
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
A performance model for early word learning

Permalink
https://escholarship.org/uc/item/9nb618qs

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 38(0)

Authors
Frank, Michael C.
Lewis, Molly L.
MacDonald, Kyle

Publication Date
2016
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9nb618qs
https://escholarship.org
http://www.cdlib.org/


A performance model for early word learning
Michael C. Frank

mcfrank@stanford.edu
Department of Psychology

Stanford University

Molly L. Lewis
mll@stanford.edu

Department of Psychology
Stanford University

Kyle MacDonald
kyle.macdonald@stanford.edu

Department of Psychology
Stanford University

Abstract

The emergence of language around a child’s first birthday is
one of the greatest transformations in human development.
Does this transition require a fundamental shift in the child’s
knowledge or beliefs, or could it instead be attributable to more
gradual changes in processing abilities? We present a simple
model of cognitive performance that supports the second con-
clusion. The premise of this model is that any cognitive op-
eration requires multiple steps, each of which require some
time to complete and have some probability of failure. We
use meta-analysis to estimate these parameters for two com-
ponents of simple ostensive word learning: social cue use and
word recognition. When combined in our model, these esti-
mates suggest that learning should be very difficult for chil-
dren younger than around a year, especially with gaze alone.
This model takes a first step towards quantifying performance
limitations for cognitive development and may be broadly ap-
plicable to other developmental changes.
Keywords: Speed of processing; development; word learning;
meta-analysis

Introduction
Human beings begin their lives as helpless infants and yet
rapidly become children who are able to perceive, act, and
communicate. Infants who cannot communicate become tod-
dlers who use words to share attention and indicate their de-
sires. Toddlers who cannot follow the trajectory of a ball be-
come preschoolers who can. A fundamental question of de-
velopmental psychology is how these external behavioral dif-
ferences come about via internal processes of developmental
change.

One possibility is that these external transitions are a prod-
uct of radical internal shifts, such as the discovery of the com-
municative function of language, or the emergence of a the-
ory of others’ minds. Such shifts have been a centerpiece
of constructivist theories of development from Piaget (1969)
onward. These theories have obvious appeal, at least in part
because the outward changes in children’s cognitive abilities
are so dramatic. Yet several decades of work with infants has
revealed a surprising amount of detectable knowledge about
cognitive domains, often months or even years prior to these
external manifestations (Carey, 2009). How could these two
sets of observations co-exist?

Perhaps children’s intense performance limitations—
basically, difficulties using knowledge or representations that
they nevertheless possess—limit our abilities to observe or
even to measure their competence (Chomsky, 1965). Per-
haps planning to reach for an object is difficult and time-
consuming enough that toddlers lose track of what they were
looking for (Keen, 2003). And perhaps infants are trying to
learn the meanings of words, they are just too slow and error-
prone to make much progress in this task. In some sense, this

hypothesis constitutes a strong null model of development:
speed and accuracy must change, even if no internal repre-
sentations do.1

In the current paper, we take up the challenge of build-
ing such a null model, using early word learning as a case
study for exploring the role of performance limitations. The
emergence of language is one area where theoretical views
have differed widely. Must children master a particular in-
sight about the role of language in communication to begin
learning words in earnest (Hollich, Hirsh-Pasek, & Golinkoff,
2000), or are they pursuing the same activity throughout early
childhood, but with more success later on (McMurray, 2007)?

Some empirical data support the possibility of early com-
municative competence. At their first birthday, infants have
some expectations about the function of words in commu-
nication and show longer looking times when those expec-
tations are violated (Vouloumanos, Onishi, & Pogue, 2012).
And 6- to 9-month-olds perform above chance in word-object
mapping tasks (Bergelson & Swingley, 2012). But the level
of performance they show compared with older children is
so limited that the data also seem to provide prima facie evi-
dence for some kind of shift in representation.

We suggest instead that continuous developmental pro-
cesses might be responsible, specifically increases in the
speed and reliability of internal cognitive processes. We pur-
sue this suggestion by creating a performance model for early
word-object mapping. Our starting point is the idea that even
the simplest word learning input for object referents involves
following some kind of attentional cue (e.g., gaze or point-
ing) to a distal target and then processing some kind of link
between a word and the target referent. Each of these abili-

1Note that this viewpoint does not entail any sort of nativism at
all. It merely suggests that the relevant competence emerges signifi-
cantly earlier than is typically supposed.
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Figure 1: A schematic visualization of our model of early
word learning, with the stages of processing (squares) along
with the relevant parameters for each stage (circles).
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Figure 2: Probability of successfully executing chains
of cognitive operations—each with their own speed and
reliability—with different numbers of steps (shown by dif-
ferent colors). Facets show different temporal thresholds.

ties has been shown to develop dramatically over the first two
years and beyond. So it stands to reason that any achievement
that depends on both should develop even more dramatically
in the same period.

Our goal is to create a quantitative model that allows us to
formalize this intuition. Inspired by recent meta-analyses of
developmental phenomena (e.g., Cristia, Seidl, Junge, Soder-
strom, & Hagoort, 2014), we conduct systematic literature re-
views of the literature on social cueing (e.g., gaze following;
Scaife & Bruner, 1975) and word recognition (Fernald, Pinto,
Swingley, Weinbergy, & McRoberts, 1998). These meta-
analytic surveys, in combination with parametric models of
development (e.g., Kail, 1991) allow us to estimate the speed
and accuracy for a two-component model of word learning.

The outline of the paper is as follows. We begin by de-
scribing the basic model and how it captures developmental
changes. We next estimate the development of speed and ac-
curacy independently for social cueing and word recognition.
We then estimate the pace of referential utterances from a cor-
pus, and compute children’s predicted learning rate based on
these parameter estimates. The conclusion of our analysis is
that even if young infants were trying to learn in precisely the
same way as older toddlers, they would be too slow and too
fallible to extract much signal from their input data.

Model
The basic assumptions of our performance model are fa-
miliar from cognitive architectures that attempt to capture
specifics of cognitive processes (e.g., ACT-R; Anderson,
1996), namely, every cognitive operation has a processing
time and a probability of failure. Each complex cognitive
operation is decomposable into a chain of simpler operations,
any one of which can fail. And if a single link in the chain
fails, then the overall operation fails as well. Thus, the proba-
bility of failure is the product of the individual failures. Sim-
ilarly for timing, the total processing time for a chain of op-
erations is the sum of the processing times for the parts.

Complex actions are describable at many different granu-

3
2

1
3
2
1

3
2
1

theta=2 theta=4 theta=6

0.00

0.25

0.50

0.75

1.00

0 10 20 0 10 20 0 10 20

Age (months)

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

Figure 3: Probability of success for one set of developmental
parameters. Different colored lines indicate chains of differ-
ing lengths, panels show different temporal thresholds.

larities. For example, word learning from an ostensive cue
(e.g., parent says “doggie!” while pointing at a dog) can be
decomposed into 1) social cue following and 2) word recog-
nition/mapping. But social cue following can be further de-
composed into 1a) attending to the cue, 1b) processing the
directionality of the cue, and 1c) executing an eye-movement
to the cue’s target. Each of these could easily be broken down
further. There is no one decomposition of a task, but we view
this feature as a strength rather than a weaknesses of the ba-
sic framework, which can be applied to units at any grain size
for which speed and reliability of processes can be measured.
The overall model architecture is shown in Figure 1.

Chains of mental processes
Consider a sequence of interacting mental processes. We as-
sume that each of these has a Bernoulli success probability
sp. Thus, the probability of a sequence of failures is exponen-
tial such that psuccess = ∏p sp. And each operation also takes
some time to complete tp, which we assume is distributed log-
normally. Thus, the total time of the chain is rt = ∑p tp.2 Fi-
nally, consider that this operation is time-sensitive, and must
be completed within a temporal threshold, also sampled from
a log-normal distribution with mean θ and SD ι.

We can now approximate the probability that a chain is suc-
cessful within a particular threshold. A representative set of
simulations are shown in Figure 2. For these and many other
parameter settings, long chains of operations are unlikely to
succeed unless individual operations are very fast and very
accurate.3

Development within the model
The two posited capacities in our model are speed and ac-
curacy (probability of a successful operation). Both of these

2Note that there is not a known parametric form for the sum of
multiple log normals. A variety of analytic approximations for these
sums exist (Fenton, 1960), but they have some limitations, so instead
we use numerical simulations here.

3All code and data for the simulations reported here is available
at http://github.com/mcfrank/sop.
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Figure 4: Reaction times (left) and accuracies (right) for two-alternative forced-choice word recognition paradigms. Each circle
shows an experiment, with areas scaled by the number of participants. A generic loess smoothing function is shown in blue.
For reaction times, dotted line shows adult reaction time and dashed line shows best-fitting Kail function. For accuracy, dotted
line shows chance, and dashed lines show best-fitting half-logit function.

should change across development for any constituent cogni-
tive operation, leading to dramatic changes in the cumulative
speed and accuracy of chains of operations across develop-
ment. To estimate these changes, we use parametric models
of developmental change.

Pioneering work by Kail (1991) describes the developmen-
tal trajectory of reaction times for complex tasks, via ag-
gregation across the published literature. Empirically, the
slope of these reaction times follows an exponential, such that
Y (i) = a+ be−ci, where Y is the predicted variable, a is the
eventual (adult) asymptote, b is the multiplier for the (infant)
intercept, c is the rate of development, and i is age. The Kail
(1991) model is a model of RT multipliers. Since operations
are additive, these multipliers should apply to individual oper-
ations or to chains of operations equivalently: if the multiplier
is constant then it can be factored out.

Next we turn to accuracy. For simplicity, we consider the
probability of success on a single operation changing across
time as a simple logistic function where Y (i) = 1

1+eα+βi . α

sets the intercept and β marks the developmental multiplier,
as in a standard logistic regression.

Preliminary simulations
We can combine these functions with the basic operation-
chain simulations defined above and examine the probabil-
ity of a successful chain of operations across ages. Results
for one parameter set are shown in Figure 3. These simula-
tions show that sharp developmental transitions from failure
to success can be the product of relatively broad underlying
functions. But the difficulty is constraining the model’s pre-
dictions requires substantial information about speed and ac-
curacy. In the next section we turn to the estimation of these

parameters via meta-analysis.

Case Study: Early Word Learning
Why do children begin to show evidence of word learning
around their first birthday? Although many accounts have
been proposed (e.g. Tomasello, 1995’s “nine-month revolu-
tion”), our null-model framework provides a simple explana-
tion. Children may be trying to learn words from very early
in development, but the basic cognitive components may be
too slow and too challenging to allow for consistent learn-
ing (and consistent measurement of that learning by psychol-
ogists). The recent literature on early word learning gives
some support for this contention, as careful measurement has
revealed some aspects of receptive language prior to the first
birthday (Bergelson & Swingley, 2012).

We focus here on learning a word that is presented osten-
sively via a social cue like gaze or pointing. For simplicity,
we decompose the task of social word learning into two abil-
ities: 1) social cue following, and 2) word recognition. This
task analysis is an approximation: pointing is not the same
as gaze following (and neither is it always necessary), and
recognition is not the same as learning and retention. But it
nevertheless captures some aspects of the task, namely fol-
lowing a social cue to a distal target and processing some
language associated with that target. And it has the major
benefit for our purposes of providing data on development,
since each of these tasks is well-studied.

Word recognition
We first estimated developmental changes in the speed of pro-
cessing for word recognition. Fernald et al. (1998) introduced
the method of using eye-movements to measure children’s ac-
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Figure 5: Reaction times (left) and accuracies (right) for social cue following. Plotting conventions are as above. Results for
gaze following alone are shown with no border; results for gaze plus pointing are shown with a black border. Dashed and solid
lines show fits for gaze and gaze plus pointing, respectively.

curacy and reaction time across development. Subsequent in-
vestigations have identified many factors involved in speed of
word recognition (e.g., the frequency and familiarity of the
target word). Nevertheless, such research generally attempts
to select simple, easy words that should be accessible to most
children, so we can use this literature to derive rough esti-
mates of accuracy and reaction time across development.

We conducted a systematic literature review by using
Google Scholar to identify peer-reviewed papers citing Fer-
nald et al. (1998). We screened this sample manually to find
the subsample of 12 papers that reported both accuracy and
reaction time with sufficient detail to permit coding. Figure
4 shows reaction times from this sample of papers, plotted
by the mean age of the children in the reported studies. The
dashed line shows an exponential function fit to these data
(with a = 0.56, b = 1.04, and c = 0.72). The intercept a is
estimated as the mean reaction time for adults in control ex-
periments.4

Accuracies can be estimated similarly. We fit a logistic
regression to accuracy data, using a half-logit linking function
(.5+ .5× 1

1+e−x ) to bound accuracy between .5 and 1. Figure
4 shows the results of this analysis, with estimated parameters
α = −2.62 and β = 1.27. In both of these cases we see a
qualitatively strong fit between the developmental model we
assumed and the particulars of the experimental data (e.g., as
estimated by a naı̈ve smoothing model, shown in blue).

4Note that Kail (1991)’s original analysis was of the slope of
mental rotation speeds, so the exponential curve described a multi-
plier on the adult slope. This analysis is simpler, fitting a curve to
the mean RTs directly.

Social cue following

For our analysis of social cue following, we were interested
in both pure gaze following and gaze following supplemented
by pointing. We identified papers using a Google Scholar
search for “gaze following” and included those studies that
A) included data from typically-developing children, B) used
a standard face-to-face gaze-following task, and C) reported
percentage accuracy (rather than a score or other composite
measure). Although we coded all papers that fit these criteria,
we focused on papers with a simple two-alternative forced
choice (9 papers); integrating across different numbers of al-
ternatives added additional complexity to our model.

In our first iteration of this analysis, we found that very
few studies reported reaction times for gaze following, and
those that did had no data from children older than 15 months
and no data from gaze plus pointing. Estimating develop-
mental curves for these data was difficult; to remedy this is-
sue we include new analyses of data from Yurovsky, Wade,
& Frank (2013) and Yurovsky & Frank (2015). Both of these
paradigms were word learning experiments in which a social
cue (either brief or extended) was used to indicate a referent.
Data from these studies can thus be used to estimate social
cue following time; conveniently, both studies included large
numbers of participants at older age ranges, constraining our
analysis. We also added 440ms as a floor adult reaction time,
on the basis of measurements by Driver et al. (1999).

Figure 5 shows reaction time and accuracies for gaze fol-
lowing, both with and without pointing. Again we see rela-
tively good qualitative fit by the developmental models. De-
tails of these fits are identical to our analysis of word recog-
nition, except that we use a standard logit function. We ex-
perimented with using a half-logit link, but found that many
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Figure 6: Histograms of inter-utterance intervals in child-
directed speech. Panels show data from 6-, 12-, and 18-
month-olds. Blue curves show the best-fitting log normal dis-
tribution for the full dataset.

studies reported accuracies below .5 due to children’s failure
to disengage from the experimenter’s face.

Estimating a temporal threshold
We next estimate plausible values for θ and ι, which control
the distribution of temporal thresholds at which referential
utterances must be processed. To estimate these values, we
turned to the Fernald and Morikawa corpus (Frank, Tenen-
baum, & Fernald, 2013), which contains a set of transcribed
interactions between caregivers and children as they play with
pairs of objects. Critically, this corpus contains approximate
timing information (Rohde & Frank, 2014) as well as annota-
tions for social cues used by the caregivers (e.g., gaze, point-
ing, etc.) to indicate which toy is being talked about.

The primary variable of interest for our analysis was the
distribution of time intervals between utterances using so-
cial cues to refer to objects. Preliminary analyses indicated
that there were no differences in timing between referen-
tial utterances (those containing a concrete reference to an
object in the current context) and non-referential utterances,
so we examined the full distribution of inter-utterance inter-
vals. Figure 6 shows the empirical distribution across ages,
along with the best-fitting log-normal distribution. The mean
time between utterances was 3.61 and the median was 2.5.
Perhaps surprisingly, there were no major differences in the
distribution between age groups (for example, median6 = 2,
median12 = 2.5, and median18 = 2.5), suggesting that par-
ents were not substantially adjusting the pace of conversation
to children, at least in this corpus. For our simulations below,
we use the parameters of the best-fitting distribution across
ages (θ = 0.78, ι = 0.86).

Simulations
We now run the same developmental simulations described
above, but using the estimated numerical parameters for word
processing, social cue following, and the timing of utter-
ances in child-directed speech. Figure 7 shows the probabil-
ity of successful ostensive learning by age, split by social cue.
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Figure 7: Simulation results using meta-analytic parameters
estimated for speed and accuracy in social cue following and
word recognition.

Pointing is substantially more effective than gaze following,
but under this naı̈ve model, neither cue ever leads to success
more than half of the time. While low accuracy constrains
performance early in development, accuracy is above 80% by
age 3 and reaction time is the bounding factor.5

A second way of viewing these same simulations is shown
in Figure 8, which shows the average number of learning in-
stances a learner would need to achieve a single successful
mapping trial under this model. This number declines from
more than 10 in early infancy to an asymptote of approxi-
mately two at age five. Here the difference between gaze and
pointing is more apparent, especially earlier in development.

Is it reasonable to assume that not all word mapping oppor-
tunities succeed? After all, 3–4-year-old children have been
show to learn words from a single exposure (Carey, 1978).
We would argue that a success rate of approximately one half
at age three is actually very congruent with accuracies in the
60-80% rate shown by Markson & Bloom (1997) and others
(given a handful of exposures during training). And rates of
learning for younger children also show some numerical con-
gruence (e.g., Woodward, Markman, & Fitzsimmons (1994)
showed some evidence of learning from nine exposures in
13- and 18-month-olds). In sum, even though average results
suggest that some children may learn from a small set of ex-
posures, they do not imply that all children have learned.

Discussion
We presented a model of children’s developing processing
capabilities in which the sole age-related changes are in the
speed and accuracy of mental operations. This strong null

5One consequential decision for the model is the assumed re-
sponse function for social cues. Here we have used a half-logit link
function for accuracy, assuming a two-alternative forced choice be-
tween referents. Without this assumption, learning probabilities for
early infancy go down substantially, but the asymptote remains un-
changed.
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Figure 8: Average number of learning instances needed per
effective learning instance, plotted by age.

model is a first step towards a baseline model of cogni-
tive development, attempting to answer the question of what
changes we would see even if there were no substantive dif-
ferences in children’s internal representations across ages.
Using measurements extracted from the literature, we used
the model to make predictions about early word learning, a
domain in which there has been uncertainty about the pres-
ence of early representational shifts. Without including any
representational changes, the model still produced large de-
velopmental changes and showed prima facie congruence
with some previous experimental work.

The simple model we described here has many limitations.
First, we estimated parameters from the data that were avail-
able rather than the data we would have liked to have (e.g., re-
action times from familiar word recognition rather than from
novel word learning). Second, we assumed a purely serial
model of responding in which accuracy and reaction time
were independent from one another; more sophisticated mod-
els of decision-making might link processes in a race model
or yoke accuracy and reaction-time in a speed-accuracy trade-
off. Third, although we did not find evidence of large de-
velopmental changes in the pace of utterances, parents likely
still adapt to their children’s speed of processing in some in-
stances, leading to better outcomes for those instances.

Despite the many assumptions and limitations of our
model, the results should still constrain and inform our theo-
ries. If we discard the parametric form of the model and sim-
ply examine the meta-analytic reaction times we estimated,
we see that they are generally longer than the interval between
new utterances, suggesting that word learning through gaze is
likely to be difficult in the first year under any model. This
qualitative observation suggests the basic intuitions derived
from our model may be useful for analyzing other domains.
More generally, the null model we articulated here should re-
inforce the point that—even with the most sensitive measure-
ments available—we should not infer a lack of competence

from a failure in performance.
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