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Abstract

Myotonia congenita (MC) is a skeletal muscle channelopathy characterized by inability of the muscle to relax following
voluntary contraction. Worldwide population prevalence in humans is 1:100,000. Studies in mice, dogs, humans and goats
confirmed myotonia associated with functional defects in chloride channels and mutations in a skeletal muscle chloride
channel (CLCN1). CLCN1 encodes for the most abundant chloride channel in the skeletal muscle cell membrane. Five random
bred cats from Winnipeg, Canada with MC were examined. All cats had a protruding tongue, limited range of jaw motion
and drooling with prominent neck and proximal limb musculature. All cats had blepharospasm upon palpebral reflex
testing and a short-strided gait. Electromyograms demonstrated myotonic discharges at a mean frequency of 300 Hz
resembling the sound of a ‘swarm of bees’. Muscle histopathology showed hypertrophy of all fiber types. Direct sequencing
of CLCN1 revealed a mutation disrupting a donor splice site downstream of exon 16 in only the affected cats. In vitro
translation of the mutated protein predicted a premature truncation and partial lack of the highly conserved CBS1
(cystathionine b-synthase) domain critical for ion transport activity and one dimerization domain pivotal in channel
formation. Genetic screening of the Winnipeg random bred population of the cats’ origin identified carriers of the mutation.
A genetic test for population screening is now available and carrier cats from the feral population can be identified.
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Introduction

Myotonia is defined as delayed relaxation of voluntarily or

reflexively contracted muscle [1] and is due to repetitively firing

muscle action potentials after a single stimulus. Individuals affected

with various forms of myotonia typically describe a painless,

muscle stiffness that remits with several repetitions of the same

movement; the so-called ‘warm-up’ phenomenon [2,3]. In some

cases, however, the myotonia does not begin until one or two sets

of the same movement are completed, termed delayed myotonia.

If symptoms worsen with repeated exercise, paradoxical myotonia

is more appropriate, which is usually due to mutant sarcolemmal

Na+ channels [4].

In humans, myotonia congenita (MC) is characterized by

mutations within CLCN1, a gene [5] encoding the skeletal muscle

voltage-gated chloride channel ClC-1. This chloride channel is

responsible for up to 80% of the resting sarcolemmal conductance

[4,6,7] and belongs to the ClC family of anion channels (ClC-0,

ClC-1, ClC-2 and ClC-Ka/Kb) and anion/proton antiporters

(ClC-3–ClC-7) [8]. The channel architecture results in two largely

independent protopores of ClC channels that are opened and

closed by two structurally distinct gating processes [9]. In humans,

CLCN1 is organized into 23 exons [10] and each allelic gene

product is thought to contribute to its own pore. The structure of

the chloride channel protein was elucidated with electron

microscopy [11] and X-ray crystallography [12,13] following the

discovery of bacterial homologues from Escherichia coli and

Salmonella typhimurium. The ClC dimer consists of a transmem-

brane (TM) and a cytosolic cystathionine beta-synthase (CBS)

domain comprising 23 alpha-helices (A-V) and 5 beta-strands.

CLCN1 functions as a homodimer with four proposed sites of

dimerization [12,14].

MC shows autosomal dominant or recessive patterns of

inheritance with varying degrees of severity. A correlation between

the severity of the phenotype and the mode of inheritance has

been suggested; the autosomal dominant (Thomsen Disease,

OMIM 160800) form associated with a milder phenotype and

the recessive form (Becker Disease or recessive generalized

myotonia, OMIM 255700) associated with severe myotonia

[15,16]. The disease phenotype is evident when the net chloride

channel conductance is below 50% of normal, thus usually

dominant-negative interactions that disrupt the channel are more
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likely associated with autosomal dominant pattern of inheritance

[2,3]. Mutations that cause early truncations of the protein are

thought to present as an autosomal recessive mode of inheritance,

due to the loss of the ability to form dimers [17,18].

In veterinary medicine, MC has been described in several

mammalian species. The goat provided the first opportunity to

define the cellular defect in myotonic muscle [19,20], as muscle

fibers from myotonic goats exhibited greatly diminished chloride

conductance [21]. In this first molecular model, Beck et al. (1996)

reported a missense mutation affecting the carboxy terminus of

CLCN1 that reduces the channel open probability at physiologic

voltages. In goats, MC is inherited as an autosomal dominant trait

[22]. Since the first description of caprine MC [23], historical,

clinical, electrodiagnostic and histopathologic features have

become well-established in horse [24], dog [25,26] and cat models

[27–30]. In the feline model, historical and clinical findings, along

with routine blood testing, muscle percussion, cardiac examina-

tion, electrodiagnostic testing and muscle histopathology have

been characterized in two related kittens and in four kittens from

separate litters [21,23]. Both reports speculated that the disease

was inherited as an autosomal recessive trait.

In the present study, feline MC from a feral random bred

colony was characterized with respect to routine clinical investi-

gations, skeletal muscle histology and immunohistochemistry, and

electrodiagnostic findings. Direct sequencing of the candidate

gene, CLCN1, and analysis of mRNA from muscle biopsies were

conducted in the cats.

Results

Clinical presentation
Abnormalities on general physical examination common to all

five affected cats included a restricted jaw opening, halitosis,

varying degrees of gingivitis, pseudoptyalism, marked dental

calculus accumulation with palpable loose teeth and evidence of

poor grooming habits. Severe muscle hypertrophy was found

along the cervical spine, proximal aspects of all limbs (Video S1)

and the tongue, which protruded from the mouth (Figure 1 and

Video S2). One cat showed signs of respiratory distress (stridor,

open mouth breathing) upon examination that lasted for several

minutes. Serum creatine kinase (CK) activity was mildly elevated

in only one of the five cats tested.

All affected cats had a normal mentation. On cranial nerve

examination, abnormalities were limited to blepharospasm after

testing both the menace responses and the palpebral reflexes

(Video S2). The gait was stiff and short-strided in all limbs,

especially in the pelvic limbs, accompanied by a decreased ability

to adduct all limbs while walking. While ambulating, four cats

would intermittently assume a frozen posture in whatever degree

of flexion and/or extension the joints were in at the given instant,

and would remain static for several seconds before resuming

ambulation (Video S3). No obvious ataxia was observed. In one

cat, a plantigrade stance was obvious. Upon postural reaction

testing, proprioceptive positioning and hopping were normal in all

limbs. Upon visual placing in the thoracic limbs, all cats showed a

progressive worsening with this testing procedure, ultimately

ending after several repetitions with absent visual placing in the

thoracic limbs and active cervical ventroflexion. Abnormalities on

spinal reflexes were limited to absent cutaneous trunci reflexes

bilaterally in all cats. Percussion of the triceps muscle in one cat

produced a prolonged dimpling of the muscle (Video S1). A startle

response was not observed in these cats.

Electromyography, Nerve Conduction Velocity, Repetitive
Nerve Stimulation, Muscle Biopsy and Cardiac Findings

Appendicular as well as axial skeletal muscle was tested.

Prolonged insertional activity with myotonic discharges were

identified in all skeletal muscles tested and showed the character-

istic waxing and waning amplitude (Figure 2 and Video S4). The

discharges had a mean amplitude of 277 mV (130 mV, 240 mV and

470 mV) and a mean frequency of 300 Hz (240 Hz, 260 Hz and

400 Hz). Because of the remarkably high frequency of the

myotonic discharges, the sound generated from these discharges

on the EMG loudspeaker resembled a swarm of bees.

Left tibial nerve motor conduction velocity was tested in two

cats and found to be within normal limits. Supramaximal

repetitive nerve stimulation was performed at the left distal hock

in three cats at a repetition rate of 3 Hz. Decrement was observed

in two cats tested, with percentage decreases in area under the

curve between the 1st and 10th waveforms of 31.4% and 66.9%

and percentage decreases of 48% and 67% between the 1st and

30th waveforms (Figure 3).

Myofiber size ranged from 50–150 mm (normal feline reference

interval 40–50 mm) [31]. A normal mosaic pattern of muscle fiber

types was present. Intramuscular nerve branches were normal in

appearance. No inflammation, necrosis, fibrosis or other cytoar-

chitectural abnormalities were found (Figure 4).

Cardiac auscultation of all cats was normal. Thoracic radio-

graphs were taken in two cats and echocardiograms were

performed in four cats. Thoracic radiographs showed no evidence

of heart enlargement or congestive heart failure. Two-dimensional

echocardiography revealed several moderator bands in the left

ventricle in all four cats evaluated. Left ventricular diastolic

function was normal in all cats evaluated based on transmitral flow

patterns, isovolumic relaxation times, and/or tissue Doppler mitral

annular motion. No cardiac hypertrophy or chamber enlargement

was noted in any of the cats evaluated. Atrial premature complexes

of unknown origin were noted in one cat.

CLCL1 sequence analysis and genotyping
The entire CLCN1 coding sequence (GeneBank accession no.

KJ561451) and partial 59 and 39 UTRs were analyzed for six cats

(Table 1) representing the five affected cats and one random bred

control. In humans, CLCN1 has one isoform and the length of the

coding region within the transcript is 2967 bp. In the cat, CLCN1
has 23 exons (Table S1), the boundaries were confirmed by

genomic sequencing of the five cats used for the analyses of

CLCN1, producing a 2,970 bp coding sequence (CDS) that

Figure 1. The hypertrophic tongue in a cat affected with
myotonia congenita. The tongue is very enlarged and constantly
protrudes from the mouth.
doi:10.1371/journal.pone.0109926.g001

Feline Myotonia Congenita
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translates into 989 amino acids (Figure S1). The average CDS

identity between humans and cats is 87.5% and at the protein

level, CLCN1 in felines is 89.5% identical to humans. Seven of the

seventeen identified polymorphisms are exonic mutations (Ta-

ble 1). Two mutations in exon 18 result in an amino acid

substitutions, however, they were not concordant with the disease

phenotype. One of the ten intronic mutations segregated

concordantly with the phenotype and affects an exon/intron

splice site in affected cats. The c.1930+1G.T transversion altered

the 59 splice site at the junction of exon 16 and intron 16

(Figure 5a). The effect of this polymorphism was investigated at

the RNA level (Figure 5b). All the affected cats showed the same

haplotype across all the identified polymorphisms (Table 1). All

the mutations were confirmed by the RNA transcript sequence

obtained from muscle tissues of affected and wildtype cats.

Interestingly, the identified mutation is associated with the

upstream absence of exons 15 and 16 (Figure 6). Intron 14

sequence showed polymorphisms in the control cat only, in a

heterozygous state, while the affected cat sequence was identical to

the wildtype sequence. To exclude retrotranscription artifacts, the

RNA experiment was conducted twice, beginning at the RNA

isolation step. In silico translation of the altered transcript predicts

the lack of 116 amino acids, from residues 557 to residue 643 of

the protein (Figure S1). The predicted premature CLCN1 protein

truncation would cause the partial absence of the first highly

conserved CBS1 (cystathionine b-synthase) domain and the third

dimerization domain p.578Y. The strength of the 59 splicing sites

(59ss) was calculated for exon-intron 14, 15 and 17 boundaries

using the Maximum Entropy Model score, the Maximum

Dependence Decomposition Model score, the first-order Markov

Model and the Weight Matrix Model score. The strength of the

59ss in all the tested boundaries was similar in each method when

Figure 2. Myotonic discharges in a cat with myotonia congenita. EMG recorded from the biceps femoris muscle showed a sustained run of
initially positive biphasic to triphasic spikes with a firing frequency of 240 Hz. Note also the waxing and waning in amplitude of the spike train.
doi:10.1371/journal.pone.0109926.g002

Figure 3. Supramaximal repetitive nerve stimulation in a cat with myotonia congenita. Stimulation of the right tibial nerve at 3 Hz shows
a decrement of 48.3% between the 1st and 30th waveforms.
doi:10.1371/journal.pone.0109926.g003

Feline Myotonia Congenita
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compared, suggesting exon-intron 15 59ss as the strongest.

Complete donor splice site strength is confirmed in the mutated

sequence (Table S2).

Within 244 cats screened for the c.1930+1G.T polymorphism

(Table 2), the mutation was only found to be heterozygous in three

cats from the Winnipeg feral population (n = 35). The cats

pertaining to the 26 breeds (n = 182) as well as the two random

bred populations (n = 14) all tested wildtype.

Immunohistochemical localization of voltage-dependent
chloride (Cl-) channels

Cryosections (8 mm) from the biceps femoris muscle of affected

and control cats were incubated with rabbit polyclonal antibodies

against the C-terminus and N-terminus of CLCN1 and co-stained

with a monoclonal antibody against dystrophin (marker for the

muscle sarcolemma). The sections were then processed by indirect

immunofluorescence. Staining using both antibodies against

CLCN1 was localized to the interior of the myofiber and was

distinctly punctate in nature without co-localization with dystro-

phin to the muscle sarcolemma (Figure 7). To further investigate

the subcellular localization of the chloride channels, antibody

markers for the sarcoplasmic reticulum (ryanodine receptor) and

T-tubule system (dihydropyridine receptor DHPRa1) were co-

stained with both antibodies against CLCN1 and compared to

control muscle. Staining strongly suggested either co-localization

or a close association with the T-tubule system (Figure 8).

Discussion

Voltage-dependent chloride (Cl-) channels are transmembrane

proteins that represent Cl- permeation pores. Chloride channels

are as abundant as cation channels (Na+, K+, Ca2+) and participate

in many physiological tasks, including the maintenance of normal

cellular excitability, the control of neurotransmitter release and the

transport of ions across epithelial cells. MC was one of the first

genetic diseases shown to be caused by mutations in genes

encoding ion channels [5,32]. The aim of this paper was to

describe the clinical characteristics of a cohort of cats with feline

Figure 4. Pathological changes were limited to myofiber
hypertrophy in cats with myotonia congenita. a. H&E stained
cryosections of the biceps femoris muscle. Hypertrophy involved both
type 1 and type 2 fibers. b. H&E stain of biceps femoris muscle. c.
Antibody staining for type 1 (brown color) and type 2 (red color) fibers.
For comparison of fiber size, an unaffected approximately age matched
control cat muscle is shown. b. H&E stain of biceps femoris muscle; d;
antibody staining for type 1 and type 2 fibers. Magnification bar
= 100 mm for all images.
doi:10.1371/journal.pone.0109926.g004
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Figure 5. Electropherogram representing the genomic and RNA sequence of CLCN1 in wild-type and myotonia congenita cats. a.
Genomic sequence of three control cats and the five affected cats. The red rectangle indicates the c.1930+1G.T polymorphism in the first base of
intron 16 associated with MC in the domestic cat. b. RNA sequence lacks exon 15 and 16, while no alterations are observed in the control cat at exon
junctions 14–15 and 16–17.
doi:10.1371/journal.pone.0109926.g005

Figure 6. Schematic representation of CLCN1 splicing in the wild-type cat and myotonia congenita cats. In exon 15, the yellow line
represents the third dimerization site (dim site), while the blue box represents the CBS1 domain, present in exon 16 and 17. The black triangle
represents the identified mutation and the two red circles connected by a red dashed line represent the donor splice site and the acceptor splice site
in the mutated protein. a. Normal splicing occurring in the wild-type subject, both dimerization sites and CBS1 are present. b. In the affected cat, the
mutation in intron 16 is associated with the absence of exons 15 and 16, and, therefore the protein lack the dimerization domain.
doi:10.1371/journal.pone.0109926.g006
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MC along with novel electrophysiologic findings and the

molecular characterization of the mutation within the CLCN1
gene.

MC was characterized previously in a 5-month old intact male

and in 9-month old intact female domestic shorthair littermates

[28], as well as four closely related kittens from 2 related queens

and unknown sires [29]. Although a mutation was not identified,

both reports suggested the condition was a hereditary disease.

Findings in common to both studies included an unthrifty

appearance, a short-strided, choppy gait (more severe in the

pelvic limbs), blepharospasm upon palpebral reflex testing or

startling, dysphonia and prolonged dimpling of the tongue after

percussion (percussion myotonia). The general physical examina-

tion and neurologic findings in the cats of this study are consistent

with both previous reports. All cats from this feral breeding colony

showed a protruding tongue with excessive drooling, prominent

neck and proximal limb musculature, decreased range of jaw

motion, oral disease, bilateral blepharospasm upon testing, a short-

strided gait with decreased ability to adduct the limbs and a

progressive decrease through successive attempts of visual placing

in the thoracic limbs. This progressive decrease in the visual

placing response was ascribed to transient weakness and no clinical

significance was ascribed to the absent cutaneous trunci reflexes as

this reflex has been previously shown to be sometimes absent in

otherwise neurologically normal cats [62]. No clinical evidence of

cardiac disease was detected in this study, consistent with previous

reports of feline MC [28]. MC is a disease that typically does not

affect either smooth or cardiac muscle [33].

Previously reported abnormal electromyographic findings in

feline MC included increased insertional activity and myotonic

discharges, with no evidence of defective nerve conduction. These

findings were duplicated in all cats tested in the present study. In

addition, the frequency of myotonic discharges reported herein

was unique, with a mean frequency of 300 Hz. To our knowledge,

this is the first report documenting such a high frequency of

myotonic discharges. Classically, myotonic discharges occur with a

frequency of 50–100 Hz and are described as sounding like a

motor cycle revving or a dive bomber [1]. The higher frequency of

myotonic discharges in the cat is likely the reason for the atypical

sound in these cats, resembling a ‘swarm of bees’. Myotonic

discharges that wax and wane are the characteristic electrophys-

iologic abnormality in MC. Diminished chloride conductance

across the sarcolemma leads to increased input resistance such that

a smaller membrane depolarization is more likely to trigger an

action potential. The restricted extracellular space within the

transverse tubule system in the muscle leads to an accumulation of

K+ ions following action potentials. Reduced chloride conduc-

tance in affected individuals increases the likelihood of spontane-

ous after-depolarizations that can eventually reach the sarcolem-

mal threshold voltage for action potential initiation [7].

The cats tested herein with repetitive nerve stimulation at 3 Hz

showed pathologic decrement, a reproducible decline in the area

under the curve of the compound muscle action potential

(CMAP). The stimulation frequency of 3 Hz was chosen within

this study based on higher frequencies of stimulation showing

physiologic CMAP decremental responses in dogs [60], [61].

Decrement can be an electrophysiologic feature of myotonia

congenita in some cases that represents the neurophysiologic

counterpart of the initial weakness that patients often ‘warm-up’

out of [34]. Although not a classical finding in all cases of MC, this

is not the first instance of pathologic decrement in veterinary

patients with MC, as this has been reported previously in the

Chow Chow dog [58]. This shared feature of pathologic

decrement between the cats presented herein and these Chow

Chow dogs suggests the possibility of a common molecular

pathophysiology, although the molecular basis of MC in the Chow

Chow will need to be addressed in order to explore this possibility.

The decrement in MC may ultimately result from the prolonged

after-depolarization of the sarcolemmal membrane, secondary to

potassium accumulation in the transverse tubules [39]. It has been

proposed that the decrement is the electrophysiologic correlate of

weakness in some forms of MC. The weakness may be attributed

to muscle hypoexcitability secondary to sodium channel inactiva-

tion (depolarization block) at times of more extreme muscle

depolarization, with motor axons subsequently firing at higher

rates to control a weak muscle [59]. The degree of decrement,

however, has not been shown to be associated with clinical severity

[35]. A recent cohort study in humans has shown that decrement

with the 3 Hz nerve stimulation protocol had a sensitivity of 66%

for recessive MC with good reproducibility, whereas those patients

with dominant MC or myotonia secondary to a defect affecting the

skeletal muscle sodium channel showed no decrement at such a

stimulation frequency. Decrement in recessive MC has been

suggested to be related to variation in the CLCN1 alleles,

including nonsense, splice site frameshift and missense mutations

[35–38].

In people with MC, non-specific histologic changes include

abnormal variations in myocyte diameter, fiber hypertrophy,

absence of type IIb fibers, central location of fiber nuclei and

mitochondrial aggregates [40]. Variable findings have been

described for both light and electron microscopy in feline MC,

including occasional degeneration of individual myofibers associ-

ated with localized proliferation of sarcolemmal nuclei with few

centrally located nuclei, moderate diffuse myofibril hypertrophy,

rounding of the sarcoplasm, clear cytoplasmic vacuoles within

many myofibers and mild dilatation of transverse T-tubules [27–

29]. The mean myofiber perimeter and areas were previously

measured and compared to age-matched controls using image

software, showing increased perimeters and areas of myofibers in

affected cats [27,28]. The muscle profiles in this study showed

hypertrophy of both type 1 and type 2 fibers with a normal mosaic

pattern of muscle fiber types and no evidence of inflammation,

necrosis, fibrosis or other specific cytoarchitectural abnormalities,

consistent with a diagnosis of MC.

In our study, results of immunoflourescent staining in both

affected and control cats support localization of the chloride

channels close to or at the location of the T-tubules. Immunoflu-

orescent staining for chloride channels in both affected and control

cat muscle did not support localization to the sarcolemma. Since

staining was similar in both affected and control cats, the mutation

identified in these myotonic cats likely results in impaired ion

channel function rather than a mislocalization. However, addi-

tional more sophisticated studies that are beyond the scope of this

study would be necessary to determine channel density or more

precise localization.

In recent years, a large number of mutations associated with

MC have been identified in CLCN1 in dog [41,42], goat [22],

horse [43], water buffalo [44], mouse, [45] and human [5]. These

mutations are dispersed throughout the entire coding and non-

coding regions and result in distinct alterations of channel kinetics.

Unexpected insights into the structure-function relationship are

provided by the discovery of random sequence alterations that

impair channel function, providing an alternative approach to

identify elements in the sequence essential in channel function.

The chloride channel consists of transmembrane domains, three

dimerization domains and cystathionine b-synthase domains,

critical for ion transport activity.
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In the current study, CLCN1 was analyzed in five cats with

classical MC. Relatedness within the cats included in the study is

not known, however, the cats were identified as originating from

the same feral colony in Winnipeg, Canada. An intronic mutation

in intron 16 leads to a splicing error, confirmed by the cDNA

analysis, which translates to a lack of exon 15 and 16 and a 116

amino acids gap in the protein. Since the alternative splicing is

atypical, the experiment was conducted from freshly isolated RNA

and retrotranscription products. The same splicing variation was

detected in both experiments, excluding retrotranscription artifacts

as being responsible for the observed splicing. The entire sequence

of intron 14 was also acquired and excluded possible intronic

mutation associated with the detected splicing variant. The

c.1930+1G.T appears to be the polymorphism associated with

MC in the domestic cat.

Splice sites (59ss) are the elements at the 59 end of introns and

are extremely diverse, as revealed by the thousands of different

sequences that act as 59ss in the human transcriptome [46]. Most

of the 59ss are recognized by base-pairing with the 59 end of a

small nuclear RNA (snRNA) called U1 [47,48]. To date, over

9000 sequence variants in the 23 to +6 region of the 59ss are

recognized in humans as 59ss consensus [46]. The use or

avoidance of 59ss could depend on other sites and is not

necessarily an intrinsic property of any given sequence, as in the

case of some sequences in b-globin where sequences that resemble

59ss were used when a natural 59ss was inactivated [49,50]. The

mechanism is termed cryptic 59ss. Previous work had shown that a

mutation within a 59ss might inactivate it or lead to the use of

cryptic 59ss [51]. In the present work, an unusual alternative

splicing that leads to the lack of two exons upstream of the

mutation is presented. The 59ss strength analysis results exclude a

significant difference in the strength of exon-intron 14 boundaries,

excluding a gain of strength or the presence of a strong 59ss as

possible mechanisms involved in exon 15 and 16 skipping.

Moreover, the complete sequence of intron 14 reveals no

mutations concordant with the phenotype and possibly responsible

for the alternative splicing. A second hypothesis is that entire exons

can be skipped when located in an internal RNA loop [52]. This

Table 2. Domestic cats genotyped for the CLCN1 mutation associated with myotonia congenita.

Genotype

Breed Phenotype No. G/G G/T T/T

Abyssinian Normal 9 9 0 0

American shorthair Normal 8 8 0 0

Bengal Normal 7 7 0 0

Birman Normal 7 7 0 0

British shorthair Normal 7 7 0 0

Burmese Normal 7 7 0 0

Chartreux Normal 7 7 0 0

Cornish Rex Normal 8 8 0 0

Devon Rex Normal 7 7 0 0

Egyptian Mau Normal 7 7 0 0

Japanese Bobtail Normal 7 7 0 0

Korat Normal 7 7 0 0

Maine Coon Normal 9 9 0 0

Manx Normal 7 7 0 0

Norwegian Forest Cat Normal 9 9 0 0

Ocicat Normal 7 7 0 0

Oriental Normal 7 7 0 0

Persian Normal 7 7 0 0

Ragdoll Normal 7 7 0 0

Russian Blue Normal 7 7 0 0

Siamese Normal 7 7 0 0

Siberian Normal 7 7 0 0

Sphynx Normal 7 7 0 0

Tonkinese Normal 7 7 0 0

Turkish Angora Normal 7 7 0 0

Turkish Van Normal 7 7 0 0

Random Bred (Winnipeg) Affected 5 0 0 5*

Normal 35 32 3 0

Random Bred (France, USA) Normal 14 14 0 0

Total 244 236 3 5

*Cats genotyped by direct sequencing.
doi:10.1371/journal.pone.0109926.t002
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evidence is supported in numerous studies where secondary

structures showed influence in 59ss selection and subsequent

splicing [53]. A striking example is provided by the MAPT exon

10 alternative splicing, whose inclusion levels are dictated by the

efficiency of the 59ss recognition, which is compromised by

downstream intronic nucleotides responsible for a base-pairing

structure [54]. The mutation occurring in intron 16 could be

associated with the appearance of a pre-mRNA structure, such as

loop, during the splicing event directly responsible for the lack of

both exons 15 and 16, or indirectly affecting the performance of

RNA-binding proteins and the rate of transcription.

The characterized alteration in CLCN1 is predicted to cause a

lack of 116 amino acids in the protein, from position 557 to

position 643. The alteration deletes part of the first CBS domain

[55]. Mutations within the domain, critical for ion transport

activity, are associated with recessive and dominant forms of MC

[56]. Moreover, the deletion removes the third, highly conserved,

dimerization domain. It is possible to hypothesize that the lack of

one of the dimerization sites prevents the mutated allelic gene

product from being incorporated in the dimer, although the

mutated product is still incorporated into the membrane. A

recessive mode of inheritance was also confirmed by the

genotyping results, where the heterozygous cats were confirmed

to be healthy. Carrier cats were only identified in the Winnipeg

feral population, supporting the hypothesis that a novel mutation

that arose in an intact feral cat and was spread amongst the local

feline random bred population. A genetic test is now available and

carrier individuals can be identified and sterilized to prevent

further spread of the genetic alteration within the local population.

Myotonia congenita is one of numerous inherited diseases of

skeletal muscle that have been defined at the molecular level in

recent years and this disease model had provided cogent insights

regarding muscle excitation and contraction. For the first time,

MC in Felis silvestris catus was molecularly defined and associated

with an early truncation of the CLCN1 protein, establishing the

cat as a potentially valuable new animal model of this disease.

Materials and Methods

Sample collection
Private owners of affected and control cats were recruited to

voluntarily participate in the study. All procedures were approved

by the University of Missouri, Animal Care and Use Committee.

Muscle biopsy samples were obtained from a privately owned cat

after acquiring informed owner consent and done for routine

diagnosis. Five affected cats privately owned were obtained from

the same cat shelter in Winnipeg, Canada. The shelter obtained

these cats from various sources, including local feral populations

under population control. DNA samples from the Canadian feral

cat population and from the control populations (26 breeds and

random bred cats from US and around the world) were collected

Figure 7. Immunofluorescent staining for localization of
antibodies against the N-terminus and C-terminus of CLCL1.
Cryosections of biceps femoris muscle from a representative myotonic
cat and approximately age matched control. A similar pattern of
punctate cytoplasmic staining was found with both antibodies in the
myotonic and control cat (rhodamine filter, red color). An antibody
against dystrophin was used to localize the muscle sarcolemma (FITC,
green color). Bar = 50 mm for all images.
doi:10.1371/journal.pone.0109926.g007

Figure 8. Antibody markers against RYR, DHRPa1 and CLCN1. To further investigate the subcellular localization of the chloride channels in
myotonic cats, antibody markers for the sarcoplasmic reticulum (RYR; ryanodine receptor, green) and T-tubule system (DHRPa1, green) were co-
stained with antibodies against CLCL1 (red) and compared to control muscle. The merge figures for both myotonic and control cats (yellow) show
close proximity of CLC1 to the sarcoplasmic reticulum and T-tubule system. Bar = 50 mm for all images.
doi:10.1371/journal.pone.0109926.g008
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from the cats non-invasively using buccal swabs at cat shows,

shelters and the owners’ homes (Table 2). DNA was isolated from

buccal swabs using the DNAeasy Kit (Qiagen).

Clinical description and Sampling
The five affected adult cats from Canada were brought to the

Neurology service at the University of Missouri – Columbia,

Veterinary Medicine Teaching Hospital for examination and

diagnostic testing. A history of all cats was collected from the

veterinarian who referred cats for diagnostic testing. All cats

underwent both a general physical examination and a detailed

neurologic examination, as well having complete blood counts and

serum biochemistry panels. Urinalyses were assayed on two cats.

Thoracic radiographs were performed on two cats. An echocar-

diogram was performed on four cats. All electrodiagnostic testing

was performed using a Cadwell Sierra Wave machine (Kennewick,

WA) with concentric (coaxial) needle electrodes while the cats were

maintained under general gaseous anesthesia. Electromyography,

nerve conduction velocities and repetitive nerve stimulations were

performed within 10–15 minutes of induction of general anesthe-

sia in three tested cats. Biopsies from the right biceps femoris

muscle were collected under general anesthesia in three cats. The

muscle biopsy was bisected: the first portion was placed in a saline-

dampened gauze sponge followed by submission under refriger-

ation for histopathologic assessment (Comparative Neuromuscular

Laboratory; University of California, San Diego). The second

portion was transferred into RNA later (Qiagen, Valencia, CA).

RNA was isolated using the Invitrogen RNA mini Kit (Invitrogen,

Carlsbad, CA).

CLCN1 genomic analysis
The genomic analysis of CLCN1 was conducted on genomic

DNA from seven cats, including, the five affected random bred

cases from Winnipeg and two random bred controls available in

the laboratory. The complete CDS (23 exons) of CLCN1 is

publicly available (http://ensembl.org) and can be found on cat

chromosome A2: 157,284,157–157,315,463 (assembly version

Felis_catuts_6.2). CLCN1 intron 14 was fully amplified using the

SequalPrep long range PCR kit (Invitrogen) as per manufacturers

recommendations and sequenced using internal primers (Table

S1). Primers were designed in both UTRs and intronic regions,

flanking the exons. Primers were tested for efficient product

amplification on a DNA Engine Gradient Cycler (MJ Research,

GMI, Ramsey, MN) and the final PCR magnesium concentrations

and annealing temperatures for each primer pair are shown in

Table S1. PCR and thermocycling conditions were conducted as

previously described [57]. The PCR products were purified with

ExoSap (USB, Cleveland, OH) per the manufacturer’s recom-

mendations and directly sequenced using the BigDye terminator

Sequencing Kit v3.1 (Applied Biosystems, Foster City, CA).

Sequences were verified and aligned using the software sequencer

version 4.10 (Gene Codes Corp., Ann Arbor, MI).

CLCN1 mRNA analysis
Total RNA was extracted using the RNA mini Kit (Invitrogen)

from muscle from an affected cat and a control random bred cat.

Complementary DNA templates were synthesized using Super-

Script III (Invitrogen, Carlsband, CA) by reverse transcription of

1 mg of total RNA with gene specific primers (Table S1) and PolyT

to obtain partial 59 UTR, CDS and partial 39 UTR. Each cDNA

sample was subjected to PCR using primers (10 mM each)

combined as follow: F1 - R1, F2 - R2, F3 - R3, F3 - R5, F4 -

R4, F4 - R6, F5 - R5, F6 - R6, F6 - R7. The PCR conditions were:

1.5 mM Mg, 2 ml of cDNA in a total volume of 20 ml. The PCR

cycle was conducted as previously described [57]. The PCR

products with appropriate lengths were purified using the ExoSap

(USB) enzyme per manufacturer’s recommendations. Purified

genomic products were directly sequenced in both directions using

BigDye Terminator Sequencing Kit v3.1 (Applied Biosystems) and

electrophoretically separated on an ABI 3730 DNA analyzer

(Applied Biosystems).

CLCN1 59ss strength analysis
The strength of the 59 splicing sites (59ss) was calculated on nine

bases fasta sequences (the last three bases of the exon and the first

six bases of the adjacent intron) with the online program Max-

EntScan (http://genes.mit.edu/burgelab/maxent/Xmaxentscan_

scoreseq.html). The program models short sequence motifs, such

as those involved in RNA splicing, which simultaneously accounts

for non-adjacent, as well as adjacent, dependencies between

positions. This method is based on the ’Maximum Entropy

Principle’ and generalizes most previous probabilistic models of

sequence motifs such as weight matrix models and inhomogeneous

Markov models.

CLCN1 SNP genotyping
Genotyping was conducted using the High-Resolution Melting

(HRM) assay. A real-time PCR was carried out on a Rotor-Gene

Q Thermal cycler (Qiagen) and 239 samples from 28 populations

were tested. PCR was performed in 10 ml reactions with 10 ng

genomic DNA using the type-it HRM PCR kit (Qiagen) in

accordance with the manufacturer’s instructions with HRM

forward and reverse primers (Table S1). The assay was optimized

using DNA from five wild-type samples and five affected samples,

and DNA concentration was normalized to ,15 ng/ml for each

sample to mimic average sample concentration from buccal swab

isolation. Heterozygous samples for the assay optimization were

made by combining wild-type and affected DNA with a 1: 1 ratio.

Graph of melting curves from the optimization are shown in

Figure S2. A two-step cycling protocol consisting of an initial

denaturation of 95uC for 5 min followed by 40 cycles of 95uC for

10 s and a combined annealing/extension step at 58uC for 30 s

was carried out. The samples were subsequently subjected to a

65uC isotherm step for 90 s followed by a temperature gradient

from 65uC to 85uC heating 0.1uC per step with 2 s wait at each

step. Each genotype was analyzed in duplicate. The genotype was

assigned using the Rotor-Gene ScreenClust HRM Software

(Qiagen) in a supervised mode on the normalized melting curve.

Histopathology, immunohistochemistry and
immunofluorescence

Unfixed specimens from the biceps femoris muscle of three cats

affected with MC were shipped under refrigeration by an express

service to the Comparative Neuromuscular Laboratory, University

of California San Diego. Samples were immediately flash frozen in

isopentane pre-cooled in liquid nitrogen then stored at 280uC
until further processed. Control cat biceps femoris muscle was

from the frozen tissue archives of the Comparative Neuromuscular

Laboratory. Cryosections (8 mm) in myotonic cats and controls

were cut and stained with H&E, or incubated with a mouse

monoclonal antibody to myosin heavy chain slow (type 1 fibers,

MyHC-slow, Leica Biosystems) or a mouse monoclonal antibody
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to myosin heavy chain fast (type 2 fibers, MyHC-fast, Leica

Biosystems) muscle fibers. Color was developed using either

Vector red substrate kit (Vector SK-5100) or peroxidase substrate

kit DAB (Vector, SK-4100) as per manufacturers instructions.

For immunofluorescence analysis, cryosections from the biceps

femoris muscles of the three myotonic cats and two control cats

were fixed in cold acetone/methanol (1:1) for 5 minutes, and then

incubated at 4uC overnight with the following antibodies at

appropriate dilutions: mouse anti-RyR antibody (Santa Cruz

Biotechnology, 1:100), mouse anti-DHPR alpha 1 (Abcam, 1:100),

mouse anti-dystrophin rod-domain (Novocastra, NCL-DYS1,

1:20), rabbit anti-N-terminus of Chloride Channel 1 antibody

(antibodies-Online Inc. 1: 250) and rabbit anti-C-terminus of

Chloride Channel 1 antibody (antibodies-Online Inc. 1: 250).

After washing, the slides were incubated in fluorescein (FITC)-

conjugated goat anti-mouse IgG (Jackson ImmunoResearch,

1:200) or rhodamine red-conjugated goat anti-rabbit IgG (Jackson

ImmunoResearch, 1:200) for 1 hour at room temperature. The

sections were mounted in ProLong Gold antifade reagent with

Dapi (Invitrogen) and examined under a fluorescent microscope.

Supporting Information

Figure S1 CLCN1 protein alignment of Homo sapiens,
domestic cat wildtype (wt) and mutated (mut) protein. In

yellow the three amino acids involved in protein dimerization and

in green the two CBS domains. The affected cat protein prediction

lacks 116 amino acids, from position 557 to position 643 of the

protein sequence.

(DOCX)

Figure S2 Normalized melting curve graph of wild-type,

homozygous and heterozygous samples for the c.1930+1G.T

polymorphism. The graph represents three different melting

curves patterns. The cohort with the highest melting temperature

represents the wild type samples, the cohort with the lowest

melting curve represents the homozygous affected samples.

Samples with a melting curve in between represents the

heterozygous group.

(DOCX)

Table S1 Primers to analyze feline CLCN1.
(DOCX)

Table S2 59ss exon-intron boundaries strength.

(DOCX)

Data S1 CLCN1 sequences. CLCN1 DNA and RNA

sequences generated on affected and control cats.

(ZIP)

Video S1 Muscle hypertrophy and sustained contrac-
tion in a cat with myotonia congenita. The muscle

hypertrophy is apparent when the limb was shaved under

anesthesia prior to muscle biopsy. Percussion of the muscle with

a reflex hammer produces a sustained contraction of the muscle

(dimpling).

(MOV)

Video S2 Blepharospasm and tongue hypertrophy in a
cat with myotonia congenita. Eliciting the palpebral reflex

produces a sustained blepharospasm. The tongue is hypertrophied

and the cat cannot fit retract the tongue inside his mouth.

(MOV)

Video S3 Gait of a cat with myotonia congenita. The cat

begins to move with a stiff, short-strided gait that improves with

subsequent steps.

(MOV)

Video S4 EMG of a cat with myotonia congenita under
general anesthesia. The EMG shows increased insertional

activity with a high frequency and with a waxing and waning

amplitude producing the sound akin to a swarm of bees.

(MOV)
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