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PHYSICAL REVIEW D VOLUME 55, NUMBER 12 15 JUNE 1997

Neutrino oscillations in curved spacetime: A heuristic treatment

Christian Y. Cardall and George M. Fuller
Department of Physics, University of California, San Diego, La Jolla, California 92093-0319
(Received 28 October 1996

We discuss neutrino oscillations in curved spacetime. Our heuristic approach can accommodate matter
effects and gravitational contributions to neutrino spin precession in the presence of a magnetic field. By way
of illustration, we perform explicit calculations in the Schwarzschild geometry. In this case, gravitational
effects on neutrino oscillations are intimately related to the redshift. We discuss how spacetime curvature could
affect the resonance position and adiabaticity of matter-enhanced neutrino flavor conversion.
[S0556-282(197)04912-4

PACS numbds): 14.60.Pq, 26.36:k, 95.30.Sf

[. INTRODUCTION some authors have used methods that appear to mix flat- and
curved-spacetime thinkini,3]. These particular treatments

Two decades ago an experimental connection betweegan leave the reader confused about the precise meaning of
quantum mechanics and gravitation was observeduantities such as the “energy,” and the nature of the coor-
[1]—essentially, a gravitational analogue of the Aharanov-dinates(i.e., do they reflect proper time and distanceZo-
Bohm effect. These neutron interferometry experiments CaHariant calculations do not suffer from these difficulties of
be well described by including a gravitational potential en-interpretation, and are thus preferable.
ergy in the Hamiltonian of the nonrelativistic ScHinger In Sec. Il we formulate a standard treatment of neutrino
equation. More recently, the effects of gravitation on anothePscillations in a more geometric framework. In Sec. Il we
quantum-mechanica' phenomenon_neutrino Osci”ations_generahze our treatment to CUrVed Spacetlme, W|th CaICUIa'
have been discussed by a number of aut}ﬁﬁr_ﬁ]' some of tions in Schwarzschild geometry in Sec. [Vacuum oscil-
whose results appear to conflict. In this paper we will pro-lations and Sec. | Mikheyev-Smirnov-WolfensteiGMSW)
vide a simple framework for studying neutrino oscillations in €ffectl. Conclusions are given in Sec. VI. We sét=%
curved spacetime. We hope to clarify some issues left un=C=1 throughout this paper.
clear by previous treatmen{®—4|, and provide a more
transparent route to some of the results obtained in [Béf.
by more formal methods than we employ here.

As an illustration of our treatment, we will do explicit
calculations in Schwarzschild geometry. For radially propa- In this section we briefly review a simple, standard treat-
gating neutrinos, the oscillation formulas will be different ment of neutrino oscillationg8], and then present a geomet-
from those that appear in flat spacetime. This is not surprisric version.
ing, since the gravitational redshift for radial neutrino propa- In a standard treatment, the neutrino state is written
gation is well knowr{6]. The existence of a circular orbit for
massless particles in the Schwarzschild geometry allows
computat_ion of the oscillaj[ion phas_e fc_Jr purely azimuthal |\Ifa(x,t)>=z U, jexd —i(Et—Px)]|v)). (€N)
propagation as well. In this case, it will be seen that the J
oscillation formulas are identical to those obtained in flat
spacetime. Here flavor(mass$ indices are in GreekLatin) letters. The

We hope our calculations will clarify some issues that wematrix elementsU,; comprise the transformation between
feel have been left unclear by previous treatments of gravithe flavor and mass bases. The subsc#ifn the left-hand
tational effects on neutrino oscillations. In RET], a semi-  side indicates that the neutrino was in flavor statat the
classical approximation—in which the action of a massiveinitial positionx=0 and timet=0. The mass eigenstates are
particle is taken as a quantum phase—is employed to analyzgken to be energy eigenstates with a common enrljthe

gravitationally induced fringe shifts in interference experi-three-momenta of the mass eigenstates are then

ments. The authors of Ref2] apply this technique to neu-

trino oscillations, employing the action of a massive particle 2

as a quantum phase for each mass eigenstate. In[&ef. P = E2— ml~E— my @)
some weaknesses of this treatment are addressed, but neither ! ! 2E’

of these papers discusses matter effects or gravitational ef-

fects on the spin of the neutring§] (see Sec. I). Further-

more, Refs[2,7] separate out a “gravitational contribution”  For discussion on whether neutrino mass eigenstates should be
to the neutrino oscillation phase. Such a separation is onlgonsidered momentum eigenstates, energy eigenstates, or neither,
possible for weak fields, making the “gravitationally in- see, for example, Ref§3,9] and references therein. These techni-
duced phase” a concept of limited utility. Related to this, calities are not crucial in the present context.

Il. SIMPLE GEOMETRIC TREATMENT OF NEUTRINO
OSCILLATIONS: FLAT SPACETIME
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wherem; is the rest mass corresponding to mass eigenstateherew; is the phase of thgth mass eigenstate. Since
|v;). To compute the oscillation probability at positien a .

massless neutrino trajectory is assumed, xe.t: (dt/d\N) ~ Prun

= =1, 8
m2 (dx/dN)  pry ®
= . —il = ,
|\P“(X’X)>_; Ua]exp{ |<2E>X 7). ©® Eqg. (7) reduces to
This state is then used to compute the oscillation amplitude. _ X mjzd B mjz
We note that the assumption of a null trajectory is necessary W= XOE X=- E(X_Xo)- ©)

for the observation of oscillations; if the mass eigenstates

could be measured at different positidios times, the inter-  This phase agrees with that in E€) (in which x,=0),
ference pattern would be destroyed. _ suggesting that the neutrino state as written in E.is

While the form of Eq.(1) may not openly suggest it, the gyitable for calculating the vacuum oscillation amplitude.
neutrino state at a given point in spacetime is frame+yrthermore, the form of Eq4) suggests a straightforward
invariant. The quantities on the right-hand side of Big— generalization to curved spacetime.
the transformation coefficients between flavor and mass \we now review how contributions to effective neutrino
bases, the phase, the mass eigenstates—all are frame inggass arising from neutrino forward scattering off back-
pendent quantities. Since the connection between quantitigfound matter can be included in the above formalism. These
in flat and curved spacetime is most apparent when expregtfects are important because they can give rise to, for ex-
sions are written in a man|fest|y covariant manner, we |ntr0'amp|e1 the MSW effect. Our treatment is essentia”y that
duce a generalized form of E{L): found in Ref.[10].

As an example, we take neutrino propagation through an

|W,(\)=2, U, ex iﬁ P Pruid\ || 7). (4) electron background. In this case the Dirac equation can be
‘ T g ' cast in the form

In this expressionP is the four-momentum operator that [Y*(dutiA,PL)+Mi]gh=0. (10

generates spacetime translation of the mass eigenstates. The ) ) )
uantity b= dx/dx is the (null) tangent vector to the neu- (See Ref[11] for the convention for the Dirac matriceg*
q Y Paui g that we employ. Here ¢; is a column vector of spinors of

trino’s world linex(A) =[t(\),x(N),y(N),z(N)]; N isan af-  gitferent neutrino flavors, andl; is the vacuum mass matrix

fine parameter of the world line. in the flavor basis:
We now show that Eq(4) is equivalent to Eq(1), by
simplifying Eq. (4) for neutrino propagation in thr direc- mf 0
tion. LetiQ) denote the argument of the exponential in Eq. Mf=U(O 2) ut (11
(4). With P=(E,P*,0,0), and employing the metric M2
n.,,=diad —1,1,1,7, we have with
M dt dx .
Q:_f (Ea_pxa d\, (5) _ cos)  singd 12
*o —sing cos)
where The vectorAf is the flavor-basis effective potential matrix
2 for an interaction with the electron background:
Py=ny,P*=E— —, (6)
oo 2E —J2GNE 0
A= . (13
andM is the mass operator. After the mass operator has done 0 0

its work, we have ] ] ] ]
In this expression, G is the Fermi constant, and
N (dt/dN) m]? dx N&=neu* is the number current of the electron fluial, is
wj= —f Eagan | E72g] [grdM (7)  the electron density in the fluid rest frame, and is the
aol ( N) 2E ] |dA - . . L
fluid’s four-velocity. P, is the left-handed projection opera-
tor. [An index labeling the neutrino’s helicity must now be
included in the eigenkets of E¢4).] The form of Eq.(10)
%0One might argue that to account for observation of the interfersyggests that the mass shell relation read
ence pattern, aaverage(rather than nu)ltrajectory ihould be em-
ployed; see Ref3]. In this case we would have=(P/E)t, where (PE+ALP)(P,+ A, P =— MZ, (14
P is the average momentum of the mass eigenstates having a com-
mon energyE. However, this reasonable argument has no conseThis expression can be derived by iteration of the Dirac
quences for our study, since it merely introduces an overall phasequation, with the assumption that the neutrino momentum is
common to all eigenstates. Here will we follojwerhaps unfortu- much larger than the inverse scale height of the background
nate tradition and employ null trajectories throughout this paper. matter. Assuming that the electron background is at rest with
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respect to the oscillation experiment, keeping only terms tdeft- and right-handed states differently. In order to group it
first order inGg, and writing P = (E,P*,0,0), we find with terms arising from matter effects, we can without physi-
cal consequence add a term proportional to the identity to
1, obtain
Py=E~ 52 (M{-Vy), (15
YRl .= y*eh(iIAg,PL). (22
with
Proceeding as in the discussion of matter effects in the last
—2\J2GgEnP. O section, the three-momentum operator used in neutrino oscil-
= 0 ol (16) lation calculations can be computed from the mass shell con-
dition
The three-momentum operatdt, now includes effective
mass contributions from background matter, and can be used
in Eq. (5).

(P, +Ag,P)(PH+ALP )= —M?, (23

where we have not included background matter effects.

An important point is that the gravitational contribution
AZ is proportional to the identity matrix in flavor space, and
diagonal in spin space. It cannot induce spin flips on its own.

In applying Eqg.(4) in curved spacetime, we see that Therefore, it will not have any observable effects unless
evaluation of the argument in the exponential can becomgere are other off-diagonal terms in spin spé&e., from
more involved. This complication results from the depen-the interaction of a neutrino magnetic moment with a mag-
dence of the metric on position. Additionally, we may worry netic field [5].
about another gravitational effect: since gravitational fields Another complication in applying E¢4) in curved space-
can cause gyroscopes to precess, perhaps gravitational field®e is related to the nature of the neutrino trajectories. In
can also cause neutrino spin flifs). flat spacetime, the neutrino trajectories are straight lines. The

How can effects on spin be incorporated into E4)?  propagation can be taken to be in one spatial dimension, and
Gravitational effects on the spin arise through the “spin conthe variable of integration becomes the spatial variable cor-
nection” I', appearing in the Dirac equation in curved responding to that direction of propagation, as in Sec. Il.
spacetimg 12] (we here ignore background matter effgcts However, the neutrino trajectories in curved spacetime are

typically parametrized curves involving more than one spa-
[v*€a(d,+T )+ M]gp=0. (A7) tial variable:x(N) =[x°(\),x1 (), x3(A),x3(\) .
For general trajectories it therefore may be convenient to

Irgftefllioeqlejr?g:);} ?ngill?ntehaer rcisérgmggssev?/tr:ﬁre]’tr?erizl;ilnnic::gﬁ?eave the affine parametgras the variable of integration, as
9 ' in Eg. (4). The tangent vector to the null world line,

cesa,b,c,d refer to locally inertialMinkowski) coordinates. -

The tetrad®/ connect these sets of coordinates. The epricitpEan”_:dX/d)" can be found from the geodesic equation
expression fofl", is or Hamilton-Jacobi equation. The four-momentum operator
M

P can be constructed as followd) take the neutrinos to be
FM=§[yb,y°]egec,,;M. (18  energy eigenstatef, andﬁ sef=p?% (2) demand ‘that the
Eff . be i di he th three-momenta oP and p be parallel, i.e.P'=p'(1—¢)
ects on spin can be incorporated into the three-momentum .., — 1,2,3; and (3) (P,+A,P)(PH+AMP)=— M2,
operator[such as Eq(6)] in an analogous manner to back- with A%
ground matter effects.
We must first simplify the Dirac matrix product in the
spin connection term. It can be shown that

Ill. SIMPLE GEOMETRIC TREATMENT OF NEUTRINO
OSCILLATIONS: CURVED SPACETIME

now representing both matter and “spin connec-
tion” contributions. For relativistic neutrinose&1), ignor-
ing terms ofO(A?) andO(AM?), and remembering thatis

a null vector, we find

VY 1=272 0y =27 = 20 €95y, (19) 2

where 72° is the metric in flat space anef°°? is the (flat (90ip°p'+g;jp'p’) €= - tPAPL. (24)
space totally antisymmetric tensor, witk%2%= + 1. With

Eq. (19), the nonvanishing contribution from the spin con- (Here the indices,j refer to the spacelike general curvilinear
nection Is coordinates, not locally inertial coordinateBrom this it fol-

Ve lows that the quantit - p appearing in Eq(4) is simply
yeiT = yaef;(iAeM —<—g>l’27“, (20 e

P.p:— 7+pAPL) (25)

where
1 It is convenient to define a column vector of flavor ampli-
Ak= Z(—g)l’zegeabw(ebv,o—ebgvy)egeg. (2)  tudes. For example, for mixing betweep and v,

In these equations«g)?=[det(g,,)]"? whereg,, is the X E(<Ve|q’()‘)>) (26)
metric of curved spacetime. The expression in @€) treats (v ]Ww(N))) -
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Equation (4) can be written as a differential equation for ’ dx dxi\ -2 / dx0\2]-12
X()\)! d)\zd/<g”aa) =d/ —Joo K )
dx_ M$+9K73 2 =
ax |72 P-ARL X @7 where we have used the facts that the neutrino trajectory is

null and that the Schwarzschild metric does not mix time and
where the subscright denotes “flavor basis.” Equatiof27)  space components. Using this expression dar and Eq.
can be integratethumerically if necessajyto yield the neu-  (25), we obtain in vacuum
trino flavor evolution. A similar equation was obtained in

Ref. [5] by more formal methods.

Nl /7 M2 p
QZJ P- d)\=—f —d/. 31
)\0 pnuII /02E| ( )

IV. NEUTRINO OSCILLATIONS IN SCHWARZSCHILD
SPACETIME: VACUUM OSCILLATIONS In this equationE,;=E, e~ *( is the energy measured by a

While Eq.(27) may be useful for calculating the neutrino locally inertial observer momentarily at rest in the Schwarzs-
flavor evolution for general neutrino trajectories in generalffh'ld_ spacetimeand pr?sumably at rest with respect to the
spacetimes, it does not yield a great deal of physical insight oScillation experiment’). Therefore, the integrand in Eq.
In this and the following section we do example calculationst3Y) is formally the same as the corresponding integrand in
in Schwarzschild geometry. This example geometry iglat space. O . _
simple enough that the oscillation formulas can be cast in a For radial propagatiord/’=e*"dr is a differential ele-

form that resembles the flat space case. ment of physical distance for constan®, ¢, and so
Before proceeding, we wish to emphasize that we con- P ’

sider vacuum neutrino oscillations in curved spacetime for o=—1|" M_ Je fr M eAgr (32)

pedagogical purposes only. In supernovae—a potential /02E1 ro2Ey e ®M) '

physical application of neutrino oscillations in curved
spacetime—matter effects dominate, making vacuum oscilWe see that unlike the flat space case, the integral in terms of
lations irrelevant. We discuss matter effects on neutrino osphysical distance is not trivial, due to the gravitational red-
cillations in curved spacetime and a possible application tshift of the “local energy”E, and the radial dependence of
supernovae in the following sections. Recognizing, howeverd/. In this manner, spacetime curvatuggavity) makes its
that gravitational effects on vacuum neutrino oscillationsimpact on the oscillation amplitude.

may be of interest at some point in the future, we include in  Of course, in vacuum above a spherical, static source of
the Appendix a discussion of requirements on the neutringravitational mass\, we have

wave packet necessary for the observation of vacuum oscil-
lations in curved spacetime.

In this section we contrast radially propagating neutrinos
with azimuthally propagating neutrinos in order to demon-
strate how gravity affects vacuum neutrino oscillations. The
geometry in a spherically symmetric, static spacetime can be A=
globally represented by the Schwarzschild coordinate system
{x*}=(t,r,0,¢). We can take the Schwarzschild line ele-
ment, which serves to define these coordinates, as

e2®(r) —

rS
1- —), (33

r -1
1——5) , (34)

where the Schwarzschild radiusris=2 M. Then Eq.(32) is
trivially integrated:

ds?=g, dx*dx"= —e?*dt2+ e (Vdr?+r%d ¢ )
+r2sirf6d ¢2. (29 Q=—5=Ar=ro). (35
*

Using the tetrads Again, the coordinate difference {r,) doesnot reflect a

1 physical distance.The physicaldistance/” corresponding to
(29 the coordinate difference ¢—ro) is /=[] Jg,dr

=f{oeA”)dr.] Likewise, E, doesnot represent the neutrino

direct calculation yieldsAZ=0. This is perhaps expected energy measured by a locally inertial observer at rest at finite
from spherical symmetry, and is in agreement with R&f,  radius, but rather the energy of the neutrino measured by
in which terms arising from the spin connection vanish in thesuch an observer at rest at infinity. It is generally not possible
Schwarzschild geometry. Since the components of the metrito extract a separate “gravitational phase” from this expres-
are independent of the timelike coordinatehere is a con- sion; nevertheless, it is clear that gravity has an effect on the
served quantity, the timelike covariant momentum compo-oscillations of radially propagating neutrinos. In the weak
nentP,=—E, . (The relation between covariant and contra-field limit one could define a “gravitational phase,” how-
variant components i®,=g,,P”.) We take the neutrino ever.
states to be eigenstates of this quantity. In the Schwarzschild spacetime there are circular orbits of
Denoting a differential physical distance at constaby  radiusr=R=3M for massless particles. Consideration of
d/, we can write neutrino oscillations in such an orlfivhich we take to be in

1
e§=dia@{e“l’(’),e‘A(”,F,rsim9 :



7964 CHRISTIAN Y. CARDALL AND GEORGE M. FULLER 55

the plane defined by sil==1) can provide insight into gravi- ai 0
tational effects in the azimuthal direction. M2=UTMZU= ( ,,2) : (42
For azimuthal propagation in this orbid/'=Rd¢, and 0 m

the local energyE,=E, (1—r/R)*?is constant along the _ _

neutrino trajectory, in contrast to the case of radial propaga- . [cosf  sind

tion. From Eq.(31) we find :( L~ ~ |- (43
—sing cos#

2
QO=— ER(d’_ bo). (36)  The difference of the squares of the neutrino mass eigenval-

ues in matter, A=ma—m?, is given in terms of

. L . . =m2—m2
This expression involves local energy and physical distancé® =Mz —m; as

making it precisely the same as the corresponding flat space —~ ,
expression. Gravity has no effect hére. A=e'[(v—e®Acos2)*+(ePAsin20)*]  (44)

The mixing angle in matter is given by
V. NEUTRINO OSCILLATIONS IN SCHWARZSCHILD

SPACETIME: MSW EFFECT _ e®Asin26
_ _ . tan20= ——g——-.

In this section we study an example of gravitational ef- —v+e Acos2)
fects on MSW resonant neutrino transformatiph3,14]. In _,
particular, in Schwarzschild spacetime we find the resonance The “resonance” occurs for sf26=1, where a mass
position and calculate the adiabaticity parameter for a radilevel crossing occurs anfl is a minimum. The resonance
ally propagating two-flavor neutrino system in an electroncondition isv(r)=e®("Acos, or
background with monotonically decreasing density profile.

(49

It will here be convenient to write the neutrino evolution 2 A A
equation in terms of column vectors of flavor amplitudes: 2GgNe= 2e E, cos2= 2_E|C°520' (46)
_ ( (ve|\lf(r)>) (37  WhereE,=— p-u=E, e~ ? is the redshifting “local energy”
X (v ]¥(r))) introduced in the last section. Unlike flat space, the reso-
nance condition is here determined in part by an energy
For radial propagation we obtain which may be redshifted from the energy the neutrino was
_— born with at the production site.
X(r):eXF{ _iJ' _[etb(r)Mf2+Vf(r)]eA(r)dr ¥(ro). After dropping a term proportional to the identity matrix
ro2Ex that yields an overall phase, E@O0) can be written in the
(39 basis of instantaneous mass eigenstates as
In this equationM? is the vacuum mass matrix in the flavor a3 —~AX/4E, —idd/dr
basis. The contribution from the background matter is i x(r) B - () (47)
dr ido/dr  A/4E, ’
(v(r) 0
VitD={4 0/’ 39 where
with u(r)=2\/§G,:E,S ne andn=u,N¢ is the locally mea- _ ((Zﬂxyg)))
sured electron density. x(r)=| _ . (48)
Equation(38) can also be written as a Schiinger-like (va| ()

equation, - - ) )
and|v;) and|v,) are the instantaneous mass eigenstates.

dx(r) mf2 The adiabaticity parametey(r), which compares the rela-
[ ar - fx(r), (400  tive magnitudes of the diagonal and off-diagonal terms in
r * Eq. (47), is defined to be

where the effective mass matrix in the flavor basis is ~

~ (r)y=———-.
V2= elA+ @I\ 21 @AMy (p), (41) Y 4E,|d6/dr|

(49

The mixing angle in matter, is defined in terms of the For y>1, the neut_ri'no evolution can _be gpproximated by a
diagonalization oﬂf: constant superposition of slowly varying instantaneous mass

eigenstates, except  for a small probability
exd —(7/2)y(r.e9] for one mass eigenstate to jump to the

3We note that a “gravitational phase” for motion transverse to theﬁizfrv?lzr%i%nance’ whergsis the position of the resonance
radial direction is given in Ref2], in contrast with our result. The '

discrepancy arises because those authors attempt to use a gravita- Asing20
tional potential energy instead of employing covariant methods. led = == 52
P ay ploying Y(led =5 E, cos2

-1

d
e‘Amln(e‘q’ne)
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Asirt26 N d R redshifting energy appearing in the denominator of the adia-
~Ecos °© g n(=p-A) (50)  baticity parameter. This would extend the limit on neutrino
mixing to exclude smaller values of the vacuum mixing
angle. On the other hand, the smallest neutrino mass differ-
ence excluded by-process considerations is, roughly, that
mass difference for which the resonance position of an aver-
fge energy. (or 7) neutrino coincides with the weak freeze-

out radius. The redshifting energy appearing in the resonance
condition will tend to pull the resonance position closer to
the neutron stat.However, the weak freeze-out radius is

V1. CONCLUSION determined by the competition between the weak interaction

We have developed a simple formalism for treating neulates and the expansion rate of the material outside the the

trino oscillations in curved spacetime. This formalism canneutron star, and the weak interaction rates are proportional
accomodate matter effects and gravitational contributions t& the squareof the redshifting neutrino energy. Therefore,

neutrino spin precession in the presence of a magnetic fieldor @ given mass difference, the redshift will reduce the sepa-
We have done explicit calculations in Schwarzschildration of the resonance position and the weak freeze-out ra-

spacetime. Our simple formalism has verified the result oflius. This wouldveakerthe mass difference boundary of the
Ref. [5] that gravitational contributions to spin precession€xcluded region. Of course, these conjectures are prelimi-
vanish in spherically symmetric, static Schwarzschild spacef@"y, as they are based principally on redshift effects. Other
time. However, we have found that the oscillation formulaseffects of a supernova core of sufficiently small radius for
for radially propagating neutrinos are altered by gravity. Thisdravitational effects to become interesting may be relevant.
alteration results from the metrical properties of curvedSuch effects might include changes in the density scale
spacetime. The basis of the effects we found are closely ré1€ight and expansion rate of the background matter in the
lated to the gravitational redshift, in the case of both vacuun$uPernova envelope, and alteration of the neutrino spectrum.
oscillations and the MSW effect. In contrast, azimuthallyln fact, if the v, and v, are significantly redshifted, then
propagating neutrinos show no alterations to their oscillatiorf -process nucleosynthesis may be precluded any@hy
formulas in the spherically symmetric, static case.

In applications where strong gravitational effects on neu-
trino oscillations are of possible intere@.g., supernovage
matter effects will generally make vacuum oscillatiqasd We are grateful for helpful conversations with A. B. Bal-
therefore gravitational effects on the vacuum oscillationantekin, T. Bhattacharya, T. Goldman, S. Habib, H. J. Lip-
phase unimportant. However, gravitational effects on thekin, E. Mottola, and Y.-Z. Qian. This work was supported by
resonance position and adiabaticity of the MSW effect are ofsrant Nos. NSF PHY95-03384 and NASA NAG5-3062 at
potential interest. UCSD.

For example, the requirement for successfpkocess nu-
cleosynthesis in a neutron-rich post—core-bounce supernova
environment has been used to delineate values of neutrino
mass difference and mixing angle which favor and/or disfa- The purpose of this appendix is to point out a condition
vor heavy element productiofl5]. These limits arise be- on the neutrino wave packet that must be satisfied if neutrino
cause thev, and v, neutrinos emitted from the supernova oscillations are to be observed. This condition, which arises
have a higher average energy than the emitigdeutrinos.  from the need for quantum-mechanical interference, is de-
Therefore, a MSW resonant transformatiomgfor v, neu-  rived here for the case of vacuum neutrino oscillations in
trinos provides a population of higher energy neutrinos  curved spacetime. We do not explore similar conditions that
that tend to drive the material outside the nascent neutromay apply to the MSW effect, which is a level crossing
star toward less neutron-rich conditions. In order to precludgghenomenorl14].
r-process nucleosynthesis, the MSW transformation must be Because of the difference in their masses, the wave pack-
sufficiently adiabatic(conversion efficiency~30%), and ets corresponding to the different mass eigenstates will sepa-
must occur before the radius where the neutron-to-protomate with time. If vacuum neutrino oscillations are to be ob-
ratio freezes out“weak freeze-out radius). As we saw in  served, the wave packets must overlap. A simple calculation
Sec. V, gravitation affects both the adiabaticity parameteshows that, in flat spacetime, interferencexatt is possible
and the position of the resonance. only if the width Ax of the wave packets corresponding to

Current supernova models indicate that the general rela-
tivistic effects we consider here are probably not very impor-
tant. However, the equation of state of nuclear matter is not “This statement assumes a given average neutrino energy, ob-
well understood, and it may be that during the time frame oftained, for example, from supernova models. If one instead assumes
interest for nucleosynthesis some proto-neutron stars may given fixed neutrino energy at infinitipbtained from observa-
become very relativisti€16]. If this turns out to be the case, tions), the resonance position will be pushed further from the neu-
we may hazard the following conjectures regarding gravitatron star surface by redshift effects. Either way, the qualitative re-
tional effects on limits on neutrino mass difference and mix-sult given below remains the same: redshift effects tend to reduce
ing angle fromr-process considerations. The MSW transfor-the separation between the resonance position and the weak freeze-
mation may become more adiabatic because of theut radius.

whereA is the matter potential four-vector introduced in Sec.
I. Thus the adiabaticity of the evolving neutriine degree
to which the “jump probability” is unimportantis affected
by the spatial dependence of the metric, which appears f
example in the determination of the local energy.

ACKNOWLEDGMENTS
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the different mass eigenstates satisfies= (Am?/2E?)x af- m2,

ter traveling a distance. For a beam of monoenergetic par- 61,2=2%_'.—,—. (A4)

ticles, as in the beamlines of terrestrial neutrino experiments, 9P

this condition is easily satisfied. However, if one wanted topytting this all together, we find

observe vacuum neutrino oscillations in some astrophysical

environment, one would have to check that this condition Am? Y

would be satisfied. Ar= TJ’ (gi;p'p!) 2\ (AS)
We now generalize the above condition on the width of

the neutrino mass eigenstate wave packets to curved space- Am? d/

time. We assume that there is some coordinate system in :Tf m (AB)

which the neutrino source and detector are at rest and in
which there is no mixing of time and space components. A Am2 d/
differential physical distance at constant tixin this co- = f ViR (A7)
ordinate system is given b;y/=(gijdx'dx1)1’2. The desired 2 J [=900P")7]

condition is given by

In flat spacetime, this obviously corresponds to the condition
o o given in the previous paragraph. For radial propagation in
A/zJ (gijP'zPlz)l’zd)\—f (g;;PyPHYAN, (A1)  Schwarzschild geometry,

2
where (following Sec. Il)) A/= ATm (lji_i (A8)
[
P1=p° (A2)
b2 Am2Z [ erdr
Pi=p'(1-€1. (A3) T2 f e 2P(Ng2 (A9)
In these expressions the subscripts 1,2 denote the two mass Am?
. . . m Iy
eigenstates. The quantities, are determined from the con- =_2f \/1— —dr. (A10)
ditions p?=0 andP} ,= —m3 ,, and are given by 2E; r
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