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ABSTRACT OF THE THESIS

Automated Three-Dimensional Body Orientation Reconstruction And
Motion Tracking With Two Views During Avoidance Maneuver of Bumblebee

by

Bowen Zhang

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2019

Professor Nicholas Gravish, Chair

The bumblebee has excellent performance for flying through complex natural envi-

ronments and avoiding obstacles. So, it is of interest for engineering and biology to analyze

how its flight behaviors are modified during avoidance maneuvers. Thus, we developed a

behavior analysis pipeline to auto-track bumblebees and 3D reconstruct its flight motion

only in two cameras. The cameras used in this study are calibrated and their poses are

linearly and non-linearly estimated under M-estimator Sample and Consensus (MSAC)

outliers rejection. The 3D reconstruction is realized by triangulation with root mean

square error (r.m.s error) around 1mm. The tracking algorithm is constructed based on
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different brightness values of the wing and body. Under image arithmetic and Morphological

transformation (like erosion, dilation,etc.), wings and body can be separated from each

other. For body orientation estimation, unlikely the traditional way to reconstruct 3D

body from 2D images, the bumblebee’s body is simplified as a 3D ellipsoid and projected to

the image planes. With a defined error function, the projection of ellipsoid will eventually

be fitted into the body contours of bumblebee extracted from videos by adjusting the

orientation of the ellipsoid in 3D. In this case, only pitch and yaw are considered. The

average root mean square error is 3.58±1.21 deg in pitch and 2.84±0.90 deg in yaw across

five analyzed videos. Thus, we show that two views are sufficient for this study with a

simplified algorithm, comparing to three or more views. The pipeline we developed could

accelerate the process of unveiling the flight strategies and biomechanics of insects flight

through complex, structured aerial environments.
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Chapter 1

Introduction

Flying insects have an extraordinary ability to navigate through the complex natural

environments and avoid collisions [Norberg, 1990]. During avoidance maneuver, their

flight behaviors are adjusted rapidly according to their inside sensory system, dynamic

mechanisms and control mechanisms ([Lin et al., 2014], [Dudley, 2006] and [Sun, 2014]).

Therefore, digitalizing and visualizing flight insects’ behaviors are essential to get a deep

understanding of their maneuver strategies and how those strategies are related to their

internal control system. Previously, many studies have contributed to 3D reconstruct flight

insects body orientation and wing beats frequency.

1.1 Previous study for 3D body construction

The most common algorithm used for tracking and motion reconstruction is DLTdv5

developed by [Hedrick, 2008], as shown in Figure 1.1. They tracked markers placed on the

insect’s body to estimate body position. Thus, additional markers needed to be attached to

the insect body, and often these markers have to be manually identified and tracked on each

frame for 3D tracking results. Besides, for camera calibration, outliers are also rejected

manually based on residual error each time in linear estimation. This method requires
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significant human input and which decreases efficiency and potentially increases error. Even

this algorithm can be implemented for three views, it still uses epipolar constraint for every

two views instead of the trifocal tensor which could cause underdetermined results in the

third view.

Figure 1.1: DLTdv5 method from [Hedrick, 2008]

Another algorithm was developed for 3D reconstruction of moving animals to

estimate its orientation. Hull reconstruction motion tracking (HRMT) was developed by

[Ristroph et al., 2009]. By back projecting drosophila aligned silhouettes into 3D space,

the visual hull is reconstructed in every frame which reflects body orientation and position,

as shown in Figure 1.2. But this method involves complex body construction from 2D to

3D.

Instead of 3D reconstructing dynamic insect’s body model in every frame, the

3D physic models of wings and the body are constructed first. Then, those models are

projected to images to overlay filmed wings and body by changing the position and

attitude of the models. Like [Fontaine et al., 2009], drosophila’s geometric model is built

via unit quaternions shown in Figure 1.3 and the model construction is too complex. In

[Liu and Sun, 2008] and [Fry, 2005] study, as shown in Figure 1.4, they simplified the insect

body as a 3D vector which is not accurate. Additionally, during these tracking methods,

the real body in the image may be covered by other parts of the body in some image frames
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Figure 1.2: Hull reconstruction motion tracking developed by [Ristroph et al., 2009]

which becomes hard to define how well the fitting routine is.

Figure 1.3: Drosophila’s geometric model reconstruction via unit quaternions from
[Fontaine et al., 2009]

Our approach is motivated by [Liu and Sun, 2008] and [Fontaine et al., 2009]. The

bumblebee’s body is simplified and constructed first as an ellipsoid. We then project the

ellipsoid to images and attempt to minimize the error function we defined. By adjusting 3D

ellipsoid’s orientation, we fit the projection into the body’s silhouette in 2D. In this case,

the 3D body’s orientation would be measured through the projected ellipsoid orientation.
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Figure 1.4: Estimate body, wing orientation by fitting physical models into 2D image
from [Liu and Sun, 2008] and [Fry, 2005]

We construct this routine for only pitch and yaw for body orientation estimation. In the

previous methods discussed above, three cameras are mainly used for 3D reconstruction.

In the approach we present here, as few as two views are enough to reconstruct body pitch,

yaw and position estimation in three dimensions.

In the following chapter, more details in methods will be discussed about non-linear

camera pose estimation, auto outliers rejections, body orientation estimation, and error

analysis.
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1.2 Background

An image is a rectangular grid of pixels and each pixel usually consists of 1 24 bits

to represent the light intensity and color of the image at that pixel. For color images, each

pixel usually has 3 channels (R, G, B) with 8 bits each to present 256 kinds of color from 0

(no light) to 255 (full level). If one of the three channels is extracted to form an image, then

the color image will turn into a grayscale image with an 8 bits single channel. Comparing

to the red and blue channels, the green channel has the best quality. An image with only 1

bit for pixel depth is called a binary image which presents either black(0) or white(1) light

intensity.

The morphological transformation is widely used for image processing to modify

features on binary images with principal logic operations (AND, OR, NOT, etc). Structuring

element (kernel) in this method is a rectangular array to probe an image under study for

properties of interest. There are two basic morphological methods: Dilation and Erosion.

For dilation, it is used to expand white areas and push out black pixesl among white areas.

As the kernel slides through the image, the pixel value is set to 1 as long as there is a pixel

value under the kernel is 1 and the pixel value is set to be 0 only when all pixel values

under the kernel are 0. For erosion, it has an opposite effect compared to dilation which

shrinks the white areas. Because the pixel value is 1 only when all pixel values under the

kernel are 1. Typically, either one of these two methods is implemented at first to remove

the noise in images. Then, the rest of these two methods is implemented as follows to

repair the object’s shape without involving additional noise in images. Erosion followed by

dilation is called opening, as shown in Figure 1.6. Dilation followed by erosion is called

closing, as shown in Figure 1.5.

In the image coordinate system, the image origin is at the top left corner Figure

1.7. The x-axis is pointing rightwards and the y-axis is pointing downwards. However, the

camera coordinate system is located at the camera center C. Its z-axis is orthogonal to the
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Figure 1.5: Closing: Dilation removes black pixels noise and erosion expands black
object’s shape

Figure 1.6: Opening: Erosion removes white pixels noise and dilation expands white
areas

image plane and the intersection point (Px, Py) is called the principal point. The distance

between the camera center and the image plane is called the focal length. The image plane

typically is on the positive z-axis to get an upright image. The following equation is used

for covert 3D points in the world frame to 2D points in the image frame.

x=K ∗
[
R | t

]
∗Xworld (1.1)

where K is an intrinsic matrix, R and t are rotation and translation between the camera and

world coordinate system. All coordinates are represented as homogeneous vectors which in
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essence attach a "1" to the end of the vector to enable rotation and translation operations

through matrix multiplication. To convert homogeneous vectors back to inhomogeneous

vectors, the homogeneous vectors are divided by the last element of the vectors, then

remove the last element of resulting vectors.

The intrinsic matrix K can be presented as

K =


f 0 Px

0 f Py

0 0 1

 (1.2)

where f is the focal length but in pixel and (Px, Py) are the principal points in the image

frame.

Figure 1.7: Image Plane, Camera coordinate system and World coordinate system.

But when back-projecting 2D image point (x1, y1) to 3D space, the 3D point

(X1, Y1, Z1, W1) is up to scale and it could be anywhere on the back-project ray. Thus, to
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get accurate 3D points, a minimum of two back-projected rays/planes or more are needed

to generate 3D reconstruction. In the calibrated camera, the intrinsic matrix K is known.

So 2D normalized points x̂ = K−1x are taken into account instead of 2D points x. For

two views, the corresponding normalized points (x̂ ⇐⇒ x̂′) in two images should meet the

epipolar constrain Equation 1.3.

x̂′TEx̂= 0 (1.3)

where E is an essential matrix. If one of the cameras is the canonical camera with its camera

projection matrix is [I|0] and another one is a regular camera with a projection matrix

[R|t]. The essential matrix would be [t]xR. So normalized point x̂ in image 1 generates

an epipolar line l′ = Ex̂ on image 2 where the corresponding point in image 2 lies on and

same characteristic for epipolar line l = ET x̂′ generated from normalized points in image2

as demonstrated in Figure 1.8. Then back project corresponding normalized points and

camera centers to the 3D line. The intersection X of two lines is the reconstructed point in

3D space. This reconstruction method is called triangulation.
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Figure 1.8: Epipolar constraint and 3D reconstruction
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Chapter 2

Materials and Methods

A 67cm high obstacle wrapped with checkerboard (4cm2) which improves bum-

blebee visualized detection [Serres and Ruffier, 2017] stands in the center of the flight

chamber (215cm ∗ 80cm ∗ 81cm). The enormous chamber leaves enough space for the

bumblebee to freely fly around to minimize the optic flow [Baird et al., 2010] and cage

size [Stevenson et al., 1995] effect on insect’s flight behaviors. Two Phantom VEO410

high-speed cameras (San Diego, CA, USA) placed above the chamber to capture at a

resolution of 1028 * 800 with frequency in 5200 Hz Figure 2.1. Bumblebees come from

the BioBest company and are released to the flight chamber to fly freely. To auto-trigger

high-speed cameras when the bumblebee flies around the obstacle, two Logitech webcams

are placed above the obstacle to monitor the same region. If the current frame’s pixel

values are significantly different from the previous frame’s, then it means bumblebee has

appeared in the region of interests and Arduino sends a high pulse to cameras and triggers

the cameras to capture videos simultaneously.

In the rest of the sections, methods in detail will be discussed and the process of

the Pitch-Yaw estimation pipeline is at the following block diagram 2.2.
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Figure 2.1: Camera1 is right above the obstacle and Camera2 is tilted 45 degrees
towards the obstacle to realizing an intersection view.

2.1 Camera calibration and 3D reconstruction

The high-speed camera used in the experiment is Phantom VEO410. Its pixel pitch

is 20 µm/pixel and the camera center is located at the center of the image. The focal

length is set to be 48.33 and 45 mm for Camera1 and Camera2 respectively. Recall the

intrinsic matrix K in equation 1.2, in this case, Px, Py is half of image length and width

which is 640 and 400 respectively.

A cube with mortise and tenon joint (18cm∗18cm∗18cm) is assembled to collect

3D points in the world frame and corresponding 2D points in the image frame. The global

coordinate system is built as shown in Figure 2.3.
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Figure 2.2: Whole process of Pitch-Yaw estimation pipeline

Figure 2.3: The global coordinate system defined. Y and X are along with 1020
aluminum extrusion frame edges. Z axis is perpendicular to the frame plane

12



With known geometry of the cube, the edge points’ coordinate system are computed.

And those corresponding points’ in the 2D image are gathered by clicking points on image

shown in Figure 2.4

Figure 2.4: The cube with tenon and mortise joint viewed under camera1 (left) and
camera 2 (right) respectively. Manually clicked points lied on the edge of cube marked
as red to collect 2D points under Camera 1 and Camera 2 respectively.

2.1.1 Outliers rejection

For each point in image frame, its point in normalized coordinate is calculated

x̂ = K−1x. Then the MSAC algorithm [Murray and Road, 1997] is applied to reject the

outliers. For each trial, randomly select three points from the 2D dataset and world 3D

dataset respectively. 3-point algorithm of Finsterwalder reviewed by [Haralick, 2000] is

used to find those three corresponding points in the camera frame. And [Umeyama, 1991]

algorithm is applied to estimate camera pose rotation R and translation t from the

coordinates of camera frame to world frame. With estimated transformation R and t,

project all 3D points in world frame to normalized image frame and computed projection

error which is sum square error (s.s.e.) (∑n
k=1(x̂−

[
R | t

]
Xworld))2. For the projection

error of each point in the 2D normalized frame, if this error is less than squared distance

threshold t2, then this point is labeled as an inlier and vice versa. The squared distance
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threshold is defined as :

t2 = F−1
m (α)σ2 (2.1)

where F−1
m (α) is the inverse chi-squared cumulative distribution function with m= 2 degree

of freedom at the probability α = 0.95 and variance σ2 assumed to be 1. The initial

maximum trial for MSAC is set to be infinity. But after each trail, update the value of

maximum trial and save the inliers index with minimum projection error up to now.

max_trial = ln(1−p)
ln(1−ws) (2.2)

where p is the probability that at least one of the random samples does not contain any

outliers and is chosen to be 0.99. s is the sample size and w is the probability that a data

point is an inlier w = T otal number of inliers
T otal number of data points . If the current number of iteration is greater

than the maximum trial, iteration stops and returns the inliers index.

2.1.2 Pose estimation

After outliers rejection, we implement the Efficient Perspective-n-Point(EPnP)

method from [Lepetit et al., 2009] is applied to estimate all inliers’ 3D points Xcam in the

camera frame with known 2D points in the image plane and 3D points in world frame

Xworld. The Umeyama algorithm is then used to linearly estimate normalized camera

projection matrix p̂=
[
R | t

]
with corresponding points in the camera frame and world

frame obtained from the EPnP method.

The Levenberg-Marquardt(LM) algorithm for this particular case ([Levenberg, 1943]

and [Marquardt, 1963]) is developed to non-linearly estimate parameter vectors with global

minimal measurement vector error. In this case, measurement vectors are estimated

2D normalized points (˜̂xT
1 , ˜̂xT

2 ...˜̂xT
n )T and parameter vectors are estimated rotation and

translation ˜̂pT = (R̃T , t̃T )T .
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x̂≈ ˜̂x+J(p̂− ˜̂p) (2.3)

where J = ∂ ˜̂x
∂(R,t) , x̂ is the ground truth 2D normalized points and p̂ is the ground truth

transformation matrix. This equation can be represented as

ε= Jσ (2.4)

where ε= x̂− ˜̂x and σ = p̂− ˜̂p. Thus, the new estimated transformation matrix is p̂+σ

To avoid singularities and for improved convergence and locally continuous while

tracing down the global minimal point, minimal parameterization has been applied which

parameterize the camera rotation R with angle-axis representation of rotation matrix

w = θv̂, the transformation can be represented as

[
e[w]x | t

]
(2.5)

where [w]x = ln(R)

Thus, the normalized projection matrix becomes p̂= [w|t] from [R|t], which has 6

degree of freedom. And J = ∂ ˜̂x
∂(w,t)T .

To convert R to w:

sin(θ) = vT v̂

2 (2.6)

where v̂ =


R32−R23

R13−R31

R21−R12


cos(θ) = Tr(R)−1

2 (2.7)

θ = tan−1(sin(θ)
cos(θ)) (2.8)
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if θ<0:

θ = θ+ 2π (2.9)

if θ > π:

w = w(1− 2π
θ
dθ−π2π e) (2.10)

To convert w to R:

R = cos(θ)I+ sinc(θ)[w]x + 1− cos(θ)
θ2 wwT (2.11)

The LM algorithm is to locate the global minimal point for equation ε = Jσ to

minimize projection error and estimate transformation matrix. First, construct the normal

equation

(JTJ)σ = JT ε (2.12)

Then, weight least-square problems normal equation

(JT Σ−1
x J)σ = JT Σ−1

x ε (2.13)

Last, augment normal equation

(JT Σ−1
x J +λI)σ = JT Σ−1

x ε (2.14)

The initial λ and projection error is set to be 0.001 and infinity respectively. After one

iteration, if it returns a smaller projection error than the previous one, save and update

p̂= ˜̂p+σ and substitute λ= 0.1λ to decrease step size and converge closer to the minimal

point. Otherwise increase step size by substituting λ= 10λ. And the biggest cost reduction

happens after the 1st iteration.

After outliers rejection and non-linear pose estimation, projection results are shown
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in Figure 2.5

Figure 2.5: Red circles are actual points lied on the edge of the cube in the images
and blue markers are their 3D projected points. Root mean square projection errors are
1.26 mm and 1.13 mm among 22 and 25 inliers for camera1 and camera2 respectively

2.1.3 3D reconstruction

To reconstruct 3D points, the corresponding points (x̂ ⇐⇒ x̂′) need to be generated

which meet the epipolar constraint. And the essential matrix E also is constructed. In this

case, p̂= [R|t] and p̂′ = [R′|t′]. Thus, to compute the essential matrix with form [t]xR, the

transformation should be converted as follows: p̂H−1
E = [I|0] and p̂′H−1

E = [Rnew|tnew] And,

p̂= [I|0]

R t

0T 1

= [I|0]HE (2.15)

H−1
E =

RT −RT t

0T 1

 (2.16)

Therefore,

p̂′H−1
E = [R′RT |t′−R′RT t] = [Rnew|tnew] (2.17)
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Essential matrix is

E = [tnew]xRnew = [t′−R′Rt]xR′RT (2.18)

The 3D reconstruction from two cameras is to back project two rays which pass

through camera center and corresponding 2D normalized points x̂↔ x̂′ so that these two rays

intersect at some point in 3D space. That intersected 3D point is the reconstructed 3D point

based on two corresponding 2D normalized points. But due to noise in corresponding points

x̂↔ x̂′, They fail to meet epipolar constraint. Thus, back projected two rays most likely are

not intersect with each other in the 3D space Figure 2.6. Based on [Hartley et al., 1996],

shown as Figure 2.7, the correspondence normalized points are corrected to be nearest

points (x̂, x̂′) =⇒ (˜̂x, ˜̂x′) lie on the epipolar line with minimal sum squared distance error

d(x̂, ˜̂x)2 +d(x̂′, ˜̂x′)2.

Figure 2.6: Back rays are not likely intersected at 3D space due to noise in 2D
normalized points x̂↔ x̂′

After correcting 2D normalized points, 3D point X can be found by triangulation

method. First find an orthogonal line l′⊥ to l′ = (a′, b′, c′)T which pass through x̂ =
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Figure 2.7: Correct x̂ and x̂ to the nearest points ˜̂x and ˜̂x′ which meet the epipolar
constraint

(x′,y′,w′)T .

l′⊥ = (−b′w′,a′w′, b) (2.19)

Then, back project l′⊥ to 3D plane π. And the intersection of plane π and camera1 back

projected ray is the reconstructed 3D point Figure 2.8.

After 3D reconstructing 8 corresponding points on the calibration cube, the r.m.s

error is 0.876 mm.

2.2 Body and wing extraction

To analyze bumblebee motion behaviors during the avoidance maneuver, body and

wing have been extracted separately. Due to the different amounts of illumination from

the wing, body and background reflect back to the cameras, different brightness thresholds

are applied to extract body and wing. Under Morphological transformation, it removes

noise and improves resolution. Based on body and wing contours, fitEllipse function from

OpenCV is applied to find the best-fitted ellipse to the contours with the least square

algorithm.
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Figure 2.8: 3D point reconstruction from corrected points ˜̂x and ˜̂x′ with the intersection
of line and plane

2.2.1 Brightness threshold

The videos return from high-speed camera are grayscale videos. In grayscale videos,

there is only one channel for each pixel which reflects its brightness. Because wing and

body have different brightness values compared to the background. To extract body and

wing separately, different brightness threshold is applied to each frame. If a pixel value is

greater than the threshold, then it is converted to 1 which is a white dot. Otherwise, it will

be converted to 0 which is a black dot. Typically, brightnessbackground > brightnesswing >

brightnessbody. Therefore, in my analysis, two different thresholds are applied. One is

(15∼ 18) to extract bumblebee body and wing from background Figure 2.9 and another is

(30∼ 40) to extract bumblebee body only. But for the following step to extract wings only,

the threshold method for body extraction is implemented in the opposite way Figure 2.10
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which means higher pixel values will be converted to 0 and lower ones will be converted to

1. In the following subsection, more details will be discussed to illustrate the reason to

convert pixel value in the opposite way.

Figure 2.9: Resulting frames after the brightness threshold method (15∼ 18)

Figure 2.10: Resulting frames after the inverse brightness threshold method (30∼ 40)

2.2.2 Morphological transformation

After thresholding the images, the resulting frames still have noise in the form of

small speckled white pixels in additino to the wings or body. To remove noise properly and

extract the wings only, the morphological transformation has been applied. From Figure

2.10, to remove black pixels in the background, closing (dilation followed by erosion) from

OpenCV has been applied with window size 3∗3. In dilation, if there is at least one pixel

under the window is 1, then all pixel values are set to be 1 (white dots) which can push out

black pixels among white areas. To prevent shrinking of the object’s shape after dilation,
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then erosion is applied. Different from dilation, if there exists at least one pixel smaller

than 1, then all pixels are set to be 0 (black) which only increases existed black areas of

the object without involving in black dots noise. The results are shown as the following

Figure 2.11.

Figure 2.11: Resulting frames after closing (dilation after erosion) under window size
(3∗3)

To only extract wings, results from Figure 2.10 and Figure 2.11 are add up together

so that black body areas in Figure 2.11 will be covered by white body area in Figure 2.10

and will blend into the white background and leave black wings only. But before summing

them up, dilation has been applied to results in Figure 2.10 to enlarge white body areas

and avoid remained body contour after summing up method shown in Figure 2.12

Figure 2.12: Resulting frames after dilation underwindow size (3∗3)

After the dilation, resulting frames are shown as Figure 2.13

To avoid piecewise wings after the previous dilation, the opening method is im-

plemented to push out white dots in the wing and keep its structural integrity Figure
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Figure 2.13: The add-up method for wing extraction

2.14.

Figure 2.14: The opening method to maintain wings’ completeness

In order to auto-track wings and body separately, findContours and fitEllipse are

implemented from the OpenCV library. Body and wings contours are generated from

Figure 2.10 and Figure 2.14. During drawing contours process, some additional contours

could be generated either from image boundary or noise. Therefore, to target the exact

contours for body and wings, contours’ areas are considered to judge if a contour belongs

to either wing or body. For the body contours, the contour area is usually located in range

(300,2500). For the wings contours, their areas are usually the top two areas among all

contours. With fitEllipse function, a best-fitted ellipse is created to describe contour’s

shape via the least square algorithm. the results are shown in Figure 2.15. With fitted

ellipses, they can provide body, wing orientation and body centroid in the 2D image which

is essential for later 3D flight trajectory reconstruction, 3D body orientation reconstruction,

and wing beat frequency analysis.
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Figure 2.15: Generate an ellipse to best describe the body’s and wings’ contours

2.3 Body orientation estimation

An ellipsoid is used to describe the simplified bumblebee body shape in 3D. With

fitted ellipse obtained from body contour, the ellipse center can be considered as bumblebee

centroid. Therefore, with two corresponding centers in 2D, the 3D bumblebee centroid is

reconstructed for each frame under triangulation discussed before where 3D ellipsoid’s center

Xcenter = (X, Y, Z)T is located at. Project ellipsoid to 2D image and adjust ellipsoid’s

orientation in 3D to minimize error function and estimate bumble body orientation in 3D.

2.3.1 3D ellipsoid projection

The local coordinate system for 3D ellipsoid is built by translating global coordinate

system 2.3 from its origin to bumblebee’s centroid. The initial ellipsoid’s principal semi-axes

a, b, c are along with its local coordinate system x, y, z respectively which stands for

bumblebee body width, length, height. Rotation around y-axis is defined as roll, rotation

around x-axis is defined as pitch and rotation around z-axis is defined as yaw. In this study,

only pitch and yaw are estimated for its body orientation,

To project ellipsoid to the image plane, the surface points of the ellipsoid are
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presented as follows.
x= asin(θ)cos(φ) +X

y = bsin(θ)sin(φ) +Y

z = ccos(θ) +Z

(2.20)

From the known intrinsic matrix K and extrinsic matrix P̂ of two cameras, all

surface points Xsurface are projected to the 2D image plane shown in Figure 2.16.

x=KP̂Xsurface (2.21)

Figure 2.16: The ellipsoid surface points project to the 2D image plane. Blue and green
points come from ellipsoid and orange and red ellipses come from the body contours

As Figure 2.16 shown, each projected ellipsoid in 2D can be fitted into an ellipse

to best describe its contour. But in order to apply fitEllipse function from OpenCV, all
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points in float data type should be converted to the int data type. The fitted results are

shown in Figure 2.17

Figure 2.17: Best-fitted ellipse to ellipsoid in 2D

With this fitted ellipse, it can return the orientation, major, minor axis of the

projected ellipsoid in 2D which is essential for the following error function defined.

2.3.2 Error function defined

To demonstrate how well the ellipsoid in 2D (ELPS2) fits into body contour

(ELPS1) extracted from videos. An error function has been defined shown in Figure 2.18.

There are two parts of the error function. One is distance error (∆d) related to

pitch angle. The distance error is the distance difference between the semi-major axis of

ELPS1 and the projection of semi-major axis of ELPS2 along image x-axis. Another one
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Figure 2.18: Error Defined, the blue ellipse (ELPS1) comes from the body contour,
the black ellipse (ELPS2) comes from the projected 3D ellipsoid and two red dash
ellipses have maximum/minimum distance error.

is angle error (α) related to yaw angle. Angle error (0− 90◦) is the angle between two

major axes of ELPS1 and ELPS2. To ensure unit consistency for two kinds of error (angle

and distance), error percentage is involved for each kind of error to fix this problem which

has range from 0 1, where 0 means 0 offset from ground truth and 1 means the greatest

deviation. For the angle error, in the worst case, the major axis of ELPS1 is perpendicular

to ELPS2 major axis where maximum angle error is 90◦. Thus, the percentage of angle

error is

PCTangle = α

90◦ (2.22)

For distance error, the maximum deviation occurs at either ELPS2 is fully extended

and its length of the major axis is equal to the body length in 2D or ELPS2 becomes a

circle eventually and its length of the major axis is equal to the body width in 2D. The
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maximum distance error is defined as follows.

MAXdistance = |(a1−a2∗ cos(α))|or|(a1− b2∗ cos(α))| (2.23)

where a1 is the semi-major axis of ELPS1 and a2, b2 are the semi-major and semi-minor

axis of ELPS2 respectively. And the percentage of distance error is

PCTdistance = ∆d
MAXdistance

(2.24)

Thus, the final error function is

f(∆d,α) = PCTdistance +PCTangle (2.25)

2.3.3 Optimization function defined

The optimization in this study is the Nelder–Mead method from python scipy.optimize

package. Pitch and yaw are as inputs to minimize the error function.

f̃(yaw,pitch) = PCTdistance +PCTangle (2.26)

The rotation matrix at each angle (pitch, roll, yaw) is defined as the following

matrixes:
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Rz =


cos(yaw) −sin(yaw) 0

sin(yaw) cos(yaw) 0

0 0 1



Rx =


1 0 0

0 cos(pitch) −sin(pitch)

0 sin(pitch) cos(pitch)



Ry =


cos(roll) 0 sin(roll)

0 1 0

−sin(roll) 0 cos(roll)



(2.27)

To rotate at its own center Xcenter = (X,Y,Z)T instead of origin. Ellipsoid first

translates to the global origin and starts to rotate at the global origin. Then, translate

ellipsoid back to 3D bumblebee centroid.

Xtemp =XEllipse−Xcenter

XEllipse = (RzRxRyXtemp) +Xcenter

(2.28)

To minimize error in equation 2.26 with the Nelder-Mead method, an initial condition

is needed. But an improper initial condition may lead to a local minimal error instead of

a global one. Therefore, to take a reasonable guess for the initial pitch and yaw, adjust

the yaw angle first by iteration to target the yaw with minimum angle error but keep the

pitch to be 0 in the first step. Then, start with that yaw angle and adjust pitch angle by

iteration, minimize final error function f(∆d,α) instead of distance error only. Because

with non-zero yaw, while changing the pitch angle, it will also affect yaw angle value which

leads to a different angle error.

After optimization with initial condition, results shown in Figure 2.19. From the
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result shown above, clearly, adjust ellipsoid’s pitch and yaw angle to fit the projection of

ellipsoid well into body contour ellipse is feasible. And in the following section, Artificial

bumblebee tests are introduced to evaluate pitch-yaw estimation pipeline performance.

Figure 2.19: Fitting routine results after the Nelder–Mead method

2.4 Artificial bumblebee test set up

Because in the real bumblebee videos, the ground truth like pitch and yaw angles

are not easy to obtain. In order to test the performance of the above algorithm pipeline,

artificial bumblebee tests have been implemented.

Artificial bumblebee shown in Figure 2.20 are 3D printed from https://www.

thingiverse.com/thing:2243456 to mimic real bumble bee body shape. The smaller one has

14mm in width, 34mm in length and 12mm in height.
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Figure 2.20: 3D printed artificial bumblebee for the algorithm performance test

A plywood disk is glued attached to a monitor hinge mount and is wrapped with

a degree circle. Then, 3D printed bumblebee is placed along one of the diameters on the

degree circle shown as Figure 2.21 so that this diameter orientation is the same as artificial

bumblebee’s body orientation in 3D space which can be considered as ground truth.

The local coordinate system is built by translating global coordinate system from

global origin to artificial bumblebee centroid Figure 2.21.

With the performance of artificial bumblebee video tests, we could conclude how

far the estimated body orientation is away from the ground truth. In the following chapter,

the estimated results will be discussed with error analysis to demonstrate how close the

estimated values to the ground truth.
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Figure 2.21: Set up of artificial bumblebee for body orientation estimation performance
test. The yellow coordinate system is the global system and blue and green are local
systems.
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Chapter 3

Performance Evaluation

As demonstrated before, the body orientation is represented by 3D major principal

axis vector of ellipsoid. And the roll cannot be determined only by a 3D vector. Thus, only

pitch and yaw will be predicted in the estimation pipeline3.1.

Figure 3.1: Yaw angle is the angle α between the projected vector on XY plane and
positive Y-axis and pitch is the angle β between unit vector ~u and XY plane
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While manually pushing monitor hinge mount clockwise/counter-clockwise rotates

along the global x-axis and triggering high-speed cameras, five videos are recorded and

analyzed with different initial pitch and initial yaw angles.

The artificial bumblebee is placed along with one of the diameters on degree circle.

By manually clicking two endpoints a1 and a2 of this diameter on each camera frame see in

Figure 3.2, the diameter 3D orientation can be constructed under triangulation as ground

truth which is the same as artificial bumblebee body orientation. The orientation error is

defined as Angleestimation−AngleGround T ruth

Figure 3.2: Body orientation ground truth vector (Orange arrow) in 3D space

To reconstruct 3D diameter vector’s pitch and yaw in 3D space, the following

equations 3.1 are developed to reconstruct the pitch and yaw according to Figure 3.1.
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u= V

|V |
=


x

y

z


yaw = atan2(y,x)

pitch= arcsin(z)

(3.1)

where V is the diameter vector in 3D space and u is its unit 3D vector.

As the results are shown in Figure 3.3 and 3.4, r.m.s error reflects the differences

between estimated body orientation and ground truth orientation where its average is

4.41±2.05 in pitch and 3.04±0.90 in yaw among five test videos. Compared to predicted

pitch, yaw returns more accurate values especially in V ideo2 and V ideo4. From results

shown, typically yaw error is under 5 degrees in most cases. Large pitch error usually exists

at a low pitch angle and becomes smaller as pitch goes up Figure 3.5.

In the flowing section, more details about angle error in video2 and 4 will be

discussed. Because these two videos have larger angle errors than others. Then based on

error analysis, some feasible corrections are implemented to reduce error and get closer to

the ground truth.

3.1 Error analysis

During both the video 2 and 4, the monitor hinge mount is counter-clockwise

rotating along with global x-axis with a low start pitch angle around 5◦ and 20◦ respectively.

The following parts will discuss potential reasons that lead to angle error and ways to

improve the predicted results.
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Figure 3.3: The average root mean squared error in pitch among 5 tested videos:
4.41±2.05 deg.

3.1.1 Random error

One possible reason is the random error in fitting routine and 3D reconstruction.

Like noise in body contour which introduces error in fitted ellipse geometry. Besides, as

manually clicking endpoints of diameters on images, the clicked points could have offset from

the ground true points which introduce noise into 3D reconstruction after triangulation.

In the previous video 4 test which has 1500 frames in total, and pitch and yaw are
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Figure 3.4: The average root mean squared error in yaw among 5 tested videos:
3.04±0.90 deg.

predicted in every 50 frames. If the random error is one of the reasons leads to error in

angle estimation. Then the error should be reduced if a smaller step size is applied.

To verify this assumption, video 4 have been reanalyzed within 3 kinds of step size

100,25,5. Their 3D reconstructions are shown as the following Figure 3.6.

As step size is decreased from 100 to 5, the r.m.s error in pitch and yaw drop down

from 7.28 deg to 4.99 deg and from 3.64 deg to 2.42 deg respectively in Figure 3.7 and 3.8.
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Figure 3.5: Pitch error becomes smaller and smaller as the actual pitch goes up among
5 videos starting from left to right and top to bottom

Therefore, by reducing the step size, it can reduce the random error and let predicted angle

converge to the ground truth.

3.1.2 Fitting routine error

Another potential reason is the fitting routine fitEllipse from OpenCV could under-

estimate the real body length with the least square algorithm. The fitting routine is that

body contour’s boundary points are computed at first based on contour areas. Then a fitted

ellipse is drawn to minimize the sum of squared distance between ellipse and body contour.

When artificial bumblebee is at a low pitch position. the tip of the head and abdomen

would be ignored to fit the ellipse into major body area which could underestimate the 2D

projected bod length shown in Figure 3.9.

Recall Formula 2.23 and 2.24, the fitted ellipse major axis is crucial to minimize
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Figure 3.6: The 3D trajectory of diameter’s endpoints in Video 4 with step size
100,50,25,5 from right to left and top to bottom.

distance error function and estimate pitch angle. In V ideo 2 and 4, the artificial bumblebee

starting pitch positions are at around 5 and 20◦ respectively which lead to a shorter major

axis length than body contour length. But to fit this ellipse (ELPS1) into ELPS2, the

pitch angle is augmented to shorten ELPS2 major axis length. As monitor hinge mount

keeps rotating, the body contour will be rounded and form a more likely ellipse shape

Figure 3.9. At that moment, a well-fitted ellipse can be generated without ignoring the tip

of the head and abdomen. Therefore, the pitch error is expected to decrease as the pitch

goes up which meets the results shown in Figure 3.5.

But, again, to verify assumption, a rectangle is built to bound the body contour

with the minimal area with the help of bondingRect function from OpenCV. Although

its orientation could be different from body contour, the fitted ellipse returns a good
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Figure 3.7: Pitch error within different step sizes 100, 50, 25 and 5 from top to bottom
has reduced from 7.28 deg to 4.99 deg

estimation of body orientation in 2D. Based on the geometry, 2D projection body length

can be reconstructed Figure 3.10.

L= a∗arccos(θ1− θ2) (3.2)

where L is the reconstructed body length, a is the rectangle length and θ1 and θ2 are the

orientation of rectangle and ellipse respectively
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Figure 3.8: Yaw error within different step sizes 100, 50, 25 and 5 from top to bottom
has reduced from 3.64 deg to 2.42 deg

After 2D body length reconstruction, the refined results of V ideo 2 and V ideo 4 are

shown in the following Figure 3.11 and 3.12.

Compared with initial results, the r.m.s pitch error is reduced from 7.168 deg to

4.47 deg in V ideo 2 and from 6.00 deg to 4.55 deg in V ideo 4. And the r.m.s. yaw angle is

reduced from 2.47 deg to 2.16 deg in V ideo 2 but is slightly increased from 2.61 deg to

2.94 deg in V ideo 4.
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Figure 3.9: The body contour with its fitted ellipse (yellow) and its minimal area
fitted rectangle (green). The left figure is the first analyzed frame in V ideo 4 and the
right figure is the last analyzed frame in V ideo 4.

Figure 3.10: Reconstruct the body contour length from minimal bonding area of
rectangle

After this correction, the average r.m.s pitch error among five videos is 3.58±1.21

deg and the average r.m.s yaw error among five videos is 2.84±0.90 deg. And this error

values could be reduced more if the smaller step size is chosen simultaneously.
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Figure 3.11: Pitch estimation after body length reconstruction of V ideo 2 and V ideo 4

Figure 3.12: Yaw estimation after body length reconstruction of V ideo 2andV ideo 4
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Chapter 4

Discussion

We developed a new model-based algorithm for insects’ body orientation 3D re-

construction and motion tracking. As demonstrated above, this algorithm shows high

performance in accurately tracking body and wings separately with straightforward mor-

phological transformation. Besides, instead of constructing a complex 3D insect body,

the insect body is simplified to be a proper ellipsoid which leads to a lucid estimation

algorithm structure. The behavior analysis pipeline we developed could return reasonable

pitch and yaw under two views only. When the pitch is greater than 30◦, pitch and yaw

error typically could be under 5 degrees.

4.1 Improvements and future applications

There is still room for improvement. As discussed in error analysis, analyzing more

frames in one video could help reduce the random error and reconstructing the fitted

ellipse major axis by implementing bondingRect from OpenCV could correct pitch angle.

Besides, compared with pitch error, yaw seems to be more accurate. The reason is that

yaw estimation depends on fitted ellipse orientation, but pitch estimation depends on fitted

ellipse axis length. The fitting routine for body contour provides a better fit in orientation
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than in length. Also, less accuracy in fitted ellipse axis length results in less accuracy in

pitch estimation. Thus, one of the cameras’ position may be adjusted to record a proximate

side view of the insect so that pitch angle error can also be defined as the orientation

difference of two kinds of ellipses in 2D.

Moreover, based on the wing extraction, the wing beat frequency can be computed

and the roll angle could also possibly be generated. Because fitted ellipses for wings reflect

projected wings orientation in 2D, as shown in Figure 2.15. By analyzing the orientation of

the ellipses changing rate and the time period to complete one stroke, wing beat frequency

can be estimated. Based on the contour areas of wings shown in Figure 2.14, by applying

bondRect and fitEllipse as discussed previously in the Fitting routine error section, two

wings’ base points in each camera frame could be determined. And then by applying the

triangulation method to reconstruct a 3D vector of two base points, the angle rotating

along with the body longitudinal axis would be the roll angle.

Based on those improvements discussed above, if we hope to get more accurate

pitch angles in the future, two cameras should be located where a proximate side view and

top view of the insect can be recorded. If we hope to get roll angle under two views, then

two cameras should be placed where two proximate top views of the insect can be recorded.

Therefore, a third camera could get involved for improvement of performance.

The body-wings extraction algorithm in this study has been implemented via image

thresholding. Thus, this method demands the difference between the brightness of the

background and insects’ organisms. Thus, any flight insects with transparent wings could

meet this requirement. Because the transparent wings cast shadows on the images and its

brightness value is higher than the body but lower than the background, this chould lead

to a brightness gradient for extraction. Even the flight insect’s partial body overlays the

wings in some angles of the view, due to the wings’ transparent characteristic, the body can

still be extracted by setting a lower brightness threshold for later orientation estimation.
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Besides, the insect’s body consists of a head, thorax, abdomen. During the flight, in most

cases, those three parts of the body are aligned along with the body longitudinal axis

which can be regarded as a whole and simplified as an ellipsoid. But there still needs to be

verified if 3D reconstruction of each part of the body individually improves the algorithm’s

performance. No matter what kinds of physical models, the way that we defined the error

function and optimization routine could provide innovative insights to evaluate how well

the physical models’ projection fits into the filmed insect’s body.

So we have confidence that the pitch-yaw estimation algorithm we developed would

perform well on many other kinds of flight insects with transparent wings. Such as drone

flies, fruit flies. But this algorithm may fail to separate wings from the insect body due to

either the wings have the same brightness as the body, or the wings are not transparent.

Like moths, butterflies.

4.2 Conclusion

In this paper, we talked about linear and non-linear camera pose estimation with

auto-rejection of outliers and 3D reconstruction under two views. Then, the image process-

ing techniques, including image thresholding, Morphological Transformations and Shape

Descriptor are implemented to extract wings and body contours. Also, an innovative

algorithm to estimate flight insect’s pitch and yaw angle has been demonstrated. The

bumblebee’s body is simplified as an ellipsoid. By generating the optimal orientation where

projections of the ellipsoid best describe the body contours in image frames with minimal

fitting error, the current pitch and yaw angle of ellipsoid would be the predicted angles for

bumblebee. Therefore, this algorithm can bring a novel perspective into the biological field

to reveal insect flight behaviors and control strategies applied during avoidance maneuver.
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