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RATIONAL EXAGGERATION IN INFORMATION AGGREGATION GAMES
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ABSTRACT. This paper studies a class of information aggregation isadeich we call “aggrega-
tion games.” It departs from the related literature in twamraspects: information is aggregated by
averaging rather than majority rule, and each player sefemtn a continuum of reports rather than
making a binary choice. Each member of a group receives atprsignal, then submits a report to
the center, who makes a decision based on the average ofrdpea¢s. The essence of an aggre-
gation game is that heterogeneous players engage in a ftwgy¢ as they attempt to manipulate
the center’s decision process by mis-reporting their peiieformation. When players have distinct
biases, almost of them rationally exaggerate the extertesfe biases. The degree of exaggeration
increases with the number of players: if the game is suffityidarge, then almost all players ex-
aggerate to the maximum admissible extent, regardlessofitidividual signals. In the limit, the
connection between players’ private information and thie@me of the game is obliterated.
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1. INTRODUCTION
We consider a class of games that are naturally charaafeagaggregation gamesThere is a
finite collection of players. Each player is characterizgdviio parameters: the first is a privately
observed signal, identified with the playetype the second is an observable characteristic, such
as a voting record, profession, income or location. Playgpes are continuously distributed on
a compact interval and the distribution of types is commooviedge. Players simultaneously
observe their signals, then make reports to a central atyhwho makes a decision which affects
all of them. Reports are restricted to lie in a compact irdervMhe authority’s decision rule is
fixed and commonly known. The defining property of an aggiegagame is that two of its key
components—the central authority’s decision and playetities—depend on players’ realized
types only through the mean of these realizations. Speltyfiegplayer’s strategy in an aggregation
game is to make a report based on his type. The center mapstresfithese reports, paired with
the vector of observable characteristics, to some inteBath player’s utility depends on his own

observable characteristic, the center’s decision and #eserof players’ privately observed signals.

This paper contributes to an extensive literature on in&dgrom aggregation that goes back to Con-
dorcet (1785). A common theme of this literature, which weew in 82, is that individuals send
messages to the center, which are somehow aggregated apedn@pan outcome that affects
everybody. The question is then asked: how well does thesggtjon process work? Specifically,
under what circumstances does the resulting outcome damnaih the one that would have been
selected by a welfare-maximizing decision maker, had athefprivate information been publicly
available? The institution/aggregation mechanism whiat been examined most thoroughly is
majority rule, especially in the context of juries and ell@as. This paper examines an alternative
mechanism—report averaging—which characterizes a widetyaf decision-making processes.
For example, many elections are decided by proportionaésgmtation rather than majority rule;
in many competitions, the winner is the candidate who rexsetiie highest average score from a
panel of judges; in computing the extent of damages in enmental lawsuits, courts are asked to
average the contingent valuations provided by sampleseopdipulation. In spite of its practical

significance, the averaging mechanism has received muslatention than majority rule.

Our model can be interpreted in a number of ways. In oneBayesian interpretatiorthe center

treats players’ type reports as a sample of signals drawn é&distribution whose unknown mean



is payoff relevant. The center acts non-str_gfegicallyoigrg the possibility that agents might
mis-report their observed signals. Under this interpratathe distribution of player types is the
marginal joint distribution of the sample data. The cesteeécision rule depends on the mean of
players’ announcements, which it treats mechanically asstéimate of the unknown population
mean. Each player’s utility depends on the center’s chaiseyell as the (unobservable) mean of
all players’ signals, which is a sufficient statistic for tinean of the signal distribution. The third
argument of a player’s utility is his own observable chaegstic, interpreted as the individual’s
subjective bias relative to the best available estimatehefttuth. Consider, for example, the
following story. The center is the executive of an art museuricth is trying to expand its French
Impressionist collection. The players are the museum’sipairexperts. Players’ types are signals
drawn from a distribution whose mean is the true market vaftMonet painting. The center’s
task is to decide on a bid-price to submit for this paintingatauction. The experts want the
museum’s decision to be based on the painting’s true valuesdme, who think the museum
should accumulate more Monets, assign an opportunity dostse than one dollar to the last
dollar of the market value of this painting; others, who kthe museum should focus on lesser

known Impressionists, would assign an opportunity coseeging one dollar to this last dollar.

Our Bayesian interpretation, while natural and widely &aglile, does imply certain restrictions
on our model. In particular, though our model is most traetathen player types are uniformly
distributed on some interval, it is difficult to imagine howeocould update a Bayesian prior if
the marginal distribution of the sample data were uniforndcérdingly, we offer an alternative
interpretation which involves no implied restrictions e type distribution. In this case, the center
aggregates information but does not draw inferences froivatwill refer to this interpretation as
ournon-statisticainterpretation. Again, each player’s type is the real@atf a random variable,
but now the realization is interpreted as the true value ohgles component of some vector.
The center’s decision is, again, based on the mean valuapérd’ reported types, which is here
interpreted as a summary value of a composite assessmentitility that each player associates
to the vector depends on this summary value, but is also &tbjediosyncratic bias. To illustrate,
consider a story similar to our first one. The center is nowctier of a faculty hiring committee;
the players are its committee members. The center’s task é@etide on a salary offer for a

job candidate whose value to the faculty is multi-dimenalpdepending on her teaching ability,
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research in various fields, grant acquisition record, ahdratriteria. Each committee member is
assigned the task of scoring the candidate on one of thessndions; the score is represented by
the member’s type. In this example, the center bases itsysad¢erision on the average of these
scores. Faculty members want the candidate’s offer to tdflecmarket value, which depends
on all of the dimensions being evaluated, but because each parsonal bias either in favor or

against her, different members would prefer the salary ¢dfe either above or below market.

For concreteness, we will sometimes refer to the playersiigame as “right-wingers” and “left-
wingers,” and distinguish between moderates and extrenf&ght-wingers want to distort to the
right the average signal that the center receives, andeidigwant to distort more than moderates.
While all players’ strategies will increase with their tygpeight-wingers’ strategies will strictly
exceed the identity map, to the extent that this is admissHr example, if the space of admissible
announcements coincides with the type space, then highk tfpeght-wingers will be constrained
by the upper bound on admissible announcements, and extigihtavingers will be constrained

with higher probabilities than moderates. The situatiossyimmetric for left-wingers.

Our analysis sheds light on the averaging mechanism in bajke games and small ones. We show
that when information is averaged in large games, the iraptios are diametrically different from
when majority rule is applied. A highly robust property ofjoréty rule models is that information

is aggregated increasingly effectively as the number ofgska(hencefortim) approaches infinity:

in the limit of many such models, the decision taken by theearecoincides with the one that
would have been taken if everybody’s private informatiod baen common knowledge. In this
paper, we show that under quite general conditions, privdisemation is entirely obliterated as
n approaches infinity: the outcome of our game converges tomstaot which is independent of

players’ realized private information.

The driving force behind this result is rational exaggemati Each player in our model wants to
distort the average signal that the center receives by amaintiat is independent of. But as
n increases, a single individual’s leverage over the avedagpdines, so that more exaggeration
is required in order to accomplish a given impact on the agggeeoutcome. When the space of
admissible reports is compact and sufficiently large, a right-winger, even if his type realion

is low, will be driven to the upper boundary of the admissielgort space in a vain attempt to shift
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the mean announcement to the right. In this way, compactrassds the extent of admissible
exaggeration: the best a right-winger can do is to selechitjeest admissible announcement,
regardless of his type. Once this bound is reached, the ctanéetween the player’s private
signal and his announcement is severed. nAgets larger, first extremists, then moderates, are
pushed to this corner; increasingly, the boundary valuégsefinnouncement space dominate the

determination of the mean signal, and the impact of privaftemation shrinks to zero.

In small aggregation games, the boundaries of the annowerdespace impact the game in a
more nuanced fashion. H is sufficiently small relative to the degree of player hegenmeity,
extreme behavior of the kind just described cannot occurh @dayer's announcement will vary
with his type, at least in some region of the type space. Baiibunds still play a pivotal role.
Without them, right- and left-wingers would be engaged ireadlessly escalating tug-of-war: the
former would distort their signals further and further te ttight, in order to offset increasingly
magnified leftward distortions. Indeed, a central resulbwf paper is that in order to break this
diverging cycle, all but at most one player must be consticinith positive probability by one of

the boundaries. Thus, some degree of information loss is@ssary condition for equilibrium.

The paper is organized as follows. 82 relates our model tditdrature. In 83 we introduce our
model in its most general form and prove that every aggregatame has a pure strategy equilib-
rium in which players’ strategies are monotone in their syp&'e show that in any equilibrium, at
most one player can be unconstrained by the boundaries vatiapility one. We then prove that
as the number of players expands, the equilibrium outcoroerbes increasingly independent of
bothex-anteandex-postprivate information. 84 demonstrates that incentives t®raport do not
arise when players hawx anteidentical characteristics. In 85-87, we focus on small ‘tyaséic”
games. The ultimate goal in these sections is to explore hemtormation losses due to boundary
constraints depend on fundamental parameters. In ordéatéonodeterminate comparative statics
results, we impose further restrictions: we assume thgepsautilities are “biased quadratic loss

functions.® In §5, we develop machinery that will be applied in the corafige statics analysis

e use the term “biased quadratic loss function” to denotssa functiorL(x,X;b) = —((X+ b) —x)2. in which the
target value is the trutkplus a biad. This specification is standard in the costless informatiansmission literature.
See for example Crawford and Sobel (1982) and Morgan an&&iq@008), and the references cited in their fn. 10.
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in 86 and 87. Every quadratic game has a unique pure stratpghbeium, in which a player’s

unconstrainedtrategy is an affine function of his type.

It turns out that quadratic games are particularly traetatthen there is one player whose affine
strategy is never constrained by the announcement boundsalMhis player the “anchor” and
identify a class of games called anchored games. In 86, valy staichored games that are sym-
metric in a strong sense: there is a right-wing faction anceaipely symmetric left-wing faction.
Several of the properties of these games are quite strikingcomes, payoffs and aggregate wel-
fare are all independent of the bounds on the announcemace sprovided these bounds contain
the type space and are modified in tandem to preserve symnietrgxplore in a controlled en-
vironment the effect of increasing we clone repeatedly a small set of players until the point
at which some players are constrained with probability ¢imes generating a finite sequence of
increasingly large games. If the type distribution is umigplayers’ payoffs initially decline due
to increased information losses; eventually, howeves deicline is reversed as the law of large
numbers asserts itself and players’ distortions tend madaaore to offset each other. We also in-
vestigate the impact of player heterogeneity: intuitiypbyoffs decline as heterogeneity increases.
However, if initially the two factions are sufficiently polaed, payoffs will actually increase when
we increase the heterogeneity of edahtion holding constant the faction means. 87 studies a
quite different class of anchored games, in which the uppant on the announcement space is
so high that it never binds in equilibrium. Games in this slase anchored by the player with the
highest observable characteristic. In spite of the obvstusctural differences, this class of games
has properties that are remarkably similar to those of sytmengames. 88 concludes. A T sign
after the title of a proposition indicates that its proofrighe appendix. When propositions follow

immediately from arguments in the text, formal proofs aretted.

2. RELATED LITERATURE
In assessing the prior literature, it is helpful to classifglong three dimensions. The first dis-

tinguishes between models of majority rule versus avegagiechanisms; the second between

models in which players’ preferences prior to receivingrtpevate signals are homogeneous or
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heterogeneous; the third between choice sets contairtimgy évo or a continuum of options. We

discuss a small selection of papers that relate most closelyr analysis.

The related literature focuses primarily on the informadibefficiency of voting under majority
rule. The classical Condorcet Jury Theorem establisheditons under which, when voters
with identical preferences select non-strategicallysfocerely between two alternatives based on
their private information, and the majority prevails, tresthe number of voters increases with-
out bound, information is in the limit perfectly aggregatadthe sense that the majority’s choice
coincides with the choice that would be taken if all privatéormation were publicly available.
(Feddersen and Pesendorfer (1997) [FP] later call thisgotppfull information equivalence.”)
Austen-Smith and Banks (1996) [AB] study the relationshgiween sincerity and rationality.
Under majority rule, rationality dictates that one shou&tide how to vote conditional on the
presumption that one’s vote is decisive fvotal). Conditional on being pivotal, one can make
inferences about the distribution of other players’ readizsignals and thus about the true state of
the world. Rationality requires that these inferences kertanto account when deciding how to
vote. AB then show that for three very simple specificatiofmding sincerely is, except in very
special circumstances, incompatible with votinfprmatively i.e, in a way that depends nontriv-
ially on one’s private signal. While AB focused on small gamEP explores the implications
of pivotality in large ones. FP’s specification of playerséferences is quite similar to ours, ex-
cept that their center chooses between two alternativesrdiog to majority rule’ FP consider

a sequence of games in whiahincreases without bound; when players condition on pivgtal
their limit game exhibits full information equivalence. iSlproperty is quite robust. For example,
McLennan (1998) considers sequences of games with inoggagn which players have common
preferences; full information equivalence again holdshm limit under very general conditions.
Lohmann (1993) identifies conditions under which the sanoggnty holds when players demon-

strate rather than vote.

As we noted in 81, matters are quite different when the cesterages players’ reports rather
than applies majority rule. A major source of the differercthat pivotality no longer plays any

role, since the leverage that an individual has on the csrdecision is now independent of the

2Piketty (1999), Gerling et al. (2005) and Dewan and She2€16&) all survey the literature quite extensively.
3A second difference is that our players’ biases are pubkiolywn while theirs are private information.
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actions taken by other players. Consequently, playersigicopdition their actions on their private
signals, just as they do under Condorcet’s sincere votinge Gf very few papers that focuses
exclusively on the averaging mechanism is Morgan and Sto(k@08) [MS]. MS’s constituents,
who have varying degrees of bias, are polled about the stdteavorld. Each one receives a
binary signal about this state, and sends one of two possptats. The center aggregates these
reports and chooses a policy accordingly. A right-wingeowéceives a left-favoring signal is
tempted to mis-report in order to bias the center’s decisothe right. Ifn is small enough,
he will be deterred from doing so by the possibility that hgimiover-shoot, shifting the policy
to the right of his preferred location. Asincreases, the possibility of overshooting diminishes
along with each individual’s leverage over the ultimateigodecision, so that more and more

constituents vote according to their biases rather thanitifermation.

MS demonstrate that even whans large, full information equivalence can be restored uigio
stratified sampling: by eliminating the responses of thoeatifiable as strongly biased based
on observable criteria, the center in effect limits the 9z¢he game, restoring the remaining
centrists’ leverage over the outcome, which induces themegpond based on their realized in-
formation rather than their biases, in order to avoid oveoting. MS and our paper are similar
in many respects. In particular, both highlight the negaimpact on information transmission of
the averaging mechanism. The primary difference betweemMSour paper is that their players
make a binary choice while our players receive signals alettsesponses from a continuum of
options. Overshooting is not a deterrent in our model; oaygis can mis-report to whatever ex-
tent they desire, except when they are constrained by theuseement bounds. More important,
the notion ofrational exaggerationwhich is central to our paper, has no meaning when agents

make binary choices.

Gruner and Kiel (2004) [GK] compare the performance of gameshich the center chooses
either the median or the mean of players’ reported privetammation. Their median model cor-
responds to majority rule; their mean model correspondsit@eeraging mechanism. In contrast
to the papers discussed above, GK’s players choose fromt@meom of reports rather than make
a binary choice. In contrast to our model, the biases of GKaygrs are proportional to their

private signals; with this non-standard assumption, GKatatain existence without requiring the



-8-
announcement space to be compact. GK’s formal results #atlasively on the relationship be-
tween the magnitude of players’ biases and the relativepeaence of the two mechanisms. Their
major conclusion is that the mean mechanism outperformm#uian iff agents’ biases are suffi-
ciently small. Indeed, as in our paper, the mean mechanibie\as the first best when all biases
are zero. While they do not study formally the comparatiaics$ effects oh, GK do provide
examples showing that with biased players, the performahtiee mean mechanism deteriorates

asnincreases from3to 7.

GK'’s examples illustrate nicely some of the themes that argral to this paper. The mean dom-
inates the median when players have common interests eetaeigormer utilizes all reported
information and agents have no incentive to misreport; mrest, the median mechanism utilizes
only the reported information that the median player presidso that perfectly good information
is ignored. When players have significant biases, howdwerstrength of the mean mechanism is
also its weakness, which is exacerbated axreases. As noted, an individual’s leverage over the
center’s decision declines with requiring more and more exaggeration in order to accommplis
given shift; in addition, under the mean mechanism, thetbkas'tug-of-war” aspect of exagger-
ation that we discuss above on p. 4. Both effects diministatiwairacy of reported information.
Under the median mechanism, on the other hand, the medigergias one-to-one leverage: she
does not have to engage in a tug-of-war with other playensisioer leverage diluted by. Since
players under this mechanism condition their reports ongpivotal (i.e., on being the median

player), the information they report is much closer to thshr

Still another framework is presented by Razin (2003), incitan electorate with common prefer-
ences chooses between two candidates. Each voter recgivigate signal that is correlated with
the ideal policy location. The winning candidate treatsrtagnitude of his victory as a guide for
setting policy. Because both candidates have ideologieakl, while the population is ideologi-
cally neutral, the policy that would be selected if all ptevanformation were revealed would be
extreme relative to the electorate’s common bliss poinpddeling on the degree to which candi-
dates are polarized, and the responsiveness of their mhlmges to election results, there will be a
conflict between voters’ motivation to select the more appate candidate, conditional on being

pivotal, and their unconditional motivation to correct the winning candidate’s ideological bias.
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From our perspective, the primary interest of Razin’s pap#rat it melds into one mechanism the

averaging and majority rule mechanisms that we seek to campa

3. THE MODEL
An aggregation game is an incomplete information simulb@semove game amongplayers,

indexed byr = 1,...,n. For anyx € R" the symbolu(x) will denote the average afs components.

Player characteristicsWe assume that each player is characterized byleservable charac-

teristic and atype Playerr’s typeis 6, € R, which is his private information. We assume
that theB,’s are identically, independently and continuously disited on the compact interval
© =[8,6] C R, with 8 > 6. Letn(-) denote the density, artd(-) the c.d.f., of players’ types. Let
© = 0" denote the space tfpe profiles with generic elemerf). Similarly, let®_, = @" be
the space of types for players other tharFor@® ¢ © , letn_, (@) = [, n(6;). Playerr’s
observable characteristic is denotedkpy= R and is interpreted ass bias w.r.t. revealed infor-
mation: a player whose characteristic is positive prefleesdenter to over-estimate the mean of
players’ types. We refer to the vectoe= (k;);_, as theobservable characteristic profildo avoid
special cases and/or additional notation:, we impose tatnicions on observable characteristics:

players’ biases cancel each other out in the aggregate apéth distinct.
Assumption Al: (i) Siki=0; (i) i #r = ki #k:.

Restriction (i) yields a clean expression for welfare wifileensures uniqueness. Part (ii) will be

relaxed in 84 as well as §6.1 and §7.1.

The utility function The utility functionis a mappings: T x © x R — R, whereT C R is com-

pact. The scalar first argumentwtan be interpreted as the decision taken by a central atythori
in response to information provided by the playeust,0,k) is the utility to a player with ob-
servable characteristic when the central authority’s decisiontignd the vector of unobservable
characteristics i. The essence of an aggregation game is that a player’s tfgtsahis utility

only through its effect on the average of all players’ typggsecifically, we impose

Assumption A2: u(@) = u@®) = u(1,0,k) = u(t,0 k)
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In the formal development below, we will, depending on whisimore convenient, write the

second argument af either as the vectd or the scalap(0).

Pure strategiesA pure strategyfor playerr is a functions; : © — A whereA = [a,a] is a com-
pact interval representing the set of admissible annouan&snands (6, ) is the announcement of
playerr when his type i$,. (Henceforth, the symba will denote afunctionfrom types toA,
while a; will denote a particular value & (6,).) The vectos = (s, ...,S,), called apure strategy
profile, is thus a mapping fror® to A = A". A pure strategy (+) is said to benonotondf it is
nondecreasing and strictly increasing except whér) is at the boundary of. Since the space
Ais bounded both above and belowsifis monotone, there existdaw threshold typé; < [8, 6]
and ahigh threshold typ®; € 0, 6] such that equalsaon|[8,6,), is strictly increasing omgr,ér)
and equals on (6;,8].* Formally,

(

6 if 5(0) >a

Qr<$) = ’ (1a)
\sup{eee:s((e):a} if () =a

Bis)= Ta®<a (1b)

inf {0cO:5(0)=a} ifs(0)=a

The outcome functiariTheoutcome functiort : A" x R" — R, maps player announcements and

the vector of observable characteristics to actions by éméral authority. Our center aggregates
information mechanically rather than strategically. ledewe restrict outcome functions to be
complete information socially efficient (CISE)eaning that if players truthfully reveal their types
on average, the outconevill maximize social welfare, defined as the average of pisiyiadivid-

ual utilities. That is, defining theocial welfare functioras
w(t,0,k) = Zu(r,e,ki)/n, 2
|

the CISE outcome function i$6, k) = argmaxw(-,0,k). We refer to an outcome implemented by

a CISE outcome function as@GSE outcomelt follows from assumption A2 that CISE outcomes

“Either one of the half-open intervals can be empty. For edanips () > a on © then the interval8,6:(s/)) is
empty.
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depend on players’ announcements only through their agerag,

H@) = p@) = t(a,k) = t@ k) (3)

Once again, we will write the first argumenttadis either am-vector or its average, depending on

convenience. Also, sindeis typically fixed, we will often omit’s second argument.

Player’s expected payoff function$layerr’s expected payoff functionJ,, maps his own an-

nouncement and type into his utility, given other playetsategies. Our expression fak sup-
presses’s observable characteristic and the outcome functionmidy, given a profiles_,, of

strategies for players other tharplayerr’s expected payoff functiot, : Ax ©@ — R, is

Ur(a,8;s;) = /u(t((a,sr(ﬂr)),k),(G,ﬁr),kr)dnr(ﬂr). (4)

—r

In what follows, the derivativ% will play an important role; when confusion can be avoided, w

will abbreviate this expression td.

Equilibrium: A monotone pure strategy Nash equilibriYMPE) for an aggregation game is a

monotone strategy profikesuch that for alt, 8 € ©, anda € A, U, (5(0),0;s_r) > U (a,08;s_;).
We make the following additional assumptions throughoetgaper.
Assumption A3: The densityn(+), of players’ types is bounded.

Assumption A4: The utility functionu is bounded and thrice continuously differentiable. For
eachk andp(0), u(-, 1(0),k) is strictly concave.
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Assumption A5: For all (1,(8),k), (i) £ TULLEK > 0, and (i) LULHOK) -

Assumption A6:  For allk and®, u(t(-,k),(8),k) is strictly concave inu(a), the average of
players’ announcements.

Some additional assumptions will be introduced later. Vélrena list of assumptions is not ex-

plicitly included in the statement of a proposition beloistmeans that A1-A6 are satisfied.

Assumptions A4 and A5(i), together with the fact th@} is CISE, imply that:
t(-,k) is strictly increasing and continuously differentiableuifa). (5)
Assumption A6 implies that
U, is strictly concave w.r.t. its first and third arguments (6)

Assumption A3 is required to ensure that pure-strategyliégiai exist. Assumption A5 states that
players with higher unobservable and/or observable ctenstics derive higher marginal utility

from an increase in the central authoritys decis'?oAssumption A6 is not entirely straightfor-

ward. It states thaata—” ‘3;2 <a;?(ta)> +9 5 FI ( )) is globally negative. However, sincds not
monotone irt, the second term cannot be signed in gen®¥&lk make this assumption to simplify
the analysis. In particular, sint§ = [ ‘3;‘ g;dn (®_r), assumption A6 implies that for al] all
Bandalls_,, U, (-,6;s_y) is strictly concave ira. Thus, each player has a unique optimal response
to other players’ strategies.

From (5),t is strictly increasing; it follows, therefore, from (4) aAd(i) that
aZUr (a, G;S_r)

forallr, all a, all® and all alls_, 3200

0. 7)

Inequality (7) states thdd, satisfies Milgrom-Shannon’s condition SCP-IR(e10) (see fn. 5).
In our context, this property implies Athey’s sufficiencyndition, SCC, for existence of a pure-

strategy equilibrium, i.e., “the single crossing conditifor games of incomplete information”

° Assumption A5(i) is a strict version of the “single crossprgperty of incremental returns (SCP-IR)” (Milgrom and
Shannon, 1994) i(rt; 8) when the utility function is differentiable (Athey, 2001ebnition 1).

6A sufficient condition to ensure Assumption A6 will hold isath(-, k) is linear.
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(Athey, 2001, Definition 3). Athey’s condition requires thh satisfies SCP-IR only if other play-
ers play non-increasing strategies. @Quis satisfy SCP-IR regardless of other players’ choices.
Proposition 1 (Existence of an MPE)! Every aggregation game has a monotone pure-strategy
Nash equilibriums, with the property that for each ry g continuously differentiable o, (s), 6;(s)).

The Kuhn-Tucker conditions definings optimal strategy are, for all@ € ©,

a ifU/(a,B;s_y)=0andac [a 3
s(0) = a ifu/(aB;s)>0 8)
a ifU/(aB;s_r)<0

The essence of an aggregation game is that heterogenegesspa@e engaged in a “tug-of-war,”
trying to influence the equilibrium outcome through theinanncements. As soon as one player
who prefers a higher outcome attempts to influence the cégtarcreasing his announcement,
another player who prefers a lower outcome will counter bgrei@sing hers. In the absence of
bounds on announcements, this tug-of-war would go on eslgleBhus, a necessary condition for
existence of MPE is that the announcement splabe compact. The bounds on announcement
space essentially limit how far players can go in mis-rapgrtheir types. We will observe be-
low that players with different observable charactersstice restricted by the bounds to different
degrees, and certain player-types “do particularly wedl'eguilibrium. To clarify concepts, we

introduce some definitions. We will say that play&rstrategys () is

(1) nondegenerate (resp. degeneratéfe interval(@r(s),ér(s)) is non-empty (resp. empty).
(2) isconstrained ab if the announcemers (0) equals eithea or a,

(3) isup-constrainedf 6,(s;) =06 andér(s() <9,

(4) isdown-constrainedf 6,(s) > 6 andér(sr) =0,

(5) issingle-constrainedf it is either up-constrained or down-constrained,

(6) is bi-constrainedf 6, (s;) > 0 andf (s;) < 8.

(7) isalmost-never-constraingti6, (s) =6 and®, () =6,

Degeneratdresp.almost-never-constraingdtrategies pick boundary (resp. interior) pointsfof

with probability 1/ An MPE in which each player’s strategy is non-degeneratelisg¢an NMPE.

The distinctions made here relate to the conceptfofmativevoting, which recurs throughout the information trans-
mission literature. (It appears to have been introducedistén-Smith and Banks (1996).) Almost-never-constrained
strategies are informative, and degenerate ones are umiafive; the remaining types are somewhere in between.
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Prop. 1 established that players’ equilibrium strategresnaonotonic in types. We next establish
that strategies are also monotone with respect to playbs&roable characteristics. That isk;jif>
Kj but both players are of the same typgannouncement will strictly excega, except when both
announcements are at the same boundama. Moreover, as increases, the gap betweiénand
j’s equilibrium announcements increases until one or batfigk’ strategies become degenerate:
if j’s (resp.i’s) first order condition is satisfied with equality for sonypé andn is large enough,

i (resp.j) will announce the upper bouradresp. lower bound) with probability one.

strateg

55 type
FIGURE 1. Intuition for Prop. 2

Proposition 2 (Monotonicity w.r.t. observable characterstics):' If s be an MPE, then for all
e > 0and for all i and j such that k- k; > &,

i) Bi(s) <8;(s) andBi(s) < Bj(s).

i) si(-) >s;(-) ontheinterval(8;(s),8i(s)).
Further, there exists Nt N such that

i) ifn > N and g is non-degenerate, thef(g = a.

iv) if n> N and s is non-degenerate, thef(s) = a.
In the discussion of Prop. 2 that follows, we will say that &éhgesp.a) constraint ishindingonr
at 6 if the unconstrained optimal response of playef type6 tos_, strictly exceeds (resp. is
strictly less thara). Note significantly that by continuity, thee(resp.a) constraint isnot binding
onr at8(s) (resp. O:(s)). The key to the proof of Prop. 2 is the observation tha iind s;

form part of an equilibrium profile, then at any typé belonging to the (necessarily nonempty)
set®* = argmin(si(-) —sj(+)),

eitherthea constraint is binding onor thea constraint is binding on (or both). (9)
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To verify (9), consider the pair of strategi€s, s;) illustrated in Figure 1, which has the property
that até* = argmin(si(-) — sj(-)), theaconstraint is not binding ohand thea constraint is not
binding onj. The strategies depicted in the figure cannot form part of &kENrofile. To show
this, we assume thaf is a best response tg,s_; j), and conclude tha cannot be a best response
to (sj,s—i,j). LetAa= (5(8*) —sj(6*)) and consider playey's decision. Becausedepends only
on the average announcemets), and sinces; is by assumptiorj’s best response ti(s_i j),

it follows thats;(6*) + Aa = s(0*) must be player-typ¢j,8*)’s best response t&(— Aa,s_j j).
But this observation implies that(6*) cannot bei, 0%)'s best response t®j(s_i j). To see why,
note that since; > kK, it follows from A5(ii) that against thesamestrategies(i,8*)’'s optimal
response must strictly exceefl 8%)’s: in particular,(i, 8*)’s best response t&(— Aa,s_j j) must
strictly exceed j, 6%)’s, which iss (8*). Next, by definition of6*, s;(-) < s(-) —Aa, so property
(6) implies that(i,8*)'s best response 1;,s_i j) must exceed his best responsége-Aa,s_j ),

which, as we have shown, exceesi®*). Thus,s cannot be a best response($ps_i ;).

The first two parts of Prop. 2 follows almost immediately fr¢®). If either of the two constraints
mentioned in (9) is satisfied, thes(6*) — s;(6*) > 0. Since6* minimizes (s(-) —sj(-)), the
function is nonnegative on its entire domain. Part i) of thepesition now follows immediately
from the definitions in (1). Moreover, since neither playeconstrained o(;(s), 6 (s)), property
(9) implies that(8;(s),8i(s)) cannot be part 0®*, implying that on(8;(s),8i(s)), s(-) —sj(-) >
S(6) —sj(6*) > 0, establishing the strict inequality in part ii). To motigahe third part of
the proposition, first note that since the domairue$ compact, all relevant derivative functions
of u are uniformly continuous, and, if always non-zero, therythee bounded away from zero.
Now suppose that there is a player-tyged) whose first order conditiotyj(s;(6),6;s_;) is zero.
Fori with ki > kj U{(sj(8),6;s_i) exceeddJ;(sj(8),8;s_j) by an amount that is big oh of/h.®
SinceU/(-,-;s_j) depends on's type and announcement only through the mean type and mean
announcement, the effects &i(-,-;s_;) of i’s announcement and hs type are big oh gh2l
SinceA is compact]’s response is pushed to the upper edgé akn increases without bound.
The proof of the fourth part is analogous. An immediate iigdion of (9) is

Proposition 3 (At most one player is unconstrained)in any MPE, at most one player’s strategy
is almost-never-constrained.

8A function f(x) is said to be big oh af(x) if there existdM € R such that for alk, | f(x)| < M|g(x)].
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To verify Prop. 3, observe from (9) thatiifs not up-constrained & € ©*, thenj must be down-
constrained. Since by definitid®* is nonempty, in equilibrium it can never happen that bgth
ands; are almost-never-constrained. That is, regardless of it wf the announcement spage
an equilibrium cannot exist unless misreporting by all iumast one player increases to the extent
that with positive probability, their announcements anestmined by one of the boundaries. Thus

Prop. 3 highlights the role of the announcement bounds iarergthe existence of MPE.

The comparative statics results we present in 86 and 87 mdply only to games with relatively
few players. Props. 2 and 3 suggest why: as the populatioanels the tug-of-war between
players with different biases becomes so intense that akafias them are driven to the boundaries
of the strategy space, resulting in increasingly degeaenaitcomes. Prop. 4 below makes this idea
precise. We allom to increase without bound, and demonstrate that in the, lihetoutcome of the
game is independent of players’ realized signals. Thisltresatrasts sharply with the recurring
theme in the information aggregation literature, i.e., wtiee number of participants is very large,

political institutions such as elections can effectivaggeegate private information.

Fix a setk C R from which players’ observable characteristics are dramchansider a sequence
of finite support measureg’) onK. For each, letk" be the support of” and lets" be an MPE
of the n-player aggregation game with observable characteristiii@k”. Let1": ©@ — R be the
induced mapping from mean signals to outcomes, i.e@©, "(u(0)) =t(s"(0),k"). Prop. 4
establishes that as— o, the outcome induced kyt") converges to a constant function.
Proposition 4 (Asymptotic information transmission):" Assume that the measurgg') con-

verge weakly to a nonatomic measgren K whose cdf isp. Then(t") converges weakly to the
constant function whose imagk*} is a convex combination afanda.

Prop. 4 is a straightforward consequence of parts iii) apeivProp. 2. Asnh increases, players
must exaggerate more and more, if they are to exert the sagneedef influence over the average
outcome. But there are bounds on how much players can exatggand once these bounds are
attained, the connection between players’ announcemadtsh&ir signals is broken. It follows
that amincreases, the fraction of players whose strategies canweinformation at all about their
signals shrinks to zero. Because the limit distributionrgaayers is non-atomic, the aggregation

rule assigns vanishingly small weight to the informatioattthese few players provide.
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We conclude this section with a discussion of the class ateggies on which we will focus for the
remainder of the paper. Letting ) denote the identity map d®, playerr’s strategy is said to be

constrained unit affine (CUAJ for someA € R, s(-) = min{a,max{a,1(-) +A}}
unit affineif neither bound on the announcement space is bindingifi®(:) =1(-) + A

The defining property of a CUA strategy is that the extent’®fmis-representation of his type
is independent of this type, except whets constrained by the boundaries &f The param-
eter A; indicates the extent of this mis-representation. A CUAtsetw is unit affine iff it is
also almost-never-constrained. CUA strategies are a @peleiss of nondegenerate strategies
that play an central role in our analysis. Next, note thatdbeof degenerate CUA strategies
{s(:) = min{a,max{a,1(-) + A}} : A\, < a— 6} are all functionally equivalent: in each case,
s(-) =a Similarly all CUA strategies with\; > a— 8 are equivalent. Hence we can impose
without loss of generality (w.l.0.g.) that

s(-) = min{a;max{a,1(-) +A}} is anadmissible CUA strategff A, c A=[a—6,a—0]. (10)
Sincea> aand® > 6, the set\ is nonempty. Observe from (1a) and (1b) that ifs CUA, then

&(s) = minfBa-A} < maqBa-A} = &(s) (11)

If © C [a,a] we say that the announcement spadadtusive It follows from (11) that

if @ is inclusive then no CUA strategy is bi-constrained (12)

To see this, note that ® is inclusive and\; > 0 thens;(8) = 8+ A; > a+ Ay > a; similarly, if

Ar <0 thens (8) < &,

4. AGGREGATION GAMES WITH COMMON PREFERENCES
Assumption AL(ii) specifies that all players have distingservable characteristics. For this sec-
tion only, we reverse this assumption, and consider gamegiich players’ observable character-
istic are identical. We also assume that the announcemanésg inclusive, so that truthful type

revelation is feasible. This analysis will serve as a usb&richmark when we consider games



-18-
in which players’ observable characteristics are hetareges and when the bounds on the an-
nouncement space preclude complete truthful revelatidve analysis highlights the importance
of unit affine strategies: we will show that mplayer games, there are equilibria—including one
characterized by truthful type revelation—in which plag/estrategies are unit affine and satisfy a
strong efficiency criterion. Moreover, in two-player gameguilibrium strategies aneecessarily

unit affine, andall equilibria satisfy this criterion.

We now introduce our notion of efficiency. An actign ) is abest conceivable respongar
player-type(r,0) tos_, if forall s, and alla€ A, U, (5(8),6;s_r) > U (a,8;s" ;). When a player-
type’s action is a best conceivable response to other ageategies, this player’'s expected
payoff could not be higher, even if he had total control over strategies played by all other
players! An MPE is now defined to lafficientif every player-type’s action is a best conceivable

response to other players strategies. This is clearly apregly stringent notion of efficiency.

A strategy profile will be calledero-sum unit affine (ZSUAf)each player’s strategy is unit affine
and if there is truthful revelation in aggregate. Specifjcdet A ={A € A": 3! ;A =0}. A

strategy profile is ZSUA if for som& € A, s = 6, +A,, for eachr.®

Given a profiles, p(s)

is identically equal tqu(0) iff s is ZSUA; that is, ZSUA profiles truthfully reveal types in the

aggregate and vice versa. A special case is vher?, i.e., each individual agent reveals his type.
The following proposition highlights the intuitive factahin an aggregation game, incentives for
strategic behavior arise only when there areantedifferences between agents’ characteristics,
i.e., theirk’s.

Proposition 5 (ZSUA profiles as equilibrium strategies): Consider an inclusive aggregation

game in which k= k for all r. A sufficient condition for a strategy profile to ba equilibrium is
that it is ZSUA. Further, a ZSUA equilibrium is efficient.

The proof of Prop. 5 is immediate. Consider (Ar,A_;) € A. Necessarily\; = — YizrAr. Inthe
ZSUA strategy profile correspondingXo player-type(r,0) reportss; (6) = 8+ A,. Consequently

Urler(0).8i-r) = [ uts(®).00.9.kn@)a0 = [ u(t(®.k).9.ign(®)d

9CIearIy, for any vectoh with A; < (a—8) (or A; > a—6), s = 6, + A, would not be admissible for types in some
neighborhood 08 (or 6).
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Since players’ observable characteristics are all idahttbe social welfare function (defined in

(2)) coincides with each player’s utility functiom(t,0,k) = u(t,0,k). Since the outcome function
is assumed to be CISE, we hatve- argmaxu(-,8,k) for every® € ©, Thus, the ZSUA profile
maximizes the expected utility of every player and conttgwan MPE. Further, since each player

obtains the highest possible utility, the equilibrium isaéfficient.

When there are only two players with identical observabgatteristics, we can go much further.
In this case, the preceding and following propositionstdsth that a profile is an equilibrium if
and only if it is ZSUA, i.e.all equilibria are efficient

Proposition 6 (MPE are ZSUA):T Consider a two player inclusive aggregation game wijth: k;.
A necessary condition for a strategy profile to be an MPE i$ itha ZSUA.

strategies
strategies

0 +1(-)

5i(87) +si()

1D,
=)

FIGURE 2. Intuition for Prop. 6

Figure 2 provides some intuition. Consider a strategy thabt unit affine, such &g in the left
panel of the figure. Letting(-) denote the identity map, the maximum valugdf) —s;j(-)) isA,
which is achieved uniquely @r{.ll We first establish that a necessary conditionsfdo be a best
response tg; is that(si(-) —1(+)) is everywhere strictly less than To see this, consider a strategy
such asgsatisfying, for som&®;, (5(6) —6;7) > A. Given any such strategy foythe aggregate
strategys(6;) + sj(-)—i.e., the highest curve in the left panel—must lie abovelithe6; +1(-)

10An immediate implication of the argument below is that whéayprs’ observable characteristics are identical and
the announcement space coincides véththen theuniqueequilibrium for a two-player aggregation game is that
players truthfully reveal their private information withgiability one.

11Uniqueness is not required, but it simplifies the intuitixp@sition.
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with probability one. That is, for player-typg, 6;), the average of players’ announced types
exceeds the average of their actual types with probabitig. &Sincet(-) is CISE and the social
welfare functionw(-) coincides withi’s and j’'s common utility function, the outcome generated
by (sj,§) must be super-optimal fdi, 8;") with probability one. Conclude th&f + A is not a best
response fofi, 6") againsts;(-); more generally, fos to be optimal against any not unit affine
sj, it is necessary thas (-) —1(-)) < max1(-) —sj(-)). Now consider any strategy satisfying this
necessary condition—e.g., the dashed caiiv¢in the right panel—and observe that the aggregate
strategys;(6]) +s (-) is everywheréelowthe line; +1(-), and hence sub-optimal fof, 87). We
have shown, then, that the actisjif}) cannot be a best response {¢r67), againsiany strategy

that could possibly be a best response against the arlyitchvsen, not unit affing; (-).

5. GAMES WITH QUADRATIC PAYOFF FUNCTIONS
In our introductory discussion in 81, our players reportethe center, who took an action,that
affected all of them. For the remainder of the paper, we abstrom the issue of how the center
uses the information that players provide and assume, giri@t each player incurs a loss that
is quadratic in the difference between that player’'s okde/characteristic and the gap between
the means of actual and reported information. Formally, @efené the utility function for a player

with observable characteristicas the biased quadratic loss functién:
utu®),k) = —(k+u® -1 (13)

With this specification, the CISE property requires the eetd average the types that players an-
nounce: = t(s,k) = p(s). A game with utilities given by (13) will be calledguadratic aggrega-
tion game It is straightforward to verify that given) (13) satisfies Assumptions A4-A6. The goal
of a player with observable characterigdtic- O is to induce the center to overestimate the value of
K(8) by an amount that is as close as possible tBpecifically, the optimal expected outcome for
a player with observable characteridticand type paramet&; isEg_ t =k +Eg_ p1((6r,9_r)).

This quadratic specification is consistent with either @& two interpretations of our model pro-
posed in 81. For the non-statistical interpretation, theti@nship is self-evident: players lose util-

ity with the square of the difference between the compositessimplied by players’ actual types,

12ps noted in fn. 1, this specification is very widely used.
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adjusted by the player’s personal bias, and the score thatehter would compute by aggregat-
ing players’ announcements. Under the Bayesian interjiwataeach player loses utility with the
square of the difference between the posterior mean comytéhe center from announcements
and the one implied by actual types, again after adjustinthiplayer’s bias. Under very general
conditions, the posterior mean is an affine function of thepla mean'3 If the posterior mean is

defined adp + b1 (0), the loss function implied by our Bayesian interpretation i

2 2

— (K+ (bo+b11(8)) — (bo+bapi(s)))® = —(k+b1(u(8) —u(s)))” = —(k+ba(1(®) —1))°.

By choosing appropriately the units of the vedtpwe can seb; = 1 and recover (13).

While this Bayesian interpretation is suggestive, thera motable distinction between our qua-
dratic loss function and the canonical Bayesian loss fonctiTo best appreciate the difference,
consider (13) for an unbiased player, i.e., lset 0. Then the only source of loss is that players
mis-report the signals they receive; our players are mddateuninterested in the difference be-
tween the mean of their signals and thee mean of the distribution from which their signals were
drawn. In the classical Bayesian problem, on the other thedatter difference is all that matters;

the possibility of mis-reporting does not arise.

In most respects, this distinction is unimportant and oecgjeation captures exactly what we are
interested in, i.e., the information losses that arise beeplayers are strategic and are constrained
by the boundarie$* In one respect, however, the omitted difference is significin a game
small enough to admit non-degenerate strategies, it daesapture the full welfare impact in a
Bayesian setting of increasing since it ignores the welfare benefit of increasing the greni
with which the aggregate signal estimates the true mean r@e@ucing the second term in (14)).
As an extreme example, when all players have the same ob$emcisaracteristic as in 84, our
players attain Nirvana in every game, regardless, tiad we defined players’ utility as a standard

Bayesian loss function, Nirvana would be approached onjgnasotically.

13gernardo and Smith (2000, Proposition 5.7 (pp. 275-2763dishes this for exponential families of distributions.

14 Forinstance, if th@’s were independently drawn from a distribution Wik;) = 6' and players’ utility depended
on the true meaf! rather than the average realized sign@), the expected quadratic loss would be

—Ek+6' -1 = -Epk+u®@) -1+6'—p@)> = —Es(k+u@)-1°-Es(6'—p@®))> (14)

The first part of the loss arises entirely due to misrepording coincides withu(-) in (13); the second part, which is
precisely the canonical Bayesian loss function, is omiftech our model.
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5.1. CUA strategies. The quadratic specification ensures that equilibriumegias will be CUA
(see p 17). Given the utility (13) and outcome functiesik) = p(s), if r were not required to
respect the admissibility bounds (10) ®n his optimal response & ; would be the UA strategy
O; +Ar, where

he =+ 3 5, (91 =3(91). (15)

In general, the UA respon$ + A, will not belong toA for all values of,, particularly if k| is

large. Accordinglyy’s constrainedptimal response will be

s (6r) = min{a,max{6; +A,,a}}. (16)

To identify an NMPE, we need to compute theector which solves the set afequations in (15)
subject to the constraint (16). As a first step, weg|€t) denote player’s deviation from affing
defined as the difference between the CUA stra®@y and the UA strategy(-) +A,. GivenA,,

let E¢, denoter’s expected deviation from affine

23

Es (5(3r) —(®r+A)) = Es (min{famaxadr +A}}—9) — A (17)
B 6
= [ @ 80dH(,) + /e (B —81)dH(Sy), (18)

where, from (1a) and (1bg(A;) =a— A, and ér (Ar) =a—A;. Thusgg, is a measure of the

impact of the bounda anda onr’s expected announcement. Clearly,
if r is single-constrained artek, # 0, A(EE; < 0. (29

Since we focus exclusively on CUA strategies in the remaind¢he paper, we will sometimes

use the symbol,; as a shorthand for the uniquely defined CUA strategy withrpatarA,.

We note in passing two implications of (17) and (18) that wk uge later. First, aggregating the

identity in (17) across players and rearranging, we obtain

Es(U(s™(®) — u®)) = HA") + n(E). (20)

Second, differentiating (18) w.rA, and inferring from (11) thaiti (6;) < H(8):
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dE -
o = —(RE)+1-HE)) < (19 (21)
r
dEE; e .
and a 0 iff r is almost never constrained
r

Substitutingd; — s(6;) = —(Ai + &) into (15) and rearranging, it follows thatkf is an MPE,
nk = DA + > E&GQR]),  forallrwith Ar eint(A). (15)
I i#r
Figure 3 provides some intuition for (95 for the simple game with two playeisand j and

0 < ki = —kj. The figure is a diagonal cross-section of the three-dinoesigraph fron® x ©

to outcomes, that is, the graph depicts the eventitlaaid j observe the same private signals.

Playeri is up-constrained while playgris down-constrained. The thick kinked line represents

a éi

i's strategy\ /,f:j::"
0 g Player types
s ideal outﬁé

Area=EE;(A))| = 2k \ |
J's strategy

FIGURE 3. Intuition for display (19

the outcome as a function of type realizations, given the players’ strategies. The important
property highlighted by the kinked line is that wh@n> 8; (and®; < [, 8;]), the realized outcome

is anunderestimate of the realized type, while wheépn < 8; (and; € [Qi,éi]), it is an over
estimate; whe®, € [Qr,ér], forr =1, j, the outcome accurately reflects the aggregate signal. Now
consider the outcome from playgés perspective and for concreteness, supdse 0 and the
horizontal axis representss type. Playeli’s ex postddeal outcome, as a function ¢fs type,

is represented by the dashed line above the diagonal: foy exadue of j's type, i’'s ex poste
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ideal outcome exceeds it by. When j is unconstrained, his under-report exactly counteracts
i's over-report, resulting in an outcome that is suboptimaihfi’'s perspective; however, at low
values offj, the constraina binds j’s under-reporting, resulting in an outcome exceedingleal
outcome. Equation (Ipdescribes how the over- and under-estimates are balanegglilibrium:

the expected over-estimate of the true average equals tinaaexpected under-estimate.

The following, immediate implication of (Ipwill prove very useful in what follows. IN* is an
MPE, then for ali, j with A, A7 € int(A),

ntki—kj) = E&(A]) — E&(A). (22)

To motivate (22), suppose > kj and bothi andj are up-constrained. From part ii) of Prop. 2,

ki > kj impliesA; > Aj, so the constraira binds more tightly on than onj, i.e.,E§; < EE;.
Proposition 7 (Uniqueness of MPE)f Every quadratic aggregation game has a unique MPE.

5.2. MPE outcomes and payoffs.The quadratic setup allows us to analyze each player’s equi-
librium performance: to what degree the outcome of the garatimes his ideal outcome, and
how his payoff depends on player characteristics. We begimtboducing a notion describing
the degree to which each player “gets what he wants” in dayiuln. We define as a benchmark
the complete information personally optimal (CIPO) outcofaeplayerr: this outcome would
maximizer’s payoff if he had complete information about the averageiyWe denote this “ideal”

outcome fronr’s perspective by(0,k;). From (13),r’'s CIPO outcome is
t0k) = u®O)+k. (23)

If u(s*) is the equilibrium outcome of the game. then the differeBg¢p(s*(9))) —{(9,k)),
which we label as’s expected CIPO deviatioms a measure of the degree to which the equilibrium
outcome differs in expectation from playes CIPO outcome. Prop. 8 below establishes that in
an NMPE, the expected CIPO deviation ignltimes the size of the player’s expected deviation
from affine. This result is striking because the latter dejgeanly onr’s strategic choice, while the
former depends oall players’ choices. Note also from (19) that a single-comstégplayer who
over- (under-) reports his type can expect a sub- (supetihapoutcome.

Proposition 8 (The expected CIPO deviation)t If s* =0-+A* is an MPE profile of a quadratic
aggregation game, andl’ € int(A), then r's expected CIPO deviation i$EA;)/n.
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Since the expected deviation from affine measures how yighé announcement bounds restrict
r's action in equilibrium, Prop. 8 indicates that a player w#a@ction is more restricted is less

likely to obtain his CIPO outcome in expectation.

After r learns his typed;, a parallel measure of deviation from his ideal outcome ésirtkerim
expected CIPO deviatigulefined as the differend® , (U((sf(6r),s*;(®_r))) —t((6r,9 ). k)),
whereEy_ {((6;,9_r),k) =Es_ HU((6r,9_r)) +k isr’s interim expected CIPO outcom8imilar

to Prop. 8, Prop. 9 establishes thatinterim expected CIPO outcome is implemented in equilib-
rium if and only if his strategy is unconstrainedéat

Proposition 9 (Interim Implementation): T For a player r of typed,, his interim expected CIPO

deviation equals zero, or his interim expected CIPO outcmraplemented in equilibrium, if and
only if his strategy Sis unconstrained af; .

The previous discussion indicates that playsrexpected deviation from affine i.e., the expected
degree to whicli’s strategies are restricted by the announcement bounigistiemental in deter-
mining whether gets “what he wants.” We next illustrate how the deviatieniraffine affects

a player’s expected equilibrium payoff. From (1B} expected payoff from a strategy profile

is —Eg (U(3) +k —(s)))?, i.e., the expectation of the squared difference betw&e@IPO out-
come and the realized outcome. For an arbitrary prafilthe expression for this expectation is
exceedingly messy, reflecting the complexity of the inteoas between multiple players’ devia-
tions from affine: in some regions &, the distortion resulting from different players’ congtita
offset each other; in others they are mutually reinforcihg.equilibrium, howeverall of these
interaction terms disappeatr, leaving only the first and sgcooments of players’ deviations from

affine. Specifically, eV &, (A;) denote thedx antg variance ofr’s deviation from affine, i.e.,
Note thatv&, (A;) depends only on's owntype realization. We now have:

Proposition 10 (Equilibrium Payoffs):T Lets* =@-+A* be an MPE profile of a quadratic aggre-
gation game. For each player r witkj € int(A), r's expected equilibrium payoff is

EpU(H(s ) u(®) k) = —Es (H(®)+k —n(s"))” = — (W(VEA)) /n + (E&(N)/M)?). (25)
Prop. 8 and Prop. 10 are complementary. Prop. 8 establiblagglayen’s expected CIPO devi-

ation coincides with his expected deviation from affine, atefl byn. But equilibrium expected

payoffs depend osquareddeviations from affine. Prop. 10 shows that players’ expmepseyoffs



-26-
are equally negatively impacted by the variances of eadtrstteviation from affine; the sole fac-
tor distinguishing two players’ expected payoffs is thdet#nce between their squared expected
CIPO deviations.

We next study the aggregate equilibrium payoff of the playErom a normative perspective, there
are two benchmark measures of welfare that we might considher more obvious is the average

of players’ equilibrium expected payoffs. We refer to trssagerage private welfaredefined as
1 n
1=

Alternatively, one could take the view thabcial welfare should be evaluated from anbiased
perspective, i.e., from the perspective of a player whosemfable characteristic is zero, reflecting

a preference for truthful revelation. Accordingly we defuriased social welfaras
USW = Epu(l(s),u®),0) = Es(u®) —u(s)?. 27)

Our assumption thaf; ki = 0 implies that APW and USW differ only by a constant. Spediffica

APW = ——EBZ ) +k —u(s))?

- —%{Izlé + 27 KE (®)-ue) + nEa<u<e>—u<s>>2}
= USW + SK/n
From (47) the following result is immediate.

Proposition 11 (Unbiased Social Welfare): If A* is an MPE profile of a quadratic aggregation
game, then unbiased social welfare is given by

usw = —{u(VEA))/n + (EEA))+R(A))%} (28)

5.3. Anchored Games. The discussion so far illustrates the central role the exgoledeviation
from affine plays in affecting equilibrium payoffs. Thereaiglass of games in which some player
j’s expected deviation from affine is zero. This property Bafceither j’'s strategy is never con-

strained or if the constraints grassociated with the two announcement bounds cancel eagh oth



-27-

out in expectation. We later study games in which sughalwvays exists: in 8§6j is the “middle”
player in a symmetric game; in 87, the “largest” player in angan whicha never binds. We
refer to such a game as amchored gamend to playerj asthe anchor Anchored games are

particularly easy to solve and exhibit strong properties.

Proposition 12 (Properties of anchored games): Let A* be an MPE profile of an anchored
quadratic aggregation game and let j be the anchor. For edalggr r withA; € int(A),

) r's expected deviation from affine igk) — k),

i) r's expected CIPO deviation i&; — k),

Parti) is obtained by combining (22) with the defining prapef an anchored game, i.€&¢ ()\}‘) =

0. Part ii) then follows from Prop. 8. Strikingly's expected CIPO deviation depends exclusively
on the gap betweefis observable characteristic and, while r's expected deviation from affine
depends both on this gap andTo see why the latter is proportionalmprecall thatr’s objective

is to shift the mean announcement by a magnitgdéat is independent of, the greater is, the
smaller isr’s contribution to the mean, and hence the more mumis-report. Note that the more

r mis-reports, the more likely it is that he will be constrairi®y the announcement bounds. To
study anchored games, we add assumption A7 to A1-A6. Parmdi (i) simplify our anlysis.

Part (iii) ensures that every anchored game has an NMPE.

Assumption A7: (i) The announcement space is inclusive (cf. p. 17); (ii)tshee distribution is
uniform with density parametey = 1/(8 — 8); (iii) ||k||» < (6—8)/4n.
A7(ii), combined with (13), yields the widely used “unifomuadratic” specificatioh® The benefit
of the uniformity assumption is its tractability; the costhat it is inconsistent with the Bayesian
interpretation of our mod&}. Our alternative, non-statistical interpretation doesyéver, remain
valid. A7(iii) guarantees that our MPE is non-degeneratéheare are a large number of players
and thek’s are far apart, extreme players, in trying to steer theay@announcement in his favor,
might choose such extreme strategies that are always aoredrby one of the announcement
bounds, i.e., strategies that are degenerate. To verifydegeneracy, it suffices to check that
E&r (A}) = n(kj — k) is consistent with\; € int(A). Assuming w.l.0.g. thak; > 0, (18) implies:
é
EE(\) = (O PN —@dn®) =  05n <)\*+9 a)

sothat \f +8-a = ,/—EEr 1/ (kj — k if Af €int(A). (29)

15see Gilligan and Krehbiel (1989), Krishna and Morgan (20Mgrgan and Stocken (2008), and many others.
16see the discussions on pp. 2-3and p. 21
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The last equality follows from Prop. 12. Also, from A7(iii),

TE-gan — (@-07

4
on(kj—k)/n < §||k||m

sothat, = |/Zn(kj —k) — (8-2a) < ((8—8)—(8—a)) =a—8, verifying thath & int(A).
For anchored games satisfying A7, we obtain a closed-foqpnession for equilibrium payoffs.

Proposition 13 (Equilibrium Payoffs in Anchored Games)? Let j be the anchor in an anchored
guadratic game satisfying A7. Then player r’s equilibriuxpected payoff is

s - {.i(kj —ki)?/3+ (K —kj)2}~

Expr. (30) thus establishes an upper bound on expectedfpdiiat declines witm. As shall see
below, however, this doastimply that expected payoffs themselves decline monotdgicdn

the following sections, we study how the equilibrium outeoand aggregate welfare are related
to primitives of the game such as the vedtand the bounda anda. For an arbitrary quadratic
game, it is impossible to obtain closed-form expressiongHese effects. Accordingly, we will

focus on two special classes of anchored games for whickdaiftem results can be obtained.

6. SYMMETRIC GAMES

In this section we study games which are symmetric in a sts@mge. We say that the observable
characteristic vector is symmetric if for every playewith k- > 0, there exists anatched player r
with kr = —ki~. There may in addition be one moreiddleplayermwith ky, = 0. In 86.4 below, we
will refer to players whose observable characteristicpasitive (resp. negative) as thight-wing
(resp. left-wing) factionWe say that the announcement space is symmetric if the acement
boundsa anda are symmetric about zero, i.e.,df= —a; finally, we say that the type distribution
is symmetric if6 = —8 and if 8 is symmetrically distributed around its mean zero. We now sa
that a game isymmetriaf all these conditions are satisfied. A1-A7 are satisfiedulghout the
section, unless an exception is explicitly indicated.

Proposition 14 (MPE of Symmetric Games)! Every symmetric quadratic aggregation game has
a unique MPE satisfying: & (A;) = —nk;, for all r with A; € int(\). Moreover,
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i) for each player and matched player,Af = —AF;
i) if there is a middle player m, theky,, = 0.

The middle player, if there is one, is the only player who amrees truthfully in equilibrium. Any
other player always mis-announces and his expected davitxom affine is determined entirely
by his observable characteristic amdSymmetric games with a middle player are also anchored
games (see 85.3). Itis clear from Props. 14 and 8, howewisyimmetric games without a middle
player exhibit the same properties as those that have orgrdamline the exposition, we shall in

the remainder of the section tredl symmetric games as if they were anchored.

It is immediate from Props. 10 and 14 thv& equilibrium expected payoff is entirely determined

by k. and the average of the second moments of all players’ demgmfrom affine.

Esu(u(s"),u(®) k) = — (K(VE)/n + k) = {zk?(\/gnn\k. >+k|'2} (25)

The second equality is obtained by substituting zerdkfan (30). (27) and (25 now yield an

expression for unbiased social welfare:

R N -
Usw = Zk,( " 1) (31)

Prop. 14 provides us with a powerful tool for analyzing anchparing the welfare properties of
aggregation games with different parameters. The thresnpeters we study in the remainder of
this section are: the number of players (86.1); the magaitfdhe bound on the announcement
space (86.2); and the heterogeneity of players’ obsendad@eacteristics (86.3). Throughout this
section, whenever we make a statement relating to e{r&ior k-, we will be implicitly making as
well the matching statement abdita, or kr. In particular, when we study the effect of increasing

a, we will be simultaneously, but implicitly, reducirato preserve symmetry.

6.1. Effects of changing the number of players.Since symmetric games are anchored, at least
some of the impacts of changingre straightforward: a player’s strategy (although nophigoff)
depends only om and his own observable characteristic. From Prop. 12, aeptagxpected
deviation from affine is proportional to, while his expected CIPO deviation is independent of

n: asnincreases, each player except the middle one mis-repoas itacreasing extent, while in
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equilibrium the net expected effect of players’ distori@n the center’s decision is unchanged.
The effects ofn on expected payoffs and welfare are more complex. While e there is
no closed-form expression f¢,, A7 allows us to obtain determinate results. We will compare
expected payoffs and welfare for a finite sequence of “coatgal games with more and more
players. To make the games comparable, we relax assumgti@ih far the remainder of 86.1 and
construct our sequence by clonimgimes a base game withplayers and observable characteristic
vectork.” To ensure that A7(iii) is satisfied, we require that M = |1/(4qn||K||«)]|.1® Now
consider the aggregate welfare UGW in them'th game. Since from (31) and (95the difference
between USWm) and playerr’s expected payoff is independent wi the comparative statics

results we obtain for welfare apply also to payoffs. Rewgt(31):

q q 13
UsW(m) = —leK? 8 4} - > e S 110 LT IO
= oman |ki| = 9an

If mwere a real number rather than an integer, USW would be canvexwith

dusSw

— = i <K|2 — \/Z\Ki|3/(9mcn)) (32)

Thei'th element of the summation i§ 0 as|k;| = 2/(9mqn). LetM' = max{m < M : [[K||o <
2/(9maqn)} andM” = max{m € N : [ki| < 2/(9ma),Vi}; If nM is sufficiently smalllM’ < M
(since 29 < 1/4) while if, in addition, maxk;| — min; |k;| is sufficiently small,(M”,M] will be

non-empty. Clearly, USW) is strictly decreasing ofi,M’) and strictly increasing ofM”, M].

These results reflect the tension between two effects iasreases. The first is that players need
to mis-report more to accomplish the same expected CIPCatilen] this lowers welfare. The

second effect reflects the law of large numbersnascreases, it becomes increasingly likely that
players’ deviations from the mean of the type distributiatl @ffset each other, and hence their

individual deviations from affine will be mutually offseatty also. Prop. 15 summarizes:

Proposition 15 (Comparative statics w.r.t.n): In a symmetric quadratic aggregation game.

1The argument below could be made rigorous without violasisgumption A1(ii): simply clone as we propose, and
then perturb the cloned vector slightly to ensure uniquendsle preserving symmetry. In our view, the loss of rigor
involved in our approach is justified by the gain in parsimony

Brorx e R, |x] denotes the greatest integer not exceedingor m < M, the game wittm clones ofk hasn = mq
players. so thatk||. < 1/(4maqy) = (8 — 8)/4n, verifying that A7(iii) is satisfied.
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1) each original player’s expected deviation from affine isgortional to n.
i) each original player’s expected CIPO deviation is ingéepent of n
For a finite sequence of games obtained by cloning m timestanuee K9;
1)  USW and expected payoffs are convex with respect to theerwoh clones
i)  Suppose|Kk||» < (0—8)/4n, i.e., the players are relatively homogenous in
their observable characteristics. Then USW and player egaepayoffs ini-
tially decrease, and then may increase, with the numberoofad.

To reiterate, these results should be evaluated in the xtorftéhe non-statistical interpretation of

our model, rather than the Bayesian one (see pp. 2-3 and p. 21)

6.2. Effects of changing the announcement boundskrom Prop. 14, players expected devia-
tion from affine,E&, (-), is independent of the announcement boandf k; - 0, expression (18)

then implies that aa changes), must adjust so thd g, (-) remains equal tak.. Specifically:

Proposition 16 (Effects of changinga):T In a symmetric quadratic aggregation game,

(0 if r is the middle player
1 if r is up-constrained
dA, . :
FEE -1 if r is down-constrained (33)
(1-H(6r))—H(8r) i ¢ is bi wrained
GG if r is bi-constraine

Whenr is bi-constrained, the denominatorfgg is the probability that is constrained by at least
one of the announcement bounds. The numerator is the differfgetween the probabilities thrat
is up- and down-constrained.rlfis single-constrained, he increases the degree of his poitneg

at exactly the rate that the bounds are relaxed; he respoossiowly if he is bi-constrained.

We now consider the welfare effect of a marginal change iratiuncement bound. First note
that if the announcement space is inclusive, no player wilbbbconstrained in equilibrium. Then
players withk = 0 will adjust their announcements to fully compensate for ehange in the
announcement bounds. Hence, players’ utilities, as wellgasegate welfare, will be unaffected
by any change in the bounds. Specifically, recall from Proghhtr’'s expected payoff depends
on the first moment af's own deviation from affine, as well as the second moment$ pfayers’

deviations. If there is a middle play¢r &; = 0 always and thug¢; andV¢; are unaffected by
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changes ira. For any other player, since the change ik fully compensates the changednthe

deviation from affing; (or its distribution) remains unchanged, so do its first awbad moments.

This independence property no longer holds when at leasplawyer’s equilibrium strategy is bi-
constrained. For some intuition for this difference, Fegdrconsiders the impact of relaxing the
announcement bounds, when the only bi-constrained playkeeimiddle playem. Whenevem's
type lies outside the intervé, a], obliging him to mis-report his type, all players are negglti
impacted. The areas of the large triangles at either endeofytbe spectrum indicate the magni-
tude of the distortion. When the bounds are relaxe@t@], the sizes of these triangles shrink,
reflecting a decline in the variance wis deviation from affine. Ex ante, this change benefits all
players equally, since, from Prop. 10, each player’s paigoffecreasing in theotal variances of
all players. Prop. 17 provides an expression for the ratéhattwa bi-constrained player’s variance
declines with a relaxation of the bounds. The more playersmatially bi-constrained, the greater
is the collective benefit of a relaxation.

Proposition 17 (Effects of increasing the announcement bawl &):" In a symmetric quadratic
aggregation game, as the announcement space expands:

i) ifinitially the announcement space is inclusive, theiklgaum expected pay-
off of every player remains constant;

i) if initially some player is bi-constrained, then eachaper’s equilibrium ex-
pected payoff is equally positively affected, as is unhiesecial welfare.
Specifically, letting 1 denote the set of players who are bi-constrained in

equilibrium, player r's expected payoff increases—b#z Siel %, where
dvgi 4 "
da  H(8)+(1—H(®))

~

~ Bi 0
{(1—H(6i))/ (81— 61)dH (D)) — H(@i)[_ (Si—Gi)dH(Si)} <0 (34)

9

Prop. 17 delivers a clear policy message, at least in theegbaf symmetric games. Recall from
(12) that a necessary condition for a player to be bi-comstthis that the type space is not a
subset of the announcement space. When, as in the present {haptype space is known by the
policy-maker who sets the announcement bounds, it is Papttmal to select an announcement

space large enough to contain the type space. More genaevbtigurse, the bounds on the type
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space will not be known with certainty. In this case, sinég ¢ostless to expand the announcement

space, and possibly costly to contract it, the announcespate should be as large as possible.

6 player types

m's orlglnal strateg
m's new strateg /< /\

T ——signal

FIGURE 4. Intuition for Prop. 17

6.3. Effects of increasing player heterogeneity.In this subsection we study the impacts on the
equilibrium outcome and on welfare of changes in the vektoirobservable characteristics. To-
tally differentiating the identitfg¢, = —nk. in (50) w.r.t.k, andA,, we obtain

dA, n
dk H(8)+(1—H(8)) - )

where the denominator equals the probability with whiclyefa is constrained by the announce-
ment bounds. Thus, &g increases); also increases, and at a faster rate, to maintain the equilib
rium property thaE&, = —nk.. From Prop. 8 we know that &sincreases and thyE¢, | increases,
the difference between the expected equilibrium outconde ‘'arexpected CIPO outcome also in-
creases. Consequentlg expected payoff decreases. Prop. 18 quantifies this tieduc

Proposition 18 (Effects of dispersing players’ observableharacteristics):" In a symmetric
guadratic aggregation game, if k£ O, then

avE, 1 B
ak] — M\ aeracrey Y T ° (39)
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To see the effect of increasitgon players’ expected payoffs, we totally derive the rightdhaide
of (25) w.r.t. ki; noting that to preserve symmet% = —1, wherer isr's matched player. Akr

dVEf + 2kr) for other players, the decline % dvér,

increases:;’s andr’s welfare decline b)( 2

6.4. Effects of increasing inter-faction player heterogeneity The results in 86.3 are hardly sur-
prising: as players become more heterogeneous, the extédmeio mis-reporting increases and
this reduces welfare. The impact of an increasmiar-factionheterogeneity is less obvious. To
explore this issue, we will reduce notation by assuminghis subsection only:

Assumption A8: (i) [0,6] = [-1,1], so thai(-) = 1/2; (i) there is no middle player, so that each
faction hasn/2 players; (iii)n is divisible by 4.

Letk' € (0,1)"2 be a strictly increasing vector, denoting the observablratteristics of the
right-wing faction’®. Pick a vectora ¢ Ri/f and letdk = (—a,a) € R"2. We will consider

a family of right-wing profiles of the fornv{l?r +vydk: y~ 0}. The observable characteristics
of the left-wing faction are implied by symmetry. An increai® the nonnegative scalgurep-
resents a faction-mean-preserving spread of each fastmmnfile of observable characteristics.
As y increases in a neighborhood of zéfathe moderate members of the faction become more
moderate—thalk's are negative for the firsh/4 faction members, all of whom havés be-
low the faction’s median—while the extreme members becormeerextreme. Prop.19 below
establishes the following impacts of such a spread: if plEyeharacteristics are initially quite
homogeneous—specifically, contained in the intefveal/4n, 1/4n)—the spread will reduce both
USW and APW. If the factions are initially quite polarizedpegifically, no player’s characteristic
belongs td—1/4n,1/4n|—the spread will increase USW (though not necessarily APW).

Proposition 19 (Effect of a faction-mean-preserving spred of observable characteristics)
Let USWy) and APWy) denote, respectively, equilibrium unbiased social andregate private
welfare for the n player symmetrlc aggregation game whaoget+wing faction has the profile of
observable characteristids” + ydk.

. dus dAP
i) if maxk')<1/4n, then d://\(y)‘y:o <0 and dx\(y) o < 0

i) if mln( "y>1/4n, then duﬁiwy)) >0

19Recall from p. 28 that playerbelongs to the right-wing (resp. left-wing) factionkif > 0 (resp.k, < O)
20we need to keepclose to zero to ensure that the perturbed velctor ydk has the same properUeslas
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To obtain intuition for this surprising result, we return Eigure 3. Consider with k, < 0.
Intuitively, the magnitude d¥ ¢, increases with the magnituderds involuntary distortion triangle.
This triangle increases with the squarersflow threshhold type@;. HenceVé, is convex inr’s
threshhold type. On the other hand, in a symmetric game withifarm distribution over types,
r’s threshhold type is a concave functionrés expected deviation from affine. The curvature of

the convolution relatiny &, to k; depends on the balance between these two effects.

7. SNGLE BOUNDED GAMES
In many applications, it is appropriate to assume that tm®ancement space is bounded at one

end but not the other. The most obvious example is when ammeowents are restricted to be non-
negative but there is no natural upper bound. (For examgénta might be reporting the variances
of some privately observed statistic.) We refer to gamasfgatg this condition asingle-bounded
aggregation gamesintuitively, the upper bound on actions in a single-bouhdame is infinite,
but to ensure existence we need compactness, and hencesas$nite upper bound. From (15),
no player’s equilibrium announcement will excem:(inax(k) +0- a) +a. Hence, to ensure that

anever binds, we impose in this section only

Assumption A9: a=6=0, anda=n(maxk)-+6).

A9 implies that the announcement space of a single-bounaee gs inclusive, as well as:
AN>0 = E&(A)=0 (37)

Aggregation games satisfying assumption A9 look and feékglifferent from the symmetric
games studied in 86. In spite of this, the comparative stagsults we obtain in this and the
preceding section are remarkably similar, at least for gawith few enough players that NMPE
exists. The connection between the two classes of gameatibdth are anchored. The similarity
of the properties they exhibit is an indicator of the extenivhich these properties are driven by
the observable characteristic of the anchor. The anchosingle-bounded game is the player
whose observable characteristic exceeds that of any othgerp Note that sincg ki = 0, ky is
necessarily positive. We begin by characterizing the dguiim of an arbitrary single-bounded

game, then consider asymptotics and end with a discussicongparative statics.
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Proposition 20 (Single Bounded Games): Every single-bounded quadratic aggregation game
satisfying A1-A6,A9 has a unique MPE" in whichA;, > 0 and EEn(A;) = 0. Moreover, for all
r #h,Af €int(A) implies B, (A;) =n(ky, — k) > 0.
SinceE¢&y = 0, Prop. 8 implies that the equilibrium outcome implemdrgCIPO outcome in ex-
pectation. Sinca= 0, E¢, > 0 forr # himpliesA; < a— 8 =0. That is, every other player, even
including one whose observable characteristics is vergedoh’s, will under-report to counteract
h's extreme over-reporting. Indeed, from (L&nd Prop. 12! SiAi =n(l—n)ky <O; i.e., when
n> 2, h's over-reporting is more than compensated by the sum offadirglayers’ (unconstrained)
under-reporting. Since player£ h is constrained by the lower bourg his expected CIPO out-
come differs from the expected equilibrium outcome. FrompP20,r’s expected deviation from

affineE&, = n(k, — k), is greater the more differentiis characteristic fronn’s.

To study the asymptotic properties of single-bounded gamesonsider a sequence defined by
finite support measures & exactly as we did for Prop. 4. That result was driven by t&ietion
that announcements were contained in a compact intervatl independently afi. Surprisingly,
Prop. 21 delivers a similar result without uniform compasst we now raise the upper bound on
announcements asincreases (cf. A9), to ensure that this constraint nevetsin

Proposition 21 (Limit of equilibria in single-bounded games):" Assume that@") converges

weakly to a nonatomic measugeon K whose cdf isp, and that A1-A6,A9 holds for each n. The
outcomest") converge to the constant function whose iméiiig = limn ki, + Eg9.

We conclude this section with a discussion of the compagatiatics properties of “small” single-
bounded games. To avoid repetition, no formal results valpbesented; we merely discuss simi-

larities and differences between the corresponding 1©8ui6 and 87.

7.1. Effects of changing the number of players.The effects of increasingin a single-bounded
game are similar in most respects to the effects analyze®.ih 8As in a symmetric games

expected deviation from affine is proportionalrie-in this case, ifA* is an equilibrium profile
thenE&, (A;) = n(kn — k) > O—whiler’s expected CIPO deviatioik, — k;) > 0, is independent

21Using (18) then Prop. 12, and then assumption A1(i), we obtain:

nky = Iz)\i‘i‘i;EEiO\i) = Iz)\i+ni;(kh—ki) = IZAH'”Zkh-
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of n. The expression for's expected payoff is identical to the expression betweenetijuality
signs in (2%), except that thég's are replaced byk, —kj)’s. The comparative statics of USW
and expected payoffs w.r.hh are comparable to those summarized in Prop. 15. The onéngtrik
difference between symmetric and single-bounded gameseoos the strategic role played by
the anchor player. A symmetric game is anchored by the middgerm, whose role is entirely
passive: regardless of who else is playing the gajer 0. A single-bounded game is anchored
by playerh, whose strategy;, plays a pivotal equilibrating role. Far# h, r's expected CIPO
deviation is positive and independentrpfin spite of the fact that asincreases, each new player
contributes an additional downward bias to the mean reperfr(#= h = A; < 0)! This balancing
act is accomplished single-handedlytyywhose positive bias offsets the sum of all other players’
negative biases. More precisely, from (13 = nky — ¥;.n(E&(Ai) +Ai); since each term in

the summation is negativiy, increases super-proportionally mgcreases.

7.2. Effects of changing the announcement boundSuppose the lower announcement bound,
a, decreases, holdingconstant at zero, ensuring that the announcement spacenssimausive.
The effects of this change are identical to those discussg6.R: each player’s strategy adjusts to
hold constant the first and second moments of his deviat@n &ffine; the equilibrium outcome

remains unchanged, as do all players’ expected payoffs.

7.3. Effects of increasing player heterogeneity.Once again, the effects here are qualitatively
similar to the effects described in 86.3-6.4. In the presemtext, we interpret an increase in
heterogeneity as an increase in all components of the gapndilc= (k, —ki)in. Such a change
unambiguously lowers all players’ expected payoffs and USMie proof closely parallels the
proof of Prop. 18. Again, it is more interesting to consider impact of a mean-preserving spread
of Ak. If we impose assumption A7 and I, 8] = [0, 1], the result we obtain is very similar to
Prop. 19: if the largest element AK is less than 14n, USW declines with a mean-preserving

spread ofAk; if the smallest element is greater thafdt, USW increases.

8. SUMMARY
This paper contributes to the literature on informationraggtion. Two features that distinguish

it from the mainstream of this literature is that playergaods are aggregated by averaging rather
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than majority rule, and their strategy set is an intervdieathan a binary choice. In this context,
the bounds on the strategy set play a critical role: if a grofuplayers have distinct preferences,
then all but at most one of them will be constrained by the ldgusmith positive probability. Our
main general results are: if agents have identical pref@grinformation is perfectly transmitted,
regardless of; if there is any degree of preference heterogeneity, howvevivate information
is entirely obliterated as approaches infinity. For games with a small number of playees
establish a number of comparative statics results for & dbgames with quadratic payoffs which
we call anchored games: equilibrium outcomes and playengoffs are independent of the size
of the strategy set; asincreases, payoffs and social welfare tend to decline, buhecessarily
monotonically; a mean-preserving increase in the hetemigeof players’ payoffs reduces payoffs
and welfare, but if the player set is split into two symmefdctions, then an increase in the

heterogeneity of each faction will under some conditiomsaase payoffs and welfare.
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APPENDIX: PROOFS

Proof of Proposition 1:  To prove the proposition we apply Theorems 1 and 2 of Athe@ {20
The first of these theorems is used to establish existendaf-action aggregation games. The
second implies existence for general aggregation gamespfly Athey'’s first theorem, we define
afinite action aggregation gam® be one in which players are restricted to choose actiams fr
a finite subset oA. In all other respects, finite action aggregation gamesdsetical to (infinite
action) aggregation games. We now check thattisfies Athey’'s Assumption Al. Clearly, our
types have joint density w.r.t. Lebesgue measure whichuisiéed and atomless. Moreover, the
integrability condition in Athey’s Al is trivially satisfebsinceu is bounded. Moreover, inequality
(7) implies that the SCC holds. Therefore, every finite actggregation game has an MPE in
which playerr’s equilibrium strategy is nondecreasing.

By Athey’s Theorem 2, the restricted game has an MPE, csill iTo show that* will also be an
equilibrium for the original, unrestricted game, it sufBde show that for alt, all 6 and alla> a,

% < 0. To establish this, note thsit, >s_, > 0, so that sinceis strictly increasinga > a

implies
Ul(a®s,) < Uiags’y) < Uf@bs, < U/(ag0o < 0

Finally, to establish tha is strictly increasing and continuously differentiable @n(s), 8], note

thatU/(s(+),-;s—r) = 0 on(6(s),B6]. From (7), assumption A6 and the implicit function theorem,

we have, fOI’ aIB c (Qr(s),é], % — _ aZUr(S’aE(agge;S—r)/ 62Ur(5ra(22)79§sfr) > O. -

Proof of Proposition 2:  Lets be an MPE and assume that-kj > € > 0. Pick0" € ©* =
argmin(s —s;j) and lety=5(8*) —sj(6%), so thats(-) —y > sj(-). Thus,yis the minimum amount
by whichs(-) exceeds;(-); we will establishy > 0. Note first that

Ui(sj(8"),8%s-j) = Uj(s(8")—v,0%(s,s-ij) = Uj(s(8),0%(s—v,sij))
< U{(s(8),08%(s—vysij) < U(s(8),0%(sj,sij) (38)

The first equality merely relabels some terms; the secondliggtold because the outcome func-
tion satisfies condition (3). The strict inequality holdscéese by assumption A5(iikj < ki

implies thatUj’ < U/. The weak inequality holds becaudgis concave w.r.ts_; (display (6)) and
S(-) —y= sj(+). It now follows from (38) that ilU{(s (8"),8";s_i) <0, thenU;(sj(8),8%s_;) <
0, implying thatsj(6*) = a, while if U/(5(06%),6*;s_i) > 0, thens(6*) = a. In either case,
S(6*) —sj(6*) > 0. Hence, by definition o8*,

0 < s(6)-51(6) < s()—si(), (39)

i.e., I's strategy is never lower thajis strategy. Thus;j(8) > a impliess(8) > a, implying in
turn6;(s) > B;(s); ands(8) < aimpliess;(0) < a, implying in turnBj(s) < 6;(s), so that part i) is

proved.



To prove part i), note that fod (Qj(s),éi (s)).

U/(s(8),8;(sjs—i,j)) = 0 = Uj(sj(6),0;(s.s-ij))
< Uj’(Sj(G),&(Sj,S,i’j)) < Ui/(Sj(e),9;<Sj,S,i7j>) (40)

The equalities hold because neitheror j is constrained at typ8. The weak inequality follows
from property (6) since, from (39% > sj, and the strict inequality is implied by A5(ii). The
inequality between the first and last expressions of (407)hined With (6), imply thats (8) >

sj(0), proving part ii). To prove part iii), note first that sm%k, arap 7> 0 > 5 2 (assump-

tions A5 and A6), sinceis bounded and the domainwfs compact, there emsﬁswg wa > 0 such

0 2u(-,-,-
that £4) 25, 6TL$(U( )) < g and%,} € (—wa,0), S0 that for alln, L4=s) — x 6'[[3(“(6)) <

wg/n? while a(aZ ) = n_lzaaﬂga)z) € (—wa/n?,0). Now fix 8 € (8j(s),8j(s)) so thatj’s first order

condition is satisfied with equality & From the strict inequality in (40), the lower bound on

agfak) and the fact thatk; — k; > €), we can infer that
U/(si(8),6;(sj,s-ij)) > 2e3/n. (41)
Moreover, using the bounds just identified, we have thanfor™(& a);%a (0-8)ae}
Al . a du/(a,8; (sj,s_i i
Ui (sj(8),6; (sj,s-ij)) — U/(@,6;(sjs-ij)) = _/ dU(@,8:(8j5s-i0)) 4
si(8) da
wa(a—a
< % < sé/n (42)
- 3 (39 /e o
while  U/(@8;(sy.s17)) ~ U/@8i (5.5 1)) = [ S oieiillgy
6
< we(n2 9 < €d/n (43)
Inequalities (42) and (43) together imply thts;(8),8; (sj,s_i j)) — U/ (a,8; (sj,s_i j)) < 2e3/n,
which, together with (41), implies that'(a, 6; (sj,s— .7,>) > 0. It now follows from (8) and mono-
tonicity of 5(+) thata= 5(8) < s(-), establishing part iii). The proof of iv) is parallel. [

Proof of Proposition 4:  Lets" denote the MPE of the'th game and leK" = {k e K : Ji €
{1,...,n} s.tk" =k ands" is non-degeneraje From parts iii) and iv) of Prop. 2, diamet&") —n,
0. Since the weak-star limit ¢fp") is a nonatomic measure, it follows th# > 0, 3N € N such
that forn > N, @'(K") < €. Conclude that the limit outcome is a constant function, sehealue,
k*, is a convex combination @anda. [

Proof of Proposition 6:  We first assume thatis admissible and unit affine but not ZSUA, i.e.,
that there existd € A? such thass:(-) = 1(-) + Ar, with riiAr # 0. Assume w.l.0.g. that; > 0 and
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thatla— 8| > |[a— 6|, implying that—A; € A. Fix 8; arbitrarily:

Ui(si(8)).8;is) = /eu(t(si+Ai,e,-+>\j>,(ei,e,->,i>dn(ei>
which, since is CISE

< /@U(t(ﬁi,ej),(Si,ej),_)dn(ﬁi) = Uj(6j—Ai,6j;s)

That is,sj(-) is not a best response agaigsto that is not an equilibrium profile.

Now assume that is continuous but not unit affine. (From Prop. 1, we do not neecbnsider
discontinuous strategies.) Note also that foand g continuous,f 2 g implies thatf strictly

exceedsy with positive probability. W.l.0.g., assume that theresexh > 0 such thatsj(-) 2

t(-) —A, with sj(8;) =06; —A. We now show that i§ is a best response $p, then(s(-) —1(:)) <A.

Considers such thas(6;) > 6; + A, for some8;, so thats(6;) +sj(-) > 6 +A+5sj(-) £ 6 +1(-).

Fact (5) on p. 12 now implie§s(6i),sj(-)) > t(6i +A,sj(-)) 2 t(6;,1(-)). SinceU; is concave ir

and, for all6j, u(-, (8;,8;),k) is maximized at(6;,0;) = p(8;,6j):

Ul(3(8).8is1) = [ Got(s(@).(91)).8:9)).Kan) < [ TXt(@+A.5(9,)).(8.9,).Kidn(3)
[ H0(8,9)),(8,9)),Kdn(3) = 0

This establishes that § is a best response 8, then(si(-) —1(-)) < A. But in this cases;j(8;) +
s(-) <8j+1(:), implying thatt(sj(8;),s(-)) < t(8j,1(-)), so that){(sj(6j),8;;s) > 0. Therefore,
Sj(+) is not a best response fpragainsts (-) at0;. [
Proof of Proposition 7:  We will prove uniqueness only for non-degenerate equditrprofiles.
Uniqueness for other profiles is ensured by restriction, () we omit the details. LeX* be a

NMPE for the aggregation game, and dbe any other profile of strategies such that for some
Iy Aj # }\T. We will show that ifA satisfies the necessary condition (22), then it fails theroth

necessary condition (45 Suppose w.l.0.g. thatj > Aj. From (21),E&j(A}) < E&;j(A}). For all

r # j, (22) implies tha€g; (A;) < E&;(Ay), and (21) in turn implies that, > A;. To establish that
A cannot satisfy (19, it suffices to show that

(Zm+2EEi(Ai)> > (zAHZEa(Ar)) = nk

i) [ i)

or, equivalently

Aj — A} + ;O\i -N) > ;(Eﬁi()\i*) — E&(N))
i#] i#]
This last inequality is indeed satisfied, since by assumptjo> )\]‘ while (21) implies that for all

i # J, N — A > E&(AT) —E& (). [ |



Proof of Proposition 8:  From (17),Eg (U(s*(8)) —u(®)) equalsu(A*) + p(EE), which, from

(15), equalsk; + E&; /n. Hence, from (23)Es (u(s*(8)) — (8, k)) = E&;/n. [ |
Proof of Proposition 9:  Rearranging (15), we obtain tleterim expected equilibrium outcome
Es (WE)6) = (min{amax(® +A.al} + nk+ 5 b ~Ar)/n
i£r

It follows that for (r,6;), the interim expected equilibrium and CIPO outcomes wilhcale iff
min{a,max{6, +Ar,a}} =6, + A, i.e,,(r,6), is not constrained by the announcement boults.

Proof of Proposition 10:  Let&; =&;(A;). Expanding the left hand side of (25), we obtain

Es(M®) +k —H("3)? = Es(H(E' D) —u®) —k)?

= Es(u(s"(®)) —k(®))* — 2 (K(EE") +H)) + K (44)

The last equality follows from (20). Expanding the first tesmthe right hand side of (44),

Es (L(s*(3))—n(®)? = Es(u(S*(ﬁ)—V@H*Z)+u<>\*))2
E*
= Ep(H(S" @)~ (®+A)))” + 2uAU(EE) + u(A*)? (45)

The first equality merely adds and subtraeth*) and rearranges terms; the second averages both

sides of the identity in (17). Now expand the first term in (&bdbtain

Es(U(s"(8)— (8 +A")))° = (zEa (Oi+N)° + Y Y, EEEE])/n?
= (V& + Y (EE) + ST EHEE) /M = (YVE + [YEE])
= W(VE")/n+ (u(EE)) (46)

The first equality is obtained by expandipg® +A* —s*(8)), the second from the relationship
E(X?) =Var(X) + (EX)? for a random variablX. Now, substituting (46) back into (45)

Es (u(s"(®))—nu®)® = p(VE)/n+ ((EE") +p(")? (47)
Finally, substitute (47) back into (44) to obtain

E ((9) +kr —u(s"(8)))* = H(VE") /n + (H(EE") +1(A) —k)® = w(VE") /n + (E&;/n)?

The last equality is obtained by addigg; /n to both sides of (13 and substituting fok; . [ |
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Proof of Proposition 13:  We first show that under A7, for the variancerd deviation from
affine isVE, () = EEr2 <1 /ﬁ — 1). To see this, assuming w.l.0.g. that> 0, and using the
fact thatA, € int(A), we have

€] _ 3
VE() = —E& + [ (A -a°dn(9) = n/3(A+0-a) —EE  (48)

a—Ar

which, from (29),

3/2 3
_ n(z2 CEs2 8E&P .o _ 2 8
_ 3<nEEr) EE2 - o B = (| 1),

Prop. 10 now implies thats equilibrium expected payoff is {zi [EE? <, /9r1|8EEi| - 1)] +(EEr)2} /n.
Equation (30) then follows from Prop.12. The inequalityldals since|kj —ki| < 2|kl <
(6—8)/2n=1/(2nn). u

Proof of Proposition 14: The existence of a unique MPE was established in Prop. 7.i@@ms
A" such thatE§, (A;) = —nk: for all r with A, € int(A) and parts i) and ii) of the proposition
are satisfied. Our symmetry conditions ensure that such @rvexists, i.e., that if andr are
matched players, kf = —AF, andEEH(AF) = —nky, it follows from symmetry, (17) and (18) that
E&r(Af) = —nkr. With the restrictions in (16), we only need to verify thab/(lis satisfied by\*.
Sincey ik = 0 (assumption A1), we have

—nk = i;nlq = —;Eéi(%i‘) (49)

Moreover, from parts i) and ii) of the propositioR; A’ = 0. Substituting this property and (49)
into the right hand side of (1 we obtain

SA + YEEQN) = nk,
I i#r

verifying that (15) is indeed satisfied. |
Proof of Proposition 16:  From Prop. 14, we have

& 0 _
EE, = /@(—a—(Gr-l-)\r))dH(Gr)-I—/ér(a—(er-l-)\r))dH(er) = -—nk, (50)

where in the first integration we substituteddan= —a. Totally differentiating both sides with

respect ta andA; and noting tha, =a— A, = —a— A, and6, = a— \,, we obtain

H(e) - (1-HE)| + (o) +(1-HE)| @ = o
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(1-H(8r))—-H(®r) o _ ~
= M@ AG) Whenr is bi-constrainedH (6;) andH (6;) are both nonzero, so that

%’ e (0,1). Whenr is up-constrained (resp. down-constraineéti)g,) = 0 (resp.H(8;) = 1), so

that%"gr reduces~ to 1 (resp. -1). fifis the middle player\; = 0 and, since everything is symmetric,
H(8)=1—-H(&) so thatx = 0. |

Proof of Proposition 17:  Since part i) of the proposition follows immediately fronethis-
cussion below Prop. 16, we need only prove in detail partS)ppose there is a playewhose
strategy is bi-constrained. (lis not the middle player, his matched player is also bi-aairs¢d.)

We will show that as increases bya, the variance tera &; decreases, which, from (33nduces

the same increase efn—lz %da in the expected payoff of each player. Let the distributionck

tion of playeri’s deviation from affine§;, be denoted a(-). ObviouslyF(-) is derived from the
distribution function of6, H(-), as well as froni’s strategy and the announcement bounds. The

random variabl&; can be considered as a function of random varifple

(

a—-(8i+A) = 6-6 if 6 <6
& = Yo if 6 < 6 <6 (51)
a—(6+A) = éi — 6 if 6 > 6

Given thatd; is distributed according tbi(-), the distribution functiorf(-) of &; can be derived
by combiningH(-) and (51). Specifically, the support &f is [6; —6,6; — 8]; the fact that is

bi-constrained implies thﬁ; — 6 < 0andd; — 6 > 0; The values of; are given by

(

~ —

Prob(6 — 6; <x) = 1—H(8; —x) X € [6;—6,0)
R(x) = Prob(6; > 8) =1-H(8) if x=0 (52)
Prob6 —6; <x) =1—H (6 —x) x e (0,6, —9].

Note in particular thak;(-) jumps up a = 0 from 1—H(6;) to 1— H (6i). To derive the variance

V&, note first that since is bi-constrained); € int(A). We can therefore invoke Prop. 14 to
obtain:

ko= E@) = [ adR@) - a0 [ R,

i - i —0

where the last equality is obtained after integrating bygarhus,

66
[NF.(aodai —  6-0+nk. (53)

06;—6 -
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The variance o&; can now be written as

vai:/:f:(a—E(zo)ZdF.(a):@i—@—E(Ei))Z - /;jﬁ(mZ(a—E(a))da
i 9 06;—6
—@-8+nk)? — 2ok [CCR@E)NE - 2[ RS
— (6-0)2+2(6i—B)nk+ (k)2 —  2nk(6—8+nk) — 2/9_&: R (&)&idE;

=<@i—@>2—<nk>2—2[/:_9<1 H(® - &) zda.+/_91 H(8, a>>zd5.}, (54)

where the second equality follows from integration by pattte third fromE(§;) = —nk, the
fourth from (53) and the fifth from (52). Now, differentiagjr{54) with respect ta and noting that

B =a—Aj = —a— A and6; = a— A;, we obtain

% - 2{[1_%}/6&”(&_&)&% - {l+%}/()9igﬂ(gi—ﬁi)ﬁidﬁi}

4 /
T HG)+(1-H@E) o8

8 . ~ 0
{H(@o/e (6 —B)dH(8) — (1—H(E)) [ (ei—Qi)dH(ei)} <0

_ as; Y
The first inequality holds becaus#(8) — 0 andH (8) = 1, while o= = 222 — _ (14 ) ang
d6 _ daN) _ (1_ 9 The second equality is obtained by substituting in thealid; /da

using (33), changing the variables of integration frgnto 6; = éi —¢&; and to6; = 6 —¢&; in the

two integrations respectively. The term in curly brackstségative becauge< 8 while 8 > 0.m

Proof of Proposition 18: By symmetry, we can, w.l.0.g., assume tkat> 0. Similar to the
procedures used to derive (R4ve differentiate the expression fgg; in (54) w.r.t. A, to obtain

0 ~
a‘;;zr 2/ ~8)dH(8,)+2 | (8~ 8)dH(8) = ~2E8 = 2nk, (55)
r r

where the last equality follows from Prop. 14. Note that i§ up-constrained, the first term in

expression (55) is zero. Siné’g& = ag/kfr + ag’f’ g)‘f, the Proposition is obtained by taking the
derivative of (54) with respect ﬂq and comblnlng (35) with (55). |

Proof of Proposition 19:  Let|* denote the members of the right-wing faction and fetlenote
the moderate members of this faction. Pick | ™. Let&,(y) denoter’s deviation from affine in
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the equilibrium associated with the paramateSincer is up-bounded, we have

_ ] . 1 . -
= E&(0) = [ (& -8)dH@) — 05[ @-8)d8 — (1-8)%4

The first equality follows from Prop. 14 and the third from @sption A8(i). Henced, = 1—
2v/nk"™. MoreoverH (8,) = O.5ff’ de = 1+ef . Now from (36)

dVv&, 2+ ( H(6) ) 2y <1+ér) oo (1= /nk'
= 2 = = 2 i = 2 - v T
ke |y " HE) s K e
= 2n(vnk' —nk)
Hence* dk{z ( ViV = 2n> < 0ask = 1/4n. Thatis, fork > k, &k - dVer (k) j¢

< 1/4n and dVEr(k/) dVSL() if kK> 1/4n. From Prop.11, Prop.14 and symmetry,
USW 22.e|+VE( Y), so that
v—0>

dUSwW 25 dVEi(y)
Sincek’. e > kt, we have®USW| - 0 if min(k") > 1/4n and doW|  <oif max(k ) <

dy

dVE&n/a(Y) ' dV&i(y)
-2 ai| —— -
|ezl+ ( dk+n/4 y=0 dk

y=0 i dy ‘V—O
dy y=0 —0

1/4n. u

Proof of Proposition 20:  We first establisfA/, > 0, so that, from (37)E&n(Af;) = 0 and thush
is the anchor of the game. Suppose insteadihat 0 andA}, € int(A). (We can easily rule out the
situation wher\: = min(A) = a— 8; we omit the details.) Sinde, > k- Vr # h, (22) implies that
EEn(A}) < E& (A7) and thus\; < Af < 0. SinceEE;(Ar) = 0 whenA, =0, (21) and\; < 0 imply
that

AN+EE(N) < O (56)

From (18) andAj, € int(A), Aj, = nky — 3 2n(Af +E&(Af)) > 0, where the inequality is due to
kn > 0 and (56). This contradicts our supposition that< 0. Property (37) now ensures that

E& (Ar) =0, so that single-bounded aggregation games are anchotie@mdhorh. The second
part of the proposition now follows from Prop. 12. [ |

Proof of Proposition 21:  Let A" denote the MPE of the’th game and leK" = {k e K :

Ji € {1,...,n} s.t. k' = k andA € int(A)}. From Prop. 20A0 > 0 and by construction, the up-
per bound on announcements never binds. Hegjce K", for all n. Next note that as in the
proof of Prop. 4, diameteK") —p 0, so that the limit outcome is a constant function. Sihce
is almost-never-constrained, Prop. 9 now implies that itlhhé butcome coincides with the limit
of h's interim expected CIPO outcomes (which are independeff)of Specifically, this limit is

limak?+EsE ,1((6r,9 ) = limnk"+ Es9. n
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