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ABSTRACT OF THE THESIS 

 

Quantifying the effects of modeling uncertainty on the 

seismic performance assessment of a non-ductile 

reinforced concrete masonry-infilled frame structure 

 

by 

 

Mathias Christian Haindl Carvallo 

 

Master of Science in Civil Engineering 

University of California, Los Angeles, 2020 

Professor Henry V. Burton, Chair 

 

Quantifying and propagating aleatory and epistemic uncertainty in nonlinear structural 

response simulation is key to robust performance-based seismic assessments. In this thesis, the 

focus is on the probabilistic seismic performance assessment of a non-ductile three-story 

reinforced concrete infilled frame building. The uncertainty in ground motion records and the 

uncertainty embedded in structural model parameters are explicitly considered. An equivalent strut 

model is used for the masonry infill walls, where the six constitutive parameters that define its 

backbone curve are treated as random variables. The variability in these parameters is 

characterized by developing correlated and uncorrelated distributions of the deduced-to-predicted 

ratios using data from 113 experimental tests. The uncertainties are propagated using Latin 
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hypercube sampling to generate randomized structural model realizations. Multiple stripe analysis 

is performed with hazard-consistent ground motions. The effect of considering modeling 

uncertainty is investigated in terms of the distributions of maximum story drift ratios and drift-

based fragility functions. It is shown that the inclusion of modeling uncertainty has significant 

effects on the seismic performance of the case study building. The dispersion in the response and 

the mean annual frequency of exceeding the drift-based limit states are increased when modeling 

uncertainty is included. The initial stiffness of the infill walls is observed to have the most 

significant contribution to the performance of the building. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

Due to the shocking economic and social losses caused by severe earthquakes, structural 

and earthquake engineering has placed a large emphasis on whether the methodologies currently 

used for the design of structures achieve the desired performance. 

In the last two decades, important efforts have been made to better understand earthquakes 

and their associated impacts on the performance of structural (Krawinkler & Deierlein, 2014).The 

invaluable scientific contribution to probabilistic seismic hazard assessment and the continuous 

development of cutting-edge technology has allowed a favorable evolution in seismic analysis of 

structures. The large amount of research and development of powerful and more efficient 

methodologies for structural analysis has made it possible to reliably understand and represent the 

behavior of diverse structural systems in diverse seismic scenarios. Performance-based earthquake 

engineering (PBEE) has emerged as a cornerstone methodology for predicting the behavior of 

structures under the action of earthquakes. Furthermore, due to the explicit consideration and 

quantification of the inherent variability associated with the stochastic nature of ground motions, 

and the uncertainties embedded in with modeling approaches used in structural analysis, the 

reliability of the seismic performance assessment of structures has been greatly enhanced. 

Regardless of these valuable scientific contribution and increasing advancements in modeling 

techniques, significant challenges remain to reliably characterize and quantify the behavior of 

structures (Gokkaya et al., 2020). 
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The analysis of structures is often conducted with deterministic models, which are intended 

to represent the mean or expected behavior of the structure. Under this assessment approach, if for 

example an incremental dynamic analysis (IDA) or multiple stripe analysis (MSA) is not 

performed, the effects of record-to-record and modeling uncertainties cannot be captured. While 

there have been several studies on quantification of uncertainties in performance-based analysis 

procedures, there are still important challenges ahead. 

Non-ductile reinforced concrete masonry-infilled frame structures represent a type of 

contemporary structural system for which high levels of seismic vulnerability and sources of 

uncertainty can be recognized. This type of building is still being used for housing and industrial 

activities in many places around the world, although many were designed and built prior to the 

development of seismic design codes.  

Reinforced concrete masonry-infill frame buildings, especially those where the lateral force 

resisting system consists of non-ductile frames, have suffered severe damage in past earthquakes. 

As a consequence, many efforts have been focused on understanding its seismic behavior and the 

main factors that determine its performance. Moreover, many experimental programs (Calvi et al., 

2004; Morandi et al., 2014; Stavridis, 2009) have been conducted on this type of structural system, 

in which its highly nonlinear response under moderate seismic demands has been revealed, and 

significant sources of uncertainty have been recognized. The geometry of the masonry infill walls 

(i.e. with or without opening, height, length, etc.), the interaction between the masonry walls and 

the reinforced concrete (RC) frames under seismic forces, and the strength of masonry prism and 

mortar are only a few sources of the significant level of uncertainty embedded in this type of 

structural system. Therefore, it is crucial to strengthen the reliable identification, characterization, 

and communication of those uncertainties.  
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1.2 Previous research on modeling uncertainty quantification 

While record-to-record uncertainty is routinely considered in PBEE assessments and its 

quantification is quite standardized, incorporation of modeling uncertainty has received less 

attention and is often difficult to quantify, mainly due to insufficient experimental data. The 

impacts of modeling uncertainty on the seismic performance of structures has been studied by 

several researchers. For instance, Liel et al. (2009) evaluated the methods of representing the 

uncertainty present in the modeling parameters and its impact on the collapse assessment process. 

Modeling uncertainty was considered for the parameters that define the constitutive behavior of 

the structural elements (level (ii) epistemic uncertainty according to Bradley, 2013). Different 

methods for incorporating the uncertainties are compared and its efficiencies and limitations are 

discussed. Jalayer et al. (2010) used an updated experimental database of RC structures to 

characterize the modeling uncertainty in material properties (level (i) epistemic uncertainty 

according to Bradley, 2013) and construction details. The authors proposed a Bayesian framework 

in order to update the probability distributions used for the modeling parameters. The study showed 

how the inclusion of modeling uncertainty increases both the mean and standard deviation of the 

demand to capacity ratio. Complementing this line of research, Gokkaya et al. (2017) quantified 

and examined the effects of modeling uncertainty on the drift demands and collapse capacity of 

different buildings. A framework was proposed to link the performance goals commonly present 

in building codes to specific acceptance criteria defined for each building.  

Choudhury & Kaushik (2019) studied the treatment and quantification of uncertainties in the 

seismic fragility assessment of masonry-infilled RC frames. In this study, modeling uncertainty is 

considered at level (i) epistemic uncertainty. As infilled frame structures are not fully addressed in 
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the building codes, an assessment of the effective uncertainty values proposed in the literature is 

conducted, indicating the limitations of using those values, and proposing alternative values to be 

used for different configurations of masonry-infilled frame structures.  

Dolšek & Fajfar (2008) applied a simplified approach to the seismic performance assessment 

of three variants of reinforced concrete frame buildings. In terms of uncertainty quantification, this 

study was limited as it adopted defaults values for dispersion of modeling parameters and no 

explicit characterization was conducted. Using a different simplified procedure, Celarec & Dolšek 

(2013) evaluated the effect of epistemic uncertainty on the dispersion and median estimates of 

different response parameters by using the first-order-second-moment method. However, the 

reliability of this approach was shown to be limited, especially when the structural response is 

highly nonlinear. 

There are few studies that have focused on modeling uncertainty at level (iii) and (iv) 

epistemic uncertainty (Bradley, 2013). Sattar et al. (2013) quantified the effect of modeling 

uncertainty on performance-based risk assessments, accounting for differences in software 

platforms, solution algorithm, element-types, and equations considered for model parameter 

calculations. A blind prediction contest was administered for an experimental evaluation of a 7-

story RC building. The modeling uncertainty was quantified by comparing the predicted drift 

demands obtained from the different modeling approaches with the experimental results obtained 

from the full-scale test of the building. Although the aim of this study was to quantify the modeling 

uncertainty at level (iii), the authors recognized that more research is needed to understand the 

patterns of demand distributions and generalize, if possible, the observations to other structures. 
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1.3 Objectives 

The main objectives of this thesis are to characterize and quantify the effect of the modeling 

uncertainties embedded in the backbone model used to represent the in-plane nonlinear behavior 

of masonry infill walls. Therefore, the aim of this study is to assess the effects of including record-

to-record and modeling uncertainty on the seismic performance of an infilled frame structure. 

To meet these objectives, multiple stripe analysis (MSA) is performed on a suite of 

randomized nonlinear model realizations generated by the Latin hypercube sampling (LHS) for 

three-story reinforced concrete masonry-infilled frame prototype building designed by Stavridis 

(2009). Modeling uncertainty is considered at the constitutive parameters level (Bradley, 2013). 

Hazard consistent-based selection of ground motions is considered at each hazard level assessed 

through MSA. Specifically, modeling uncertainty is considered for the six parameters that define 

the in-plane nonlinear behavior of the equivalent struts for representing the masonry infill walls 

(Huang et al., 2020). Based on a calibration procedure from existing experimental data of masonry-

infilled RC frame systems, predictive equations were developed to compute the parameters that 

define backbone curve of the equivalent strut model. Thus, the modeling parameters associated 

with the equivalent strut model are considered as random variables. Quantification of modeling 

uncertainty at level (ii) (Bradley, 2013) is compared by using correlated and uncorrelated empirical 

and fitted distributions for the studied parameters. To differentiate the influence of record-to-

record and modeling uncertainties, MSA is performed on a mean model of the structure (i.e. a 

model of the structure constructed using the mean values of the modeling parameters). The results 

of MSA allow the estimation of statistical parameters (median and standard deviation) and the 

construction of drift-exceedance fragility curves for the evaluation of the performance of the case 

study structure. Finally, given the site-specific seismic hazard considered for the prototype 
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building, risk-based assessment is conducted and the mean annual frequency of exceed the desired 

limit states are given. 

 

1.4 Organization 

The focus of this thesis is on the characterization and quantification of the effects of modeling 

uncertainty embedded in the masonry infill strut model on the seismic performance of a reinforced 

concrete masonry-infilled frame structure. The organization of this document is as follows: 

Chapter 2 presents an overview of the adopted methodology, followed by a description of 

the considered case study building, the modeling considerations for its analysis, and the seismic 

hazard-consistent ground motion selection procedure. 

Chapter 3 provides a brief description of the sources of uncertainty and their treatments.The 

focus is on level (ii) epistemic uncertainty (i.e. uncertainty in the constitutive model parameters). 

Chapter 4 describes the procedure used to characterize the modeling uncertainty and 

explains how it is propagated and quantified through the analysis and performance assessment of 

the structure. 

Chapter 5 covers a detailed description of the case study building. Information about its 

geometry, material properties, and loads are given for analysis purposes. Additionally, record-to-

record uncertainty is characterized by the definition of the hazard-consistent ground motion suites 

used to assess the seismic performance of the case study building. 

Chapter 6 presents the results obtained from Multiple Stripe Analysis and the seismic 

performance assessment of the prototype building. Statistical distributions of the response 

demands are computed, and probabilities of exceeding the limit states associated with the masonry 

infill walls are provided. 
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Chapter 7 presents the main conclusions of this study. A summary of the key findings on 

uncertainty quantification and the limitations for the performance assessment of masonry-infilled 

RC frame structures are provided. Additionally, recommendations for future work are suggested.  
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Chapter 2 

Overview of the methodology for uncertainty quantification 

 

In this study, both the effects of the aleatory uncertainty associated with the natural 

randomness of ground motions (record-to-record uncertainty) and the epistemic uncertainty 

associated with model parameters (modeling uncertainty) are considered and quantified. In 

particular, level (ii) epistemic uncertainty according to Bradley (2013) is considered, which is 

associated with the parameters of the constitutive model used to simulate the nonlinear behavior 

of the masonry infill walls in a non-ductile reinforced concrete frame structure. 

The strategy adopted to characterize and quantify the effects of the two sources of uncertainty 

on the seismic performance of the prototype building is based on a probabilistic analysis, in which 

MSA is performed for different hazard levels on nonlinear model realizations of the prototype 

building generated with LHS. Within this approach, hazard-consistent selection of ground motions 

is considered. For each model realization, eight ground motion records are randomly selected, each 

one representing one of the eight hazard levels. As a result, eight nonlinear analyses are performed 

on each model realization. To distinguish the effects of record-to-record uncertainty from 

modeling uncertainty, a separate analysis is performed on the mean model of the prototype 

building (i.e. a model constructed based on the mean values of the modeling parameters), for which 

the results represent the record-to-record component of uncertainty only. Using this model, the 

probability distribution parameters (median and dispersion) for the engineering demand 

parameters (EDPs) are estimated for each stripe analysis. Figure 2.1 summarizes the main steps of 

the methodology adopted to quantify the modeling uncertainty. 
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Figure 2.1 – Overview of methodology used to quantify the effects of modeling uncertainty 
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As illustrated in Figure 2.1, in this study, the maximum story drift ratio (SDRmax) is  the 

primary EDP of interest since it is a good indicator of different limit states in this type of structure 

(Basha & Kaushik, 2016; Morandi et al., 2014; Stavridis et al., 2012). Modeling uncertainty is 

included and propagated using six constitutive modeling parameters as random variables. These 

constitutive modeling parameters define the shape of the backbone curve that governs the 

nonlinear in-plane axial behavior of the strut model used for the masonry infill walls (Huang et al., 

2020). The probabilistic characterization of these parameters is carried out by representing each 

parameter of the strut’s backbone curve model with statistical empirical and fitted continuous 

distributions.  
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Chapter 3 

Treatment of uncertainties as part of the seismic performance 

assessment framework 

 

It has been shown that the proper treatment of uncertainties is an essential step to enriching 

and improving the understanding of structural performance (Bradley, 2013; Liel et al., 2009). 

Different methodologies have been proposed to estimate the effects of uncertainties on the seismic 

performance of structures. Several authors have suggested frameworks for distinguishing these 

forms of uncertainty (Fox & Ulkumen, 2011). However, the quantification of uncertainties, 

especially epistemic, is still a major challenge in seismic performance and risk assessment. 

In the seismic performance assessment framework, two main categories or dimensions of 

uncertainties are identified; the uncertainties resulting from the inherent variability in earthquake 

ground motions (aleatory), and the uncertainties that result from the lack of knowledge in the 

modeling assumptions use to predict the seismic behavior of a structural system (epistemic). The 

following sections briefly describe these two sources of uncertainty and its consideration as part 

of the seismic performance framework of this study. 

 

3.1 Record-to-record uncertainty 

Due to its largely stochastic nature, record-to-record uncertainty is considered a type of 

aleatory uncertainty. This form of uncertainty results from the inherent randomness in the 

frequency content of the ground motion records and has been widely studied and refined. In the 

performance-based assessment framework, record-to-record uncertainty is commonly taken into 
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account by conducting nonlinear response history analysis (i.e. IDA, MSA, etc.) using a large 

enough number of ground motions records that are consistent with the seismic hazard at the site-

location of the structural systems being analyzed (Bradley, 2013). 

Figure 3.1 displays an example of a mean response spectrum that represents a single hazard 

level (stripe) characterized by a set of hazard-consistent ground motions, and the distributions of 

seismic responses caused by these ground motion in response history analysis. 

 

 

 

(a) (b) 

Figure 3.1 – Example of (a) record-to-record variability on an unconditional spectra (Baker & 

Lee, 2018) and (b) results of a stripe analysis 

 

It is worth noting that, although the quantification of record-to-record uncertainty is more 

often considered, there is still no standardized methodology, for example, to determine the optimal 

size of the ground motion ensemble to be used in the analysis (Bradley, 2013). In addition to 

record-to-record uncertainty, site-specific hazard curves constructed based on probabilistic seismic 

hazard analysis (PSHA) also account for the uncertainty embedded in the ground motion intensity 

by relating the spectral intensity to its probability of exceedance (Liel et al., 2009). 
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3.2 Modeling uncertainty 

Modeling uncertainty has been increasingly studied by researchers in recent years, although 

still comparatively less than record-to-record uncertainty. However, regardless of the important 

contributions, the lack of experimental data and knowledge regarding many aspects of the seismic 

response of structural systems, has made the incorporation of modeling uncertainty a rather slow 

process and often difficult to quantify. Modeling uncertainty is normally represented as statistical 

distributions of a particular response parameter. 

Bradley (2013), who has critically examined the consideration of the different sources of 

uncertainty within the performance assessment methodologies, disaggregated modeling 

uncertainty into four subcategories or levels. These levels are defined according to the degree of 

complexity, in ascending order, that is required for their consideration and quantification in the 

analysis. The four levels of modeling uncertainty are: (i) uncertainties in the characterization of 

basic parameters (e.g. mechanical properties of the structural materials, mass, loads, etc.); (ii) 

uncertainty in the relationships between the measured/observed physical quantities and the 

predicted constitutive modeling parameters (e.g. initial stiffness, yield strength, etc.); (iii) 

uncertainty in the chosen constitutive model to represent the behavior of structural components; 

and (iv) uncertainty in the assumptions and simplifications carried out in the model methodology 

(e.g. inability to capture all failure mechanisms). The assessment of the former two levels of 

modeling uncertainty has been increasingly considered in recent research, while the latter two are 

much less common due to the costly and time-consuming procedures.  

Figure 3.2 depicts an example of a generic hysteretic backbone curve calibrated to represent 

the nonlinear behavior of masonry infill walls as an equivalent strut. Here, modeling uncertainty 
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is considered at the constitutive parameter level (i.e. level (ii) epistemic uncertainty). 

 

  

Figure 3.2 – Example of level (ii) epistemic uncertainty (modeling uncertainty) according to 

Bradley (2012); (a) mean model and (b) randomized model. 

 

The propagation of modeling uncertainty through the analysis is commonly carried out by 

using nonlinear response history analyses, performed on several model realizations randomly 

generated based on the statistical distributions assumed for the randomized modeling parameters. 

In this regard, modeling uncertainty can be propagated in combination with record-to-record 

uncertainty. 

It is important to note that, the description of uncertainties described here is not intended to 

be exhaustive, nor definitive. On the contrary, it serves as a global picture of a subset of 

uncertainties that are commonly recognized in structural analysis, thus highlighting the importance 

of quantifying them and evaluating their potential effects on seismic performance.  
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Chapter 4 

Characterization of epistemic uncertainty for masonry infill strut 

model 

 

The equivalent strut approach used to model masonry infill walls has been largely studied 

and refined (Holmes, 1961; Huang et al., 2020; Mehrabi et al., 1996; Stavridis, 2009; and others). 

This has enabled more reliable analyses and improved the understanding of the behavior of 

masonry infill walls as well as the enhancement of seismic performance assessment of reinforced 

concrete masonry-infilled frame structures. Recently, Huang et al. (2020) developed predictive 

equations for six modeling parameters that define the in-plane nonlinear axial behavior of the 

equivalent strut that represents the behavior of masonry infill walls in reinforced concrete frame 

buildings. These predictive equations were calibrated based on extensive research conducted on 

an experimental dataset of masonry-infilled systems, where regression analysis on a wide range of 

masonry-infilled systems was conducted. In this study, quantification of modeling uncertainty is 

focused on the uncertainties associated with the infill strut modeling parameters computed from 

the predictive equations proposed and developed by Huang et al. (2020). 

The infill strut model is described by six modeling parameters; the initial stiffness (Ke); yield 

strength (Fy); capping strength (Fc) and the associated deformation (dc); the residual strength (Fres); 

and the post-capping stiffness-to-initial stiffness ratio (Kpc/Ke). The proposed predictive equations 

to compute the infill strut modeling parameters are shown in Table 4.1. 
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Table 4.1 – Predictive equations for the parameters of the infill strut backbone model 

Parameter 
Predictive equation 

(Huang et al., 2020) 

Determination 

coefficient (𝑹𝟐)* 

Residual standard 

error (𝝈̂)* 

Ke 0.0143 ∙ Em
0.618 ∙ tw

0.694 ∙ (
hw

lw
)

−1.096

 0.54 0.56 

Fc 0.003766 ∙ fm
0.196 ∙ tw

0.867 ∙ ld
0.792 0.80 0.38 

Fy 0.72 ∙ Fc 0.98 0.13 

Fres 0.4 ∙ Fc 0.81 0.41 

dc 0.0154 ∙ Em
−0.197 ∙ (

hw

lw
)

0.978

∙ ld 0.34 0.47 

Kpc/Ke −1.278 ∙ fm
−0.357 ∙ tw

−0.517 0.32 0.46 

* Based on the regression analysis conducted by Huang et al. (2020) 

 

More details of the calibration process that was conducted for the development of the 

predictive equations and the model implementation can be reviewed in Huang et al. (2020). 

To account for the variability and correlation in the each model parameter, statistical 

distributions for each parameter rely on the deduced parameters obtained from the experimental 

database and the values computed for each parameter based on the predictive equations. This way, 

the statistical distributions for each modeling parameter are developed by comparing the values of 

the modeling parameters deduced from the experimental results with the values calculated from 

the predictive equations (named here deduced-to-predicted ratios or errors). These deduced-to-

predicted ratios represent a measure of the errors (Ɛ) associated to the prediction of each modeling 
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parameter value. Table 4.2 illustrates the procedure for computing the errors associated with each 

of the infill strut modeling parameters. 

 

Table 4.2 – Computation procedure for errors (deduced-to-predicted ratios) associated with the 

infill strut modeling parameters 

Specimen Calibrated/Deduced value* Predicted value** Error (Ɛ)*** 

1 d1 p1 
d1

p1
 

2 d2 p2 
d2

p2
 

3 d3 p3 
d3

p3
 

⁞ ⁞ ⁞ ⁞ 

N dN pN 
dN

pN
 

* Deduced parameters from regression analysis conducted on the experimental dataset 

** Predicted parameters computed from predictive equations (Huang et al., 2020) 

*** Error (Ɛ): Deduced-to-predicted ratios 

 

Based on the computed errors, empirical and fitted probability distributions are defined for 

each model parameter of the strut. Kolmogorov–Smirnov test (K-S test) is used to evaluate the 

goodness-of-fit and decide whether the sample of computed errors follows a specific distribution 

(i.e. normal, lognormal, gamma, Rayleigh, etc.). After an iterative procedure, there is enough 

statistical evidence (at a 5% significance level) that the computed errors follow a lognormal 

distribution. Table 4.3 summarizes the statistical parameters of the distributions selected to 
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describe the variability of each of the modeling parameters. It is worth mentioning that although 

the distributions are defined for the errors associated with the modeling parameters, each modeling 

parameter will follow the same corresponding distribution, since these are then multiplied only by 

a constant value (i.e. the predicted mean value of each parameter). 

 

Table 4.3 – Distribution fitting for errors associated with infill strut backbone curve 

Deduced-to-

predicted ratio 

associated with 

Fitted 

distribution 

K-S test p-value 

for 5% 

significance level 

Probability 

parameters  

Ke 
Truncated 

Lognormal 
0.76 

μ = -0.022, σ = 0.68 

trunc = [ 0.22 , Inf [ 

Fc 
Truncated 

Lognormal 
0.93 

μ = -0.017, σ = 0.49 

trunc = [ 0.30 , Inf [ 

Fy 
Truncated 

Lognormal 
0.97 

μ = -0.031, σ = 0.51 

trunc = [ 0.25 , Inf [ 

Fres 
Truncated 

Lognormal 
0.33 

μ = -0.008, σ = 0.78 

trunc = [ 0.17 , Inf [ 

dc 
Truncated 

Lognormal 
0.91 

μ = -0.032, σ = 0.64 

trunc = [ 0.17 , Inf [ 

Kpc/Ke 
Truncated 

Lognormal 
0.47 

μ = -0.068, σ = 0.65 

trunc = [ 0.13 , Inf [ 

 

To visualize the results listed in Table 4.3, Figure 4.1 demonstrates the fit between the 

empirical and the selected lognormal distributions for each strut model parameter. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.1 – Fit between empirical and the selected lognormal distributions for (a) Ke, (b) Fy, 

(c) Fc, (d) Fres, (e) dc, and (f) Kpc/Ke 
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Figure 4.2 shows a schematic of the empirical and fitted truncated lognormal probability 

density functions (PDF) associated with each of the modeling parameters that define the backbone 

curve of the masonry infill struts. 

 

 

Figure 4.2 – Schematic of infill strut backbone curve with modeling parameters represented as 

empirical and fitted lognormal distributions 

 

As part of the definition of the probability distributions for each modeling parameter, both 

correlated and uncorrelated parameters are considered. Therefore, correlated and uncorrelated 

empirical and fitted distributions, respectively, are used to sample and construct the nonlinear 

model realizations. This way, the influence of accounting for correlation in the infill strut modeling 

parameters is assessed. The correlation coefficients computed for the infill strut modeling 

parameters is displayed in Table 4.4. 
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Table 4.4 – Correlation coefficients for the errors (Ɛ, deduced-to-predicted ratios) associated 

with the infill strut model parameters 

 
Parameter error 

ƐKe
 ƐFc

 ƐFy
 ƐFres

 Ɛdc
 ƐKpc/Ke

 

P
a
ra

m
et

er
 e

rr
o

r
 

ƐKe
 1.00 0.71 0.61 0.55 -0.35 -0.12 

ƐFc
 

 

1.00 0.93 0.81 -0.18 0.07 

ƐFy
 

Sym. 

1.00 0.79 -0.17 0.01 

ƐFres
 

 

1.00 -0.26 -0.06 

Ɛdc
 

 

1.00 0.17 

ƐKpc/Ke
  1.00 

 

As mentioned before, only the parameters that define the infill strut backbone curve (Huang 

et al., 2020) are considered as correlated/uncorrelated random variables in this study. Moreover, 

structural elements are treated as independent for correlation purposes, i.e. no explicit correlation 

is assumed between modeling parameters of different structural elements. 

Finally, to quantify and propagate the modeling uncertainty through the performance analysis, 

Latin Hypercube Sampling (LHS) is conducted. As discussed in many studies (Ugurhan et al., 

2013; Vamvatsikos & Fragiadakis, 2010; Vořechovský & Novák, 2003; Dolšek, 2009), LHS has 

been demonstrated to be an effective method in the process of sampling random variables with and 

without correlation. By stratification of the probability function that defines the distribution of a 

random variable, the number of simulations is considerably reduced compared to other techniques 
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such as Monte Carlo simulation (Dolšek, 2012). In this study, by examining the convergence of 

the results from the performance assessment analysis in terms of median (ϴ) and dispersion (β) 

values for maximum story drifts, 500 model realizations of the strut modeling parameters are 

generated based on LHS method. Additionally, each model realization is randomly combined with 

eight ground motions, each representing one of defined seismic hazard-consistent levels.  

Figure 4.3 shows an example of the backbone curve for the mean model and the curves 

generated for fifty model realizations. Finally, Figure 4.4 summarizes the procedure used to 

determine the set of structural models for the four variants of analysis (i.e. empirical with 

correlation (EC), empirical without correlation (ENC), fitted distribution with correlation (FC), and 

fitted distribution without correlation (FNC)). 

 

 

Figure 4.3 – Example of strut backbone curves generated with LHS 
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Figure 4.4 – Sampling procedure for the different variants of analysis 
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Chapter 5 

Case study: Reinforced concrete masonry-infilled frame structure 

 

The previously described methodology for the quantification of both record-to-record and 

modeling uncertainties is applied to the study case prototype building designed and studied by 

Stavridis (2009). The prototype building consists of a three-story non-ductile reinforced concrete 

frame structure with unreinforced three-wythe masonry infill walls. This type of building 

represents a common construction practice in the 1920s era in California. However, masonry-

infilled RC frames with similar design details as the prototype building analyzed in this study are 

still often used for housing and industrial activities in many parts of the world. Furthermore, this 

type of structure continues to be a common construction practice in places where the seismic 

hazard is considered a great concern. 

  

5.1 Prototype building 

The three-story non-ductile reinforced concrete frame prototype building is assumed to be 

located in the Los Angeles area, California. The site specific coordinates in latitude and longitude 

are 34.208 and -118.604, respectively. 

Based on ASCE 7 (American Society of Civil Engineers, 2017) seismic categorization, a risk 

category II (based on occupation activity) and site class D (Vs30 = 259 m/s) are considered. The 

basic spectral parameters SS and S1 at the maximum considered earthquake (MCE) level are 

determined as 1.5 and 0.6g, respectively, which was also considered by Stavridis & Shing (2015). 

Additionally, the fundamental period for the undamaged condition of the building, for 5% damping 
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ratio, is estimated as 0.1 seconds, which is consistent with the fundamental period obtained from 

modal analysis of the prototype building in Open System for Earthquake Engineering Simulation 

(OpenSees, McKenna et al., 2000). More detailed information about the design of the prototype 

building is given in Stavridis (2009). 

 

5.1.1 Geometry 

A three-dimensional, plan, and elevation views of the prototype building with its global 

dimensions is shown in Figure 5.1. The masonry infill walls located in the perimeter reinforced 

concrete frames consist of three-wythe brick masonry walls. For the purposes of this research, the 

masonry infill walls are considered as fully solid walls, i.e. without any openings. 

 

 

 

Figure 5.1 – 3D scheme of the prototype building, plan view, and elevation of longitudinal 

exterior frame with global dimensions. 
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The lateral force resisting system corresponds to the perimeter frames, where the masonry 

infill walls are located. Interior columns and beams are considered as gravity-only structural 

components. Floor system corresponds to a reinforced concrete thin slab supported by joists in the 

longitudinal direction of the structure. Figure 5.2 shows an elevation view of the analyzed three-

bay-three-story longitudinal frame with design details of beams and columns. Additionally, Table 

5.1 summarizes the design details for those structural components. 

 

 

Figure 5.2 – Elevation view of the longitudinal exterior frame and structural component 

details 
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Table 5.1 – Design details of the reinforced concrete frame structural components 
B

ea
m

 d
es

ig
n

 Story level 
Width 

(in.) 

Depth 

(in.) 

Bottom 

reinf. 

Top 

reinf. 
Stirrups 

1 16 22 3#8 3#7 NO 

2 16 22 3#8 3#7 NO 

3 (roof) 16 18 2#8 2#6 NO 

C
o
lu

m
n

 d
es

ig
n

 Story level 
Width 

(in.) 

Depth 

(in.) 

Vertical 

reinf. 
Stirrups 

1 16 16 8#7 #3@16” 

2 16 16 8#6 #3@16” 

3 (roof) 16 16 8#5 #3@16” 

 

5.1.2 Material properties 

Concrete beams and columns were modeled with compression strength fc’ = 5.75 [ksi] and 

modulus of elasticity Ec = 2395 [ksi]. Reinforcement bars were considered with strength at yield 

fy = 62.5 [ksi] and a modulus of elasticity Es = 29000 [ksi].  

The compression strength and modulus of elasticity for the masonry prism was considered 

as fm = 3.2 [ksi] and Em = 906.5 [ksi], respectively. These correspond to measured mean values, 

which were obtained through an extensive test program conducted on the materials used for the 

construction of the prototype building. More details are provided in Stavridis & Shing (2015). 
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5.1.3 Loads 

The seismic weight of the prototype building is estimated as 755 [kips] (Stavridis & Shing, 

2015). Since in this study the analysis is conducted on half the lateral resisting system in the 

longitudinal direction, the seismic weight is taken as 372 [kips]. Additionally, Table 5.2 lists the 

components that contribute to the building weight and loads as reported in Stavridis (2009), where 

more details about the configuration and the structural design of the prototype building can be 

reviewed. 

 

Table 5.2 – Loads considered for the analysis of the longitudinal exterior frame 

Component Units Level 1 and 2 Level 3 (roof) 

Topping psf 12.5 5 

Ceiling psf 12 12 

Mechanical equipment psf N/A 5 

Infill panels pcf 130 N/A 

Parapet lbs/ft N/A 390 

Live loads psf 75 20 

 

5.2 Structural model 

Giving the symmetry of the prototype building, the seismic performance assessment is 

conducted through a two-dimensional model that accounts for the lateral force resisting system in 

the longitudinal direction of the building. Therefore, a two-dimensional nonlinear structural model 

was developed using OpenSees. Rayleigh damping based on the first and third modal frequencies 
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is used for the dynamic analysis with 5% critical damping. Figure 5.3 schematically illustrates the 

modeling approach used for the longitudinal masonry-infilled frame. 

 

 

Figure 5.3 – Schematic modeling approach for the longitudinal exterior RC frame with 

masonry infill panels (note that floor slabs are not shown) 

 

As illustrated in Figure 5.3, leaning columns are connected by rigid trusses to the RC frame 

system at each floor level. Rotational springs with very small stiffness are considered at the ends 

of the leaning columns to avoid incorporating additional flexural stiffness. Leaning columns are 

used to represent the P-Delta effects caused by half the portion of the gravity load resisted by the 

interior columns of the prototype building. Figure 5.4 shows a more detailed scheme of the 

configuration of the numerical model developed in OpenSees. 
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Figure 5.4 – Schematic configuration of two-dimensional nonlinear model of the prototype 

building constructed in OpenSees 
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A concentrated plasticity model is considered for the connection of the reinforced concrete 

elements, i.e. beams and columns. As described in Huang et al. (2020), the frame structural 

components are modeled as elastic elements with flexural moment-rotation (M-ϴ) springs/hinges 

at its ends. The semi-empirical equations calibrated by Haselton et al. (2016) are used to determine 

the parameters that define the hysteretic behavior of those flexural hinges and the Ibarra-Medina-

Krawinkler (I-M-K) model (Ibarra et al., 2005) is incorporated. Additionally, according to the 

model developed by Elwood (2004), shear failure of columns is considered by adding a shear hinge 

in series with the flexural hinge at each column ends. Dimensions at centerlines of the frame 

elements are considered for modeling the RC frame system. 

The masonry infill walls are modeled as two compression-only diagonal struts using a truss 

element with the Lowes-Mitra-Altoontash (Lowes et al., 2003) pinching material model 

(Pinching4 material in OpenSees). The modeling parameters that define the backbone curve for 

the axial behavior of the equivalent strut are computed from the predictive equations developed by 

(Huang et al., 2020, see Chapter 4). These parameters are the initial stiffness (Ke), yield strength 

(Fy), capping strength (Fc) and the associated deformation (dc), residual strength (Fres), and the 

post-capping stiffness-to-initial stiffness ratio (Kpc/Ke). The Lowes-Mitra-Altoontash model is 

adopted since it gives more adaptability in terms of backbone shape and cycling degradation effects 

to represent the infill strut hysteretic behavior. Figure 5.5 shows the axial force-displacement 

relationship that defines the infill strut model. 
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(a) 

 

(b) 

Figure 5.5 – (a) Lowes-Mitra-Altoontash model and (b) axial force-displacement relationship 

for the strut model 

 

Since the infill strut model considers compression-only action, the parameters that define the 

tension branch of the hysteretic curve are assumed to be almost zero in order to avoid numerical 

issues during the analysis. The relationship between the infill strut backbone curve parameters 
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defined by the Huang et al. (2020) model and the Lowes-Mitra-Altoontash (L-M-A) response 

model is represented in Table 5.3. 

 

Table 5.3 – Relationship between the infill strut backbone parameters and those of the Lowes-

Mitra-Altoontash (L-M-A) model 

Backbone parameter Calibrated L-M-A model parameters 

Ke 
eNf1

eNd1 ∙ ld
 

Fy eNf1 

Fc eNf3 

dc eNd3 ∙ ld 

Kpc 
eNf4 − eNf3

(eNd4 − eNd3) ∙ ld
 

Fres eNf4 

 

As stated in Huang et al. (2020) a unit strut area is used in the axial response of the equivalent 

strut so the calibrated stress is the same as the associated force. Mean values are used for the cyclic 

degradation and pinching parameters. Mean values are also used for the mass, loads, damping ratio, 

and properties used to define the modeling parameters for the RC elements (i.e. beams and 

columns). Based on the geometry and measured mean values of the mechanical properties of 

materials, the computed predicted mean values for the six modeling parameters of the infill strut 

model are listed in Table 5.4. 
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Table 5.4 – Mean values computed for the Lowes-Mitra-Altoontash model used for the 

equivalent struts 

Modeling parameter Units Story level 1 Story level 2 Story level 3 

Ke kip/in 2235.2 2235.2 2149.4 

Fc kip 242.2 245.3 245.9 

Fy kip 174.4 176.6 177.0 

Fres kip 96.9 98.1 98.4 

dc in 0.36 0.37 0.38 

Kpc kip/in -50.8 -50.8 -48.9 

 

For simplicity, the structural model does not consider the contribution in stiffness and 

strength on the beams provided by the concrete floor slab at each story level. The possibility of 

foundation uplift is also not considered, which means that the bases of the columns are modeled 

as fixed.  

 

5.3 Hazard-consistent ground motion selection 

The prototype building site (34.208 and -118.604) in Los Angeles, California, is used for the 

hazard-consistent ground motion selection. In the hazard analysis and ground motion selection 

procedure, the information required is obtained from the Unified Hazard Tool provided online1 by 

                                                 
1 https://earthquake.usgs.gov/hazards/interactive/ 

https://earthquake.usgs.gov/hazards/interactive/
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The United States Geological Survey (U.S. Geological Survey, 2020). This tool allows users to 

obtain the target spectral accelerations at the fundamental period of the structure (SaT1) for 

different hazard levels. Furthermore, disaggregation information about the sources that contributes 

to the site hazard is also retrieved using the USGS tool. 

Here, it is assumed that the spectral acceleration at the fundamental period of the prototype 

structure in the direction of analysis and its site location are the main parameters needed for ground 

motion selection (Krawinkler et al., 2003). Based on Site Class D and spectral acceleration at 0.1 

seconds, which is estimated as the fundamental period of the prototype structure, eight hazard 

levels are selected. These hazard levels are ranged from 20% to 0.5% probability of exceedance in 

50 years. Selected suites of 80 (40 pairs) hazard-consistent ground motions are considered for each 

hazard level, in which the mean spectra reasonably match the target spectra derived from ground 

motion models (GMMs) in the region of interest. Table 5.5 summarizes the information for each 

selected hazard and the disaggregation parameters (m: magnitude, r: rupture distance, and epsilon 

(Ɛo): number of standard deviations that separates the mean logarithmic spectral acceleration and 

the observed spectral acceleration based on calculations made by using the GMMs (Baker & 

Cornell, 2006). 
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Table 5.5 – Hazard-consistent ground motion intensities considered for performance 

assessment 

Hazard 

level 

Return period 

(years) 

Probability of 

exceedance (in 50 years) 

Target 

PSaT1 (g) 
m* r* Ɛo* 

1 72 50% 0.43 6.33 18.23 0.66σ 

2 224 20% 0.71 6.42 14.93 1.27σ 

3 475 10% 0.92 6.47 13.43 1.63σ 

4 975 5% 1.15 6.51 12.16 1.94σ 

5 2475 2% 1.51 6.61 10.96 2.31σ 

6 5000 1% 1.81 6.71 10.24 2.57σ 

7 7500 0.7% 2.01 6.76 9.51 2.70σ 

8 10000 0.5% 2.16 6.76 8.06 2.74σ 

*Values for Campbell & Bozorgnia (2014) GMM (CB14) 

 

The mean target spectra at each hazard level is computed as the average of the spectra 

obtained from the Campbell & Bozorgnia (2014), Abrahamson, Kamai & Silva (2014), and Chiou 

& Youngs (2014) GMMs. From the USGS disaggregation tool, the mean site-specific values, i.e. 

magnitude, rupture distance, and epsilon (Ɛo), are obtained for each of the designated GMMs. This 

way, the site-specific unconditional spectra (i.e. not conditioned on a spectral value) are defined 

for the analysis and seismic performance assessment of the prototype building. Figure 5.6 depicts 

the response spectra for the eight sets of ground motions corresponding to each of the hazard levels. 
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(a) (b) 

  

  

(c) (d) 

Figure 5.6 – Response spectra for selected suites of ground motions corresponding to (a) 50%, 

(b) 20%, (c) 10%, (d) 5%, (e) 2%, (f) 1%, (g) 0.7%, and (h) 0.5% in 50 years, respectively 
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(e) (f) 

  

  

(g) (h) 

Figure 5.6 (continued) – Response spectra for selected suites of ground motions corresponding 

to (a) 50%, (b) 20%, (c) 10%, (d) 5%, (e) 2%, (f) 1%, (g) 0.7%, and (h) 0.5% in 50 years, 

respectively 

 

A maximum scale factor of 3.0 was considered for the selection of the hazard-consistent 

suites of ground motions. Additionally, based on probabilistic seismic hazard analysis (PHSA), 

and given the site location of the prototype building and its estimated fundamental period, the 

period-dependent hazard curve is also obtained from the USGS Uniform Hazard Tool. Figure 5.7 

shows the hazard curve corresponding to the fundamental period of the case study structure. 
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Figure 5.7 – Period-dependent hazard curve for T1 = 0.1 sec. 

 

5.4 Definition of limit states for performance assessment 

The SDRmax is the EDP to assess the seismic performance of the prototype structure and 

examine the effects of modeling uncertainty. Five drift-based limit states (LSs) are defined 

corresponding to 0.25%, 0.7%, 1.5%, 3%, and 5% SDRmax. According to previous studies 

conducted on these type of structural systems (Basha & Kaushik, 2016; Masi, 2003; Stavridis, 

2009; Stavridis & Shing, 2015), Table 5.6 lists the selected drift limit states and the associated 

failure patterns. 
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Table 5.6 – Definition of drift limit states for seismic performance assessment 

Drift-based 

limit state 
Associated failure pattern Reference 

0.25% 
Diagonal/sliding shear cracking of masonry infill 

wall 
Stavridis & Shing (2015) 

0.7% 
Structure lateral strength reduced to 80% of peak 

strength 

From pushover curve (this 

study) 

1.5% Collapse of masonry infill wall 
Stavridis & Shing (2015) 

Masi (2003) 

3% 
Severe damage on RC frame system (shear failure 

predominantly) 

Stavridis (2009) 

Basha & Kaushik (2016) 

5% Global collapse of the structure Basha & Kaushik (2016) 

 

Seismic performance is assessed through drift-exceedance fragility curves generated in terms 

of the spectral acceleration at the fundamental period of the structure normalized by the reference 

spectral acceleration at the maximum considered earthquake (MCE) level (SaT1,MCE = 1.51 [g]).  
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Chapter 6 

Seismic performance assessment with modeling uncertainty 

 

The mean model and the four variants of probabilistic models (i.e. considering empirical and 

fitted probability distribution for the strut modeling parameters, and with and without correlation, 

respectively) outlined in Chapter 4, are used to assess the seismic performance of the prototype 

building. In order to estimate EDP distributions at the different hazard levels, and quantify record-

to-record and modeling uncertainties, MSA is conducted over the mean and randomized structural 

models, respectively, for the predefined set of hazard levels. 

Statistical measures (median and dispersion) for the selected EDP (i.e. maximum story drift 

ratio) are presented, and drift-exceedance fragility curves are generated in order to conduct a risk-

based assessment of the prototype building. Furthermore, differences among the variants of 

analysis are noted and deaggregation of modeling uncertainty effects is presented. 

 

6.1 Effects of modeling uncertainty on maximum story drift demands 

For each model realization, one ground motion record is randomly selected for each of the 

eight hazard levels. This results in eight nonlinear response history analyses performed on each 

model realization. From the empirical distributions of SDRmax obtained at each hazard level, the 

statistical median and dispersion are first computed for the mean model (i.e. a model constructed 

based on the mean values of the modeling parameters), which allows us to isolate the effects of 

record-to-record uncertainty (RTR). Then, these results are compared against the results obtained 

by including modeling uncertainty (total uncertainty: TOT) according to the procedure described 

in Chapter 4. 
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6.1.1 Drift-response considering record-to-record uncertainty only 

MSA is performed on the structural model constructed based on the mean values of the 

modeling parameters (mean model hereinafter) (see Table 5.4) to quantify the record-to-record 

uncertainty. Figure 6.1 shows the results of the MSA, where empirical responses for SDRmax are 

represented in the form of “stripes”, with each one corresponding to one of the hazard levels. 

 

 

Figure 6.1 – Results of MSA for the mean model of the prototype structure 

 

Each “stripe” (hazard level) is composed by a total of 80 responses, which correspond to the 

SDRmax obtained from each nonlinear response history analysis. It is worth noting that MSA is 

performed for a different set of ground motion records at each hazard level. Additionally, as it is 

shown in Figure 6.1 an SDRmax of 0.05 is assumed for the collapse threshold.  
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The median and dispersion measures obtained from the MSA for SDRmax by considering 

record-to-record uncertainty only are summarized in Table 6.1.  

 

Table 6.1 – Median and dispersion measures of SDRmax for record-to-record uncertainty 

Hazard level 
ϴSDR,RTR

 (%) βSDR,RTR Collapse cases 

(% of total analyses) * ** * ** 

1 0.07 0.07 0.61 0.64 0.0 

2 0.15 0.11 0.99 1.07 0.0 

3 0.25 0.22 1.21 1.89 13.8 

4 0.34 0.38 1.24 1.95 17.5 

5 0.47 0.97 1.16 2.03 30.0 

6 0.98 2.10 1.03 1.62 31.3 

7 1.00 2.51 0.98 1.50 36.3 

8 1.17 3.79 1.02 1.34 42.5 

* Parameters computed based on “non-collapse” cases with lognormal distribution 

** Parameters computed based on counted median and fractional standard deviation 

 

To estimate the demand parameters (i.e. ϴ and β), a lognormal distribution is fitted to the 

SDRmax responses. Two methods for representing their distributions are used; by considering the 

non-collapse cases results only (i.e. cases that reach convergence during the analysis and/or 

resulted in an SDRmax less than 5%); and by computing the counted median and fractional standard 

deviation of the total responses (including collapse cases), at each hazard level respectively. 

Counted median is considered as the 50th percentile of the responses, while the fractional standard 

deviation is estimated as the mean value between lognormal value of the 84th over the 50th 
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percentile and the lognormal value of the 50th over the 16th percentiles. These approaches to 

estimating the parameters based on non-collapse demands and counting has been largely utilized, 

mainly to avoid issues of bias that could be introduced by non-convergence and collapse cases 

(Jalayer & Cornell, 2009). Moreover, the assumption that the demands follow a lognormal 

distribution may no longer be valid when too many collapse are observed. 

As observed from Table 6.1, when only record-to-record uncertainty is considered, the 

median SDRmax increases with the hazard levels. At the equivalent MCE level (2% probability of 

exceedance in 50 years according to ASCE 7) the median SDRmax is increased 1.16 times. These 

results suggest that the structure is susceptible to significant cracking at the masonry infill walls 

(70% probability of exceeding the 0.25% drift threshold). Moreover, the probability of exceeding 

the limit state for collapse is 17.5%, which highlights the high vulnerability of this building. For 

the observed non-collapse cases, the median SDRmax is increased 16.5 times from hazard level 1 

to hazard level 8.  

Dispersion in SDRmax due to record-to-record uncertainty is observed to increase up to the 

hazard level with 975 years return period, which is consistent with the trend observed for the 

median SDRmax and the increasing nonlinear behavior due to damages on the infill walls. However, 

for higher ground motion intensities, the dispersion on SDRmax starts to decrease, which is likely 

a result of the change in the number of collapse cases, or near-collapse cases, where the distribution 

of demands no longer follows a lognormal distribution. 
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6.1.2 Drift-response including the effects of modeling uncertainty 

To account for and propagate the modeling uncertainty through the analysis, MSA is 

performed on 500 model realizations constructed through LHS. As noted in Chapter 4, sampling 

is based on the developed empirical and fitted distributions for the infill strut modeling parameters, 

with and without correlations. Figure 6.2 shows the response “stripes” with the distributions for 

SDRmax obtained from MSA, where the total uncertainty (i.e. combined record-to-record and 

modeling uncertainty) is considered. 

 

 

Figure 6.2 – Results of MSA for the model realizations of the prototype structure 

 

Figure 6.2 shows the SDRmax responses obtained for the analysis in which modeling 

parameters are sampled based on the correlated empirical distributions (EC). Based on these results 

shown in Figure 6.2, Table 6.2 and Table 6.3 summarize the statistical median and dispersion 

measures for the four variants of analysis. 
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Table 6.2 – Median values of SDRmax with inclusion of modeling uncertainty 

Hazard  

level 

ϴSDR,TOT (%) 

EC
1 

ϴSDR,TOT (%) 

ENC
2 

ϴSDR,TOT (%) 

FC
3 

ϴSDR,TOT (%) 

FNC
4 

Collapse cases  

(% of total 

analyses) 

(A1/B2/C3/D4) * ** * ** * ** * ** 

1 0.08 0.07 0.09 0.07 0.09 0.07 0.08 0.07 0.0/0.0/0.0/0.0  

2 0.18 0.15 0.18 0.14 0.17 0.14 0.16 0.13 2.0/1.2/2.0/0.8 

3 0.28 0.26 0.28 0.26 0.27 0.24 0.26 0.25 9.2/10.6/8.6/ 11.8 

4 0.34 0.37 0.40 0.44 0.35 0.39 0.37 0.38 13.6/11.4/16.0/13.8 

5 0.54 0.97 0.51 1.00 0.53 1.06 0.53 1.11 25.4/26.8/27.4/26.0 

6 0.84 1.77 0.85 1.79 0.80 1.80 0.85 1.72 26.8/29.0/29.2/25.4 

7 0.85 1.83 0.88 2.32 0.90 2.41 0.97 2.16 30.2/32.4/33.8/30.2 

8 0.97 2.43 0.98 2.76 1.04 2.95 1.05 2.66 35.4/38.4/37.6/34.8 

1 EC: Using empirical distribution with correlation 

2 ENC: Using empirical distribution without correlation 

3 FC: Using fitted distribution with correlation 

4 FNC: Using fitted distribution without correlation 

* Parameters computed based on “non-collapse” cases (SDRmax < 5%) 

** Parameters computed based counted median and fractional standard deviation 
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Table 6.3 – Dispersion measures of SDRmax with inclusion of modeling uncertainty 

Hazard level 

βSDR,TOT 

EC
1 

βSDR,TOT 

ENC
2 

βSDR,TOT 

FC
3 

βSDR,TOT 

FNC
4 

* ** * ** * ** * ** 

1 0.82 0.80 0.85 0.84 0.83 0.82 0.82 0.79 

2 1.09 1.21 1.19 1.29 1.14 1.20 1.09 1.10 

3 1.24 1.60 1.29 1.78 1.31 1.77 1.21 1.77 

4 1.22 1.81 1.28 1.71 1.29 1.91 1.23 1.83 

5 1.17 1.96 1.16 2.03 1.21 2.00 1.22 2.04 

6 1.10 1.71 1.09 1.69 1.09 1.76 1.09 1.69 

7 1.07 1.70 1.07 1.59 1.09 1.70 1.08 1.65 

8 1.07 1.58 1.13 1.71 1.06 1.56 1.10 1.59 

1 EC: Using empirical distribution with correlation 

2 ENC: Using empirical distribution without correlation 

3 FC: Using fitted distribution with correlation 

4 FNC: Using fitted distribution without correlation 

* Parameters computed based on “non-collapse” cases 

** Parameters computed based on full stripe results 

 

The results shown in Table 6.2 and Table 6.3 are graphically visualized in Figure 6.3, which 

shows plots of the median versus dispersion ratios computed as the quotient between the results 

obtained from the analysis with record-to-record uncertainty and total uncertainty, respectively. 
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Figure 6.3 – Change in median versus change in dispersion of SDRmax at each hazard level due 

to the inclusion of modeling uncertainty (referred to the distribution of the non-collapse cases) 

 

In general, the change in median and dispersion (ϴTOT/ϴRTR and βTOT/ βRTR) are similar when 

they are computed based on the non-collapse and the counted values. The non-collapse cases 

approach results in slightly higher values for the change in dispersions, while the counted approach 

results in marginally higher values for the change in the medians. 

As reflected in Figure 6.3, the inclusion modeling uncertainty increases the dispersion in 

almost all the analysis variants and hazard levels. On average, the dispersion increases 10% due to 

the inclusion of modeling uncertainty. A few exceptions can be identified for hazard levels 3, 4, 

and 5, for which the dispersion decreases with respect to the case with record-to-record uncertainty 

only. These exceptions are for the results obtained from the analysis performed on model 

realizations where the modeling parameters are sampled from correlated empirical distributions 

(cyan colored symbols) and with uncorrelated fitted distributions (red colored symbols), 
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respectively. Dispersion has its maximum increase for hazard level 1, in which the increase is on 

average 35%, and shows a decreasing trend for higher levels, reaching to a 7% increase for the 

0.5% probability of exceedance in 50 years hazard. It is worth mentioning that the dispersion 

observed in hazard level 1 seems to be very high since at this hazard level the structure is supposed 

to have not experienced much nonlinearity. Furthermore, the higher impact on median SDRmax is 

observed when modeling parameters are sampled from uncorrelated empirical distributions. The 

median SDRmax increases on average 18% for the first five hazard levels, and shows a decrease by 

15% for the three most severe intensities. 

At the hazard level with 2% probability of exceedance in 50 years (hazard level 5), the 

median SDRmax is 0.47% based on the mean value of the non-collapse cases (i.e. with exclusion 

of collapse cases) of the four variants of analysis. This result is 12.2% higher than the median 

SDRmax computed for the same hazard level with consideration of record-to-record uncertainty 

only. The same trend is observed for dispersion, where it increases by 2.5% when modeling 

uncertainty is included. 

 

6.2 Drift-exceedance fragility assessment 

Drift-exceedance fragility curves are generated based on the results obtained from the MSA 

for the five aforementioned limits states. At each hazard level, the probability of exceeding each 

limit state is computed as the fraction of ground motions that resulted in SDRmax greater than the 

value defined for each limit state (see Table 5.6). The drift-exceedance fragility curves are 

represented by parameterized lognormal distributions (Baker, 2015). The maximum likelihood 

method is implemented to generate the corresponding drift-exceedance fragility curves.  
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6.2.1 Fragility curves considering only record-to-record uncertainty 

Figure 6.4 shows the fragility curves when only record-to-record uncertainty is considered. 

The curves are shown in terms of spectral acceleration at the fundamental period of the structure 

(SaT1), normalized with respect to the spectral acceleration at the hazard level with 2% probability 

of exceedance in 50 years (SMT), versus probability of exceed the limit state. 

 

 

Figure 6.4 – Drift-exceedance fragility curves with consideration of record-to-record 

uncertainty only 

 

Table 6.4 summarizes the fragility function parameters (median and dispersion) at each limit 

state, computed based on maximum likelihood fitting technique. 
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Table 6.4 – Fragility function parameters for record-to-record uncertainty only 

Drift-based limit state ϴSaT1,RTR βSaT1,RTR 

0.25% 1.02 0.49 

0.7% 1.29 0.52 

1.5% 1.59 0.56 

3% 1.96 0.61 

5% 2.41 0.70 

 

According to the fragility parameters shown in Table 6.4, a clear increase of both the median 

and dispersion is observed, which is consistent with the higher demands associated with the more 

severe limit states. The dispersion of the fragility functions ranges from 0.49 to 0.7, while the 

median intensity (not normalized) ranges from 1.02 [g] at the first limit state (0.25% drift threshold) 

to 2.41 [g] at the most severe limit state (5% drift threshold). The median represents the spectral 

acceleration for which 50% of the cases are expected to observe an SDRmax greater than value 

corresponding to the limit state threshold. 

 

6.2.2 Fragility curves considering the effects modeling uncertainty 

Figure 6.5 shows the change in the drift-exceedance fragility curves due to the consideration 

of modeling uncertainty. 
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(a) (b) 

  

(c) (d) 

Figure 6.5 – Change in fragility curves due to the consideration of modeling uncertainty for 

realization models sampled from (a) correlated empirical distributions, (b) uncorrelated 

empirical distributions, (c) correlated fitted distributions, and (d) uncorrelated fitted 

distributions 
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Table 6.5 and Table 6.6 summarize the statistical parameters (median drift intensities and 

dispersion) associated with each drift-exceedance fragility curve. Figure 6.6 presents the results in 

terms of ratios that represent the changes in median intensity and dispersion due to the 

consideration of modeling uncertainty. 

 

Table 6.5 – Median intensities when modeling uncertainty is considered 

Drift-based 

limit state 

ϴSaT1,TOT* 

EC
1 

ϴSaT1,TOT* 

ENC
2 

ϴSaT1,TOT* 

FDC
3 

ϴSaT1,TOT* 

FNC
4 

0.25% 0.95 0.92 0.93 0.95 

0.7% 1.36 1.31 1.34 1.35 

1.5% 1.74 1.69 1.67 1.69 

3% 2.28 2.18 2.11 2.19 

5% 2.81 2.62 2.61 2.85 

 

Table 6.6 – Dispersions in analysis variants when modeling uncertainty is considered 

Drift-based  

limit state 

βSaT1,TOT* 

EC
1 

βSaT1,TOT* 

ENC
2 

βSaT1,TOT* 

FDC
3 

βSaT1,TOT* 

FNC
4 

0.25% 0.62 0.63 0.62 0.61 

0.7% 0.62 0.64 0.62 0.60 

1.5% 0.65 0.67 0.64 0.62 

3% 0.73 0.70 0.70 0.70 

5% 0.76 0.71 0.73 0.78 

 



54 

 

 

Figure 6.6 – Change in dispersion versus change in median intensities of fragility functions 

when modeling uncertainty is included 

 

As observed, the consideration of modeling uncertainty increases the dispersion for all drift-

based limits states, independently of the variant of analysis. The change in dispersion is shown to 

be greater at the less severe limit state. The maximum increase, with respect to the case with 

record-to-record uncertainty only, is 29%, which corresponds to the least severe limit state (0.25% 

drift threshold). Additionally, modeling uncertainty produces an increase in the median intensities 

in almost every drift-based limit state. On average, the median drift intensities increase by 5.2%. 

The exception is identified for the first limit state, where the inclusion of modeling uncertainty 

produces a decrease of 8.2%. The maximum difference between the variants of analysis is 9.3%, 

which occur for the most severe limit state. On the other hand, the dispersion increases by 16.2% 

on average, showing that modeling uncertainty has a greater effect on the latter. 
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As shown in the fragility curves in Figure 6.5, at the equivalent MCE intensity (SaT1/SMT = 

1.0), the probabilities of exceeding each limit state are on average (i.e. the average of the four 

variants of analysis) 78%, 58%, 44%, 32%, and 23% for 0.25%, 0.7%, 1.5%, 3%, and 5% drift 

thresholds, respectively, when modeling uncertainty is included in the analysis. These values are 

far beyond the performance limits established in ASCE 7, which corresponds to a 10% (or lower) 

probability of collapse for a ground motion intensity with a 2475 return period. 

In terms of the differences produced by the different variant of analysis, the results show that 

the EC variant, which corresponds to the case where the strut modeling parameters are sampled 

from correlated empirical distributions, has the greatest impact on the median drift intensity. On 

the other hand, the variant where uncorrelated empirical distributions (ENC) are used has on 

average the greatest impact on the increase of dispersion. The net change (i.e. the maximum 

difference between the analysis with record-to-record uncertainty only and with the presence of 

modeling uncertainty) in median drift intensities and dispersions due to the different variant of 

analysis is 9.2% and 9.9%, respectively. Figure 6.7 illustrates the differences observed among the 

fragility functions computed based on the results of the different variants of analysis. 
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(a) 

 

(b) 

Figure 6.7 – Differences in the fragility curves for the different variants of analysis. Fragility 

curves corresponding to limit state with (a) 1.5% and (b) 3% drift thresholds. 
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6.3 Risk-based assessment 

A risk-based assessment of the prototype building is performed to investigate the effects of 

modeling uncertainties on the mean annual probability of exceeding each of the drift-based limit 

states. First, the annual rate of exceeding each limit state (λLS) is computed by integrating the site-

specific hazard curve for the prototype building (see Figure 5.7) with the respective drift-

exceedance fragility functions. Figure 6.8 illustrates the components required to compute the 

annual rate of exceedance, which in the case of this study is focused on the SDRmax demands. 

 

 

Figure 6.8 – Conceptualization of the calculation for seismic risk assessment 

 

The equation that describe the integration for risk-based assessment procedure is as follows: 

 

λLS = ∫ P(LS|IM = im)dλ(IM) =  ∫ P(LS|IM = im) |
dλ(IM)

dIM
|

∞

0

∞

0

 

 

In the equation above, 𝑃(𝐿𝑆|𝐼𝑀 = 𝑖𝑚) denotes the probability of exceeding a certain limit 

state and is represented by the drift-exceedance fragility functions (left plot in Figure 6.8), and 𝜆 

represents the seismic hazard function (right plot of Figure 6.8). The integration is made over all 
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the intensity measure (IM) values, which in this study is considered as the spectral acceleration at 

the fundamental period of the structure (SaT1). The probability of exceedance of each limit state is 

computed for 50 years and 100 years, assuming a Poisson distribution. Table 6.7 and Table 6.8 

show the limit state probability of exceedance results. The results are shown as probability ratios, 

in which the probabilities obtained by considering the modeling uncertainties are compared to the 

probabilities computed based on record-to-record uncertainty only. 

 

Table 6.7 – Change in probabilities of exceeding the drift-based limit states in 50 years due to 

consideration of modeling uncertainty 

𝐏𝐋𝐒,𝟓𝟎𝐲𝐬,𝐓𝐎𝐓

𝐏𝐋𝐒,𝟓𝟎𝐲𝐬,𝐑𝐓𝐑
 

𝐏𝐋𝐒,𝟓𝟎𝐲𝐬,𝐑𝐓𝐑 

Drift-based 

limit state 
EC

1 ENC
2 FC

3 FNC
4 

0.25% 1.50 1.61 1.54 1.44 0.154 

0.7% 1.16 1.32 1.20 1.12 0.096 

1.5% 1.07 1.23 1.17 1.07 0.064 

3% 1.05 1.06 1.13 1.06 0.046 

5% 0.87 0.82 0.90 0.92 0.038 

1 EC: Using empirical distribution with correlation 

2 ENC: Using empirical distribution without correlation 

3 FC: Using fitted distribution with correlation 

4 FNC: Using fitted distribution without correlation 
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Table 6.8 – Change in probabilities of exceeding the drift-based limit states in 100 years due to 

consideration of modeling uncertainty 

𝐏𝐋𝐒,𝟏𝟎𝟎𝐲𝐞𝐚𝐫𝐬,𝐓𝐎𝐓

𝐏𝐋𝐒,𝟏𝟎𝟎𝐲𝐞𝐚𝐫𝐬,𝐑𝐓𝐑
 

𝐏𝐋𝐒,𝟏𝟎𝟎𝐲𝐞𝐚𝐫𝐬,𝐑𝐓𝐑 

Drift-based 

limit state 
EC

1 ENC
2 FC

3 FNC
4 

0.25% 1.44 1.53 1.47 1.39 0.285 

0.7% 1.14 1.28 1.17 1.10 0.186 

1.5% 1.06 1.22 1.16 1.06 0.125 

3% 1.06 1.07 1.13 1.07 0.090 

5% 0.88 0.83 0.91 0.92 0.075 

1 EC: Using empirical distribution with correlation 

2 ENC: Using empirical distribution without correlation 

3 FC: Using fitted distribution with correlation 

4 FNC: Using fitted distribution without correlation 

 

In terms of the changes in the probabilities of exceeding the drift-based limit sates when 

modeling uncertainty is considered, the results for the 50 years case are proportionally similar to 

the results for 100 years. The results shown in Table 6.7 are graphically visualized in Figure 6.9, 

where the change in the probabilities of exceeding the drift-based limit sates in 50 years due to the 

consideration of modeling uncertainty are clearly observed at the different limit states. 
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Figure 6.9 – Change in probabilities of exceeding the drift-based limit states in 50 years due to 

consideration of modeling uncertainty 

 

From the results shown in Table 6.7 and illustrated in Figure 6.9, the probability of exceeding 

the limit state with threshold at 1.5% drift is about 8% in 50 years. According to empirical evidence 

(Basha & Kaushik, 2016; Murcia-Delso & Shing, 2012; Stavridis et al., 2012; and others), at this 

drift demand, it is possible to observe complete collapse of the masonry infill walls. Moreover, 

this limit state is also a threshold where the strength of the structure starts to degrade and decay 

rapidly. Therefore, this result provides additional evidence of the seismic vulnerability of this type 

of structure. The consideration of modeling uncertainty increases on average 13.5% the probability 

of exceeding the 1.5% drift threshold limit state in 50 years. 

The analysis variant ENC has the most significant impact in the probability of exceeding the 

first three limit states in 50 years, increasing the probabilities by 61%, 32%, and 23%, respectively. 

In contrast, the analysis variant FNC produces the lowest changes at least in the first four limit states. 

However, it is worth noting that the maximum difference between the analysis variant that 
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generates the most significant impact and the one that generates the least impact is 17.8% for the 

second limit state (drift threshold at 0.7%). 

 

6.4 Deaggregation of modeling uncertainty 

Deaggregation of the results is carried out in order to evaluate the relative contribution of 

each of the infill strut modeling parameters on the seismic performance and risk assessment of the 

prototype building. From the results previously examined, it can be seen that the EC variant of 

analysis, where the model realization are sampled based on correlated empirical distributions, 

reasonably represents the average of the responses of the four variants. In this sense, the 

disaggregation of the results is evaluated for this variant. The deaggregation is achieved by 

repeating the same model sampling outlined earlier, but considering the randomness of the strut 

modeling parameters individually. This means that the model realizations generated using LHS 

consider only one modeling parameter as a random variables, while the rest are set as the mean 

values. Then, each model realization is subjected to MSA and the results are grouped depending 

on the modeling parameter considered as random variable. Figure 6.10 illustrates the changes in 

median SDRmax and dispersion due to the consideration of modeling uncertainty in each infill strut 

modeling parameter separately. 
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Figure 6.10 – Changes in median SDRmax due to the effects of modeling uncertainty included 

in each parameter separately 

 

 

Figure 6.11 – Changes in dispersion of SDRmax due to the effects of modeling uncertainty 

included in each parameter separately 
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It is observed from Figure 6.10 that the initial stiffness (Ke) has a significant contribution to 

the change in dispersion for the first three hazard levels. Modeling uncertainty considered in Ke 

only produces an increase in the dispersion of 11% for hazard level 1 and 9.5% for hazard level 3. 

On the other hand, the contribution of the capping strength (Fc) and the associated deformation (dc) 

to the dispersion tends to be much more negligible with respect to the rest of the modeling 

parameters. In terms of median SDRmax, the results suggest that the two most influential modeling 

parameters that increase the median SDRmax are the strength at yield (Fy) and the residual strength 

(Fres), especially at the first five hazard levels. Figure 6.12 shows the relative contribution of each 

modeling parameter to the change in the median intensity and the dispersion, for each limit state.  

 

 

Figure 6.12 – Changes in median drift intensity at each limit state due to the effects of 

modeling uncertainty considered in each parameter separately 
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Figure 6.13 – Changes in dispersion of fragility functions at each limit state due to the effects 

of modeling uncertainty considered in each parameter separately 

 

Consistent with previous results, the relative effect of modeling uncertainty on the drift-

exceedance fragility curves is observed to be higher for the limit states with drift thresholds at 

0.7%, 1.5%, and 3%. At these limit states, Fc generates the highest increase in both median 

intensity and dispersion with maximum values of βTOT/βRTR = 1.12 and ϴTOT/ϴRTR = 1.13. On the 

other hand, the residual strength (Fres) and the post-capping stiffness-to-initial stiffness (Kpc/Ke) 

parameters tend to have a much smaller effect, both in the median intensities and in the dispersions. 

Finally, from a risk-based perspective, Figure 6.14 shows the relative contribution of the 

modeling uncertainty in the change of the probability of exceeding the drift limit states.  
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Figure 6.14 – Change in probability of exceeding each limit states in 50 years due to the 

relative contribution of modeling uncertainty in the infill strut parameters 

 

From Figure 6.14 it can be concluded that, on average, both Fres and Kpc/Ke have the most 

significant impact on the probabilities of exceeding the limit state in 50 years. Fres governs the 

increase for the first three limit states, while Kpc/Ke controls the results for limit state 4 and 5. The 

maximum difference occurs at the 5% drift threshold limit state, where the contribution of Kpc/Ke 

is 43% higher than the contribution of Fy. 
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Chapter 7 

Conclusions 

 

The analysis of structures is often conducted with deterministic models, which are intended 

to represent the mean or expected behavior of the structure. However, several sources of 

uncertainty have been recognized in structural analysis to have significant impacts on their seismic 

response and performance. The quantification of uncertainties remains a major challenge in 

seismic performance assessment of structures. This is particularly relevant for uncertainties related 

to structural models (modeling uncertainty). Therefore, it is essential to continue strengthening the 

characterization and communication of the uncertainties involved in seismic and structural analysis. 

In this thesis, the focus is on the characterization of the modeling uncertainty embedded in 

the equivalent strut model used to represent the in-plane nonlinear behavior of masonry infill walls, 

and the quantification of its effect on the seismic performance of a non-ductile infilled frame 

structure. Modeling uncertainty is considered at level (ii) epistemic uncertainty according to 

Bradley (2013), where the six constitutive parameters that define the backbone curve of the 

equivalent strut model are considered as random variables. Correlated and uncorrelated 

probabilistic distributions are defined for each strut modeling parameter based on the deduced-to-

predicted ratios obtained from (1) experimental data of more than hundred infilled frame 

specimens and (2) the predictive equations developed by Huang et al. (2020). Modeling 

uncertainty is examined in conjunction with the variability in the selected ground motions (RTR: 

record-to-record uncertainty). The quantification of modeling uncertainty is done by conducting a 

seismic performance assessment on the non-ductile reinforced concrete infilled frame structure 

studied by Stavridis (2009). Using hazard-consistent ground motions, multiple stripe analysis is 
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performed on randomized nonlinear model realizations of the case study building, generated using 

Latin hypercube sampling. The effect of modeling uncertainty on the seismic performance of the 

case study building is investigated in terms of (1) distributions of maximum story drift ratios 

obtained at different hazard levels and (2) fragility curves associated with drift-based limit states.  

The probability distributions defined for each constitutive parameter of the infill strut model 

and the approach used to quantify the modeling uncertainty and its effects on the seismic 

performance of masonry infilled frame buildings, could serve as a benchmark to identify 

vulnerabilities in other similar buildings, for which retrofit plans could be proposed. 

The results from the analyses indicate that modeling uncertainty has a significant impact on 

the maximum drift demands and fragility parameters. At hazards up to 2% probability of 

exceedance in 50 years, modeling uncertainties have more significant effects, increasing both the 

median SDRmax and the dispersion. In terms of fragility function parameters, modeling uncertainty 

shifts the median intensities of each limit state on average 6% and increases the dispersion by 18%. 

For a ground motion intensity with a 2% probability of exceedance in 50 years, a 26% of 

probability of exceeding the collapse threshold (i.e. SDRmax greater than 5%) is obtained, which is 

increased to approximately 36% for the most severe hazard level. This is unacceptable according 

to modern building codes and performance criteria. 

The mean annual rate of exceeding the drift-based limit states is obtained from the integration 

of the drift-based fragility functions with the site-specific hazard curve for the case study building. 

For a 50 years period, when modeling uncertainty is included, a 60% and 14% probability of 

exceedance is obtained for the drift-based limit state thresholds where diagonal/sliding shear 

cracking and collapse of the infill walls is expected, respectively. 
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In terms of dispersion, the correlated and uncorrelated variants of analysis did not result in a 

significant difference for both the SDRmax distributions and fragility functions. The maximum 

difference, which occurs for the least severe drift-based limit state, results in approximately 10%. 

In general, the uncorrelated variants of analysis are observed to have a higher impact on the median 

measures (i.e. median SDRmax and median drift intensity). 

From the deaggregation of the effects of modeling uncertainty, it is shown that the initial 

stiffness (Ke), which is controlled by the elastic modulus (Em), the thickness (tw), and the aspect 

ratio of the masonry wall (hw/lw) according to Huang et al. (2020), is the most preponderant 

contributor to the increase in the dispersion of SDRmax. The initial stiffness is 7% more 

preponderant than the average of the other five strut modeling parameters overall. The capping 

strength (Fc) is observed to produce on average the highest impact on the dispersion of the drift-

based fragility functions. In contrast, the deformation at capping strength (dc) tends to be the most 

significant parameter in the decreasing of the dispersion of the fragility functions. For the case of 

median measures, no clear predominance of any of the six modeling parameters is identified. 

 

7.1 Limitations and future work 

In this study, the seismic performance assessment is conducted using a two-dimensional 

model of the prototype and with concentrated plasticity. As such, it is only possible to evaluate up 

to level (ii) epistemic uncertainty as defined by Bradley (2013). Future work could investigate the 

influences of modeling uncertainties at level (i) (i.e. variability in material properties, mass, loads, 

etc.), and even at level (iii) by using other modeling approaches different from the one used in this 

study. Moreover, in order to generalize the observations obtained from this study, additional 

analyses need to be performed on different configurations of this type of structure (i.e. with 
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openings at the infill walls, with bare frames at specific levels, etc.). 

The main challenge is the characterization of the modeling uncertainty, which requires 

experimental data. Therefore, it is essential to conduct new experimental programs in order to 

better understanding the behavior of this type of structure. 
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