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Neutrino oscillations in curved spacetime: A heuristic treatment

Christian Y. Cardall and George M. Fuller
Department of Physics, University of California, San Diego, La Jolla, California 92093-0319

~Received 28 October 1996!

We discuss neutrino oscillations in curved spacetime. Our heuristic approach can accommodate matter
effects and gravitational contributions to neutrino spin precession in the presence of a magnetic field. By way
of illustration, we perform explicit calculations in the Schwarzschild geometry. In this case, gravitational
effects on neutrino oscillations are intimately related to the redshift. We discuss how spacetime curvature could
affect the resonance position and adiabaticity of matter-enhanced neutrino flavor conversion.
@S0556-2821~97!04912-6#

PACS number~s!: 14.60.Pq, 26.30.1k, 95.30.Sf

I. INTRODUCTION

Two decades ago an experimental connection between
quantum mechanics and gravitation was observed
@1#—essentially, a gravitational analogue of the Aharanov-
Bohm effect. These neutron interferometry experiments can
be well described by including a gravitational potential en-
ergy in the Hamiltonian of the nonrelativistic Schro¨dinger
equation. More recently, the effects of gravitation on another
quantum-mechanical phenomenon—neutrino oscillations—
have been discussed by a number of authors@2–5#, some of
whose results appear to conflict. In this paper we will pro-
vide a simple framework for studying neutrino oscillations in
curved spacetime. We hope to clarify some issues left un-
clear by previous treatments@2–4#, and provide a more
transparent route to some of the results obtained in Ref.@5#
by more formal methods than we employ here.

As an illustration of our treatment, we will do explicit
calculations in Schwarzschild geometry. For radially propa-
gating neutrinos, the oscillation formulas will be different
from those that appear in flat spacetime. This is not surpris-
ing, since the gravitational redshift for radial neutrino propa-
gation is well known@6#. The existence of a circular orbit for
massless particles in the Schwarzschild geometry allows
computation of the oscillation phase for purely azimuthal
propagation as well. In this case, it will be seen that the
oscillation formulas are identical to those obtained in flat
spacetime.

We hope our calculations will clarify some issues that we
feel have been left unclear by previous treatments of gravi-
tational effects on neutrino oscillations. In Ref.@7#, a semi-
classical approximation—in which the action of a massive
particle is taken as a quantum phase—is employed to analyze
gravitationally induced fringe shifts in interference experi-
ments. The authors of Ref.@2# apply this technique to neu-
trino oscillations, employing the action of a massive particle
as a quantum phase for each mass eigenstate. In Ref.@4#
some weaknesses of this treatment are addressed, but neither
of these papers discusses matter effects or gravitational ef-
fects on the spin of the neutrinos@5# ~see Sec. III!. Further-
more, Refs.@2,7# separate out a ‘‘gravitational contribution’’
to the neutrino oscillation phase. Such a separation is only
possible for weak fields, making the ‘‘gravitationally in-
duced phase’’ a concept of limited utility. Related to this,

some authors have used methods that appear to mix flat- and
curved-spacetime thinking@2,3#. These particular treatments
can leave the reader confused about the precise meaning of
quantities such as the ‘‘energy,’’ and the nature of the coor-
dinates~i.e., do they reflect proper time and distance?!. Co-
variant calculations do not suffer from these difficulties of
interpretation, and are thus preferable.

In Sec. II we formulate a standard treatment of neutrino
oscillations in a more geometric framework. In Sec. III we
generalize our treatment to curved spacetime, with calcula-
tions in Schwarzschild geometry in Sec. IV~vacuum oscil-
lations! and Sec. V@Mikheyev-Smirnov-Wolfenstein~MSW!
effect#. Conclusions are given in Sec. VI. We setG5\
5c51 throughout this paper.

II. SIMPLE GEOMETRIC TREATMENT OF NEUTRINO
OSCILLATIONS: FLAT SPACETIME

In this section we briefly review a simple, standard treat-
ment of neutrino oscillations@8#, and then present a geomet-
ric version.

In a standard treatment, the neutrino state is written

uCa~x,t !&5(
j
Ua jexp@2 i ~Et2Pjx!#un j&. ~1!

Here flavor~mass! indices are in Greek~Latin! letters. The
matrix elementsUa j comprise the transformation between
the flavor and mass bases. The subscripta on the left-hand
side indicates that the neutrino was in flavor statea at the
initial positionx50 and timet50. The mass eigenstates are
taken to be energy eigenstates with a common energyE;1 the
three-momenta of the mass eigenstates are then

Pj5AE22mj
2'E2

mj
2

2E
, ~2!

1For discussion on whether neutrino mass eigenstates should be
considered momentum eigenstates, energy eigenstates, or neither,
see, for example, Refs.@3,9# and references therein. These techni-
calities are not crucial in the present context.
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wheremi is the rest mass corresponding to mass eigenstate
un i&. To compute the oscillation probability at positionx, a
massless neutrino trajectory is assumed, i.e.,x5t:

uCa~x,x!&5(
j
Ua jexpF2 i Smj

2

2ED xG un j&. ~3!

This state is then used to compute the oscillation amplitude.
We note that the assumption of a null trajectory is necessary
for the observation of oscillations; if the mass eigenstates
could be measured at different positions~or times!, the inter-
ference pattern would be destroyed.2

While the form of Eq.~1! may not openly suggest it, the
neutrino state at a given point in spacetime is frame-
invariant. The quantities on the right-hand side of Eq.~1!—
the transformation coefficients between flavor and mass
bases, the phase, the mass eigenstates—all are frame inde-
pendent quantities. Since the connection between quantities
in flat and curved spacetime is most apparent when expres-
sions are written in a manifestly covariant manner, we intro-
duce a generalized form of Eq.~1!:

uCa~l!&5(
j
Ua jexpS i E

l0

l

PW •pW nulldl D un j&. ~4!

In this expression,PW is the four-momentum operator that
generates spacetime translation of the mass eigenstates. The
quantitypW null5dxW /dl is the~null! tangent vector to the neu-
trino’s world linexW (l)5@ t(l),x(l),y(l),z(l)#; l is an af-
fine parameter of the world line.

We now show that Eq.~4! is equivalent to Eq.~1!, by
simplifying Eq. ~4! for neutrino propagation in thex direc-
tion. Let iV denote the argument of the exponential in Eq.
~4!. With PW 5(E,Px,0,0), and employing the metric
hmn5diag@21,1,1,1#, we have

V52E
l0

l SE dt

dl
2Px

dx

dl Ddl, ~5!

where

Px5hxmP
m.E2

M2

2E
, ~6!

andM is the mass operator. After the mass operator has done
its work, we have

v j52E
l0

l FE ~dt/dl!

~dx/dl!
2SE2

mj
2

2ED Gdxdl
dl, ~7!

wherev j is the phase of thej th mass eigenstate. Since

~dt/dl!

~dx/dl!
5
pnull
t

pnull
x 51, ~8!

Eq. ~7! reduces to

v j52E
x0

x mj
2

2E
dx52

mj
2

2E
~x2x0!. ~9!

This phase agrees with that in Eq.~3! ~in which x050),
suggesting that the neutrino state as written in Eq.~4! is
suitable for calculating the vacuum oscillation amplitude.
Furthermore, the form of Eq.~4! suggests a straightforward
generalization to curved spacetime.

We now review how contributions to effective neutrino
mass arising from neutrino forward scattering off back-
ground matter can be included in the above formalism. These
effects are important because they can give rise to, for ex-
ample, the MSW effect. Our treatment is essentially that
found in Ref.@10#.

As an example, we take neutrino propagation through an
electron background. In this case the Dirac equation can be
cast in the form

@gm~]m1 iA fmPL!1M f #c f50. ~10!

~See Ref.@11# for the convention for the Dirac matricesgm

that we employ.! Herec f is a column vector of spinors of
different neutrino flavors, andM f is the vacuum mass matrix
in the flavor basis:

M f
25USm1

2 0

0 m2
2DU†. ~11!

with

U5S cosu sinu

2sinu cosu D . ~12!

The vectorAf
m is the flavor-basis effective potential matrix

for an interaction with the electron background:

Af
m5S 2A2GFNe

m 0

0 0
D . ~13!

In this expression,GF is the Fermi constant, and
Ne

m5neu
m is the number current of the electron fluid;ne is

the electron density in the fluid rest frame, andum is the
fluid’s four-velocity.PL is the left-handed projection opera-
tor. @An index labeling the neutrino’s helicity must now be
included in the eigenkets of Eq.~4!.# The form of Eq.~10!
suggests that the mass shell relation read

~Pm1Af
mPL!~Pm1AfmPL!52M f

2 . ~14!

This expression can be derived by iteration of the Dirac
equation, with the assumption that the neutrino momentum is
much larger than the inverse scale height of the background
matter. Assuming that the electron background is at rest with

2One might argue that to account for observation of the interfer-
ence pattern, anaverage~rather than null! trajectory should be em-

ployed; see Ref.@3#. In this case we would havex5( P̄/E)t, where

P̄ is the average momentum of the mass eigenstates having a com-
mon energyE. However, this reasonable argument has no conse-
quences for our study, since it merely introduces an overall phase
common to all eigenstates. Here will we follow~perhaps unfortu-
nate! tradition and employ null trajectories throughout this paper.
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respect to the oscillation experiment, keeping only terms to
first order inGF , and writingPW 5(E,Px,0,0), we find

Px.E2
1

2E
~M f

22Vf !, ~15!

with

Vf5S 22A2GFEnePL 0

0 0
D . ~16!

The three-momentum operatorPx now includes effective
mass contributions from background matter, and can be used
in Eq. ~5!.

III. SIMPLE GEOMETRIC TREATMENT OF NEUTRINO
OSCILLATIONS: CURVED SPACETIME

In applying Eq. ~4! in curved spacetime, we see that
evaluation of the argument in the exponential can become
more involved. This complication results from the depen-
dence of the metric on position. Additionally, we may worry
about another gravitational effect: since gravitational fields
can cause gyroscopes to precess, perhaps gravitational fields
can also cause neutrino spin flips@5#.

How can effects on spin be incorporated into Eq.~4!?
Gravitational effects on the spin arise through the ‘‘spin con-
nection’’ Gm appearing in the Dirac equation in curved
spacetime@12# ~we here ignore background matter effects!:

@gaea
m~]m1Gm!1M #c50. ~17!

In this equation and in the rest of this section, Greek indices
refer to general curvilinear coordinates, while the Latin indi-
cesa,b,c,d refer to locally inertial~Minkowski! coordinates.
The tetradsea

m connect these sets of coordinates. The explicit
expression forGm is

Gm5 1
8 @gb,gc#eb

necn;m . ~18!

Effects on spin can be incorporated into the three-momentum
operator@such as Eq.~6!# in an analogous manner to back-
ground matter effects.

We must first simplify the Dirac matrix product in the
spin connection term. It can be shown that

ga@gb,gc#52habgc22hacgb22i edabcg5gd , ~19!

wherehab is the metric in flat space andeabcd is the ~flat
space! totally antisymmetric tensor, withe0123511. With
Eq. ~19!, the nonvanishing contribution from the spin con-
nection is

gaea
mGm5gaea

mH iAGmF2~2g!21/2
g5

2 G J , ~20!

where

AG
m[

1

4
~2g!1/2ea

meabcd~ebn,s2ebs,n!ec
ned

s . ~21!

In these equations, (2g)1/25@det(gmn)#
1/2, wheregmn is the

metric of curved spacetime. The expression in Eq.~20! treats

left- and right-handed states differently. In order to group it
with terms arising from matter effects, we can without physi-
cal consequence add a term proportional to the identity to
obtain

gaea
mGm5gaea

m~ iAGmPL!. ~22!

Proceeding as in the discussion of matter effects in the last
section, the three-momentum operator used in neutrino oscil-
lation calculations can be computed from the mass shell con-
dition

~Pm1AGmPL!~Pm1AG
mPL!52M2, ~23!

where we have not included background matter effects.
An important point is that the gravitational contribution

AG
m is proportional to the identity matrix in flavor space, and

diagonal in spin space. It cannot induce spin flips on its own.
Therefore, it will not have any observable effects unless
there are other off-diagonal terms in spin space~e.g., from
the interaction of a neutrino magnetic moment with a mag-
netic field! @5#.

Another complication in applying Eq.~4! in curved space-
time is related to the nature of the neutrino trajectories. In
flat spacetime, the neutrino trajectories are straight lines. The
propagation can be taken to be in one spatial dimension, and
the variable of integration becomes the spatial variable cor-
responding to that direction of propagation, as in Sec. II.
However, the neutrino trajectories in curved spacetime are
typically parametrized curves involving more than one spa-
tial variable:xW (l)5@x0(l),x1(l),x2(l),x3(l)#.

For general trajectories it therefore may be convenient to
leave the affine parameterl as the variable of integration, as
in Eq. ~4!. The tangent vector to the null world line,
pW [pW null5dxW /dl, can be found from the geodesic equation
or Hamilton-Jacobi equation. The four-momentum operator
PW can be constructed as follows:~1! take the neutrinos to be
energy eigenstates, and setP05p0; ~2! demand that the
three-momenta ofPW and pW be parallel, i.e.,Pi5pi(12e)
with i51,2,3; and ~3! (Pm1AmPL)(Pm1AmPL)52M2,
with Am now representing both matter and ‘‘spin connec-
tion’’ contributions. For relativistic neutrinos (e!1), ignor-
ing terms ofO(A2) andO(AM2), and remembering thatpW is
a null vector, we find

~g0i p
0pi1gi j p

ipj !e5
M2

2
1pW •AWPL . ~24!

~Here the indicesi , j refer to the spacelike general curvilinear
coordinates, not locally inertial coordinates.! From this it fol-
lows that the quantityPW •pW appearing in Eq.~4! is simply

PW •pW 52SM2

2
1pW •AWPLD . ~25!

It is convenient to define a column vector of flavor ampli-
tudes. For example, for mixing betweenne andnt ,

x~l![S ^neuC~l!&

^ntuC~l!&
D . ~26!
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Equation ~4! can be written as a differential equation for
x(l),

i
dx

dl
5SM f

2

2
1pW •Af

WPLDx, ~27!

where the subscriptf denotes ‘‘flavor basis.’’ Equation~27!
can be integrated~numerically if necessary! to yield the neu-
trino flavor evolution. A similar equation was obtained in
Ref. @5# by more formal methods.

IV. NEUTRINO OSCILLATIONS IN SCHWARZSCHILD
SPACETIME: VACUUM OSCILLATIONS

While Eq. ~27! may be useful for calculating the neutrino
flavor evolution for general neutrino trajectories in general
spacetimes, it does not yield a great deal of physical insight.
In this and the following section we do example calculations
in Schwarzschild geometry. This example geometry is
simple enough that the oscillation formulas can be cast in a
form that resembles the flat space case.

Before proceeding, we wish to emphasize that we con-
sider vacuum neutrino oscillations in curved spacetime for
pedagogical purposes only. In supernovae—a potential
physical application of neutrino oscillations in curved
spacetime—matter effects dominate, making vacuum oscil-
lations irrelevant. We discuss matter effects on neutrino os-
cillations in curved spacetime and a possible application to
supernovae in the following sections. Recognizing, however,
that gravitational effects on vacuum neutrino oscillations
may be of interest at some point in the future, we include in
the Appendix a discussion of requirements on the neutrino
wave packet necessary for the observation of vacuum oscil-
lations in curved spacetime.

In this section we contrast radially propagating neutrinos
with azimuthally propagating neutrinos in order to demon-
strate how gravity affects vacuum neutrino oscillations. The
geometry in a spherically symmetric, static spacetime can be
globally represented by the Schwarzschild coordinate system
$xm%⇒(t,r ,u,f). We can take the Schwarzschild line ele-
ment, which serves to define these coordinates, as

ds25gmndx
mdxn52e2F~r !dt21e2L~r !dr21r 2du2

1r 2sin2udf2. ~28!

Using the tetrads

ea
m5diagFe2F~r !,e2L~r !,

1

r
,
1

rsinuG , ~29!

direct calculation yieldsAG
m50. This is perhaps expected

from spherical symmetry, and is in agreement with Ref.@5#,
in which terms arising from the spin connection vanish in the
Schwarzschild geometry. Since the components of the metric
are independent of the timelike coordinatet, there is a con-
served quantity, the timelike covariant momentum compo-
nentPt[2E* . ~The relation between covariant and contra-
variant components isPm5gmnP

n.! We take the neutrino
states to be eigenstates of this quantity.

Denoting a differential physical distance at constantt by
dl , we can write

dl5dl S gi j dxidl

dxj

dl D 21/2

5dl F2g00S dx0dl D 2G21/2

,

~30!

where we have used the facts that the neutrino trajectory is
null and that the Schwarzschild metric does not mix time and
space components. Using this expression fordl and Eq.
~25!, we obtain in vacuum

V5E
l0

l

PW •pW nulldl52E
l 0

l M2

2El
dl . ~31!

In this equation,El5E* e
2F(r ) is the energy measured by a

locally inertial observer momentarily at rest in the Schwarzs-
child spacetime~and presumably at rest with respect to the
‘‘oscillation experiment’’!. Therefore, the integrand in Eq.
~31! is formally the same as the corresponding integrand in
flat space.

For radial propagation,dl 5eL(r )dr is a differential ele-
ment of physical distance for constantt,u,f, and so

V52E
l 0

l M2

2El
dl 52E

r0

r M2

2E* e
2F~r !e

L~r !dr. ~32!

We see that unlike the flat space case, the integral in terms of
physical distance is not trivial, due to the gravitational red-
shift of the ‘‘local energy’’El and the radial dependence of
dl . In this manner, spacetime curvature~gravity! makes its
impact on the oscillation amplitude.

Of course, in vacuum above a spherical, static source of
gravitational massM, we have

e2F~r !5S 12
r s
r D , ~33!

e2L~r !5S 12
r s
r D 21

, ~34!

where the Schwarzschild radius isr s[2M. Then Eq.~32! is
trivially integrated:

V52
M 2

2E*
~r2r 0!. ~35!

Again, the coordinate difference (r2r 0) doesnot reflect a
physical distance.@Thephysicaldistancel corresponding to
the coordinate difference (r2r 0) is l 5* r0

r Agrr dr
5* r0

r eL(r )dr.# Likewise,E* doesnot represent the neutrino

energy measured by a locally inertial observer at rest at finite
radius, but rather the energy of the neutrino measured by
such an observer at rest at infinity. It is generally not possible
to extract a separate ‘‘gravitational phase’’ from this expres-
sion; nevertheless, it is clear that gravity has an effect on the
oscillations of radially propagating neutrinos. In the weak
field limit one could define a ‘‘gravitational phase,’’ how-
ever.

In the Schwarzschild spacetime there are circular orbits of
radius r5R[3M for massless particles. Consideration of
neutrino oscillations in such an orbit~which we take to be in
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the plane defined by sinu51) can provide insight into gravi-
tational effects in the azimuthal direction.

For azimuthal propagation in this orbit,dl 5Rdf, and
the local energyEl5E* (12r s /R)

21/2 is constant along the
neutrino trajectory, in contrast to the case of radial propaga-
tion. From Eq.~31! we find

V52
M2

2El
R~f2f0!. ~36!

This expression involves local energy and physical distance,
making it precisely the same as the corresponding flat space
expression. Gravity has no effect here.3

V. NEUTRINO OSCILLATIONS IN SCHWARZSCHILD
SPACETIME: MSW EFFECT

In this section we study an example of gravitational ef-
fects on MSW resonant neutrino transformations@13,14#. In
particular, in Schwarzschild spacetime we find the resonance
position and calculate the adiabaticity parameter for a radi-
ally propagating two-flavor neutrino system in an electron
background with monotonically decreasing density profile.

It will here be convenient to write the neutrino evolution
equation in terms of column vectors of flavor amplitudes:

x~r ![S ^neuC~r !&

^ntuC~r !&
D . ~37!

For radial propagation we obtain

x~r !5expF2 i E
r0

r 1

2E*
@eF~r !M f

21Vf~r !#eL~r !drGx~r 0!.

~38!

In this equation,M f
2 is the vacuum mass matrix in the flavor

basis. The contribution from the background matter is

Vf~r !5S v~r ! 0

0 0D , ~39!

with v(r )52A2GFE* ne andne5umNe
m is the locally mea-

sured electron density.
Equation~38! can also be written as a Schro¨dinger-like

equation,

i
dx~r !

dr
5

M̃ f
2

2E*
x~r !, ~40!

where the effective mass matrix in the flavor basis is

M̃ f
25e[L~r !1F~r !]M f

21eL~r !Vf~r !. ~41!

The mixing angle in matter,ũ , is defined in terms of the
diagonalization ofM̃ f

2 :

M̃25Ũ†M̃ f
2Ũ5S m̃1

2 0

0 m̃2
2D , ~42!

Ũ5S cosũ sinũ

2sinũ cosũ
D . ~43!

The difference of the squares of the neutrino mass eigenval-
ues in matter, D̃[m̃2

22m̃1
2, is given in terms of

D[m2
22m1

2 as

D̃5eL@~v2eFDcos2u!21~eFDsin2u!2#1/2. ~44!

The mixing angle in matter is given by

tan2ũ 5
eFDsin2u

2v1eFDcos2u
. ~45!

The ‘‘resonance’’ occurs for sin22ũ51, where a mass
level crossing occurs andD̃ is a minimum. The resonance
condition isv(r )5eF(r )Dcos2u, or

A2GFne5
D

2e2FE*
cos2u5

D

2El
cos2u, ~46!

whereEl52pW •uW 5E* e
2F is the redshifting ‘‘local energy’’

introduced in the last section. Unlike flat space, the reso-
nance condition is here determined in part by an energy
which may be redshifted from the energy the neutrino was
born with at the production site.

After dropping a term proportional to the identity matrix
that yields an overall phase, Eq.~40! can be written in the
basis of instantaneous mass eigenstates as

i
dx̃ ~r !

dr
5S 2D̃/4E* 2 id ũ /dr

id ũ /dr D̃/4E*
D x̃ ~r !, ~47!

where

x̃ ~r !5S ^ ñ 1uC~r !&

^ ñ 2uC~r !&
D , ~48!

and u ñ 1& and u ñ 2& are the instantaneous mass eigenstates.
The adiabaticity parameterg(r ), which compares the rela-
tive magnitudes of the diagonal and off-diagonal terms in
Eq. ~47!, is defined to be

g~r !5
D̃

4E* ud ũ /dru
. ~49!

For g@1, the neutrino evolution can be approximated by a
constant superposition of slowly varying instantaneous mass
eigenstates, except for a small probability
exp@2(p/2)g(r res)# for one mass eigenstate to jump to the
other at resonance, wherer res is the position of the resonance
@14#. We find

g~r res!5
Dsin22u

e2FE* cos2u
Ue2L

d

dr
ln~e2Fne!U21

3We note that a ‘‘gravitational phase’’ for motion transverse to the
radial direction is given in Ref.@2#, in contrast with our result. The
discrepancy arises because those authors attempt to use a gravita-
tional potential energy instead of employing covariant methods.
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5
Dsin22u

Elcos2u
Ue2L

d

dr
ln~2pW •AW !U21

, ~50!

whereAW is the matter potential four-vector introduced in Sec.
I. Thus the adiabaticity of the evolving neutrino~the degree
to which the ‘‘jump probability’’ is unimportant! is affected
by the spatial dependence of the metric, which appears for
example in the determination of the local energy.

VI. CONCLUSION

We have developed a simple formalism for treating neu-
trino oscillations in curved spacetime. This formalism can
accomodate matter effects and gravitational contributions to
neutrino spin precession in the presence of a magnetic field.

We have done explicit calculations in Schwarzschild
spacetime. Our simple formalism has verified the result of
Ref. @5# that gravitational contributions to spin precession
vanish in spherically symmetric, static Schwarzschild space-
time. However, we have found that the oscillation formulas
for radially propagating neutrinos are altered by gravity. This
alteration results from the metrical properties of curved
spacetime. The basis of the effects we found are closely re-
lated to the gravitational redshift, in the case of both vacuum
oscillations and the MSW effect. In contrast, azimuthally
propagating neutrinos show no alterations to their oscillation
formulas in the spherically symmetric, static case.

In applications where strong gravitational effects on neu-
trino oscillations are of possible interest~e.g., supernovae!,
matter effects will generally make vacuum oscillations~and
therefore gravitational effects on the vacuum oscillation
phase! unimportant. However, gravitational effects on the
resonance position and adiabaticity of the MSW effect are of
potential interest.

For example, the requirement for successfulr -process nu-
cleosynthesis in a neutron-rich post–core-bounce supernova
environment has been used to delineate values of neutrino
mass difference and mixing angle which favor and/or disfa-
vor heavy element production@15#. These limits arise be-
cause thenm and nt neutrinos emitted from the supernova
have a higher average energy than the emittedne neutrinos.
Therefore, a MSW resonant transformation ofnm or nt neu-
trinos provides a population of higher energyne neutrinos
that tend to drive the material outside the nascent neutron
star toward less neutron-rich conditions. In order to preclude
r -process nucleosynthesis, the MSW transformation must be
sufficiently adiabatic~conversion efficiency;30%!, and
must occur before the radius where the neutron-to-proton
ratio freezes out~‘‘weak freeze-out radius’’!. As we saw in
Sec. V, gravitation affects both the adiabaticity parameter
and the position of the resonance.

Current supernova models indicate that the general rela-
tivistic effects we consider here are probably not very impor-
tant. However, the equation of state of nuclear matter is not
well understood, and it may be that during the time frame of
interest for nucleosynthesis some proto-neutron stars may
become very relativistic@16#. If this turns out to be the case,
we may hazard the following conjectures regarding gravita-
tional effects on limits on neutrino mass difference and mix-
ing angle fromr -process considerations. The MSW transfor-
mation may become more adiabatic because of the

redshifting energy appearing in the denominator of the adia-
baticity parameter. This would extend the limit on neutrino
mixing to exclude smaller values of the vacuum mixing
angle. On the other hand, the smallest neutrino mass differ-
ence excluded byr -process considerations is, roughly, that
mass difference for which the resonance position of an aver-
age energym ~or t) neutrino coincides with the weak freeze-
out radius. The redshifting energy appearing in the resonance
condition will tend to pull the resonance position closer to
the neutron star.4 However, the weak freeze-out radius is
determined by the competition between the weak interaction
rates and the expansion rate of the material outside the the
neutron star, and the weak interaction rates are proportional
to the squareof the redshifting neutrino energy. Therefore,
for a given mass difference, the redshift will reduce the sepa-
ration of the resonance position and the weak freeze-out ra-
dius. This wouldweakenthe mass difference boundary of the
excluded region. Of course, these conjectures are prelimi-
nary, as they are based principally on redshift effects. Other
effects of a supernova core of sufficiently small radius for
gravitational effects to become interesting may be relevant.
Such effects might include changes in the density scale
height and expansion rate of the background matter in the
supernova envelope, and alteration of the neutrino spectrum.
In fact, if the ne and n̄ e are significantly redshifted, then
r -process nucleosynthesis may be precluded anyway@6#.
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APPENDIX

The purpose of this appendix is to point out a condition
on the neutrino wave packet that must be satisfied if neutrino
oscillations are to be observed. This condition, which arises
from the need for quantum-mechanical interference, is de-
rived here for the case of vacuum neutrino oscillations in
curved spacetime. We do not explore similar conditions that
may apply to the MSW effect, which is a level crossing
phenomenon@14#.

Because of the difference in their masses, the wave pack-
ets corresponding to the different mass eigenstates will sepa-
rate with time. If vacuum neutrino oscillations are to be ob-
served, the wave packets must overlap. A simple calculation
shows that, in flat spacetime, interference atx5t is possible
only if the width Dx of the wave packets corresponding to

4This statement assumes a given average neutrino energy, ob-
tained, for example, from supernova models. If one instead assumes
a given fixed neutrino energy at infinity~obtained from observa-
tions!, the resonance position will be pushed further from the neu-
tron star surface by redshift effects. Either way, the qualitative re-
sult given below remains the same: redshift effects tend to reduce
the separation between the resonance position and the weak freeze-
out radius.
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the different mass eigenstates satisfiesDx*(Dm2/2E2)x af-
ter traveling a distancex. For a beam of monoenergetic par-
ticles, as in the beamlines of terrestrial neutrino experiments,
this condition is easily satisfied. However, if one wanted to
observe vacuum neutrino oscillations in some astrophysical
environment, one would have to check that this condition
would be satisfied.

We now generalize the above condition on the width of
the neutrino mass eigenstate wave packets to curved space-
time. We assume that there is some coordinate system in
which the neutrino source and detector are at rest and in
which there is no mixing of time and space components. A
differential physical distance at constant timex0 in this co-
ordinate system is given bydl 5(gi j dx

idxj )1/2. The desired
condition is given by

Dl *E ~gi j P2
i P2

j !1/2dl2E ~gi j P1
i P1

j !1/2dl, ~A1!

where~following Sec. III!

P1,2
0 5p0, ~A2!

P1,2
i 5pi~12e1,2!. ~A3!

In these expressions the subscripts 1,2 denote the two mass
eigenstates. The quantitiese1,2 are determined from the con-
ditions p250 andP1,2

2 52m1,2
2 , and are given by

e1,25
m1,2
2

2gi j p
ipj

. ~A4!

Putting this all together, we find

Dl *
Dm2

2 E ~gi j p
ipj !21/2dl ~A5!

5
Dm2

2 E dl

~gi j p
ipj !

~A6!

5
Dm2

2 E dl

@2g00~p
0!2#

. ~A7!

In flat spacetime, this obviously corresponds to the condition
given in the previous paragraph. For radial propagation in
Schwarzschild geometry,

Dl *
Dm2

2 E dl

El
2 ~A8!

5
Dm2

2 E eL~r !dr

e22F~r !E
*
2 ~A9!

5
Dm2

2E
*
2 EA12

r s
r
dr. ~A10!
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