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Abstract

This paper studies prediction summary measures for a prediction function under
a general setting in which the model is allowed to be misspecified and the prediction
function is not required to be the conditional mean response. We show that the R2

measure based on a variance decomposition is insufficient to summarize the predictive
power of a nonlinear prediction function. By deriving a prediction error decompo-
sition, we introduce an additional measure, L2, to augment the R2 measure. When
used together, the two measures provide a complete summary of the predictive power
of a prediction function. Furthermore, we extend these measures to right-censored
time-to-event data by establishing right-censored data analogs of the variance and
prediction error decompositions. We illustrate the usefulness of the proposed mea-
sures with simulations and real data examples. Supplementary materials for this
article are available online.
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1 Introduction

In this paper we develop prediction summary measures for a nonlinear model and for right-

censored time-to-event data. In addition to evaluating a model’s prediction performance,

prediction summary measures are useful for assessing the practical importance of predictors

and for comparing competing models that are not necessarily nested nor correctly specified.

By far, the most commonly used prediction summary measure for a linear model is the

R-squared statistic, or coefficient of determination. Let Y be a real-valued random variable

and X be a vector of p real-valued explanatory random variables or covariates. Assume

that one observes a random sample (Y1, X1), . . . , (Yn, Xn) from the distribution of (Y,X).

The R-squared statistic is defined as

R2 = 1−
∑n

i=1(Yi − Ŷi)2∑n
i=1(Yi − Ȳ )2

, (1)

where Ŷi = a+ bTXi is the least squares predicted value for subject i. The R2 statistic has

the straightforward interpretation as the proportion of variation of Y which is explained

by the least squares prediction function due to the following decomposition:

n∑
i=1

(Yi − Ȳ )2 =
n∑
i=1

(Ŷi − Ȳ )2 +
n∑
i=1

(Yi − Ŷi)2. (2)

total variation = explained variation + unexplained variation

Despite its popularity in linear regression, the R2 statistic defined by (1) is not readily appli-

cable to a nonlinear model since the decomposition (2) no longer holds. In the past decades,

much efforts have been devoted to extending the R-squared statistic to nonlinear models.

Among others, the pseuodo R2 statistics for a nonlinear model include likelihood-based

measures (Goodman, 1971; McFadden et al., 1973; Maddala, 1986; Cox and Snell, 1989;

Magee, 1990; Nagelkerke, 1991), information-based measures (McFadden et al., 1973; Kent,
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1983), ranking-based measures (Harrell et al., 1982), variation-based measures (Theil, 1970;

Efron, 1978; Haberman, 1982; Hilden, 1991; Cox and Wermuth, 1992; Ash and Shwartz,

1999), and the multiple correlation coefficient measure (Mittlböck et al., 1996; Zheng and

Agresti, 2000). However, none of the existing pseudo R2 measures are motivated directly

from a variance decomposition and none have received the same widespread acceptance as

the classical R2 for linear regression. Interested readers are referred to Zheng and Agresti

(2000) for an excellent survey of existing pseudo R2 measures and further references on this

topic.

The first goal of this paper is to develop prediction summary measures for a prediction

function under a general setting in which the model is allowed to be misspecified and the

prediction function may be different from the conditional expected response. We begin

with defining population prediction summary measures. Based on a simple variance de-

composition, we define a ρ2 measure as the proportion of the explained variance of Y by

a corrected prediction function. It can be shown that the ρ2 parameter is identical to the

squared multiple correlation coefficient between the response and the predicted response.

Since it describes the proportion of the explained variance by the corrected prediction func-

tion, which in general is not the same as the uncorrected prediction functions, the squared

multiple correlation coefficient, a popular pseudo R2, is not sufficient to summarize the

predictive power of nonlinear models. As a remedy, we derive another parameter, named

λ2, as the proportion of the explained prediction error by the corrected prediction function

based on a mean-squared prediction error decomposition. The parameter λ2 measures how

close the uncorrected prediction function is to its corrected version. The two parameters

characterize complementary aspects regarding the predictive accuracy of the prediction

function. When used in combination, they provide a complete summary of the predictive

power of the uncorrected prediction function. We further obtain finite sample versions of

3



the variance and prediction error decompositions, define the corresponding sample predic-

tion summary measures, namely R2 and L2, and establish their asymptotic properties. It is

worth noting that for the least squares prediction function under the linear model, the L2

measure degenerates to 1 and therefore only R2 is needed to describe its predictive power

in the classical linear regression analysis.

The second goal of the paper is to develop new predictive summary measures for an

event time model based on right censored time-to-event data. Note that it is challenging

to extend the R2 definition (1) to right-censored data even for the linear model. A variety

of pseudo R2 measures and other loss functions have been proposed for event time models

with right-censored data (Kent and O’QUIGLEY, 1988; Korn and Simon, 1990; Graf et al.,

1999; Schemper and Henderson, 2000; Royston and Sauerbrei, 2004; O’Quigley et al., 2005;

Stare et al., 2011). For example, the EV option in the SAS PHREG procedure gives a

generalized R2 measure proposed by Schemper and Henderson (2000) for Cox’s (1972)

proportional hazards model. A more recent proposal by Stare et al. (2011) uses explained

rank information, which is applicable to a wide range of event time models. Stare et al.

(2011) also gave a thorough literature review of prediction summary measures for event time

models. We highlight that for linear regression, none of the existing pseudo R2 measures for

right censored data reduce to the classical R-squared statistic in the absence of censoring.

Moreover, under a correctly specified model, they do not converge to the nonparametric

population R-squared value ρ2
NP ≡ var(E(Y |X))/var(Y ), the proportion of the explained

variance by E(Y |X), as the sample size grows large. Finally, as shown in Section 4 (Table 1)

that the pseudo R2 measures of Schemper and Henderson (2000); Stare et al. (2011) are not

suitable for comparing unnested Cox’s models with possibly different baseline hazards and

could remain constant when the nonparametric population R-squared value ρ2
NP varies from

0 to 1. In this paper, we derive a variance and a prediction error decomposition for right
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censored data. These decompositions allows us to define a pair of prediction summary

measures, R2 and L2, for an event time model with right-censored data in exactly the

same way as uncensored data. The proposed measures possess many appealing properties

that most existing pseudo R2 measures do not have. First, for the linear model with

no censoring, our R2 statistic reduces to the classical coefficient of determination and L2

reduces to 1. Second, when the prediction is the conditional mean response based on a

correctly specified model, our R2 statistic is a consistent estimate of the nonparametric

coefficient of determination ρ2
NP , and L2 converges to 1 as the sample size grows large.

Third, our method is applicable to any event time model with right-censored data. Fourth,

our measures are defined without requiring the model to be correctly specified. Lastly, our

measures can be used to compare unnested models.

The rest of the paper is organized as follows. In Section 2.1, we define a pair of pop-

ulation prediction summary measures for a general prediction function from a possibly

mis-specified model by deriving a variance decomposition and a mean squared prediction

error decomposition. Sample measures based on independent and identically distributed

complete data are then proposed and studied in Section 2.2. Section 3 discusses how to

extend these measures to event time models with right-censored data. Section 4 presents

simulation studies to illustrate the performance of the proposed sample measures and com-

pare them with some existing measures in the literature. Real data illustrations are given

in Section 5. Proofs of theoretical results are deferred to Appendix. Final remarks are

provided in Section 6.

5



2 Prediction Summary Measures for a Nonlinear Model

Denote by F (y|x) = P (Y ≤ y|X = x) and µ(x) = E(Y |X = x) the true conditional

distribution function and the true conditional expectation of Y given X = x, respectively.

Consider a regression model of Y on X described by a family of conditional distribution

functions M = {Fθ(y|x) : θ ∈ Θ}, where the parameter θ is either finite dimensional or

infinite dimensional. For example, Fθ(y|x) = Φ((y − α− βTx)/σ) for the linear regression

model with a normal N(0, σ2) random error, where θ = (α, βT , σ2) and Φ is the standard

normal cumulative distribution function. The Cox (1972) proportional hazards model is

an example of a semi-parametric regression model with Fθ(y|x) = 1 − {1 − F0(y)}exp(βT x)

where θ = (β, F0) consists of a finite dimensional regression parameter β and an infinite

dimensional unknown baseline distribution function F0. We allow the model M to be

misspecified in the sense thatM may not include the true conditional distribution function

F (y|x) as a member.

For any θ ∈ Θ, let mθ(X) be a prediction function of Y obtained as a functional of

Fθ(·|X). Common examples of mθ(X) include the conditional mean response defined by

mθ(x) =
∫
ydFθ(y|x) and the conditional median response mθ(x) = F−1

θ (0.5|x). Assume

that θ̂ is a sample statistic such that as n→∞,

θ̂
P−→ θ∗, for some θ∗ ∈ Θ. (3)

For example, if θ̂ is the maximum likelihood estimate for a parametric model, then under

some regularity conditions θ̂ converges in probability to a well-defined limit, θ∗, even when

the model is misspecified (Huber, 1967). If the model is correctly specified, then θ∗ is

the true parameter value. On the other hand, if the model is misspecified, then θ∗ is the

parameter that minimizes the Kullback-Leibler Information Criterion (Akaike, 1998).

In this section, we first develop population prediction summary measures for mθ∗(X),
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which can be regarded as the asymptotic summary measures for the predictive power of

mθ̂(x). Sample prediction summary measures for mθ̂(X) are then derived accordingly and

their asymptotic properties are studied.

2.1 Population Prediction Summary Measures

For any p-variate function P (x), define

MSPE(P (X)) = E{Y − P (X)}2.

as the mean squared prediction error (MSPE) of P (X) for predicting Y .

In general, one would expect a good prediction function P (X) of Y to possess at least

the following basic properties: i) E{P (X)} = µY , and ii) MSPE(P (X)) ≤ MSPE(µY ),

where µY = E(Y ) is the best prediction among all constant (non-informative) predictions

of Y as measured by MSPE. However, such minimal requirements are not always satisfied

by mθ∗(X) when the modelM is possibly misspecified or when the prediction is not based

on the conditional mean response. Below we introduce a linear correction of mθ∗(X) so

that the corrected prediction function always satisfies these minimal requirements.

Definition 2.1 The linearly corrected prediction function of mθ∗(X) is defined as

m
(c)
θ∗ (X) = µY +

cov(Y,mθ∗(X))

var(mθ∗(X))
[mθ∗(X)− E{mθ∗(X)}]. (4)

It is straightforward to show that m
(c)
θ∗ (X) has the following properties.

(i) m
(c)
θ∗ (X) = ã+ b̃mθ∗(X), where (ã, b̃) = arg minα,β E{Y − (α + βmθ∗(X))}2;

(ii) E(m
(c)
θ∗ (X)) = µY ;

(iii) MPSE(m
(c)
θ∗ (X)) ≤MPSE(µY );
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(iv) MPSE(m
(c)
θ∗ (X)) ≤MPSE(mθ∗(X)).

It follows from (i) and (ii) that m
(c)
θ∗ (X) is the best unbiased prediction of Y among all

linear functions of mθ∗(X). Moreover, the corrected function facilitates two elementary

decompositions as stated in Lemma 2.1 below.

Lemma 2.1 Let m
(c)
θ∗ (X) be the corrected prediction function of mθ∗(X) defined by (4).

Then,

(a) (Variance decomposition)

var(Y ) = E{m(c)
θ∗ (X)− µY }2 + E{Y −m(c)

θ∗ (X)}2, (5)

= explained variance + unexplained variance

where the first and second terms on the right hand side represent respectively the

explained variance and the unexplained variance of Y by m
(c)
θ∗ (X).

(b) (Prediction Error Decomposition)

MSPE(mθ∗(X)) = E{Y −m(c)
θ∗ (X)}2 + E{m(c)

θ∗ (X)−mθ∗(X)}2 (6)

= explained prediction error + unexplained prediction error

where the first and second terms on the right hand side can be interpreted as the

explained prediction error and unexplained prediction error of mθ∗(X) by m
(c)
θ∗ (X).

Based on the above decompositions, we introduce the following prediction summary

measures.

Definition 2.2 Define

ρ2
mθ∗

= 1− E{Y −m(c)
θ∗ (X)}2

var(Y )
=
E{m(c)

θ∗ (X)− µY }2

var(Y )
, (7)
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to be the proportion of the variance of Y that is explained by m
(c)
θ∗ (X), and

λ2
mθ∗

=
MSPE(m

(c)
θ∗ (X))}2

MSPE(mθ∗(X))
= 1− E{m(c)

θ∗ (X)−mθ∗(X)}2

MSPE(mθ∗(X))
. (8)

to be the proportion of the MSPE of mθ∗(X) that is explained by m
(c)
θ∗ (X).

Remark 2.1 The parameters ρ2
mθ∗

and λ2
mθ∗

measure two distinct, yet complementary

aspects regarding the prediction accuracy of mθ∗(X): ρ2
mθ∗

measures the predictive power

of the corrected prediction function m
(c)
θ∗ (X), whereas λ2

mθ∗
measures how close mθ∗(X) is

to m
(c)
θ∗ (X). When used together, they provide a complete summary of the predictive power

of the uncorrected prediction function mθ∗(X). Note that 0 ≤ ρ2
mθ∗
≤ 1 and 0 ≤ λ2

mθ∗
≤ 1.

Moreover, ρ2
mθ∗

= 1 and λ2
mθ∗

= 1 if and only if mθ∗(X) = Y with probability 1. So mθ∗(X)

has high predictive power if both measures are close to 1. If ρ2
mθ∗

is large, but λ2
mθ∗

is small,

then mθ∗(X) does not have good predictive power even though the corrected prediction

m
(c)
θ∗ (X) does. Lastly, if ρ2

mθ∗
is small, then m

(c)
θ∗ (X) and consequently mθ∗(X) both do not

have good prediction power regardless the magnitude of λ2
mθ∗

.

Remark 2.2 (Geometric Interpretation). One may gain more insight about these parame-

ters by examining the geometric relationship between the related quantities. Define the L2-

distance between any two real-valued random variables ξ and η by d2(ξ, η) = {E(ξ − η)2}
1
2 .

The geometric relationship between Y , µY , mθ∗(X), m
(c)
θ∗ (X), and µ(X) are depicted in

Figure 1, in which P(X) denotes the space of all real-valued functions of X.

[Insert Figure 1 approximately here]

As illustrated in Figure 1, m
(c)
θ∗ (X) is the projection of Y onto the subspace of all linear func-

tions of mθ∗(X) and µ(X) is the projection of Y onto P(X). The variance decomposition

in Lemma 2.1(a) corresponds to the Pythagorean theorem for the triangle (Y,m
(c)
θ∗ (X), µY )
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that leads to the definition of ρ2
mθ∗

. The prediction error decomposition is the Pythagorean

theorem for the triangle (Y,m
(c)
θ∗ (X),mθ∗(X)) that defines λ2

mθ∗
.

Remark 2.3 (Interpretation of λ2
mθ∗

as a measure of the prediction bias for the mean

regression function µ(X)). Assume that mθ∗(X) is a nonlinear prediction function. It

is easily seen that if mθ∗(X) = µ(X), then λ2
mθ∗

= 1. Thus, λ2
mθ∗

< 1 implies that

mθ∗(X) 6= µ(X). In particular, if mθ∗(X) is the conditional mean response under model

M, then λ2
mθ∗

< 1 implies that the model is mis-specified.

It is also seen from Figure 1 that the Pythagorean theorem for the triangle (Y, µ(X), µY )

corresponds to the well known variance decomposition

var(Y ) = var(µ(X)) + E(var(Y |X))

= explained variance by µ(X) + unexplained variance.

We refer the proportion of explained variance by µ(X):

ρ2
NP ≡ 1− E(Y − µ(X))2

var(Y )
=
var(µ(X))

var(Y )
, (9)

as the nonparametric coefficient of determination. Note that ρNP is the “correlation ratio”

studied previously by Rényi (1959).

The next theorem summarizes some fundamental properties of ρ2
mθ∗

and λ2
mθ∗

.

Theorem 2.1 (a) Let ρ(ξ, η) denote the correlation coefficient between two random vari-

ables ξ and η. Then, ρ2
mθ∗

= [ρ(Y,mθ∗(X))]2;

(b) (Linear Prediction). Let BLUE(X) = a+ bTX be the best linear unbiased estimator

(BLUE) of Y , where (a, b) = arg minα,β E{Y −(α+βTX)}2. Then (i) BLUE(c)(X) =

BLUE(X); (ii) λ2
BLUE ≡ 1; (iii) ρ2

BLUE is equal to the population value of the classical

coefficient of determination for linear regression.
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(c) If mθ∗(X) = µ(X), then λ2
mθ∗
≡ 1, and ρ2

mθ∗
= ρ2

NP , where ρ2
NP is the nonparametric

coefficient of determination defined by (9);

(d) (Maximal ρ2). Let ρ2
NP be defined by (9). Then

ρ2
NP = max

Q∈P(X)
{ρ2

Q}

where P(X) is the space of all p-variate functions Q(X) of X. In other words, ρ2
NP

is the maximal coefficient of determination over all prediction functions Q(X).

2.2 Sample Prediction Summary Measures

Assume that one observes a random sample (Y1, X1), . . . , (Yn, Xn) of n independent and

identically distributed (i.i.d.) replicates of (Y,X). Now we derive sample summary mea-

sures for the predictive power of mθ̂(X), where θ̂ = θ̂(Y1, X1, . . . , Yn, Xn) is a sample

statistic satisfying (3).

We first give a finite sample version of the decompositions in Lemma 2.1.

Lemma 2.2 Define

m
(c)

θ̂
(x) = â+ b̂mθ̂(x), (10)

to be the linearly corrected function for mθ̂(x), where â = Ȳ−b̂m̄θ̂, b̂ =
∑n
i=1(Yi−Ȳ ){mθ̂(Xi)−m̄θ̂}∑n

i=1{mθ̂(Xi)−m̄θ̂}2
,

Ȳ = n−1
∑n

i=1 Yi, and m̄θ̂ = n−1
∑n

i=1mθ̂(Xi). In other words, m
(c)

θ̂
(x) is the ordinary least

squares regression function obtained by linearly regressing Y1, . . . , Yn on mθ̂(X1), . . . ,mθ̂(Xn).

Then

(a) (Variance Decomposition)

n∑
i=1

(Yi − Ȳ )2 =
n∑
i=1

(m
(c)

θ̂
(Xi)− Ȳ )2 +

n∑
i=1

(Yi −m(c)

θ̂
(Xi))

2; (11)
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(b) (Prediction Error Decomposition)

n∑
i=1

(Yi −mθ̂(Xi))
2 =

n∑
i=1

(Yi −m(c)

θ̂
(Xi))

2 +
n∑
i=1

(m
(c)

θ̂
(Xi)−mθ̂(Xi))

2. (12)

The sample version of ρ2 and λ2 are then defined by

R2
mθ̂

=

∑n
i=1(m

(c)

θ̂
(Xi)− Ȳ )2∑n

i=1(Yi − Ȳ )2
, (13)

and

L2
mθ̂

=

∑n
i=1(Yi −m(c)

θ̂
(Xi))

2∑n
i=1(Yi −mθ̂(Xi))2

, (14)

where R2
mθ̂

is the proportion of variation of Y explained by m
(c)

θ̂
(X) and L2

mθ̂
is the pro-

portion of prediction error of mθ̂(X) explained by m
(c)

θ̂
(X).

Remark 2.4 Similar to Theorem 2.1(a), R2
mθ̂

= {r(Y,mθ̂(X))}2 where r(Y,mθ̂(X)) is the

Pearson correlation coefficient between Y and mθ̂(X)). It can also be easily verified that if

mθ̂(x) is the fitted least squares regression line from a linear model, then L2
mθ̂
≡ 1 and R2

mθ̂

is identical to the classical coefficient determination for the linear model.

Below we give the asymptotic properties of R2
mθ̂

and L2
mθ̂

.

Theorem 2.2 (a) (Consistency). Assume condition (3) holds. Then, under mild regu-

larity conditions, as n→∞,

R2
mθ̂

P−→ ρ2
mθ∗

, and L2
mθ̂

P−→ λ2
mθ∗

.

(b) (Asymptotic normality). Assume condition (3) holds. In addition, assume that

√
n(θ̂ − θ∗) =

1√
n

n∑
i=1

ξi + op(1), (15)
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where ξ1, . . . , ξn are some i.i.d. random variables with mean 0 and finite variance.

Then, under certain regularity conditions,

√
n(R2

mθ̂
− ρ2

mθ∗
)

d−→ N(0, σ2
ρ), and

√
n(L2

mθ̂
− λ2

mθ∗
)

d−→ N(0, σ2
λ),

as n→∞, where σ2
ρ and σ2

λ are the asymptotic variances.

The asymptotic results allow one to assess the variability of the sample measures R2
mθ̂

and L2
mθ̂

and obtain confidence interval estimates for the corresponding population param-

eters. In practice, the bootstrap method (Efron and Tibshirani, 1994) or a transformation-

based method would be more appealing than the normal approximation method because

the sampling distributions of R2
mθ̂

and L2
mθ̂

can be skewed, especially near 0 and 1.

3 Sample Prediction Summary Measures for Right

Censored Data

In this section we extend the prediction summary measures R2
mθ̂

and L2
mθ̂

developed in

the previous section to an event time model with right censored time-to-event data. Re-

call that we consider a regression model of Y on X described by a family of conditional

distribution functions M = {Fθ(y|x) : θ ∈ Θ}, where the parameter θ is either finite di-

mensional or infinite dimensional. Let T = min{Y,C} and δ = I(Y ≤ C), where C is an

censoring random variable that is assumed to be independent of Y given X. Assume that

one observes a right censored sample of n independent and identically distributed triplets

(T1, δ1, X1), . . . , (Tn, δn, Xn) from the distribution of (T, δ,X).

Assume that θ̂ = θ̂(T1, δ1, X1, . . . , Tn, δn, Xn) is a sample statistic satisfying (3). Ap-

parently the sample prediction summary measures defined in (13) and (14) are no longer
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applicable to right censored data because Y is not observed for everything subject. Below

we obtain right-censored data analogs of the uncensored data decompositions (11) and (12),

and define prediction summary measures for right censored data.

Lemma 3.1 Let w1, . . . , wn be a set of nonnegative real numbers satisfying
∑n

i=1 wi = 1

Define

m
(wc)

θ̂
(x) = â(w) + b̂(w)mθ̂(x), (16)

to be a linearly corrected function for mθ̂(x), where â(w) = T̄ (w) − b̂(w)m̄
(w)

θ̂
, T̄ (w) =∑n

i=1wiTi, b̂
(w) =

∑n
i=1 wi(Ti−T̄ (w)){mθ̂(Xi)−m̄

(w)

θ̂
}∑n

i=1 wi{mθ̂(Xi)−m̄
(w)

θ̂
}2

, and m̄
(w)

θ̂
=
∑n

i=1wimθ̂(Xi). In other words,

m
(wc)

θ̂
(x) is the fitted regression function from the weighted least squares linear regression

of Y1, . . . , Yn on mθ̂(X1), . . . ,mθ̂(Xn) with weight W = diag{w1, . . . , wn}. Then

(a) (Weighted Variance Decomposition for T )

n∑
i=1

wi{Ti − T̄ (w)}2 =
n∑
i=1

wi{m(wc)

θ̂
(Xi)− T̄ (w)}2 +

n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}2; (17)

(b) (Weighted Prediction Error Decomposition for T )

n∑
i=1

wi{Ti−mθ̂(Xi)}2 =
n∑
i=1

wi{Ti−m(wc)

θ̂
(Xi)}2+

n∑
i=1

wi{m(wc)

θ̂
(Xi)−mθ̂(Xi)}2. (18)

The weighted decompositions (17) and (18) in the above lemma hold for any set of

nonnegative weights w1, . . . , wn satisfying
∑n

i=1wi = 1. The next lemma shows that for a

particular set of weights defined by (19) below, the decompositions (17) and (18) can be

viewed as right-censored data analogs of the variance decomposition (11) and the prediction

error decomposition (12), respectively.
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Lemma 3.2 Let

wi =

δi
Ĝ(Ti−)∑n
j=1

δj

Ĝ(Tj−)

, i = 1, ..., n, (19)

where Ĝ is the Kaplan-Meier (Kaplan and Meier, 1958) estimate of G(c) = P (C > c).

Assume (3) holds. Assume further that C is independent of X. Then, under mild regularity

conditions,

n∑
i=1

wi{Ti − T̄ (w)}2 P−→ var(Y );

n∑
i=1

wi{m(wc)

θ̂
(Xi)− T̄ (w)}2 P−→ E{m(c)

θ∗ (X)− µY }2;

n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}2 P−→ E{Y −m(c)

θ∗ (X)}2;

n∑
i=1

wi{Ti −mθ̂(Xi)}2 P−→ E{Y −mθ∗(X)}2;

n∑
i=1

wi{m(wc)

θ̂
(Xi)−mθ̂(Xi)}2 P−→ E{m(c)

θ∗ (X)−mθ∗(X)}2.

Motivated by Lemmas 3.1 and 3.2, we define the following prediction summary measures

of mθ∗(X) for right-censored data.

Definition 3.1 The right censored sample version of ρ2 and λ2 are defined by

R2
mθ̂

=

∑n
i=1wi{m

(wc)

θ̂
(Xi)− T̄ (w)}2∑n

i=1 wi{Ti − T̄ (w)}2
, (20)

and

L2
mθ̂

=

∑n
i=1wi{Ti −m

(wc)

θ̂
(Xi)}2∑n

i=1wi{Ti −mθ̂(Xi)}2
, (21)

where the weight wi’s are defined by (19) and m
(wc)

θ̂
is defined by (16). The above de-

fined measures are interpreted as the proportion of sample variance of Y explained by

15



m
(wc)

θ̂
(X) and the proportion of sample mean squared prediction error of mθ̂(X) explained

by m
(wc)

θ̂
(X), respectively.

By definition, 0 ≤ R2
mθ̂
≤ 1 and 0 ≤ L2

mθ̂
≤ 1.

Theorem 3.1 (a) (Uncensored Data). If there is no censoring, then formulas (20) and

(21) reduce to the uncensored data definitions (13) and (14), respectively.

(b) (Consistency). Assume the assumptions of Lemma 3.2 hold. Then, under mild regu-

larity conditions, as n→∞,

R2
mθ̂

P−→ ρ2
mθ∗

, and L2
mθ̂

P−→ λ2
mθ∗

.

(c) (Asymptotic normality). In addition to the assumptions of Lemma 3.2, assume that

√
n(θ̂ − θ∗) =

1√
n

n∑
i=1

ξi + op(1), (22)

where ξ1, . . . , ξn are some i.i.d. random variables with mean 0 and finite variance.

Then, under certain regularity conditions,

√
n(R2

mθ̂
− ρ2

mθ∗
)

d−→ N(0, v2
ρ), and

√
n(L2

mθ̂
− λ2

mθ∗
)

d−→ N(0, v2
λ),

as n→∞, where v2
ρ and v2

λ are the asymptotic variances.

Remark 3.1 It follows from Theorem 3.1 (b) and (c) that the R2
mθ̂

and L2
mθ̂

measures

defined by (20) and (21) for right censored data are consistent estimates of the population

ρ2
mθ∗

and λ2
mθ∗

, respectively, provided that C is independent of X and Y . In the next section,

we demonstrate by simulation that the R2
mθ̂

and L2
mθ̂

measures are quite robust even if C

depends the covariates. Furthermore, one could replace the Kaplan-Meier estimate Ĝ(c) in

(19) by a model-based consistent estimate Ĝ(c|x) of G(c|x) = P (C > c|X = x) when there

is plausible evidence that C depends on some covariates. In such a case, Theorem 3.1 (b)

and (c) would still hold if supc,x |Ĝ(c|x)−G(c|x)| P−→ 0 as n→∞.
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4 Simulations

In the first simulation, we examine the prediction power of a correctly specified Cox model

in relation to its regression coefficient (or hazard ratio) and baseline hazard by simulating

its population ρ2 value. By Theorem 2.1(c), λ = 1 and ρ2 is the same as the nonparametric

coefficient of determination ρ2
NP since the prediction is the expected mean response from

a correctly specified model. The ρ2 value is also used as a benchmark to evaluate the

performance of two popular R2-type measures proposed by Schemper and Henderson (2000)

and Stare et al. (2011) for right-censored data. Specifically, the event time Y is generated

from a Cox proportional hazard model:Y = H−1
0 [− log(U) × exp(−βTX)], where U ∼

U(0, 1), H−1
0 (t) = 2t

1
ν is the inverse function of a Weibull cumulative hazard function

H0(t) = (0.5t)ν , and X is dichotomous = 10* Bernoulli(0.5). We consider six settings by

varying β = 0.2, 5, and ν = 0.5 (models 1 and 4), 1 (models 2 and 5), and 10 (models 3

and 6). We approximate the population ρ2 value by averaging its sample R2 values over

100 Monte Carlo samples of size n = 5, 000 with no censoring. The results are summarized

in Table 1.

[Insert Table 1 approximately here]

It is seen from Table 1 that the predictive power of a Cox model depends not only on

the regression coefficient β (or hazard ratio eβ), but also on its baseline hazard h0(t). A

larger β does not always imply a larger proportion of explained variance when the models

are not nested with different baseline hazards (Model 4 versus Model 3). Table 1 also

reveals that the R2-type measures proposed by Schemper and Henderson (2000) and Stare

et al. (2011) are not effective measures for comparing unnested Cox models. For example,

they both are unable to distinguish between models 4, 5 and 6 as the true proportion ρ2
NP

of explained variance ranges from 0.09 to 0.97.
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In the second simulation, we consider a model with independent censoring to investigate

the performance of our proposed sample prediction summary measures R2 and L2 for right-

censored data in comparison with the pseudo R2 measures proposed by Schemper and

Henderson (2000) and Stare et al. (2011) using the population ρ2 and λ2 as benchmarks.

Specifically, the event time Y is generated from a Weibull model log(Y ) = βTX + σW ,

where β = 1, σ = 0.15, X ∼ U(0, 1), and W has the standard extreme value distribution.

Independent right-censoring time is set to be C ∼ Weibull(shape = 1, scale = b). We

adjust b to produce censoring rates 25%, 0%, 50% and 70%. We then compute prediction

summary measures for the Cox PH model that is well specified and for the log-normal AFT

model that is obviously mis-specified. Again, the population ρ2 and λ2 are approximated

by the averaged sample values over 100 Monte Carlo samples of size n = 5, 000, assuming

no censoring. For the sample measures, we consider sample size n = (50, 200, 500) for each

of the parameter settings. The results are reported in Table 2. Each entry in Table 2 is

based on 1,000 replications.

[Insert Table 2 approximately here]

First, we observe from Table 2 that the sample L2 and R2 measures for both censored

and uncensored data estimate the corresponding population values well with small bias

across almost all scenarios considered except when there is heavy censoring. Secondly, L2

effectively captures the facts that the Cox model is correctly specified (L2 = 1) and that

the log-normal AFT model is mis-specified and the predictor is not the mean response

(L2 = 0.789). Finally, the R2 measures proposed by Schemper and Henderson (2000) and

Stare et al. (2011) do not really measure the proportion of explained variance, which is

consistent with what is observed from the previous simulation (Table 1). In particular, the

measure R2
SPH of Schemper and Henderson (2000) has the same value for the Cox model
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and the log-normal AFT model and thus is unable to distinguish between the prediction

power of these two models.

In the third simulation, we study the robustness of the R2 and L2 measures defined in

Section 3 when the independent censoring assumption is perturbed. The simulation setup

is similar to the second simulation except that the censoring time C is dependent on the

covariate X and that Y and C are conditional independent given the covariate. Specifically,

log(C) = γTc X+θc×V , where X ∼ U(0, 1), θc = 4, V ∼ extreme value distribution, and γc

is adjusted to give censoring rates 25%, 50% and 70%. The results are presented in Table

3.

[Insert Table 3 approximately here]

It is seen that the results in Table 3 are very similar to Table 2. Therefore our pro-

posed R2 and L2 measures are not very sensitive to violations of the independent censoring

assumption.

Finally, we also conducted simulations when the Kaplan-Meier estimate Ĝ in (19) is

replaced by a Cox model based estimate of the conditional survival function of C. The

results are similar and thus not included here.

5 Real Data Examples

Example 1 (Moore’s Law). Moore’s law predicts that the number of transistors in a dense

integrated circuit doubles approximately every two years (Moore et al., 1975; Schaller,

1997). A scatter plot of the log2-transformed transistor count together with the fitted least

squares line from year 1971 to 2012 is depicted in Figure 2(a). The R2 for the linear model

prediction of the log2-transformed transistor count is 0.98, such that 98% of the variation
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in the log2-transformed transistor count is explained by the fitted least squares line. The

corresponding L2 is 1 as expected for a linear model. In contrast, if one is interested in the

prediction of the untransformed transistor count, then R2 = 0.69 (Figure 2(b)), meaning

that only 69% of the variation in the untransformed transistor count is explained by the

power prediction function Y = 2a+bx after a linear correction. The log-linear model for

the untransformed transistor count has an L2 = 0.96, so that the linear correction makes

very little improvement over the uncorrected prediction.

[Insert Figure 2 approximately here]

Example 2 (NY-ESO-1 for Ovarian Cancer) The cancer testis antigen NY-ESO-1 is a

potential target for cancer immunotherapy and has been the focus of multiple cancer vaccine

studies. An important question is whether NY-ESO-1 is an important prognostic marker

for overall survival. Table 4 presents the Cox regression results of overall survival based on

a right-censored data from 36 platinum resistant ovarian cancer patients treated at UCLA.

[Insert Table 4 approximately here]

It is seen from Table 4 that NY-ESO-1 is statistically significant (p-value=0.04) at an

α = 0.05 level with a hazard ratio 3.12. However, as demonstrated in Section 4 (Table 1), a

large hazard ratio does not always imply high prediction power. To evaluate the prediction

power of NY-ESO-1 on overall survival, we computed the prediction summary measures R2

and L2 of two Cox’s models with and without NY-ESO-1 in Table 5, which shows that the

R2 value drops from 0.48 to 0.36 when NY-ESO-1 is removed from the model, indicating

NY-ESO-1 is a potentially important prognostic marker for overall survival.

[Insert Table 5 approximately here]
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We also investigated if CA 125, a protein tumor marker measured in the blood, is a

good prognostic marker for overall survival of the same patient population. By comparing

models, with and without CA 125, we see that the R2 value drops only minimally from

0.483 to 0.477 when CA 125 is removed from the model. Hence, there is no evidence of

CA 125 being a good prognostic marker for overall survival even though it has a larger

hazard ratio (3.92) than that (3.12) of NY-ESO-1, which is not surprising for unnested

Cox’s models with different baseline hazards as observed in Section 4 (Table 1) . We also

note that the L2 values for the Cox models are all 96%, or higher, indicating that there is

little or no need for a linear correction.

Example 3 (Comparison of Feature Selection Methods). In this example, we use the

right censored primary biliary cirrhosis (PBC) data (Tibshirani et al., 1997; Therneau and

Grambsch, 2000) to illustrate how the proposed prediction summary measures can be used

to compare different feature selection methods for high dimensional data. The PBC data

is from the Mayo Clinic trial in primary biliary cirrhosis of the liver conducted between

1974 and 1984. Similar to Tibshirani et al. (1997), we use 276 patients after removing

missing observations. We consider 153 features that include 17 main effects and 136 two-

way interactions. Table 6 summarizes the prediction summary statistics of models selected

by three popular feature selection methods for the Cox model: LASSO (Tibshirani et al.,

1997), SCAD (Fan and Li, 2002), and Adaptive LASSO (Zhang and Lu, 2007).

[Insert Table 6 approximately here]

It is seen from Table 6 that with a linear correction, the model selected by Adaptive

LASSO uses the fewest (13) features to achieve the highest proportion of explained variation

(R2
A−LASSO = 0.50). In contrast, the model selected by LASSO uses 11 more features to

achieve a slightly lower R2
LASSO = 0.49. The linear correction is needed for the Adaptive
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LASSO model (L2
A−LASSO = 0.84), but does not seem to be necessary for the LASSO model

(L2
LASSO = 0.94). The model selected by SCAD is the least desirable in this example since

it has the lowest R2
SCAD = 0.45 and L2

SCAD = 0.77.

6 Discussion

We have introduced a pair of summary measures for the predictive power of a prediction

function based on a possibly mis-specified regression model. Both population and sample

measures are derived. The first measure ρ2 is an extension of the classical R2 statistic for

a linear model, quantifying the amount of variability in the response that is explained by

a linearly corrected prediction function. The second measure λ2 is the proportion of the

squared prediction error of the original prediction function that is explained by the cor-

rected prediction function, quantifying the distance between the corrected and uncorrected

predictions. Generally speaking, ρ2 measures the prediction function’s ability to capture

the variability of the response and λ2 measure its bias for predicting the mean regression

function. When used together, they give a complete summary of the predictive power of a

prediction function.

We have also extended the proposed prediction summary measures to right-censored

data by deriving right-censored sample versions of the variance and prediction error de-

compositions. As discussed earlier, the resulting prediction summary measures for right-

censored data possess many appealing properties that other existing pseudo R2 measures

do not have: 1) for the linear model, our R2 statistic reduces to the classical coefficient

of determination when there is no censoring; 2) the prediction is the conditional mean re-

sponse based on a correctly specified model , our R2 statistic is a consistent estimate of the

population nonparametric coefficient of determination or the proportion of variance of Y
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explained by (Y |X); 3) our method is applicable to any event time model; 4) our measures

are defined without requiring the model to be correctly specified, and 5) our measures can

be used to compare unnested models.

We have implemented our methods for right-censored data using R. Our R code is

available upon request.

Lastly, this paper focuses on i.i.d. complete data and right censored data. Future efforts

to develop prediction summary measures for correlated data such as longitudinal data and

for other censoring patterns are warranted.

SUPPLEMENTARY MATERIAL

Appendix: Proofs of the lemmas and theorems. (pdf)
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Table 1: Simulated Population Proportion ρ2
NP of Explained Variance by the Cox (1972)

Model and the Population Values of R2
SPH and R2

SH Proposed by Schemper and Henderson

(2000) and Stare et al. (2011).

Model β ρ2
NP R2

SPH R2
SH

1 0.2 0.089 0.380 0.275

2 0.2 0.271 0.381 0.276

3 0.2 0.407 0.381 0.276

4 5 0.091 0.499 0.502

5 5 0.332 0.500 0.505

6 5 0.971 0.500 0.503
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Table 2: (Independent Censoring) Simulated Prediction Accuracy Measures for the Cox

Model and for the Log-Normal Accelerated Failure Time (AFT) Model.

Cox’s Model (Correctly Specified) Log-normal AFT Model (Mis-specified)

CR N L2 R2 R2
SPH R2

SH L2 R2 R2
SPH

0% ∞ 100.0 70.4 65.4 50.3 78.9 70.4 65.4

0% 50 96.6(1.5) 70.7(7.4) 65.2(5.1) 49.2(5.9) 75.9(18.6) 70.6(7.6) 65.2(5.1)

200 99.6(0.3) 70.6(3.9) 65.4(2.5) 50.1(3.0) 77.8(10.6) 70.5(3.9) 65.4(2.5)

500 99.9(0.1) 70.5(2.3) 65.4(1.5) 50.3(1.8) 78.2(7.2) 70.5(2.3) 65.4(1.5)

25% 50 96.4(3.0) 70.6(8.9) 65.4(6.0) 47.7(7.3) 73.7(20.9) 70.3(9.0) 65.4(6.0)

200 99.5(0.5) 70.7(4.5) 65.4(2.7) 49.8(3.4) 76.9(11.9) 70.6(4.5) 65.4(2.7)

500 99.9(0.2) 70.6(2.7) 65.4(1.7) 50.2(2.1) 77.7(8.3) 70.6(2.7) 65.4(1.7)

50% 50 93.5(5.9) 71.4(11.0) 66.0(7.6) 47.8(8.6) 69.2(24.9) 70.9(11.2) 66.0(7.6)

200 99.0(1.1) 70.8( 5.3) 65.6(3.2) 49.9(3.8) 74.9(15.0) 70.7(5.4) 65.6(3.2)

500 99.7(0.3) 70.6(3.3) 65.5(2.0) 50.1(2.4) 76.5(9.9) 70.6(3.3) 65.5(2.0)

70% 50 87.7(12.7) 69.2(15.3) 65.9(10.1) 45.9(11.1) 58.6(27.8) 68.3(15.8) 65.9(10.1)

200 97.5(3.5) 70.5(7.2) 65.6(4.3) 49.2(4.8) 72.3(18.4) 70.3(7.4) 65.6(4.3)

500 99.3(0.9) 70.8(4.5) 65.6(2.6) 50.2(3.0) 74.3(13.3) 70.7(4.5) 65.6(2.6)
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Table 3: (Dependent Censoring) Simulated Prediction Accuracy Measures for the Cox

Model and for the Log-Normal Accelerated Failure Time (AFT) Model.

Cox’s Model (Correctly Specified) Log-normal AFT Model (Mis-specified)

CR N L2 R2 R2
SPH R2

SH L2 R2 R2
SPH

0% ∞ 100.0 70.4 65.4 50.3 78.9 70.4 65.4

25% 50 96.5(2.2) 68.0(9.1) 63.6(6.4) 49.8(6.7) 71.6(23.4) 67.7(9.4) 63.5(7.6)

200 99.6(0.4) 67.5(4.6) 63.6(3.0) 50.6(3.4) 75.0(16.6) 67.3(5.1) 63.5(5.0)

500 99.9(0.1) 67.6(2.9) 63.7(1.8) 50.8(2.1) 76.9(11.0) 67.6(2.9) 63.7(1.8)

50% 50 93.5(4.7) 69.9(11.2) 64.7(8.0) 50.2(8.4) 70.3(25.6) 69.3(11.7) 64.3(10.6)

200 99.3(0.8) 69.3(5.4) 64.8(3.5) 51.1(3.9) 76.2(16.2) 69.0(6.6) 64.4(7.8)

500 99.8(0.2) 68.9(3.3) 64.6(2.1) 51.0(2.4) 76.9(11.5) 68.6(5.9) 63.8(10.3)

70% 50 84.0(12.8) 71.0(15.4) 65.1(11.7) 48.4(12.5) 65.4(27.2) 70.2(15.4) 65.1(11.7)

200 98.2(1.7) 71.0(7.0) 65.4(4.5) 49.9(5.3) 75.0(17.7) 70.8(7.1) 65.4(4.5)

500 99.5(0.5) 70.8(4.3) 65.4(2.7) 50.1(3.2) 76.7(12.2) 70.7(4.3) 65.4(2.7)
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Table 4: Cox’s proportional hazards regression of overall survival based on a right-censored

data from 36 platinum resistant ovarian cancer patients treated at UCLA

Full Model Reduced Model Reduced Model

Without NY-ESO-1 Without CA 125

variables HR p-value HR p-value HR p-value

stage(3&4 vs 1&2) 4.45 0.10 7.86 0.02 3.97 0.10

grade(1&2 vs 3) 1.07 0.89 1.00 0.99 0.86 0.76

histology

endometrioid vs clear cell 0.95 0.95 0.42 0.28 1.34 0.72

serious vs clear cell 0.29 0.09 0.21 0.04 0.58 0.41

preop CA125 (> 500 vs ≤ 500) 3.92 0.01 4.17 <0.01 – –

NY-ESO1 (> 12 vs ≤ 12) 3.12 0.04 – – 3.67 0.02
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Table 5: Prediction summary measures for Cox’s proportional hazards models based on a

right-censored ovarian cancer data

R2 L2

Full Cox’s Model WIth All Variables 0.483 0.991

Reduced Cox’s Model Without NY-ESO-1 0.363 0.991

Reduced Cox’s Model Without CA 125 0.477 0.963
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Table 6: Prediction summary measures for three Cox’s models selected using LASSO,

SCAD, and Adaptive LASSO, respectively, for the primary biliary cirrhosis (PBC) data

# of Selected Features R2 L2

LASSO 24 0.49 0.94

SCAD 14 0.45 0.77

Adaptive LASSO 13 0.50 0.84
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Y

E(Y|X) P(X)

Figure 1: Geometric interpretation of ρ2
mθ∗

and λ2
mθ∗
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APPENDIX A. Supplementary Material

PROOF OF LEMMA 2.1. (a) Note that

var(Y ) = E(Y − µY )2

= E{Y −m(c)
θ∗ (X)}2 + 2E{m(c)

θ∗ (X)− µY }{Y −m(c)
θ∗ (X)}+ E{m(c)

θ∗ (X)− µY }2.

So it suffices to show that

E{m(c)
θ∗ (X)− µY }{Y −m(c)

θ∗ (X)} = 0. (A.1)

Recall that m
(c)
θ∗ (X) = ã + b̃mθ∗(X), where (ã, b̃) = arg minα,β E{Y − (α + βmθ∗(X))}2.

Thus,

∂E{Y − (α + βmθ∗(X))}2

∂α

∣∣∣∣
(α,β)=(ã,b̃)

= −2E{Y − (ã+ b̃mθ∗(X))} = 0,

and

∂E{Y − (α + βmθ∗(X))}2

∂β

∣∣∣∣
(α,β)=(ã,b̃)

= −2E[{Y − (ã+ b̃mθ∗(X))}mθ∗(X)] = 0,

which imply that

E{Y −m(c)
θ∗ (X)} = 0, (A.2)

and

E[{Y −m(c)
θ∗ (X)}mθ∗(X)] = 0. (A.3)

Finally, (A.1) follows from (A.2) and (A.3). This proves (5).
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(b). Note that

E{Y −m(c)
θ∗ (X)}{m(c)

θ∗ (X)−mθ∗(X)}

= E{Y −m(c)
θ∗ (X)}{ã+ b̃mθ∗(X)−mθ∗(X)}

= ãE{Y −m(c)
θ∗ (X)}+ (b̃− 1)E[{Y −m(c)

θ∗ (X)}mθ∗(X)]

= 0,

where the last equality follows from (A.2) and (A.3). This immediately implies that (6)

holds. �

PROOF OF THEOREM 2.1. The proofs for parts (a)-(c) are straightforward. Part (d)

follows directly from the fact that µ(X) = E(Y |X) is the best prediction function for Y

among all functions of X in a sense that E{Y −µ(X)}2 ≤ E{Y −Q(X)}2 for any p-variate

function Q, and that the equality holds when Q(X) = µ(X). �

PROOF OF LEMMA 2.2. (a). The variance decomposition (11) is a trivial consequence

of the fact that m
(c)

θ̂
(X) is the fitted value from the simple linear regression of Y on mθ̂(X).

(b) Now we prove the prediction error decomposition (12). For the simple linear regres-

sion of Y on a covariate Z, it is well known that

n∑
i=1

eiZi = 0 and
n∑
i=1

eiŷi = 0, (A.4)

where ŷi is the fitted value and ei = Yi − ŷi is the residual at Zi, i = 1, . . . , n. In our

context, Zi = mθ̂(Xi) and ŷi = m
(c)

θ̂
(Xi), and thus (A.4) implies that

n∑
i=1

{Yi −m(c)

θ̂
(Xi)}mθ∗(Xi) = 0 and

n∑
i=1

{Yi −m(c)

θ̂
(Xi)}m(c)

θ̂
(Xi) = 0.
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Consequently,

n∑
i=1

{Yi −mθ̂(Xi)}2 =
n∑
i=1

{Yi −m(c)

θ̂
(Xi)}2 +

n∑
i=1

{m(c)

θ̂
(Xi)−mθ̂(Xi)}2

+2
n∑
i=1

{Yi −m(c)

θ̂
(Xi)}{m(c)

θ̂
(Xi)−mθ̂(Xi)}2

=
n∑
i=1

{Yi −m(c)

θ̂
(Xi)}2 +

n∑
i=1

{m(c)

θ̂
(Xi)−mθ̂(Xi)}2.

This proves (12). �

PROOF OF THEOREM 2.2. (a) It suffices to show that

1

n

n∑
i=1

Yimθ̂(Xi)
P−→ E{Y mθ∗(X)},

1

n

n∑
i=1

mθ̂(Xi)
P−→ E{mθ∗(X)},

1

n

n∑
i=1

m2
θ̂
(Xi)

P−→ E{m2
θ∗(X)}.

We only prove the first one here because the proof of the other two results are similar.

Note that

1

n

n∑
i=1

Yimθ̂(Xi) =
1

n

n∑
i=1

Yimθ∗(Xi) +
1

n

n∑
i=1

Yi{mθ̂(Xi)−mθ∗(Xi)}

= I1 + I2.

We only need to prove that I2
P−→ 0, which follows from the fact that

|I1| ≤ sup
x,θ
|∂mθ(x)

∂θ
|

(
1

n

n∑
i=1

|Yi|

)
|θ̂ − θ∗| P−→ 0,

under the assumptions supx,θ |
∂mθ(x)
∂θ
| <∞ and (3).
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(b). Note that

1√
n

n∑
i=1

[Yimθ̂(Xi)− E{Y mθ∗(X)}] =
1√
n

n∑
i=1

[Yimθ∗(Xi)− E{Y mθ∗(X)}]

+
1√
n

n∑
i=1

Yi{mθ̂(Xi)−mθ∗(Xi)}

= J1 + J2.

The asymptotic normality of J1 follows from the Central Limit Theorem. By Taylor series

expansion and assumption (15), one can easily obtain the asymptotic normality of J2.

One can indeed establish the joint convergence to a multivariate normal limit of multiple

quantities in the expression of R2
mθ̂

and L2
mθ̂

. Then part (b) follows from the delta method.

�

PROOF OF LEMMA 3.1. (a) Recall thatW = diag(w1, . . . , wn). Define t = (T1, . . . , Tn)
′
,

t̂ = (m
(wc)

θ̂
(X1), . . . ,m

(wc)

θ̂
(Xn))

′
, z = (mθ̂(X1), . . . ,mθ̂(Xn))

′
, and Z = (1, z). where

1 = (1, . . . , 1)
′

is a n dimensional column vector of 1’s. Then, by the definition of m
(wc)

θ̂
,

we have

t̂ = Z(Z
′
WZ)−1Z

′
W t.

Note that

(t−t̂)′W (1 z) = (t−t̂)′WZ = t
′{I −WZ(Z

′
WZ)−1Z

′}WZ = 0,

which implies that

(t− t̂)
′
W1 = 0, (t− t̂)

′
Wz = 0, and(t−t̂)′W t̂ = (t−t̂)′WZ(Z

′
WZ)−1Z

′
W t = 0. (A.5)
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Therefore,

n∑
i=1

wi{Ti − T̄ (w)}2 = (t− 11
′
W t)

′
W (t− 11

′
W t)

= (t− t̂)
′
W (t− t̂) + (t̂− 11

′
W t)

′
W (t̂− 11

′
W t)

+2(t− t̂)
′
W (t̂− 11

′
W t)

= (t− t̂)
′
W (t− t̂) + (t̂− 11

′
W t)

′
W (t̂− 11

′
W t)

=
n∑
i=1

wi{m(wc)

θ̂
(Xi)− T̄ (w)}2 +

n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}2,

where the third equality follows from (A.5). This proves part (a).

(b).

n∑
i=1

wi{Ti −mθ̂(Xi)}2 =
n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}2 +

n∑
i=1

wi{m(wc)

θ̂
(Xi)−mθ̂(Xi)}2

+2
n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}{m(wc)

θ̂
(Xi)−mθ̂(Xi)}

=
n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}2 +

n∑
i=1

wi{m(wc)

θ̂
(Xi)−mθ̂(Xi)}2

+2(t− t̂)
′
W (t̂− z)

=
n∑
i=1

wi{Ti −m(wc)

θ̂
(Xi)}2 +

n∑
i=1

wi{m(wc)

θ̂
(Xi)−mθ̂(Xi)}2,

where the last equality follows from (A.5). This proves part (b). �

PROOF OF LEMMA 3.2. We first prove the first result of Lemma 3.2. Note that for
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any function h(T,X) of (T,X), we have

E

{
δh(T,X)

1−G(T |X)

}
= E

[
E

{
δh(T,X)

1−G(T |X)

∣∣∣X, Y}]
= E

[
E

{
δh(Y,X)

1−G(Y |X)

∣∣∣X, Y}]
= E

{
h(Y,X)

1−G(Y |X)
E(δ|X, Y )

}
= E

{
h(Y,X)

1−G(Y |X)
P (C > Y |X, Y )

}
= E

{
h(Y,X)

1−G(Y |X)
{1−G(Y |X)}

}
= E {h(Y,X)} .

In particular, h(T,X) = 1, h(T,X) = T and h(T,X) = T 2, correspond to

E

{
δ

1−G(T |X)

}
= 1, E

{
δT

1−G(T |X)

}
= E(Y ), and E

{
δT 2

1−G(T |X)

}
= E(Y 2),

which imply that T̄ (w) =
∑n

i=1wiTi =

∑n
i=1

δiTi
Ĝ(Ti−0|Xi)∑n

i=1
δi

Ĝ(Ti−0|Xi)

P−→ E(Y ), and
∑n

i=1wiT
2
i

P−→ E(Y 2).

Thus,

n∑
i=1

wi{Ti − T̄ (w)}2 =
n∑
i=1

wiT
2
i − {T̄ (w)}2 P−→ E(Y 2)− {E(Y )}2 = var(Y ).

The proof for the other results of the lemma are similar and omitted. �

PROOF OF THEOREM 3.1. (a). If there is no censoring, or δi = 1 for all i, then the

Kaplan-Meier estimate of the survival function of the censoring time is identical to 1. Thus

wi = 1/n for all i. The conclusion of (a) follows immediately.

The proof of parts (b) and (c) is essentially the same as that of Theorem 2.2. and thus

we omit the details. �
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