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Effective action for gauge theories and quark confinement*

Myron Bander and Paul Thomas
Department of Physics, University of California, Irvine, Irvine, California 92664
(Received 7 April 1975)

The effective action for spinor fields coupled to Abelian or non-Abelian gauge bosons is examined as a
function of a composite or elementary field. Various authors have proposed a classical Lagrangian that may
lead to quark confinement, and the question is asked whether such a Lagrangian could be an effective one
generated by quantum correction to a more conventional one. It is shown that such a mechanism will not be
operative for Abelian theories and speculations are made for non-Abelian ones.

1. INTRODUCTION

One of the dilemmas of the quark model of had-
rons based on fractionally charged quarks is the
absence of these quarks as real physical states.
This has lead to various schemes for confining
quarks, either permanently or up to a very high
energy threshold. Some of these rely on the
“color” version of this model, in which in addition
to the usual SU(N) symmetry there is an SU(3)
symmetry of color,! and the confinement is ac-
complished if one can ensure that only color sing-
lets exist as physical objects.

It has been made plausible that such a confine-
ment can be achieved in a strong-coupling limit?
of a theory of a gauge field, most probably non-
Abelian, coupled to quarks. A particular version
of this idea, put forward by Kogut and Susskind?
and by ’t Hooft,* is based on a particular Lagran-
gian that appears ad Zoc and is not renormalizable.
The above authors note these facts and suggest
that the Lagrangian is only an effective one. In
this article we shall investigate whether quantum
corrections to a more prosaic renormalizable
theory could generate the modifications necessary
for permanent quark binding.

At this stage it will be useful to review the ideas
of Refs. 3 and 4. In addition to an Abelian or non-
Abelian vector field A,(x) we postulate a neutral
scalar field ¢(x) and a Lagrangian

L==3Z(@)F,F*" +38,08" ¢ - V() —j, A",
(1

with j, (x) the color current of the particles to be
confined. We have not written explicitly the kinetic
Lagrangian of the quarks. Z,(¢) is some function
of the field ¢ chosen to vanish at the minimum of
the potential V(¢). Z,(¢) may be viewed as a field-
dependent dielectric constant.® In the static limit
the Hamiltonian becomes

D?

H=32.%)

+ 5V + Vi), (2)

where D, =Z,(¢)F,; with V-D=j,. In the presence
of charges the value of D is constrained by Gauss’s
theorem, and V may not attain its minimum as that
would make the first term of H infinite. It is the
competition between this term and V(¢) that leads
to confinement. In Ref. 4 it is shown that in the
case Zy(¢)~ [V(¢) = V(i) | with a >3, the
favored solution forces the displacement field D
into a tube between sources of opposite charge,
leading to a potential that increases as the sources
separate. In the non-Abelian case the confinement
is plausible if the color charges of the vector fields
are integral while those of the quarks are fraction-
al.

As mentioned earlier the above Lagrangian does
not look very natural and is not renormalizable.
We shall study the effective action generated by
loop corrections® to a renormalizable quark-vec-
tor-boson Lagrangian to see when a form similar
to Eq. (1) can arise. Within the above class we
study both the Abelian and non-Abelian versions.
As has been suspected, quark binding will prob-
ably be due to singular infrared behavior. We are
able to show that the Abelian version does not lead,
at least for small coupling constants, to binding
of the form discussed above. For non-Abelian
theories nothing rigorous can be said but we shall
make some speculations indicating that such a
mechanism may arise.

One other attractive feature of non-Abelian theo-
ries is asymptotic freedom.® Scalar mesons with
their inherent four-meson couplings are often
contrary to this freedom. Thus instead of intro-
ducing an elementary scalar field we shall consider
a composite field, Z(x) =¥ (x)¥ (x), and obtain an
effective action involving it. With minor modifica-
tions we may discuss all our results in terms of
an elementary scalar field. Whatever these scalar
fields are, we do not want to induce any mechanism
where a mass is imparted to the vector bosons, as
this would destroy the long-range nature of the
forces necessary to bind the quarks.

In Sec. II we set up the effective action formalism
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and discuss the technical points involved in the in-
troduction of a composite field.

In Sec. IIl we explicitly obtain this action in a
one- and two-loop approximation, while in Sec. IV
these approximations are improved through the ap-
plication of the renormalization group. In Sec. V
the results and speculations are summarized.

In the Appendix we develop the technique for
calculating the effective action beyond just the ef-
fective potential.

II. EFFECTIVE ACTION AND COMPOSITE FIELDS

The renormalizable Lagrangians of the theories
we shall consider will be of the form

The generating functional for the Green’s functions is

L==4F,, F*" +J(d - eA)y +§}£— (8, AR . (3)

¥ is a multicomponent spinor field, A, is a matrix
representing the vector bosons, A, =A‘;ta and

F,, in the gauge-invariant field strength matrix,
F,, =F},Ty; T is the adjoint representation of the
color group under consideration, while ¢, is the
representation for the quarks. Except for dis-
cussions involving the renormalization group we
do not consider vector-boson loops; thus at this
stage we do not differentiate Abelian and non-
Abelian theories. Similarly we do not have to con-
sider Faddeev-Popov ghosts. The (1/£)(8 - A)? in
Eq. (3) is a gauge-fixing term. We shall perform
all our computations in the Lorentz gauge.’

Z[n,0,d,,K]= f[dwl[dzﬂ[dAuJexp {%fd“x[L(w, J,A) +ny +Pn+J, A +K$ac‘/alf‘ . (4)

The integrations are functional®'*® and in additionto
the usual sources for the fields under considera-
tion we introduce a source, K(x), for the composite
field ¥ ,(x)¢(x),. The generator of the connected
Green’s functions is

Wln, 7, K= Inzln, 7,0, K, 5)
while that for the one-particle-irreducible Green’s
functions is obtained via a Legendre transform?®

5w 5 _ oW

ﬁ:iﬂ, Wﬁ:% gJ—“: " K

(6a)
and

L, 3,A,Z|=W-np-Tn-J,A" ~K(Z +39) .

(6b)

Equations (6a) are used to express 7, 7, J, and
K in terms of ¢, §, A, and £. T is the effective
action we wish to discuss. I is a functional of
the classical fields, and following Coleman and
Weinberg® we will expand I in powers of momen-
tum:

00,4, 51 [ d]-v(E)+ 768 - ed)yz,(2)

—AF, P Zy(E) e |
)

V, Z,, and Z, are functions, not functionals of
their arguments. As we do not wish to break

Lorentz invariance we do not expect the Fermi
fields to develop nonzero vacuum expectation val-
ues, and thus we consider the above functions
evaluated at ¢y =0. Gauge invariance prevents any
explicit dependence of V and Z;’s on A,.

V(Z) is the energy of the lowest state in which
the expectation value of ¥(x)y(x), appropriately re-
normalized, equals ¥. In the true vacuum ¥ attains
the value given by minimizing V. If Z,(Z) vanishes
at that point, a confining mechanism as discussed
in the introduction will be present.

Technically, inverting Eq. (6a) for K is fairly
complicated, especially because of renormaliza-
tion. Cornwall, Jackiw, and Tomboulis® have
given an elegant and thorough discussion of the
situation where the composite operator is nonlocal,
e.g., P(x)¢(y). One can extend their results to the
local case; however, we shall develop a scheme
for analyzing Eq. (4) directly.

We introduce two auxiliary fields o(x) and ¢(x)
and introduce the following generating functional:

(a) (b) (c)

FIG. 1. Diagrams contributing to the potential V(¢).
The solid lines denote the propagator (ig —¢) -1 and the
wavy line denotes the propagator g“,,/ 8. (c) indicates
the one-loop renormalization due to divergences in the
diagrams of Fig. 3.
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2l0,7,9,K, 11 [ )b lan, ldo laglexpf [ avelL +Tp+Tn+d,40 +Ko+ 9lo T 16| ®

Clearly, for I=0 the above generating functional
reduces to that of Eq. (4),

Z[n”;.’)J1K)O]=Z[n’ﬁ)J)K|' (9)
Following the standard procedure we introduce

P . s =

W[n: W;J,K,I]=?lnz[7l, nyJ;KyI} (10)
and the effective action by
oW b o W, oW o o OW
5;]__w, Won =9, OJu_ ’ R—E'*'wd" 5_1—_¢’

(11a)

T-W-fy-In-J-A-KE+W)-1¢. (11b)

The effective action of Eq. (6) may be obtained
from (11) by first solving

or

7y =0
for ¢, obtaining ¢ = ¢ [¢,7, A, Z], and then sub-
stituting it into I':

Ty, A,2) =TT, 4,2, 9,) . (13)
In the above £ and Z will coincide at the critical
value of ¢ as I=0. Likewise one may note that

W =W - IK, from which it may be inferred that T
has the separation

(12)

f[w,i,A,i,¢J=fi¢dx+r"[¢,w,A, ol (19
and Eq. (12) yields

- oI
Z+=— =0. (15)
00 | 4= o,
The potential will likewise have the form
V(E)=-9Z-U(9). (16)

Applying Eq. (15) we find that the minimum of V
occurs at T corresponding to ¢=0. Similarly Z,
will be a function of ¢ only and we shall look for
situations where

Zy(¢=0)=0. (17)

In passing we should mention an alternate scheme

FIG. 2. Contribution to Z;(¢). Propagators are as in
Fig. 1.

-
for introducing a composite local field due to Gross
and Neveu!! and to Coleman, Jackiw, and Polit-
zer.? In place of Eq. (8) the term —3(0 - P9 — K)?
is added to the Lagrangian and the functional in-
tegration over o is performed. We note that the
Ky term is canceled and a source for the o field
is introduced in its place. We found the previous
scheme more direct as it did not introduce an ad-
ditional (J3)? coupling and ¢ propagation.

III. LOOP EXPANSION

The approximate method we shall use for evalu-
ating the effective action is the WKB or loop ex-
pansion. The details of the method for obtaining
the potential were developed by Jackiw'® and by
Iliopoulos, Itzykson, and Martin.'* A technique
for evaluating the coefficients of higher-order de-
rivatives was presented in Ref. 14; however, it
does not appear generalizable to Lagrangians of
more than one field. A more general method was
alluded to in Ref. 13. As a functional evaluation
of these terms has not been previously presented,
we shall discuss its details in the Appendix.

Since the one-loop contribution to Z,(¢) is of
order ¢, we shall evaluate the potential U(¢) up
to two loops.'® As mentioned in the Introduction,
we do not expect ¢ to acquire a nonvanishing vacu-
um expectation value, and thus we set y=0. Like-
wise, gauge invariance requires 4, =0. The dia-
grams contributing to U(¢) are shown in Fig. 1.
The one for Z,(¢) is in Fig. 2. Figure 1(c) rep-
resents the inclusion of wave-function and P
vertex renormalizations indicated in Fig. 3. Be-
fore presenting the results we will discuss the re-
normalization of the effective action. The coef-
ficients of ¢? and ¢* in U(¢) are infinite. As we
do not wish to ¢ field to propagate, we set

%V
— =0. 18)
00" | 420 (

(Had we evaluated the coefficient of 8,¢ 3" ¢ in the

(a) (b)

FIG. 3. Diagrams contributing to the wave-function and
vertex corrections in the on¢-lcop approximation. Prop-
agators are the usual ones, namely (i #)~ and g, /0%,
The cross denotes the insert: f a @y vertex.
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effective action, it too would have been set equal
to zero at some renormalization point ¢ =M.) The
coefficient of ¢* is determined by requiring

2V (19)
0" | o=y

X is at the moment an arbitrary parameter. The
only other infinity that occurs in evaluating I' is in
the term Z,(¢)Py; setting 8Z,/8¢| 4- =1 removes
this infinity.

J

257 6¢°NT(R)o* 51n2<¢2>
6 | (16m) M

U(o) 215—62;; I:ln(%;> -
and

Z,(9) = 1—T(R)W1n<¢ ) 21)

In the above S is the dimension of the spinor rep-
resentation, N is the dimension of the adjoint rep-
resentation, and Tr(t%%)=6%T(R).

IV. APPLICATION OF THE RENORMALIZATION GROUP

The approximate forms for U(¢) of Eq. (20) or
alternately V(Z) of Eq. (16) and of Z,(¢) of Eq.
(21) may be improved through the use of the re-
normalization group. The potential V(Z) satisfies

[Ma—aﬁ +B(e)3—ae— +8(e, )\)% -yy(e)Z :—Z} V(Z)=0

(22)

when B(e) is the usual coefficient governing the de-
pendence of the coupling constant on the renormali-
zation point. B(e, A) serves the same function for
A. B(e) has been evaluated previouslya:

e 11

62 3 O+

Ble)=- T(R) (23)

16 23
C,(G) is the Casimir operator of the non-Abelian
group in question; in the Abelian case C,(G)=

y s(e) is the anomalous dimension of the composite
field and it may be evaluated directly from the di-
vergent piece of Fig. 3(b):

yale) == %(}G-}e— . (24)

Equivalently one may show that U(¢) satisfies a
similar equation:

[MaiM’rB(e)éa—e*B(e’h); -val@)d5 }U(qﬂ 0.

(25)

Had we been dealing with an elementary field ¢,
the above renormalization conditions would have
had a conventional interpretation in terms of wave-
function and coupling-constant renormalizations.
For composite fields the intepretation is different.
The coefficient of ¢y determines the magnitude
of the J content of £, while Eq. (19) sets the over-
all magnitude . The other conditions indicate
that we are dealing with a composite field.

To the order indicated above we find [compare
Eq. (16)]

$or[u(3) -]}

r

Applying this e~ation tc “*U/8 ¢* and setting ¢ =M
(see Ref. 5) we obtain

_ 3 2y L 2\é°
B(e’)‘)__r(l e)+ 1'_

(26)

With the exception of the result for y 4(e), the above
are presented for completeness and unlike the
equation for Z,(¢) will not be used subsequently.

M 2B 1 - 21,(0) =y ()0 15 | Z3(0) =0
2

where y,(e) is the anomalous dimension of the vec-
tor field and has likewise been presented pre-
viously,®

& 13 &
7€) = ~Te 5 C:6) ez 5 ¢ rw). (28)

Equation (27) may be solved readily; let ¢t =ln¢/M,
and remembering Z,(t=0)=1 we obtain

Z3(¢)=exp[—2 fotdt';ve'(t'))dt'} , (29)

where

= n__yle)
wle) =175 +‘;¢(e D (30)

and e’(t) is obtained from the solution of

EE: =Ble’) = gle")

—W, e’(0)=0. (31)

These results are applied to the confinement prob-
lem in the next section.

V. CONFINEMENT?

We recall that the minimum of V(Z) occurs at
Z corresponding to ¢ =0 or to = .
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A. Abelian theory

As Abelian field theories are infrared-stable,
we expect the loop expansion to yield reliable re-
sult for {—= —o, We find

[e' ()P~ e*/(1 - 2ae?t),

(32)
Yyle) ~ bez,
with a and b positive. The above yield
Z4(p)~ (1 - 2ae®t)/ . (33)

Z,(¢) does not approach zero as ¢ approaches
zero. This dielectric mechanism is not present
in Abelian theories for coupling constants in the
region of attraction of the origin.

B. Non-Abelian theories

Three possibilities occur. The first is that B(e)
has an infrared-stable zero at some finite value.
It is unlikely that confinement would occur in this
case. In the case where B(e) has no further zeros
e’(t) could have a singularity at a finite value of ¢,
in which case the points ¢ =0 and ¢ =M are not
simply related to each other and this argument
sheds no light on the confinement problem.

The third and perhaps most attractive possibility
is that e’(¢) grows indefinitely as t- —«, and that
¥y(e’) approaches a negative constant as e - «,

7l ~-d. (34)

In this situation

q) 2d
ZS((p)-constx(M) (35)
and the sought-for confinement will occur for suf-
ficiently large d. [This restriction would come
from studying the solutions of Eq. (2).] Taking

—

seriously the results we have obtained for B(e) and
?v(e) (not for B8 and y alone) leads to this third
possibility.
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APPENDIX: HIGHER-ORDER DERIVATIVES IN THE
EFFECTIVE ACTION

We shall present the technical details for the
functional evaluation of the coefficients of terms
involving derivatives of fields in the expansion of
the effective action. An elegant method was pre-
sented in Ref. 14; unfortunately it appears useful
only for a one-component theory. A more general
technique was suggested in Ref. 13; however, the
details were not presented. The results are simple
and could have been guessed. In order to avoid
notational difficulties we shall treat Bose fields
exclusively. The result will be given in detail for
a one-loop calculation; the extension is obvious.

We consider a theory with a bare Lagrangian

L=30,0"0a-V(¢o), (A1)

where ¢, is a multicomponent field. Following the
standard procedure for performing the functional
integrations by a steepest-descent method'®: '* we
obtain up to the one-loop level

Io]=Tol¢l+I[e], (A2)
with
Tlol= [ alia,eoro-vo (o), (a3a)

rlol=—imn) [ lasadems [ [ atuol=2% s 17 S(@)vs ||

+i1n; f [dwa]exp[i f dAx P (XN~ 3020 o5 — V%(O))%:l % . (A3b)

VO (¢) =82V /80 p,9¢ 5. In the situation where ¢ ,(x) in the above is taken to be a constant, ¢,, the func-
tional integration may be performed explicitly and the resultant I'[¢] yields the one-loop correction to
V().

For nonconstant ¢, we expand the integrands in (A3b) in powers of Fox¢(x), ) = VO%(¢(x)) = V() up
to second order:

ry[¢]=-iln {f[d“a]exp [ifd“x zpa(—%aZéaa—%vae(&))we}

«[1-5 [ atpuF et -4 [ avxay zpa(x)FuBu)wa(x)w,<y>F,6<y)¢a(y)]f. (A4)
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The functional integrations are performed and
r@)=- [ axv,@

—iln {1 +3 fd‘x Tr(a(0, §)F(x))

1803

2
+3 [J.d‘xTr(A(O; $)F(x))jt +5 jd“xd‘y Tr(A(x - y; P)F(x)A(y - x, E)F(y))% (A5)
where
= d*k 2 1 ik
Auﬂ(x;¢’)= IW [éaﬁk aﬂ(¢)] ke . (AG)
Expanding the logarithm, one finds
Nlsl=- [ a%v,@-L [ 120, 5PN - [ d%dy THAG- 3 DFWAG- 5 DFOD. @D
Expanding F(x)F(y) around y=x we get
F(x)F(y) = F(x)F(x) + (y = x)* F(x)8 , F(x) + 3(y = )" (y - x)"8,8,F(x) . (A8)
Combining the above with (A7) and changing variables from y to z =y~ x, we obtain
ry(¢)=- f d*x V,(9) -i f d*x Tr(a(0, ¢)F(x))
- 4—i f d*xd*z Tr[A(z; 9)F(x)A(-z; §)F(x) + 2" A(z; ) F(x)A(-2; ), F(x)
+324 2" A(2; $)8, F(x)A(=2; $)8, F(x)] . (A9)

Comparing this with the momentum expansion of the effective action

rio)=- [atviol-t [ 5,62+ (010, 9 a*

z_fd‘xV[&]—fd’x%@—@—%fd‘x

a8ty
3¢a3¢5

(0= a0 ~Bla -3 | d'x0,62"F)o,6  (A10)

and noting that 8, ¢ is of the order of ¢ — ¢ or of F, we find the result of interest:

'lauq) z" (‘P

q>--fd z2"2" Tr(A(z; ¢)9,V(9)A(-z; $)3, V(). (A11)
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