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 In addition to radiation, microstrip phased arrays excite substrate waves. These substrate 

waves are not desired since they keep energy, in the substrate, that is supposed to be radiated. 

Thus, array elements couple to each other through the substrate waves, and eventually radiation 

performance of the array degrades. Depending on the elements' excitation phase, or along certain 

radiation directions, almost all of the power at the array input couples to the substrate waves and 

radiating array fails to function as a radiator, instead it behaves as a guiding structure; this 

phenomenon is known as scan blindness, and it must be solved for an array to function properly.  

 Electromagnetic bandgap (EBG) materials are engineered composite materials and 

capable to forbid wave propagation at frequencies within their bandgap. This thesis is focused on 

the integration of EBG materials and microstrip phased arrays. To be more specific, a 

multifunctional structure, which can be considered as a bandgap material, an antenna element, or 

a phased array consisted of the elements of the proposed structure, has been designed, fabricated, 

and measured. Numerical eigenmode and two port transmission methods are used for the 



 

xi 

 

bandgap investigation. Radiation properties of the structure has been improved using an 

impedance matching network. Scan analyses of both infinite and finite arrays have been studied. 

A prototype of 3 elements linear phased array of the proposed multifunctional structure has been 

fabricated and its active element pattern has been measured. 

 The proposed multifunctional bandgap-antenna structure suppresses both bound and 

radiating substrate waves. Therefore, it provides complete elimination of scan blindness along all 

directions. In addition, unit element of the multifunctional structure has similar radiation 

characteristics, such as radiation pattern, gain, and polarization, as a conventional microstrip 

antenna; whereas, its scan behavior is the key achievement over the conventional microstrip 

arrays. Different from conventional arrays, this structure does not support any mode propagating 

along the lateral directions in the array structure; therefore, power entering to the array structure 

will radiate to free space. 
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Chapter 1 

 

Introduction 

 

 

 

 
 Microstrip phased arrays have been evolving in different applications since their advent 

in the 1970s [1]. Their unique properties make them indispensable parts of majority of wireless 

communication systems. However, their widespread applications have not being able to take the 

full advantage of this powerful technology, primarily due to a fundamental problem of substrate 

waves. Upon excitation of a phased array system, in addition to steerable radiation sent to the 

desired direction, substrate waves are also being excited and propagate within the array structure 

and couple array elements to each other. Mutual coupling and scan blindness are well known 

classic problems attributed to substrate waves in microstrip arrays. For reliable operating of 

microstrip arrays, substrate waves must be eliminated. Electromagnetic bandgap (EBG) materials 

are known for their properties of suppressing waves in frequency bands corresponding to their 

bandgap regions [2]. Therefore, EBG materials can be implemented to accomplish substrate 

wave elimination from microstrip phased arrays.  

1.1 Phased Arrays 

 Phased arrays consist of multiple antenna elements in order to form a directional 

radiation pattern which can be pointed into different directions by means of phase change at the 

input of the array elements. Element input amplitudes can also be altered for more sophisticated 
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beam patterns. Phased arrays offer some unique capabilities to the wireless communication 

systems, such as behaving like a spatial filter, which emits or receives radiation coming from or 

pointing to specific directions, changing main beam radiation direction and its shape, enhancing 

gain of transmitter and sensitivity of receiver types antenna systems and so enabling long-range 

communications. Another forms of arrays, known as adaptive or smart arrays, can adapt their 

beam directions and shapes dynamically, by manipulating element phases and amplitudes, to 

avoid from interfering signals while sustaining communication link with a specified point.  

 Phased arrays have been using into numerous applications. The first and well known 

phased array application is military based radar systems. In fact, electronically controlled phased 

arrays were first tested on those systems in the 1950s [3]; since then the technology was applied 

to build a scientific instrument, radio telescope, which was used to observe the first pulsar [4]. 

Not only being utilized on high-tech deep space exploration machines and being inevitable part 

of satellites communication systems, nowadays the phased array technology is so ubiquitous that 

it becomes part of our daily life; we use it more often through our mobile phones and other 

wireless links where antenna array systems are deployed on the base stations or other forms of 

wireless nodes. More recently, developments in the IC technologies for RF components 

integration open the door for phased arrays into further mm-wave applications, such as short-

range communication systems and automotive collision avoidance radars [5-6]. It also finds 

applications in biomedical domain for early stage diagnostics [7]. Providing communication link 

between mobile platforms, such as aircraft, cars, and ships, and ground or satellite based terminal 

points has futuristic potentials of phased arrays as well. 

 Among various types of array elements, microstrip antennas are the most convenient ones 

for most of commercial applications; mainly due to their low profile, ease of fabrication, cost 
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effectiveness, light weight, their conformal nature, and integrable with microwave circuits. 

Microstrip phased arrays are more applicable to mobile based wireless communication systems. 

Technological improvements enhance their applications further, such as replacing satellite dish 

antennas and using in radar systems. However, microstrip phased arrays are suffered from 

substrate waves as will be detailed more.  

1.1.1 Directional Radiation 

 Radiation pattern of individual antenna elements is determined by their geometrical shape 

and material composition, and mostly it is not directional but occupies a large angular space 

surrounding the antenna element; therefore, percentage of the radiated power to a specific 

direction is too low. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Planar phased array configuration [8]. 
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 In a two-point wireless communication link, the power received by one end of  the 

communication link is 

 1020log
4

r t t rP P G G
R





 
     

 

 
(1.1) 

where 
tP , 

tG  , 
rG ,  , and R  are transmitted power, gain of the transmitted antenna systems, 

gain of the received antenna systems, operating wavelength, and distance between the transmitter 

and receiver respectively. In (1.1) receiver and transmitter gains vary significantly with number 

of antenna elements, therefore a reliable communication can be attained if number of elements is 

increased. However, antenna placement in an array must end up with certain configurations, as 

shown in Figure 1.1, in order to provide directional radiation toward the transmitter. This can be 

elaborated more through the concept of the array factor which will show the effect of phased 

arraying on the radiation pattern. 

Considering Figure 1.1, element (1,1) is chosen as a reference where its excitation phase is 0°, 

and all the other elements, represented by (m, n), have progressive phase shift to have directional 

radiation. 
mnA  in (1.2) represents complex excitation for the corresponding elements; since we 
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are interested in changing the radiation direction only but not to obtain prescribed beam shapes 

or nulling, we can consider that all excitation amplitudes are unity and thus, instead of (1.2), 

(1.3) will be used as array factor.  

 Radiation coming onto the array structure from  ,   direction, in the case of receiver 

array, can be considered as a plane wave. If all array elements are set to 0° phase shift, exponent 

in (1.2) becomes zero for only normal direction to the array, therefore beam steering cannot be 

performed. However, if element phases are changed, exponent of (1.3) can be zero at any 

direction so that radiation can be steered into different directions.  0 0,  and  ,   represent 

desired beam steering and actual radiation directions, respectively. Whenever 0x y     

condition is satisfied, radiation peak will point toward  0 0,   direction as shown in Figure 1.2, 

where the overall radiation is combination of array factor and element pattern as described by 

(1.4); instead of isolated element pattern, active element pattern should be used for more accurate 

results such as to capture substrate waves effect.  

 

 

 

 

 

 

 

 

Figure 1.2 Beam steering demonstration for a phased array. 
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1.1.2 Grating Lobes or Floquet Modes 

 Exponent in (1.3) determines the pointing direction of beam maximum; if it is zero, beam 

maximum will point along the scan angle  0 0,  . However, its integer multiplications of 2  

will also produce beam maximums, which are known as grating lobes. These secondary radiation 

lobes are undesired since they point along different directions from the desired scan angle, and 

they are strongly dependent on the element spacing, 
xd  and 

yd , and scan angle. To make sure 

that grating lobes are out of visible scan ranges, element spacing must be 0.5  or smaller along 

both the x- and y- directions.   

 In theory there are infinite numbers of grating lobes, which can be considered as Floquet 

modes as well. Practically only few of them are excited, while some of those excited modes 

couple to free space as radiation, others propagate on the array surface but are evanescent in free 

space. A detailed examination of both radiating and evanescent grating lobe modes is crucial 

since the radiating modes reduce main beam efficiency and the evanescent modes can couple to 

surface waves and induce mutual coupling and scan blindness in microstrip arrays. In order to 

analyze their propagation in the array structure, each of them can be decomposed in its x- and y- 

components and represented by indices  ,p q . Using array periodicity and (1.3), the 

wavenumber components of the Floquet modes in the array structure becomes 

 0 0 0 0

2
sin( )cos( ) sin( )cos( )xp

x

k k p k
d


     

 
(1.5a) 

 0 0 0 0

2
sin( )sin( ) sin( )sin( )yq

y

k k q k
d


     

 
(1.5b) 
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Note that (1.5) can be applied to both radiating and evanescent grating lobe modes.  ,p q  = 

 0,0  Mode corresponds to the desired main beam pointing along the scan angle  0 0,  , 

while higher order modes will radiate to the different directions or stay in the substrate as they 

are evanescent in free space. 
xpk  and 

yqk  will be used to determine scan blindness condition in 

the next section.  

1.1.3 Microstrip Phased Arrays 

 Microstrip antenna elements are printed on grounded dielectric substrates which supports 

electromagnetic waves such as surface and leaky wave modes. Properties of these modes have 

been well studied due to their broad range of applications; dielectric constant and substrate 

thickness are the primary parameters defining their behaviors. A rule of thumb equation defining 

cut-off frequencies of surface wave modes is, 

 
( )

4 1

n

c

r

nc
f

d 




 
(1.6) 

where n is mode number (even for TM modes and odd for TE modes), c is speed of light, and d 

is dielectric substrate thickness. Fundamental TM0 has zero cut-off frequency therefore it is 

supported by very thin dielectric substrates with small dielectric constants as well.  

 The wave number of surface and leaky waves is represented by k j   , where    

  and   are phase and attenuation constants. As shown in Figure 1.3, surface wave modes are 

bounded to the dielectric substrate and decay only in the air medium, whereas leaky waves 

propagate both in dielectric and air mediums but decay along the x- direction due to energy 

leakage to the air medium.  
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 Radiation characteristics of surface and leaky waves are given in Figure 1.3b, surface 

waves are types of slow waves therefore their phase constant is larger than that of the waves 

propagating in free space  0k  at the same frequency. Thus, phase matching cannot be obtained 

for surface wave modes,  0 sin( )sw k  ; because of that they cannot couple to air medium as 

radiating waves. Leaky waves, on the other hand, are fast waves and phase matching 

 0 sin( )lw k   can be obtained for them so that they can radiate to air medium.    

 It is important to note that determining of phase    and attenuation ( ) constants of 

these types of modes is not that straightforward for practical applications where most of the 

structures contain various types of materials and geometrical features. In general, numerical full 

wave softwares are applied to analyze these characteristics.   

 

 

 

 

 

     (a)       (b) 

Figure 1.3 (a) Propagation and (b) radiation characteristics of surface and leaky wave modes 

supported by grounded dielectric substrates. 

 Since microstrip antennas are printed on grounded dielectric substrates both surface and 

leaky waves discussed above are effective on their performance. Once antenna elements are 

excited for radiation, due to electromagnetic couplings, substrate modes are also being excited. 

Substrate modes excitation is more effective along certain directions depending on antenna's 
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feeding position. Substrate modes couple energy from the antenna structures to the propagating 

waves in the substrate. These propagating waves couples antenna elements to each other and 

degrade antenna performance. From another point of view, energy coupled to the substrate 

waves will remain in the structure therefore overall radiation efficiency  

 
radiated radiated

total radiated conductor dielectric sw lw

P P
e

P P P P P 

 
  

 (1.7) 

will be reduced. Where total power is split into radiated power, dielectric and conductor losses, 

and coupled power to the substrate modes, i.e. surface and leaky waves.  

 In addition to radiation efficiency reduction and mutual coupling between array elements, 

resonance condition known as "scan blindness" is also attributed to the substrate modes and can 

have dramatic effects on microstrip phased arrays. This condition occurs when phase matching 

between grating lobes or Floquet modes, given in (1.5), and surface or leaky wave substrate 

modes is satisfied, 

 
2 2

sub xp yqk k    (1.8) 

where 
sub  can be phase constant of surface or leaky waves, depending on the effective wave 

type. At resonance condition or scan blindness, substrate modes are strongly excited and all of 

the excitation power couples to substrate modes, therefore array does not radiate. The power 

coupled to substrate modes will eventually returns back to the generator. Scan angles, element 

spacing, dielectric constant, and substrate thickness are effective parameters determining scan 

blindness condition; increasing any of these parameter will shift blind angle toward the broadside 

direction, or making scan blindness more dominant. Scan blindness is more effective on larger 

arrays as shown in Figure 1.4, where microstrip patch arrays are analyzed. While   
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          (b) 

Figure 1.4 Substrate wave effect (scan blindness) on microstrip arrays. (a) Input reflection 

coefficient of an infinite array and (a) realized gain pattern of a 5 x 5 array for scan angle of 48°, 

corresponding to blindness angle. 
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infinite array's input reflection coefficient is much larger at E- scan plane, where blindness is 

effective, than H- scan plane; the difference is not that large, even though the effect of blindness 

is clear, in realized gain pattern of a 5 x 5 array. For larger arrays, array gain decreases 

substantially near blindness angle. 

1.2 Electromagnetic Bandgap Materials 

 Electromagnetic bandgap (EBG) materials prohibit wave propagation in their structures 

along specified directions at frequency bands corresponding to their bandgap regions; a true 

electromagnetic bandgap material must be able to eliminate both surface and leaky waves. It is 

worth to noting that within bandgap frequencies, waves cannot propagate along horizontal 

directions while they can still radiate into the air medium, normal to the material structure, since 

normal radiation can still have horizontal or lateral wavenumber of 
|| 0k  . 

 Figure 1.5 demonstrates bandgap characteristics of a bandgap material; where transmitted 

power excites substrate waves and propagates in the structure, however received power exhibits 

a null in its frequency response where the bandgap property of the substrate material is effective. 

Because of their substrate wave elimination capabilities, EBG materials have been placed 

between antenna elements to reduce the effect of substrate waves on antenna arrays, such as 

mitigating mutual coupling and scan blindness. 

 Bandgap property of EBG materials is not the same along all directions; indeed, a 

material may provide bandgap behavior in some directions while it does not show up bandgap 

property along the other directions. While it is sufficient to have bandgap along only one 
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direction for EBG materials integrated with linear arrays, planar antenna arrays require EBG 

materials with 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Frequency bandgap characteristic of EBG materials. 

bandgap property along all horizontal directions for a complete elimination of substrate waves 

from the antenna arrays. Another important point of the integrated EBG materials and antenna 

arrays is that bandgap properties of EBG materials will be affected from the couplings between 

EBG and antenna metallization, therefore these couplings must be taken into account for a 

proper bandgap analysis of the integrated structures. EBG materials' bandgap properties are 

usually investigated using eigenmode and transmission setups on full wave numerical simulators, 

we also used such a software package, HFSS, for the bandgap characterization.  
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1.3 Literature Review and Challenges 

 Scan blindness phenomenon [9-14] is a fundamental limitation of microstrip phased 

arrays, and has been studied for more than three decades. Its elimination is essential to sustain 

communication links between wide scan angle wireless systems. Even though it is a well known 

problem, attributed to the coherent coupling between substrate modes and array radiation, its 

elimination has been remained a challenge. In fact, several different approaches were utilized to 

completely eliminate it or improve array scan characteristics, each of those methods has certain 

limitations on the array performance. These are: Subarray of elements to distort coherent 

coupling [15], active device with parasitic patches and shorting metallic post loaded substrates 

[16-17], inhomogeneous substrate [18], reduced surface wave antenna elements [19], 

metamaterials [20-21], defected ground structure [22-23], substrate integrated waveguide [24], 

and electromagnetic bandgap (EBG) materials [25-31]. Further, recently several researchers have 

investigated designs on increasing the scan volume of the arrays through not directly eliminating 

the substrate modes but modifying feeding structures or elements [32-35], using novel array 

elements [36], and taking advantage of the excited substrate modes [37]. Among all of these 

approaches, EBG materials improved the scan characteristics the most; in fact, other techniques 

can improve the scan range or eliminate blindness partially along only certain directions. EBG 

materials [2, 38-39], on the other hand, provide omnidirectional frequency bands where surface 

waves are eliminated along all directions; hence, they are state-of-the-art materials for the 

integrated phased arrays. 

 Integrated microstrip phased arrays and EBG materials for scan blindness elimination 

have been avoided from the couplings between array and bandgap metallization in order to 

protect performance of the isolated structures, i.e. antenna and bandgap unit elements. Bandgap 
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materials and array elements were characterized separately first, then integrated. For example, in 

[27] and [29] authors placed EBG cells away from the array elements to reduce the couplings 

between them. EBG cells surrounded by lossy materials have also been used to suppress higher 

order modes due to interactions between EBG and antenna elements [31]. Microstrip dipole 

antenna elements, on the other hand, have been directly printed between EBG cells without 

devoting room to the radiating elements [26]. Element spacing of scanning arrays is half 

wavelength or smaller at the upper edge of the operating frequency band to have no grating lobes 

in the visible scan ranges. Therefore, conventional EBG techniques to remedy scan blindness 

with that prescribed element spacing make the surface of the integrated structure a metallic cover 

and degrade antenna elements radiation characteristics by using lossy materials or smaller 

radiating elements. A complete solution to the integrated EBG materials and planar phased 

arrays which remove bandgap metallization from the radiator layer so that frees antenna element 

size constraints, improves radiation efficiency, and using interactions between EBG and antenna 

elements beneficially instead of avoiding from them has remained a challenge. Artificial 

magnetic conductors (AMC), however, have been used properly by suppressing surface waves 

while physical AMC layer underneath the antenna elements and projecting AMC behavior in 

space to the antenna layer [40]. Projecting AMC behavior in space is a smart way to take into 

account artificial substrate metallization and antenna elements interactions while improving 

radiating system's performance. AMC structures, co-designed with the radiating elements, are 

good candidates for antennas [41] and broadside arrays [40]; similarly, in an another application, 

superstrate materials, designed as an integral part of the radiating structures, were also showed 

their ability to suppress surface waves from the broadside arrays [42]. For phased arrays one 
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must ensure that the substrate wave elimination is achieved for all scan angles, therefore EBG 

materials will be right choice.  

 Surface wave effects and their suppression using EBG structures have been well studied 

in the context of the scan blindness; however, leaky waves, which also propagate within the 

printed array substrates and are potential to induce scan blindness and mutual coupling between 

array elements, suppression has not been investigated so far from practical microstrip phased 

arrays for scan blindness mitigation. A true integrated structure must offer both types of substrate 

waves, i.e. surface and leaky waves , elimination capabilities. Even though such modeless EBG 

structures have been proposed in [39], their integration with practical scanning microstrip phased 

arrays has not been investigated yet.  

 It is important to note that another class of metamaterials or bandgap materials, which 

radiates modes supported by their structures, as in [43-47], cannot be applied for scan blindness 

elimination since the radiating mode propagates in the substrate also and couples elements to 

each other. However, the structure presented in this thesis does not support any modes along the 

lateral directions, but at the same time it radiates to broadside direction while satisfying 

geometrical size constraints for a phased array element. Therefore, in this thesis we present a 

complete solution to the integration of phased arrays and electromagnetic bandgap materials. 

1.4 Dissertation Outline 

 This thesis presents a design method for a multifunctional structure which functions as a 

bandgap material, with suppressing surface and leaky waves properties, and a phased array 

antenna element simultaneously. The presented radiating-bandgap multifunctional structure 

demonstrates a complete elimination of scan blindness from microstrip phased arrays. 
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 Chapter 2 studies geometrical and modal properties of the radiating-bandgap structure. 

For modal analyses, eigenmode and two port transmission setups are used in order to capture 

characteristics of radiating modes. The geometry of the unit cell allows omnidirectional bandgap 

behavior.  

 Chapter 3 investigates the structure as an antenna element, therefore its radiation is 

characterized through pattern, gain, and polarization. A stripline impedance matching network is 

used to match its input impedance to 50 Ω.  

 Chapter 4 presents the effect of substrate waves on scan behaviors of microstrip phased 

arrays. In particular, scan blindness attributed to surface and leaky modes are detailed and the 

capability of the radiating-bandgap structure in elimination of scan blindness is demonstrated. In 

addition, couplings between metallic inclusions in a unit element of the presented structure are 

investigated. 

 Chapter 5 focuses on experimental realization of a 3 element  prototype linear array based 

on the radiating-bandgap element; for that, the smallest possible array size is determined such 

that it can capture the scan blindness effect on phased arrays of the uniform substrates. 

 Chapter 6 summarizes the thesis and discusses the perspectives of the design 

methodology and the structure presented throughout this thesis. 
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Chapter 2 

 

Modal Analysis of Bandgap-Antenna Element 

 

 

 

 
 Printed antenna arrays excite substrate wave modes, which induce mutual coupling and 

scan blindness in arrays. Antenna and feeding metallization affect mode properties, and should 

be taken into account properly. For example, a periodic patch array on a grounded dielectric 

substrate supports leaky waves propagating within the substrate; however, if the modal analysis 

omits these periodic patches, representing antenna elements, these leaky wave modes would not 

be captured. Thus, a complete modal investigation of the printed antenna arrays requires an 

antenna element as a whole structure with all types of loadings in the unit element. This is 

important, especially if the array substrate consists of composite structures, such as EBG or other 

types of metamaterial structures. 

  In this Chapter, we perform modal characterization of a uniform substrate microstrip 

patch antenna element as a reference, and the multifunctional composite bandgap-antenna 

structure unit element on their complete geometry and material profiles; all parts within unit cells 

are considered. The modal characterization techniques, i.e. eigenmode and transmission, we 

present here provide both bounded and radiating mode properties. Using these modal analysis 

techniques, the goal is to design a composite bandgap structure which eliminates both bound and 

radiating modes, and then use this composite structure as an antenna element for scan blindness-

free phased array design. Even though the structure does not support any mode along the lateral 

directions, it still radiates to the direction normal to the array surface.   
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2.1 Unit Cell of Bandgap-Antenna Structure 

  Although suppressing of bound modes using conventional EBG structures has been used 

previously for scan blindness elimination [26-27], suppressing radiating lateral modes is also 

essential for printed phased arrays since these modes also couple array elements and potentially 

induce scan blindness. A unit element of the composite bandgap-antenna structure, which is the 

focus of this thesis and shown in Figure 2.1, is capable of forbidding both bound and radiating 

types of modes propagating laterally, along all directions within the substrate. The presented 

structure, thus, eliminates the scan blindness, if it used as an array element, completely from all 

scan directions. Another important feature of this structure is that there is no metallization 

pattern, other than patches serving as radiators, on the antenna layer, and all the other 

metallization are embedded underneath the antenna layer, whereas conventional integrated EBG 

and phased array structures have both radiating and bandgap metallization on the same layer [26-

27, 29-31]. The bandgap is obtained from the whole structure, including antenna and embedded 

metallic layers; but not from the embedded metallic structure only, otherwise embedded two 

layers of concentric rings would not provide bandgap at frequency of interest. Size of the unit 

element structure is equal to the free space half-wavelength at frequency which is within the 

bandgap.  

  Detailed representation of a unit cell of the proposed multifunctional material is 

illustrated in Figure 2.1. The top metallic patch functions as a radiator, and the two layers of 

embedded rings are employed to introduce the bandgap behavior as they are considered together 

with the top patch as a one structure for characterizations. Rogers TMM6 ( 6.00r  , 

tan 0.0023)   is used as the substrate material. The size of the unit cell, D, corresponds to the 

element spacing since we use the same unit element for both modal characterizations and 
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antenna element of the phase arrays. The geometrical parameter values of the structure are (mm): 

D=50, L=23, h1=2.54, h2=3.175, h3=1.27, h=6.985, w0=2, w1=3.8, w2=3.8, w3=3, d=0.8, 

r1=10, r2=15, r3=20. 
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                                      (c)                                                                        (d) 

 

Figure 2.1 Unit cell of the multilayer multifunctional composite bandgap-antenna structure. (a) 

Top and (b) cross section views. Top views of (c) upper and (d) bottom (with vias) concentric 

rings. 
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 We also use a microstrip patch antenna element on a uniform substrate, without any other 

metallization within the substrate, as a reference, to demonstrate the performance of the 

presented composite structure throughout this thesis. This uniform patch antenna is also square 

and resonates at the same frequency as the bandgap-antenna structure, within an infinite planar 

array environment. The width of the uniform substrate patch is W=19.5mm; element spacing, 

substrate material and thickness remain the same as the composite one. 

 An excitation probe feeds the radiating patch, and the feed position from the edge of the  

patch is equal to 3.5 mm and 1.75 mm for the composite and uniform unit elements, respectively. 

In both cases, the feeding probe is not considered for bandgap analysis since placing the probe 

breaks the symmetry and invalidates triangle reduced Brillouin zone and thus, omnidirectional 

dispersion investigation would be difficult. However, we have studied the feeding probe effect 

on the bandgap, along the normal axes, through different probe positions using two different 

characterization techniques, i.e. eigenmode and transmission; we found that its impact on the 

bandgap is insignificant. Therefore, in the following modal analyses, the feeding probe will not 

be included.  

2.2 Eigenmode Analysis of Bandgap-Antenna and Uniform-

 Substrate Antenna Elements 

 The eigenmode analysis of the unit cell is performed using a commercial finite element 

software (Ansys HFSS). In the simulation setup, periodic boundaries are used at the sides of the 

unit cell and an absorbing material (PML) terminates the setup from the top. The radiating modes 

from the structure surface propagate within air, filled between the unit cell surface and PML, and 
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are absorbed from the top. The solver provides eigen frequencies for given propagation phases 

across one unit cell. 

 Our approach is different from conventional EBG materials, where the unit cell size is 

usually smaller than 
00.1 .  Here unit cell size is about 

00.5 . The same element will be used as 

a radiating element within the phased array environment where it is desired to have element 

spacing around 
00.5  for scanning purposes. 

0  denotes free space wavelength at the phased 

array operating frequency or at the bandgap frequency.  We aim to overlap these two frequency 

bands. The physical size of the unit element is 50 mm. This corresponds to 00.5  at 3 GHz, i.e.  

the upper end of the prescribed bandgap frequency region which is from 2.90 to 3.00 GHz. We 

use a triangle reduced Brillouin zone since the top patch and the unit element are square. Also 

the rings shape and via configurations are rotationally symmetric. The structure is characterized 

for an omnidirectional bandgap for the prescribed frequency band mentioned above.  

 In order to obtain the bandgap from the dispersion diagram, both radiating and bound 

modes should be detected. However, the solver we use is incapable of capturing leaky wave 

modes properly. The modes in the leaky wave region follow the light line and merge at the 

frequency, corresponding to one half-wavelength which is equal to the unit element size, of 3 

GHz, as shown in Figure 2.2. The bandgap region is from 3 GHz to the peak frequency of the 

highest bound mode below 3 GHz; the lower edge bandgap frequency can be in the other 

sections of the dispersion diagram, as will be explained. Thus, it is critical to understand the role 

of the modes following the light line above the peak frequency of the highest bound mode and 

merge at the maximum frequency of the dispersion analysis, which is 3 GHz here; like the modes 

4 and 5 of Figure 2.2a. In fact, some of these modes are nonphysical and make it unclear whether 

in fact actually any frequency bandgap exists.  
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Figure 2.2 Dispersion, along the Г-X  direction, diagram of (a) the uniform substrate and (b) the 

composite bandgap-antenna structure elements.  
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Therefore, a complete bandgap cannot be detected, using the HFSS eigenmode solver, from the 

dispersion diagram directly.  

 We study the impact of these modes on the  bandgap further by using their field profiles 

as shown in Figure 2.3. An alternative technique, the transmission method, will also be utilized 

for proper bandgap investigation. Modes 4 and 5 of the uniform substrate seem, from Figure 

2.3a, not to be of the unit element structure which is placed at the bottom of the simulation setup, 

since their fields are maximum in the air region while they are almost zero on the structure.  

Instead, they may be unphysical or modes of the complete setup rather than that of the unit 

element structure; in either case, they can be ignored since the main focus is the modes of the 

unit cell structure.  Here mode 3 of the uniform substrate is the one we should take into account;  

 

Figure 2.3 Side view of the simulation setup with field patterns of modes 1-5 from left to right at 

phase of  175° on Figure 2.2 (a) uniform substrate and (b) composite bandgap-antenna structure 

unit elements. All views, except mode 2 of uniform substrate which is zy-plane view, show zx-

plane.  
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 it is the only bound mode that will be effective in the operating frequency band. On the other 

hand, the first two modes are not effective in the bandgap of interest even though they seem be 

physical and  

 

Figure 2.4 Mode 3 of the uniform substrate element. (a) Vector electric field and (b) vector 

magnetic field distribution. 

part of the structure. As a side note, if we analyze this unit cell based on a conventional 

approach, i.e. a grounded dielectric slab without the top patch, we would obtain only one mode, 

which corresponds to mode 3 shown in Figure 2.2a, in the bound mode region; but not the first 

two modes. This mode will be referred in the context of scan blindness in the next chapters; its 

vector field distribution, shown in Figure 2.4,  will provide physical insight into scan blindness. 

Its electric field vector forms a loop normal to the surface, while the magnetic field vector is 

parallel to the surface; thus, it is a TM mode, and it induces E-plane scan blindness in microstrip 

patch phased arrays. Even though it seems that this mode is not propagating in the prescribed 

frequency band of interest (2.90-3.00 GHz) as shown in Figure 2.2a, it will appear in the band in 

the X-M section of the dispersion diagram.  
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 We similarly analyzed modes of the composite structure bandgap-antenna unit element as 

shown in Figure 2.2b. Here only mode 1 is bound and the other 4 modes should be investigated 

using their field patterns also in order to determine their impact on the bandgap. As shown in 

Figure 2.3b, mode 1 is bound to the structure while modes 2, 3, and 5 seem to be not that of the 

unit cell. Mode 4, on the other hand, may be propagating within the unit cell; however, it seems 

that this mode is more radiative and may not perturb the bandgap. We will use another approach 

of two-port transmission in order to investigate the impact of mode 4 and any other potential 

propagating modes further on the bandgap.  

2.3 Transmission Analysis of Bandgap-Antenna and Uniform-

 Substrate Antenna Elements 

 The transmission setup is illustrated in Figure 2.5, where seven unit elements are placed 

between two waveports. The setup is terminated using an absorbing material (PML) from the top 

and radiation boundaries from the back of two waveports; these absorbing and radiation 

boundaries are employed to capture radiation from the potential leaky waves supported by the 

structure. Finally, perfect magnetic conductor (PMC) boundaries are used on the sides. The setup 

shown here can analyze the Г-X section, which is the most problematic one in our case, as we 

discussed in the previous section, of the dispersion diagram further. Specifically, to make sure 

that leaky wave region modes, following the light line and merging at X point on the dispersion 

diagram, do not cancel the bandgap. Another important feature of the transmission setup is that 

integrated structures with element size of larger than 00.5 can be studied, whereas dispersion 

setup has element size limited to 00.5  or smaller. On the other hand, the transmission setup can 

investigate the structures along only the main axes and the diagonal axis, while the eigenmode 
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dispersion approach can consider all possible directions if the geometry satisfies certain 

symmetries.  

 The transmission from the uniform substrate patch and composite structure elements is 

shown in Figure 2.6. The results are normalized to their values at 3.08 GHz, for both uniform  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Two port transmission setup. 

and composite structures separately. Considering the frequency band of interest from 2.90 to 

3.00 GHz, it is shown that while the uniform substrate elements have almost 0 dB (-1.7 dB at 

2.92 GHz) transmission, the composite structure demonstrates the bandgap behavior from 2.95 to 

3.02 GHz, where transmission is more than 10 dB lower than that of the uniform substrate. 

Compared to the conventional bandgap materials, where bandgap is characterized using 

transmission below -15 or -20 dB with respect to the free space medium, the performance of the 

composite structure presented here is characterized with -10 dB transmission with respect to the 

uniform substrate elements, but not the free space medium, as shown in Figure 2.6.  

 A Comparison of the dispersion results of  the Г-X section, shown in Figure 2.2, with the 

transmission results of  Figure 2.6 can be misleading. Even though the Г-X and transmission 

setup analyze the same physical axis (x-axis) along the unit cell array, one should not expect 
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identical bandgap properties from both. The Г-X section deals with modes propagating along the 

corresponding axis only; however, transmission setup takes into account modes propagating 

along this axis and also considers the wave vector components of the waves propagating along 

the other directions, which  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Transmission from 7 unit elements for uniform and bandgap-antenna structures.  

may not appear on the Г-X section. For example, transmission from the uniform substrate shows 

no bandgap (unnormalized results also do not show bandgap); but, the Г-X section of the same 

structure, considering mode by field patterns as well, has actually no propagating  mode at the 

frequency region analyzed by the transmission setup. The reason beyond this is that mode 3 of 

the uniform substrate will appear, as shown in Figure 2.7, in the frequency band within the X-M 

section of the dispersion diagram; and the transmission setup considers wave vector component 

of this mode along the axis of propagation as well. 
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2.4 Omnidirectional Bandgap 

 Impact of the substrate modes on the bandgap has been analyzed using both eigenmode 

dispersion and two port transmission methods. However, we have focused on only one direction 

of propagation so far; but, since the unit elements studied here will be used in planar phased 

arrays, the bandgap investigation along all directions is needed. For these analyses, we will focus 

on mode 3 of the uniform substrate element and mode 1 of the composite structure only since the 

role of the other modes has been cleared, they are not effective, in the previous section. The first 

two modes of the uniform substrate do not propagate in the frequency band of interest, 2.90-3.00 

GHz, therefore they are omitted. All the other modes for both structures remain in the leaky 

wave region and their behavior has been shown through the field patterns and transmission setup, 

where they were found to be not effective in the bandgap region of interest. 

 Figure 2.7 shows omnidirectional dispersion diagram, using reduced triangle Brillouin 

zone, of the unit cells of the uniform substrate and composite structure elements for mode 3 and 

mode 1, respectively;  the Г-X, which is along the x-axis, and M-Г sections are shown partially 

for the leaky wave regions, since these modes are not stable and the dispersion technique is not 

fully capable to show modes in the leaky wave region properly.  

 Uniform substrate, with the top patch on, has a propagating mode in the X-M region of 

the diagram, which corresponds to the propagation directions for angles between 0° to 45° from 

the x-axis, and this mode is propagating for the entire frequency band of interest. It shows similar 

characteristics as for the fundamental TM0 mode of the grounded dielectric substrate, 

considering its field profile  in Figure 2.4. This propagating mode shown here is identical along 

the x- and y- directions since the top patch and substrate sizes are square. In the context of a 

microstrip phased array, however, it is more effective along one direction (x- or y-),  depending 
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on the feeding position. If, for example, the structure will be excited along the x-axis, excited 

radiating currents on the patch surface will be along the x-axis for the dominant Floquet modes 

and they will couple to and excite this substrate mode, shown in Figure 2.7,  along the x-axis 

only, the substrate mode along the y-direction will remain unexcited. Therefore, the coupling 

through the substrate modes is more effective along the E-scan plane. This point will be explored 

more and linked to the scan blindness phenomena in the next chapters. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Omnidirectional dispersion diagram of the bandgap-antenna and uniform substrate 

elements. 

 In order to eliminate this mode, propagating within the uniform substrate at the operating 

frequency band, we use the composite structure of Figure 2.1, which is investigated with its all 

parts, including vias and top patch. The grounding vias are essential and bandgap disappears if 

they were not used. Similarly, the top patch should also be used to obtain the complete bandgap. 
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As shown in Figure 2.7, the composite bandgap-antenna structure completely eliminates the 

mode along all directions from 2.87 to 3.00 GHz with the stop bandwidth of 4.4%. 

 Even though dispersion diagram shown in Figure 2.7 demonstrates the bandgap from 

2.87 to 3.00 GHz for the composite structure, it is narrower, 2.95-3.02 GHz, in the transmission 

setup shown in Figure 2.6. This may be due to leaky waves supported by the structure which are 

effective in the transmission setup while they are not considered in Figure 2.7;  however, these 

leaky waves are not strong as shown through their field patterns in  Figure 2.3. The reason of the 

narrower bandgap width of the transmission could also be due to internal couplings between 

metallic parts within a unit cell, where these couplings can be along the normal direction, 

between different metallic layers, such that energy can be stored instead of being propagated; 

therefore these kinds of internal couplings cannot be detected by dispersion analysis but they are 

physically effective. Also, note that eigenmode dispersion and two port transmission setups are 

not identical as explained above, due to effective wave vector components in transmission setup 

only; however, this should not be the reason beyond the bandgap differences since there is no 

mode, so does its components, available within the bandgap.  

 In fact, the transmission setup has another bandgap (below -10 dB transmission) centered 

at 2.90 GHz. However this bandgap is only from 2.89 to 2.91 GHz and disconnected from the 

one shown in Figure 2.6. The disconnected spectrum range is from 2.91 to 2.95 GHz. We will 

utilize the complete, for both bound and radiating modes, and omnidirectional frequency 

bandgap from 2.95 to 3.02 GHz for elimination of the scan blindness in the next chapters. 

However, we still believe that the structure has actually a practical omnidirectional bandgap, for 

propagation along the lateral directions, from 2.87 to 3.02 GHz.  



 

31 

 

 We will use the bandgap-antenna structure as a radiating element for a phased array 

where  there will be no coupling between the elements through the propagating substrate modes, 

therefore it provides scan blindness-free phased arrays. Within omnidirectional bandgap, lateral 

wave vector is || 0k  ; thus, radiation from the structure will be normal to its surface.  

2.5 Conclusion 

 A multifunctional structure which is capable of behaving as a bandgap structure, 

suppressing both bound and radiating wave modes along the lateral directions, and an antenna 

element, radiating to the broadside direction, for scan blindness-free phased arrays has been 

presented. Unit cell of the structure has been analyzed in detail; its geometrical and material 

features has been explained. Modal characteristics of the structure were analyzed through 

eigenmode, field profiles, and two port transmission techniques. Combining the results of these 

methods, we found that the proposed bandgap-antenna structure has a complete bandgap along 

all directions for substrate waves propagating laterally. This structure will be used as an antenna 

element in a phased array environment for scan blindness elimination in the next chapters. 
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Chapter 3 

 

Radiation Characterization of Bandgap-Antenna Element 

 

 

 

 
 This chapter focuses on the radiation characterization of the proposed multifunctional, or 

the bandgap-antenna, structure. As mentioned in the previous chapter the structure does not 

propagate any mode along the lateral directions; however, it supports radiation normal to its 

surface. In fact, its radiation properties are similar to that of a conventional microstrip patch 

antenna. The center of the structure does not contain any radiating or bandgap metallization, 

where a coaxial probe is used to feed the structure as shown in Figure 3.1. All configurations and 

sizes remain same as the structure used for modal and bandgap investigation in the previous 

chapter. As such, lateral sizes, in a square shape, are half-wavelength at 3 GHz (50 mm), which 

is required for the dispersion and scanning analyses. The only modification in this chapter is the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   (a)       (b) 

 

Figure 3.1 Bandgap-antenna structure with a coaxial feeding probe. (a) Top and (b) side views. 
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feeding probe within the substrate. We further used an impedance matching network in order to 

match the structure input impedance to 50 Ω; this matching network layer is an additional layer 

so that it does not affect bandgap-antenna element's modal and bandgap characteristics. 

Additionally, the feeding probe also does not affect structure's modal and bandgap properties as 

discussed in the previous chapter. 

 The single element operating frequency is chosen to be 2.99 GHz, which is within the 

bandgap frequency range of 2.95-3.02 GHz, and it is below half-wavelength frequency (3 GHz) 

of the structure whose size is 50 mm along the x- and y- directions. This working frequency 

should be very close to half-wavelength at 3 GHz for scanning investigations in the next chapter. 

Since we will focus on scan blindness, if the substrate size or inter-element spacing is reduced 

too much, or the operating frequency is chosen much lower than 3 GHz, scan blindness 

disappears and performance of the structure cannot be evaluated. Overall, the single element 

radiation performance is analyzed at the center frequency of 2.99 GHz throughout this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         (a)              (b) 

 

Figure 3.2 (a) Input reflection coefficient and (b) realized gain (dBi) of the bandgap-antenna 

structure shown in Figure 3.1.  
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3.1 Impedance Matching Network Design 

 The reflection coefficient and radiation pattern of the proposed bandgap-antenna 

structure, that is shown in Figure 3.1, are shown in Figures 3.2a and 3.2b, respectively. From the 

reflection coefficient, we can see that it resonates as a radiating element at 2.85 GHz, far away 

from the desired working frequency of 2.99 GHz. However, its radiation pattern at 2.99 GHz, 

shown in Figure 3.2b, is still like that of a conventional patch antenna. The realized gain at the 

desired frequency is 1.37 dBi and its reflection coefficient is only -1.72 dB at the same 

frequency. Therefore, it requires a matching network in order to operate efficiently at 2.99 GHz. 

It is worth noting that the notch observed from the reflection coefficient at 2.80 GHz is due to the 

concentric rings in the substrate for the bandgap purposes. In fact, this notch was shifted from the 

frequency band of interest near 3 GHz to around 2.80 GHz by introducing cuts into the 

concentric rings of both layers. 

 A stripline network is used for impedance matching as shown in Figure 3.3, where it is 

fed by a waveport from the edge. Rogers TMM3 ( 3.27r  , tan 0.002  ) with total thickness   

 

 

 

 

 

 

      (a)            (b) 

Figure 3.3  Bandgap-antenna structure with edge-fed stripline impedance matching network. (a) 

top view, (b) side view. 
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 of 3.048 mm is used as a dielectric substrate for the stripline design where the stripline trace is 

placed in the middle of the dielectric. The stripline has 50 Ω characteristic impedance and thus 

its width is 1.8 mm. Before introducing a matching network stub into the stripline layer, we 

measured the input impedance of the structure near the probe, feeding the radiating top patch, by 

de-embedding the measurement plane 32 mm from the waveport. The simulated de-embedded 

input impedance is 226+j246 Ω at 3.00 GHz. To design the matching network, this impedance is 

then used as a load impedance in a network simulator (Microwave Office AWR) in order to 

determine the shorted stub length and its position from the load, which are 3.2 mm and 11.4 mm,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4  Input impedance, measured at the waveport plane, of the radiating-bandgap structure 

with and without impedance matching stub in the stripline network.  

respectively. The structure with matching network, depicted in Figure 3.3, has input impedance 

of 59+j5 Ω at the waveport plane. Figure 3.4 further illustrates the performance of the matching 

network where the input impedance, measured at the waveport plane,  is shown for the stripline 
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without and with the shorted stub; where the inset shows that impedance matching to 50 Ω for 

the frequency region of interest centered at 2.99 GHz is successful. Figure 3.5 shows the effect 

of the matching network on the gain of the structure; for the edge-fed stripline without the 

matching stub, gain at broadside is 1.47 dBi while it increases to 6.08 dBi for the edge-fed 

stripline with impedance matching stub; and to 6.12 dBi in the case of coax-fed stripline with 

impedance matching stub as will be explained in Figure 3.6. 
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         (c) 

 

Figure 3.5  Realized gain (dBi) pattern of the stripline fed bandgap-antenna structure. (a) Edge- 

fed no stub, (b) edge-fed with stub, and (c) coax-fed with stub.  



 

37 

 

3.2 Coax to Stripline Transition Design 

 The edge-fed stripline was necessary to obtain element input impedance to design the 

matching network; however, we will feed the structure using a coaxial probe, which is more 

practical for experimental demonstration, from the bottom. More importantly, this unit element  
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        (c) 

 

Figure 3.6  Coax to stripline transition. (a) top view, (b) perspective view of the coaxial feed, 

and (c) stripline excitation port. Vector electric fields of the excited modes of the coaxial and 

stripline are shown.  
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will be used in planar array configurations where the array system needs other modules, such as 

beam forming network. Therefore, it is essential to shield all these feeding mechanisms from the 

radiating layer. We still use stripline matching network presented in Figure 3.3; however, now it 

will be excited using a coaxial probe. In order to achieve this, a stripline to coaxial transition, 

shown in Figure 3.6, is used. We note that all the material and geometrical parameters of the 

stripline remain same as the one shown in Figure 3.3. Figures 3.6b and 3.6c further illustrate 

modal field profiles of coaxial and stripline feeds. The performance of the transition is shown in 

Figure 3.7, where transmission and reflection are better than -0.18dB and -20dB from 1 to 7 

GHz, respectively. Specifically, they are -0.07 dB and -26.35 dB at the operating frequency of 

2.99 GHz, respectively. This coax to stripline transition will be incorporated with the impedance 

matching network in order to obtain practical feeding mechanism for the proposed composite 

structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Transmission and reflection coefficients of the coax to stripline transition. 
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3.3 Bandgap-Antenna Element with Impedance Matching Network 

 Ultimate radiating element with the matching network is shown in Figure 3.8. The 

matching network, stub length and its position from the feeding probe, is the same as the one fed 

from the edge and shown in Figure 3.3. Since the transition is well behaved, we expect that the 

element performance for the edge-fed and coax-fed cases to be similar. Indeed, that is the case as 

illustrated in Figure 3.5, where radiation patterns are similar for both cases and the peak realized 

gain values are very close to each other, 6.08 dBi for the edge-fed and 6.12 dBi for the coax-fed 

cases. The structure of Figure 3.8 will be used for the array investigations and experimental 

demonstrations. Therefore, it is essential to elaborate its radiation mechanism further. In fact, we 

already saw that the proposed structure has similar radiation pattern as a conventional patch 

antenna, radiating to broadside.  

 Figure 3.9 shows that a conventional patch antenna on a uniform substrate and the 

structure of Figure 3.8 have similar electric field (magnitude) distribution on the surface of their 

substrates. This justifies that the proposed structure can be considered as a patch antenna but  

 

 

 

 

 

 

 

 

 

 

 

       (a)                (b) 

 

Figure 3.8 Radiating-bandgap structure with a coax fed, through a coax to stripline transition, 

and the stripline matching network. (a) Top and (b) side views. 
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   (a)              (b) 

 

Figure 3.9 Electric field (magnitude) distribution on the surface of (a) uniform substrate patch 

antenna and (b) coax-fed radiating-bandgap structure, of Figure 3.8, with impedance matching 

network.  

different from the conventional patch antenna by not supporting propagating substrate modes. 

Since the substrate modes result in losses and pattern degradations, one should expect that the 

proposed structure is actually behave better, in terms of improved gain and smoother radiation 

patterns. 

 Figure 3.9b further explains that there is coupling between top patch and embedded rings 

where there are localized ring shaped electric field patterns. These coupled fields, to the rings, 

should not be considered as propagating substrate modes. In fact, they radiate to the space from 

the ring surfaces instead of being propagated in the substrate. Moreover, these couplings to the 

embedded rings reduce the radiation efficiency. On the other hand, the electric field distribution 

of the conventional patch antenna in Figure 3.9a implies that the substrate modes, or shown 

electric field pattern, are not that localized and effective in the substrate.  

 In order to complete the radiation characterization of the bandgap-radiating structure, we 

compare its radiation properties with that of a conventional patch antenna in Figures. 11, 12, and 
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13. Effect of thte matching network can also be viewed from these figures; another important 

observation is elements with edge and coax feeds have similar behaviors.  

 As mentioned before, operating frequency of the element is chosen to be 2.99 GHz; the 

reason beyond that is the coax-fed element with the matching network, which is the ultimate  
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             (b) 

 

Figure 3.10 Radiating element input impedances, (a) real and (b) imaginary, for different 

structures: Uniform substrate conventional patch antenna, no matching network (structure of 

Figure 3.1), edge fed matching network (structure of Figure 3.3), and coax fed matching network 

(structure of Figure 3.8). 
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design, resonates at this frequency as shown in Figure 3.11 while the one fed from the edge 

resonates at 2.98 GHz. On the other hand, resonance frequency of the conventional patch 

antenna element is 2.86 GHz. Both this conventional patch antenna element and the coax fed 

element with matching network will resonate at the same frequency of 2.96 GHz in an infinite 

array environment. The frequency shift between element and array cases is more significant in 

the uniform substrate conventional patch antenna; this is due to induced couplings through the 

substrate modes, i.e. leaky or surface waves, in the case of uniform element array configuration. 

This point will be elaborated more in the next chapter.  

 As can be seen from these figures, composite structure, of Figure 3.1, without any 

matching network is more efficient at frequency of 2.85 GHz where it actually provides more  

peak gain than conventional patch antenna. We note that we do not have more flexibility to 

modify this structure for impedance matching, since it has already been co-designed with  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Reflection coefficient for different structures: Uniform substrate conventional patch 

antenna, no matching network (structure of Figure 3.1), edge fed matching network (structure of 

Figure 3.3), and coax fed matching network (structure of Figure 3.8). 
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consideration of the bandgap properties. Therefore, we used the stripline matching network 

which is well isolated from the bandgap-antenna structure and does not affect its bandgap 

properties but enhances its radiation properties. Since the matching network is designed for the 

input impedance measured at 3 GHz, edge and coax fed structures with matching network have 

close impedance, reflection coefficient, and realized gain values at this frequency. In fact, even 

though impedances deviate from each other slightly, reflection coefficients and realized gains 

remain close to each other for the entire frequency band shown.  

 In all cases, the composite bandgap structures provide larger peak gains than 

conventional patch antenna; this is mainly attributed to the eliminated substrate modes from the 

composite structures while they carry power and reduce the gain in conventional patch antennas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Realized gain versus frequency for different structures: Uniform substrate 

conventional patch antenna, no matching network (structure of Figure 3.1), edge fed matching 

network (structure of Figure 3.3), and coax fed matching network (structure of Figure 3.8). 
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 Radiation characteristics of all these four different structures discussed here are 

summarized in Table 3.1 at the element operating frequency of 2.99 GHz. The structure of 

interest is the one fed with coax and has the impedance matching network, shown in Figure 3.8. 

Its characteristics at 2.99 GHz are as follows. It resonates at 2.99 GHz where |S11| = -27 dB, -10 

dB impedance band is from 2.96 to 3.02 GHz, its realized gain and radiation efficiency  are 6.12 

dBi and 93.39%, respectively. This element will be used in an array configuration in the next 

chapter to improve array behaviors. 

 It is important to note that surface waves are more effective near the scan blindness 

angles as will be discussed in the next chapter. At broadside, for example, radiation efficiency of 

the uniform substrate patch antenna can be higher than that of the bandgap-antenna element as 

illustrated in Table 3.1 for the isolated elements, the performance of the bandgap structure will 

show up at larger scan angles. The lower radiation efficiency of the composite structures in Table 

3.1 is mainly due to couplings, between the different metallic layers, within the unit element 

structure.  

 

Table 3.1 Radiation characteristics of different structures at 2.99 GHz. 
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3.4 Conclusion 

 Radiation characteristics of the bandgap-antenna structure have been studied in this 

chapter. Before analyzing the radiation performance, an impedance matching network has been 

incorporated with the bandgap-radiating structure so that its input impedance is matched to 50 Ω. 

The matching network is employed in the stripline in order to avoid any couplings within the 

matching network layer. Radiation analyses showed that the bandgap-antenna structure radiates 

to broadside, similar to a conventional patch antenna; comparisons with the uniform substrate 

conventional patch antenna further supported performance enhancement of the proposed 

composite structure. For example, its peak gain is better than that of the uniform substrate patch 

antenna and electric fields distribution on its surface are more localized, which implies reduction 

of the substrate modes from the bandgap-antenna structure. The proposed structure with a coax-

fed impedance matching network will be used in a phased array environment in the next chapter 

for the scan blindness elimination. 
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Chapter 4 

 

Infinite Array Scan Analysis 

 

 

 

 
 Microstrip phased arrays' scan range is limited by the electromagnetic waves propagating 

within the array structure. Excitation of these waves requires certain feeding mechanisms, 

however as phased arrays are scanned these undesired substrate modes will be excited and limit 

the scan range of the array by inducing scan blindness. In this chapter, uniform substrate and the 

bandgap-antenna element based planar infinite phased arrays are investigated in order to shed 

light onto the substrate modes and their effects, and show how the proposed bandgap-antenna 

element can successfully suppress propagation of electromagnetic waves from the array 

substrates so that solve the scan blindness problem.   

4.1 Phased Array Modes and Their Effects 

 There are two distinct types of modes related to the microstrip phased arrays. Radiation 

from the arrays can be considered as an infinite number of Floquet modes. Electromagnetic 

waves propagating in a phased array structure are another types of modes. These two sets of 

modes and their coupling effects will be discussed next.  

4.1.1 Radiation Modes 

 Radiation modes representing the array periodicity field are also known as Floquet 

modes. In other words, the total array field can be decomposed into an infinite number of Floquet 
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modes. Indeed, each of these modes behaves as a plane wave with corresponding wavenumber 

and propagation direction. Practically only the first few of these modes couple to air as radiation; 

the remaining modes are evanescent so that they decay exponentially in the air medium above 

the array structure while carrying energy and propagating on the array surface. The scanned main 

beam in phased arrays is due to fundamental Floquet modes while well known grating beams are 

of the higher order Floquet modes, which are propagating in the air medium.  Regardless of 

whether Floquet modes are propagating or non-propagating in air medium, their tangential, to the 

array surface, wave number components vary with excitation phase of the array elements as 

derived in chapter 1, 
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where each Floquet mode is specified by  ( , )p q modal indices; xd  and yd  are element spacing 

along the x- and y- directions, respectively, and 0 0( , )   is the main beam or (0,0)  Floquet 

mode pointing direction. (4.1) and (4.2) describe that direction of propagation of the excited 

Floquet modes vary with scan angle, thus with elements excitation phase. 

4.1.2 Substrate or Structural Modes 

  Another distinct type of modes supported by the array structure are guided modes 

propagating within the array substrate; these modes can be either completely bound to the array 
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structure and not couple to surrounding air medium or can also couple to air by radiation. 

Namely, these modes are known as surface wave (bound) and leaky wave (radiating) modes. It is 

important to distinguish that Floquet modes are a decomposition of the array field (which is 

desired to be radiated) and they are excited through excitation of array elements. Surface wave 

and leaky wave modes, on the other hand, are not desired in the context of the phased arrays 

considered in this thesis. 

 The properties of substrate modes supported by the array structure are determined by the 

element material and geometry profiles. More specifically, substrate thickness and dielectric 

constant are the main parameters that affect substrate mode behavior. For example, a grounded 

dielectric material, which has been used to characterize surface wave modes for the phased 

arrays considered in literature, supports only the fundamental TM0 surface wave mode if its 

thickness satisfies the condition 

 
0 .

4 1r

d






 (4.4) 

Thicker substrates with greater dielectric constant support higher order modes and effect of the 

lower order modes will also be more significant on the radiation and scanning characteristics of 

the phased arrays.  

 Even though, grounded dielectric materials used as practical printed patch antenna 

substrates are thin such that they support only the TM0 surface mode, metallization and feeding 

structures will also affect the structure's mode properties. As we showed in Chapter 2, through 

full wave eigenmode simulations, a grounded dielectric substrate loaded with a square metallic 

patch supports two more bound modes, which have been ignored in literature, in addition to the 

expected TM0 mode described above; where these two additional modes are due to patch 

metallization and they are effective at much lower frequencies than operating frequency region 



 

49 

 

of the array that is being studied here. The situation is more complicated for composite substrates 

where the potential of excitation of substrate modes, leaky or bounded, is higher. A modal 

solution to the complete structure is essential. Therefore, we have considered the whole structure 

with all types of metallizations as we have characterized supported surface and leaky wave 

modes.  

  Leaky wave modes are just space harmonics or Floquet modes of a bounded surface 

wave mode. The only difference between introduced leaky wave modes and substrate surface 

wave modes is that the phase constant of leaky modes lw  is smaller than the free space phase 

constant 0k . Therefore, while surface wave modes, whose propagation constants are 0 swk  , 

are bounded to the substrate and not radiating any energy to the air medium, leaky waves on the 

other hand are radiative toward certain directions determined by their propagation constant.  

4.1.3 Excitation of Substrate Modes 

  Even though surface and leaky modes properties are determined by the structure's 

material and geometry configurations, their excitation requires certain types of feeding 

mechanisms. We saw, in Chapter 2, that a square patch antenna on a grounded dielectric 

substrate supports a surface wave mode identically along the x- and y- directions since the 

radiating patch and substrate are square; however, excitation of these identical modes along 

different directions can be different, depending on the feeding or excitation mechanism, or array 

elements' polarization. As the array elements are excited, electric currents on the array elements, 

whose main task is to form the radiation, may excite surface and leaky waves modes along a 

specific direction, which will propagate in the array structure similar to the modes propagating in 

a waveguide.  
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 Excitation of surface and leaky wave modes vary with scan angle or array element phase 

substantially as well. To explore excitation of substrate modes further, we used transmission 

setup as the one used in Chapter 2; however, here each element in the array is excited as shown  

 

 

 

 

 

 

 

 

 

Figure 4.1 Transmission setup for demonstration of substrate wave modes excitation. (a) Top 

view E-plane, (b) top view H-plane, and (c) side view.  

 

 

 

 

 

 

 

 

 

 

 

 

 

   (a)                        (b) 

 

Figure 4.2 Transmission through substrate when elements are (a) terminated with 50 Ω loads, 

(b) all elements are excited and phased for broadside radiation. 
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in Figure 4.1 and there are two additional ports at the edges to detect the waves propagating 

within the substrate, such as surface and leaky waves. Different cases are compared for the E- 

and H- scan planes in Figures 4.2 and 4.3. Note that these results are for a semi-infinite array of 

Figure 4.1, that is only 12 elements are used along the direction of propagation while an infinite 

number of elements are used along the other direction. In addition, analyses are performed within 

the -10 dB bandwidth of the radiating structure where it is from 2.70 to 3.01 GHz for an isolated 

single element, and from 2.80 to 3.11 GHz for the element in the planar infinite array 

environment of microstrip patch elements on a uniform grounded dielectric substrate. Therefore, 

we considered frequency regions between these two bands to analyze the semi-infinite structure 

in Figures 4.2 and 4.3. 

 We can observe, comparing Figures 4.2a and 4.2b, that substrate waves are effective even 

for broadside radiation. Excitation of array elements excites these substrate modes which  

 

 

 

 

 

 

 

 

 

 

 

 

   (a)          (b) 

Figure 4.3 Transmission through substrate when elements are phased for different scan 

directions in (a) E- and (b) H- scan planes.  

propagate in the substrate. Since array currents are polarized along the E- scan plane, substrate 

modes are dominant along the E- plane as shown in Figure 4.2b. On the other hand when 
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elements are not excited, propagation within the substrate is similar along the E- and H- scan 

planes as illustrated in Figure 4.2a. However, our discussion is more accurate for the scan angles 

corresponding to phase matching condition between substrate waves and array modes, where 

excitation of substrate modes is the most significant; as shown in Figure 4.3a, propagation in the 

substrate peaks at these scan angles. For the array analyzed here, scan blindness occurs, as will 

be shown later, at 65° scan angle along the E- plane. The transmission results of Figure 4.3a 

agree well with this angle. On the other hand, this is not true, as expected, for the H- plane of 

Figure 4.3b where excitation of substrate modes is not achieved mostly due to array element 

current polarizations to be along the E- plane.  

4.1.4 Scan Blindness 

 It is clear now that excited array structure can support two different modal mechanisms 

which are based on different roots and should not be confused. From another point of view, we 

introduced two different sets of Floquet modes; one represents the array field and the other 

represents the surface wave mode field, and it is possible that Floquet modes from these two 

different sets couple to each other. If that is the case, excitation of the substrate modes peaks and 

significant portion or all of the array energy couples to these modes and remains in the substrate 

instead of being radiated into the air. This happens as tangential phase constant of a radiation 

Floquet mode pqk  equals to that of a substrate mode sub . At the end, excitation of the substrate 

mode occurs in the same direction as the antenna element current direction. This coherent 

coupling or scan blindness condition can also be written as 
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where sub  can be sw  or lw , depending on the mode type under consideration. (4.5) is not a 

sufficient condition for scan blindness to occur; it is also needed that there is current, with proper 

polarization, available on the array structure to excite surface wave modes, which will have the 

same polarization as the excitation current; therefore, surface wave modes are more significant 

along the E-plane of microstrip arrays as shown in Figures 4.1-4.3.  

 Scan blindness phase matching condition (4.5) cannot be satisfied between bounded 

surface wave modes, whose phase constant sw  is larger than that of free space 0k  and the  0,0

Floquet mode or main beam; in most practical cases blindness is due to coupling between a 

surface wave mode and  the  1,0 Floquet modes. However, we can also observe, from (4.5), 

for the first time that scan blindness due to the  0,0 Floquet mode or main beam is possible if 

the array excites leaky wave modes, whose phase constant lw  is smaller than that of free space 

0k . This condition has never been considered in the open literature, according to our best 

knowledge. However its impact is important especially for the modern integrated structures 

using composite substrates where the potential of leaky waves is greater.  

 As it is seen from (4.5) element spacing has a significant impact on scan blindness while 

substrate thickness and dielectric constant also have an impact indirectly through the substrate 

mode phase constant. For scan blindness analyses, it is desired to have blindness angle in the 

visible range and closer to the broadside direction. Even though increasing substrate thickness 

and permittivity forces substrate wave effects and scan blindness to the broadside, element 

spacing is the most significant parameter on the blindness angle. It is possible to have blindness 

close to the broadside for element spacing larger than half wavelengths, but  that large element 

spacing also introduces grating lobes into the visible space. Therefore, for scanning arrays the 
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element spacing is generally limited to half wavelength at the operating frequency. In addition, 

one of the main requirements of the whole structure eigenmode analysis, performed in Chapter 2, 

is that element spacing must be smaller than half wavelength at the array operating frequency. 

Scan blindness angle, on the other hand, is too sensitive to the element spacing, it approaches to 

the endfire direction and then disappears from the visible angle range, as shown in Figure 4.4, 

with decreasing element spacing and this makes analysis of scan blindness difficult. Considering 

an E-plane scanning array with only the first order  1,0 Floquet mode, the scan blindness angle 

can be derived from (4.5) as 
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Element spacing must be chosen close to the half wavelength for a straightforward blindness 

analysis. To induce scan blindness at smaller angles (closer to the broadside), substrate thickness 

and dielectric constant should also be chosen large, this helps to capture substrate modes  

 

 

 

 

 

 

 

 

 

Figure 4.4 Element spacing effect on scan blindness. λ is free space wavelength at array 

operating frequency. 
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inducing blindness with eigenmode analysis since we cannot increase element spacing more. The 

array we will introduced further here has same substrate properties as the one used in the 

previous chapters. Note the scan blindness angle varies with the scan angle as well, or saying it 

in another way, blindness is dominant at certain scan angles but it occurs at nearby angles also. 

4.2 Broadside Analysis 

 We saw how scan blindness makes phased array dysfunctional, and the elimination of 

scan blindness is therefore needed, which is the main objective of this thesis. The bandgap 

structure analyzed in the previous chapters is a good candidate for this since it provides both 

radiation and bandgap properties simultaneously. Before introducing scan blindness elimination 

using the proposed bandgap-antenna structure, here we first analyze the frequency response of 

this structure and that of an array on a uniform substrate at the broadside direction. Figures 4.5 

and 4.6 show that the frequency behavior of an isolated antenna element may change remarkably 

when it is placed into an array environment, due to propagating substrate waves which couple 

array elements. Both input reflection coefficient and realized gain changes are greater for the  
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Figure 4.5  Input reflection coefficient for different cases. (a) Uniform substrate element vs. 

infinite array, (b) bandgap substrate element vs. infinite array, (c) Infinite array uniform vs. 

bandgap substrates. 

case of uniform substrate than the case of the bandgap structure because of the presence of 

substrate modes in the uniform substrate. A slight change in the case of the bandgap structure is 

due to smaller computational size, per unit cell, for the infinite array, where the effect of space 

waves is more significant on the coupling between the elements; of course this effect is present  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      (a)              (b) 



 

57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             (c) 

 

Figure 4.6  Realized gain for different cases. (a) Uniform substrate element vs. infinite array, (b) 

bandgap substrate element vs. infinite array, (c) Infinite array uniform vs. bandgap substrates. 

for the uniform substrate arrays also but the substrate modes effect is more dramatic there. As 

shown in Figures 4.5c and 4.6c the uniform substrate array provides better reflection coefficient 

characteristics and realized gain over the frequency band of interest at the broadside radiation 

direction. The role of the bandgap array however is coming into the play as we scan the beam; as 

we will see, a complete elimination of scan blindness can be achieved with the bandgap arrays 

while an array of uniform substrate cannot function after certain scan angle, coinciding with the 

blind angle, which is 65° here. 

4.3 Scan Analysis 

 Comparing to conventional bandgap approaches for the scan blindness elimination, the 

structure presented here provides better improvement because here the whole structure, which is 

co-designed for its radiation and bandgap characteristics, is a bandgap structure; while for the 
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conventional solutions, bandgap unit elements were embedded into the array elements and 

usually bandgap elements were separated from the array element traces to protect their bandgap 

properties, by reducing couplings, so that only few bandgap rows could have been achieved. 

Therefore, substrate modes suppression is not complete; in addition, leaky wave suppression has 

never been investigated in the previous approaches in the context of the scan blindness 

elimination. On the other hand, the radiating-bandgap structure of this paper can be considered as 

a unit cell of a conventional bandgap material; but with the improvements of its radiating to 

broadside as an antenna element and suppressing leaky waves characteristics.  

 The radiating-bandgap structure can eliminate scan blindness along all scan directions 

due to its omnidirectional mode free bandgap behavior. Omnidirectional bandgap is essential for 

planar arrays, otherwise coupling, and hence scan blindness, would occur along some directions. 

Square shaped patch and rotational symmetric rings and via configurations make the 

omnidirectional bandgap possible with the proposed structure as we saw in Chapter 2; here  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Scan behavior of uniform-substrate and bandgap-antenna arrays for different scan 

planes. Frequency is 2.96 GHz, element spacing is  00.4933  and substrate thickness is 

 00.0689 .  
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we show the effect of this bandgap behavior on the array scan blindness elimination in Figure 

4.7, where scan behavior of the uniform and the proposed bandgap structure are compared; the 

performance of the bandgap structure is obvious, scan blindness is completely eliminated from 

all scan planes. The most significant improvement is seen in the E- scan plane where the 

reflection coefficient is reduced from 0.946 to 0.181 at a scan angle of 65°, which coincides with 

the uniform array scan blindness angle. For all three scan planes shown in Figure 4.7, the 

reflection coefficient remains below 0.3 or -10 dB up to 70°. A slight increment in the D- plane 

is likely due to coupling between metallic parts of the unit element. In order to analyze the 

bandgap structure's scan blindness elimination performance we have chosen the size of the 

square substrate as 50 mm  00.4933  and the substrate thickness is 6.985 mm ( 00.0689 ), 0  

is wavelength at the array operating frequency 2.96 GHz.  

 The design approach, co- designing of radiating and bandgap structures, can be applied to 

more compact arrays with smaller element spacing, where coupling between arrays increases. 

 

 

 

 

 

 

 

 

Figure 4.8 Electric field distribution on substrate surfaces of uniform-substrate and bandgap-

antenna arrays for different scan angles: 0°, 40°,  and 70° from left to right in the E- plane.  



 

60 

 

Indeed, bandgap characterization of more compact arrays is easier since the modal approach, as 

discussed in Chapter 2, is limited to the maximum element spacing of 00.5 . 

 To explore the performance of the radiating-bandgap structure further, we compared the 

magnitude of the electric field distributed over the substrate surface of the uniform and radiating-

bandgap structures in Figure 4.8. Results indicate that for the case of the uniform arrays, 

radiation efficiency decreases by increasing the scan angle as the electric field is more 

concentrated near the patches at broadside, and finally patch elements cannot radiate when scan 

angle is in the range of the blindness angles as shown in the figure for scan angle 70°; one may 

think that observation of low field magnitude at this angle conflicts with our claim stated before: 

substrate modes will be excited strongly at the blindness angle. Indeed, both are true; excited 

surface waves trap the energy which is supposed to be radiated and hence radiation efficiency 

becomes too low. Excited surface waves do not appear in Figure 4.8 for 70° scan angle because 

they returned back to the excitation port which can be considered as termination. If, for example, 

there were no port connected the structure, we would observe very strong fields in the same 

figure due to strongly excited substrate waves at same 70° angle. For the case of the bandgap-

radiating structure, on the other hand, field distribution remains almost the same for all scan 

angles in the figure. These observations agree well with the scan results in Figure 4.7; both 

indicate that the bandgap-radiating structure eliminates scan blindness completely along all 

possible scan directions. While we saw above that the uniform array has better broadside 

performance, it is not an efficient choice for beam steering applications mainly due to scan 

blindness, where the bandgap-radiating array has significantly improved scan performance over 

the uniform array.  
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 Composite substrates contain metallization for different purposes and all these inclusions 

affect radiating structures' input impedance. In order to achieve impedance matching at the 

elements input, matching networks are the choice of the solution. As analyzed in the previous 

chapter, we also used matching network in our structure. Even though matching networks should 

electrically be isolated from the composite array elements, an inappropriately designed matching 

network can provide misleading results. As a reference, here in Figure 4.9, we report the effect of 

a matching network on scan blindness. Infinite array of microstrip patches on a uniform 

substrate, with the parameters shown in the caption of the figure, without matching network 

resonates at center frequency 2.72 GHz. We then matched the input impedance of this array 

measured at 3.00 GHz to 50 Ω; and both arrays,  with and without matching network, are 

scanned at the same frequency 3.00 GHz. As expected, both arrays have scan blindness at the 

same angle, starting at 70°.  As a result, a well designed matching network is not expected to 

affect array scan characteristics. 

 

 

 

 

 

 

 

      (a)           (b) 

Figure 4.9 Matching network effect on scan blindness for an array on uniform substrate. 

Dielectric constant is 4.5 and substrate thickness is 6 mm, substrate size is 50 mm (square). (a) 

S11 versus frequency, (b) scan behavior at 3 GHz.  
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4.4 Unit Cell Coupling Analysis 

 The bandgap-antenna structure is composed of multiple metallic layers, and couplings 

occur between these layers along the normal direction to the structure surface. These affect the 

structure's performance tremendously. Since the structure has been co-designed for bandgap and 

radiation purposes, internal coupling effects may be different on the bandgap and radiation 

properties. We investigated several different configurations which provided even better bandgap 

performance than the structure studied here; however, all of those structures failed when they 

were considered for the radiation and scanning analyses.  

 Another degree of internal coupling, which can be more severe and unpredictable at the 

first design scale, is that in order to scan the beam, element excitation phases are changed and 

this phase change will introduce unpredictable couplings varying with scan angles. On the other 

hand, internal coupling effects may not be that effective for broadside arrays since there is no 

phase change; thus, the design methodology presented here can be easily applied to broadside  

 

 

 

 

 

 

 

 

Figure 4.10 X-M section of the dispersion diagram of the unoptimized structure for the internal 

couplings analysis. 
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arrays for mutual coupling reduction, especially for highly integrated or compact arrays. Overall, 

consideration of the internal coupling effects is a key step of the design of the radiating-bandgap 

structure; it is as important as the modal analyses of Chapter 2 and scan blindness analysis of this 

chapter.  

 In order to explore the internal couplings further, we considered a structure with two 

layers of concentric rings and a top square patch, similar to the one presented in Chapter 2; this  

structure, however, has no cuts on its rings, and rings internal radii and widths are (mm): 10, 14, 

20 and 3.4, 5.4, 3.00 respectively. The substrate material is a 3 mm of grounded dielectric with 

permittivity of 2.94 and above this dielectric layer there is another 3 mm dielectric layer with 

permittivity of 6.00. The bottom ring layer is on top of first dielectric layer and top ring layer is 

1.00 mm away, underneath, from the top radiating patch, which is 25 mm in a square shape and 

fed 5.5 mm away from its edge by a coaxial probe; and the structure does not contain any vias. 

As shown in Figure 4.10, this structure has a bandgap from 2.92 to 3.00 GHz; having a bandgap  

 

 

 

 

 

 

 

 

 

Figure 4.11 Effect of internal couplings to the scan behaviors for unoptimized structure. 
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around the desired array frequency with reasonable structure size is however not sufficient to 

appreciate the structure for scan blindness elimination, mainly due to the fact that its scan 

properties change with scan angles or excitation phase as shown in Figure 4.11. In the H- scan 

plane reflection coefficient deviates from its broadside values remarkably around scan angle 55°, 

if this structure would be matched at the broadside, there would be a peak in its reflection  

 

 

 

 

 

 

 

         (a) 

 

 

 

 

 

 

 

               (b) 

Figure 4.12 Visualization of internal couplings change with scan angle, (a) optimized structure 

and (b) unoptimized structure field distribution. From left to right: top patch - top ring layer - 

bottom ring layer.  
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coefficient at this angle 55° on the same scan plane, H-plane,  so that overall effect would be like 

a scan blindness, at even smaller scan angles comparing to the real scan blindness angle. That is, 

internal couplings introduce scan blindness-like effect.  

 Effect of element phase on the internal couplings is visualised in Figure 4.12, where the 

electric field distributions on the radiating top patch, top layer rings, and bottom layer rings, from 

left to right, are shown. Figures 4.12a and 4.12b are for optimized and unoptimized, in terms of  

internal coupling reduction, structures. In particular, structure of Figure 4.12a is the one that has 

been studied throughout this thesis, while that of Figure 4.12b is the one just described above 

that has no cuts on its rings and has no vias. The electric field distribution remains almost the 

same over the optimized metallic parts for two different scan angles 0° and 55°, while the 

electric field is stronger at scan angle 55° than scan angle 0° over the concentric rings of the 

unoptimized structure in Figure 4.12b, where most of the energy couples to the lower ring layer; 

and these results agree well with reflection coefficient variation with scan angle in Figure 4.11 

where the reflection coefficient decreases significantly at scan angle 55° because energy couples 

to the rings but not returning back to the port. This makes the reflection coefficient small but that 

does not mean that the structure is radiating efficiently at this angle. It is important to realize that 

internal couplings focused here are effective along the normal directions, coupling between 

different metallic layers, so that eigenmode analysis, which is for lateral propagation directions, 

cannot capture them as a valid mode. 

4.5 Conclusion 

 Possible electromagnetic modes available in phased array structures have been detailed; 

these are related to array radiation or array structure. Then, the condition for excitation of 



 

66 

 

structural modes, also known as substrate modes, and the dramatic result of coherent coupling 

between radiation and structural modes, known as scan blindness, were analyzed. The scan 

blindness problem from planar microstrip arrays has been solved by using the bandgap-antenna 

structure as a phased array antenna element. Internal electromagnetic couplings within the 

bandgap-antenna unit cell varies with element excitation phase or scan angle, and thus the 

ultimate structure of the bandgap-antenna structure has been optimized considering these internal 

couplings as well.  
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Chapter 5 

 

Scan Analysis of Finite Arrays and Experimental 

Demonstration of Bandgap-Antenna Structure 

 

 

 

 
 Demonstration of scan blindness and the required technology for its elimination requires 

large number of antenna elements. The alternative way of a standard waveguide simulator, which 

is generally used to characterize printed arrays' scan behavior in the H- plane, is not applicable in 

the case of scan blindness analysis of microstrip patch arrays studied here, since these practical 

arrays have scan blindness in their E- plane. Therefore, we used finite arrays, both planar and 

linear configurations were considered, to characterize the radiating-bandgap structure 

performance for scan blindness elimination. Finite array designs were carried out using periodic 

domain decomposition method (available in HFSS) where meshes are generated for only one 

array element and the same meshes are then used for the other array elements. This method 

reduce memory requirement substantially for the finite array analysis. Analyzed uniform 

substrate and bandgap structure with stripline matching networks are the same as the ones 

studied in the previous chapters.  

 For experimental purposes, it is desired to have an array configuration with a minimum 

possible number of antenna elements. Uniform substrate array configuration should be 

determined such that the number of array elements is sufficient to detect scan blindness. Another 

important aspect of the finite array, besides the number of array elements, is the feeding network 

for beam scanning, which contains phase shifters and power dividers. However, it is still possible 
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to characterize array scan behavior without using the feeding networks, but by using an active 

element pattern (AEP) and active reflection coefficient [48], where they refer to the pattern and 

reflection coefficient of the center element when only the center element is excited but all other 

array elements are terminated with 50 Ω. Therefore, here our objective is to analyze scan 

blindness with a minimum possible array elements without using phasing network mechanisms.  

5.1 Array Size Analysis 

  In order to analyze the number of array elements for scan blindness detection, linear and 

planar array configurations of different sizes are considered in Figure 5.1a, where scan blindness 

of the same element in an infinite array shows scan blindness in the E- scan plane at 65° as 

discussed in the previous chapter. We can observe, from the AEP, that scan blindness is more 

effective in planar arrays and also it becomes more severe as the number of array elements is 

increased. 

 Since planar arrays with a large number of antenna elements are difficult to simulate and 

fabricate, we will look for the scan blindness effect from linear arrays with a minimum possible   
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                (b) 

 

Figure 5.1 E-plane active element pattern for different array configurations, (a) uniform 

substrate planar versus linear arrays, (b) uniform substrate versus bandgap structure linear arrays. 

of number antennas. As shown in Figure 5.1b, linear arrays still show blindness effect and it 

becomes more dominant with array size; more importantly, linear arrays of the bandgap structure 

demonstrate their successful elimination of blindness where it does not matter what array size is 

used for the bandgap arrays; AEP patterns of different size bandgap structures are almost the 

same and improve scan behavior substantially from the uniform array configurations.   

 In addition to the radiation consideration of the AEP of Figure 5.1, scan blindness can 

also be analyzed through the array elements input reflection coefficient while the array is fully 

excited. This case is similar to the infinite array of the previous chapter, where array scan 

blindness was characterized using the input reflection coefficient when all array elements are 

excited.  

 In the following, the active input reflection coefficient of the center element is used for 

the analyses. Since we do not use phasing networks and power dividers, an alternative approach 
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of obtaining the center element active reflection coefficient, which changes with scan angle, is 

used. For that, mutual coupling between the center element and all the other elements is first 

obtained and then the corresponding active reflection coefficient of the center element is 

calculated as 

 0 0

9
sin( )( )

1

,xjk d n mactive passive

n nm

m

S S e
 



  (5.1) 

for linear arrays on the x-axis and with the element spacing of xd ; 0  is the scan angle along the 

E- plane. (5.1) can be modified and applied to planar arrays as well. Even though (5.1) is very 

useful for capturing array behavior without the use of the feed networks, it is limited to large-size 

arrays. That is, the finite array active reflection coefficient has a similar trend to that of the 

infinite arrays only up to some scan angles; at large scan angles, if the array size is not large 

enough, the active reflection coefficient drops significantly and detection of the blindness angle, 

if it is at these large angles, will not be successful [11-12]. For example, as we discussed in the 

previous chapter, the considered uniform infinite array has the scan blindness effective at 65°  

 

 

 

 

 

 

 

 

 

 

 

 

           (a)                      (b) 

 

Figure 5.2 Active reflection coefficient of the center element versus scan angle along the E- scan 

plane. (a) Different uniform substrate array configurations, (b) uniform substrate versus bandgap 

arrays.  
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and larger angles; however, as shown in Figure 5.2a, only the 9x9 array shows similar behavior 

to that of the infinite array. The other  two 1x9 and 1x21 arrays active reflection coefficients drop 

after 50° and 60° scan angles so that they cannot detect the scan blindness by analyzing the 

active reflection coefficient of their center elements.  

 Comparing the bandgap and uniform arrays active reflection coefficients in Figure 5.2b, 

the bandgap arrays have smaller active reflection coefficients, which is reasonable. In fact, we 

expect, based on the case of infinite arrays of the previous chapter, that the bandgap arrays' input 

reflection coefficient to also approach unity toward the endfire direction; however they remain 

below -10 dB for the entire scan volume primarily due to the small array size.  

 Based on the AEP and active reflection coefficient analyses, we can see that it is more 

practical to analyze scan blindness, for the microstrip patch arrays, and characterize the bandgap 

structure by using radiation instead of the input reflection coefficient. Note that the case can be 

different for different element types, as waveguide simulator can measure dipole elements input 

reflection coefficients as shown in [26].  

5.2 Finite Array Radiation Characterization 

 The radiation behavior of a fully excited array, at different scan angles or excitation 

phases, is of the primary interest.  Note that phase shifters and power dividers will not be used 

for the array under investigation here. Instead, the complex-valued far fields of the array due to 

excitation of each individual element, while all the other elements are terminated with matched 

loads, are first obtained. Subsequently, the response of the fully excited array, as if the array was 

fed through the phase shifters and power dividers, can be found in [49] as 
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where the generic excitation phase is represented by m . (5.2) basically states that the complex 

fields of a fully excited array consist of coherent summation of the elements' fields. After 

obtaining complex field data of the fully excited array, the realized gain, which accounts for 

mismatches at the elements inputs as well, can be determined from (5.2) as 
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array

array

array

in

E
Gain

P

  
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
  (5.3) 

where 0  is the free space impedance, and array

inP is the total input power to the array elements. 

 It is important to realize that both (5.2) and (5.3) can be applied to either co- or cross-

polarized field components. In the case of the total array gain, the complex valued co- and cross-

polarized field components are first added,  and then the total array gain can be found from this 

total field. In our case, the array elements are fed along the x-axis and their surface currents are 

also polarized along the x-axis. In addition, we focus mainly to the E-plane for the scan blindness 

analysis. Therefore, according to Ludwig's third definition of cross-polarization, co- and cross- 
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     (d)          (h) 

 

Figure 5.3 E- plane co- and cross-polarization realized gain patterns, of fully excited  arrays 

versus that of based on (2) and (3), for 1x9 uniform and bandgap arrays at different scan angles. 

(a)-(d) Uniform substrate for scan angles: 0°, 30° , 60° , 80°  (e)-(h) bandgap structure for scan 

angles: 0°, 30° , 60° , 80°.    
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polarized field components of the array being analyzed here are 
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 As illustrated in Figure 5.3, the AEP based on (5.2) and (5.3) can capture array scan 

behavior accurately. The fully excited array is simulated in HFSS with progressive excitation 

phase between the elements, but not by using any phase shifting network, while the AEP based 

results were computed from (5.2) and (5.3) using AEPs of each element which were taken from 

the simulated array as only the respective array element was excited. The matching between the 

processed and the fully excited simulated arrays convinces us that we can obtain array scanning 

radiation characteristics experimentally without using any phase shifters or power dividers. In 

addition, if the array is large enough, the pattern of the center element suffices, which then will 

replace all the other element patterns in (5.2). 

 Another important observation in Figure 5.3 is that cross-polarization levels of the 

bandgap array are well below the co-polarization levels even at large scan angles. Even though 

the cross-polarization performance of the the bandgap array is slightly deteriorated with respect 

to that of the uniform array, it is still better than 30 dB at a scan angle of 80° or larger.  

 In order to illustrate the performance of the bandgap elements on the fully-excited array, 

co-polarized scan patterns of uniform and bandgap arrays, of 1x9 elements, are compared in 

Figure 5.4 at different scan angles. While their patterns overlap at the broadside direction, the 

effect of scan blindness becomes clear after the 60° scan angle. Indeed, scan blindness remains 

effective from around 60° to 90°. In particular, peak gain differences between these two arrays 

are 3.9 dBi and 4.3 dBi for the beams forced to point to 60° and 80° scan angle directions. This 

difference becomes larger and the performance of the bandgap array will become more 
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appreciable as the element numbers are increased. It is also important to notice that patterns of 

both array configurations are similar; and therefore, the bandgap array can replace conventional 

microstrip arrays without any alterations on the beam qualities of the original array. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Fully-excited simulated E-plane co-polarized scan patterns of uniform and bandgap 

1x9 arrays. 

 A more detailed comparison of the uniform and bandgap arrays is given in Figure 5.5, 

where realized gains of the corresponding arrays are compared at scan angles from broadside to 

endfire. In addition, the effect of the number of array elements is studied in order to emphasize 

improvements due to the use of bandgap arrays. At the broadside direction both arrays provide 

very close gain values, 13.55 versus 13.78 for 9 elements uniform and bandgap arrays, and 17.24 

versus 17.46 for 21 elements uniform and bandgap arrays; however, as the arrays are scanned, 

the uniform array gain decreases significantly and deviates from the ideal scan values. The 

reduction, from the ideal values, is more significant around the blindness angles, i.e. between 60° 
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and 70°. On the other hand, the gain of the bandgap arrays remains higher than the ideal scan 

values for all scan directions. Both 9 and 21 element arrays demonstrate the bandgap effect , 

however the effect is clearer for the 21 element array. In particular, gain difference between the 

bandgap and uniform arrays is 4 dBi and 6 dBi at a scan angle of 70° for 9 and 21 elements 

arrays, respectively. For larger linear or planar arrays this difference becomes larger, where the 

actual role of the bandgap array shows up. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Realized gain versus scan angle for (a) 1x21 and (b) 1x9 linear arrays. 

5.3 Experiment 

5.3.1 Array Configuration 

  For experimental demonstration of the bandgap array, we considered the analyses of the 

previous sections. As such, we have chosen the smallest array size, which is a 1x3 linear array. 

As shown in Figure 5.1b, performance of the bandgap structure can be clearly demonstrated for 

the scan blindness elimination on this size of array. Another important point in the experimental 
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work is to modify impedance matching network; previous analyses in this thesis were based on 

the a stripline matching network. However, it is very difficult to fabricate the bandgap structure 

with a stripline matching network due to vias within the stripline. Instead, an open stub 

microstrip line matching network has been used in the experimental prototype; the bandgap array  
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Figure 5.6 Comparison of bandgap arrays with stripline and microstrip line impedance matching 

networks. (a) Infinite array scan behavior, (b) active element patterns in finite arrays.  
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elements were fed through connectors to the CPW inputs, whereas uniform substrate array 

elements were fed through SMA probes directly. 

 A microstrip line matching network was designed such that couplings in the matching 

network are minimum, however the performance of the microstrip line matching network is still  

below that of the stripline matching network because there is no coupling in the stripline 
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Figure 5.7 Microstrip line impedance matching network based bandgap array's performance for 

scan blindness elimination from the uniform substrate arrays. (a) Infinite array scan behavior, (b) 

active element pattern in finite arrays.  
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matching network due to fencing vias. Even though microstrip line matching network substrate is 

electrically very thin, 3.27r   and the thickness is 0.635 mm (operation frequency is 2.96 

GHz), the open stub is long (20 mm) and that causes couplings and affects the overall array 

performance. Figures 5.6 compares the bandgap arrays with different matching networks, infinite 

array scan characteristic of the microstrip line based bandgap array is slightly deteriorated from 

that of the stripline one. For the finite array case, their active element patterns remain close to 

each other in 1x3 and 1x5 arrays; however 1x5 is oscillatory because of its larger size.  

 We further investigated performance of the bandgap array with microstrip line matching 

network for eliminating the scan blindness from the uniform substrate arrays in Figure 5.7. 

Infinite array eliminates the scan blindness from the most critical scan plane, E-; scan 

performance on the other planes is also successful even though slight increments, due to 

microstrip stub, can be observed as compared with that of the stripline array. For finite arrays 

couplings in matching network are less effective. As shown in Figure 5.7b finite, 1x3 and 1x5,  

bandgap arrays with microstrip line matching networks show clear performance enhancement 

over the uniform substrate arrays. 

 Overall, the smallest array size, 1x3, with a microstrip line matching network will be 

fabricated to demonstrate the bandgap array for the scan blindness elimination. Its performance 

will be compared with a fabricated uniform substrate array of the same size.   

5.3.2 Fabrication 

 The fabrication process of the bandgap array is based on the conventional 

photolithography. Each layer of the structure shown in Figure 2.1 with microstripline impedance 

matching network  
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Figure 5.8.  Fabricated bandgap and uniform substrate arrays. (a) Different layers of bandgap-

antenna structure, (b) top and (c) bottom views of the uniform and bandgap arrays.  

was first fabricated and then these layers were bonded together by using Rogers 3001 bonding 

film at 220°C temperature for about 30 minutes. The stacked materials were aligned and pressed 

before applying heat. The same size of the uniform substrate array was also fabricated to 

demonstrate the bandgap array performance enhancement. Copper wires are used as vias, which 

are soldered to the connected layers; since the stacked layers needs to be heated, the solder flows 

and disconnects layers that supposed to be connected with vias. Therefore, it is critical to not 
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making soldered vias planar otherwise disconnection of layers will be more possible. The 

fabricated bandgap and uniform arrays are shown in Figure 5.8. 

5.3.3 Experimental Results 

 Fabricated antenna arrays were measured in the UCI anechoic chamber; the measurement 

setup is shown in Figure 5.9. Arrays under the test were used as receiver antennas while a horn 

antenna was used as transmitter. The measured fabricated array results are shown Figures. 5.10 

and 5.11, where only the center elements of the bandgap and uniform substrate arrays are excited 

while the other elements are terminated with 50 Ω loads. The bandgap array provides better 

impedance matching; however sharp two transitions, near 2.70 GHz frequency, do not mean the 

bandgap array radiates effectively as also discussed in chapter 3. But they are due to internal 

couplings and concentric ring shapes; that is, excited array energy remain between the metallic 

layers embedded within the substrate at these 

 

 

 

 

 

 

 

 

 

 

Figure 5.9.  Fabricated array on the measurement setup in the anechoic chamber. 
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 two deep peaks. However, it still have -10 dB impedance matching up to 2.95 GHz. Frequency 

bandwidth from 2.80 to 2.95 GHz can be used to characterize the bandgap array. Uniform array 

on the other hand has very narrow bandwidth of -10 dB centered at 2.77 GHz. For larger uniform 

arrays of the same one, -10 dB impedance bandwidth will shift upward in the frequency while 

that of the bandgap array will remain almost the same.  

 

 

 

 

 

 

 

 

 

Figure 5.10.  Input reflection coefficient of the center elements for the fabricated bandgap and 

uniform substrate arrays. 

 Radiation from the fabricated array prototypes were measured at frequency 2.94 GHz and 

is shown in Figure 5.11. Since our objective is to study the scan blindness effect, the chosen 

frequency for the array characterization, i.e. measuring the radiation, should be very close to the 

array half-wavelength  (or unit element size) frequency, which is 3 GHz here. This analysis 

frequency was 2.96 GHz in the previous sections for the simulation based analyses. Effect of the 

bandgap on the elimination of the substrate waves is clear on the measured results also. The 

realized gain from the bandgap array remain higher than that of the uniform array along all the 
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visible scan angles. However, the gain difference between these two arrays along the positive 

scan directions is more and peaks, where the difference is close to 6 dBi, near the scan directions 

 

 

 

 

 

 

 

 

 

Figure 5.11.  Normalized realized gain of the fabricated bandgap and uniform substrate arrays 

when only the center elements are excited or active element patterns.  

bandgap on the elimination of the substrate waves is clear on the measured results also. The 

realized gain from the bandgap array remain higher than that of the uniform array along all the 

visible scan angles. However, the gain difference between these two arrays along the positive 

scan directions is more and peaks, where the difference is close to 6 dBi, near the scan directions 

corresponding to the scan blindness angle, which is 65° for the array have been studied here as 

also explained in the previous chapters. As a result, the scan blindness elimination capability of 

the bandgap-antenna arrays has been proved experimentally. 
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5.4 Conclusion 

 The scan blindness effect on the finite size phased arrays has been investigated in this 

chapter; array configurations and element numbers were found to be very effective on the scan 

blindness effect. Analysis of scan blindness can be performed from either array's radiation or 

input reflection coefficient. However, the input reflection coefficient requires a large numbers of 

elements in an array in order to detect scan blindness; on the other hand, very small arrays in 

both linear and planar configurations can show the scan blindness effect from their radiation 

behavior, such as active element pattern. Scan blindness elimination performance of the bandgap 

array has been detailed through the active element patterns and fully excited arrays. In addition, 

for scanning characterization, no phase shifter or power dividers were used; instead, individual 

elements complex field components were added and then the resulting field values were used to 

process the array radiation.  

 Finally, an optimum array configuration has been found for experiments. For that, the 

stripline impedance matching network of previous chapters has been replaced by a microstrip 

line impedance matching network for ease of fabrication. 1x3 linear array of the bandgap and 

uniform substrates were fabricated and measured, and performance of  the bandgap array has 

been proved through scan blindness elimination or scan behavior enhancements.     
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Chapter 6 

 

Conclusion 

 

 

 

 
 This thesis investigates microstrip phased arrays that are free of substrate waves. A novel 

design methodology has been proposed into the integration of phased arrays with 

electromagnetic bandgap materials. A multifunctional structure, which can radiate as a phased 

array element and function as a unit cell of a bandgap material simultaneously,  has been 

designed, analyzed, fabricated, and measured. The proposed structure does not support any  

electromagnetic wave mode, e.g. surface or leaky waves, in the substrate or array structure along 

the lateral directions, therefore array characteristics are improved significantly. Specifically, 

fundamental problem, associated to all types planar phased arrays, of the scan blindness is 

resolved along all possible radiation directions. 

 Limitations of the previous efforts on the integration of planar phased arrays and 

electromagnetic bandgap materials are reviewed in Chapter 1, and the necessity of the 

multifunctional radiating bandgap structure, of this thesis, is emphasized. 

 Chapter 2 describes the unit cell of the radiating-bandgap structure, which has four 

metallic layers. Since the objective is to utilize the structure in planar array configurations, 

omnidirectional bandgap is essential part of the proposed structure. Metallic inclusions to the 

unit cell are concentric ring-shaped patches, vias which are configured as rotationally symmetric, 

and square-shaped top patch serving as a radiator; unit cell is also in a square shape. The 

structure is capable to provide omnidirectional bandgap. Bandgap has been investigated using 
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HFSS eigenmode solver and two port transmission setups. Even though two port transmission 

setup is valid only for on axis propagations, it has been used to investigate the role of the leaky 

waves, which are not stable in the eigenmode setup.  

 Radiation characteristics of the multifunctional radiating-bandgap structure have been 

studied in Chapter 3. The structure has been fed through a coax fed stripline impedance matching 

network. It has similar radiation characteristics, such as radiation pattern, polarization, and gain, 

as a conventional microstrip antenna. Stripline impedance matching network, which has fencing 

vias and isolate signal traces from any other couplings, has been chosen on purpose in order to 

focus on the bandgap structure's radiation behaviors only, but not the effect of radiations or 

couplings in the matching network itself. 

 Scanning performance of the infinite phased arrays based on the proposed structure has 

been investigated in Chapter 4. First, the role of both bound (surface) and radiating (leaky) 

substrate modes in the scan blindness has been detailed; composite substrates which has metallic 

inclusions potentially excites radiating substrate modes which also result in scan blindness. The 

proposed structure suppresses both types of substrates modes, therefore a complete elimination 

of scan blindness, along all directions, has been achieved. Coupling within a unit element of the 

radiating-bandgap structure has been analyzed using field distribution on the metallic surfaces at 

different scan angles or excitation phases; we found that having bandgap, which is necessary,  

does not guarantee that the array will be blindness free, mainly due to these internal couplings 

between different layers which cannot be detected through eigenmode analyses along the lateral 

directions.    

 In order to realize the array based on the proposed structure, we have analyzed different 

size arrays and compared with those on the uniform substrates in Chapter 5. Active element 
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pattern and active reflection coefficient were analyzed to determine the proper array size for 

experimental demonstration. 3 element linear array prototypes of the uniform substrate and 

bandgap structure have been fabricated and comparisons of their active element patterns 

confirmed simulation results and elimination of scan blindness. 

 Future endeavors of this research has several different directions. First, a numerical mode 

solver is needed to capture higher order leaky modes properly since the available commercial 

solvers do not provide stable results for this task. Another improvement can be done on the 

geometrical modification of the presented structure, a planar structure without any vias would 

make the design and fabrication cycles easier and shorter. Moreover, fabrication of the proposed 

structure with stripline impedance matching network, where there are no couplings in matching 

network layer, would demonstrate actual performance of the radiating-bandgap structure. A 

physical model based on the lumped elements and multiconductor transmission lines can be 

developed for dispersion analyses and couplings between different layers. Also, the methodology 

presented in this research, co-designing of the bandgap and phased arrays structures, can be 

applied to other applications as well, such as mutual couplings from broadside arrays and 

microwave filters.    
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