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ABSTRACT: Biochemical networks use reaction cascades to selectively
reduce CO2 using energy from sunlight, but can similar selectivity be
achieved by applying a cascade approach to an engineered system? Here, we
report the design and implementation of a two-step photoelectrochemical
(PEC) cascade to a liquid solar fuel: reduction of CO2 to CO and
subsequent reduction of CO to methanol. The potentials required to
perform the reductions were generated using custom-made III−V-based
three-terminal tandem (3TT) solar cells. Cobalt phthalocyanine immobi-
lized on multiwalled carbon nanotubes (CoPc/MWCNT) catalyzed both
reactions. Multiphysics simulations of electrolyte flow and nonilluminated
electrochemical measurements were used to narrow the operating
parameters for the CoPc/MWCNT 3TT photocathodes. The champion
integrated photocathode produced methanol with 3.8 ± 0.4% Faradaic
efficiency (FE), with tested photocathodes having 0.7−3.8% methanol FE. Products were quantified by nuclear magnetic resonance
spectroscopy and gas chromatography. The current output of the tested photocathodes was highly stable, and methanol production
continued over multiple experiments. The low methanol yield is attributed to insufficient CO flux to, and CO2 depletion at, the
methanol-producing subcell when both contacts are active, which is supported by the observation that a control photoelectrode
slightly outperformed the methanol production of the 3TT device. Methanol production ceased when the 3TT subcell driving CO
reduction was deactivated, supporting the assignment of a cascade mechanism. The major factors resulting in low methanol FE by
the CoPc/MWCNT 3TT photocathodes are insufficient CO2 depletion at the methanol-producing contact and uncertainty in
operating potential selection using the 3TT design. Although the CoPc/MWCNT 3TT photocathode is not yet highly selective, this
work develops the basic science principles underlying the PEC cascade, demonstrates the co-design of a 3TT-based photoelectrode
to produce carbon-based fuels, and finally discusses routes for improving product yields with this concept, including CO2 supply
optimization and alternative photoelectrode and catalyst materials.

1. INTRODUCTION
Photoelectrochemical (PEC) processes have produced the
simplest solar fuel, hydrogen (H2), with solar-to-fuel efficiencies
up to 30%.1 While there has been significant work toward scale-
up and commercialization of PEC H2,

2,3 existing liquid-based
fuel infrastructure hinders commercial adoption of gaseous H2
fuel from any source.4 Alternatively, PEC carbon dioxide
reduction (CO2R) is a method to produce drop-in liquid fuel
replacements using the energy from sunlight.5,6 However, CO2R
is more complex than H2 generation due to its range of possible
products. CO production via PEC CO2R now approaches 20%
solar-to-fuel efficiency,7 while PEC production of liquid
products (e.g., methanol, ethanol, acetate) has not yet been
demonstrated with high efficiency and selectivity.8−11 Methanol
in particular is an attractive target for improving PEC CO2R
efficiency, as it is the simplest “complex” reaction product (i.e.,

beyond CO or formate) and is widely used in chemical
manufacturing and as a maritime fuel.12−14

In contrast to PEC CO2R, photosynthesis produces oxy-
genated C2+ products (e.g., glucose) with near-perfect
selectivity.15 Notably, photosynthesis uses a series of enzymatic
conversions at multiple sites to build up sugar molecules.16

Leveraging similar sequential chemical conversion steps without
product isolation may be a route to improving CO2R selectivity
and efficiency toward C2+ products.

17,18 Control of intermediate
transport between the reaction steps of such a system is required
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to match conversion rates for efficient operation;19 work on
electrochemical CO2R cascades has shown that diffusional
transport of intermediates is possible on the order of a typical
electrochemical diffusion layer, ∼ 100 μm,20,21 and convective
transport appears feasible over distances up to mm-scale.22,23

Similar cascades to improve selectivity of CO2R reactions have
been demonstrated for combined (photo)electrochemical-
photothermal systems.24,25

Design of a cascade process for (photo)electrochemical
CO2R requires control of catalytic microenvironments to match
the operating potential, current density, and catalyst to the
desired reaction, as each reaction step has different thermody-
namic requirements. Standard electrochemical reduction
potentials (E0) for CO2R reactions range from −1.90 to 0.17
VSHE (versus the standard hydrogen electrode),26 such as the
two-step reduction of CO2 to methanol via a CO intermediate
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where the sequential reduction half-reactions are assumed to
occur with oxygen evolution as the oxidation half-reaction. To
achieve the cascade production of methanol by this route, a CO-
producing microenvironment must be coupled to a subsequent
CO-consuming, methanol-producing microenvironment. In an
electrochemical device, which does not directly utilize photons,
this can be accomplished via bipotentiostatic measurements
with independent control of two electrodes.20,22 In a PEC
device, the semiconductor band gap and material quality set the
potential and current flow is modified by changing the
photoelectrode area in contact with the electrolyte.27 A catalyst
anchored to a photoelectrode surface can reduce the over-
potential needed to drive the reaction of interest.
Many photocathode architectures for CO2R have been

demonstrated in the literature,28 both based on semiconductors
used in photovoltaics (such as Si nanowires decorated with Cu
nanoparticles)29 and on emerging materials (such as TiO2-
coated Cu2O

30 or CuInS2 thin films with CuFeO2 nano-
particles31). However, the need to drive not only both steps of
the CO2R cascade, but also the kinetically slow oxygen evolution
reaction, indicates that large photovoltages are practically
required. Absorbing a larger portion of the solar spectrum by
employing two semiconductors in a tandem configuration has
been widely used in both PEC hydrogen generation32−34 and
CO2R.

7 Although tandems have enabled these demonstrations,
series-connected devices cannot enable cascade reactions where
two potentials are required; at the same time, the need to
colocate catalytic microenvironments on a mm scale suggests
the use of semiconductors integrated into a single device, rather
than side-by-side illuminated photocathodes. We have pre-
viously shown using circuit modeling that a three-terminal
tandem (3TT) photovoltaic device based on III−V semi-
conductors should be capable of providing control over the
potential and current at two different colocated microenviron-
ments of a CO2R cascade in a single device,35 although that
model contained multiple simplifying assumptions. Other III−
V-based devices have frequently been used as proof-of-concept
platforms for PEC fuel-forming reactions.32,33,36,37

In addition to the design of a device that can provide separate
potentials and current densities, such a photocathode must be
coupled to appropriate catalysts to drive each step of the
cascade. Cobalt pthalocyanine (CoPc) immobilized on multi-
walled carbon nanotubes (MWCNT) has recently been
reported to electrochemically produce methanol with Faradaic
efficiency up to 50%,38,39 while also having a high FE toward CO
at less negative potentials.38,40 In previous work, we found that
CO was a dissociated intermediate in the pathway to
methanol.41 CoPc anchored on various supports has long
been used in PEC demonstrations with a single absorber and
single catalyst site,42 including for CO2R.

40,43,44 Inspired by the
recent finding of CoPc’s dual functionality and previous reports
of its use in PEC CO2R, we sought to use CoPc/MWCNT to
catalyze both steps of cascade methanol production. Using the
same catalyst in both microenvironments simplified construc-
tion of the 3TT photocathode and removed the possibility of
cross-contamination between the catalyst sites (which could
occur e.g. with two heterogenized metalorganic catalysts or with
metallic catalysts plating during operation).35

Here we experimentally realize a proof-of-concept two-step
PEC CO2R cascade with coupled microenvironments, using
CO2 conversion to methanol as a model system. We
demonstrate that 3TT photocathodes can provide the potentials
and currents necessary to convert CO2 to methanol with CO as
the intermediate (Figure 1) and develop an understanding of the
fundamentals underlying the operation of such a device. III−V-
based 3TT devices were modified from photovoltaic (PV)
designs45 to enable two solution contacts with different
potentials and thus, unique microenvironments. CoPc/
MWCNT catalysts were used to drive both steps of the CO2R
cascade reaction to methanol. 2D continuum modeling and

Figure 1. Schematic representation of a 3TT PEC device performing a
cascade reaction where CO2 is reduced to CO at the Z contact and CO
is subsequently reduced to methanol (rather than other CO2R
products) at the R contact. Oxygen evolution occurs at the counter
electrode, with a membrane between the electrodes to prevent product
crossover. Illustration by Al Hicks, NREL.
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nonilluminated electrochemical measurements were used to
down-select electrolyte flow and catalyst potentials for PEC
operation. The CoPc/MWCNT 3TT photocathodes produced
methanol with a champion Faradaic efficiency of 3.8± 0.4% in a
three-electrode configuration; no methanol was produced when
the second reaction site was deactivated by blocking lower
energy light. This initial demonstration of a PEC CO2R cascade
with reactions occurring at distinct potentials suggests a
promising path toward utilizing advanced photoelectrode
designs to perform multistep PEC reactions, while demonstrat-
ing the need for light-absorbing and catalytic components of
such systems to be co-designed rather than separately optimized.

2. EXPERIMENTAL OVERVIEW
We briefly overview the approach to synthesis and demonstration of the
3TT photocathode, with full details in the Supporting Information (SI).
III−V-based 3TT photocathodes were grown by metalorganic vapor
phase epitaxy (MOVPE) and fabricated into photovoltaic devices,
which were tested using dry electrical methods to verify performance.
The devices were then converted to photocathodes by the application
of catalyst and protective layers. CoPc was dissolved in isopropanol
with MWCNT to make a catalyst ink (hereafter, CoPc/MWCNT) that
was applied to the photocathode terminals. Two approaches to
modeling were used to reduce practical 3TT photocathode testing: a
multiphysics continuum model of the electrolyte near the cathode
surface simulating CO2 and CO transport via convection and diffusion,
to determine electrolyte flow rate; and a non-light-active (“dark”)
electrochemical device with only CoPc/MWCNT catalyst, to
determine target 3TT operating potentials. The outputs of the
multiphysics model and the practical electrochemical model set
parameters for subsequent 3TT photocathode testing.
A three-electrode flow cell41 was used for both electrochemical and

photoelectrochemical experiments. The anode and cathode chambers
were separated by a Selemion membrane with a carbon paper counter
electrode and Ag/AgCl reference electrode. The electrolyte was CO2-
saturated 0.1 M KHCO3. For PEC experiments, CoPc/MWCNT 3TT
photocathodes were illuminated from the T contact side (opposite to
the contact with the electrolyte) using a Xe arc lamp with a water filter.
A pyrometer was used to verify the light intensity for each PEC
measurement. For experiments verifying the cascade mechanism, a
short-pass light filter was used to block a portion of the lamp spectrum.
Product quantification was performed with gas chromatography (CO
and H2) and nuclear magnetic resonance spectroscopy (methanol).

3. PHOTOCATHODE DESIGN AND FABRICATION
A typical series-connected two-terminal tandem (2TT) photo-
voltaic device has two subcells and two terminals. Adding a third

terminal to the tunnel junction between the subcells enables a
three-terminal tandem (3TT) device; the terminals are denoted
T (top), R (root), and Z (German zusaẗzlich, extra).46 For this
PEC CO2R concept, illustrated in Figure 1, T is on the sun-
facing side of the 3TT device, on one side of the GaInP subcell;
Z is on the other, electrolyte side of the GaInP subcell (1.8 eV
bandgap); and R is on the electrolyte side of the GaAs subcell
(1.4 eV bandgap). Measuring from T to Z provides∼1.4 V from
the GaInP subcell, which should be sufficient to drive CO
production (eq 1); we therefore expect the Z terminal to be the
CO-producing microenvironment. Measuring from T to R
provides ∼2.4 V from the two subcells connected in series
(GaInP ∼ 1.4 V, GaAs ∼ 1 V), which should be sufficient to
drive methanol production (eq 2); we therefore expect the R
terminal to be the methanol-producing microenvironment.
Tuning the areas of the terminals contacting the electrolyte
tunes the electron fluxes for these reactions. The 3TT device
structure used here was revised from photovoltaic designs to
provide an areal ratio of Z to R of approximately 2:3 (Z = 0.367
cm2, R = 0.620 cm2 defined by the area where the Au contact is
deposited).
Figure 2 shows the 3TT photocathode assembly with catalyst

integration and the overall fabrication process. III−V semi-
conductors were deposited with MOVPE (step 1 of Figure 2b)
and fabricated into photocathodes using photolithography,
metal deposition, and selective etching (details in Supporting
Information (SI)). 3TT sample numbers (MVXXX or
MUXXX) used throughout this work are assigned based on
MOVPE deposition. Because the 3TT is mounted to a glass
handle and the growth substrate is removed during processing
(steps 3 and 4), this device is conceptually similar to “inverted”
III−V 2TT growths (Figure S1),47 with different in situ
annealing and a p-on-n orientation with respect to illumina-
tion.48 Gold contacts were initially electrodeposited on Z and R,
but electron-beam evaporation improved device yield by
reducing gold shunting between the two locations; samples
produced with bothmethods are used in this study (step 5, detail
in Figure S2). To protect the 3TT device from the aqueous PEC
environment,49−51 any semiconductor not coated by gold was
covered by inkjet-printing SU-8, an insulating epoxy (step 6). A
spray-coated conductive poly(3,4-ethylenedioxythiophene) pol-
ystyrenesulfonate (PEDOT:PSS) layer was used to electrically
connect and adhere the CoPc/MWCNT catalyst ink to the gold-
coated Z and R terminals (step 7). The CoPc/MWCNT ink was

Figure 2. a) High-level schematic of the semiconductor, adhesion, and catalyst layers comprising the complete 3TT photocathode. b) General 3TT
fabrication and catalyst layer deposition procedure (further details in the Supporting Information (SI)). Illustration by Al Hicks, NREL.
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spray-coated on to R and Z following PEDOT:PSS deposition.
With contact to and protection of the T terminal, the CoPc/
MWCNT 3TT photocathodes were ready for operation.

4. 3TT DEVICE CHARACTERIZATION
The high-level structure of the 3TT III−V device is shown in
Figure 3a (complete detail in Table S1). To confirm the quality
of the GaInP and GaAs subcells, the quantum efficiency of a test
structure, fabricated from the same MOVPE growths as 3TT

photocathodes, was measured using external light bias to
separate the subcell responses (Figure 3b).52 The test structure
was fabricated upright without a glass handle and no Z contact to
simplify analysis. Both subcells have the expected, reasonable
external quantum efficiency across their wavelength ranges,
consistent with no antireflection coating. Further details and a
discussion of general considerations for 3TT device character-
ization can be found in the SI (Figure S3).
After fabrication (through step 6, Figure 2b), dry photovoltaic

current−voltage (I-V) characteristics of the 3TT devices were
measured between pairs of terminals: TR measures the series-
connected tandem; TZ measures the GaInP subcell only; ZR
measures the GaAs subcell. Figure 3c shows I-V characteristics
of a representative 3TT device (see Table S2 for full details for
all devices, including sample numbers). For devices with
evaporated gold contacts, TR open-circuit voltage (VOC

TR) was
2.26−2.30 V, equivalent to the summed TZ and ZR VOC, where
VOC
TZ was 1.31−1.34 V andVOC

ZR was 0.94−0.99 V; these values are
close to the expected voltages based on the band gaps of the
semiconductors. In the TR configuration, the current through
the series-connected tandem is limited by the GaAs subcell to a
short-circuit current (ISCTR) of 6.7−7.1 mA. Fill factors (FF)
varied from device to device, largely due to shunting between Z
and R, but were >65% for FFTR and FFTZ in devices with
evaporated contacts. The overall dry performance of MU845,
the device with electroplated gold contacts, was slightly lower,
with FFTR = 53% and FFTZ = 55%. As noted above, electroplating
was found to result in more gold bridging Z and R, leading to
losses due to shunting. The dry characterization of the 3TT
devices shows they will produce sufficient potential and current
to drive the desired CO2R cascade reaction.

5. CO2R CASCADE MODEL SYSTEMS
To reduce manual exploration of the operating parameter space
for the 3TT photocathodes, we designed two models. The first
model addressed electrolyte flow rate, which determines CO2
transport to Z, the CO-producer, and subsequent CO transport
to R, the methanol-producer. To simulate CO and CO2
transport via diffusion and convection, a 2D continuum
multiphysics model of the electrolyte near the cathode surface
was developed, the details of which can be found in the SI
Figures S4−S6. For our system, the model predicts maximized
methanol generation from CO at an electrolyte inlet flow rate of
∼8.5 cm/min, which balances mass transport and chemical
conversion rates and is consistent with prior modeling and
experiments.41 However, methanol production is predicted to
be more sensitive to flow rate over the 3TT photocathodes than
in previous work due to the 2 μm height of the protective SU-8
coating between the Z and R terminals. The flow rate of 8.5 cm/
min was used for all (photo)electrochemical experiments.
To determine target operating potentials for the micro-

environments for methanol generation, a non-light-active
(“dark”) electrochemical device was operated as the second,
experimental model in the two-compartment flow cell that
would later be used for PEC testing. Two closely spaced,
electrically insulated gold electrodes were fabricated with the
same catalyst layers and similar areas as the CO-producing and
methanol-producing terminals. These dark electrodes are
referred to as Zdark (the CO producer) and Rdark (the methanol
producer) and are illustrated in Figure 4a (photograph in Figure
S7). Zdark and Rdark potentials were constrained to a 1 V
difference via a bipotentiostat to mimic the expected potentials
of Z and R under AM 1.5G illumination of the 3TT

Figure 3. a) Detailed schematic (top) of III−V layers for the 3TT
devices, including the direction of layer growth and simplified
schematic (bottom) of the 3TT device showing electrical pathways.
The schematic is not to scale and not all layers are shown, see
Supporting Information (SI). b) External quantum efficiency of a 3TT
growth fabricated as a test structure (not removed from the growth
substrate, see inset and Figure S1). c) I−V curves for a representative
3TT device under AM 1.5G illumination with inset schematic showing
measurement configurations.
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photocathode. Linear sweep voltammetry in the three-electrode
flow cell with CO2-saturated 0.1 M KHCO3 reveals that there is
no condition within the measured potential window where the
currents produced by Zdark and Rdark have the 1:2 ratio required
by the stoichiometry of our methanol-producing cascade (eqs 1
and 2). Negligible current is passed by Zdark until Rdark reaches a
more negative potential than −1.7 V versus the reversible
hydrogen electrode (RHE, Figure 4b), indicating that little CO
can be produced at Zdark until that point. Constant potential,
chronoamperometry (CA) measurements were also performed
with Rdark poised at −1.7, − 1.8, and −1.9 V vs RHE. The
maximum methanol FE (15 ± 4% over three experiments)
occurred when Rdark =−1.7 V vs RHE (Z =−0.7 V vs RHE), but
the current at Zdark was much less than half of Rdark (Figure 4c).
At the more reducing potentials (Rdark = −1.8 or −1.9 V vs
RHE), H2 FE was high, as expected for CoPc/
MWCNT.38,39,41,53 These potentials are consistent with our
prior CoPc/MWCNT-catalyzed methanol work41 after correct-
ing for solution resistance (see Supporting Information (SI)).

The discrepancy between the methanol production for the
dark electrodes (15 ± 4% FE) and our prior work (36 ± 3% FE
on a 1 cm2 electrode)41 can be explained by the dependence of
CoPc/MWCNT selectivity toward methanol on the supply of
CO in addition to the depletion of CO2, since CO2 outcompetes
CO for active sites.54,55 In our cascade, due to the 1 V difference
between Z and R set by the design of our 3TT photocathodes,
Zdark cannot reach highly negative potentials with the optimal
potential of Rdark at −1.7 V vs RHE. Since Zdark potential and
current were low, little CO was produced by that electrode and
there was insufficient CO2 depletion at Rdark to enable methanol
production from CO by the CoPc/MWCNT catalyst. Although
FE was low, methanol was produced by the dark electrochemical
cascade model, indicating that a solar-driven PEC cascade
demonstration should be feasible within the constraints of the
3TT photocathode design.

6. CO2R CASCADE ON COPC/MWCNT 3TT
PHOTOCATHODES

With electrolyte flow (8.5 cm/min) and R target operating
potential (hereafter Vop, − 1.7 V vs RHE) determined using the
model systems, the full CO2R cascade could be explored using
the CoPc/MWCNT 3TT photocathodes (photograph of device
in Figure S8). The 3TT device geometry prevents the direct
measurement of the potentials at the Z and R terminals during
PEC operation; thus, the necessary T terminal operating
potential (the working electrode potential) was determined
separately for each photocathode and used to estimate the R and
Z contact potentials. The potential at which to set the T contact
for methanol-producing CA experiments (VCA) was determined
using the following equation:

= +V V VCA OC
TR

op (3)

Using VOC
TR should ensure that the R contact is sufficiently

reducing to convert CO to methanol; as described above, the Z
contact will be about 1 V less reducing than the R contact,
sufficient to convert CO2 to CO.
However, dry VOC

TR varied between 3TT devices (Table S2),
and some resistive drop across the PEDOT:PSS adhesion layers
is expected. We therefore attempted to derive a value from PEC
measurements for effective R contact photovoltage (VOC

TR, PEC)
for use in eq 3 rather than VOC

TR . Determination of VOC
TR, PEC from a

3TT photocathode is convoluted because the geometry of the
device only allows for the potential difference to be measured
between the T contact and the counter electrode, rather than
measurement of the voltage at the R (or Z) contact. VOC

TR, PECwas
estimated by comparing the CoPc (CoII/CoI) or methyl
viologen (MV2+/MV+)56−58 reduction half-wave potential
(E1/2) on an illuminated 3TT photocathode to the same
reduction on a dark electrode (illustrated in Figure 5). The
difference in E1/2 was taken to be VOC

TR, PEC, with inclusion of
overpotentials and Fermi level pinning effects.59 However, we
caution that the difference in dark and light E1/2 only
approximates VOC

TR, PEC because this value is determined from
E1/2 of the Z and R contacts convoluted together, measured
through the T contact. Further detail of VOC

TR, PEC determination
can be found in the SI (Table S4).
The schematic in Figure 6a illustrates testing of 3TT

photocathodes performing cascade conversion of CO2 to
methanol under nominal AM 1.5G illumination (Xe arc lamp
with water filter, see SI and Figure S9) in the two-compartment
three-electrode flow cell in CO2-saturated 0.1 M KHCO3. The

Figure 4. a) Schematic of the dark electrochemical device operated by a
bipotentiostat (electrical connections illustrated by black lines) in order
to simulate the 3TT photocathode. b) Linear sweep voltammetry of
Zdark (area: 0.56 cm2) and Rdark (0.36 cm2) with current and potential
versus time; the vertical gray dashed line indicates the time where Rdark
= −1.7 V vs RHE and Zdark = −0.7 V vs RHE, 1 V less reducing. c) CA
measurement of the same electrochemical device with Rdark =−1.7 V vs
RHE. For electrochemical measurements, a CoPc/MWCNT working
electrode, Ag/AgCl reference electrode, and carbon counter electrode
were operated in 0.1 M KHCO3 aqueous electrolyte saturated with
CO2. The working and counter electrodes were separated by a
Selemion membrane. These data were not compensated for solution
resistance.
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champion CA measurement on a CoPc/MWCNT 3TT
photocathode (MU845) is shown in Figure 6b, which produced
methanol with 3.8 ± 0.4% FE. The current from the
photocathode remained steady across the 80 min measurement.
MU845 also produced methanol on subsequent CA measure-
ments, although at lower FE even with regeneration of the
catalyst ink via careful drop casting of new material (Figure
S10); repeated regeneration of a single 3TT photocathode
yielded methanol FE between 0.9 and 2.9% across seven
experiments (Figure 6c). Four other CoPc/MWCNT 3TT
photocathodes produced some amount of methanol; the CAs
for these devices are shown in Figure 6d and the product yields
are shown in Figure 6e. Thus, we have successfully
demonstrated PEC production of a liquid solar fuel using
CoPc/MWCNT 3TT photocathodes.
Although all five CoPc/MWCNT 3TT photocathodes

successfully produced methanol, MU845 outperformed the
others in terms of FE despite having poorer dry I−V
characteristics. In fact, we attribute the methanol production
performance of MU845 to the smaller VOC

TZ , which led to VCA
being more reducing for this device than the other photo-
cathodes, likely making the actual potentials at Z and R more
reducing overall. This conclusion is supported by the overall
high production of CO compared to H2 by MU845, relative to
the other 3TT photocathodes.
In this cascade PEC CO2R concept, methanol should be

produced from CO (eq 2) at R, which is poised at the more
negative potential (Figure 1). However, as described above, the
CoPc/MWCNT catalyst is present at both R, the methanol-

producing terminal, and Z, the CO-producing terminal.
Although this eliminates concerns of catalyst cross-contami-
nation, it does raise the question of where methanol is actually
produced. To address this, we experimentally deactivated the
methanol producer, by using a 650 nm short-pass filter to block
light below the bandgap of the GaInP subcell, functionally
zeroing the current passed at R, which lies on the GaAs subcell
(Figure 7a). As shown in Figure 7b and c, use of the short-pass
filter substantially reduced the current output from MU845 and
MV074; the zeroing of current from Rwas directly confirmed by
dry I−Vmeasurements (Figure S11). With no current passing at
R to the CoPc/MWCNT catalyst, we expect to see no methanol
produced if the cascade mechanism is occurring. Figure 7d
shows that in two replicate experiments, R deactivation results in
the production of methanol falling to undetectable levels (<0.05
mM by NMR, corresponding to <0.07% FE). We conclude that
the R terminal is in fact the methanol producer.
As expected when the amount of light absorbed by the 3TT

device is limited by the short-pass light filter, the current at R is
effectively zeroed, no methanol is produced and FE toward CO
increases, as the CoPc/MWCNT catalyst potential is limited to
the voltage generated at Z. While this is compelling evidence for
a cascade mechanism, CO produced by Z cannot be chemically
distinguished from undesired CO produced at R as a side
product to methanol. Thus, it is possible that under AM 1.5 G
illumination CO produced at R is then directly reused at R to
produce methanol, rather than methanol production from CO
that flows from Z to R. Such a scenario would also result in no
methanol production when the short-pass light filter is in place.
However, we analyzed the partial current densities toward each
product under simulated AM 1.5G illumination and with the
short-pass filter, based on the 0.987 cm2 area of the full 3TT
photocathode and the 0.367 cm2 area of Z, respectively (Figure
7e). Both the partial current density analysis and FE show that
when the 3TT photocathode is fully illuminated, there is a
higher production of H2, consistent with the very negative
expected potential at R. Normalization of the currents reveals
that the partial current density toward CO increases when only Z
is active under filtered illumination, strongly indicating that
some CO produced at Z is consumed at R to make methanol
under AM 1.5G.
Because the GaInP and GaAs subcells are connected in series,

analogous deactivation of the Z contact with a long-pass light
filter would shut off current flow through the entire device,
deactivating the R contact at the same time. However, a 2TT
photoelectrode presents the same voltage at the R contact while
eliminating the Z contact from the device (Figure S1).
Therefore, control experiments with a CoPc/MWCNT 2TT
photocathode were performed tomimic an active R contact with
no Z contact. CA of the 2TT control at an equivalent applied
potential to the 3TT devices (VCA, eq 3) resulted in 5 ± 2% FE
toward methanol (see Supporting Information (SI)) from direct
sequential reduction of CO2 to CO and then to methanol. The
photovoltage of the 2TT canmore accurately be estimated using
eq 3 than the photovoltage of the 3TTs as it only has one
electrolyte contact, which may have contributed to the higher
methanol production with this photocathode compared to the
champion 3TT (3.8 ± 0.4% FE); the larger active area of the
2TT compared to the R contact (1.21 cm2 vs 0.620 cm2) likely
also contributed to higher methanol production on the 2TT.
While the five tested CoPc/MWCNT 3TT photocathodes

produced methanol, they were outperformed by the 2TT
control photocathode (FE = 5.3 ± 2.2%) and the dark

Figure 5. Determination of VCA potentials for CoPc/MWCNT 3TT
photocathode demonstrations. a) Schematic of dark electrochemical
model device, where only the Rdark contact is operated to determine the
Co2+/Co1+ E1/2. b) Current−voltage characteristics of electrochemical
model (pink) and 3TT (gray) CoPc/MWCNT layers. c) Schematic of
CoPc/MWCNT 3TT photocathode operating to determine E1/2.
Electrochemical and PEC measurements were performed in the same
three-electrode flow cell. All other conditions were the same as for other
experiments. These data were not compensated for solution resistance.
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electrochemical model (FE = 15 ± 4%). We attribute this
discrepancy to the unoptimized voltages at the Z and R contacts
of the 3TT and resistive losses in the CoPc/MWCNT layer (see
eq 3 discussion). There is also pronounced competition between
CO and CO2 binding at the CO-consuming R contact,54,55

reducing the efficiency of both the illuminated and dark systems
(where methanol FE falls short of our previously demonstrated
36 ± 3%).41 Though the overall FEs of the 3TT devices are low,
the history of advances in PEC solar fuel demonstrations
illustrates that improved performance is likely highly accessible
(consider the ∼0.4% solar-to-hydrogen efficiency on poly-
crystalline TiO2 demonstrated by Fujishima et al. compared to
modern records)60 through the co-design of catalysts, semi-
conductor architecture, and mass transport. Our prior circuit
modeling work35 calculated higher efficiencies for 3TT
photocathodes than obtained here; although there are multiple
differences between thatmodel and the realized device structure,
we anticipate that changes to the 3TT design based on the
understanding gained in this study will afford improved
performance in the future. A better understanding of the
behavior of a 3TT photocathode in contact with electrolyte
would also reduce uncertainty in determining VCA and thereby
improve 3TT methanol FE. This would likely enable higher
methanol FE using the cascade than using a 2TT photocathode,
especially considering that at present FEs are low on both types
of photocathodes.

7. CONCLUSIONS AND DESIGN OF FUTURE 3TT
PHOTOCATHODE SYSTEMS

In this study, a two-step PEC CO2R cascade was catalyzed by
CoPc/MWCNT on a III−V-based 3TT photocathode and
achieved 3.8 ± 0.4% FE toward methanol, demonstrating a
successful proof-of-concept for this device structure. Custom
III−V-based devices were designed and grown to act as the
photocathodes, and CoPc/MWCNT was used as the catalyst
ink. Multiphysics simulations were used to model CO2 and CO
transport and identified ∼8.5 cm/min as the target flow rate for
cascade experiments. A non-light-active electrochemical device
mimicking the 3TT device was used to explore cascade reactions
within the potential constraints of the photocathode. Exper-
imental demonstrations of CoPC/MWCNT 3TT photo-
cathodes operating a PEC CO2R cascade produced methanol
across multiple devices and repeated operation of a single device.
Finally, a short-pass filter was used to demonstrate that the
cascade mechanism is likely driving methanol production.
The need to simultaneously control multiple components

(e.g., semiconductor device structure and geometry, electrolyte
flow, catalyst choice and deposition method, microenvironment
potential) creates a wide co-design space for 3TT-based
photocathodes that requires much more exploration. This
proof-of-concept study demonstrates the need for co-design,
rather than independent optimization of components, and helps
identify areas for future development to improve the efficiency
of the cascade PEC CO2R. Tuning contact areas and geometries
would increase the area of the R contact where CO2 is depleted,
enhancing methanol production. Changing the III−V semi-

Figure 6. Demonstration of 3TT photocathode cascade. a) Schematic of 3TT operation under simulated AM 1.5G illumination (see Supporting
Information (SI)). b) CA measurement of pristine 3TT photocathode MU845 producing methanol at 3.8 ± 0.4% FE, held at +0.3 V vs RHE. c)
Comparison of FEs toward methanol, CO, and H2 for repeated operation of MU845 (see Table S4). Dashed gray lines indicate regeneration of the
catalyst by drop-casting. d) CA measurement of pristine 3TT photocathodes MV063, MV074, MV117, and MV176. e) FEs of the four CoPc/
MWCNT 3TT photocathodes toward methanol, CO, and H2. PEC measurements used the same conditions as electrochemical measurements, with
the 3TT photocathode as the working electrode. The reference electrode was Ag/AgCl and the counter electrode was carbon, operated in 0.1 M
KHCO3 aqueous electrolyte saturated with CO2; the working and counter electrodes were separated by a Selemion membrane. These data were not
compensated for solution resistance.
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conductors (and thus bandgaps)61 used in the subcells of the
3TT would tune the cascade microenvironment potentials,
which can also be better controlled by using more conductive
adhesion layers to drive catalysts without potential loss. The
development of 3TT photovoltaic devices based on alternative
materials systems, such as Si/perovskite tandems,62,63 would
enable an even broader range of photocathode characteristics,
once devices with the appropriate configurations46 have been
designed. CoPc/MWCNT was the only catalyst investigated in
this study; alternative catalysts that more efficiently produce CO
(at the Z terminal) or selectively consume CO (at the R
terminal) would improve overall FE toward liquid fuel
production, while adding complexity in 3TT photocathode
design. For CO2 reduction to CO, a Re- or Ru-based molecular
catalyst would be highly active and selective.64,65 A catalyst that
is highly selective for reduction of CO rather than CO2R would
be needed on the R terminal; possible alternatives could include
highly strained CoPc that is more selective toward methanol39

or oxide-derived copper that can convert CO into multicarbon
products.66,67 Although gas diffusion layers (GDLs) are not
currently compatible with photoelectrodes, GDL CO2R micro-
environments have been shown to be highly tunable,68 which
may also provide a route for 3TT catalyst development. With
these improvements to the 3TT photocathode, cascade PEC
processes may represent a new platform to produce carbon-
based solar fuels with high selectivity. This work demonstrates
that co-design of such a system is possible and lays the
groundwork for future research in this area.
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