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Abstract

Building on research arguing for the possibility of concep-
tual and categorical knowledge acquisition through statistics
contained in language, we evaluate predictive language mod-
els (LMs)—informed solely by textual input—on a prevalent
phenomenon in cognitive science: typicality. Inspired by ex-
periments that involve language processing and show robust
typicality effects in humans, we propose two tests for LMs.
Our first test targets whether typicality modulates LM proba-
bilities in assigning taxonomic category memberships to items.
The second test investigates sensitivities to typicality in LMs’
probabilities when extending new information about items to
their categories. Both tests show modest—but not completely
absent—correspondence between LMs and humans, suggest-
ing that text-based exposure alone is insufficient to acquire typ-
icality knowledge.
Keywords: typicality; neural networks; language models;
conceptual knowledge representation

Introduction
Perhaps one of the most robust findings in the study of hu-
man categorical knowledge is the phenomenon of typicality,
the observation that certain members of a category are con-
sidered to be more representative of the category than others
(Murphy, 2002). As observed in the seminal work of Rosch
(1975), native English speakers rate robins and canaries as
more typical birds than penguins and emus, chairs and sofas
as more typical furniture than clocks and vases, etc. Typi-
cality differences in stimuli strongly predict response times
in taxonomic sentence verification tasks (Rips, Shoben, &
Smith, 1973; Rosch, 1973) and category production (Rosch,
Simpson, & Miller, 1976). In the context of learning, typi-
cal items facilitate faster concept acquisition than do atypical
items (Rosch et al., 1976). Typicality also prominently af-
fects category-based induction (Rips, 1975; Osherson, Smith,
Wilkie, Lopez, & Shafir, 1990): that is, subjects more read-
ily extend new information about typical—as opposed to
atypical—items to the entire category. In summary, typicality
is a salient and impactful phenomenon in the study of human
category knowledge.

There is a growing body of research on the view that words
or language in general act as distributional cues to categor-
ical knowledge, as opposed to mappings onto concepts—
that statistics contained in language can, to an extent, in-
form about the world (Lupyan & Lewis, 2019). This view is
supported by recent evidence in natural language processing
(NLP) and cognitive science that shows encouraging signs of
computational models learning world (Petroni et al., 2019),

categorical (Ettinger, 2020), and conceptual (Weir, Poliak, &
Van Durme, 2020) knowledge while relying solely on text-
based input. Though these works investigated knowledge
of categories (through word prediction-based categorization
prompts such as “A robin is a .”), they do not consider
any distinction between central and peripheral members of
categories.

Expanding on the aforementioned promising results related
to conceptual and categorical knowledge, we ask the ques-
tion: “How much do the statistical associations contained in
text reflect typicality effects in categories?” To this end, we
present a case-study on language models (LMs) that are pre-
trained on massive amounts of text and learn representations
that are optimized to reflect the statistics of the language used
in textual-form. We investigate whether the phenomenon of
typicality emerges as a result of LM pre-training. Our tests
are grounded in the psychological study of concepts and cat-
egories, and are inspired by prior human experiments that
show clear sensitivities to typicality in processing of textual
stimuli. First, we build on prior work analyzing conceptual
and categorical knowledge in LMs, and test whether typi-
cality effects modulate LM judgments of taxonomic sentence
verification (“a robin is a bird”) as they do in humans (Rips et
al., 1973; Rosch, 1973). Complementing this simple and di-
rect test of taxonomic category membership, we add a layer of
complexity, and investigate the manifestation of typicality ef-
fects in LMs on the basis of how they extend new information
about items (“robins can dax”) to all members of a category
(“all birds can dax”), inspired by tests targeting psycholog-
ical strength of inductive arguments (Osherson et al., 1990).
Though the human experiments that inspire our tests do not
explicitly target typicality as a phenomenon, typicality effects
still robustly modulate human behavior on them. Hence, we
examine whether LMs show comparable typicality effects on
stimuli similar to those used in the above experiments.

We find non-trivially positive but modest sensitivities of
LMs to typicality effects in both our experiments. We also
find LMs, on average, to be less extreme in their sensitivities
to atypical and typical items as compared to humans. This
suggests that the word prediction capacities of LMs that are
optimized to reflect the statistics that are contained in textual
corpora are moderately influenced by typicality effects in as-
sessing strength of simple taxonomic verification as well as
more complex inductive inferences about categories. Our re-
sults reflect the difficulty of acquiring human-like category
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knowledge without extra-linguistic input, at least with the
current computational models of language processing.

Materials and Methods
Models Studied
We conduct our analyses on pre-trained LMs based on the
transformer architecture (Vaswani et al., 2017). Our choice
of LMs is motivated by recent evidence that shows qualita-
tive alignment of category knowledge (“a robin is a bird”,
“a bear has fur, has claws.”) in pre-trained LMs (Ettinger,
2020; Weir et al., 2020). Although we focus on a particu-
lar type of pre-trained LMs (transformers) in this paper, the
tests we propose can be applied to any LM. We investigate
two broad classes of transformer-based pre-trained LMs: (1)
Incremental LMs, trained autoregressively (left to right) to
predict one word at a time, when conditioned on exclusively
the left context; and (2) Masked LMs, that access context
of the word to be predicted bidirectionally, e.g., the mod-
els are optimized to predict correct completions (airplane or
bird) to sentences such as “the [MASK] flew away,” where
[MASK] represents the hidden word. We apply our tests on
GPT (Radford, Narasimhan, Salimans, & Sutskever, 2018)
and GPT2 (Radford et al., 2019) as our Incremental LMs,
and ALBERT (Lan et al., 2019), ELECTRA (Clark, Lu-
ong, Le, & Manning, 2020), BERT, (Devlin, Chang, Lee,
& Toutanova, 2019) and RoBERTa (Liu et al., 2019) as our
Masked LMs. In addition, we use compressed versions of
the above models (Sanh, Debut, Chaumond, & Wolf, 2019):
distilGPT2, distilBERT-base, and distilRoBERTa-base. All
transformer-based pre-trained LMs were accessed using the
transformers library (Wolf et al., 2020).

Finally, we also used a 5-gram language model with
kneyser-ney smoothing, trained using the KenLM toolkit
(Heafield, 2011), as a baseline model that lacks the kind
of representational learning mechanisms that empower the
above models. This model is trained on the Dec, 2020 dump
of English Wikipedia.1 The performance of the 5-gram model
represents the extent to which our tests can be approximated
simply by memorizing sequences of up to 5 words in length.

Data and Stimuli
Item typicality data For both experiments, we use as our
primary source the list of 565 item-typicality ratings com-
piled by Rosch (1975) across 10 different categories. In the
original human experiments, 209 native speakers of English
were tasked to rate the “goodness of example” for various
items of each given category, on a scale of 1 (most typical)
to 7 (least typical). The statistics of the items and categories
is presented in Table 1. It should be noted that the experi-
ments we base our tests on involve sensitivities to typicality
measured using different quantities (response times and raw
typicality ratings), but make none or only a small subset of
results available. Therefore, we use the Rosch (1975) ratings

1https://dumps.wikimedia.org/enwiki/20201220/

Table 1: Number of items (N) per category (Rosch, 1975).

Category N Category N
furniture 60 vegetable 56

tool 60 clothing 55
toy 60 bird 54

weapon 60 fruit 51
sport 59 vehicle 50

as the common “ground-truth” typicality ratings for our ex-
periments.

Stimuli Setup Because the models we investigate are sen-
tence processors, and because all of our tests involve propo-
sitions about items and categories expressed as sentences, we
rely on using sentence stimuli in our experiments. Every
stimulus consists of two components: (1) condition, which is
a noun phrase/sentence consisting of the item (robins, spar-
rows, eagles, etc.); and (2) predicted material, which consists
of the super-ordinate category (bird). The exact linguistic for-
mat in which it appears depends on the experiments — we use
single words as the predicted material in our Taxonomic Sen-
tence Verification experiment while for our Category-based
induction experiment we use a full sentence as our predicted
material. In evaluating typicality measurements of various
items for a given category, the predicted material remains
constant, while the condition changes depending on the item.
Table 2 shows examples of stimuli we use in each of our ex-
periments.

Measures
Following precedent set by previous work evaluating con-
ceptual knowledge in pre-trained LMs, we use the models’
probability estimates as our main variable of interest. Specif-
ically, we focus on the log-probability of the word or state-
ment represented in the predicted material, given the con-
dition, logpLM(predicted | condition), i.e., we are measuring
the effect on the probability of the predicted part (held con-
stant for a given category) due to the item mentioned in the
condition. Our reason for separating the item from the pre-
dicted material is two-fold: (1) it avoids skewed measure-
ments due to the choice of determiner (a vs an) that precedes
the item in the condition (a model might assign higher value
to p(ostrich | an) simply due to a component that is sensitive
to determiner prefixes), or when the model does not include
the item word in its vocabulary,2 and (2) it aids in factoring
out the role played by the frequency of the item in the condi-
tion – the model can prefer an item over the other simply due
to its frequency in the training corpus. While it is straight-
forward to compute our conditional probability measure for
incremental LMs by using the chain-rule, we rely on recent
work by Wang and Cho (2019) to approximate sequence log-
probabilities in Masked LMs by summing the conditional

2E.g., RoBERTa segments the word ostrich into ostr and ich, and
during estimation, the probability of ich given that it is preceded by
ostr is anomalously high, skewing the overall sequence probability.
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Table 2: Examples of stimuli used in our experiments. Our
measures take the form: logp(predicted | condition)

Experiment Stimulus

Taxonomic Sentence
Verification

A robin is a︸ ︷︷ ︸
condition

bird︸︷︷︸
predicted

.

Category-based
Induction

Saws can dax.︸ ︷︷ ︸
condition

All tools can dax.︸ ︷︷ ︸
predicted

log-probabilities of all words in the stimuli.

Experiments
1. Taxonomic Sentence Verification
Phenomenon Typicality effects in the sentence verification
paradigm were introduced by Rips et al. (1973) and Rosch
(1973). Subjects were tasked with verifying the truth of sen-
tences expressing taxonomic propositions, such as “An X is
a Y ”—where X and Y are the item and category, respec-
tively. The subjects consistently responded faster to verifying
the truth of propositions where X was a typical member of Y
than when it was an atypical one.

Linking Phenomenon to LMs We draw on the aforemen-
tioned findings and investigate whether typicality is able to
account for difference in the word probabilities to complete
taxonomic sentences by our tested LMs. Linking our hypoth-
esis to the original experiment requires a simplifying assump-
tion that an LM’s sequence log-probability is proportional to
its plausibility for a sequence. That is, we assume and ex-
pect a semantically sound LM to show overall high proba-
bility scores for semantically plausible propositions, which
in this case, are simple taxonomic propositions3. Therefore,
LMs that are more sensitive to typicality effects should show
greater magnitudes for the measure logpLM(Y | An X is a)
when X is a more typical member of Y .

Experiment We follow Rips et al. (1973) and Rosch (1973)
and construct sentences expressing taxonomic propositions
using items from the Rosch (1975) data, i.e., “An X is a Y ,”
amounting to 565 unique propositions. We test for typical-
ity effects by measuring the Spearman correlation (ρ) of the
sequence log-probability logpLM(Y | An X is a) with the hu-
man typicality ratings for items, as collected by Rosch (1975).
This correlation measure reflects the extent to which the pre-
dictive estimates of an LM reflect typicality information—or
information that underlies it—to assess taxonomic verifica-
tion in sentences. Additionally, we perform a median split on
the Rosch (1975) ratings by the items’ typicality ratings, per
category, leaving us with two sets of typical and atypical rat-
ings. We then compute the average log-probabilities assigned
to items in each set and compare them to the average ratings

3However, we acknowledge that this might not always be the
case. For instance, LMs are largely insensitive to negation and se-
mantic role-reversal (Ettinger, 2020).

elicited by humans. All scores in this analysis are re-scaled
to be between 0 and 1.

Results Figures 1A and 1B show results from our corre-
lation and typicality-effect comparisons. Non-trivially pos-
itive but modest correlations between LM log-probabilities
and human typicality ratings (ρ ∈ [0.24, 0.41], p < .001)
suggest that LMs’ judgments of taxonomic propositions
are moderately reflective of typicality effects. Though all
LMs assign greater probability scores to category items
with high—as compared to low—typicality (see Figure 1B),
they are consistently less extreme as compared to humans
(p < .001 across all models). Correlation of 5-gram LM
log-probabilities, though weakest in magnitude, are highly
competitive with certain smaller yet highly expressive LMs
(ALBERT-b, ALBERT-xl, distilGPT2, and distilRoBERTa).
This suggests that a substantial portion of the observed corre-
spondence between model and human typicality judgments
can be attributed to fairly simpler sequential statistical ef-
fects in word prediction (e.g. memorizing n-grams). In-
terestingly, with the exception of the ALBERT family of
Masked LMs, models with greater number of parameters tend
to show greater correspondence with humans on taxonomic
judgments (ρ = 0.82,p < .001), suggesting that the informa-
tion needed to distinguish typical vs. atypical category mem-
bers during taxonomic attribution requires greater model ex-
pressivity.

2. Category-based Induction
Phenomenon Typicality of items plays a salient role in
making inductive inferences about categories (Rips, 1975),
i.e., when informed about a memberm of a category c having
a novel property γ, people are more likely to extend the pres-
ence of γ to all members of c when m is typical or central
to c. This was more robustly illustrated by Osherson et al.
(1990) in their study exploring the psychological strength of
categorical inductive arguments. An argument is a finite set of
sentences of the form P1,P2, ...,Pn/C, where P1,P2, ...,Pn

are the argument’s premises and C is its conclusion. In cat-
egorical arguments, P and C take the form “All members of
CAT have property γ,” where CAT is a natural category such
as car or sofa, and the property γ remains constant across P
and C. Such arguments can be visualized by separating the
premises and conclusions by a horizontal line, like in (1) and
(2). The psychological strength of inductive arguments, for a
subject S, is the degree to which S’s belief in P strengthens
their belief in C (Osherson et al., 1990).

Robins have property γ.

All birds have property γ.
(1)

Penguins have property γ.

All birds have property γ.
(2)

Unlike deductive arguments, which involve logical reasoning,
inductive arguments such as (1) and (2) involve probabilistic
reasoning, i.e., there is an epistemic uncertainty whether the
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Figure 1: (A) Spearman correlation (ρ) measured between LM log-probabilities assigned to word completion in taxonomic
stimuli (experiment 1) and typicality ratings from Rosch (1975). Models from the same family are arranged in an increasing
order of total number of parameters. (B) Scaled typicality scores from LMs (log-probabilities on taxonomic stimuli) and
Humans (raw ratings) between low and high typicality category members.

conclusions follow from the given premise (for a detailed re-
view, see Feeney & Heit, 2007). A caveat in the Osherson
et al. experiments is that the property space Γ = {γ1, ...,γn}
only includes properties that are unfamiliar to S, such that the
influence of prior knowledge about the properties on the in-
duction process is minimal. Such properties are also known
as blank predicates — for instance, Osherson et al. (1990) use
properties such as love onions, have sesamoid bones, etc.

Typicality effects are one of the 13 phenomena examined
by Osherson et al. (1990). Specifically, for single-premise ar-
guments where the category of the conclusion subsumes that
of the premise, subjects were more likely to believe in the
conclusion when the category of the premise was a more typ-
ical member of the category in the conclusion, i.e., the argu-
ment strength of (1) was found to be greater than that of (2)
since robins are more typical birds as compared to penguins.

Linking Phenomenon to LMs The Osherson et al. (1990)
study explicitly targets the degree to which uncertain state-
ments such as “all birds love onions” are judged in light of
new information about a subordinate category such as robins.
Analogously, we are interested in assessing whether sophis-
ticated LMs show similar behavior in assigning probabili-
ties to conclusions when conditioned on premises whose cat-
egories vary based on their typicality. If LMs show sen-
sitivity to the typicality of items in this setting, i.e., their
log-probability is greater for conclusions with typical ver-
sus atypical premise, then we take this as the extent to which
typicality—or the factors that underlie it—modulates induc-
tive inference in LMs. We formulate an approximation of
inductive argument strength (AS) in an LM as the probabil-
ity it assigns to the conclusion when conditioned on a given
premise. For instance AS(robin,bird) for the property “love
onions” is given by:

logpLM(“All birds love onions.” | “Robins love onions.”)

The premise and conclusion sentences naturally fit within our
stimulus setup discussed earlier — the premise sentence is the
condition, and the conclusion sentence the predicted material.

Experiment For our items and categories we use the same
stimuli from the previous experiment. Since Osherson et al.
do not make all of their blank predicates available, we con-
struct synthetic properties using nonce words such as dax,
wugs, feps, vorpal, etc., such that these words do not occur
in the vocabulary4 of the models, conforming to the blank
predicate condition applied by Rips (1975) and Osherson et
al. (1990). We create between 15 to 30 properties5 for all
items in each category, resulting in a total of 12,180 premise-
conclusion pairs across 10 categories. An example of the
stimuli we use for our category-based induction task is shown
in Table 2. We calculate the AS metric for each premise-
conclusion pair with each of our tested LMs.

Conditioning our LMs as we do here has two potential
confounds: (1) Premise Order Sensitivity (POS): A model
might estimate high probabilities for words in the conclusion
simply because it is relying on lexical cues in its premise
(Misra, Ettinger, & Rayz, 2020), instead of processing the
premise compositionally and making inferences about items
possessing a property. We account for this confound by also
computing the LMs’ average probability for the conclusion
sentence when prefixed by a shuffled version of the premise
(10 times, with random seeds). (2) Taxonomic Sensitivity
(TS): LMs might tend to repeat the property phrase men-

4Due to their tokenization mechanism, the LMs we study are
always able to encode any text through ‘word pieces’ instead of re-
lying on <unk> tokens.

5The choice of properties depends largely on the class of word
the items belong to, such that syntactic constraints are met. For in-
stance, if dax is a verb, it would be ungrammatical to have “can dax”
as a property of sports, which can be better paired with properties
such as “involve” and “require”. The entire unique set of synthetic
properties and our construction method is made available in our sup-
plementary materials.
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Figure 2: (A) Spearman correlation (ρ) measured between average AS scores and human typicality ratings compiled by Rosch
(1975). Models from the same family are arranged in an increasing order of total number of parameters. (B) Scaled typicality
scores from LMs (AS values) and Humans (raw ratings) between low and high typicality category members.

tioned in the predicted material with high probability when
prefixed by a sentence containing it, i.e., repeating “can
dax” in the conclusion when already conditioned on the same
phrase in the premise, confounding the degree to which the
conclusion is generated using the taxonomic relationship be-
tween the premise and the conclusion categories. To account
for this tendency, we compute the LMs’ probabilities for con-
clusions consisting of a different category with the exact same
property as the original (for instance, “All fruits are slithy”
given “Sofas are slithy”).

We find that a substantial amount of variance in our orig-
inal AS scores is in fact captured by both these confounds
(overall r2 = 0.43, βTS = 0.68,βPOS = −0.04,p < .0001 in
both cases). We regress these relationships out from our AS
scores by first fitting a multiple regression model to predict
AS using our confounds, and then subtracting the relation-
ship with TS and POS as follows:

AS = β0 +β1TS+β2POS+ ε

AS′ =AS−β1TS−β2POS
= β0 + ε (Adjusted AS)

Using the adjusted AS scores in each LM, we compute the
score of generating the conclusion (scaled between 0 and 1)
for each category, item, and synthetic property, and average
them to get the model’s overall score for extending new in-
formation about an item to its category. As was the case in
our taxonomic verification judgement, we compute the cor-
relation between our normalized adjusted AS scores and the
human typicality ratings from Rosch (1975), and compare av-
erage AS scores (across all blank properties that we used in
this experiment) and human typicality ratings assigned to low
and high-typicality items. Note that since the 5-gram LM pre-
dicts word probabilities by conditioning only up to four pre-
ceding tokens, which is far fewer than the number of tokens in
our stimuli, it shows constant AS values in this experiment.

Results Figure 2 summarizes results from our induction ex-
periments. When LMs extend information about an item to
its category, they are moderately but positively influenced by
its typicality (ρ ∈ [0.27, 0.45], p < .001). This influence is
above and beyond their usual predilection towards repeat-
ing sequences and being lexically sensitive to items present
in the premise (Misra et al., 2020). Deviating from results
in the previous experiment, we observe Incremental LMs to
show stronger correspondence with human ratings as com-
pared to Masked LMs of comparable size, suggesting that
they are slightly more sensitive to the typicality of the premise
item in generating the conclusion. Unlike the previous ex-
periment, we notice almost no effect of model size (in terms
of parameters) on the results, suggesting that while making
typicality-sensitive attribution of items to their super-ordinate
categories is generally improved by scaling up the overall ex-
pressiveness of the model, the factors that underlie typicality
effects in category-based induction are likely independent of
the number of parameters of an LM.

General Discussion and Conclusion

Extensive research in the field of cognitive science has high-
lighted the prevalent role played by typicality in studies of
categories—that certain items (chair) are considered to be
better representatives of a category (furniture) than others
(vase). Motivated by recent evidence showing pre-trained
LMs to capture patterns exhibiting conceptual and categor-
ical knowledge, we presented two experiments targeting sen-
sitivities to typicality in LMs. The first experiment targets
typicality directly, in its role played in associating items to
their taxonomic categories (“football is a sport”). Our sec-
ond experiment complements this by instead assessing the
extent to which the “knowledge” of category typicality is
used to extend information about items (“football involves
blicking”) to their respective categories (“all sports involve
blicking”). We investigate typicality effects in LMs by eval-
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uating their log-probabilities in response to stimuli as mea-
sures of (1) taxonomic verification and (2) inductive argu-
ment strength (when conditioned on a premise). For each
test, we made the simplifying assumption that the likelihood
assigned by the LM to the sentence stimuli corresponds to
the variables of interest—strength of category membership
in the first experiment, and argument strength in the second.
Overall, the pre-trained LMs showed positive but modest cor-
relations with human typicality ratings in both experiments,
and were, on average, far less extreme in distinguishing be-
tween typical and atypical items than humans. We also ob-
served that a considerable amount of sensitivity to typicality
effects can be attributed to the mechanisms available to sim-
pler LMs (5-gram), relative to the sophisticated pre-trained
LMs that we studied here, suggesting that the representational
mechanisms in most models that are optimized to reflect the
statistics in training corpora only account for a minimal gain
over correspondence that is afforded by simpler sequential
statistics. Results on pre-trained LMs suggests that the sta-
tistical associations that inform their word probabilities are
modestly sensitive to human-elicited typicality ratings in (1)
attributing items to their category members, as well as (2)
making complex inductive inferences about categories when
conditioned on new information about the items. While our
taxonomic sentence verification experiments showed typical-
ity correspondence to increase with model size, this was not
the case in our induction experiments, suggesting that extend-
ing new information about items to their categories in a man-
ner that is positively modulated by typicality effects does not
scale with an increase in parameters. We leave fine-grained
exploration of specific language modelling factors affecting
typicality correspondence for future work.

LMs are trained by exclusively relying on distributional
evidence to inform their word predictions. In our experi-
ments, we find that while the aforementioned word predic-
tion capacities show qualitatively similar patterns of associ-
ating concepts with human-produced property norms (Weir
et al., 2020), they show weak agreement with the typicality
effects that are robustly elicited in humans (Murphy, 2002,
and references therein). This suggests that solely relying on
text is insufficient for exhibiting quantitatively similar cate-
gorical knowledge to that in humans, and highlights the limi-
tations of using word-prediction capacities from state-of-the-
art pre-trained LMs as mechanisms to model semantic cog-
nition. This is in line with work in knowledge acquisition
through text, which suggests large textual corpora to lack real
world grounding, in that these corpora represent language
use but distort general knowledge about the world (Gordon
& Van Durme, 2013). Even though text data contain ency-
clopedic knowledge, they miss out on the more perceptual
or semi-perceptual features that can be learned through vi-
sual input, and that have been found to better align with hu-
man ratings of typicality, albeit on non-taxonomic categories
(Lake, Zaremba, Fergus, & Gureckis, 2015). Another line of
work supporting the lack of typicality signal in textual cor-

pora is that of Bergey, Morris, and Yurovsky (2020). These
authors analyze parent-child interactions using models that
are similar to—but less-sophisticated than—pre-trained LMs,
and find them to negatively align with typicality ratings on
adjective-noun compounds. The authors conclude from their
findings that much of what children hear (corresponding to
language use by the parent) is atypical, as opposed to typical
information about noun concepts (specifically with respect
to the adjectives that modify them). While our results also
shed light on the difficulty of acquiring knowledge about typ-
ical members of categories, they do suggest the presence of
some typicality effects, by contrast to the findings of Bergey
et al. (2020)—raising the possibility that associations in text
that impact typicality of adjective-noun compounds could be
independent of, or even run in opposition to, those that im-
pact taxonomic categories. At the same time, considering
that we do see non-zero correspondence with human typical-
ity ratings, our results also suggest that textual corpora are
not fully devoid of associations that may align with empiri-
cal phenomena underlying typicality effects. Taking this as
inspiration, future work on modeling of typicality through
text will likely require models to correct for the distorted fre-
quency of atypical items mentioned in text, and potentially
also include features informed from a more grounded source
of knowledge. One promising way of doing so could be to let
LMs and their representations adapt to texts represented as
more explicit sources of concept and categorical knowledge
(Bhatia & Richie, 2020) — potentially in the form of state-
ments such as a robin has wings. Explicitly encoding features
into LMs could possibly make them compliant with feature-
based hypotheses of typicality (Rosch et al., 1976) and induc-
tive reasoning (Sloman, 1993), and better facilitate research
into other key facets of semantic cognition (Rogers & Mc-
Clelland, 2004) in models that learn through text.
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