these would in principle have an attainable resolution of 

30 µm, which potentially have a resolving power just about sufficient for such applications. 

An additional complication of this imaging modality is that since 70% of the human body is 

composed of water, a large proportion of the excitation energy would be significantly 

attenuated. As a consequence, the resultant spectra in many biomedical experiments may 

only be unambiguously resolved after the application of elaborate post-processing 

techniques.

1.2. Introduction to DCE-MRIs

The principle of MRI was discovered in the late 1940s, through pioneering experiments by 

Sir Peter Mansfield while he was a student at Queen Mary College, University of London 

under the supervision of D.H. Martin and independently by Paul Lauterbur while he was at 

the University of Pittsburgh, the Mellon Institute of Industrial Research and subsequently the 

State University of New York at Stony Brook after following the work of Robert Gabillard 

on Nuclear Magnetic Resonance (NMR). It was only in 1980, however, that MRI was 

introduced as a new diagnostic modality and it was much later when it gained wider 

acceptance as an imaging tool for a diverse range of biomedical disciplines such as 

neurology, oncology, obstetrics and gynaecology. In a clinical setting, it is now routinely 

used in cardiovascular, musculoskeletal, gastrointestinal and liver imaging as well as in 

neuroimaging, providing information on their physiological status and pathologies. In this 

respect it also complements NMR.

MRI de-embeds structural details of the various organs on the basis of the observation of 

hydrogen atom (proton) de-excitation rates as they arise following an excitation by an 

oscillatory radio signal within a magnetic field. The energy emission stemming from the 

spinning hydrogen molecules is determined by two time constants, T1 and T2 and the 

contrast between different tissues is determined by the rate at which excited atoms return to 

the equilibrium state. The radio signals can be made to encode position information by 

varying the main magnetic field using gradient coils, enabling the formation of images. 

Simple T1 and T2 weighted images are very common in many medical applications. An 

important advantage that MRI has over its computed axial tomography (CAT) counterpart is 

that it avoids the deleterious effects associated with X-ray irradiation.

A significant advance in MRI technology for the non-invasive assessment of disease 

proliferation has been witnessed through the use of exogenous contrast agents, the so-called 

DCE-MRIs. Note that DCE-MRI enables the detection of tumour anomalies with high 

sensitivity [3]. The crucial advantage of DCE-MRIs over standard MRIs is that the DCE-

MRI modality provides 3D spatial lesion information as well as temporal information 

regarding the progression of lesions. Furthermore it provides information by showing 

variations in contrast agent uptake rates and enables a more accurate assessment of the 

extent of lesions and new opportunities for their better characterisation [4,5]. From a 

classification perspective, DCE-MRI produces a sequence of three-dimensional (3D) 

patterns recorded at different time instances. These datasets are therefore four-dimensional 

(4D), with three spatial dimensions and a quantization in the time domain defined by the 
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image interval lapse time. The detection of anomalies in spatiotemporal datasets is an 

emergent interdisciplinary topic that requires the development of completely new software 

tools [6]. Furthermore, as discussed in [7–10], analysing spatiotemporal patterns is critical 

for the correct identification of tumour anomalies in DCE-MRIs, establishing whether they 

are malignant or benign. Finally, it is worth noting that currently clinical MRI stands at the 

cross-roads between some important technological developments. These include the recent 

advances in higher field (3 Tesla) imaging systems as well as the more experimental low 

field (milli-Tesla) systems which have cryogenically cooled phased array detectors. Detail in 

the images produced by these new experimental modalities differs from that found in the 

traditional 1.5 T systems, requiring additional time by trained experts for their interpretation. 

Such problems can compromise their further proliferation unless automatic image 

classification algorithms can be developed.

Progress in machine learning offers new opportunities for automated biomedical data mining 

and disease diagnosis as it can potentially simplify the process of searching through large 

volumes of medical images for features selection and identification, as well as tumour 

screening. In addition, it can also potentially provide associations and correlations through 

time series analysis of datasets, thus elucidating disease proliferation [11–16]. Image 

processing techniques can be used to extract quantitative information on lesion morphology, 

volume and kinetics, as well as to distinguish viable from nonviable tissue [4,14]. 

Techniques for processing large volumes of medical image datasets with high dimensionality 

are not sufficiently mature, however. Experts often distinguish tissue states on the basis of 

tumour information from radiological reports by characterizing lesions either as malignant 

or as benign [4,17–20]. Such practice is subjective, relying on the availability of experts and 

is occasionally inaccurate, as it involves a binarization step of the classified output without 

taking into consideration intermediate values as a fuzzy-set expert system would do (it also 

incorporates a slight bias towards false-positives to avoid mistaken diagnoses as this could 

potentially tarnish an expert’s reputation). A further disadvantage of this approach is that it 

can be slow and therefore costly, inducing additional pressure loads in otherwise already 

overloaded health systems worldwide. In addition, it is also worth noting that alternative, 

tumour detection methodologies based on analysing a series of two-dimensional texture 

features as local descriptors using a sliding window, have a major shortcoming in that they 

are unable to take into consideration more complex morphological features of tumour 

anomalies across the entire tissue volume [14,21,10].

Furthermore, there are other pressing needs for the further development and wider 

proliferation of multi-channel machine learning algorithms for the biomedical community. 

In DCE-MRI, for example, motion correction software often needs to be employed [22]. 

Correlations with breathing, provided from an additional channel source (e.g. an optical 

fibre based plethysmograph) may potentially assist pixel de-blurring at a post-processing 

stage, minimizing artifacts [23]. Hyperspectral imaging is also another emergent modality in 

biomedical screening (e.g for skin cancer detection), requiring such multi-channel signal 

processing. From a SNR image quality perspective, for each pixel, an improvement is only 

possible by using a stronger excitation source per spectral bin, by improving on the detector 

responsivity and noise floor, and by integrating over a longer time at each pixel or voxel. 

Equipment manufacturers argue that there is really no substitute for increased integration 
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time to perform the de-noising process. Broadband signals, however, enjoy the Fellgett 

multiplex advantage, which makes use of the broadband nature of a short pulse measurement 

modality to provide superior clarity per pixel for a set measurement integration time when 

compared to successively scanned frequency domain investigations using continuous-wave 

source measurement modalities. It is not uncommon, therefore, that in order to speed-up 

measurement time in many MRI applications, different software approaches are considered 

by limiting the fidelity (number of pixels or voxels) or reducing the number of tomographic 

projections. Such practice, however, can lead to image feature artifacts if sampling is not 

performed following Nyquist’s criterion in the spatial domain [24,25]. A pre-processing step 

that can reduce the dimensionality of the data-set by compressing it to more parsimonious 

representations without distorting it can potentially minimise the dimensionality of the input 

dataset presented to a classifier. This can help in improving its classification accuracy and 

generalization ability. Furthermore, an additional advantage from compression is that it is 

advantageous from a signal-to-noise ratio perspective as the co-averaged signal components 

in each spectral bin are always in-phase whereas the noise components are out-of-phase and 

thus suppressed. Image reconstruction and registration are further discussed in more detail in 

Section 4 of this paper.

2. Biomedical imaging techniques and modalities for THz radiation and 

DCE-MRIs

The following section provides an in-depth discusion on the design, clinical applications and 

research potential of two emergent imaging modalities: THz pulsed imaging and DCE-

MRIs. Emphasis is on technological aspects associated with the associated hardware but also 

extends to the science of image formation along with the properties and acquisition 

parameters, taking into consideration the underlining physics associated with these systems.

2.1. Time-dependent techniques using THz radiation

Although much of the pioneering work in building interferometric spectro-radiometers and 

other continuous wave measurement systems at the THz part of the spectrum took place at 

Queen Mary College over a period of almost 30 years under the guidance of D. H. Martin 

[26], it was only during the past two decades that THz science and technology has literally 

flourished as a universally accepted new sensing modality. This has been largely due to the 

advent of time domain spectroscopy (TDS) with ultrashort-pulse laser sources. These 

systems enable time-resolved ‘far-infrared’ (FIR) studies for biomarker identification, which 

through explorative spectroscopic investigations may eventually lead to novel imaging 

applications in the submillimeter part of the spectrum. T-rays have significant potential in 

advancing both in in vivo and in vitro biosensing applications [27–29] in addition to their 

relatively non-invasive interaction with biological tissue. Furthermore, a significant number 

of biomolecules have several characteristic ‘fingerprint’ resonances due to discrete 

molecular vibrational, torsional and librational modes, both in liquids and solids [30,31].

Notably, THz-TDS is a time-domain technique similar to the well-known pulsed radar 

sensing modality, where the time gated reflections are analysed directly in the time domain 

by observing their attenuation, phase delay and temporal spread after interacting with matter. 
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Their temporally good definition can provide localization of tissue interfaces on the basis of 

their different refractive index. The real part of of the refractive index, as a function of 

frequency, is associated with phase spectra and the complex part is associated with the 

attenuation hence amplitude spectra. Studies in reflection geometry also enable the indirect 

assessment of sample or layer thickness, as well as in determining the position of embedded 

unknown objects, etc. [27]. Pulsed THz wave technology has also been applied extensively 

in biosensing. The pioneering investigations in biomolecule characterization were performed 

by the Aachen group [32] and Jepsen’s group [33]. These were followed by a rapid growth 

of investigations by other researchers worldwide [34–36]. An interesting example is that of 

an affinity biosensor monitoring the binding between biotin and avidin molecules on 

supported membranes composed of biotin layers on a quartz surfaces treated with 

octadecanol, as proposed by Menikh et al [37]. In that work, an amplified detection of 

biotin-avidin binding was very clearly observed through the dithering of the samples in a 

THz beam. This was attributed to the conjugation of agarose particles and avidin molecules 

and a change in contrast due to a change of refractive index resulting from the chemical 

binding process [30,38]. As avidin has a very strong affinity for biotin and is capable of 

being bound to any biotin-containing molecules, the developed detection technique is quite 

generic and can potentially be used to detect DNA hybridization and antigen-antibody 

interactions [30]. Fischer et al. [39] was able to reliably distinguish between two artificial 

RNA single strands, composed of polyadenylic acid (poly-A) and polycytidylic acid (poly-

C) from their different THz spectral transmission responses. In that study poly-C samples 

consistently showed stronger signal attenuation than poly-A samples.

2.2. Frequency dependent THz spectroscopy

In the THz part of the spectrum, many molecules have characteristic ‘fingerprint’ absorption 

spectra [27]. Substances in the condensed phase are held together by either ionic, covalent or 

electrostatic forces, and therefore the lowest frequency modes will be associated with 

intermolecular motion [40]. The interaction between THz radiation and biological 

molecules, cells, and tissues can be understood using assumptions of propagation of an 

angular spectrum of plane waves through the material [41]. Following standard postulates of 

dielectric theory, a medium may be characterized in terms of its permittivity ε (the ability of 

the medium to be polarized) and conductivity σ (the ability of ions to move through the 

medium). At higher frequencies, transitions between different molecular vibrational and 

rotational energy levels become increasingly dominant and are more readily understood 

using a quantum-mechanical framework [42]. THz pulse spectroscopy provides information 

on low-frequency intermolecular vibrational modes [43].

2.2.1. THz radiation absorption and detection in tissue—THz radiation interacts 

strongly with polar molecules, a prime example being water [44]. Polar water molecules are 

active in the infrared region and have various vibrational modes [45]. In the mid-to far-

infrared, the vibrations involve combinations of the symmetric stretch (v1), asymmetric 

stretch (v3), and bending (v2) of the covalent bonds. The vibrations of water molecules may 

be thought of as restricted rotations, resulting in a rocking motion, as shown in Fig. 2(a). In 

liquid water, since hydrogen bonds are much weaker than the covalent bonds (intra-

molecular), their bond lengths are much longer (1.97 Å versus 0.96 Å), as shown in Fig. 
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2(b). Steric effects from dipole moments in water clusters vary according to hydrogen 

proximity and as a consequence, shifts in ro-vibrational modes at THz frequencies are 

encountered. Furthermore, these shifts are expected to be loosely correlated with different 

water potential values, which indirectly affect the ability to interact with the surrounding 

molecules. This has further important ramification on the way proteins influence the state of 

water and can lead to further understanding of the function of hydration shells in proteins 

[46,47]

THz-TDS provides a direct measure of the real and imaginary components of the 

permittivity. A Debye relaxation model can be used to analyze the strong absorption of THz 

radiation in polar liquids at least up to 1 THz [48,31]. This model can be directly related to 

the associated intermolecular dynamics.

Biological tissue is generally composed of polar liquids. Due to the exceptionally high 

absorption losses of polar liquids at THz frequencies and the low source power in TPI 

systems, it is impossible for the THz radiation to penetrate through biological tissue of any 

substantial thickness. However, the same high absorption coefficient that limits penetration 

in tissue also provides extreme contrast between samples at various degrees of water 

saturation [31]. This property has proven advantageous in the examination of the properties 

of water uptake and distribution in plants [49,50], as well as in the evaluation of the severity 

of burns through the evaluations of necrotic skin samples [28]. In addition, [51] and [52] 

describe the application of TPI techniques for imaging of basal cell carcinomas (BCC) ex 
vivo and in vivo. Note that BCCs typically show an increase in absorption of THz radiation 

compared to normal tissue. This may be attributed to either an increase in interstitial water 

within the diseased tissue [53] or a change in the vibrational modes of water molecules 

through interactions with other functional groups. Systematic studies in tissue identification 

are reviewed in [31].

2.2.2. Identification of compounds with complex composition—The 

identification of pure compounds using molecular signatures with THz-TDS systems is still 

not straightforward because of the inherently broad spectral signatures in liquids and solids. 

Nevertheless, there is a growing number of multiply confirmed observations of particular 

resonant signatures that may be attributed to the presence of many compounds in pure form 

[54]. Of particular relevance here is the growing interest in studying the conformational 

structure, binding states, and vibrational or torsional modes of proteins and oligonucleotides 

[55,56] through the analysis of spectral features [57]. Different reflection or absorption 

signatures may also be attributed to a change of density or polarizability, or may indicate a 

dehydration state, or a denaturing process leading to a new amorphous absorption band or a 

temperature related absorption band shift. A compilation of readily identifiable spectral 

signatures of complex biomolecules in an atlas has already been considered at Durham 

University, and significant progress is being made, yet there is recognition by the THz 

community that it is unlikely it will have the universal applicability associated with other 

databases such as HITRAN, because of the variability in the location of the spectral bands 

observed under different experimental protocols.
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There are still, however, several examples of useful studies that may be found in the recent 

literature. Nishizawa et al. [58] illustrated the use of a widely tunable coherent THz scanning 

system for THz transmission spectroscopy to study samples consisting of nucleobases, 

nucleosides, deoxynucleosides, and nucleotides, to further gain an insight of the composition 

of RNA and DNA molecules. The THz spectra of those samples in crystalline form were 

measured in the 0.4–5.8 THz range. These studies showed that the molecules have quite 

different characteristic spectral patterns in this frequency region, furthermore the absorption 

signature patterns observed were sufficiently clear and reproducible for identifying and 

discriminating between these molecules. Using pulsed THz spectroscopy [55] it has also 

been possible to study the low frequency collective vibrational modes of bio-molecules, i.e. 

DNA, Bovine Serum Albumin and Collagen in the range 0.1 and 2.0 THz. It is generally 

accepted that for most samples, broadband absorption increases with frequency and a large 

number of the low frequency collective modes for these systems is also deemed as IR active. 

Herrmann et al. [83] also carried out measurements of THz spectra of Poly(dA-dT)-Poly(dT-

dA) DNA and Poly(dG)-Poly(dC) DNA and used new signal processing routines to infer the 

THz complex refractive index. The resultant spectral features showed that those samples 

were indeed distinguishable in the range 0.1 to 2.4 THz. Several research groups in Germany 

and Australia, have also studied the photo-isomerization of retinal chromophores [59,60] 

focusing on the conjugated polyene chain of the biologically important chromophore retinal 

and its low-frequency torsional vibration modes. In that work, the absorption and dispersion 

spectra of different retinal isomers (all-trans; 13-cis; and 9-cis retinal) in the far-infrared 

region between 10 and 100 cm−1 (0.3 ± 3.0 THz) were measured by THz-TDS at 298 and 10 

K. At low temperatures, it was observed that the broad absorption bands resolve into narrow 

peaks that directly correlated to torsional modes of the molecule. The study also confirmed 

that vibrational modes within the molecule can be approximately localized through a 

comparison of the absorption spectra of different retinal isomers. An alternative important 

research direction vigorously pursued by Teraview Ltd., Cambridge, U.K., aims to put an 

end on patent infringements within the pharmaceutical industry by detecting the presence of 

drug polymorphs [43,61,62]. Such studies, for example, have successfully used TPI to 

examine the variation in the crystalline structure of Ranitidine Hydrochloride polymorphs. 

Significant differences in the spectra of two different polymorphs were clearly observed at 

around 1.10 THz enabling their correct identification. A recent account on advances in the 

identification of crystalline structure of drugs using TPI is provided in [63]. Furthermore, the 

observation of the crystallization of compounds has also been possible [64].

2.3. Time-frequency dependent THz spectroscopy

Time-frequency analysis methods have been developed to provide very parsimonious 

parametrizations of time series datasets and in this sense complement well other 

parametrization schemes performed in either time or frequency domains [65,66]. The 

wavelet transform (WT) is a popular technique suited to the analysis of short-duration 

signals [67]. It decomposes the time series signal using two filter banks separating the high 

(detail) and low (approximation) frequency components of the signal assuming a pre-defined 

mother wavelet function. The approach provides very efficient de-noising capabilities in the 

presence of Gaussian white noise and has very parsimonious representation. An important 

feature of this transform is that it has orthogonal basis functions so that it enjoys perfect 
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reconstruction symmetry, which enables its inverse transform to reproduce the original 

dataset without loss of information. This is a particularly important property from a 

biomedical signal processing perspective as software certification for biomedical purposes 

should require complete traceability of all the data processing steps. A further development 

in the biomedical signal processing literature has been the use of adaptive wavelets [68], 

where the mother wavelet is specifically tailored at each decomposition level (wavelet scale) 

accordingly, to minimize the least squares error associated with the difference between the 

transformed signal from its original one. This approach holds great promise for optimizing 

the extraction of the spectroscopic information contained in each THz pulse transient as well 

as in THz TPI generally [69–72]. Fig. 3 presents the result of this simulated test, in terms of 

classification errors. To generate this graph, the standard deviation of the noise was varied 

from 0.001 to 0.5. For each noise level, 250 noisy patterns were generated for each class 

(lycra and leather). As can be seen, the classification is much more robust to noise when 

carried out in the wavelet domain than in the original domain. Moreover, the robustness to 

noise is further increased by the optimization of the WT.

In addition to the above more elaborate routines, there have also been other examples of 

studies that incorporate WT pre-processing routines for signal-to-noise-ratio enhancement 

and classification of THz spectra [28,73]. Such pre-processing steps enabled the successful 

discrimination of cancerous from normal tissue in wax-embedded histopathological 

melanoma sections as well as the classification of dentine and enamel regions in teeth [69]. 

It is nowadays generally accepted that the performance of a classifier based on the output of 

a wavelet filter bank is improved over that of an Euclidean distance classifier in the original 

spectral domain [72]. Finally, an alternative very promising approach for the modelling of 

de-excitation dynamics, which has its origins to the theory of complex dielectrics, is through 

the use of fractional order calculus and the fitting of fractional order models. In this 

approach, the time series experimental datasets are modelled using very parsimonious pole-

zero expressions associated to dynamics of resistive, capacitive or inductive networks [74–

76]. Although the fractional-order system identification literature is still at its infancy, it 

promises to provide much lower residual errors in the identified models thus significantly 

advancing the science of chemometrics. These algorithms, however, have yet to be adopted 

by the biomedical signal processing community. The approach can account for spectral 

shifts in amorphous materials as well as de-embed solvation dynamics.

2.4. A brief introduction to experimental set-ups for THz trans-illumination

THz imaging can be remarkably informative regarding a sample’s composition. The Fourier 

transform (FT) of the associated time domain waveform over a certain spectral range allows 

the calculation of the frequency dependent refractive index and absorption coefficients of the 

sample. If the FT is performed in real time using dedicated hardware, it becomes possible to 

extract the above parameters also in real time. Since wavelengths are longer in the THz part 

of the spectrum, there is sufficient phase stability in the experimental apparatus, this enables 

the extraction of phase information by varying the time delay between the THz wave and the 

probe beam [27]. Since some materials are transparent to THz radiation, it is occasionally 

feasible to measure transmission responses and acquire spectral information. Reflectance 

imaging is also straightforward, and through their combination, a spectral absorbance may 
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be inferred. This is not always possible at the infrared and optical parts of the spectrum 

where errors due to scattering of shorter waves due to the surface roughness of the samples 

preclude direct calculations of absorbance. Elementary signal analysis may also be used 

(e.g., differential absorption) to produce informative contrast images that can be invaluable 

to the evaluation of disease proliferation.

Using continuous wave systems, there is a variety of instruments that may be assembled 

using quasi-optical active and passive components. The AB Millimetre vector network 

analyser, if available, is the preferred choice for continuous wave measurements with 

significant signal-to-noise ratio per spectral bin all the way up to 1.2 THz although it is not 

as user friendly for extracting scattering parameters as other commercially available 

solutions that operate at much lower frequencies. An account of different topologies using 

null-balance methods can be found in [77] whereas polarimetric measurements for dichroic 

samples should be ideally performed using the topologies discussed in [78,79] or Fabry-

Perot structures, e.g. [80]. Alternative broadband experimental configurations may include 

Mach-Zehnder or Martin-Puplett configurations as discussed in [50]. When high power per 

spectral bin is needed, THz imaging may also be performed with high-power THz sources 

under pulsed scanning mode and pulse-gated detection using large scale facilities (e.g. 

Jefferson lab, FELIX etc) but at significant cost. Currently, however, biomedical 

investigations with such facilities lag behind investigations performed by the semiconductor 

community.

An important advantage of time-domain systems over their continuous wave counterparts 

that are plagued by etalon effects is that of being able to perform time gating of the pulses. 

This is possible as long as the multiple reflections in the measurement system are 

sufficiently far away so as not to be mixed with the molecular de-excitation signals of the 

sample. The typical time-resolved THz spectrometer used in most of the studies discussed so 

far utilize a short coherence length infrared source (centered at around 800 nm) to generate a 

sub-100 femtosecond duration pulse train with repetition frequency of around 80 MHz. Each 

infrared pulse, is split into separate pump and probe beams. The pump beam is used to 

excite an optical rectification crystal, which acts as a T-ray emitter, and the T-rays produced 

(duration around 200 fs) are collimated and focused onto a sample by a pair of parabolic 

mirrors. The T-rays emerging from the sample are re-collimated by another pair of mirrors, 

before being combined with the probe beam in a T-ray detector crystal. As a result, the 

modification by the sample T-ray and the probe beams propagates through the THz detector 

crystal co-linearly. The pump beam, which is also transmitted through a chopper, travels 

through an optical delay stage that is modulated accordingly, so that the pump and probe 

beams arrive at the detector in a time-coincident manner. The electro-optic detector crystal 

produces an output that is proportional to the birefringence observed from the interaction of 

the THz pulse with the time-coincident infrared pulse replica within the crystal. This output 

is proportional to the T-ray response of the sample and this signal is measured with the use 

of a balanced optical photo-detection scheme. A lock-in amplifier (LIA) is also used to 

demodulate the signal, and this avoids 1/f (flicker) noise problems that are present in this 

detector-limited measurement scheme. Typically, THz-TPI is performed through a 2D raster 

scan after translating the sample in both the x and y direction, while keeping it at the focal 

plane of the parabolic mirrors. A typical setup [81] is shown in Fig. 4.
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It is also worth noting that in all of the above experimental set-ups one needs to always 

consider that there may also be additional pseudocoherence errors because different parts of 

the beam across its aperture travel different paths through different regions of the sample (if 

this is of non-uniform thickness), interfering constructively or destructively with each other 

when they recombine. A recent account of advances in THz metrology discussing errors in 

both continuous wave as well as THz-transient systems can be found in [82]. Such errors are 

endemic to much of the THz literature although this is not extensively discussed. 

Management of these artefacts and their relevance to imaging applications is therefore an 

open issue requiring further consideration.

The resultant measurement at each pixel position of an image corresponds to an entire 

waveform in the time domain. Therefore, the result from TDS-TPI is a three-dimensional 

(3D) data set, which then can be potentially mapped to two-dimensional (2D) images [83], 

where structural and compositional discrimination based on a sample’s optical properties 

may be conveniently performed using pattern recognition algorithms. In the following 

section, sample responses from multiple THz spectrometry experiments are discussed within 

the context of a pattern recognition framework. This paves the way for the extension of 

pattern recognition algorithms to the above emergent sensing modalities [84].

2.5. DCE-MRI imaging techniques and modalities

As stated earlier, MRI provides new opportunities for the classification, grading, and 

diagnosis of tumours, enabling both surgical planning and clinical management on the basis 

of tumour morphology. It further provides clear differentiation of healthy organs and 

anatomical structures so that an association of lesions with neighbouring organ structures 

can be inferred. It is, therefore, widely used in cancer diagnosis elucidating tumour response 

to treatment [85]. Dynamic contrast enhancement patterns can be affected by a wide range 

of physiological factors which include vessel density, blood flow, endothelial permeability 

and the size of the extravascular extracellular space in which contrast is distributed [86,85]. 

The crucial difference from traditional medical imaging (i.e. X-rays) is that the DCE-MRI 

modality provides 3D spatial information about lesions as well as temporal information 

about lesion physiology (showing variations in contrast agent uptake rates), allowing for 

more accurate assessment of lesion extent and improved lesion characterisation [8].

Typically, DCE-MRI images are acquired with the use of a conventional gradient echo 

(GRE) pulse sequence to repeatedly image a volume of interest after injecting a contrast 

agent, such as gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) into the patient’s 

blood stream. The DCE imaging employs a full k-space sampling strategy, (where the k-

space relates to the associated wavenumber, a terminology originally established by the 

semiconductor industry). Three dimensional (3D) volume acquisition slice profiles are 

generally rectangular and slices are always contiguous. This means that signal derives 

uniformly from all tissue in each slice, without cross-talk.

One of the biggest advantages of the gradient-echo pulse sequence is that it can be 

performed quickly enough to enable 3D FT (3DFT) data acquisitions. In 3DFT imaging, an 

entire volume or slab of tissue is excited, rather than merely a thin slice of tissue. As a 

consequence, the 3D MRI data acquisition consists of three different phase encoding 
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directions: the transaxial plane, the sagittal plane, and the coronal plane. Typically, 3D 

image sets are obtained sequentially every few seconds for up to 5–10 min. There is always 

a trade-off between spatial (sRes) and temporal (tRes) resolution. Usually, most radiologist’s 

clinical protocols show a preference for scans at high sRes allocating only 1–2 min for tRes 

data acquisition [87].

A typical DCE-MRI dataset used for the image analysis consists of one baseline 3D MR 

image which is used as a reference before contrast agent injection. This is subsequently 

measured in a repeated manner to acquire post-contrast images at the second, third, till sixth 

time slices. Each time slice has a typical time interval equal to 60 s.

Following the terminology introduced independently by Ljunggren [88] and Twieg [89] we 

shall refer to the, k-space to denote the spatial (either 2-D or 3-D) frequency domain of the 

imaging system. Within the context of temporary image processing the k-matrix, is 

composed of digitized MR signals stored during the data acquisition process reconstructive 

computation steps. The complex data entries are associated to a pulse sequence of accurately 

timed radio frequency and gradient pulses.

In clinical practice e.g during a DCE-MRI mammogram, it is desirable to reduce the signal 

acquisition time; this is normally achieved by undersampling the k-space. This may achieved 

by adopting a random partial k-space updating [90] protocol. The HASTE sequence which 

samples half the k-space [91] is now routinely used in clinical MRI.

Aliasing from sampling the k-space below the Nyquist rate, however, introduces imaging 

artifacts. Since there is always a need for better tRes while preserving adequate SNR and 

sRes, several groups [92–94] have shown that it is possible to accelerate DCE-MRI (without 

employing parallel imaging) by a factor of ten using compressed sensing (CS) based image 

reconstruction as proposed in [24]. The approach allows filling of missing k-space data 

using a constrained optimization technique to interpolate the values between under-sampled 

adjacent data points in the spatial domain.

Recently work by Yin et al. [25] is based on the broad principles of compressed sensing and 

makes use of the fact that, when undersampling the k-space, it is possible to use variable 

density sampling schemes in a Cartesian coordinate system to widely distribute the resulting 

artifacts and reduce their visual impact. Such an approach was further explored using a 

model-based method for the restoration of MRIs with sparsity representation in a 

transformed domain, e.g. spatial finite-differences (FD), or discrete cosine transform (DCT). 

The reduced-order model, in which a full-system-response is projected onto a subspace of 

lower dimensionality, has been used to accelerate image reconstruction by reducing the size 

of the linear system associated with the measurement space. The singular value threshold 

technique [95] (SVT) was used in the denoising scheme to reduce and select the model order 

of the inverse FT image, and to restore multi-slice breast MRIs that have been compressively 

sampled in k-space. Restored MRIs with SVT de-noising show reduced sampling errors 

compared to direct MRI restoration methods via spatial FD, or DCT. The difference image 

related to Identify Transform (IT) shown in Fig. 5(b) contains a relatively large number of 

noisy (error) pixels that are located around the boundary of the imaged section. 
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Reconstruction with IT shows also some blur at the image edges. In contrast, the 

reconstructed image using SVT denoising illustrated in Fig. 5(a) shows a reduced number of 

error pixels compared to the reconstructed image in Fig. 5(b).

2.6. Advantages and shortfalls of T-rays and DCE-MRIs

Advanced TPI and DCE-MRIs are becoming widely available in conventional clinical 

practice, where data acquisition and analysis are comparable despite inherent differences in 

signal acquisition and physicochemical basis of tissue contrast. One of the primary 

advantages of THz imaging over MRI is the potential specificity of a multitude of 

spectroscopic features especially if new contrast agents can be successfully developed. 

Unfortunately, the responses of many biological tissues are unknown in this band. In 

addition, a number of papers discuss spectroscopic investigations of biomolecules such as 

DNA [55,58,83]. An associated problem is the development of computer aided diagnostic 

algorithms for interpreting the multispectral images obtained by T-ray imaging [96]. A 

number of authors have considered this question by fitting the measured data to linear filter 

models and using the filter coefficients as a means to classify tissue types [97]. In this 

context, for example, one of the most important potential applications for THz technology is 

the detection and identification of biological and chemical agents [98]. Although T-rays can 

be used to image tumour microvasculature, more reports on the feasibility study using TPI 

are focused on imaging breast tumours [99,100] and skin cancer [101], due to the absorption 

of THz waves by water that is found in biological tissue. A recent review has been carried 

out by Yu et al. [102], where investigations relating to the potential of THz imaging and 

spectroscopy for cancer diagnosis has been highlighted. An important progress in THz 

tumour image was reported by Huang et al. [103] in 2006. In their work, they provided an in 
vitro demonstration of gold nanorods as novel contrast agents for both molecular imaging 

and photothermal cancer therapy. As a result of the strongly scattered red light from gold 

nanorods in dark field, observed using a laboratory microscope, the malignant cells are 

clearly visualized and diagnosed from the nonmalignant cells.

A further recent development in MRI is that of dynamic contrast-enhanced magnetic 

resonance imaging (DCE-MRI). This refers to the acquisition of serial MRI images before, 

during, and after the administration of an MR contrast agent. Unlike conventional enhanced 

MRI, which simply provides a snapshot of enhancement at one point in time, DCE-MRI 

permits a fuller depiction of the wash-in and wash-out contrast kinetics within tumors. 

Depending on the analysis approach chosen, measurements may be derived from signal 

intensity data, or more commonly, signal intensity data are transformed into contrast 

concentration data prior to analysis [104]. In a THz imaging system, contrast is based on 

differences of attenuation, phase delay and dispersion of the THz pulse between normal 

adipose (fatty) tissue when compared to that of tumour tissues whereas in DCE-MRIs, 

contrast is based on the basis of observing the different degree of absorption of the contrast 

agent. Furthermore, because of the associated dynamics of the contrast agent, and the need 

to re-introduce a contrast agent if the imaging process is to be repeated, DCE-MRI systems 

provide a more limited temporal resolution. This can be a limitation in accurate tumour 

reconstruction after projecting 4D images to a 3D space as illustrated in the Section 4.
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3. Analysis & classification of THz imaging data

T-ray pattern classification aims to select a sub-set of significant features in the image data 

set, without incurring a dramatic loss of information. Through pattern analysis, any 

relations, regularities, or structures associated with the measured T-ray response can be 

found. By detecting patterns, a T-ray classification system should be able to automatically 

make generalizations on its input space on the basis of its training set [105]. Such an 

approach is particularly useful within a laboratory automation context. Consequently, 

complete automated solutions should be seen as composed of three different modules that 

may be individually optimized for particular samples and data sets: the data acquisition 

imaging spectrometer module, the data de-noising pre-processing module and the classifier 

module. Depending on the type of sample, tuning may be tailored for each module before 

the learning process is initiated.

3.1. Pre-processing for THz-TDS pulses

During pre-processing, input data vectors need to be grouped together into sets of feature 

vectors [84]. The choice of parameters for grouping is fundamental to the subsequent 

performance of the classifier. Data pre-processing aims to isolate the real T-ray responses 

from the effects of amplitude and phase noise associated with the pulse to pulse stability of 

the source, laser beam pointing stability and detector shot noise, thus reducing artifacts that 

could compromise the classifier performance. Co-averaging multiple measurements by 

moving the scanning delay line uni-directionally several times through its central maximum 

(slow-scan mode) or changing the lock-in time constant (fast-scan method) improves signal-

to-noise-ratio per pixel but at the expense of significantly increased measurement time and 

image acquisition. Since improvement in signal-to-noise ratio is proportional to the square 

root of the number of co-averaged time-domain responses; this approach significantly limits 

the integration time that may be budgeted for each pixel. Furthermore the approach is 

unsuitable to the analysis of samples whose THz response is time-dependent e.g. drying. 

Signal processing can partly alleviate some of these issues. Window apodization for example 

reduces frequency domain Gibbs ripple due to the data discontinuities at the edge of the 

recorded time domain interferograms. Optimization of the apodization function is now 

possible using algorithms accounting for the asymmetry of the propagating femtosecond 

THz pulses [106].

Multiresolution techniques such as WTs are particularly effective to further de-noise mean-

centered apodized interferograms. A typical de-noising procedure consists of decomposing 

the original signal using DWPT or DWT [107–109], thresholding the detail coefficients, and 

reconstructing the signal by applying the appropriate inverse transform (IDWT or IDWPT 

respectively). For the de-noising of femtosecond THz transients, a three-level decomposition 

is usually sufficient [110] and unnecessary computational load associated with more 

decomposition levels can be avoided. Fig. 6, illustrates the process [111].

An alternative promising pixel de-noising method involves the use of wavelet power 

spectrum estimation techniques (WPSET), as discussed by Kim et al. [112]. This approach 

may remove spectral artefacts without distorting spectral features in a more efficient manner. 

The author’s application of WPSET to the transmission spectrum of water vapor verified the 
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effectiveness of the approach. This is a nonparametric approach based on a wavelet 

representation of the logarithm of the power spectrum [113]. Alternative signal pre-

processing methods for de-noising include base line correction [114], smoothing [115], first 

and second derivative [115,116], multiplicative scatter or (signal) correction [117], and 

standard normal variate analysis [118] Although all these methods have their own merit 

under different experimental conditions, one may argue that wavelet de-noising has the 

widest applicability [119].

From an imaging perspective, the discrete cosine transform (DCT) using Wang factorization, 

Lee’s power of two block lengths DCT scheme, Arai’s scheme, Loffler’s algorithm or Feig-

Winograd factorization [120–123] are particularly useful. The attractiveness of the DCT 

algorithm stems from the fact that it is asymptotically equivalent to the Karhunen-Loève 

transform which possesses optimal de-correlation as well as optimal energy compaction 

properties. Two-dimensional WTs are well established in multimedia coding standards (H.

265 and JPEG2000) [124]. Almost real-time hardware implementation is possible nowadays 

using dedicated Field Programmable Gate Array (FPGA) technologies, with 45 nanometer 

complementary metal-oxide-semiconductor (CMOS) standard cells capable of operating at 

7.6 Gpixels/second for an 8 × 8 block rate at more than 100 MHz [125].

3.2. Feature extraction methods

Each T-ray measurement with n data points can be viewed as a vector in a n dimensional 

space, known as a pattern space. The time sequence then appears as a point in the pattern 

space. The aim of feature extraction is to reduce dimensionality by converting preprocessed 

data to feature vectors. There are three considerations in the feature extraction and selection 

process: (i) the establishment of sound feature evaluation criteria, (ii) deciding upon the 

dimensionality of the feature space, and (iii) the choice of the algorithmic optimisation 

procedure adopted.

This analysis is carried out pixel by pixel, on the THz image. Feature vectors are grouped 

together via a decision function and then are evaluated to see whether they provide 

meaningful information. The features of interest upon which a classifier may be constructed 

are pulse height, shape, delays in the time domain, as well as the spectral content of the 

pulse in the frequency domain (after retaining both real and complex parts). Alternative 

parameters include the complex reflection coefficient commonly associated with an 

impedance mismatch and the complex insertion loss, commonly associated with the number 

of absorbers and extinction coefficient of the components in the sample. Differential 

transmittance and absorbance, with reference to a known sample can also provide contrast 

information that may be used for classification purposes.

Essentially, features should consist of parameters that display non-transformed structural 

characteristics: moments, power, amplitude information, energy, etc. as well as transformed 

structural characteristics: frequency and amplitude spectra, coefficients from wavelet 

decomposition, AR, ARMA coefficients, coefficients derived using subspace identification 

methods from state space analysis of the corresponding time series, etc.
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Pre-processing techniques focusing on dimensionality reduction in the feature space are at 

the core of a successful pattern recognition system. Inclusion of more features improves 

classifier performance but compromise the generalization ability of the classifier. This is the 

well-known curse of dimensionality [126], which becomes quite prominent if the number of 

features is above 30.

The fast WT may be adopted to achieve effective feature extraction. The features presented 

to the classifier, in this case become the extracted wavelet coefficients. The use of Auto 

Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the WTs of 

measured T-ray pulse data has been previously discussed elsewhere [97]. The features of a 

processed THz signal are eventually classified by an Mahalanobis distance classifier. The 

effectiveness of this method is demonstrated via cancer cell discrimination from normal 

tissue and on the problem of recognising different kinds of powders.

3.2.1. Linear transforms for feature extraction—Linear transforms are useful both 

for noise extraction and for representing the information in the data using fewer coefficients. 

Noise extraction can be performed by assuming that the system is detector noise limited 

rather than source noise limited. In this case, the noise spreads equally among all transform 

coefficients, while useful information will generally be concentrated in a few coefficients. 

Examples of commonly used linear transformations for the processing of spectroscopic data 

include the FT, windowed FTs, WTs, and principal-component analysis (PCA). A 

comprehensive evaluation of various linear transforms that may be used for the denoising of 

spectra from continuous wave THz spectrometers can be found in [65], the main conclusions 

of the work are summarized in Table 1.

An example of using spectral features to perform classification of TPI signals is discussed in 

Yin et al. [127]. The amplitude and phase at certain key frequency components constitute 

pairs of feature subsets on which the classification is based. An important advantage of this 

approach is the small dimensionality of feature vectors. This allows the features to be 

directly extracted from pulsed responses with relatively low computational complexity. Fig. 

7 shows the phase and amplitude plots in the frequency domain for six different powder 

samples: sand, talcum, salt, powdered sugar, wheat flour, and baking soda. Each curve is 

associated with a single pixel sampled from the image data. The spectrum has a cut-off 

frequency at 3 THz. Sharp changes of amplitude at the second frequency bin may be 

observed in Fig. 7(a). It can also be seen that samples have significantly different frequency 

dependent phase patterns, so that a classifier using this information can be implemented 

illustrated in Fig. 7(b).

Zhang et al. [128] proposed two feature extraction methods to avoid misplacement phase 

error in THz reflection time-domain spectroscopy (THz-RTDS). In their work, the first or 

second order derivative of the phase of the relative sample reflectance was used to extract the 

frequency dependent absorption signatures of the materials under study. Ryniec et al. [129] 

applied decision trees as a feature selection method to identify THz spectra of different 

compounds, demonstrating the effectiveness of decision tree methods in the classification of 

THz spectra.
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Generally, Fourier expansions suffer from drawbacks such as the notion of an infinite 

support in the time domain [130], which compromises the quality of the signal unless 

apodization routines are adopted [65] to eliminate Gibb’s ripple resulting from 

discontinuities at the edges of the time domain interferogram. This is especially true when 

fast scan data acquisition is performed in TPI applications where the time domain signals are 

more truncated.

These drawbacks are more efficiently addressed through the use of windowed FTs that 

further reduce the number of coefficients needed to describe the transformed dataset in 

featureless parts of the spectrum as well as through the WT which addresses the issue by 

successively increasing the resolution (increase in scale) of both the temporal and frequency 

domain features of the TPI signal.

3.2.2. Wavelet coefficients as feature sets for THz pattern analysis—The 

objective of feature extraction techniques is to isolate the relevant features from the T-ray 

signals to improve classification performance. WTs complement the traditional Fourier-

based techniques in THz signal analysis by providing superior time-frequency localization 

characteristics that are well-matched to the requirements for the short-duration T-ray pulse 

signals. Stephani et al. [131] used wavelet coefficients to extract features from hyperspectral 

THz-TDS datasets. The approach enabled a coarse pre-clustering operation representing the 

target images successfully. An alternative approach is through the wave atoms transform 

(WAT) which was first introduced by Fu et al. [132] in the context of THz transient 

processing of reflectance signatures. This is a multiresolution technique that has a sparser 

expansion for oscillatory and oriented sample textures. It can provide improved resolution 

for pattern identification, when textural artifacts contaminate the THz transient response is 

concealing the compositional absorbance or reflectance of the sample.

An alternative to occasionally generate even more parsimonious feature matrices, reported 

by Yin et al. [97], assuming AR, MA and ARMA models of different order, may also be 

considered, depending on the data structure. In that approach, the averages of the modelling 

coefficients, (denoted as DC values in Fig. 7), are computed over the three decomposition 

levels of the WT employed on each data set. The model coefficient averages are then joined 

to produce feature vectors with a dimension equal to the number of sub-bands in the adopted 

wavelet decomposition. The feature vectors obtained from two different AR orders, and MA 

orders may be combined respectively, to form the final AR and MA feature matrices. The 

ARMA feature matrix is obtained by combining two different orders of AR and MA vectors 

together. The extracted AR and MA feature vectors are calculated at each decomposition 

level j. This approach may be introduced to further suppress the number of features in the 

input of the classifier so as to further improve its generalization ability. The complete 

procedure for calculating DCj
ARMA is depicted in Fig. 8.

An alternative to time-frequency analysis by WTs and further compression using MA 

routines is through the use of the Radon transform. Such approach has been used to 

successfully identify micro-Doppler motion of a target and has its origins in the high-

resolution radar identification community. Xu et al. [133] suggested a combination of time 
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frequency analysis with the Radon transform to perform micro-feature extraction but the 

approach incorporates echo-cancelation that often leads to an undesirable channel spectrum 

in the frequency domain, a common source of error in TPI imaging that can significantly 

compromise classifier performance. Alternative feature extraction procedures include PCA, 

as discussed in [99] and [65]. The usual problem with such an approach is the necessity to 

have a reliable set of calibration samples, which is often unfeasible.

3.3. Pattern classification

In signal processing, pattern classification refers to the separation of patterns, measured or 

observed, into small classes, and then the assignment of each pattern to a particular class. 

The classification scheme is usually based on training sets that have already been 

successfully classified (supervised learning strategies). Learning can also be unsupervised, 

but such approaches usually fall short from a biomedical software certification perspective. 

The classification or description schemes that follow are mostly based on statistical (or 

decision-theoretic) approaches such as the Mahalanobis distance classifier, the Euclidean 

discrimination matrix, Support Vector Machines (SVMs) and Extreme Learning Machine 

(ELM) classifiers.

3.3.1. Feature based Mahalanobis distance classifiers—The Mahalanobis 

distance classifier [134] is a type of minimum distance classifier, which is optimal for 

normally distributed classes with equal covariance matrices (linear discriminant) and equal a 
priori probabilities. Such classifier is often chosen because it is simple to implement and it 

provides reasonable results for a variety of biomedical waveforms. One possible approach is 

to formulate the Mahalanobis classification scheme on a set of feature matrices of ARMA 

modelled datasets after signal decomposition in wavelet subbands [97]. For a given class, m, 

the distance from a feature matrix DCj
l  to the class mean 𝒜m, is defined as

ρm(X) = (DCj
l − 𝒜m)TCm

−1(DCj
l − 𝒜m) (1)

where Cm is the covariance matrix of the feature vectors regarding class m, DC j
l  with l = 1, 

2, 3 represents the averaged coefficients matrix related to AR (l = 1), MA (l = 2), and 

ARMA (l = 3) modeling of wavelet approximation coefficients at three decomposition levels 

j, that is, DCj
1 being DCj

AR, DCj
2 being DCj

MA, DCj
3 being DCj

ARMA. In practice, the 

covariance matrix is estimated from the training vectors. During classification, the minimum 

Mahalanobis distance from feature matrix DCj
l  to each class centre 𝒜m is used to assign the 

appropriate class label.

3.3.2. Support Vector Machine classifiers (SVMs)—Kernel based learning and 

SVM methodologies reside at the core of a range of interdisciplinary challenges. Their 

formulation shares concepts from different disciplines such as: linear algebra, mathematics, 

statistics, signal processing, systems and control theory, optimization, machine learning, 

pattern recognition, data mining and neural networks. The idea of the SVM is to map data 
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from the input space into a high-dimensional feature space, in which an optimal separating 

hyper-plane that maximizes the boundary margin between two classes can be established. At 

its core, SVMs are two-class classifiers. Recently, SVMs have been extended to solve multi-

class classification problems from noisy biomedical measurements. Furthermore, there are 

several reports discussing the use of SVMs for THz material identification. Pan et al. [135] 

used SVMs to classify THz absorption spectra for the purpose of illicit drugs identification. 

They successfully identified seven pure illicit drugs establishing the methodology as an 

efficient method for drug identification. Fitzgerald et al. [99] applied the SVM approaches 

combined with a radial basis function to discriminate normal from malignant breast tissue 

from THz-TPI. Yin et al. [127] applied SVMs to perform multi-class classification of THz 

powder spectra for six types of powder materials with similar optical properties. Fig. 9 

illustrates the multi-class separation for the six types of powder substances using SVMs, 

which are designed according to a pair wise-strategy. One real Gaussian kernel with C = 

1000 and σ = 1 × 10−7 is used to map the input data into a 2D Fourier feature space for 

visualisation purposes. The support vectors indicated by cyan circles are subsets of the 

training data sets and are used to construct a two-dimensional hyper-plane in feature space, 

which acts as a boundary separating each class of different powder materials.

3.3.3. Complex valued ELM classifiers—Our recent work [136] extended a very 

important class of recently developed classifiers called Extreme Learning Machines (ELMs) 

to complex valued problems [137,138]. The motivation for the proposed extension stems 

from the fact that the real valued ELM has shown some of the lowest training errors among 

machine learning algorithms and in particular SVM classifiers [139,140,127,130]. 

Furthermore, existing machine learning techniques are focused on real valued datasets. 

Traditional amplitude only based pattern mining approaches of spatio-temporal images has 

classification limitations in samples that display highly correlated time-space features. The 

complex-valued ELMs (CELM) adopts induced complex RKHS kernels [141] to map inputs 

from complex-valued non-linear spaces to other real valued higher dimensional linear 

spaces. This permits us to classify the inputs with linear complex valued feature vectors i.e. 

preserving the information in the phase of the signal (dispersion). The approach is based on 

concepts developed for quaternary variables classification, through the introduction of two 

complex-coupled hyper-planes [142]. A widely linear estimation processing approach is 

adopted and the argument composed of the sum of the two parts (real and imaginary) is 

employed to relate the input feature space to the output feature space through the hidden 

layer of the classifier. The approach enables us to define a kernel function specific for the 

separation of the data in high dimensional complex coupled hyper-planes. The approach is 

compatible with the processing of datasets in tensorial format which enable additional image 

features (hyperspectral, amplitude, phase, polarization or spatiotemporal components) to be 

simultaneously retained.

The CELM classifier approach has a very broad applications domain across the biomedical 

community encompassing all types of research associated to the study of the interaction of 

matter with waves, and in particular spectroscopy (acoustic, dielectric, optical, THz, 

infrared, electron-spin resonance, nuclear magnetic or paramagnetic resonance, etc.) as well 

as imaging and tomography modalities encountered across the physical, chemical and 
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biomedical disciplines. It is thus fundamental both from a machine learning as well as from 

a chemometrics perspective [143]. Because spectroscopic responses are analogous to the 

blurring function (relating amplitude and phase) developed by Bode [144] to describe the 

dynamics of physical systems, CELMs have a wide range of applications across all physical 

sciences. A typical example of the proposed approach is the recent study [145] which 

focused on the use of CELM to perform binary and multi-class classification of RNA and 

powder samples respectively on the basis of images acquired by THz-TPI. The analysis was 

performed on large data sets as would be the case in a typical biomedical or quality control 

setting. Classification was performed on the basis of discernible features in the measured 

THz spectra. Examples of learning vector patterns for multiclass recognition via CELM, are 

shown in Fig. 10(a) after FT of the time-domain signatures and extraction of the 

corresponding complex valued features in frequency domain, regarding phase and 

amplitude. We used 49 input vectors related to each powder sample for training the 

classifier. Two real RKHS kernels were used for mapping. The optimal Gaussian parameter 

of σ was set to 100 and the penalty parameter C was set to 0.1. The labels were complex-

valued and produced 12 output classes. Background colour shows the contour shape of the 

decision surface, (these are numbered from 2 to 12), these correspond to the amplitude 

calculations derived from the sum of real and imaginary values of the respective complex 

labels. It can be observed that THz measurements of powder samples of salt, sand, talcum, 

are grouped more tightly than the powder samples of flour, soda and sugar. The labelled 

contours that correspond to different real and imaginary parts (the real and imaginary parts 

label the different classes) are illustrated in Fig. 10(b). These regions are undecided in the 

classification process and are therefore excluded to avoid over-fitting problems.

The CELMs may be naturally extended to multi-pixel or voxel images. This aims to achieve 

complex valued learning of 3D inputs of complex valued features, i.e., to classify the 

complex valued input data selected from a tensor. The proposed approach will address 

aspects of quaternary classification within a tensor algebra context. For 3D inputs, three 

pairs of complex coupled hyperplanes will be designed through orthogonal projections. The 

approach enables us to define kernel function specific for the calculation of high 

dimensional complex coupled hyper-planes. It allows effective classification of a more 

natural representation of the data in a tensor format. The approach is also extendable to 

hierarchical clustering as discussed in the following section.

3.4. A further example for cancer diagnosis using THz imaging and pattern classification 
algorithms

Eadie et al. [146] carried out multi-dimensional THz imaging analysis for colon cancer 

diagnosis. Their research uses decision trees to find important parameters, with neural 

networks (NN) and SVMs that are used to classify the THz data as indicating normal or 

abnormal samples. This work finds the sensitivities of 90–100% and the specificities of 86–

90% in the colon cancer diagnosis. Thus, the use of THz reflection imaging allows the colon 

cancer samples to be detected on the basis of either true or false positive or true or false 

negative diagnosis outcomes derived from specificity / sensitivity metrics according to the 

Table 2 below, where TN and TP signify true negative and true positive respectively and FN 

and FP a false negative or false positive outcome.
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3.5. Clustering techniques to segment THz images

Clustering, also termed cluster analysis is the formal study of algorithms and methods for 

grouping unlabelled data into subsets (called clusters) according to measured or perceived 

intrinsic characteristics or similarity. Clustering deals with data without using category 

labels that tag objects with prior identifiers, i.e., class labels. The absence of category 

information distinguishes data clustering (unsupervised learning) from classification or 

discriminant analysis (supervised learning). The two most frequently used clustering 

techniques are the k-means and the ISODATA clustering algorithm. Both of these algorithms 

use iterative procedures in their cluster estimation process. In general, both of them assign 

first an arbitrary initial cluster vector. Then each pixel is classified to the closest cluster. 

Finally the new cluster mean vectors are calculated based on all the pixels in one cluster. The 

second and third steps are repeated until the change between the iteration is small. The 

change can be defined in several different ways, either by measuring the distances that the 

mean cluster vector have changed from one iteration to another or by the percentage of 

pixels that have changed between iterations. The ISODATA algorithm has some further 

refinements such as the option of splitting and merging of clusters [147]. Clusters are 

merged if either the number of members (pixel) in a cluster is less than a certain threshold or 

if the centers of two clusters are closer than a certain threshold. Clusters are split into two 

different clusters if the cluster standard deviation exceeds a predefined value and the number 

of members (pixels) is twice the threshold for the minimum number of members.

Currently, several papers report clustering techniques to segment THz images. Brun et al. 

[148] report on THz-TDS imaging of 10 µm thick histological sections, where clustering 

methods are used to cluster THz spectral images that are produced on the basis of the 

extracted refractive index data. The results show that THz spectral differences exists not only 

between tumor and healthy tissues but also within tumors. Ayech and Ziou have discussed k-

means clustering methods for segmentation of THz imaging. In [149], a combination of 

autoregressive (AR) model and PCA is proposed to extract effective temporal/spectral 

features from TPI before carrying out soft decision of Kharmonic-means (KHM), which 

outperform the algorithms based on hard decision of traditional k-means methods. In 

[150,151], a novel approach of segmentation of THz images is proposed, where the k-means 

technique is reformulated under a ranked set sample. Their approach consists of an 

estimation of the expected centers, selection of the relevant features and their scores, and 

subsequent classification of the observed pixels in the THz images. This method is 

essentially less sensitive to the initialization of the centers. A more recent research suggested 

in [152] uses a two-step partitioning clustering approach to segment THz measurements of 

the inner structure of cave bear teeth. A k-nearest neighbor graph that is built on the reduced 

channel information [153] is further split into segments by a minimum edge cut bi-

sectioning method. The results show that the layer-like structures are discernable within the 

material, giving a more detailed image of the inner structure of the tooth. Using the ISO-

DATA algorithm to cluster THz spectra for THz image segmentation was first suggested by 

Berry et al. [154]. In their work, two specimens were examined in this pilot study, one of 

basal cell carcinoma and one of melanoma. Unsupervised ISODATA classification using 

three selected parametric TPI was compared qualitatively with k-means classification using 

the shape of the entire time series, and contrasted with conventional stained microscope 

Yin et al. Page 22

Artif Intell Med. Author manuscript; available in PMC 2019 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



slides. There was good qualitative agreement between the two classifications methods. As 

expected, classifications were consistent with the observed morphological characteristics of 

the tissue. The results have implications for the future development of feature sensitive 

technique as the need for only a small number of features could lead to considerably reduced 

acquisition times.

4. Analysis of DCE-MRI data

Since 1995, DCE-MRI screening has been steadily gaining ground as a preferred potentially 

highly sensitive new modality for clinical applications [155]. Because of its high 3D 

resolution and its ability to acquire kinetic contrast information, it has steadily gaining 

popularity over traditional diagnostic techniques such as mammography or ultrasound [156]. 

For breast tumors, lesion diagnostic sensitivities can reach 97% [157].

However, specificity of breast DCE-MRI is still rather low, with rates of between 30% and 

70% [158,159]. High false positive detection rates on MRI often lead not only to anxiety for 

the patient but may also result in an unnecessary invasive biopsy [156,158]. This hinders its 

use as a routine imaging technique in breast cancer patients. Benefits of breast MRI 

screening include a potentially improved breast cancer detection rate for high-risk women 

and the provision of additional information regarding disease proliferation (through multiple 

scans).

Computer-aided diagnosis (CAD) approaches for breast MRI are typically employed for 

automatically identifying tumors from normal tissues when these are at a stage of rapid 

development [160,13,161,8] whereas the more complex task of classifying a lesion as benign 

or malignant [162,160,163–166,20,167,4,168,169] is proving more difficult to address. In 

clinical practice, in order to enable the interpretation of patterns resulting from contrast 

enhancement across a series of MRI volumes, the intensity changes per voxel are color-

coded by an automated kinetic assessment protocol. However, the technique is not fully 

automated and requires continuous feedback from experts. A major challenge in the 

diagnosis of breast DCE-MRI is the spatiotemporal association of tumour enhancement 

patterns, a task that humans are not as optimized to perform [4]. With many CAD systems 

now available commercially, Pan et al. [170] evaluated which system can best help detect 

signs of breast cancer on breast MRI. The most commonly used CAD systems in the USA 

are CADstream (CS) (Merge Healthcare Inc., Chicago, IL) and DynaCAD for Breast (DC) 

(Invivo, Gainesville, FL). Their primary objective in this study was to compare the CS and 

DC breast MRI CAD systems for diagnostic accuracy and postprocessed image quality. The 

experiments were aimed at evaluating 177 lesions in 175 consecutive patients who 

underwent second-look ultrasound guided biopsy or MRI-guided biopsy. The results 

illustrate that the two CAD systems had similar sensitivity and specificity (CS had 70 % 

sensitivity and 32 % specificity whereas DC had 81 % sensitivity and 34 % specificity). 

Both CS and DC had a high sensitivity for detecting malignant lesions on breast MRI; 

however, neither system significantly improved specificity for the diagnosis of benign 

lesions. The ROC curve plots using both CS and DC systems are illustrated in Fig. 11.
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4.1. Outlook for future tensorial and Clifford algebra based feature and image registration

In dynamic pattern recognition methods for the analysis of DCE-MRI, the emphasis has 

been on either high temporal resolution and empirical analysis [93,171] or on high spatial 

resolution with a stand-alone morphologic feature extraction [171,172]. Time-series analysis 

is a time-consuming task due to spatiotemporal lesion variability. Changes in spatial 

intensity of imaged tumours are a further complication as they cause an inherent difficulty in 

segmentation of an object of interest [173]. For example, Fig. 12(a) depicts an imaged ductal 

carcinoma in situ (DCIS). While the parts depicted by the arrows show the same anatomical 

structure taken from the same tumour region, the intensity values are different. The intensity 

indicated by a yellow arrow is higher than the intensity indicated by the red arrows. After 

conducting intensity based segmentation as illustrated in Fig. 12(b), the region with low 

intensity may feature as a gap separating the image into two disconnected parts. The gap 

forms an area without edge. A multi-channel classification method that considers the 

associations between spatial and temporal features of high-dimensional images is proposed 

in order to achieve accurate diagnosis of tumour tissues. The detection of anomalies in 

spatiotemporal data is an emergent interdisciplinary topic that involves highly innovative 

computer science methods. Mining spatiotemporal patterns is critical for the correct 

identification of tumour anomalies in DCE-MRI and yet it remains challenging because of 

complexities in analyzing the time-series of 3D image data.

Recently, tensor decomposition of high-dimensional medical image data, i.e. fMRI, has also 

gradually drawn attention since it can explore the multi-way data’s structure which exists 

inherently in human organ imaging [174]. Tensors are multimode (multi-way) arrays, where 

vectors (i.e., one-mode tensors) and matrices (i.e., two-mode tensors) are special cases. The 

tensor representation captures useful information that is difficult to provide in a conventional 

vectorial formalism e.g. accounting for specific morphological features such as directional 

striations in vessels. To effectively utilize the rich information contained in tensors, we 

propose to extend the CELM for effective tensor classification. Since most standard learning 

algorithms assume data instances are feature vectors, it is not straightforward to apply these 

algorithms on tensorial data. The CELM method enables the identification and learning of 

inter-mode relations of features.

Unlike classic SVMs, the complex valued hyper-planes of CELM are calculated using the 

smallest norm of output weights with the smallest training error in a similar manner as in 

ELM. The technique discards the normal thresholding procedure found in traditional SVM 

classifiers, without calculating support vectors. The extended CELM has significant 

potential to solve complex valued problems for multiclass classification of tensorial datasets 

with dramatically reduced computational complexity and significantly improved 

computational speed. It enables the classification of tensorial data while preserving 

information associated with adjacent and overlapping data vectors as well as differentially 

extracted features.

Registration of images is a crucial step in many image processing applications where the 

final information is obtained by combining multiple input images. In many applications 

multi-channel images are also available, requiring innovative processing of vector data. 

Traditional approaches in achieving multi-channel image registration can cause inaccuracies 
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by introducing information loss or misinterpretations and may lead to inappropriate results. 

An alternative way to perform registration of multichannel images described by associated 

vectorial datasets is through the use of Geometric Algebras (such as Clifford Algebra). The 

main advantage of this algorithm is that it directly operates on the multichannel signal, 

instead of scaling the signal down to one dimension (e.g. by averaging) and thereby loosing 

a lot of information. A further advantage is that it enables fusion of datasets from 

heterogeneous sensing modalities, thus allowing for future integration through progress in 

biomedical sensing.

4.2. Performance measures

Evaluation of diagnostic tests is a matter of concern in modern medicine not only for 

confirming the presence of disease but also to rule out the disease in healthy subjects. Any 

diseased tissue detection process based on DCE-MRI screening provides a voxel-based 

classification result. From the frequency of test results among patients with and without 

disease based on the gold standard, any voxel in MRIs can be classified either as diseased or 

surrounding tissue. Consequently, there are four possibilities; two classifications and two 

misclassifications. The classifications are the true positive (TP) and the true negative (TN) 

where the number of tumour voxels and background voxels which are correctly detected 

respectively; the false positive (FP) is the number of pixels not belonging to a vessel, but is 

recognised as one, and the false negative (FN) is the number of pixels belonging to a vessel, 

but is recognised as background pixels, mistakenly.

One can further derive the probability of a positive test result for patients with disease and 

the probability of negative test results for patients without disease. The true positive rate 

(TPR) represents the fraction of voxels correctly detected as diseased voxels. The false 

positive rate (FPR) is the fraction of voxels erroneously detected as diseased voxels. The 

accuracy (Acc) is measured by the ratio of the total number of correctly classified voxels 

(sum of true positives and true negatives) to the number of voxels in the image field of view. 

Sensitivity (SN) reflects the ability of the algorithm to detect the diseased voxels. Specificity 

(SP), which can be expressed as 1-FPR is defined as the ability to detect non-diseased 

voxels. The positive predictive value (PPV) gives the proportion of identified diseased 

voxels which are true diseased voxels. The PPV is the probability that an identified diseased 

voxel is a true positive.

A receiver operating characteristic (ROC) analysis has become a popular method for 

evaluating the accuracy of medical diagnostic systems. The ROC curve plots the fraction of 

diseased voxels correctly classified as diseased tissues, namely the TPR), versus the fraction 

of non-diseased voxels wrongly classified as diseased voxels, namely the FPR). The better 

the performance of the system is, the closer it resides to the upper left hand corner of the 

ROC space. The most frequently used performance measure extracted from the ROC curve 

is the value of the area under the curve (AUC) which is 1 for an optimal system. For MRI 

images, the TPR and FPR are computed considering only voxels inside the field of view. 

Table 2 summarizes the performance metrics used by DCE-MRI image segmentation 

algorithms.
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4.3. Extensions to multi-channel classifiers

By using a tensor algebra or Clifford algebra framework analysis of spatiotemporal 

associated features becomes possible, such advances therefore lead to the development of a 

multidimensional unified MRI framework for processing DCE-MRIs. Mining 

spatiotemporal associated features of lesions from MRIs can increase the accuracy and 

efficiency of pattern identification. Current DCE-MRI is not sufficiently accurate for the 

early detection of tumours because of a lack of association between the spatial and temporal 

features.

In this section, we introduce a novel dynamic tensor reconstruction algorithm aimed at 

principal component separation performed on the basis of an offline tensor analysis 

algorithm (OTA) in combination with PCA. This focuses on the analysis of dynamic 

projection matrices for principal component separation of cancerous and healthy tissues.

Fig. 13(a)–(c) provides an illustration of the differentiation between the fourth post-contrast 

enhanced images and base line images. Subfigures (a)–(c) provide an illustrative example of 

the differentiation between the fourth post-contrast enhanced images and base line images. 

Subfigures (d)–(f) show the result of applying the proposed tensor reconstruction algorithm 

on the subtracted images acquired at different image layers. Subfigures (g)–(i) show the 

extracted volume image in relation to tumor region through the application of FCM on the 

reconstructed images shown in (d)–(f). The tensorisation of DCE-MRI is reconstructed via 

multidimensional unified analysis of MRI data according to tensor factorization. One of the 

advantages of such reconstruction is the incorporation of the temporal information into 

spatial voxels and projecting four dimensional time-spatial vectors into a three dimensional 

space that shows spatial and temporal information fusion with decreased number of 

dimensions for reduced computation cost.

4.4. Image registration of DCE-MRIs

In DCE-MRI, there are (i) spatial motion artefacts caused by patient movement, respiratory 

motion, intestinal peristalsis and cardiac pulsations during data collection [175–177], and (ii) 

signal intensity changes in T1-weighted images when the contrast agent diffuses out from 

the vascular tissue and accumulates in the interstitial space. These signal intensity variations 

lead to contrast agent concentration estimation errors which can further amplify errors in 

pharmacokinetic models of tissue blood volume and vascular permeability compromising 

evaluations of therapeutic response [178]. Proper registration of pixels in the chosen co-

ordinate frame is a critical step in the data acquisition process as uncorrected voxel 

displacements from the motion artefacts will corrupt the voxel information.

In DCE-MRI data, there are also further challenges as time progresses after compound 

injection. Both rigid (alignment using only translation and rotation) and non-rigid algorithms 

(associated with more complex deformations) have been proposed for image registration, i.e. 

in DCE-MRIs of kidney [179], breast [180], liver [181], lungs [182,183] and the heart [184]. 

Reviews discussing advances in DCE-MRI image registration can be found in 

[185,186,175]. A conceptually straightforward rigid transformation is through manual 

delineation of the volume images of the target object after aligning the centers of gravity 
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[187]. An automated feature-based algorithm has been presented by Song et al. [188]. In this 

work, wavelet-based edge detection is followed by the computation of a geometric 

transformation based on a FT. Zikic et al. proposed a locally rigid registration algorithm with 

a gradient-based similarity measure to allow for global changes in kidney enhancement 

[179]. Another approach is to register the images by optimizing the fit of the enhancement 

curves to a pharmacokinetic model [189] and [190]. Nonrigid algorithms include a vertical, 

deformable transformation minimizing a cost function which suppresses motion and 

smoothes the enhancement curves [191] while at the same time maximize the mutual 

information using a cubic B-splines deformation [180,192]. More recent approaches to 

registration aim to incorporate additional a priori information based on specific anatomical 

markers [193], volume preservation of tissue [194] or local rigidity assumptions [195]. 

Schäfer et al. [196] propose a regional segmentation approach to study breast tissue lesions 

taking into consideration whether there was an observed similarity in the tissue perfusion 

characteristics, thus improving on single voxel-based approaches [197]. This approach has 

also additional advantages from a clinical diagnostics perspective.

Current literature [181] suggests that there are advantages in non-rigid registration when 

compared to rigid registration. For non-rigid registration, deformable image registration of 

DCE-MRI time series is accomplished using (normalized) mutual information (MI) 

[177,198] approaches. Normally, the images contain edge information between various 

tissue types. A gradient dependent cost functional is proposed for registration. In recent 

work, it was shown that normalized gradient fields (NGF) provide a viable alternative to MI 

for the registration of DCE-MRI images [175].

An alternative approach to non-rigid motion correction uses a Bayesian framework [199] to 

provide pharmacokinetic parameter estimation in DCE-MRI sequences. A physiological 

image formation model is used to provide the similarity measure used for motion correction. 

Hodneland et al. [175] compared a normalized gradients approach with the mutual 

information approach for motion correction of DCE-MRI datasets and showed that using 

cost functions based on normalized gradients can successfully suppress artifacts from 

moving organs in clinical DCE-MRI records.

An alternative approach, proposed by Lin et al. [200] discusses a respiratory motion-

compensated DCE-MRI technique using k-space-weighted image contrast (KWIC) radial 

filtering. The technique combines the self-gating properties of radial imaging with the 

reconstruction flexibility provided by the golden-angle view-order strategy. The signal at the 

k-space center is used to determine the respiratory cycle, and consecutive views during the 

expiratory phase of each respiratory period are grouped into individual segments. The 

principle is to divide k-space into concentric rings. The boundary of each circular region is 

determined by the Nyquist criterion, after assuming that the views within each region have 

uniform azimuthal spacing.

The feature extraction algorithms mentioned earlier are relevant to both medical image 

registration as well as motion compensation [201,202]. An alternative approach to localize 

anatomical features in DCE-MRI is through the use of level sets, an approach originally 

proposed in [203,204]. The method is applicable to post-contrast enhanced MR images to 
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delineate the variable shape of features of interest. Yin et al. [205] proposed such approach 

to localize anatomical features in-breast costal cartilage imaged using DCE-MRI. The 

contours in each layer are cumulatively added to the first contour to produce the results 

illustrated in Fig. 14(a). The shape of the feature of interest clearly varies from layer to layer. 

The variable shape of contours acquired from a level-set-based segment image actually 

determines the feature region of interest. This is subsequently used as a guide to specify 

initial masks for feature extraction. Fig. 14(b) shows the superposition of the mask and the 

level-set based projection of Fig. 14(a). The motion action of the fourth pair of breast costal 

cartilages are obtained by reprojecting the resultant segments from transaxial planes to 

sagittal planes. Rotational motion artefacts in the DCE-MRI are illustrated in Fig. 14(c).

4.5. Pattern identification of spatiotemporal association features of tumours in DCE-MRI 
data

One of the current challenges in breast DCE-MRI as a screening modality is reducing false 

positive detection errors, thereby boosting detection specificity. Computer-aided diagnosis 

(CAD) approaches for breast MRI are typically employed for automatically identifying 

tumors from normal tissues when these are at a stage of rapid development [160,13,161,8] 

whereas the more complex task of classifying a lesion as benign or malignant [162,160,163–

166,20,167,4,168,169] is proving more difficult to address. In dynamic pattern recognation 

methods, the emphasis has been on either high temporal resolution and empirical analyses 

[4,17–20] or on high spatial resolution with a stand-alone morphologic feature extraction 

[166,169,161,8,4,9]. Even though time-series analysis enables radiologists to infer 

information regarding the tissue state, such assessment is a time-consuming task, because of 

spatiotemporal lesion variability. Currently, most studies consider aggregate measurements 

for tumour morphological characterization [4,161,169] with an initially model-free 

[161,169] and data-driven [13,160] segmentation according to manually marked region-of-

interest (ROI).

Common practice in these methods is to process the imaged 3D volumes separately, and 

then incorporate the temporal information into the spatial databases through a separate 

processing step. Image reduction based feature extraction enables identification on the basis 

of the dominant features present in the image. For example, in [14,15], PCA was applied on 

enhanced and scaled datasets for a whole 2D object region obtained by DCE-MRIs. This is 

in contrast to traditional PCA applied in two-dimensional MRI image analysis ignoring any 

spatial information associated with a time series evolution of disease progression. To address 

the issues of low specificity and high inter-observer variability in breast DCE-MRI, the 

analysis of spatiotemporal patterns remains challenging [4] and requires the development of 

new software tools.

Representation of multi-dimensional features in a tensor space is a relatively new concept in 

the computer science and pattern recognition literature. The motivation of using tensor 

decomposition is to explore via multimode data analysis of image arrays the spatiotemporal 

correlations of sequences in DCE-MRI images. Recent work [206] shows that there is 

potential to identify tumour shape by combining non-negative tensor decomposition and 
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directional texture synthesis. The approach uses symmetry information about 3D shapes that 

is represented by 2D textures synthesised from sparse, decomposed images.

Tensorial analysis is directional so interactions of components within the associated matrices 

provide additional degrees of freedom for data analysis, enabling spatiotemporal data 

correlations to be made along each co-ordinate direction as shown in Fig. 15(a). Isolation of 

such correlations in each co-ordinate plane can provide a clearer picture of disease 

proliferation. A third order tensor that may be associated with a DCE-MRI dataset is 

illustrated in Fig. 15(b)–(d). Fig. 15(e) illustrates the way to flatten the third order tensors 

along frontal slices.

Tensor factorisation of a 3D spatial matrix uses multilinear algebra to analyse an ensemble 

of volume images, in order to separate and parsimoniously represent high-dimensional 

spatial datasets into constituent factors [207]. The 3D spatial image datasets are treated as a 

third order tensor. The image dataset tensor 𝒜(3) ∈ ℝ
I1 × I2 × I3 is decomposed [208] or 

factorised to a core tensor 𝒞 ∈ ℝ
J1 × J2 × J3 and three different modes of 2D image matrices 

X(n) ∈ ℝ
In × Jn, n = 1, 2, 3, as illustrated in Fig. 15(f).

In our recent research [206], we explored tensor decomposition for the identification of 

shape with mirror symmetry. We conclude that if both the first mode matrix (i.e. along the y 
and the z axes) and second mode matrix (i.e. along the x and the z axes) are symmetric, the 

frontal plane (along the x and the y axes) is a mirror symmetric plane, and vice versa.

Spatial shape datasets with a simple geometry are used for illustration purposes (Fig. 16). 

These images show a three-dimensional mirror symmetry analysis of a spherical object with 

a radius of 31 pixels. Fig. 16(a) illustrates that the flattened basis images are cropped in the 

middle area after non-negative tensor decomposition of the sphere. As an example, 

reconstruction is performed using tensor multiplication of the core tensor, on the basis of 

first mode and second mode matrices. Fig. 16(b) illustrates sparse texture extraction of the 

spherical object. Fig. 16(c) shows a synthesis of the extracted texture regarding the sphere. 

The resultant synthesised image is symmetric with both vertical and horizontal symmetric 

axes, which means the object is symmetric with the frontal plane as a reflective mirror.

In a second example, we explore the mirror symmetry of brain structural MRI of white mass 

with rough resolution. The MR image size is 47 × 58 × 43. Fig. 17(a)–(c) illustrates one of 

the 2D cross-sectional slices along a horizontal plane, vertical plane, and frontal plane. Fig. 

17(d) illustrates a brain slice image with asymmetry along an x-y plane.

The generated 3D images with symmetry and asymmetry are assembled into the third order 

tensors and non-negative tensor decomposition is applied to factorise the non-negative 

tensors to factors, with the core tensor size of 32 × 32 × 32 and the flatten basis image size 

of 58 × 1024. The center region of the basis images is cropped to a size of 58 × 180. Fig. 

18(a)–(d) illustrates the resultant synthesis for the symmetric MRI, and the first, second, and 

third asymmetric MR images (with 15, 25, and 35 asymmetric layers respectively) 

subsequently generated using the proposed methodology.
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To ascertain the degree of symmetry (or the lack of it), (i) k means clustering is used to 

group the synthesis patterns and find the associated 2-dimensional geometric pattern; (ii) 

histogram images from the synthesis patterns are used to evaluate the degree of intensity 

symmetry in the image. In this way, the analysis of 3D shape can be mapped into a 2D 

space, therefore, performing the required dimensionality reduction. The current study thus 

proposes a way forward towards addressing the challenges associated with tensor 

decomposition of MRIs for abnormality detection in simulated breast tumors and in brain 

structural MRI.

This is currently most relevant to MRI in clinical practice, but can benefit the TPI 

community, especially if such systems are to soon undergo further clinical trials. If 

systematically implemented, the proposed advances are applicable to both THz as well as 

MRI imaging modalities and are likely to provide in the near future improved diagnosis for 

Alzheimer’s disease and may also assist in the early diagnosis of dementia by translating 

current understanding in cell biology into therapeutic advances [209–211].

5. Conclusion and future work

This review considered commonalities in datasets acquired using TPI and DCE-MRI 

measurement modalities. Both approaches are currently being explored as viable alternative 

imaging modalities to assess disease proliferation in a non-invasive manner. DCE-MRI is 

well established and as such it is regularly used in clinical environments. In contrast, TPI has 

yet to gain popularity although there is a general recognition of its potential to provide 

complementary information to clinicians.

The TPI scans provide information from individual pixels that show wavelength dependent 

attenuation, dispersion and phase delay according to the state of hydration of the tissue. 

Specific vibrational signatures may also be identified in the frequency domain after the 

Fourier transformation of the time-domain data. Similarly, MRI datasets are based on 

observations of de-excitation lifetimes so there are common grounds for the signal 

processing of both signal types. Furthermore, in both cases, specific signatures may be 

identified and assigned to biomarkers to improve on specificity and additional molecular 

identification of compounds.

Both systems have slow image acquisition rates. This can be distressing to patients in a 

clinical environment and leads to movement artifacts which need to be corrected. Correction 

algorithms using image registration can account for the movement of organs in DCE-MRI, 

but have yet to be used by the TPI community. Signal de-noising is more advanced in the 

THz community, whereas techniques for sparser data acquisition are more developed in the 

MRI community. Fusion of spatiotemporal information is better addressed by the DCE-MRI 

community so there are exciting future opportunities to adopt such algorithms by the TPI 

community. In addition, advances in pharmacokinetic models in DCE-MRI can be 

transferred to models for movement of water and biomarkers in TPI. There is therefore 

scope for placing these algorithms in a more unified framework. Furthermore, both scanning 

systems generate very large datasets which need to be appropriately managed by trained 

professionals. In addition, both systems can be enhanced by pulse shaping methodologies 
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that can selectively excite molecular systems. Pre-processing using adaptive signal 

apodization, can maximize the resolving power of the imaging system. The fitting of ARX, 

ARMAX and subspace identification models can provide a more parsimonious signal 

representation that can facilitate de-noising and extract de-excitation lifetimes in a very 

parsimonious manner. In TPI, wavelet de-noising, especially using adaptive wavelets can 

compress the signals to a few coefficients before introducing them into a classifier. Note that 

SURE de-noising provides a universally accepted way to perform thresholding of 

coefficients associated to any of the above data transformations. Modelling using fractional 

order system identification routines is also an important emergent modality of relevance to 

both imaging systems.

To achieve accurate detection and diagnosis of tumours, emphasis should be placed on the 

analysis of spatiotemporal features using a unified perspective. Automatic classification may 

be performed using either Mahalanobis, SVM or ELM classifiers. In the case of SVM and 

ELM algorithms, their complex extensions are more useful because features in amplitude 

and phase or time and frequency respectively may be simultaneously presented to the 

classifier as different entities. Separately tuned kernels for the real and complex parts of the 

signal can improve classification accuracy. Extensions to multi-channel kernels using 

quaternary algebra and tensorial image registration enable additional measurement 

parameters to be considered such as state of polarization, or additional image morphological 

features such as tissue folds and striations that account for different degrees of dispersion of 

the signal in preferential directions across an image to be taken into consideration at the 

input space of the classifiers. Such approach can lead to improved classification accuracy. 

Multi-channel classifiers also enable information from other sensing modalities associated to 

image de-blurring to be taken into consideration in the classification task. Such approach 

also enables information from images at different time stamps to be also fused before being 

presented to the classifier.

The observed commonalities in the signal processing of both datasets demonstrate that it is 

natural to envisage future systems combining both diagnostic capabilities. There is thus a 

need to integrate the proposed algorithms under a single software environment for data 

analysis and visualization. Such approach will potentially lead to automated quantitative 

assessment of disease proliferation in a manner that may be accepted by clinicians.
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Fig. 1. 
Multidisciplinary interpretation of the electromagnetic spectrum.
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Fig. 2. 
(a) The main vibrational modes in water. (b) A schematic diagram illustrating the differences 

between intra- and inter-molecular bonding in water. After [45].
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Fig. 3. 
Classification errors (%) as a function of noise level in the interferograms. Nonoptimized 

db4 wavelet (green), optimized wavelet (red) and Euclidean distance (blue) classifiers. The 

inset shows an inferogram of leather with (a) no artificially added noise and noise with 

standard deviation of (b) 0.1 and (c) 0.5. After [72]. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
A schematic experimental setup for electrooptic transmission THz imaging with ZnTe as EO 

generation and detection, illuminated by a femtosecond laser.
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Fig. 5. 
(a) Illustration of the difference image segment between the measured MRI and 

reconstructed image using SVT for denoising. (b) The difference image segment between 

the measured MRI and transformed image from sampled k-space.
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Fig. 6. 
Image of an insect on an oak leaf obtained by TPI. The image is produced by plotting the 

peak value of the response for each pixel. (a) Raw image. (b) 3 dB SNR image corrupted by 

noise such that the SNR was. (c) Reconstructed image after de-noising using a Coiflet 

wavelet filter decomposition of order 4 where the average SNR is 10 dB greater than in (b). 

After [111].
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Fig. 7. 
Illustration of Fourier spectrum regarding the THz response of a number of powders. (a) 

Amplitude (attenuation) as a function of THz frequency. (b) Corresponding frequency 

dependent phase delay (equivalent to chromatic dispersion).
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Fig. 8. 
In this modelling, H and G denote the low- and high-pass filters, respectively, wf is the de-

noised T-ray input. The arrow depicts the diadic down-sampling operator. Similar illustration 

related to DCAR and DCMA feature matrix are assumed.
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Fig. 9. 
Learning vectors for the powder data sets plotted to illustrate the linear decision function 

between the pairs of classes after applying a Gaussian kernel for mapping. There are 49 

pixels selected randomly from each of the six powder samples. Background colour shows 

clearly the contour shape of the decision surface. The small yellow region on the bottom of 

the right hand side denotes undecided classification. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. 
Illustration of CELM multi-class classification scheme. (a) Complex valued learning vectors 

for the six samples plotted to illustrate the linear decision function among each classes by 

applying induced real RKHS kernels to map the complex input data into 2D complex valued 

feature space. There are 49 pixels selected randomly from each of the six powder samples. 

The labels are complex valued, generating 12 classes. (b) Illustration of the colour coded 

regions with non-zeros indicated by the colour bar. The colour regions with non-zero value 

indicate that the multi-class powder sample classification process remains undecided by 

CELM as the real and imaginary parts are not equal to each other. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 11. 
ROC curves of the mean scores for CADstream and DynaCAD for Breast samples. The 

figure shows the ROC curves based on the two mean diagnostic scores for each software 

system (CS: CADstream, DC: DynaCAD for Breast, AUC: area under the curve, ROC: 

receiver operating characteristic). After [170].
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Fig. 12. 
Imaged tumours via breast MRIs. (a) Illustration of intensity inconsistency for breast tumour 

tissue images. Yellow arrows indicate a high intensity and red arrows low intensity. (b) 

Illustration of intensity based segmentation with inhomogeneous boundaries; yellow arrows 

indicate an irregular ring region with hole inside and a green arrow indicates missing areas. 

(For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 13. 
Tensor reconstruction of preprocessed DCE-MRIs. (a)–(c) Illustration of the differentiation 

between the fourth post-contrast enhanced images and base line images from three different 

layers. (d)–(f) Illustration of the images achieved by applying the proposed tensor 

reconstruction algorithm. (g)–(i) Illustration of the extracted volume image in relation to 

tumor region via applying FCM on the reconstructed images shown in (d)–(f).
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Fig. 14. 
Illustration of image analysis using tensor algibra. This is related to image analysis using 

MRIs. (a) Cumulative contours using the level-set method, with two white arrows indicating 

the positions of features of interest. (b) Illustration of the superposition between the total 

segment and the level-set based segment. (c) Illustration of the 3D plots of plane centroid 

produced datasets generated according to the 2nd, 4th, and 6th time slice.
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Fig. 15. 
(a) Illustration of the directions regarding the x-, y-, and z-axis. (b), (c), and (d). Illustration 

of three direction slices of a third order tensor: horizontal, vertical, and frontal, respectively, 

which are perpendicular to the x-, y-, and z-axis, respectively. (e) Illustration of the way to 

flatten the third order tensors along frontal slices. The colon (:) used in the figure indicates 

all the column elements at a given direction are involved to form an image matrix. (f) 

Illustration of a third-order decomposition.
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Fig. 16. 
Illustration of three-dimensional mirror symmetry analysis of a spherical object. (a) Non-

negative tensor decomposition. (b) Sparse texture extraction. (c) Synthesis of the extracted 

texture.
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Fig. 17. 
Illustration of the mirror symmetry of brain structural MRI with rough resolution. The brain 

MRI size is 58 × 47 × 43. (a)–(c) Illustration of 2D cross-sectional slices along a horizontal 

plane, vertical plane, and frontal plane. (d) Illustration of a brain slice image with 

asymmetry along an x-y plane.
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Fig. 18. 
Illustration of 3D brain structural MR synthesised images with symmetry (Figs 18a and 18b) 

or asymmetry (Figs 18c and 18d). The first, second, and third asymmetric MR images (with 

15, 25, and 35 asymmetric layers respectively) were generated using the proposed 

methodology.
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Table 2

Performance metrics for diseased tissue detection process via DCE-MRIs.

Measure Description

TPR TP/diseased voxel count

FPR FP/non-diseased voxel count

Specificity TN/(TN + FP)

Sensitivity TP/(TP + FN)

Accuracy (Acc) (TP +TN)/FOV voxel count
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