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Abstract

New Computational Methods for Ligand Design

by Jed W. Pitera

The specific association of two molecules – a ligand and its receptor – is central to many

problems in biochemistry and biology. The affinity of one molecule for another is

specified by their free energy of association. This free energy is the result of competing

contributions from a number of complex entropic and enthalpic effects. A class of

computer calculations -- free energy calculations -- permit the calculation of relative free

energies of association for different molecular species. However, the expense of these

techniques has limited their practical application. This thesis describes the development

and application of a novel free energy method, Chemical Monte Carlo/Molecular

Dynamics (CMC/MD). CMC/MD allows one to compare many species in a single

calculation, permitting the comparison of many ligands binding to a single receptor. We

have applied this technique to compare families of guests binding to an organic host;

families of ligands binding to a protein receptor; and families of amino acid side chains in

the hydrophobic core of an enzyme. In each case, CMC/MD yields free energies in good

agreement with prior results and rapidly ranks the species in question. By expanding free

energy calculations to permit the simultaneous comparison of many species, their role has

shifted from inquiry (“Why is A better than B?”) to optimization (“Which of these A-Z is

best, and why?”).
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Chapter 1: Introduction

My graduate studies began in the fall of 1994, just as chemistry and biology were

beginning to embrace the “combinatorial revolution” – synthesis and screening of many

compounds or proteins at once. For years, biochemists and chemists had concentrated on

the isolation and characterization of well-defined single molecular species. To the

protein biochemist, this corresponded to the purification and characterization of a single

wild-type or mutant protein in order to understand its amino acid sequence, chemical

properties and biological function. For the pharmaceutical or medicinal chemist, the

species of interest was a prospective ligand of defined chemical composition and

stereochemistry, assayed to determine its affinity for a specific receptor. Traditionally,

there was also a significant cost or effort associated with the production of each molecule

of interest.

Both of these approaches are very difficult to apply to chemical optimization

problems, where one wants to discover the best molecule for a given function. For the

aforementioned biochemist, this might correspond to the most active enzyme for a

particular reaction; for the medicinal chemist, it might be the highest-affinity ligand for a

target receptor. Single-molecule approaches are defeated by both of these problems due

to their scale. There are an enormous number of possible protein sequences (there are

20" proteins one hundred amino acids in length). Likewise, there are an uncountably

vast number of pharmaceutical-like organic compounds'. Finding the best sequence or

compound thus requires comparison of an enormous number of molecules.

Combinatorial chemistry and biochemistry techniques allow the facile synthesis and
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screening of thousands of compounds, and were developed in part to solve problems in

chemical optimization – finding ligands for receptors”, optimizing sequences for protein

protein interactions*, or design of ideal catalysts and new materials for industrial

processes”.

The second chapter of this thesis details one of my initial projects in the Kollman

Group. I became interested in the structure of water around solutes, both small organic

molecules and proteins. To determine this structure, I developed tools to collect the

probability distribution of water molecules around a solvent during a molecular dynamics

trajectory. By counting the number of times a water molecule was in a particular

location, one could build a picture of the “hydration shell.” It was Professor Kuntz who

first suggested that one might extract free energies from these probability distributions.

This started me thinking about how to extract free energies from probabilities.

From basic statistical mechanics, the free energy difference between two states A

and B is related to their probabilities P(A) and P(B) by

AG(A->B) = -RT ln[P(A)/P(B)]

So, if one observed a system one million times, and state B occurred once while

state A occurred 999,999 times, A would be more favorable than B by ~13°RT. At

300K, this corresponds to 8.2 kcal/mol.

The application to conformational free energies was obvious – observe many

molecules, count how many are in state A, how many are in state B, and calculate the free



energy difference. By the ergodic hypothesis, one can replace this sampling over many

molecules with a time sampling over one molecule. Specifically,

Lim(N -> co, X(n: n=1 to N) P(A,n,t) = Lim(T -> co, X(t: t-1 to T) P(A,n],t)

Note that this is in the limit that time (t) goes to infinity. In other words, the

single molecule must be observed for a sufficiently long time that the populations of all

states of interest are converged. The long-time simulation of a single molecule or single

system to produce ensemble behavior underlies virtually all molecular simulation –

whether of neat liquids, proteins in solution, or crystalline phases.

Instead of comparing different conformations of the same compound (cis versus

trans butane), a paper by C.H. Bennettó described a way to apply these methods to the

comparison of two different chemical species (methane and ethane). This paper,

suggested by Dr. Randall Radmer, then another student in the Kollman group, provided

the major theoretical underpinning for the body of my thesis. Generalizing its

conclusions, we developed a method called Chemical Monte Carlo/Molecular Dynamics

(CMC/MD) that couples molecular dynamics for conformational sampling with Monte

Carlo steps for “chemical sampling” – sampling between different molecules of interest.

The third chapter of this thesis was originally published in the Journal of the American

Chemical Society and describes the development and application of CMC/MD for

solvation free energies and host-guest chemistry. One particular appeal of the CMC/MD

method shown in this chapter is that it can be used to rapidly sort guests or ligands based



on their binding free energy, quickly identifying the best- and worst-binding compounds.

The formal generalization of Bennett's derivation is also found in this paper.

Due in part to the constraints of journal publication, some of the specific details of the

CMC/MD implementation within the AMBER molecular dynamics package were left out

of the paper that composes Chapter 3. The specific implementation and accompanying

thermodynamic issues are described in more detail in Chapter 4, as well as in Appendices

1 (pseudocode) and 2 (input files and specifications).

While the “tennis ball” host-guest system described in Chapter 3 was a good basic

test for the CMC/MD method, a fruitful collaboration with Mats Eriksson, a postdoctoral

researcher in the Kollman group showed that CMC/MD was a useful tool for the study of

protein:ligand interactions. Chapter 5, which was published in the Journal of Medicinal

Chemistry, describes the application of CMC/MD calculations to compare a number of

related inhibitors of HIV Reverse Transcriptase. It also outlines a general strategy for

computational structure-based lead optimization, and introduces PROFEC, a tool for lead

optimization developed by Dr. Radmer. The particular challenges of the HIV

RT:inhibitor system led to the development of an adaptive form of the CMC/MD method,

introduced in Chapter 5 and described in more detail in Chapter 6.

The HIV-RT project showed how useful CMC/MD could be in studies of

protein:ligand interactions, but the family of ligands that we studied were all highly

related, and only differed by small modifications. In addition, the host:guest chemistry

and protein:ligand interactions studied in Chapters 3 and 5 are dominated by weak non

bonded interactions and solvation contributions. Some of the excitement surrounding the

initial application of free energy calculations to biological molecules was due to the



parallels between the computational conversion of one sidechain to another and the

biochemical technique of site-directed mutagenesis. Similarly, part of the “combinatorial

revolution” mentioned above was the technique of exhaustive mutagenesis. Exhaustive

mutagenesis is a biochemical method that allows the facile creation of all 20 natural

amino acid mutants at a given position on the protein. In contrast to the weak

noncovalent forces that define the interaction between proteins and their ligands, the

differences between protein sidechains are influenced by internal bond, angle, and

dihedral interactions and significant conformational entropy in addition to weak nonpolar

interactions. All of these elements come into play in the solvation of amino acid side

chains. More usefully, they define the contributions of various side chains in protein

stability. Both peptide solvation and protein stability are studied in the calculations

described in Chapter 7, which has also been submitted to the Journal of the American

Chemical Society. The applications described in Chapter 7 also required the extension of

CMC/MD to take advantage of the additional power provided by parallel computers. The

pseudocode for a message passing (MPI) parallel version of CMC/MD is shown in

Appendix 3. This major part of my thesis concludes with a general discussion of

statistical issues associated with CMC/MD and the extraction of free energies from

probabilities, presented as Chapter 8.

My interest in protein-ligand interactions and molecular recognition led to two

other projects during my time at UCSF. Unlike the CMC/MD calculations described

above, which attempted to produce quantitative or emunure free energy

comparisons of several ligands, these projects were directed towards a qualitative

understanding of molecular recognition. In the first project, I studied complexes of the



thyroid hormone receptor ligand binding domain (TR-LBD) protein bound to its native

ligand, thyroid hormone (T3). Using the PROFEC extrapolative free energy software

written by Dr. Radmer (UCSF), I was able to reproduce the known structure-activity

relationships for thyroid hormone analogs using only the structure of the TR-LBD/T3

complex. As part of this study, we also attempted to predict the structure and behavior of

the TR-LBD in the absence of ligand. This work is still underway, and is not included in

this thesis.

The second project, described in Chapter 9, was significantly more successful,

and yielded a very rewarding synergy between theory and experiment. In a collaboration

with Professor C.C. Wang and Dr. Narsimha Munagala, both here at UCSF, we compared

the structure and dynamics of a human enzyme and its parasite analog bound to a number

of different substrates. The enzymes are both phosphoribosyltransferases, and catalyze

the conversion of a nucleobase and alpha-phosphoribosyl phosphate to the corresponding

nucleotide monophosphate. While the human enzyme is relatively selective, accepting

only hypoxanthine and guanine-based substrates, the parasite enzyme has the additional
ability to process xanthine. The active sites of both enzymes are highly similar, so we

attempted to explain the broader specificity of the parasite enzyme. Molecular dynamics

simulations of several enzyme-substrate complexes showed a higher mobility and

plasticity in the active site pocket of the parasite enzyme that contacts the crucial regions

of the substrate. Our dynamics studies also helped to explain the function of several

mutants of the parasite enzyme, and successfully suggested a secondary mutation that

restored activity to a “dead” mutant enzyme. In addition to these calculations, we again



used the PROFEC software to aid in the design of prospective ligands, specifically those

that show enhanced specificity for the parasite enzyme.

The final chapter of this thesis returns to the CMC/MD method and discusses

some future directions and alternative approaches for free energy calculations in general.
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Abstract

How does one characterize water solvating a complex solute? Specific hydration

of proteins and nucleic acids plays a key role in many biological processes. However,

traditional pairwise descriptions of solvent structure (radial distribution functions, etc.)

are incapable of adequately describing the hydration of these complex solutes. We have

developed methods to visualize the average three-dimensional water structure

surrounding a solute, as seen in a molecular dynamics (MD) simulation. Applications to

simple solutes (sodium ion, n-methyl acetamide, 18-crown-6, (hydroxymethyl)phenols)

will be presented, and the extension of the method to larger molecules of biochemical

interest will be discussed.

Keywords

hydration visualization molecular dynamics AMBER MidasPlus

sodium ion n-methyl acetamide crown ether (hydroxymethyl)phenol



Introduction

Water is the solvent for virtually every biological process. Whether inside or

outside a living cell, water surrounds the proteins, nucleic acids, and small molecules

necessary for life. In many cases, water molecules make specific hydrogen bonds and

electrostatic interactions with the surface atoms of these molecules. More generally,

water is responsible for the hydrophobic effect that stabilizes the structure of proteins and

drives many macromolecular interactions. Also, the water surrounding two molecules

must be displaced if those molecules are to interact with one another. For example, both

the enzyme active site and the substrate have to be desolvated before they can interact.

More practically, water molecules must be displaced from a drug binding site on a

protein before an inhibitor can bind. Clearly, it is important to describe and understand

the hydration of biological molecules.

In this paper, we describe the development of some software tools that can be

used in conjunction with molecular dynamics to describe the average structure of water

molecules surrounding a solute. The present study is limited to small molecules, but these

methods have been applied to biomolecular systems, including proteins and nucleic acids.

The data we have collected show the position and orientation of water molecules in the

tightly bound first and second shells of hydration surrounding each molecule. Molecular

dynamics is used as a tool to generate a large number of realistic solvent conformations,

and the average properties of these conformations are extracted and visualized.

Traditionally, water structure has been described by radial distribution functions

(G(r)), which show the probability distribution of distances between an atom of the solute

and a type of solvent atom (methane carbon and water oxygens, for example). For solutes

10



with a large number of atoms, like a typical protein (2000+ atoms), such an atom-based

description is intractable. Instead, a description that is independent of the individual

atoms of the solute is necessary. We have decided to describe the space surrounding the

solute using a fixed Cartesian grid (F(x,y,z)). This permits our data collection and

visualization software to be used on a broad range of systems -- from methane to DNA.

Two main types of data were collected in this study. The first is the Cartesian

analog of the radial distribution function -- G(x,y,z) rather than G(r) -- the "water oxygen

probability density". Properly normalized, this is the probability of finding a water

oxygen in a particular volume of space during the molecular dynamics simulation. When

converged, it gives a clear picture of the most favorable positions for water molecules

near the solute, what is thought of as the "first shell of hydration.". This sort of technique

has previously been applied to simulations of biological molecules by Lounnas, Pettit, et.

al. (11). Beveridge and coworkers (12) have similarly used a superposition of snapshots

along a molecular dynamics trajectory to suggest the hydration structure around nucleic

acids. The superposition approach is hampered, however, by limited sampling: the

twenty or so structures used can only suggest the highest maxima of the water probability

density, and contain very little information about moderate- to low-probability regions.

The continuous data collected in this study have been filtered and displayed based on

simple statistical analysis, providing information about the structure of the water in both

high- (traditional “hydration sites”) and low-probability regions.

While these data are very useful, they do not completely describe the solvent

structure. There is no information about the orientation of the water molecules in the

"probability density." Consequently, we augmented the probability data with the "mean

11



dipolar vector field." This vector field shows the mean orientation of water molecules in a -

particular sector of space, indicating hydrogen bond and electrostatic interactions with the

Solute.

It must also be noted that prior studies of the hydration of both small solutes (13)

and macromolecules (12) have examined the pairwise water-solute interactions in

substantially more detail, including careful calculation of energetics and orientational

parameters. The intent of this work, in contrast, is to describe a simple computational * asº

framework for the qualitative analysis of solvent structure that makes use of readily

available software tools and interactive three-dimensional modeling to provide a vivid

picture of solvation.

Methods

Simulation details

Molecular dynamics simulations were carried out for each solute solvated by a

cube of water molecules. All simulations were run using the SANDER module of

AMBER 4.1 (1) and the Cornell, et. al. force field (2) with RESP charges. The TIP3P

water model was used. This model has been shown to accurately reproduce the free

energies of solvation and hydrogen bond geometries for small solutes when used in

conjunction with electrostatic potential derived charges (3). In addition, the TIP3P model

adequately simulates the microscopic structure and bulk properties of water. Simulations

were run with fully periodic boundary conditions. The sºmewee equilibrated at

constant pressure, but data was collected from simulations at constant volume to facilitate

the use of a fixed grid. Non-bonded interactions were truncated at 8 Angstroms. The

12



solute was held fixed in the center of the periodic box, but the solvent molecules were

free to move and coupled to a temperature bath at 300K.

Data collection

Modifications were made to the SANDER molecular dynamics software to permit

collection of information about the solvent structure on the fly. The simulation box was

divided into cubic bins 0.5 Angstrom on a side. Data were collected every molecular

dynamics timestep (2 femtoseconds), to give good statistics for the observed properties.

For the probability densities, a three-dimensional array of integers is maintained, one per

grid bin. At each timestep, the grid position of every water oxygen is determined. One

"count" is then added to the integer array element at the corresponding grid position. At

the end of the simulation, the array is output in a format suitable for the display software.

The procedure for collecting the mean dipolar vectors is similar. Three variables are

maintained per grid point in addition to the integer array: real accumulators for the x-, y

and z-components of the dipolar vector. At each timestep, the list of water molecules is

again traversed. The position of each water oxygen is determined, and the integer counter

incremented as above. In addition, cartesian components of the dipolar vector (vector

sum of the O->H1 and O->H2 vectors) are calculated and added to the appropriate x-, y

and z- accumulators. When the simulation is complete, the mean x-, y-, and z

components of the dipolar vector are calculated for each grid bin. These are output as a

list of grid coordinates and vector components.

Visualization

*- ***

º -
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The MidasPlus software suite (4) was used to display and manipulate the data in

this study, since it allows for real-time interactive manipulation of three-dimensional

models as stereo images. All the data in this study are resolved in three spatial

dimensions, but all the images included below are 2-D views for ease of viewing. The

probability densities were projected onto a model of the solute using the MidasPlus

program and its Density delegate, a facility for displaying electron densities (or other

scalar fields) atop molecular models. The Density program allows interactive display,

contouring and coloring of scalar fields. For each probability density, the mean density

and standard deviation were calculated. All contouring was done at some number of

standard deviations above the mean density, to differentiate the tightly associated

hydration shell from the bulk solvent. The mean dipolar vectors were similarly displayed

using MidasPlus. The Discern delegate was modified to permit interactive display,

coloring and contouring of vector fields. Contours for the vector images were chosen by

hand to show the significant features of the hydration shell, including hydrogen bond

donors or acceptors, while minimizing clutter. Consequently, the vector images only

show data points for high-probability regions of the solvent shell. The image of water

residencies or lifetimes in the sodium ion hydration shell was also displayed using

Discern. The wireframe images are direct screen captures from MidasPlus using the

snapshot utility. All of the solid rendered images were generated using the MidasPlus

rendering tools Conic (5) and Ribbonjr. All visualization and data display was carried out

on a Silicon Graphics IRIS Indigo2 (150MHz R4400, Elan graphics) running IRIX 5.2.

14



Results

The methods described above were applied to four different solutes: a sodium

ion, N-methyl acetamide, the crown ether 18-crown-6, and various isomers of

(hydroxymethyl)phenols. The results for each system are presented below.

Sodium ion

The hydration of a sodium ion was selected as an initial test case for our methods.

The simple structure of the Na+ hydration shell also permits a gradual introduction to our

various graphical representations of hydration, from probability densities to mean dipolar

vectors and lifetime data. Figure 1 shows these differing views of Na+ hydration. The

first panel is a snapshot from a molecular dynamics trajectory, illustrating the difficulty in

determining the structure of the solvent shell from instantaneous frames of molecular

dynamics (Figure 1a). The second panel, displaying the water oxygen probability density

around the ion from the same simulation, gives a much clearer picture of the first and

second hydration shells (Figure 1b). Figure 1c adds orientational information to this view,

showing the increased directional order of waters in the first hydration shell relative to

the second. Our software also allows collection of dynamic information about the solvent

structure, as seen in the final panel (Figure 1d). Water molecules remain in the first

hydration shell much longer than the second; lifetimes in the second shell are only

slightly longer than those in bulk water, indicating that these second shell waters are

moving and exchanging rapidly with bulk solvent.

N-methyl acetamide (NMA)

* - -sº
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NMA is a good example of a relatively simple molecule that is both a hydrogen

bond donor and acceptor. The mean dipolar vector images in the first two panels of

Figure 2 clearly show the hydrogen bonding patterns associated with both the hydrogen

bond donor (N-H) and acceptor (C=O) groups of NMA (Figure 2a). The geometry of

hydrogen bond donation by the N-H group is, as expected, more restricted than the

geometry of hydrogen bonds accepted by the carbonyl (Figure 2b).

18-crown-6

The crown ether 18-crown-6 is a good example of where simple pairwise

measurements fail to adequately describe hydration. The closely associated waters that

donate hydrogen bonds to ether oxygens on either face of the ring typically interact with

more than one ether group and often interfere or interact with one another, creating a

complex, three-fold symmetric hydration shell. The network of water-solute and water

water hydrogen bonds in this shell was first observed in a Monte Carlo study (6), and our

data replicate their observation of "bridging" water conformations. In these

configurations, one water molecule sits just above the plane of the ring and donates two

hydrogen bonds to ether oxygens. It accepts a hydrogen bond from a higher, "bridging"

water that also hydrogen bonds to the third ether oxygen on the same face of the ring. The

overall solvent structure around 18-crown-6 is shown in Figure 2c, and the high

probability regions, which correspond to waters making at least one hydrogen bond to the

ring oxygens, are shown in more detail in the last panel (Figure 2d).

(Hydroxymethyl)phenols

*-
*** ass
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The free energy of transfer from water to toluene is much more favorable (about 3

kcal/mol) for 1-3 (hydroxymethyl)phenol than either of the 1-2 or 1-4 isomers. Ben-Naim

(7) has attributed this to the presence of a "bridging" water that forms strong hydrogen

bonds to both hydroxyl groups of the 1-3 isomer (Figure 3a). The probability density

from our MD simulations, however, shows no region of significant density that would

correspond to this bridging water for the 1-3 (hydroxymethyl)phenol (Figure 3b, c), even

when compared to the 1-4 isomer (Figure 3d). This confirms the free energy calculations

of Sun, et. al. (8), who established that the free energies of transfer from the gas phase to

water are very similar for all 3 phenols (within 1.0 kcal/mol), discounting any

"anomalous" hydration of the 1–3 form.

* - ºs
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Discussion

Our water probability density data clearly describe the average structure of a

solute's hydration shell. In addition to these data, we have managed to collect information

describing both the average orientation of solvent waters and approximate lifetime

information, yielding a detailed picture of solvent structure and dynamics. The utility of

this picture is shown by its application to a question of physical chemistry -- the

anomalous transfer free energies of (hydroxymethyl)phenols.

These tools for graphical visualization of the mean solvent structure calculated

from molecular dynamics simulation were developed for two reasons. First, it is difficult

to extract information about the structure of the hydration shell from instantaneous

coordinates of a molecular dynamics trajectory (for example, see Figure 1a). In addition,

traditional radial distribution functions are inadequate for describing the hydration of

complex solutes, especially large, moderately polar solutes like proteins and nucleic

acids. Consequently, we have developed grid-based methods that capture the average

structure of the hydration shell but are also extensible to permit study of large,

biomolecular solutes. The on-the-fly software described above, where information is

collected at every MD timestep, is too memory- and compute-intensive to use with large

solutes. In collaboration with Thomas Cheatham, we have developed a post-processing

utility that performs similar analysis and data collection on a previously calculated

molecular dynamics trajectory. Application of these tools and methods to a 1 ns

simulation of a DNA decamer clearly show the minor groove "spine of hydration"

observed in high resolution X-ray crystallographic studies of DNA (9). Similar agreement

-
* -º-
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is seen between molecular dynamics simulations and high-resolution structures of RNA

(10).

The programs developed in this article are available from the authors.
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Figure 1:

A : Snapshot of sodium ion (Na+) in a box of water. Na+ is colored green.

B: Water oxygen probability density around Na+ from 2 nanosecond (ns) MD

simulation. Na+ indicated by the green diamond. The probability density is contoured at

0.2 (white), 1.5 (blue), and 2.0 (navy) standard deviations above the mean density. Note

the presence of both first and second hydration shells.

C : Mean water dipolar vectors from the same simulation. Again, Na+ is green. Vectors

are only drawn for high-probability regions. Blue indicates the positive end of the dipole,

red the negative end, and the body of the dipole is colored according to the probability

density (blue -> red).

D: Water oxygen lifetimes in the Na+ hydration shell. A polygon is drawn at every grid

point of significant density. The size of the polygon corresponds to the probability

density, as seen in b. The polygon is colored to represent the average lifetime of a water

molecule at that grid position, with the longest lifetimes (~0.3 picosec.) in red and the

shortest (~0.05 picosec.) in blue and purple. Note that the longest lifetimes are associated

with water in the first hydration shell. The second hydration shell shows lifetimes that are

very similar to those of the bulk water.
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Figure 2:

A : Mean dipolar vectors around N-methyl acetamide, from 0.6 ns simulation. Vectors

are displayed using the same scheme as figure 1c. Note the vectors corresponding to

hydrogen bond acceptors near the N-H group, and the hydrogen bond donors

surrounding the carbonyl.

B: Side view of the data in Figure 2a. The narrow directionality of the N-H group's

hydrogen bond donation stands in contrast to the broader range of hydrogen bond

orientations accepted by the carbonyl.

C: Water oxygen probability density surrounding 18-crown-6, from 0.24 ns trajectory.

Density is contoured at 2 (yellow), 3 (blue), and 4 (navy) standard deviations above the

mean. The highest probability is centrally located immediately above and below the plane

of the ring, corresponding to a water that acts as hydrogen bond donor for two ether

oxygens. The next highest probability consists of 3 lobes above the ether oxygens that

project on either face of the ring. These are "bridging" waters, forming one hydrogen

bond with an ether oxygen and another with the water immediately above the ring.

D: Water oxygen probability density as in Figure 2c, alternative view. Only the highest

contour is displayed, showing the most preferred positions for water molecules on one

face of the ring. 18-Crown-6 is drawn as a CPK model to make the water positions

clearer.
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Figure 3:

A : Hand-built model of the putative "bridging water" interacting with 1,3-

(hydroxymethyl)phenol. The bridging water oxygen is colored blue for contrast, and

hydrogen bonding interactions shown with yellow dotted lines. Hydrogen bond donor

acceptor distances are reasonable, but we could not find a position for the bridging water

that yielded both acceptable hydrogen bond distances and angles.

B: Water oxygen probability density surrounding 1,3-(hydroxymethyl)phenol. Density

is contoured at 1.5 (blue) and 2.0 (navy) standard deviations above the mean. No peak in

the density is visible between the hydroxymethyl and phenol functionalities, where a

bridging water is proposed.

C: Side view of the data in Figure 3b, emphasizing the absence of a peak in the water

oxygen probability density in the position expected for a bridging water.

D: Water oxygen probability density surrounding 1,4-(hydroxymethyl)phenol. Density

is contoured at 1.5 (blue) and 2.0 (navy) standard deviations above the mean. This shows

the expected hydration of the individual hydroxymethyl and phenol groups, for

comparison with the 1,3 isomer.
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Abstract

We have predicted that difluoromethane (CH,F) will be the highest-affinity guest

for Rebek's "tennis ball" host! using a new approach to multi-molecule free energy

calculations. The method, which we call chemical-Monte Carlo/Molecular Dynamics

(CMC/MD), was first tested by calculating the relative free energies of solvation of a

variety of molecules. Subsequently, we have used it to compare nine possible guests

binding to the “tennis ball” host and predict that CH,F, will bind more tightly to this host

than CH, the strongest binding guest studied to date. This prediction has been supported

by standard thermodynamic integration free energy calculations in which CH, was

mutated into CH.F, both in solution and in the host. Our results show the full power of

such multi-molecule calculations -- namely, that they can be used to rapidly calculate and

rank the relative binding free energies of many molecules from a single simulation,

accelerating the discovery of novel ligands or guests.
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Introduction

Molecular recognition is the selective, strong binding of a guest to a given host

and is an essential element in biological systems, where receptor-ligand or receptor

inhibitor interactions are key to biological function. As a result, a detailed

understanding of the process of molecular recognition and an ability to simulate it

computationally could permit the efficient design of novel, viable drug candidates”.

Thus, there are many computational approaches to ligand (or guest) design when the

structure of the macromolecule (or host) is known. At one extreme of computational

efficiency are approaches like DOCK3, which can search databases of ~100,000 potential

ligands using a very simple approach to "score" compounds and qualitatively suggest

which will bind most tightly to the macromolecule.

At the other extreme are free energy calculation methods such as FEP4 or

thermodynamic integration (TI)”, which have proven their utility in the detailed study of

protein-ligand interactions. These use a thermodynamic cycle6 (Figure 1) to analyze

ligand binding. These methods calculate the relative free energies of the two ligands in

the receptor (AGhost) and in solvent (AGsolv). The difference of these two values

AGhost - AGsolv = AGbind(2) - AGbind(1) = AAGbind (1)

is the relative free energy of association, AAGbind. Because the value of AAGbind

defines which ligand will bind to the receptor, it is crucial data for the design of novel

inhibitors or ligands.
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Free energy simulations have been successfully applied to calculate the relative

binding free energy of protein-ligand complexes. Well known examples include the

binding of trimethoprim and its congeners to dihydrofolate reductase.7, the comparison of

various HIV protease inhibitors, and the relative binding of inhibitors to thermolysin and

carbonic anhydrase 8. However, these are expensive, pairwise comparisons between

ligands. The detailed simulation of the protein-ligand complex required for just one such

calculation currently requires anywhere from days to months of computer time. It is

often cheaper and faster to simply carry out the relevant experiment. This has

substantially limited the use of these methods in drug design or drug development

applications. What, then, is the role of free energy methods in ligand design?

Free energy methods have the advantages of being thermodynamically rigorous

and capable of fine distinctions between ligands (AG & 1 kcal/mol) in favorable cases, so

long as accurate potential functions are used”. However, this accuracy is not without a

price -- these calculations are too slow for discovery of novel ligands. Lead discovery

requires consideration and comparison of tens of thousands of compounds, a

computationally prohibitive task using standard free energy methods.

In our opinion, the most efficient way to proceed in ligand design is to use a

filtering strategy, where one uses rapid methods like DOCK to first suggest 10-100

possible leads from hundred thousand- or million-compound libraries. These compounds

may then be examined by methods intermediate in accuracy and detail before resorting to

traditional free energy calculations. One cannot realistically do full free energy

calculations on many ligands because these methods are particularly inefficient when

evaluating a family of related ligands. This is due to the pairwise comparison intrinsic to
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standard free energy calculations -- to assess the relative free energies of ligands A, B, C,

and D, at least three calculations must be carried out: one to compare A and B, one to

compare B and C, and finally one to compare C and D. Since the lead refinement

process often involves choosing between many possible modifications of a lead

compound (each of which may involve a significant amount of synthetic chemistry),

computational methods are needed that retain as much as possible of the accuracy of free

energy calculations but have the ability to compare many ligands at a time.

Such "multi-molecule" free energy methods are actively being developed by

many groups. Most notably, Kong and Brooks!0 have introduced "A-dynamics": by

expanding the extended Hamiltonian formalism'''2 from one to several lambda

variables, they have calculated relative solvent-state free energies for many species from

a single simulation, and shown how expansion of the lambda-variable space can

accelerate the convergence of traditional pairwise free energy calculations. The use of

biasing potentials to improve the convergence of such simulations is also discussed in a

general way. Other multi-molecule approaches include the calculation of relative free

energies for many compounds by perturbation expansion from a single reference state,

recently explored by Liu, et al. 13 as well as Radmer and Kollman!4.

In this paper we present a new multi-molecule free energy method and apply it to

calculate the relative binding free energies for a series of small molecules binding to a

rigid organic host. Specifically, we explored the binding of methane, ethane, and various

halomethanes to the “tennis ball" dimer described by Branda, et al.] Our chemical

Monte Carlo - Molecular Dynamics method combines molecular dynamics to sample

coordinate space with Metropolis Monte Carlolº to sample among various chemical
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states of the system. The use of Monte Carlo sampling in "chemical space" was

originally suggested by Bennett|6 and first used in a pairwise calculation of ion solvation

by Tidor!7. In the CMC/MD method, the solvation free energy of each ligand can also

be included as a biasing potential in the Monte Carlo step to focus sampling towards the

best binding ligands.

We have chosen the “tennis ball” host-guest system because it is experimentally

well characterized and known to bind a range of ligands with varying affinity. It is also a >
case where theoretical calculations have complemented experiment. Specifically, f º: :

1
- - - - -

*~..
Branda, et al. I were unable to detect the binding of tetrafluoromethane (CF) in their Cº.
initial report. Free energy calculations carried out by Fox, et al. 18 suggested that CF, CC Y

**-

should have an affinity for this host intermediate between CH, and CHCl, the best and

worst known guests. This prediction was subsequently confirmed by experiment. While |
-

6 º - ** -
gºthe “tennis ball” had been shown to bind methane, fluoromethane, ethylene, ■ ºlº
* **

dichloromethane and chloroform, we were interested in testing the entire range of fluoro- *- >

and chloro-substituted methanes binding to this host, an intractable series of calculations

with the methods used previously. In light of the initial synergy between theory and

experiment, we were excited to find our calculation predicts difluoromethane (CH,F) to

be an even better guest than methane.

CMC/MD is faster than the analogous thermodynamic integration calculations

previously carried out by Fox et. al.18, and it converges to the same relative free energies

for each ligand. In addition, our method rapidly orders the ligands according to their

binding free energies, well before the precise free energy values are completely

converged. A similar effect is observed with both lambda-dynamics and Still's recent
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work on enantioselectivity!9. All of the above properties make these multi-molecule

methods ideal for quickly comparing a family of related ligands and assessing their

binding to a particular receptor. As such, we feel this chemical-MC/MD method will be

useful in lead optimization and refinement, especially in comparison to traditional free

energy methods.

Methods

The chemical Monte Carlo method is based on a derivation by Bennettle. This

derivation shows how a Monte Carlo calculation can be used to determine the relative

free energy of two chemical “states” (two solutes, two ligands, etc.) by a combination of

Cartesian and chemical Monte Carlo steps. It is straightforward to generalize this

formalism to the case of multiple chemical “states”. The derivation and generalization

are presented in Appendix I, along with a discussion of the similarities and differences

between CMC/MD and other methods. It should be noted that Kong and Brooks' A

dynamics derivation 10 is sufficiently general that it can also be extended to describe the

CMC/MD approach, though both were developed independently.

Previously, combinations of Monte Carlo and molecular dynamics have primarily

been used to improve the sampling of physical configurations. Notable examples are the

hybrid Monte Carlo technique20 and the MC(JBW)/SD method?!. In the hybrid Monte

Carlo method, molecular dynamics is used to generate “trial move” configurations which

are then evaluated with Metropolis Monte Carlo criteria to generate a thermodynamic

ensemble. The MC(JBW)/SD method uses Monte Carlo steps to “jump” between

conformational minima that are separated by free energy barriers, thus allowing a single
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simulation to explore a much broader set of configurations. These methods differ from

the chemical-MC/MD approach described here in that they use a constant potential

function. In contrast, the chemical-MC/MD method uses Monte Carlo steps to adjust the

potential function, thereby representing the interaction of different ligands with the

receptor. Instead of “jumping” between different Cartesian configurations and

generating a Boltzmann ensemble of these configurations, we are essentially “jumping”

between different ligands and generating a “Boltzmann ensemble” of ligands. In this

respect, it is similar to Tidor!7's approach; however, we have extended this type of

method to multiple, complex ligands in order to make it useful in the context of ligand

design.

The use of Monte Carlo sampling between discrete chemical states allows us to

further increase the utility of the chemical-MC/MD method. Specifically, there are two

properties of interest when comparing ligands -- first, a rank order of the best binders,

and second, the value of AAGbind for each ligand. We want to find an optimal route to

determine the relative free energy of binding, AAGbind, for our ligands of interest.

Binding represents a balance between the free energies of the bound and free

(solvated) states of the ligand. If we want to find the “best binders” our calculation must

take into account the contributions of both these states. Drawing inspiration (and

precedent) from the commonly used Monte Carlo technique of “umbrella sampling”22,

we can directly determine AAGbind from our chemical-MC/MD simulation if we include

the relative solvation free energies (AGsolv) as a “solvation offset” to the energy of each

state. In the A-dynamics derivation of Kong and Brooks!0, provisions are also made for
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the inclusion of a biasing potential associated with each lambda-coordinate, though in the

context of enhancing simulation convergence.

AAGbind = AGhost – AGsolv (7)

AAGbind = -RTIn « e^* > –AGsolv (8)

AAGbind - —RT ln < e-(AEast-AGolor■ > (9)

Equation 9 shows that if we know or can approximate AGsolv, we can include it

as a biasing potential in our chemical-MC/MD simulation of the bound state. By its

nature, the chemical-MC/MD method focuses sampling on the compounds with the most

favorable free energy in a given environment. In solvent, these are the compounds with

the most favorable solvation free energies. In the poem or host, these are the ligands

with the most favorable AGhost. However, the quantity of interest is AAGbind, not

AGsolv or AGhost. Including the corresponding AGhost for each ligand as a biasing

potential in a simulation of the bound state means that the calculated value is AAGbind,

and the simulation spends most of its time sampling the “best binders' rather than the

ligands with the lowest free energy in the bound state (lowest AGhost). The net result is

a rapid rank-order determination of the best binding ligands and a gradually converging

determination of AAGbind. A useful physical analogy suggested by Kong and Brooks 10

is that this process of finding the “best binder” truly corresponds to a competitive binding

experiment in the laboratory, where many ligands present in solution are competing for a

single binding site on a protein or host.
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Computational Details

The chemical-MC/MD algorithm was implemented as part of the AMBER

Software package”. The SANDER molecular dynamics program was modified to carry

out the Metropolis Monte Carlo sampling and collect, record, and report the necessary

data.

During a simulation, all the solutes or ligands of interest are simultaneously

included in the simulated system and their interactions calculated at every time step.

However, the potential energy function is masked to reflect the chemical state of the

system. At every time step, there is a single “real” ligand and the remainder are

“ghosts”. The “real” ligand interacts fully with the surroundings. The ghost ligands'

interactions are calculated and recorded but do not affect the system energy or dynamics.

In particular, the ghost ligands do not exert any forces on the surroundings. Also, no

ligand ever interacts with another ligand. In effect, the “ghost” ligands are decoupled

from the system surroundings. This is analogous to the "dual topology" approach to free

energy calculations24 except that we now have an "n-tuple topology" containing each of

our n chemical species.

In the interests of simplicity and practicality, we have made a few

approximations. First, the abrupt jumps between ligands mean that a newly “real” ligand

does not have velocities appropriate for its surroundings. As a consequence, we

randomly reassign the velocities of every particle in the simulation from a Maxwell

Boltzmann distribution whenever a Monte Carlo move occurs (Anderson temperature

coupling)23. In addition, a single system temperature is calculated that includes the

kinetic energy of every particle in the simulation, including the ghosts. This temperature
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is maintained at 300K using a Berendsen temperature coupling scheme?6. The error due

to these approximations is small (there are 340 ghost particles in our 9-solute, 3377 atom

simulation), and should be expected to cancel when considering the relative free energies

of similar ligands from a single calculation.
-

The system is also maintained at constant pressure by a Berendsen algorithm26.

In contrast to the temperature, the virial (and the pressure) only include interactions with

the “real” ligand and the surroundings. We are presently evaluating alternative

temperature- and pressure-coupling algorithms to improve the rigor of our calculations.

One issue in these calculations is ensuring that the ghosts sample configurations

that are appropriate for the current configuration of the surrounding “context”. If the

ghosts are completely decoupled from the “context”, sampling of ghost configurations is

essentially random. This results in poor acceptance ratios for the Monte Carlo steps,

since random ghost movements often generate unrealistic situations where ghost atoms

overlap atoms of the “context”. We have addressed this problem in two ways. First, all

of the ligands are restrained to one another by harmonic potentials between their centers

of mass. Second, the ghosts are allowed to feel the influence of the “context”, but not

vice versa. These “ghost forces” mean that atoms of the context exert forces on the

ghosts but the ghosts remain invisible to the context. Ideally, we would correct the

observed free energies for these biases, but we assume that they will cancel for

comparisons of similar ligands from a single simulation. The net result of these

approximations is a substantial improvement in the acceptance ratios for Monte Carlo

steps, enhancing the efficiency of the calculation.
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The chemical-MC/MD protocol is as follows. The system (“context” plus “real”

and “ghost” ligands) is simulated for several steps (usually 1 picosecond) of molecular

dynamics. This generates a novel configuration of the context, the real ligand, and the

ghosts. Based on this configuration, the energies of each ligand are evaluated. A ligand

is chosen at random (the “trial move”). The change in energy is evaluated and the trial

move is accepted or rejected based on Metropolis Monte Carlo criterial 5.

AE 3- 0 => P(accept) = 1 (10)

AE > 0 => P(accept) = e” (11)

After the trial move is accepted or rejected, the outcome is recorded and

molecular dynamics resumes, again simulating the interactions of the “context” and the

currently “real” ligand. This cycle of coupled Monte Carlo and molecular dynamics

steps is continued until the probability of observing each ligand converges.

While this approach is sufficient, it discards a great deal of information about

each ligand. Specifically, we record the interaction energies of each ligand before

selecting one for a Monte Carlo trial move. This history provides information about the

“quality” of the Monte Carlo sampling and also allows us to estimate the free energy for

poorly- or under-sampled states.

If an infinite number of Metropolis Monte Carlo steps were carried out on a given

Cartesian configuration of the simulated system, the probabilities of each ligand would

converge to the Boltzmann distribution for that configuration. That is,
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c. *%r
lim P(r, A.) =− (12)
n—Poo -*%r

Since we only carry out one Monte Carlo step for each Cartesian configuration

considered, we record this “Boltzmann” probability data over the course of our

simulation as a check on our Monte Carlo sampling. The Boltzmann-based P(ligand)

values are averaged over every Monte Carlo step to yield an optimum probability

P(ligand) for the simulation. In our converged simulations, these Boltzmann-based

probabilities mirror the observed Monte Carlo history for each state.

Simulation specifics

1. Solvation

Relative free energies of solvation were calculated for solutes within a bath of

TIP3P water molecules27. The parameters for each pair or family of compounds

(including charges and geometries) were taken directly from the literature references to

facilitate comparison between the chemical-MC/MD and FEP or TI calculations.

Specifically the parameters for bromide and chloride were taken from Tidor's previously

mentioned work!7. The anisole and benzene data were from Kuyper, et. al.28, and Sun

and Kollman’s work on hydrophobic solvation provided the parameters for methane,

ethane, and propane29. The charges, nonbonded parameters, and geometries for the

substituted methanes were taken from Carlson, et al.39, supplemented by bond, angle,

and torsional constants from the Cornell, et. al. AMBER force field?]. In each case, the
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simulation system consisted of all of the solutes of interest, plus anywhere from 500 to

800 TIP3P water molecules, simulated in a rectangular periodic box.

A modified version of the SANDER module of AMBER 4.1 was used for the

molecular dynamics calculation 32. A leapfrog integrator was used with a 2 femtosecond

timestep. Metropolis Monte Carlo steps were evaluated every 1 picosecond (500 MD

steps) for most systems. The system temperature was maintained at 300K by the

previously described Andersen/Berendsen temperature coupling. The Andersen
*º->

--~~"
º

*****
->temperature coupling reassigned the velocities of every atom in the system in sync with

the Monte Carlo steps (every 500 steps/ 1 ps). The pressure was kept at 1 atmosphere

with the Berendsen coupling scheme, using the compressibility of bulk water (44.6 x 10"

/bar) and a coupling constant of 0.2 ps'. An 8 Angstrom cutoff was used for the

nonbonded interactions, with updates to the pairlist made every 10 or 20 dynamics steps.
*

All bonds were constrained to their equilibrium lengths using the SHAKE algorithm33.
º

º -

=3Since the ghosts are partially or completely decoupled from the rest of the system,

something is necessary to keep them from drifting out of the vicinity of the binding

cavity. For our initial test calculations, we simply constrained the analogous atoms (the

carbon of methane and one carbon of ethane, or the phenyl rings of anisole and benzene,

for example) of each solute to overlap through a nonphysical “bond” of length 0.0

Angstroms.

Each set of solutes was solvated and then equilibrated at 300K for at least 100 ps

of dynamics during which time no Monte Carlo moves were made. After the

equilibration phase, Monte Carlo steps were initiated and the free energy calculation

begun. Total simulation length for these calculations was anywhere from several
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picoseconds to 2.4 nanoseconds. Standard deviations were calculated for converged

calculations by dividing the statistics from the total simulation into 4 to 8 bins depending

on the simulation length and calculating a mean and standard deviation over all the bins.

2. Binding

For our binding free energy calculations, we studied the “tennis ball” host-guest

system synthesized and characterized by Branda, et. al. !. The host and solvent

parameters were the same as described by Fox, et al 18. This prior calculation also

provided parameters for methane, chloroform, and tetrafluoromethane. Charges and

parameters for fluoromethane were supplied by Reyes}4. The values for chloromethane

and dichloromethane were based on the chloroform parameters and tested as part of a

new AMBER parameterization for organic solvents by Fox35. Ethylene parameters were

developed by using default parameters for sp2 carbon and associated hydrogen from the

Cornell force field. All charges were determined using the RESP procedure to fit

charges to electrostatic potentials from ab initio Hartree-Fock calculations using a 6

31G+ basis seté6.

In this “tennis ball” calculation, the simulation system consisted of 2 host

molecules, 631 rigid chloroform solvent molecules, and either four (methane,

fluoromethane, tetrafluoromethane, chloroform) or nine (methane, ethylene,

fluoromethane, difluoromethane, trifluoromethane, tetrafluoromethane, chloromethane,

dichloromethane, and chloroform) ligands. In contrast to the solvent, all ligands were

treated as having flexible angles and torsions but rigid bonds. The total system size was

either 3356 or 3377 atoms, and was simulated in a rectangular periodic box

***

--~~~
****:se
-->
~
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approximately 46 Angstroms on a side. Figure 5 shows a stereo view of the “tennis ball”

dimer with a representative configuration of difluoromethane in the binding cavity.

Again, the SANDER module of AMBER was used for the molecular dynamics

calculation. A leapfrog integrator was used with a 2 femtosecond timestep. Metropolis

Monte Carlo steps were evaluated every 1 picosecond (500 MD steps) for most systems.

The system temperature was maintained at 300K by the previously described

Andersen/Berendsen temperature coupling. The Andersen temperature coupling

reassigned the velocities of every atom in the system in sync with the Monte Carlo steps

(every 500 steps/ 1 ps). The pressure was kept at 1 atmosphere with the Berendsen

coupling scheme, using the compressibility of bulk chloroform (108.60 x 10"/bar) and a

coupling constant of 0.2 ps'. A 12 Angstrom cutoff was used for the nonbonded

interactions, with the pairlist update every 25 dynamics steps. A correction for the cutoff

was included in the system energy and pressure?7. All bonds were constrained to their

equilibrium lengths using the SHAKE algorithm33. Aside from the chemical Monte

Carlo steps and the Andersen temperature coupling, the dynamics simulation protocol is

identical to that used by Fox, et al. for thermodynamic integration calculations.

Since the ghosts are partially or completely decoupled from the rest of the system,

something is necessary to keep them from drifting out of the vicinity of the binding

cavity. We chose to constrain the center of geometry of each ligand to that of one other

ligand using a flat-well restraint. This restraint was used with a force constant of 500

kcal/mol and distances r1 = 1.0A and r2 = 1.5A. Since the purpose of the restraints was

merely to keep the ligands in the vicinity of the binding cavity, the restraint energy was

not included in the Monte Carlo calculation. Regardless, since this restraint is identical
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for each ligand, its contribution to the relative free energy of any two ligands largely

cancels. The sum of the average restraint energy for the eight ghosts in our 9 guest

simulation was less than 1.0 kcal/mol, and we found that inclusion of the “ghost forces”

substantially reduced the restraint energy while improving the sampling. Thus, it is

highly unlikely that the restraint energy will differentially affect the calculated free

energies for the different guests. This is further supported by the results of our 4 guest

simulations, where the order of free energies is completely consistent with full TI

calculations. In the future, it may be more appropriate to harmonically constrain each

ligand to the center of the binding cavity, an approach that would permit analytic

correction of the restraint contribution to the free energy, as outlined by Wang and

Hermansº, but this idea would also be limited to relatively simple ligands and binding

geometries.

Total simulation length for our binding free energy calculations was either 400 or

800 picoseconds. This should be contrasted with the equivalent TI calculations, which

required 200-800 picoseconds to calculate AGhost for a single pair of ligands!8.

The relative free energies of solvation in chloroform for each of our ligands were

calculated using the GIBBS module of AMBER 4.1 and a simulation protocol similar to

that described by Fox, et. al. We used the same general methodology, but instead of

dividing our thermodynamic integration (TI) calculation into 101 windows of 3 ps each,

we found better results from a simulation protocol of 26 larger windows each 12 ps in

length. Improved convergence of the free energy value calculated for each window was

seen, and the total free energy values were analogous to those determined by Fox and

2.2
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Reyes. Our Solvation free energy data are shown in Table 1 as the average free energy

for forward and reverse calculations plus or minus the hysteresis between the two runs.

Results

1. Solvation

Before applying CMC/MD to a new problem, we first tested it by calculating the

relative free energies of solvation in water for several families of compounds that had

previously been studied by TI or FEP calculations. These results are presented in Table

2, along with the corresponding free energy data from the literature for comparison.

While the data are not converged for every family of compounds studied, the CMC/MD

method does a good job of determining the rank order and magnitude of the solvation

free energies in each case. The relative solvation of bromide and chloride ion was

studied by Tidor with the hybrid MC/MD method described previously, and our results

are in reasonable agreement with his calculations. More difficult tests are the

comparisons of methane versus ethane and anisole versus benzene. In particular, the

comparison of anisole and benzene is significant because the steric difference between

the two compounds is relatively large, yet our method gives a reasonable estimate of the

free energy difference.

After these pairwise comparisons, we studied two families of compounds.

Methane, ethane, and propane were studied in a single simulation that yielded quite

accurate free energy estimates for all three compounds with a reasonable computational

cost. Methanol and the substituted methanes formed the other family of compounds

studied. They cover a broad range of polarity and free energy, yet our method rapidly
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gets the correct rank order and order of magnitude of the relative free energies of

solvation. This latter set of molecules had been studied by Kong and Brooks 10 using A

dynamics, so it was appropriate to show that our procedure could also appropriately rank

the free energies of solvation of these molecules.

Binding

Once we had achieved these promising results on relative free energies of

solvation, we then applied the CMC/MD method to study the binding of four guests to

the “tennis ball” host. The guests chosen were those previously studied by Fox, et. al

(CH, CF, CHCl) and Reyes (CH,F), so that thermodynamic integration data was readily

available for comparison. As an initial test, we did not include the solvation offset in our

calculation. The results of this determination of AGhost are shown in Figure 2. Figure

2a shows the relative populations of each ligand in the host accumulated over a 400

picosecond calculation. These data are converted into free energies relative to methane

in Figure 2b. Clearly, our method rapidly indicates that CH.F is the most favorably

bound ligand. However, this calculation does not include the solvation free energies.

By including the solvation free energies as offsets to our Monte Carlo sampling,

we can directly determine AAGbind, as shown in Figure 3. This 1 nanosecond

calculation is now dominated by CH, instead of CH,F, in good agreement with the actual

relative binding free energies (AAGbind). This is one of the major strengths of our

method -- most of the simulation time is spent sampling the ligands with favorable

binding free energies. The calculation thus rapidly focuses on the real compounds of

interest. In addition, the rank order of binding is rapidly determined (Figure 3a). Our
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calculation shows that guests are preferred in the order CH, -CH,F - CF, - CHCI, as

observed experimentally. Extended calculations converge to well-defined values of the

binding free energy (Figure 3b). Our calculated values (Table 3) are in good agreement

with both experimental data and earlier free energy calculations.

We subsequently decided to apply our method in a predictive fashion to a

simulation that included nine guests. We chose all of the guests that had been observed

experimentally (CH, H,CCH, CH,F, CF, CH,Cl, CHCl) as well as the remaining

fluoromethanes (CH,F, CHF) and chloromethane (CH,Cl). We did not include carbon

tetrachloride (CC1,), since we expected it to be even less favorably bound than

chloroform, the worst guest observed. Using the relative solvation free energy data from

Table 1, we carried out a single 800 picosecond simulation on this family of compunds.

The population and free energy data are shown in Figure 4. The data for the 9-guest case

are substantially less well converged than the simpler 4-guest calculation, but several

results are clear. Most importantly, the calculation quickly shows that difluoromethane is

clearly the best binding compound and chloroform the worst. Our data also agree with

Branda, et al...! that methane and ethylene are approximately equally well bound by this

host and that CH,Cl, is preferred to CHCl, The predicted rank order from our

calculation is CH,F, >> (H,CCH, CF, CH,F, CH,Cl, CH, CHF) > CH,Cl, --> CHCl,

However, we do not think these data are perfectly converged. Particularly, we are most

confident about the prediction of the best- and worst-binding compounds and less certain

of the ordering of “intermediate” binders. Still, the utility of this method in rapidly

sorting the compounds by approximate binding free energy is clear.
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Since the CMC/MD calculation strongly suggests that CH,F, is the best guest for

the “tennis ball”, we decided to test this prediction with a thermodynamic integration

calculation. Using a protocol identical to that used for the calculation of solvation free

energies in chloroform and similar to that previously used to calculate AGhost for other

guests binding to this host, we perturbed methane to difluoromethane in the cavity of the

“tennis ball”. The calculated AGhost was -1.88 +/- 0.03 kcal/mol; subtracting the

previously calculated AGsolv of -1.44 kcal/mol yields the result that difluoromethane is -º-º:

preferred in this host by -0.44 kcal/mol. This is in good agreement with our chemical

MC/MD estimate of -0.76 kcal/mol, and provides a strong internal validation of our new

method. We examined the complex of difluoromethane bound to the host dimer in

detail in order to understand the structural basis for its affinity. Figure 5 shows a

representative configuration of the complex. The guest is slightly off-center in the host -

cavity, and is oriented so that each fluorine projects towards one of the gaps between the

two halves of the host. This arrangement appears to maximize the favorable van der

Waals contacts between guest and host without straining the guest, either host monomer,

or any inter-monomer hydrogen bonds. Energy minimization and analysis of the

electrostatic and van der Waals interactions of the complex in vacuo support this

conclusion.

Comparison of the minimized CH/host and CH.F./host complexes leads to an

interaction energy difference of ~4 kcal/mol favoring CH.F. Of this difference, 3.5

kcal/mol is due to van der Waals energy and 0.5 kcal/mol from electrostatic interactions.

We can include the solvation free energy of these two guests in a qualitative way using

the data in Table 1: CF, is more favorably solvated than CH, by ~0.6 kcal/mol,
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suggesting that each fluorine yields 0.6/4 = 0.15 kcal/mol solvation due to van der Waals

interactions with the chloroform solvent. Thus, the -1.4 kcal/mol improved solvation of

CH,F, relative to CH, has a ~1 kcal/mol contribution from electrostatic energies, which

makes sense given the dipolar character of CH,F, and the nonpolar nature of methane.

Comparing these solvation free energies with the energy minimization results suggests

that the “tennis ball”s preference for CH,F, is due to van der Waals interactions, since

the favorable electrostatic contribution for CH,F, versus CH, is even larger in solution

than in the host cavity.

Of course, the above is only a qualitative analysis, but is unequivocal in the

predominance of van der Waals forces. As noted, CH,F, can gain van der Waals

attractions for its fluorines by pointing them towards the inter-monomer gaps in the

hosts. Directing the fluorines towards the aromatic ring leads to unfavorable repulsion

and strain in the host. Similarly, the replacement of fluorines with chlorines is also

disfavored, as CH,Cl, is seen to be less favorably bound than CH, by both theory and

experiment. One can now also rationalize the weaker binding of CHF, because the

geometry of the host and guest preclude the formation of strong van der Waals

interactions for the third fluorine group.

Discussion

We have developed and applied the chemical Monte Carlo/MD (CMC/MD)

method to successfully determine the relative binding free energies of several nonpolar

guests binding to an organic host. With sufficient sampling, our calculation yields free

energies in close agreement with previous thermodynamic integration calculations, as
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well as experiment (Table 2, figure 3, etc.). Our multi-molecule free energy method has

a great deal in common with the previously published lambda-dynamics work of Brooks

and Kong!0. though it was independently derived from theoretical work by Bennettle

and the subsequent coupled MC/MD work of Tidor!7, as well as Radmer's work!4 on

other multi-molecule free energy methods.

We have also shown that the solvation free energy may be included in the Monte

Carlo stage of the calculation to focus sampling on the most favorably bound ligands.

Application of this “solvation offset” to our 4-guest calculation shifts the predominant

state from CHF (the guest with the lowest free energy in the bound state) to CH, (the

most favorably bound guest). In addition, our calculations rapidly yield the observed

preference of the host for various guests (CH, -CH,F - CF, -CHCl,). After this paper

was submitted for review, works have appeared by both Guo, et al.39 and Jarque and

Tidor”0 which also demonstrate the feasibility and utility of sampling on the AAGsolv

(or AAGbind) surface.

To demonstrate the real utility of multi-molecule free energy methods, we have

carried out a predictive calculation -- the first using such techniques -- comparing 9

guests bound to the host. The rank order from our calculation correlates somewhat with

that observed by Branda, et al.'', for the five guests studied experimentally, and suggests

that CH,F, would be even more favorably bound to the host than methane. We have

tested this prediction internally with a TI calculation that also finds CH,F, a better guest

than methane. This demonstrates the ideal application of multi-molecule methods -- they

permit consideration of the relative binding free energy for many more compounds than
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could be studied otherwise, and rapidly pick out promising binders for further

computational or experimental study.

There are some limitations to our method. First, it is restricted to comparisons

between relatively similar ligands, or at least compounds of similar volume. Ligands

with substantial steric differences (methyl versus phenyl derivatives, for example) are

difficult to compare with the CMC/MD method, since the abrupt jumps between states do

not sample large changes in volume well. However, we have applied our method to

accurately calculate the relative free energies of solvation of anisole and benzene (Table

2). This change from a hydrogen to a methoxy group gives us confidence that we can

apply our method to pharmacologically relevant changes". It should also be noted that

free energy calculations which involve large steric changes are still a challenging

prospect for more traditional FEP and TI calculations as well"142.

Furthermore, CMC/MD appears to be much more efficient for calculating AGhost

or AAGbind than it is for calculating AGsolv. The preorganized cavity of a host or

protein binding site makes for more efficient sampling than the transient, rapidly

fluctuating cavities that surround a solute in a solvent like water. Acceptance ratios are

much higher for calculations of AGhost in our test system than they were for trial AGsolv

calculations in water. In the present study, we avoided this issue by using AGsolv values

from thermodynamic integration calculations. Since we expect to eventually use our

chemical-MC/MD method to compare many ligands bound to a protein, we are exploring

alternative, less expensive methods for calculating AGsolv, such as continuum solvent

methods 43. In addition, several projects are underway to use this method to compare

the binding of multiple drug molecules to protein targets, with excellent initial results44.
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Both CMC/MD and lambda-dynamics10 are "multi-molecule" free energy

methods. They provide the framework for rapid comparison of the free energy of several

molecules experiencing a common environment. Kong, et al. 10 and Guo, et al.39 have

both shown the power of lambda-dynamics in solvation free energy calculations and in

accelerating the convergence of traditional free energy simulations. In contrast to

lambda-dynamics, CMC/MD is a more approximate method -- the rapid jumps in

chemical space permit us to save time by avoiding the simulation of intermediate states,

but also appear to require longer simulation times to yield converged free energy

statistics. Our "n-tuple topology" approach also means that CMC/MD is more readily

extensible to comparisons between ligands of arbitrary topology, an essential issue in

drug design calculations. This is illustrated here by our consideration not only of

substituted methanes, but also ethylene as guests for the “tennis ball” host.

These multi-molecule methods occupy a middle ground of detail and accuracy in

the range of computational methods that are applied to structure-based drug design. At

one extreme there are docking and empirical scoring methods that can examine hundreds

of thousands of compounds and possibilities. Traditional free energy perturbation

methods occupy the other extreme, providing a detailed assessment of only two

compounds. CMC/MD and A-dynamics both give a relatively accurate free energy

assessment for 5-10 compounds. A simpler dynamics-based free energy estimation

method (the linear interaction approximation, or LIA) has been introduced by Aqvist45.

Radmer and Kollman have introduced PROFEC, a tool for optimizing ligand affinity

based on extrapolations from a single dynamics calculation'4. A similar method from

Liu, Mark and van Gunsteren uses extrapolations from a simulation of a single solute to
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estimate free energies for a range of related compounds, with modest success!3, Given

the range of methods available, one can imagine a funneling process, where the best

compounds found by a docking method are studied in more detail by LIA or chemical

MC/MD methods, possible modifications are suggested by PROFEC, and final lead

optimization is guided by careful CMC/MD or FEP/TI calculations. At each stage of the

process, the number of compounds studied is whittled down from thousands to hundreds

or tens or even pairs of compounds, while the level of detail, accuracy, and

computational expense per compound is simultaneously increased.

With the development and deployment of modern parallel supercomputers and

workstation clusters, we also envision a “coarse-grained” parallel implementation of our

method, where one chemical Monte Carlo - MD calculation is run on each of several

processors. If we can compare 5-10 ligands per processor and one “reference” ligand is

common to every processor, we can expect to compare and rank hundreds of ligands at

once. In addition, the chemical Monte Carlo method is intrinsically suitable for more

simple applications of coarse-grained parallelism. The results from two simulations of

the same family of ligands can be added together directly to yield improved (or more

rapid) free energy estimates. This is a sharp contrast to traditional FEP or TI

calculations, where the need to smoothly integrate along the “reaction coordinate” means

that one must either do additional preparatory simulations to divide the task among

processors“6 or develop intrinsically fine-grained algorithms.

Finally, the use of computational methods to study the ideal guest for Rebek’s

“tennis ball” host has led to an exciting result -- the prediction that CH,F, would be a

better guest than CH, Analysis of the structure and energies yielded a rationalization of
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this preference, based on several factors. First, fluorine groups are of the appropriate size

to fit neatly in the inter-monomer interface. The geometry of host and guest permit only

two positions on the guest to make such favorable interactions, which may also explain

some of the host's preference for CH,Cl, versus CHCl, Finally, the greater van der

Waals well depth of fluorine relative to hydrogen makes this interaction stronger for CH,

than for CH,F,. Thus, this study has met the fundamental requirements for any

computational method -- it has qualitatively and semi-quantitatively reproduced known

experimental data, made a prediction for a new guest, and provided mechanistic and

structural insight into the origin of the increased affinity of this guest for the host. This

offers encouragement for the continued utility of CMC/MD and other “multi-molecule"

free energy calculations in the study of host-guest complexes, whether they be organic

systems like the one described herein or biological problems like protein-ligand

interactions.
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Appendix I

Derivation

Consider n chemical states, numbered 0 through n, described by identical

coordinates (r) but differing only in the potential functions (Un) describing them. The

free energy difference between any two states is the ratio of their corresponding

configurational integrals:

AG(m — n) = -ktin’”. (13)
Qm

where such an integral has the form

On = ■ e"d, (14)

Bennett showed that this ratio of configurational integrals can be calculated by a

simulation that samples various (r) and simultaneously carries out a special type of

Metropolis Monte Carlo move. Specifically, the Monte Carlo move does not involve a

change of coordinates (r -> r") but instead involves a change in potential function (Un ->

Um). The Metropolis function

M(x) = min{1, e”) (15)

or more specifically

M(AU/kT) = min{1, e”) (16)

defines the acceptance probability for this potential-switching move just as in

traditional cartesian applications of Metropolis Monte Carlo, where

AU = U(r') - U(r) (17)
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In our case, however, AU is the change in energy involved in switching the

system from potential function Um to Un:

AU = Un(r) - Um(r) (18)

For any physical configuration of the system (r) the acceptance probabilities for

any pair of potential-switching moves (m -> n and n -> m) are related by

M(Un - Um)/M(Um - Un) = e"." (19)

(where we have omitted the factor of kT from the exponential for clarity) which can be

rearranged into the form

M(Un - Um) e." = M(Um - Un) e." (20)

Since both potential functions apply to the same coordinate space (r), one can

integrate both sides of the above over all possible values of (r), yielding equation (21)

|M(Un —Um)e"dr = ■ M(Um—Un)e"dr (21)

Multiplying the left side of this equation by the identity Qm/Qm and the right by

Qn/Qn gives equation (22):

Qm - Lyrn On - Un#■ wwn-um:
U d=j ■ M(Um–Un)e"dr (22)

The terms

Qm - Um#■ wwn-um. "dr
and

Qn - Uri#■ wwn-on- "dr
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are simply canonical averages in the Qm and Qn ensembles, respectively. A canonical

average has the form

■ F(U, r)e"dr(F(U,r)|= (23)
Q

so we can rearrange equation 22 to yield the ratio of interest:

M
-

On (M(Un–Um)) wn

The physical interpretation of the above is that a simulation which includes

potential-switching Metropolis Monte Carlo moves in addition to some form of

configurational sampling will sample the potential states Um and Un in proportions that

reflect the free energy differences between states m and n. Bennett did go on to point out

that it is often more efficient to evaluate the canonical integrals <M(Um - Un)-, and

<M(Un - Um)>, directly. However, this is only true if one knows a priori which free

energy differences (and states) are of interest.

For the multi-state case where we start with many states (0. . . n), the full

chemical Monte Carlo process has its own advantages. Specifically, we are interested in

the relative free energies of each state, but our primary goal is finding the states of lowest

free energy. Consequently, we do not want to waste computational time calculating

detailed free energies for states that are not of interest. In the binding free energy
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applications discussed in this paper, the states of lowest free energy correspond to the

ligands that are the “best binders” for a given receptor.

In practice, the full chemical Monte Carlo method is implemented by adding a set

of additional coordinates to the simulated system, one for each chemical state of interest.

These coordinates (A) are analogous to the “lambda” coordinates used in FEP and TI

calculations. For a set of chemical states 0 to n, we have \, to Å. The potential function

used is of the form

U(r,{A,})=XA,U,(r) (25)
i-1

where (r) includes coordinates for each chemical state of interest plus the

surrounding context (solvent, protein, or host molecule).

The lambda values are also subject to two constraints; first, each A, is either 0 or

1. Second, the sum of all A is constrained to be 1. The result of these two constraints is

that the calculation only simulates the end states of interest, and only simulates one at a

time.

Comparison of methods

As noted in the introduction, Tidor has previously presented an implementation of

Bennett's ideas that uses molecular dynamics to sample confguration space and Monte

Carlo methods to take steps along a chemical “reaction coordinate” between two end

states17. The “reaction coordinate”, often called lambda (A), typically couples the

potential functions describing the two end states in a linear fashion:
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V = A * Va + (1 - A) * Vb (2)

where V is the simulated potential function and Va and Vb refer to the potentials

appropriate for end states A and B, respectively. Both the aforementioned approach and

traditional FEP or TI methods calculate the free energy difference between states A and

B by integrating the free energy along A. Tidor's method was successfully applied to

calculate a free energy difference for two solvated ions via simulated annealing along the

X coordinate. The use of a continuous “reaction coordinate” means that this method has

one of the limitations of traditional free energy calculations. Namely, much time is spent

simulating nonphysical intermediate states rather than the end states of interest. This

problem is compounded by allowing stochastic sampling along the reaction coordinate.

Simulated annealing may be necessary since the simulation may get stuck in a free

energy minimum that lies somewhere along the coordinate but is itself a poor

representative of the end states.

While it would be possible to use Monte Carlo methods for both the chemical and

Cartesian steps of the calculation, we were interested in eventually applying our method

to studies of protein-ligand interactions. Consequently, we chose to use molecular

dynamics methods instead of Monte Carlo methods for the sampling of configurational

space. This rationale is partly historical, but also based on prior studies which showed

MD was a better approach than MC for configurational sampling in proteins”7.

However, Jorgensen has recently made great strides in the application of MC techniques

tC) proteins”. In contrast, Monte Carlo is a better configurational sampling tool in many
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simpler systems, like solutions of small molecules”. For such systems, one could easily

imagine using a chemical-MC/MC algorithm instead of our chemical-MC/MD approach.

To avoid the difficulties associated with “hybrid” or “in-between” states, we

chose to restrict our chemical sampling to jumps between the end states of interest. In

the formalism presented in the appendix,

X2 = 1 and Å = {0,1} (3)
i=1

This has the advantage that we are always simulating the end states of interest.

However, the efficiency of the Monte Carlo sampling is now highly dependent on

whether the simulation of state A samples configurations favorable for state B, or vice

versa. The results of our simulations suggest that this is not an insurmountable problem,

but its severity will be system dependent, an observation supported by Radmer and

Kollman'4's work. In extreme cases, the barriers between states may be reduced by

including a few carefully-chosen “hybrid” chemical states to bridge between the end

points of interest, but we have not needed to take that approach for any of the

calculations presented here.

A further advantage of our approach is that the extraction of relative free energies

is very straightforward. The ratio of “populations” -- the number of times each chemical

state is sampled in the calculations -- is directly related to the relative free energies of the

chemical states by

AG(A -> B) = -RT ln (P(B)/P(A)) (4)
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This contrasts with the approaches that allow partial values of the reaction

coordinate. In the two-state case, a simulation that has an average A= 0.5 may not mean

that the two end states are in equilibrium. Instead, it may mean the the free energy

minimum of the potential is Å = 0.5. Similarly, the correct way to extract a free energy

from these calculations is not

AG(0 -> 1) = -RT ln A (5)

but rather, as Mezei, et al.50 noted

AG(0-> 1) = -RT ln (P(A = 1)/P(A = 0)) (6)

Since only those configurations where A is fully representative of a single ligand

contribute to the calculated free energy, it makes sense to avoid wasting time simulating

intermediate states if that is feasible. If intermediate states are included in the

calculation, however, one can calculate the potential of mean force or free energy

integral along the reaction coordinate(s) as is done in a TI or FEP calculation.
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Table 1: Relative free energies of solvation in chloroform calculated

by thermodynamic integration

Ligand AGsolv (CH, --> ligand) kcal/mol note(s)

HCCH, –0.82 +/- 0.01

CH,F - 1.32 +/- 0.01 d

CH,F, -1.44 +/- 0.1

CHF, - 1.31 +/- 0.01

CF, -0.57 4-/- 0.04 b

CHCI –2.42 +/- 0.01

CH.Cl, -3.31 +/- 0.25

CHCl, –3.91 +/- 0.20 b

notes: a value calculated by Reyes}4; b. value calculated by Fox, et. al. 18
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Table 2: Calculated and reference small molecule AGsolv values. Reference

values are from free energy perturbation calculations (no parentheses) or experiment

(parentheses). Calculated values are from simulations using the chemical-MC/MD

method +/- 1 standard deviation. Simulation times are the total amount used to calculate

AGsolv. Times in brackets are the simulation times for the reference calculation.

System reference AGSolv calculated AGSolv time
(kcal/mol) (kcal/mol) (ps)

methane - methane O 0.00 5

bromide - chloride –3.22 –2.75 1000
[1000]

methane - ethane 0.15 +/- 0.07 0.03 200
(-0.17) [1200)

anisole - benzene 0.90 0.99 +/- 0.48 1000
(1.1 - 1.6) [~100]

methane, ethane and propane:
methane - ethane 0.15 +/- 0.07 0.03 +/- 0.07 1600

ethane - propane 0.18 +/- 0.09 0.03 +/- 0.10 [2400]
(0.12)

methanol & Substituted methanes:

methanol - H,CCN -0.1 +/- 0.2 0.73 400
(1.2) [~5000]

methanol - H,CSH 4.6 +/- 0.1 2.95
(3.8)

methanol - ethane 7.9 +/- 0.2 4.37
(6.9)

Note for Table 2: All references are free energy perturbation calculations that include
secondary references for the experimental values. Parameters for each system are taken
from the references in question to facilitate direct comparison between the computational
methods.
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Table 3: Relative binding free energies vs. CH, 4-guest calculation

Guest AGhost AGhost AGsolv AAGbind AAGbind AAGbind AAGbind

(MC) (TI) (TI) (MC-TI) (MC-offset) (TI-TI) (exp't)

CHF | -0.77 -1.14 -1.32 +0.54 +0.17 +0.17 ND

CF, +0.20 +0.36 -0.57 +0.77 +0.41 +0.93 +2.8

CHCl, +2.50 +4.30 -3.91 +6.41 +3.57 +8.21 +5.2

All calculations were carried out using the parameters described in Fox, et al. 18. Shaded

columns show chemical Monte Carlo/MD calculations carried out in this work.

Unshaded columns present experimental and thermodynamic integration data for

comparison.

(MC): free energy from unbiased chemical-MC/MD calculation

(TI): Thermodynamic Integration data from Fox, et al. 18 and Reyes}4.

(MC-TI): AAGbind calculated as AGhost from unbiased chemical-MC/MD calculation -

AGsolv from TI

(MC-offset): AAGbind calculated directly from a single chemical-MC/MD calculation

using AGsolv from TI as a "solvation offset"

(TI-TI): AAGbind calculated as AGhost from TI - AGsolv from TI

(exp't): Experimental binding data from Branda, et. al.]
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Figure Captions

Figure 1: Thermodynamic cycle for calculating the relative free energies (AAGbind) for

two ligands binding to a common receptor.

Figure 2: Population (a) and AGhost (b) data for the unbiased 4-guest calculation. (a)

shows the relative populations of each ligand in the simulation. (b) shows these

population data converted to AGhost free energies relative to CH, Solid circles show

data for CH,F, Solid squares are data for CF, solid diamonds are the data for CHCl, and

CH, is shown in part (a) as the heavy line. The calculation is dominated by CH,F, the

guest with the most favorable AGhost.

Figure 3: Population (a) and AAGbind (b) data for the "solvation offset"4-guest

calculation. (a) shows the relative populations of each ligand in the simulation. (b)

shows these population data converted to AAGbind free energies relative to CH, Solid

circles show data for CH,F, Solid squares are data for CF, solid diamonds are the data

for CHCl, and CH, is shown in part (a) as the heavy line. By including AGsolv as a

"solvation offset" to the Monte Carlo sampling, the calculation is now dominated by CH,

the guest with the most favorable AAGbind.

Figure 4: Population (a) and AAGbind (b) data for the "solvation offset" 9-guest

calculation. (a) shows the relative populations of each ligand in the simulation. (b)

shows these population data converted to AAGbind free energies relative to CH. Again,

solid circles show data for CH,F, Solid squares are data for CF.; solid diamonds are the
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data for CHCl, and CH, is shown in part (a) as the heavy line. In addition, data for

H,CCH, are indicated with open triangles pointing up, data for CH,F, with stars, CHF,

with solid triangles pointing down, CH,Cl with plus signs and CH.Cl, with X marks.

These AAGbind data are clearly not converged, but the calculation readily and rapidly

determines the best (CH,F) and worst (CHCl,) guests for this host.

Figure 5: Single molecular dynamics snapshot of the "tennis ball" binding CH,F, from

the 9-guest calculation. The two halves of the tennis ball are drawn in black, and CH,F,

is shown in grey with both fluorines colored black. Each fluorine fits neatly into one of

the major gaps between host monomers, with little strain of the host or guest molecules.

Chloroform solvent molecules have been omitted for clarity.
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Chapter 4: Theoretical and practical considerations in Chemical Monte

Carlo/Molecular Dynamics

While the prior Chapter outlined the general ideas and underlying formalism of

CMC/MD, some details of the basic CMC/MD method deserve further explanation.

First, it is important to clearly describe the system simulated in CMC/MD, including the

masking of the potential function. This includes the precise nature of each chemical state

or “endpoint.” Second, the energy terms included in the Monte Carlo comparison are

detailed, for cases when intra-MC residue energies are either ignored or included.

Finally, some formal issues regarding the correctness of the hybrid Monte

Carlo/molecular dynamics procedure are discussed.

First, consider the CMC/MD system used for calculation of a solvation free

energy between two monoatomic solutes A and B. The simulated CMC/MD system is

logically divided into two groups. One is the set of MC residues – in this example,

solutes A and B. The remainder of the system (in this case the solvent) we call the

“surroundings” or “surrounding residues”. This division is shown in Figure 1a. At any

one time, one of the MC residues is treated as “real”. This residue, plus the

“surroundings”, forms the complete “real” system. Only the “real” elements of the

system are used to determine the total system energy,and the molecular virial (for

pressure coupling). The other Monte Carlo residue is a noninteracting “ghost”. The two

“real” systems possible in this case are shown in Figure 1b and 1c. Chemical Monte

Carlo moves switch between these two systems. A microscopic “state” of this system is

specified by the positions of all the particles (r) their velocities (v) and a variable ( A )
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that specifies which MC residue is “real”. The molecular dynamics steps serve to sample

different coordinates (r’) and velocities (v’), while the Monte Carlo steps, as previously

noted, only alter the lambda variable.

The Monte Carlo steps in CMC/MD are sampled using a Metropolis Monte Carlo

algorithm !. This algorithm generates a Markov chain of states that are populated in

proportion to their relative free energies. If state I is the current state and J is the trial

move, the trial move is accepted with a probability

P(I->J) = min(1,exp(-(H(J) — H(I))/kT])

Where H(I) is the total (potential plus kinetic) energy of state I:

H(I) = E(I) + K(I)

Since our chemical Monte Carlo moves only alter the lambda variables, and thus the

potential energy of the system (r(I) = r(J), v(I) = v(J), lambda(I) # lambda(J)), the

acceptance criterion is simplified:

H(J) – H(I) = E(J) + K(J) – (E(I) + K(I)) = E(J) — E(I) = AE

P(I->J) = min(1,exp■ -AE/kT])
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A further simplification derives from our use of the AMBER molecular mechanics

potential function”. AMBER, like many other molecular mechanics potentials, is built

on an additive approximation. That is, the energy for a system of three atoms A, X, and

Y is the sum of simpler interactions:

E(A,X,Y) = E(A) + E(X) + E(Y) + E(A,X) + E(A,Y) + E(X,Y)

It is useful to construct another idealized three-atom system B, X, Y. This system has

energy

E(B,X,Y) = E(B) + E(X) + E(Y) + E(B,X) + E(B,Y) + E(X,Y)

And the energy difference between these two systems is

AE = E(B,X,Y) — E(A,X,Y) = E(B) – E(A) + [E(A,X) + E(A,Y)]

– [E(B,X) + E(B,Y)]

Our two constructed systems correspond directly to the two chemical states in Figure 1a,

or the two real systems (Figure 1b, 1c). The energy difference derived above shows that

it is not necessary to evaluate the total potential energy of both systems when considering

Monte Carlo moves between them. Instead, it is only necessary to recalculate the

contributions associated with the difference between solutes A and B. Our CMC/MD

implementation makes extensive use of this fact. It is particularly useful since most of

the systems of interest consist of a small MC region (less than 50 residues, typically with

less than 25 atoms each) embedded in a large surrounding region (at least 200 water

molecules (600 particles) and typically closer to 2000-10000 particles). The additional
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overhead associated with calculating the interaction energy for an additional MC residue

is minimal compared to the total cost of evaluating the potential energy for the entire

system. Consequently, we calculate interactions for each MC residue every time we

evaluate the potential energy for the system. These interactions are calculated and added

or masked from the total potential energy as appropriate, and terms corresponding to

interactions of the surrounding atoms with a MC residue are collected and used for the

Metropolis Monte Carlo routine. This allows us to apply the “ghost forces” mentioned in

the previous Chapter, as well as readily calculate the “Boltzmann probabilities” for every

MC state as a check on our sampling. Use of nonadditive molecular mechanics models

or more advanced (semiempirical or ab initio) quantum mechanical models (also

nonadditive) would require much more expensive full-system energy calculations for

each end state.

There are two options for which energy terms are included in the MC evaluation.

Both are correct, but correspond to the calculation of free energies between subtly

different systems. In Chapters 3 and 5, we neglected the intra-MC energy terms in our

energy evaluation (E(A) and E(B), above) basing our MC sampling on:

AE = [E(A,X) + E(A,Y)] – [E(B,X) + E(B,Y)]

This is somewhat analogous to the neglect of intra-perturbed group contributions

in traditional free energy calculations. It is actually formally correct to do this, but one

must take care to describe the precise nature of the systems being compared. When intra

perturbed group terms are not included in the MC calculation, the free energy difference

we calculate corresponds to the difference between two non-physical systems: one where
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solute A and the surroundings are real, while solute B is a noninteracting ghost; and

another where solute B and the surroundings are real, while A is a ghost. The additional

noninteracting particles mean that our simulated systems are not identical to the

experimental systems we attempt to compare to. In the case we are discussing, the

noninteracting solute is effectively in the gas phase.

As with traditional free energy calculations, the neglect of intra-perturbed group

contributions may be appropriate when studying simple partitioning processes, for which

molecular strain is not a factor. This includes the partitioning of a family of related, rigid

ligands from solvent into a protein binding site, as we show in the next Chapter. In these

situations, the intra-perturbed contributions are expected to cancel when a full

thermodynamic cycle is used.

The other possibility with the MC evaluation is to include the intra-MC residue

energy terms.

This is necessary when intramolecular interactions and strain energies make significant

contributions to the free energy of interest, as in the peptide solvation we study in

Chapter 7. When this is the case, both intra- and inter-MC terms are included in the

energy evaluation:

AE = E(B) — E(A) + [E(A,X) + E(A,Y)] — [E(B,X) + E(B,Y)]

When we include all of the energy terms in the MC energy evaluation, the free energy we

calculate corresponds to the free energy difference between the two “real” systems: one

where solute A and the surroundings are real, and one where solute B and the
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surroundings are real. The noninteracting residues are part of the chemical Monte Carlo

book-keeping, but are not included in the end states we are comparing.

There are also some important issues we must consider with regard to the mix of

molecular dynamics and Monte Carlo sampling used in CMC/MD. Classical Hybrid

Monte Carlo schemes have been shown to sample from the correct ensemble so long as

the molecular dynamics algorithm used is symplectic and reversible3. However, the

dynamics trajectories in these techniques are simply used to generate trial moves for a

Metropolis Monte Carlo algorithm – trial moves in coordinate space. As such, it is

essential that the dynamics is perfectly reversible in order to preserve detailed balance.

That is, state r" must be accessible from state r, and state r must be identically accessible

from state r". However, CMC/MD differs from these other hybrid techniques in that the

Molecular Dynamics trajectory is just used to generate coordinates sampled from a

Boltzmann distribution. The trial move consists of a change in A, not in r, and all A

states are equivalently accessible at a given r.

It may be helpful to think of CMC/MD as related to Andersen temperature

coupling". Andersen, or stochastic temperature coupling, generates a series of

coordinates sampled from the canonical (N,V,T) ensemble. An Andersen trajectory

consists of a number of sub-trajectories. Each sub-trajectory is sampled from the

microcanonical (N,V,E) ensemble. The energies for these sub-trajectories are themselves

sampled from a Maxwell-Boltzmann distribution at the specified temperature, T. This is

achieved by occasionally randomly reassigning the kinetic energy of a few particles of

the system, selecting it from that same distribution. The integrator used for the

trajectories is not required to be reversible, though it must be symplectic and conserve
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energy. In a similar way, CMC/MD generates something akin to a grand-canonical (pu,

V, T) ensemble trajectory by generating a number of microcanonical sub-trajectories

from the appropriate distribution. The simple Maxwell-Boltzmann distribution used for

the kinetic energies in Andersen temperature coupling is replaced by a Boltzmann

weighted distribution over the chemical (A) states. This correspondence is illustrated in

Figure 2. The upper pair of panels (Fig. 2a) show an Andersen “trajectory” and the

corresponding distribution of particle velocities for a 1-dimensional system, while the

lower pair of panels (Fig. 2b) show a CMC/MD trajectory and the corresponding (free

energy) distribution of A-values.

Since CMC/MD was built by modifying existing software, we made use of the

leap-frog molecular dynamics integratorº.6 of SANDER, which is symplectic but not

reversible. In the leap-frog integration scheme, velocities and coordinates are not

available at precisely the same time. Instead, velocities lag a half-timestep behind the

coordinates. This means that the leap-frog integrator is not strictly time-reversible, unless

additional half-step velocity integrations are used to synchronize velocities and

coordinates. Fortunately, the discontinuities introduced by the MC steps correspond to

discontinuities in the forces, rather than the energy or velocities. Frequent use of

stochastic (Andersen) temperature coupling in sync with the Monte Carlo steps ensures

that this small discontinuity does not produce any systematic error. The CMC/MD

process does not absolutely conserve energy, but it is not expected to — Metropolis Monte

Carlo trajectories are not isoenergetic. Instead, they correspond to samples from an

isothermal ensemble, as we noted above.
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A very helpful general reference for both free energy calculations and the theory

and practice of hybrid MC/MD simulation is “Understanding Molecular Simulation:

From Algorithms to Applications”, by Frenkel and Smit (Academic Press 1996).
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ABSTRACT

We have ranked 13 different TIBO derivatives with respect to their relative free energies

of binding using two approximate computational methods - adaptive chemical Monte

Carlo/molecular dynamics (CMC/MD) and Poisson-Boltzmann/Solvent Accessibility

(PB/SA) calculations. Eight of these derivatives have experimentally determined binding

affinities. The remaining new derivatives were constructed based on contour maps around

R86183 (8Cl-TIBO), generated with a program, PROFEC (pictorial representation of free

energy changes). The rank order among the derivatives with known binding affinity was

in good agreement with experimental results for both methods, with average errors in the

binding free energies of 1.0 kcal/mole for CMC/MD and 1.3 kcal/mole for the PB/SA

method. With both methods, we found that one of the new derivatives was predicted to

bind 1-2 kcal/mole better than R86183, which is the hitherto most tightly binding

derivative. This result was subsequently supported by the most rigorous free energy

computational methods - free energy perturbation (FEP) and thermodynamic integration

(TI). The strategy we have used here should be generally useful in structure-based drug

optimization. An initial ligand is derivatized based on PROFEC suggestions, and the

derivatives are ranked with CMC/MD and PB/SA to identify promising compounds.

Since these two methods rely on different sets of approximations, they serve as a good

complement to each other. Predictions of the improved affinity can be reinforced with

FEP or TI, and the best compounds synthesized and tested. such, computational strategy

would allow many different derivatives to be tested in a reasonable time, focusing

synthetic efforts on the most promising modifications.
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Introduction

Inhibitors to HIV-1 RT are one of the cornerstones in the treatment of AIDS patients,

preventing the progression of HIV infection. The enzyme is an attractive target for drug

therapy not only because it is essential for HIV replication, but also since it is not

required for normal host cell replication. HIV-1 RT is a multifunctional enzyme that

copies the RNA genome of HIV-1 into DNA which is subsequently integrated in the host

cell. The enzyme is a heterodimer composed of the two subunits pé6 and p51 and its

unliganded structure has been determined at 2.35 Å resolution. The active site (or the

dNTP site), which contains the catalytically essential amino acids (primarily a triad of

aspartic acids) is located in the pó6 palm subdomain with the 3'-OH of the primer

terminus near the active site. The types of inhibitors currently discovered can be divided

into two classes; nucleoside inhibitors [NIs, for example, AZT, ddl and ddC (for reviews,

see refs. 2-5)] and non-nucleoside inhibitors (NNIs, for example TIBO, HEPT, o-APA

and nevirapine, reviewed in refs. 4, 6-8). The NIs cause termination of the growing DNA

chain because elongation is blocked due to the lacking 3'-OH functional group, which is

essential for incorporation of additional nucleosides (reviewed in ref. 3). However, the

NIs can also be incorporated into cellular DNA by the host DNA polymerases and

therefore cause serious side effects. Unlike the NIs, NNIs are HIV-1 RT specific and do

not inhibit host cell polymerases. The binding site of the NNIs is located in the pó6 palm

subdomain near, but distinct from, the dNTP-binding site. Recently, the two similar

crystal structures of HIV-1 RT in complex with the TIBO NNIs R86183 (8-Cl TIBO)9

and R82913 (9-Cl TIBO)10 have been solved at 3.0 Å resolution. The NNI binding
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pocket constitutes mainly of hydrophobic and aromatic residues (green residues in fig. 1).

Comparisons of structures of HIV-1 RT, complexed with different NNIs! reveal that

there is a significant rearrangement of a three-stranded B-sheet in the pó6 subunit

(containing the catalytic triad of aspartic acids), with respect to the rest of the polymerase

site. This suggests that NNIs inhibit HIV-1 RT by locking the polymerase active site in

an inactive conformation, similar to the conformation observed in the inactive p51

subunit'. In addition, the NNIs have low cytotoxcity and produce a few side effects." A

serious problem with the NNI HIV-1-RT inhibitors is the emergence of viral strains that

have point mutations in the region encoding HIV-1 RT which prevent these drugs from

inhibiting RT.

There is a considerable interest in developing computational methods that are

sufficiently efficient to allow ranking of several (10 -100) inhibitors with respect to their

binding free energy to a common receptor. This stems from the fact that the most

rigorous computational methods — free energy perturbation (FEP) and thermodynamic

integration (TI) calculations (for reviews, see for example, refs. 12, 13) — are both too

slow for practical use in drug optimization. These two methods typically give good (< 1

kcal/mole'4) estimates of the relative binding energies. However, only one pair of

inhibitors can be compared in a single FEP/TI run, which may require from days to

weeks to complete due to their computationally intensive nature. Since lead optimization

requires the comparison of many possible modifications to the lead compound, there is a

need for more rapid methods. One such method, denoted chemical Monte

Carlo/molecular dynamics (CMC/MD), has recently been developed by Pitera and

Kollman.15 CMC/MD combines the Monte Carlo method for sampling the chemical

space of a system and the MD method for generating a set of coordinates for a distinct

chemical system. The chemical space can be typically 5-10 different derivatives of an
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inhibitor. During the course of a CMC/MD run the probabilities of each derivative are

generated, which can be related to their relative binding free energies. The CMC/MD

method has successfully been applied to estimate relative solvation free energies for

small organic molecules and to study the strength of small ligands binding to an organic

host.15 In CMC/MD the solvent is typically described with explicit water molecules,

which is a computational bottleneck since a great portion of computer time is spent

calculating forces on the solvent molecules. The problem is circumvented in the Poisson

Bolzmann/Solvent Accessibility (PB/SA) method, 16, 17 where the solvent is treated

implicitly as a dielectric continuum. The protein and inhibitor are modeled as low

dielectric cavities containing fixed partial charges. By solving the Poisson-Boltzmann

equation the electrostatic contribution to the binding free energy is calculated. The non

polar contribution to the binding free energy is estimated, assuming an empirical linear

dependence on the solvent accessibility areas.18, 19. This method has been applied to a

number of protein-ligand complexes,20-25 for estimation of absolute and relative ligand

binding free energies. A third method is the linear interaction energy (LIE) method,

developed by Aqvist.” In this method, the binding free energy is approximated to be
linearly dependent on the ligands interaction energies in the protein or in solution. The

LIE method (sometimes with slight modifications) has also been applied to a variety of

ligand-protein complexes,”0-30 where absolute as well as relative binding free energies
have been estimated.

In order to generate suggestions for modifications on a lead inhibitor that would

improve its binding, Radmer & Kollman have developed PROFEC31 (pictorial

representation of free energy changes). This approach uses MD trajectories to estimate

the average cost of adding a particle around the inhibitor in the protein and in the

solution, respectively. The difference cost can then be visualized as contour maps around

the inhibitor. Favorable (negative) regions of the contour maps indicate positions where

modifications to the inhibitor should improve its binding free energy.
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In this study, we have used the PROFEC method to suggest modifications on

R86183, which is the so far the tightest binding inhibitor (see Table I). Five new

derivatives was constructed with the help of the contour maps from PROFEC. These new

inhibitors were ranked together with 8 derivatives with experimentally?? known binding

affinities, using both the CMC/MD and the PB/SA methods. The purposes of the study

are 1/ to test these relatively new methods (especially CMC/MD) against experimental

results and against each other; 2/ to develop a feasible computational strategy for

structure-based lead optimization; and 3/ To generate a better binding TIBO derivative

than the previously known. We show that both methods work surprisingly well, given the

approximations involved, and rank the inhibitors in good agreement with the experiment.

Since the two methods are based on different sets of approximations they serve as good

complements to each other and a consistent result between them increases its validity.

Both methods predict that one of the new PROFEC derivatives should bind HIV-1 RT

about 1-2 kcal/mole stronger than R86183. Subsequently, we performed “full” free

energy calculations (FEP and TI) on this best binding inhibitor. The full free energy

calculations also suggest that this new inhibitor binds better than R86183. The strategy

we have employed herein (outlined in fig. 2) could generally be used as one of the final

stages in a structure-based lead-optimization using computational methods.
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Computational methods

Force field parameters for the TIBO derivatives. The van der Waals (vdW), bond,

angles, dihedrals and improper dihedrals parameters for the sulfur atom were adopted

from a parameterization of thiobiotin” and vdW parameters of the chlorine atom were

taken from parameters used for chloroform.** To estimate the partial atomic charges of

8Cl-TIBO (R86183, see Table I), 9Cl-TIBO (R82913) and unchlorinated TIBO

(R82150), we used both the conformation of 8Cl-TIBO in complex with HIV-1 RT9 as

well as the A-form of the crystal structure of 9Cl-TIBO (R82913).35 The two respective

conformers were geometry optimized using Gaussian%26 at the STO-3G level. The

electrostatic potential around the TIBO derivatives was then calculated with the 6-31G*

basis set and atomic partial charges were fitted to the electrostatic potentials around the

two structures using the RESP method.37 Since the partial charges evaluated from the

two conformers individually were very similar, we evaluated the partial charges of the

remaining TIBO derivatives (Table I) using only the conformation of 8Cl-TIBO in HIV-1

RT.

Setup and equilibration of HIV-1 RT in complex with 8Cl-TIBO. The simulations

were carried out with the AMBER 4.138 program “Sander” using the Cornell et al. force

field.39 Starting with the 3.0 Å resolution crystal structure of 8C-TIBO in HIV-1 RT9 we

added unresolved residues, modeled as alanines in the crystal structure, as well as

hydrogen atoms. The hydrogen atoms were then minimized for 200 steps (steepest

descent) in vacuo. To let the protein relax in an aqueous environment the complex was
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immersed in a 55 Å radius sphere of TIP3P-water.” The solvent sphere together with the

protein-inhibitor complex were minimized with a gradual decrease in the position

restraints of the protein atoms. Thereafter, all water molecules beyond the first hydration

shell (i.e. at a distance > 3.5 Å from any protein atom) were removed and to achieve

electroneutrality 11 chloride ions were added, using the program module “CION” within

Amber 4.1. Protein residues with any atom closer than 12 Å from 8Cl-TIBO were chosen

to be flexible in the simulations. All protein residues, water molecules and counterions

further away than 15 A from any flexible residue were then deleted, due to the size of

HIV-1 RT. We then centered a 20 Å radius spherical cap of TIP3P-water around TIBO,

including the hydrating water molecules within the sphere from the previous step. The

water cap was equilibrated for 50 ps at 300 K, keeping the protein, 8Cl-TIBO and the

hydrating water molecules outside the water cap rigid. Thereafter, the flexible residues

(as defined above) and 8Cl-TIBO together with the cap of water molecules were then

heated (50 ps) and equilibrated for 300 ps at 300 K. A time step of 2 fs was used, with the

non-bonded list updated every 20 time step and all bonds were constrained with the

SHAKE algorithm". We applied a dual cutoff of 9 and 13 A, respectively, where

energies and forces due to interactions between 9 and 13 A were updated every 20 time

step. The temperature was maintained using the Berendsen method,” with separate

couplings of the solute and solvent to the heat. This system was then run for 500 ps for a

subsequent analysis with the PROFEC program (see below).

Setup and equilibration of 8Cl-TIBO in solution. For 8Cl-TIBO in solution we

started with the A-form of the crystal structure of 9Cl-TIBO,35 with a substitution of the
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atoms at positions 8 and 9.8Cl-TIBO was then immersed in a box of TIP3P water with

dimensions 34 x 33 x 29 A'. The water molecules were equilibrated at constant pressure

for 100 ps, keeping the inhibitor rigid. We then released the TIBO atoms and the system

was equilibrated for 200 ps, using the same dual cutoff and time step as for 8Cl-TIBO in

HIV-1 RT. Also here, we performed an additional 500 ps MD simulation for the

PROFEC analysis.

Pictorial representation of free energy changes (PROFEC). The contour maps that

are generated from the program PROFEC3) can be used as guides to where atoms/groups

should be added or deleted on the inhibitor in order to improve its binding free energy to

a protein. The maps are generated from trajectories of two MD simulations - one of the

protein-inhibitor complex and the other of the inhibitor in solution. The insertion free

energy of a test particle (AGins) at various grid points close to the inhibitor is calculated

according to:

AGins(i,j,k) = -RTln-exp(-AV(i,j,k)/RT-0 (1)

where i, j and k are the coordinates of a grid point, AV(i,j,k) is the interaction energy

between the test particle and the surrounding atoms, and < ...~0 is an average over the

trajectories. To generate the coordinate system of the grid points, three atoms in the

inhibitor determine a coordinate plane and the third axis is formed as a vector product of

two axes in that plane. Since the coordinate system is molecule-fixed, corresponding grid

points are comparable for the inhibitor in solution and in the protein, respectively. The
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difference, AAGins, of particles in the inhibitor-protein complex and in the inhibitor in

Solution, respectively, is formed for each grid point and contour maps of AAGins can be

constructed and displayed. The electrostatic properties of the added test particles can also

be estimated by calculating the derivative of AAGins(i,j,k) with respect to charge at each

grid point. This derivative is then displayed by coloring the contour map (at, for example,

AAGins =0) and might thus suggest how the charge distribution should be changed for an

improved binding.

The PROFEC contour maps were calculated from the two 500 ps MD trajectories of

8Cl-TIBO in HIV-1 RT and in solution, respectively. In each PROFEC calculation we

chose the grid size to be 7.5 Å with a grid spacing of 0.5 Å. We selected different atoms

of 8Cl-TIBO in each calculation to obtain detailed contour maps centered on various

regions of the ligand. Through a special delegate program written by R.J. Radmer

(UCSF), the contour maps were visualized with UCSF MidasPlus.43

Chemical Monte Carlo (CMC)/molecular dynamics (MD). The CMC/MD method

(described in detail in ref. 15) has recently been developed for determination of relative

free energies of a series of ligands binding to a common receptor. The method employs

MD to generate a set of coordinates for one distinct chemical system and MC to sample

the chemical space of the system, which can be 5-10 different derivatives of an inhibitor

in a protein-inhibitor system. The derivatives are all present in the protein binding pocket

during the simulation but they do not exert forces on each other. In addition, the protein

only feels the presence of one (“real”) inhibitor at a given time. An MC-step consists of
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choosing an inhibitor ‘i’ at random and this inhibitor will be accepted as the new “real”

ligand, according to the Metropolis” criteria:

if AE, s() => Pi—1, if AE, S0 => Pi—exp(-AE/RT) (2)

where AE, is the difference in protein-inhibitor interaction energy between a

derivative ‘i’ and the old derivative and P is the acceptance probability. We use the

protein-ligand interaction energy instead of the total system energy in our Monte Carlo

step since the only thing that changes in the MC move is which ligand is “real”, i.e.

interacting with the protein. During the course of the MC/MD run, the probability of

each derivative being the “real” ligand “P” is accumulated, resulting in a probability

distribution that mirrors the relative free energies of the bound state of the derivatives. To

better determine the relative free energies of unfavorable states, the “Boltzmann”

probabilities of each inhibitor ‘i’ can also be calculated prior to each MC-step according

to:

P= exp(-AE/RT)/X exp(-AE/RT) (3)

If an infinite number of MC-steps were performed on a single Cartesian

conformation, the resulting probability distribution {P} would be exactly the same as that

calculated with equation 3. We used the averaged Pi's from eq. 3 herein, since they also

allow for estimations of the relative free energies of poorly sampled derivatives. The
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resulting probability distribution is then related to the relative free energy of the bound

state (AGbound) for derivatives j’ and ‘i’ is according to:

AGboundj-AGboundi--RTln (P/P) (4)

We found that CMC/MD, as outlined above, converged very slowly when applied to

the TIBO derivatives in HIV-1 RT. In order of increase the convergence rate, a variant of

this method - herein called the “adaptive CMC/MD” method (J. Pitera, unpublished) -

was developed. The goal with adaptive CMC/MD is to sample the chemical space evenly

instead of sampling this space according to the relative free energies of the derivatives.

This can be achieved by introducing biasing offsets, AGoffsi, that for each inhibitor ‘i’

reflects its relative free energy in the bound state. These biasing offsets are introduced by

umbrella sampling, as previously described.15, 45 MC-sampling by testing the acceptance

against (AE-AGoffsi), rather than AE, as in eq. 2, would then result in an even sampling of

all inhibitors, since all (AE-AGoffsi) would equal zero, on average. Starting with all

AGoffs =0, the offsets are solved for iteratively and the probabilities of each inhibitor are

calculated according to eq. 3, averaged over a certain number of MC/MD-cycles (a

CMC/MD-run). A first set of AGoffs.I’s, relative to some arbitrarily chosen ligand, is

estimated from eq. 4, and these offsets are used in the next CMC/MD-run. The offsets are

then adjusted iteratively after each CMC/MD-run by averaging the Pi's from eq. 3 and

using the AGboundi obtained from eq. 4 to adjust AGoffs.j. Upon convergence, all Pi’s are

roughly equal and the relative free energies of the bound state (AGboundi) are equal to -

AGoffs. Finally, the relative free energies of binding (AAGbind) are calculated by
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subtracting the Solvation free energies (AGsov) from AGbound. This adaptive procedure is

effectively the same as the WHAM procedure"6 for calculating conformational free

energy differences. However, chemical-MC/MD allows us to use it for the calculation of

chemical free energy differences.

The adaptive CMC/MD method was applied to 8 different TIBO derivatives with

experimentally known” relative binding affinities (Table I) together with 5 new

derivatives that were suggested by visualization of the PROFEC contour maps. The

derivatives were created by substituting and/or deleting atoms of the HIV-1 RT

conformer of 8Cl-TIBO and positioned in the equilibrated HIV-1 RT - 8Cl-TIBO

complex (see above). The inhibitors were then allowed to relax in the binding pocket by

individually minimizing them, keeping everything but the inhibitors rigid. In the

subsequent adaptive CMC/MD calculations the MD time step was reduced to 1.5 fs due

to problems with the SHAKE algorithm and one MC step was performed every 20 MD

time steps. We applied the adaptive CMC/MD method for two sets of inhibitors, each

containing 10 derivatives. The AGottsi's were iteratively adjusted every 500 MC steps for

set 1. For set 2 we shortened that interval to every 125 MC steps. The values of AGoffsi

were graphed and monitored until they appeared converged by visual inspection. This

required 450 ps (30 iterations) for set 1 and 560 ps (150 iterations) for set 2.

The solvation free energies of the TIBO derivatives were estimated from Generalized

Born/Solvent Accessibility (GB/SA)*7 calculations, using the program

MacroModel/BatchMin, version 4.5.48 with our RESP derived charges on the derivatives.

The derivatives were substitutions from the A-form of the 9Cl-TIBO crystal structure”

that were minimized in vacuo prior to the calculations. While this approach does not

98



include the relative internal entropies of each compound in solution, we expect those

contributions to be small among our family of highly similar and relatively rigid

compounds.

Poisson-Boltzmann/Solvent Accessibility (PB/SA) calculations. In the PB/SA

calculations, which were carried out with the latest Delphi package,49, 30 the solvent is

represented by a continuum with a dielectric constant e=80, with or without implicit ions.

In this work we added implicit ions to an ionic strength of 0.13 M. The protein and the

TIBO derivatives are represented by a cavity, both with a dielectric constant e=2,

containing fixed partial charges on their atoms. The relative free energy of solvation

(AAGsolv) for two TIBO derivatives L1 and L2 was estimated according to:

AAG.on. F AG." (L, )
-

AG." (L. ) + AAGonnai (5)

where AG..." is the reaction field energy when transferring the derivative from

vacuum (e=1) to aqueous solution (e=80). The non-polar contribution (AAGnonpol) can be

estimated according to the following empirical relation, which correlates the solvation

free energies of non-polar solutes to their solvent accessible surface area:18, 19

AAGnonpo = CAA (6)

where AA is the difference in solvent accessible area between Ll and L2. AA was

calculated with Connolly's MS program” using van der Waals radii from the Cornell et

al. force field,” o is the empirical solvation parameter and we used a value of 5 cal mol"

A* in this work. The same structures as for the GB/SA calculations (above) was used for

estimations of AGsolv.
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A corresponding calculation of the relative free energies in the bound state (AAGbound)

involves an estimation of the difference in solvation free energies between LIP and L2.P.

This is very difficult in practice since these energies are large numbers and subtracting

them might result in large errors. Therefore, as a first approximation, we estimated the

polar contribution to AAGbound simply as the difference in reaction field energy on the two

ligands (L1 and L2) in the protein [AG...". (L.P)-AG..." (LP)] plus the differencereact, Li

in ligand-protein electrostatic energy (AAGligºprotelec). A more rigorous PB calculation

would also include the intramolecular energies of the protein-ligand complexes and of the

free ligands. However, the intramolecular energies of the proteins in the protein-ligand

complexes are large numbers and might add large errors when subtracting them. We

assume therefore to a first approximation that these energies cancel then forming the

difference between the complexes. Moreover, the intramolecular energies of the free

ligands are sensitive to their conformation and a correct inclusion of these energies would

thus require multiple conformations of the ligands, generated, for example, by using MD

simulations. This would make the PB method relatively slow and tedious and since we

are interested in rapid, approximate methods that are able to rank the derivatives, we only

use one conformation in solution and assume to a first approximation that the relative

intramolecular energies of the ligands cancel in the protein and in solution, respectively.

Finally, since the TIBO derivatives are completely buried in the hydrophobic binding

pocket (i.e. their accessible surface areas are zero), the non-polar contribution can simply

be estimated as the difference in ligand-protein van der Waals energy (AAGligºprot, vow).

The resulting simplified expression for AAGbound is thus:
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AAGonna - AG...". (LP)
-

AG. (LP) + AAGº-poºl. + AAGº-poºl. (7)

The resulting relative free energies of binding (AAGbind) are then estimated from the

difference AAGbound-AAGsoly. The 13 different TIBO - HIV-1 RT complexes were further

minimized, now with flexible residues, water molecules and counterions as in the MD

simulations (see above). Prior to the PB/SA calculations, all water molecules and

counterions were removed.

Free energy calculations (TI and FEP). To estimate the relative binding free

energies (AAGbind) of two TIBO derivatives (L1 and L2) to HIV-1 RT (P) we made use of

the following thermodynamic cycle:

AG,
Li + P− LP

AG, AG, (8)

AG,
L., + P— L., P

where AG, and AG, are the experimentally determined” binding affinities. Since G is

a state function the following applies:

AAGang = AG, - AG = AG, - AG, (9)

where AGb and AGs are calculated with the TI or FEP methods (see below).
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Except for one set of calculations (described below) we used the TI algorithm to

estimate AGb and AGs (eq. 8). In this method a coupling parameter A is introduced, which

varies from A=0 [for L1(P)] to A=1 [for L2(P)]. The free energy change is then evaluated

according to:

} /9 H(AAc-■ ; '), (10)

where H(A) is the potential energy of the system as a function of the coupling

parameter A and < P, is an ensemble average at A. The integral is evaluated numerically

from a number of evenly spaced windows (spacing = AA) with A values ranging from 0 to

1. <0H(A)/07'>, is calculated by averaging over molecular dynamics trajectories run at a

certain number of steps in each window. The calculations were run with the AMBER 4.1

program “GIBBS” and we applied the same parameters and protocol as for the MD

simulations (above). Starting with the equilibrated systems of 8Cl-TIBO in HIV-1 RT

and in solution, respectively, the 8-chloro atom was perturbed into a hydrogen (R82150).

We continued with a perturbation where the position of the chlorine was changed from 8

to 9 (i.e. R86183 to R82913, see Table I). A window size (AA) of 0.02 was used, i.e. 51

windows in the A-interval [0,1] and for TIBO in solution each window was equilibrated

for 2 ps prior to a data collection time of 5 ps per window. The corresponding

equilibration/data collection times for TIBO in HIV-1 RT were 3 ps and 8 ps,

respectively. In the final, full free energy calculation of derivatives with experimentally

known binding affinities, we perturbed the sulfur of R82150 into an oxygen (R80902,
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Table I). In the first set (1b and 1s, respectively, see Table II), we used the same

parameters and protocol as for the perturbations described above. This yields a AAGbind

(R82150 - R80902) = +1.7 kcal/mole which is far from the experimental value of -2.69

kcal/mole. This perturbation involves much larger changes in the electrostatics than the

two previous and the free energy change might thus be more sensitive to the treatment of

long-ranged electrostatics as well as the local counterion configuration. We therefore

changed the protocol as follows (set 2b and 2s, respectively): for TIBO in HIV-1 RT we

added counterions (CI) at salt-bridges that were truncated during the setup of the TIBO

HIV-1 RT system (see above) to obtain a net electroneutral system. One of the

counterions was constrained to be 3.8 Å from the sulfur/oxygen, since three lysine

residues are very close to this part of TIBO (two of them are shown in fig. 1). The non

bonded cutoff was increased to 10 A and all interactions with TIBO closer than 100 A

were included (i.e. all atoms in the system). Since the perturbation of set 1 was well

converged we decreased the equilibration and data collection times to 2 and 5 ps per

window, respectively, and we ran the remaining perturbations only in one direction. For

TIBO in solution (set 2b), we eliminated possible discrepancies between free energy

estimates from a periodic box of water and the “cap” protein simulation, by instead

simulating TIBO in a 20 Å radius sphere of TIP3P water. Also here, we applied the

10/100 A cutoff as described above. Set 2 gives a slightly lower free energy difference

(0.7 kcal/mole) than set 1, but is still relatively far from the experimental value. Next, we

suspected that the non-bonded parameters of the sulfur atom, which have been developed

for sp'-sulfur” might contribute of the erroneous value that we obtain. Therefore, R was

changed from 2.0 to 1.9 and e from 0.2 to 0.381, which results in a slightly smaller sulfur
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atom but with an unchanged repulsive contribution to the vdW energy (set 3b and 3s,

respectively). With these parameters (and with the same protocol as in set 2) we obtain a

relative binding free energy of -0.4 kcal/mole, which is considerably closer, but still

relatively far away, from the experimental value. The vdW contribution to the free energy

(AGodw) is very sensitive to the choice of non-bonded parameters, as is seen from Table

II. A further reduction of R to 1.844, which with e=0.55 gives an unchanged repulsive

contribution to the vdW energy (set 4b and 4s, respectively), results in a relative binding

free energy of -1.0 kcal/mole, which is closer to the experimental value. It does not make

physical sense to reduce R further.

Similarly, differences in free energy of solvation (AAGsov) for two TIBO derivatives

can be estimated from the following thermodynamic cycle of the derivatives in gas phase

(g) and in solution (aq), respectively:

AG,
Li(g) — Li (aq)

AG, AG, (11)

AG.
L., (g)— L, (aq)

and AAGsov is obtained from the relation

AAG. = AG. - AG = AG, - AG, (12)solv
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AG, was calculated by perturbing the TIBO derivatives in vacuo with the same AW,

equilibration and data collection times as when calculating AG, above.

Finally, we performed perturbations on the next best binding TIBO derivative -

"HET" - according to both the adaptive CMC/MD and the PB calculations. Starting from

a 500 ps MD equilibration of the HIV-1 RT - HET complex (same parameters and

protocol as for 8Cl-TIBO in HIV-1 RT), HET was perturbed into 8Cl-TIBO in two steps

(see fig. 3). In the first step the cyclohexyl ring was perturbed into dummy atoms and to

avoid the singularity when these atoms disappears at A=1, we used a soft-core non

bonded potential energy function.52, 53 For atoms that disappears at A-1, this function

has the form:

An B, Qiqi
V, -(1-2)). *—— J + —tº (13)

- -
2 6 \" 2 6 2

1<J (al■ o,4 +r■ ) (al■ o,4 +r■ ) 4ne■ o. A + i)

where OLJ and Oc are the soft-core parameters for the Lennard-Jones and the

electrostatic terms, respectively. We used values of OL}=0.5 A and ol=15.0 A*, that

previously54 has been found suitable. This function is identical to the regular AMBER

non-bonded potential function at the perturbation endpoints (A=0 and A=1), and they

should thus give identical results. The function has the advantage of smoothing the

interactions at short interatomic distances, which results in a well-behaved AG(A)

function. We used the slightly different free energy perturbation (FEP) scheme for this
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step, since the soft-core potential energy function currently is implemented only for that

method. The FEP method relies on the following master equation instead of eq. 10 for TI:

l –|H(A+6A)-H(A)|AG-X-rri■ . %) (14)A=0 A.

For this perturbation we used the same AA and equilibration/data collection times in

solution and protein, respectively, as above. The partial charges of HET were also

perturbed into those of 8Cl-TIBO in this step. Bond potential of mean force (pmf)

calculations cannot be performed when changing bond lengths of systems belonging to

closed rings (as here), when using the FEP method. We therefore kept all bond lengths at

their initial values by keeping the atoms bound to positions 8 and 9 in HET (see fig. 3) as

carbons (atom type CT). In the second step, the two carbon atoms at positions 8 and 9

were perturbed into 8Cl and 9H, respectively, using the TI method. AM in step 2 was

increased to 0.05 and the equilibration/data collection times in solution was chosen to 3

and 8 ps, respectively. The corresponding times in the protein were prolonged to 4 and 10

ps, respectively. Instead of running the perturbations forward and reverse, as in the

previous perturbations, we performed two forward (i.e. HET – R86183) perturbations

(run 1 and 2), which differ by an equilibration of 100 ps of HET in HIV-1 RT and in

solution, respectively.

Test of chlorine parameters. To test whether the van der Waals parameters for

chlorine, that were adopted from chloroform,34 also could be used for the TIBO
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derivatives, we estimated the relative free energy of solvation (AAGsov) between benzene

and chlorobenzene. Partial charges of these two compounds (Table III) were obtained

from RESP fits” of the 6-31G* electrostatic potentials, calculated with the program

Gaussian%.36 Benzene was perturbed into chlorobenzene using the TI method. We used

a window size (AA)of 0.01 with equilibration and data collection times of 1 ps in each

window for both the perturbation in solution and in vacuo. Non bonded interactions were

cut off at 9 A and a time step of 2 fs was used. For the perturbation in solution benzene

was immersed in a box of TIP3P water40 of dimensions 25 x 27 x 21 A' and equilibrated

for 50 ps

RESULTS

PROFEC contour maps. We were able to extract meaningful information from the

PROFEC contour maps centered around C4 and C18 (fig. 4). Fig. 4 (top) shows the zero

level (i.e. AAGins=0) PROFEC contour map centered around atom C4. The cavity around

C4 suggests that addition of an atom/group would improve the binding of the inhibitor.

Therefore, we added a methyl group in a cis position relative to the methyl group at

position 5 and we denoted this derivative 45MeT (see Table I). The contour map also

partly overlaps the methyl group at position 5 and since it is unfavorable to have groups

Outside the “cage’ formed by the contour map (see fig. 4, top), a removal of this methyl

group was predicted to improve binding. Thus, for the following two compounds we

removed the C5 methyl group and in one of these, we kept the methyl at the C4 position

(4MeT). In the other, we added a chlorine in the C4 position (4CIT), since 0AAGin■ oq

(see “Methods”) is positive in the map around the C4 cavity (blue in fig. 4), suggesting
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that the added group/atom should be electronegative. There is also a cavity around the

atoms at positions 8 and 9, as seen from the contour map centered around C18 (fig. 4,

bottom) and the multicolored plot suggests that the added group should be electroneutral.

We added two new substituents at this position - a cyclohexyl group and a benzene ring

condensed at positions 8 and 9 - and these compounds are denoted “HET" and “BET',

respectively (see Table I).

Adaptive CMC/MD. Adaptive CMC/MD were run for two sets of derivatives and

the first set consisted of R86183, R82913, R84963, R80150, R84194, R80902, HET,

BET, 4MeT and 4CIT (see Table IV). The free energies of solvation (AGsov) were

subtracted from the energy “offsets” (see “Methods”), that were obtained from the 450 ps

simulation, and the relative free energies of binding are shown in Table IV. The values of

AGsoly, that were estimated from GB/SA calculations, are shown in Table V. From the

first adaptive CMC/MD run we note that R80902 is clearly ranked as being the poorest

inhibitor, in agreement with experiments, and we therefore discarded this compound in

the next set. Moreover, HET and the similar BET were shown to be tight binding

inhibitors (HET is about 2 kcal/mole better than R86183), so we discarded also these two

derivatives in the next run. In set 2, the three discarded compounds were replaced with

two derivatives with experimentally known binding affinities, R87027 and R84674, and

we also included one new compound (45MeT, see Table I). The second set was run for

560 ps and for derivatives present in both sets we averaged the two estimates of the

relative binding free energy. The rank order of the 8 different TIBO derivatives with

known experimental binding affinity according to adaptive CMC/MD is in good
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agreement with experiments (Table IV and fig. 5, top) with an unsigned average error of

the relative binding free energy of 1.0 kcal/mole. In this context, we should however

point out that discrepancies between computed and experimental values also can be due

to an imperfect agreement between HIV-1 RT activity and binding affinity, caused by

differences in cell penetrating ability and metabolic stability between the TIBO

derivatives. The three best binding derivatives, according to experimental results, were

also ranked as the three best among the inhibitors with known binding affinity (bold

numbers in Table IV). The binding free energy of R87027 and R84674 have both been

underestimated with the adaptive CMC/MD method, which erroneously ranks then as

better binders than R86183. The next three derivatives have almost the same

experimental binding affinity, and they are also ranked between 4 and 6 among the

derivatives with known experimental binding affinities. Finally the two derivatives with

poorest experimental binding free energy, R84194 and R80902, have also been ranked as

the worst binders among the derivatives with known binding affinity according to the

adaptive CMC/MD method. Among the new derivatives, HET is ranked as being the best

with a binding free energy of 2 kcal/mole better than R86183. BET is also one of the

better inhibitors, whereas the other three PROFEC compounds were found to be poor

binders.

PB/SA calculations. AGsoly, as estimated with the PB/SA calculations (see

“Methods”) are in reasonable agreement with those obtained from the GB/SA method

(Table V). The relative solvation free energies (AAGsov), which is the property of interest

in this comparative study, have an average (unsigned) error of 0.4 kcal/mol between the
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two methods. Also from the PB/SA calculations, we obtain a relatively good agreement

with the experimental rank order of binding to HIV-1 RT (Table IV and fig. 5, bottom)

and the unsigned average error is 1.3 kcal/mole. The binding free energy of the derivative

R84914 has been underestimated and it thus has a too favorable ranking. When omitting

this derivative, the rank order among the derivatives with known binding affinity

coincides with that of the experiment except for R87027 and R84674, where the rank

order is reversed. The derivative 45MeT is ranked as being the best binding derivative,

closely followed by HET, which according to this method is ranked as number 2. BET is

also a good binder with this method whereas 4MeT and 4CIT are both poor binding

inhibitors as also was found in the adaptive CMC/MD method. We will discuss possible

reasons for the large discrepancy between the two methods for 45MeT below. Dissecting

the terms of AGbound (see “Computational Methods”) we find that the vdW energy

between the derivative and HIV-1 RT (Table VI) is the most favorable of all derivatives

for HET closely followed by 45MeT and BET. From this table it is also apparent that the

vdW energy is the most important term, determining almost solely the strength of the

binding the derivatives to HIV-1 RT. This is expected since most of the variation

between the derivatives consist of modifications to hydrophobic groups.

Free energy calculations (TI and FEP). The relative free energies of solvation

(AAGsov) for R86183, R82150 and R80902 as estimated with the TI method (Table VII)

are all well converged and in qualitative agreement with those estimated from the GB/SA

and PB/SA calculations (Table V). A much poorer convergence is found for the

perturbations in HIV-1 RT in spite of the prolonged equilibration and data collection
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times (Table VIII). In both the R82150—R86183 and R82913–R86183 perturbations the

vdW interaction is almost solely responsible for the hysteresis between the forward and

reverse runs. We also note that differences in vdW interactions are responsible for the

difference in binding free energy between R86183 and R82150. This is consistent with

that these interactions are dominating the differences in binding free energies as found

from the PB calculations (Table VI). Considering that TIBO is bound in a pocket, with

predominantly hydrophobic and aromatic residues (see fig. 1) it is not surprising that

differences in binding strength are governed by vaV interactions. The relative binding

free energy of -1.9-HO.5 kcal/mole that we obtain is in close agreement with experimental

results?2 (-1.34 kcal/mole). In the R82913–R86183 perturbations, the contributions to

the differences in binding affinities are shared between vdW and pmf contributions,

whereas the electrostatic contribution to the difference in binding affinity is negligible.

Here, we get a AAGbind of -3.2+0.5 kcal/mole, in qualitative agreement with experiments

(-1.17 kcal/mole).

The relative free energy of perturbing HET to R86183, via the intermediate (see fig.

3) is estimated to -0.8+0.7 kcal/mole (Table IX). This agrees with the other two methods,

supporting the prediction that HET should have improved affinity for HIV-1 RT

compared to the parent compound R86183. A comparison of the individual contributions

to the stability, summing over both steps of the perturbation, shows that HET is a tighter

binder mainly because of a stronger vdW interaction (Table IX). This is also consistent

with the PB/SA calculations, where the inhibitor-protein vdW interaction energy was

strongest for HET.

| | 1



Test of chlorine parameters. The results from the TI calculations are well

converged, with very close values for the forward and reverse runs (Table X). We obtain

a AAGsov (benzene - chlorobenzene) of -0.19 + 0.06 kcal/mole which is in reasonable

agreement with the experimental result:35 of 0.12 kcal/mole.
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DISCUSSION

The “full” free energy calculations on TIBO derivatives with known experimental

binding affinity were performed as an initial check whether it was possible to reproduce

the relative binding affinities with the most rigorous method prior to applying the more

approximate approaches to this system. In spite of the relatively poor convergence for the

R82150 — R86183 and R89193 — R86183 perturbations, they both give reasonable

estimates for the relative free energy. However, we were only able to qualitatively

reproduce the relative binding free energy of R80902 versus R82150, with significant

changes in the non-bonded parameters of sulfur (described in the “Computational

Methods” section). These calculations find that the non-bonded interactions of the sulfur

atom are strongly contributing to the erroneous result we obtained for our initial set of

parameters (Table II). Since our initial non-bonded parameters for sulfur was the same as

used in cysteine and methionine, it is not unreasonable that the non-bonded parameters

for spº-sulfur (as in TIBO) have a smaller R and a larger e than found for an sp' single

bonded sulfur. However, even with the modified sulfur parameters there is a significant

quantitative difference (1.7 kcal/mole) between calculated and experimental AAGbind for

R80902 — R82150 (C=O – C-S). Interestingly, the PB/SA and CMC/MD methods both

estimate this AAGbind in close agreement with the experimena value (Table IV) even

with the initial set of sulfur non-bonded parameters. We do not understand why the “most

rigorous” approach is less accurate in this regard, but this is further support for the use of

multiple methods to make binding free energy predictions.

The derivatives 4MeT and 4CIT are both estimated as being poor binders in spite of

the fact that we would expect them to bind better than R86183 from the PROFEC contour
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maps. However, it is not obvious that the cavity that was found around atom C4 is present

when the C5 methyl group is also removed. Since the contour maps are based on

simulations of a single parent compound (R86183), they give no information about what

would happen with the cavity if other changes are made to the inhibitor. Comparing the

minimized structures of 45MeT, 4MeT and 4CIT from the PB calculations, we also

observe small tendencies for the two latter derivatives to be pushed away from the

original cavity at position C4. This is probably also reflected when comparing the

inhibitor-protein vdW energies (Table VI). Both 4MeT and 4CIT have unfavorable vaW

energies compared to 45MeT which is the major reason for their poor binding according

to the PB calculations. The high solubility of 4CIT (Table V) makes this inhibitor an even

weaker binder. The very tight binding of 45MeT that was predicted by the PB method is

not consistent with the results from the adaptive MC/MD runs, where this derivative

instead is estimated as being a poor binder (Table VI). This discrepancy illustrates one of

the most severe problems with the adaptive CMC/MD as currently implemented. Within

the limited time of sampling, certain derivatives might be over- or undersampled, due to

the fact that the binding mode of one derivative might not be favorable for another

derivative. Therefore, during the course of the CMC/MD run, a certain derivative may

never (or rarely) interact optimally with the protein, especially if such an interaction

would require rather large structural changes of the protein. This might be the case for

45MeT, in that rearranging nearby protein residues for an optimal interaction is a slower

process than can be caught within our sampled time of 560 ps. The oversampling of

R87027 (leading to a too favorable relative binding free energy) is most probably an

example of the same problem, but reversed. The surrounding side chains of the protein
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have to rearrange in order to accommodate the relatively long “tail” of R87027 that

results from the two added methyl groups (see Table I). When performing an MC step

with R87027 as the sampled inhibitor, it might be difficult for the other derivatives to

find an optimal conformation of the protein, resulting in rejections of these trial steps (see

“Computational Methods”). The algorithm might therefore get temporarily “stuck”

sampling R87027 due to incompatible binding modes, leading to an overestimation of its

binding free energy. The “adaptive” CMC/MD version was partly constructed in order to

overcome this problem and it is an improvement over the non adaptive protocol, where

the convergence was extremely slow for this system. However, convergence of the

calculated free energies is still hampered by the problem described above. This difficulty

might further be reduced by adding multiple conformers (rotamers) of some critical side

chains of the protein and also permitting them to participate in the CMC sampling. Work

is currently in progress (J. Pitera) to implement multiple copies of protein side chains, in

order to improve the convergence rate. Another observation, comparing set 1 and 2, is

that the relative binding free energies are consequently higher in set 2 (except for 4CIT).

The stems from the fact that the “reference derivative”, R86183, is being estimated as a

relatively better binder in set 2 than in set 1, which thus shifts the relative free energies of

all the other compounds.

Most encouraging is that we find HET to be a much better binder than R86183 with

both the adaptive CMC/MD and the PB/SA method. “Full” free energy calculations also

support this prediction (albeit less clearly due to the large error estimate), lending support

to the conclusions of the other two methods. The physical picture of HET binding to

HIV-1 RT also suggests that this affinity is plausible. The hydrophobic cyclohexyl
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moiety of TIBO fits very well into a pocket, composed of many hydrophobic side chains;

Val106, Tyr188, Phe727 and Leu234 (fig. 6). This is also consistent with the calculation

that HET has the highest vily interaction with the protein of all compared derivatives.

Coupled with a more unfavorable solvation free energy, this yields a much greater

affinity for HIV-1 RT than the parent compound, R86183.

From this study is it not possible to judge which of the two approximate methods

(adaptive CMC/MD and PB/SA) performs best in ranking the derivatives with respect to

the binding free energies since both methods have their strengths and shortcomings. In

CMC/MD, on one hand, the solvent with counterions is modeled explicitly and a large

number of conformations are sampled, but as now implemented suffers from the slow

convergence when the sampled inhibitors have differing binding modes. The PB/SA

method, on the other hand, does not suffer from that problem, but the solvent is instead

approximately described as a continuum and we only consider one conformation of the

ligand and the complex, respectively. Since the two method have different sets of

approximations we feel that they complement each other and that a consistent result

between them increases its validity.
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CONCLUSIONS

In this study we have used two methods in order to rank 13 different TIBO

derivatives - the adaptive CMC/MD method and PB/SA calculations. Five of these

derivatives were new modifications, that were made from suggestions generated by

PROFEC contour maps. The rest of the TIBO derivatives have experimentally

determined” binding affinities. Both methods work surprisingly well, yielding rank

orders in good agreement with experimental results. Since the two methods are quite

different in nature, each with their own sets of approximations, they serve as a good

complement to each other. That is, if both methods predict the same rank order, the

reliability of this prediction will significantly increase. The methods are also relatively

rapid - a total of 0.8 ns simulation time was needed in order to rank the 13 TIBO

derivatives with the adaptive CMC/MD method. To put this in perspective, considerable

simulation times (1.1 ns or more) were required in order of obtain an estimate of the

relative binding free energy between only one pair of derivatives with a FEP/TI

calculation. We found that one of the new modifications (HET), as suggested from

PROFEC, was binding about 1-2 kcal/mole better than R86183 according to both

methods. This result was confirmed with subsequent FEP/TI calculations. The

hydrophobic cyclohexyl moiety that was added to TIBO fits well into a cavity in HIV-1

RT that consists of many non-polar residues. This is also consistent with the observation

that HET has the most favorable vöW interaction with HIV- RT among the TIBO

derivatives studied.
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The protocol we have used in this paper (outlined in fig. 2) is a general strategy for

computational structure-based lead optimization. While we have not considered crucial

pharmacological issues like bioavailability and toxicity, our approach appears to be

useful for optimization of affinity. Starting from a parent lead compound (or a family of

compounds), PROFEC can be used to suggest where modifications of the lead should be

made to improve the binding affinity of the lead compound. PB/SA and adaptive

CMC/MC can then be applied for ranking of the PROFEC derivatives, preferably

together with derivatives of known binding affinity if such are available. Thereafter

FEP/TI can be used to study particularly interesting derivatives and to confirm results

from the more approximate methods, followed by synthesis and in vitro testing of the

best binding derivative(s). However, as one reviewer noted, the expense of FEP/TI

calculations suggests a revised strategy, where the compounds selected by CMC/MD and

PB/SA are synthesized and tested, without carrying out a FEP/TI calculation. We agree

that one can simply use any predictions from PROFEC, CMC/MD, or PB/SA directly,

but if significant synthetic efforts are required, it is certainly worth a confirmatory

calculation with FEP/TI to see if such efforts are justified. Regardless of whether FEP/TI

calculations are used, we feel that the strategy used in this paper provides an excellent

blueprint for lead optimization in structure-based drug design.

SUPPORTING INFORMATION

Partial charges of the 13 TIBO derivatives (2 pages).
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Table I. The selected set of TIBO derivatives.

2^lo

8 S”
b

9
2:- 10

/ 8 S 7aR5 a C

R5

Compound R R2 R3 RA R5 R6 ECso (nM)'
R861.83 8-Cl S H CH3 H H 4.6
R829.13 9–Cl S H CHA H H 33
R821.50 H S H CHA H H 44
R80902 H O H CH3 H H 4200
R84674 8-CH3 S H CH3 H H 14
R84963 H S H CHA H -CH3 (trans)" 39
R84914 H S H CH3 H -CH3 (cis)" 790
R87027 8-Cl S H CH, CH3 H 5.1
45MeT 8-Cl S CH, CH3 H H
4MeT 8-Cl S CH3 H H H
4CIT 8-Cl S Cl H H H
HET b S H CHA H H
BET C S H CHA H H

ref. 32
"relative stereochemistry of the methyl groups at positions 5 and 7.
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Table II. Free energy perturbation (TI), R80902 — R82150 using various protocols and
parameters. The free energies are in kcal/mole.

in HIV-1 RT in solution
set 1b' Set 2b Set 3b Set 4b set is set 2s Set 3S Set 4s

AGot 27.92 27.00 24.54 23.03 26.20 26.29 24.91 24.03
+0.01 +0.05

AGelsat 23.82 22.61 23.07 22.92 23.14 23.06 22.95 22.86
+0.03 +0.03

AGvdw 3.03 3.58 1.13 0.24 3.01 3.08 1.89 1.08
+0.01 +0.02

AGomf 1.07 0.81 0.35 –0. 13 0.05 0.015 0.076 0.089
+0.04 +0.04

"Set 1b: dual cutoff (9/13 A) SA=0.02, tº-3 ps, tamp = 8 ps; Set 2b: cutoff 10 A, cutoff

for TIBO 100 A, electroneutral system, one CI constrained to be 3.8 Å from

sulfur/oxygen atom in TIBO, 6A=0.02, teq-2 ps, tsampl= 5 ps; Set 3b; as set 2, but with R"

changed from 2.0 to 1.9 and e from 0.2 to 0.381; Set 4b; as set 2, but with R’=1.844 and

e=0.55; Set 1s: as set 1b, but in a water box of water and with te=2ps, tsampl= 5 ps; Set

2s: as set 1s, but in a water sphere with radius 20 Å and cutoff 10 A, cutoff for TIBO 100

A; Set 3s; as set 2s, but with R' changed from 2.0 to 1.9 and e from 0.2 to 0.381; Set 4s:

as set 2s, but with R =1.844 and e=0.55.
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Table III. RESP derived 37 partial charges for benzene and chlorobenzene.

atom q (benzene) q (chlorobenzene)
1C -0.146 –0.033

1H/Cl 0.146 –0. 115
2C –0.146 –0.053
2H 0.146 0.133
3C -0.146 –0.156
3H 0.146 0.147
4C –0.146 –0. 145
4H 0.146 0.150



Table IV. Binding free energies (relative to R86183, kcal/mole) and rank order of
binding to HIV-1 RT according to adaptive CMC/MD, PB calculations and
experimental?? values.

derivative
R861.83
R87027
R84674
R829.13
R84963
R82150
R84914
R80902

HET
45MeT

BET
4MeT
4CIT

adaptive CMC/MD
AAGbind

(0^+0")/2=0
-2.56°
–0.74°
(0.69°41.70°)/2=1.19
(-0.12^+1.28")/2=0.58
(0.67°4.1.15°)/2=0.91
(0.78°+2.01")/2=1.39
3.71°
- 1.94°
1.80°
0.50°
(1.11°41.74")/2=1.42
(2.02°41.58")/2=1.80

rank

4 (3)
1 (1)
3 (2)
8 (6)
6 (4)
7 (5)
9 (7)
12 (8)

11

10
11

PB
AAGbind rank

O 3 (1)
1.87 7 (4)
0.21 5 (2)
2.24 8 (5)
2.31 9 (6)
2.67 11 (7)
0.86 6 (3)
5.19 13 (8)
-1.28 2
-1.47 1
0.09 4
2.36 10
4.19 12

experimental
AAGbind rank

O 1
0.06 2
0.66 3
1.17 4
1.27 5
1.34 6
3.05 7
4.04 8

* set 1,450 ps adaptive CMC/MD
"set 2,560 ps adaptive CMC/MD
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Table V. Estimated AGoly (kcal/mole) of the TIBO derivatives, using GB/SA-, PB/SA
and TI- calculations,

TIBO
derivative

R861.83
R821.50
R829.13
R80902
R84674
R84963
R84914
R87027

4CIT
4MeT

45MeT
HET
BET

AGsov
GB/SA

-5.14
–5.50
–5.21

, -7.12
–4.48
–4.38
–5.20
-4.99
–6.41
-4.96
–4.45
–4. 19
–5.28

AGsov
-

AGsoly(R86.183)
GB/SA

O
-0.36
–0.07
- 1.98
0.66
0.76
–0.06
0.15
- 1.27
0.18
0.69
0.95
-0.14

AGsov
PB

–3.92
–4.18
–4.18
–5.00
–3.99
–4.30
–3.89
–3.69
–4.86
–3.87
–3.59
–3.43
–4.27

AGsov
-

AGsoly(R86.183)
PB

O
-0.26
-0.26
- 1.08
–0.07
–0.38
0.03
0.23
–0.94
0.05
0.33
0.49
–0.35

AGsov
AGsoly(R861.83)

TI
O

–0.73
-0.60
-3.04
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Table VI. Energy quantities (kcal/mole, eq. 5 and 7) for calculation of binding free
energies, according to the PB/SA-method.

derivative AG. (LP ) AG, –prot, valw AG, –prot,elec AGsov AGbind
R861.83 0.175 –52.71 –6.45 –3.92 –55.06
R87027 0.209 –50.64 –6.47 –3.69 –53.19
R84674 0.505 –52.05 –7.30 –3.99 —54.86
R829.13 0.555 –51.00 –6.56 –4.18 –52.82
R84963 0.460 –50. 12 –7.40 –4.30 -52.76
R821.50 0.520 –49.84 –7.26 –4.18 –52.40
R84914 0.447 –51.50 –7.04 –3.89 –54.20
R80902 0.378 –48.95 –6.30 –5.00 –49.87

HET 0.520 –53.00 –7.29 –3.43 –56.34
45MeT 0.307 –52.87 –7.56 –3.59 -56.53

BET 0.505 –52.76 –6.99 –4.27 -54.97
4MeT 0.294 –49.52 –7.35 –3.87 -52.71
4CIT 0.196 –48.52 –7.41 –4.86 -50.87
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Table VII. Relative solvation free energies (kcal/mole) of a selected set of TIBO
derivatives estimated with the TI method.

a/ R82150 – R86183:
in solution in vacuo

fwd rev aVg fwd rev aVg
AGot 1.531 1.691 1.611 0.858 0.905 0.882

+0.080 +0.023
AGºlsa 2.522 2.697 2.609 1.843 1.848 1.846

+0.072 +0.002

AG, dw 0.699 0.703 0.701 1.319 1.202 1.261
+0.002 +0.059

AGm■ -1.690 -1.709 -1.700 -2.303 -2.145 -2.224
+0.010 +0.080

AAGsov (R86183- R82150) = 0.73+0.08 kcal/mole

b/R82913 — R86183:
in Solution in vacuo

fwd rev aVg fwd rev aVg
AGot 1.658 1.787 1.722 1.113 1.08.1 1.118

+0.064 +0.006

AGelsat 1.341 1.377 1.35 1.134 1.140 1.137
+0.018 +0.003

AGvdw 1.677 1.750 1.714 1.595 1.605 1.600
+0.036 +0.005

AGm■ -1.358 -1.341 -1,350 -1.616 -1.621 -1.618
+0.009 +0.003

AAGsov (R86183- R82913) = 0.60+0.06 kcal/mole

c/ R80902 — R82150:
in solution in vacuo

fwd reW aVg fwd rev aVg
AG, 26.148 26.250 26.199 || 23.87 23.903 23.886

+0.051 +0.016

AG, a 23.111 23.174 23.142 22.052 21.964 22.008
+0.032 +0.044

AGvdw 3.024 2.986 3.005 0.549 0.456 0.502
+0.019 +0.046

AGpmf 0.013 0.090 0.052 1.269 1.480 1.374
+0.038 +0.106

AAGsov (R82150 - R80902) = 2.31+0.05 kcal/mole
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Table VIII. Relative free energies (kcal/mole) of binding to HIV-1 RT for a selected set
of TIBO derivatives estimated with the TI method.

a/ R82150 – R861.83

in HIV-1 RT in solution

fwd reW aVg fwd reW aVg
AGo -0.777 0.127 –0.325 1.531 1.691 1.611

+0.452 +0.080

AGelsat 2.707 2.202 2.454 2.522 2.697 2.609
+0.253 +0.072

AG, aw -1.653 -0.271 -0.962 0.699 0.703 0.701
+0.691 +0.002

AGºt -1.832 -1.727 -1.780 -1.690 -1.709 -1.700
+0.105 +0.010

AAGhind (R86183 - R82150) = -1.940.5 kcal/mole, experimental value:32 -1.34

b/ R82913 — R861.83

in HIV-1 RT in solution

fwd rev aVg fwd rev aVg
AGo. –2.109 -0.784 - 1.447 1.658 1.787 1.722

+0.662 +0.064

AGelsat 1.131 1.372 1.25 1.341 1.377 1.35
+0.12 +0.018

AG, aw -0.658 0.091 -0.28 1.677 1.750 1.714
+0.37 +0.036

AGºmi -2.582 -2.247 –2.41 - 1.358 - 1.341 - 1.350+0.17 +0.009
AAGhind (R86183 - R82913) = -3.2 +0.7 kcal/mole, experimental value:32 -1.17
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Table IX. a■ A two-step (see, fig. 3) free energy calculation of R86183 – HET. The
energies are given in kcal/mole.

step 1 (FEP)
in HIV-1 RT in Solution

Run 1 run 2 Avg run 1 run 2 aVg
AGot -4.043 -5.333 -4.668 || –2.830 -2.232 -2.531

+0.645 +0.299
AGºla -3.475 -4.308 -3.892 || -3.094 -3.178 -3.136

+0.417 +0.042

AG, aw -1.723 -2.403 -2.063 -0.657 0.268 -0.194
+0.340 +0.462

AG14vdw 2.854 2.818 2.836 3.020 3.021 3.020
+0.018 +0.001

AGaelsat -1.655 -1.410 -1.532 || -2.094 -2.088 -2.091
+0.122 +0.003

step 2 (TI)
Run 1 run 2 Avg run 1 run 2 aVg

AGot 1.963 2.324 2.144 0.838 0.806 0.822
+0.180 +0.016

AGvdw 0.513 0.719 0.616 || -0.088 –0.133 –0.110
+0.103 +0.022

AG14vdw 1.048 1.036 1.042 0.860 0.897 0.878
+0.006 +0.018

AGºd,” 0.027 0.021 0.024 0.020 0.035 0.028
+0.003 +0.008

AGm■ 0.389 0.556 0.472 0.050 0.010 0.075
+0.083 +0.020

'see “Computational Methods”.

"free energy contribution from bonds, angles and dihedrals.

b/summary table from the two perturbation steps.

AGot (in HIV-1 RT) AGot (in solution) AGot (in HIV-1 RT)

- AGot (in solution)

step 1

step2

step 1 + step 2

–4.668+0.645

2.144+0.180

-2.524+0.670

–2.531+0.299

0.822+0.016

-1.709+0.299

–2. 137+0.711

1.322+0.181

–0.815+0.733

AAGbind (HET - R86183) = -0.82+0.73 kcal/mole.
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Table X. Thermodynamic integration, chlorobenzene — benzene. The energies are given
in kcal/mole.

in solution in vacuo

Fwd reW aVg fwd rev aVg
AGot 1.980 1.887 1.93 2.072 2.161 2. 12

+0.05 +0.04
AGelstat 0.764 0.600 0.68 1.485 1.486 1.485

+0.08 +0.001

AG, dw 0.905 0.931 0.92 0.150 0.151 0.15
+0.01 +0.001

AGm■ 0.311 0.356 0.33 0.437 0.525 0.48
+0.02 +0.04

AAGsov (benzene - chlorobenzene) = -0.19 +0.06 kcal/mole, experimental value 55: 0.12
kcal/mole.

129



Figure captions.

Figure 1.8Cl-TIBO (R86183, red) in HIV-1 RT. The non-polar (green) and polar

(white) residues shown have any atom closer than 3.5 Å from any TIBO atom. This is a

snapshot from the 500 ps MD simulation and some close water molecules are also shown

as blue spheres. This picture and the other molecular graphics images in this paper have

been created with the program MidasPlus.**

Figure 2. General outline of a procedure that can be applied as one of the final steps

in computational structure-based lead optimization. We have used this strategy for the

TIBO derivatives in this work.

Figure 3. The two-step perturbation of HET – R86183 (only the aromatic part of

TIBO is shown). DH and DC are dummy hydrogen and carbon atoms, respectively.

These atoms have the same masses are the original atoms, but no interactions with the

surrounding.

Figure 4. (stereo views) PROFEC3) contour maps (contour level, AAGns=0) around

R86183, centered around atom C4 (top) and 8Cl (bottom). Outside the cages that are

formed from the contour maps, is it unfavorable to add a particle (AAGins-0), whereas

inside, an addition of a particle improves the binding free energy (AAGins.<0). The color

of the map ranges from blue when 0AAGins/04 »0 to red when 0AAGins/04 × 0. Green and

yellow thus correspond to areas with 0AAGins/04 closer to 0. (see “Computational

methods”).
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Figure 5. Estimated binding free energies (kcal/mole) relative to R86183 according

to CMC/MD (top) and PB/SA (bottom) calculations, plotted against experimental

values.” The least-square linear fits are also shown in the plots.

Figure 6. A snapshot from the MD simulation of HET (red) in HIV-1 RT (white).

Hydrophobic residues with any atom 3 3.5 A from the cyclohexyl moiety atoms are

shown in green and water molecules are shown as yellow spheres.
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Chapter 6: Adaptive Chemical Monte Carlo/Molecular Dynamics

One weakness of our initial implementation of the CMC/MD method arises

directly from the use of observed populations to determine free energy differences.

Highly unfavorable species are virtually never sampled, while favorable species dominate

the sampling. It is difficult to determine free energy differences greater than 4–5 kcal/mol

from practical length simulations. This slow convergence of large free energy

differences led us to implement an iterative procedure – adaptive CMC/MD – to allow

our calculations to efficiently span a larger range of free energies.

Adaptive CMC/MD makes use of umbrella sampling offsets to decrease the

effective free energy difference between states. The offset necessary to eliminate the free

energy difference between two states is simply the opposite of that free energy difference.

However, we are trying to determine these free energy differences — we do not know

them before beginning our calculation. As a consequence, we implemented a simple

iterative procedure to determine these offsets over the course of a number of CMC/MD

TUInS.

The first residue is arbitrarily chosen as the reference state, and all free energies

and biasing offsets are determined relative to this residue. An initial unbiased CMC/MD

run is carried out, and the “Boltzmann” probability of each state is recorded. At the end

of the simulation these statistics are used to calculate the relative free energies of each

State:

AG (1 -> n) = -RT ln[P(n)/P(1)]
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These free energies are then used as biasing offsets for the next CMC/MD run:

Offset (n) = -AG (1 -> n)

Like the “solvation offsets” used in our host:guest calculation, these biasing offsets are

directly applied to the Monte Carlo sampling. In considering a trial move between states

I and J, the relevant energy difference is not

AE = E(J) — E(I)

But

AE = (E(J) + Offset(J)) – (E(I) + Offset(I))

Again, a CMC/MD run is carried out, but this time with biased sampling. The Boltzmann

probabilities are again accumulated, but corrected for the inclusion of the biasing offset.

This allows statistics from successive runs to be accumulated and added together, rather

than discarded. The correct Boltzmann probabilities are calculated without the offset

term, unlike the Monte Carlo sampling:

P’(I) = exp■ -E(I)/kT]/(X (J, J–1 to n) exp■ -E(J)/kT]}
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The probabilities from this run are added to those previously accumulated, and used to

calculate new free energies and offsets:

Potal(I) = P(I) + P’(I)

AG’(1 -> n) = -RT ln[Ptotal(n)/Ptotal(1)]

One continues with cycles of biased CMC/MD runs and adjustment of the biasing offsets

until the offsets appear to have converged – that is, they do not change significantly

between successive runs. This was generally evaluated by running a fixed number of

adaptive cycles, and graphically inspecting the resultant free energy offsets.

Ideally, one would continue each individual CMC/MD run for a time significantly

longer than the relaxation times of significant processes in the simulated system. In

water, this might be 20-40 picoseconds, while 50-100 picoseconds per run might be more

appropriate for an enzyme active site. Note that there is a good test for whether the

adaptive CMC/MD calculation has converged. Once the adaptive calculation appears to

be complete, the final offsets are taken and used in a single long non-adaptive calculation

(typically 10-100 times longer than the individual adaptive runs). If the offsets are

perfectly converged, the expected uniform distribution of populations will result.

Otherwise, the free energy difference between states can be calculated as usual. This

value, corrected for the offsets, yields the best determination of the free energy

difference.
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A graphical depiction of this iterative procedure is shown in Figure 1. The

populations or free energy offsets are shown as histograms – observed populations are

white bars, free energies are grey bars, and black bars depict the biasing offsets. The

cycle starts at point A. The CMC/MD run (biased or unbiased) is point B. C depicts the

populations resulting from this run, and the corresponding free energies. Point D shows

the conversion of these free energies into biasing offsets to be fed into the next CMC/MD

run. Point E shows the ideal final result, a CMC/MD calculation with uniform population

distributions and converged offsets.

This iterative and adaptive procedure is related to several other types of free

energy calculations. Bennett's original acceptance ratio method determines the free

energy difference between two states I and J by determining the offset (C(I->J))

necessary to yield equal populations of those two states in a CMC/MD-like simulation.

In practice, however, acceptance ratio calculations are performed by performing two

separate simulations – one of each chemical state. During the simulation of state I, the

energy of state J is calculated and recorded. Similarly, during the simulation of state J,

the energy of state I is registered. These energies are then used to iteratively solve for the

free energy offset. Instead of using a simple exponential weighting to determine C(I-

>J),

<exp■ -AV(I->J) + C(I->J)]> = <exp■ -AV(J->I) + C(J->I)]>]

a Fermi–Dirac weighting

f(x) = 1/(1 + exp■ 3x])

is used:

<fLAV(I->J) + C(I->J)]>1 = <flAV(J->I) + C(J->I)]>]
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This modification means that small values of AV contribute more to the estimate of C

than large ones, which serves to minimize the estimated error in the calculation C(I->J)

for finite sample sizes. In the adaptive CMC/MD calculation, one determines the free

energy offsets directly by observing their effects on the MC sampling. While our

calculation is less efficient than the acceptance ratio method for comparing the free

energies of two species, it is more readily generalized to the multi-state case we are

interested in.

Similar statistical issues drove the development of another free energy method

related to our adaptive calculation — the Weighted Histogram Averaging Method, or

WHAM).2. WHAM was originally developed in the context of conformational free

energy differences or potentials of mean force, and provides a mechanism whereby

several separate simulations can be combined to give an accurate estimate of the free

energy change along a coordinate. WHAM is necessary since a single simulation can

usually only sample over a small range of the coordinate of interest. Thus, a number of

simulations dispersed evenly along the coordinate are often necessary to provide

complete sampling. Each sub-simulation will give a good estimate of the free energy in

the region it samples and a poor estimate for free energy values outside that region.

Reconstructing the overall free energy difference by aligning adjacent sub-simulations

has the unfortunate side effect of maximizing the error — since errors in each sub

simulation add in the final result.

While WHAM-like techniques have been used to calculate the free energy

difference between chemical species 3,4, they are not ideally applicable to our CMC/MD

calculation. The species at either end of a conformational coordinate are often
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enormously different (helix vs. coil, for instance) – they are separated by a large distance

in coordinate space. In contrast, the species at either end of a chemical coordinate (our

CMC/MD end states) can be close in coordinate space but generally differ in energy. An

accurate comparison of the free energies for a helix and a coil requires consideration of

many intervening conformational states – thus the need for a technique like WHAM that

samples carefully along a coordinate. Chemical comparisons, at least between related

species, are better suited to energy-oriented techniques like acceptance ratio calculations

or CMC/MD, neither of which require the simulation of intervening states.
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Abstract

We have extended and applied a multicoordinate free energy method, chemical

Monte Carlo/Molecular Dynamics (CMC/MD) to calculate the relative free energies of

different amino acid side chains. CMC/MD allows the calculation of the relative free

energies for many chemical species from a single free energy calculation. We have

previously shown its utility in host:guest chemistry||1] and ligand design[2], and here

demonstrate its utility in calculations of amino acid properties and protein stability.

We first study the relative solvation free energies of N-methylated and acetylated

alanine, valine, and serine amino acids. With careful inclusion of rotameric states,

internal energies, and both the solution and vacuum states of the calculation, we calculate

relative solvation free energies in good agreement with thermodynamic integration (TI)

calculations. Interestingly, we find that a significant amount of the unfavorable solvation

of valine seen in prior work[3] is caused by restraining the peptide in an unfavorable

extended conformation. In contrast, the solvation free energy of serine is calculated to be

less favorable than expected from experiment, due to the formation of a favorable

intramolecular hydrogen bond in the vacuum state. Our peptide calculations emphasize

the need to accurately consider all significant conformations of flexible molecules in free

energy calculations.

This development of the CMC/MD method paves the way for computations of

protein stability analogous to the biochemical technique of “exhaustive mutagenesis”.

We have carried out just such a calculation at position 133 of T4 lysozyme, where we use

CMC/MD to calculate the relative stability of eight different side chain mutants in a
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single free energy calculation. Our T4 calculations show good agreement with the prior

free energy calculations of Veenstra, et. al.[4] and excellent agreement with the

experiments of Mendel, et. al.[5]
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Introduction

Following Wolfenden's■ 6] pioneering experimental studies on the solubility of

protein side chain analogs, and the recognition of the importance of hydrophobic

contributions to protein folding and function[7], there has been substantial interest in the

solvation free energies of amino acids and the importance of these solvation properties in

determining overall protein stabilities. Computational techniques, especially free energy

calculations, have been used to provide insight into the microscopic picture of amino acid

solvation. In particular, Sun, et. al.[3] studied the relative solvation of blocked alanine

and valine molecules and pointed out the crucial role of the backbone amide groups in the

aqueous solvation of these compounds. As others have noted[8], accurate prediction of

amino acid solvation free energies is one of the first steps toward prediction of protein

stability from free energy calculations. We have developed and implemented the

necessary techniques to apply a multi-coordinate free energy method, chemical-Monte

Carlo/Molecular Dynamics (CMC/MD) to free energy calculations on protein and peptide

systems. In this paper we describe the application of CMC/MD to both types of systems;

the acetylated and N-methylated alanine, valine and serine peptides, and eight mutants of

the T4 lysozyme protein. When contributions from rotamers, internal energies, and both

reference states are adequately represented, we calculate relative free energies in good

agreement with traditional free energy calculations or experiment.

Figure 1 shows the thermodynamic cycle used for the peptide calculations. The

relative solvation free energy of two compounds (AAGsol) can be directly determined

from experiments that measure the free energy cost of transferring each compound from
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the gas phase to water (AG1, AG2). With free energy calculations, however, AAGsol is

calculated by determining the work necessary to convert one molecule to another in

vacuum (AGvac) and solvent (AGsol). Since the free energy is a state function, one can

therefore determine the relative free energies of solvation (AAGsol):

A AGSol = AG2 - AG1 = AGSol - AGvac

The same thermodynamic cycle can be used for the calculation of relative

solvation free energies by both traditional free energy calculation methods (FEP, TI) and

CMC/MD. However, one of the problems common to all microscopic free energy

methods is the need for adequate conformational sampling. In both traditional free

energy methods and multi-coordinate methods, the free energy is calculated as the

ensemble average of a function. For free energy perturbation, this is

<e-AVRTS,

whereas for thermodynamic integration it is the ensemble average of the derivative of the

potential:

<AV/AA->

For CMC/MD, it is the ensemble average of the Metropolis[9] transition probability

between each chemical state:
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<P(A => B)->, <P(B => A)-

Both molecular dynamics and Monte Carlo techniques are commonly used to generate

the ensemble averages listed above. The degree of sampling required for accurate free

energy estimates is often extensive[10]. Molecular dynamics, in particular, has difficulty

in sampling between conformations that are separated by appreciable free energy barriers

(ca. 3–4 kcal/mol), often causing substantial difficulties in systems with multiple rotatable

bonds. The locally enhanced sampling (LES) method of Elber[11] has been applied to

surmount this difficulty in calculating the anomeric effect in glucose[12]. A flattening of

the free energy surface by a perturbation to the simulated potential and subsequent

correction has been explored by Ota and Brunger[13]. Straatsma and McCammon have

suggested a multistep method that first calculates the free energy cost for constraining the

geometry of the system, then the free energy of the chemical perturbation, followed by

the free energy cost of releasing the constraint[14].

However, the ability of Monte Carlo techniques to sample between states

separated by significant barriers provides an alternative approach to solve the problem.

To jump between two separated states via Monte Carlo, that transition has to be included

in the “move set” used in the calculation. Still, et. al.[15] have used this to dramatically

improve sampling in the MC(JBW) methods, where molecular or stochastic dynamics are

used to sample within wells, while Monte Carlo steps are occasionally used to shift the

simulated molecule between wells. MC(JBW) methods require an initial scan of the

potential energy surface to enumerate the “wells” to be sampled between. In our
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calculations on amino acids, we have decided to include a limited form of this approach

in order to properly sample the rotamers of each amino acid. The use of rotamers

provides us with a defined move set for each amino acid. In this respect, our work is

similar to the “Boltzmann ensemble” simulated by Huber, et al■ 16] where multiple

conformations of a molecule are enumerated and simulated in a “mixed State” where each

conformation is populated according to its Boltzmann weight. Our peptide CMC/MD

differs from these prior two approaches since it allows significant sampling in both

conformational and chemical space, permitting accurate free energy calculations on

peptides and proteins.

The need to accurately include each rotamer conformation in free energy

calculations on amino acids has been emphasized by Wilson, et al■ 17] as well as

Hermans[18, 19] in the case of exhaustive simulations. As a simple example, if valine is

constrained to one of its three rotamers when it is transferred from vacuum to solvent,

there is a corresponding free energy penalty of

-RT ln 3 = 0.6 kcal/mol

For side chains with several rotamers (leu, met, ile, etc.), this penalty can be as

large as 2-3 kcal/mol. Clearly, in calculations of amino acid solvation or protein stability,

this is a crucial contribution. It must be recognized that this is but a small part of the

overwhelming conformational sampling problems associated with protein stability

calculations[8] though qualitative[20] and quantitative[4] free energy calculations have

been reported. It is also interesting to note that calculations with exhaustive rotamer and
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side-chain sampling (but a single backbone conformation) have successfully been used to

design protein sequences that stably adopt a given fold[21]. The method we describe

herein is robust and applicable to any chemical species for which conformational

heterogeneity is an issue.

Our intent in this paper is to describe the assembly and application of a multi

coordinate free energy method to calculations on amino acids. With CMC/MD, we have

enhanced both the conformational and chemical sampling relative to traditional free

energy methods, allowing us to carry out single calculations that compare many amino

acid side chains at a given position. Like the analogy between multicoordinate binding

free energy calculations and “competitive binding” experiments[22], our CMC/MD

protein stability calculation can be compared to the biochemical technique of “exhaustive

mutagenesis”. In these experiments, all twenty amino acids are inserted at a particular

position in the peptide chain, and their effects on protein properties observed.

We have successfully carried out just such a calculation, comparing eight

different residues (alanine, ethylglycine, valine, norvaline, O-methyl serine, leucine,

isoleucine, and phenylalanine) at position 133 of T4 lysozyme. This system was chosen

due to the wealth of thermodynamic, mutational, and structural data available[5, 23, 24],

making it an ideal test case. Several crystal structures of position 133 mutants have been

solved, and they show only small readjustments in the hydrophobic residues near the

mutated side chain. The successful free energy calculations of Veenstra, et. al.[4] and

Wang, et. al.[25] also suggested that T4 lysozyme was a reasonable system for our

calculations. We chose a panel of mutations that vary substantially in size (alanine &

phenylalanine), chemistry (O-methyl serine & norvaline) and branching (valine &
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norvaline, isoleucine & leucine). By allowing us to calculate relative free energies for

many more side chains at once, CMC/MD also permits extensive and specific insight into

the balance of chemical forces that influence side chain contributions to protein stability.

Our protein stability calculations used the thermodynamic cycle shown in Figure 2,

calculating the relative stability (AAGfold) of two mutant proteins by comparing the free

energy difference of the mutants in the folded protein (AGprot) and in a model of the

unfolded state (AGwat).

Theory

The chemical-Monte Carlo/Molecular Dynamics method has been described

previously[1]. It is based on a derivation by Bennett(26), where he observed that

Metropolis Monte Carlo steps between different chemical states of a system (alanine and

valine, for example), coupled with some coordinate sampling, would populate those

states in proportion to their relative free energies (alanine being preferred in water). In

this paper, we have modified the CMC/MD calculation somewhat to include both internal

energies and rotameric states, crucial issues for amino acid properties.

In our initial host:guest and protein:ligand calculations, one copy of each ligand

of interest was simulated in the binding site. At any point in time, the potential function

is masked so that one copy is “real” and interacts with the surroundings. The other

copies are “ghosts”, and they do not interact with the surrounding binding cavity or

solvent. Chemical Monte Carlo moves consist of switching which ligands are “ghosts”

and which ligands are “real”. The fraction of time each ligand is real is related to its

relative free energy, by
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AG(a->b) = -RT ln[(P(b)/P(a)]

For such Monte Carlo methods to work, trial moves must be selected from a

uniform distribution over the states of interest. For a system of N chemical states, the

probability of any single state being selected for a trial move is

P(trial move => j) = 1/N

However, when we add rotamers for some of the chemical states the assignment

of trial moves is more complicated. If each species has f(n) rotamers (one for alanine,

three for valine, etc.), the probability of a trial move to a particular rotamer becomes

P(trial move => j, rotamer k) = 1/N + 1/f(n)

This renormalization allows for the proper uniform distribution of trial moves, while

including conformational heterogeneity for those states where it is necessary.

Another issue in the CMC/MD calculation that is raised by amino acids is the

need to include internal energies in the calculated free energy. For our ligand

calculations, there was no covalent connection between the Monte Carlo residues and the

protein surroundings. For our peptide work, and subsequent calculations on protein side

chains, there are covalent connections between the Monte Carlo residues and the prior

and subsequent residues of the polymer. In the case of the present systems, each residue
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copy is bound to both the N- and C-terminal residues (Figure 3a). While this topology

allows for the possibility of protein stability calculations, there is now a need to include

internal terms in the free energy calculation – specifically, all bonds, angles, dihedrals,

and 1-4 nonbonded terms can now be included in the calculated free energy. In our

initial host:guest studies, restraints were necessary to hold the “ghost” ligands in the

binding cavity of the host. In a polymer, however, the covalent bonds between Monte

Carlo and flanking regions serve to restrain the Monte Carlo residues in appropriate

positions and conformations. As these constraints are consistent between both vacuum

and solvent states of the calculation, they do not appear in the solvation free energy we

determine.

We have modified the CMC/MD software so that internal energy contributions

can be included in the calculation in two ways. First, we added the option of including

internal energies in the calculated free energy. This is analogous to the inclusion of all

“intra-perturbed group” contributions in traditional free energy calculations[27]. Second,

there is an option to adjust the forces felt by the “ghost” Monte Carlo residues. While the

ghost residues never exert forces on the neighboring residues or on the solvent, the

current software has the option to separately allow the ghosts to feel either the internal

forces and/or the nonbonded forces resulting from these surroundings. These forces are

masked on a per-atom basis, ensuring that they only affect atoms in the Monte Carlo

residues.

Computational Details and Methods

Peptide Calculation
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Our peptide CMC/MD calculation was carried out with a modified version of the

SANDER program from AMBER 5.0(28]. A 1 femtosecond timestep was used, along

with the SHAKE algorithm■ 29] to constrain bonds to hydrogen atoms. Standard Cornell,

et. al.[30] parameters were used for the amino acids and blocking groups, and the

TIP3P[31] water model was employed. Several different calculations were carried out,

using different combinations of free energy calculation and conformational restraints.

For all calculations, the side chain X1 torsions for each rotamer of valine and serine were

restrained using flat-well torsional restraints to an angle of 60, 180 or 300 degrees with a

well width of +/- 40.0 degrees and a force constant of 50 kcal/mol. For the first two

calculations (“CMC/MD-1”,”CMC/MD-2a"), the peptide was maintained in an extended

conformation by 50 kcal/mol harmonic torsional restrains that kept phi and psi at –160

and 160 degrees, respectively. In our final calculation, this backbone restraint was

relaxed to a very wide flat-well: using the same 50 kcal/mol force constant, phi was

allowed to range from -175 to -5 degrees without restraint, and psi was permitted to

sample freely between 5 and 175 degrees (“CMC/MD-2b”). In all these calculations,

Monte Carlo steps were carried out every 100 dynamics steps, and Andersen (stochastic)

temperature coupling[32] was used with a periodicity of 5 picoseconds.

In order to develop a methodology that was extensible to proteins and other

polymers, a complex topology was constructed for our amino acid “solute” (Figure 3a).

The Monte Carlo region consisted of one alanine residue, three valine residues (each

restrained to a different rotamer) and three serine residues (likewise restrained). This

region was flanked by the methyl and acetyl blocking groups. Each of our Monte Carlo

residues was bonded to both the N-terminal and C-terminal blocking groups. These
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bonds, as well as all angles, dihedrals and 1-4 van der Waals interactions were masked

from the simulated potential as described above. As can be seen from Figure 3a, this

topology is readily extensible to study a residue within a peptide chain, where the Monte

Carlo region may be flanked by N- and C-terminal amino acids instead of blocking

groups. Since there were three copies each of valine and serine, and one alanine, each

valine and serine copy was chosen for a trial move 1/9 of the time, versus 1/3 of the time

for the sole alanine (Figure 3b).

As mentioned above, three sets of CMC/MD calculations were carried out. All

included a gas phase and a solvent leg, corresponding to the scheme(s) in Figure 1.

However, the first set of calculations did not include contributions from intra-perturbed

group energies (bonds, angles, dihedral and nonbonded interactions within each amino

acid residue) much like the prior free energy calculations of Sun, et. al■ 3]. This set is

denoted in our Tables and Figures as “CMC/MD-1.” The second set included all intra

perturbed group energies in the calculated free energies, resulting in a substantially

greater magnitude in the free energies calculated for each leg and concomitant

convergence problems. With this protocol, we also evaluated two different types of

backbone restraints. The “CMC/MD-2a” calculation restrained the peptide backbone to

(-160,160) with harmonic restraints, while the “CMC/MD-2b” calculation allowed the

backbone some degree of conformational freedom using the flat-well restraints described

above.

To improve the statistics of the calculated free energies and minimize the total

real time necessary for our calculations, we used the computational strategy schematized

in Figure 5. An initial iterative calculation is run in the “reference state.” Specifically,
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we took the “reference state” to be whichever leg of the thermodynamic cycle (Figure 1,

Figure 2) contained fewer atoms and was less computationally expensive to simulate.

This was the vacuum state for our peptide calculations, and the unfolded state for our T4

lysozyme simulations. In this first adaptive phase, several (10-100) short (10–25ps)

simulations were run to get an initial estimate of the relative free energy of each species.

After each short simulation, the current estimate of the relative free energy of each

species was calculated. These values were then used as an umbrella sampling[33] biasing

potential for the next simulation cycle. In this fashion, the sampling is gradually forced

toward a uniform distribution over the chemical species – once this is achieved, the

biasing potentials reflect the relative free energies of each state. The “adaptive

CMC/MD” procedure is equivalent to the iterative WHAMI34] algorithm for the

calculation of conformational free energy differences, and was successfully used in our

CMC/MD calculations on HIV Reverse Transcriptase inhibitors[2].

These adaptive estimates were used to bias the sampling of two separate

simulations in the second phase of the calculation. Here, we carried out long, non

iterative CMC/MD runs (~0.5-10 ns) for each leg of the thermodynamic cycle. The

biasing potential was then subtracted from the results of these second calculations to

yield the final calculated values for each leg of the thermodynamic cycle. The difference

of these final values yields the relative free energy of interest.

There are two major rationales for the strategy described above. First, the

inclusion of intramolecular terms in some of our calculations meant that the relative free

energies along each leg of the thermodynamic cycle were often large and of the same

sign (Table 2) in both phases, representing significant intramolecular contributions. For
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example, valine has a number of favorable 1-4 nonbonded interactions that are not

present in alanine, regardless of whether it is in the gas phase or vacuum. Calculating an

estimate of the free energy for one leg, then, provided a good “first guess” for the free

energy difference in the second leg, and allowed the noniterative CMC/MD calculations

to more accurately reflect the environmental effects (vacuum, water, protein) of each

state. Secondly, this allows the two long, non-iterative calculations to be run in parallel,

minimizing the total real-world time necessary to calculate an accurate relative free

energy. The biasing potentials used are of the exact same form as our prior calculations

of relative binding free energies (AAGbind)[1].

Calculations were carried out on either a 275 MHz DEC Alpha workstation, a

four-processor SGI Origin 200, or 4-8 processors of a Convex Exemplar X-class. The

parallel calculations used a message passing interface (MPI) implementation of the code.

Long simulation times (~5-10 nanoseconds) were required to adequately converge the

calculated free energies in solvent, while the vacuum calculations were appreciably

converged in 200ps when intra-perturbed group contributions were not included. As

noted above, the inclusion of intra-perturbed group contributions substantially increases

the free energy differences in both legs (in vacuum, ala => val goes from +1.5 kcal/mol

to –14.1 kcal/mol) of the calculation, requiring extensive (>1 nanosecond) calculations to

yield converged results.

For comparison, vacuum-state thermodynamic integration (TI) calculations were

carried out using the GIBBS module of AMBER 4.1, using identical simulation

parameters to the corresponding CMC/MD calculation. The perturbations were not

exactly analogous to the CMC/MD calculation since they used a single rather than
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multiple topology protocol■ 27]. To calculate the contributions from each rotamer, and

the inter-rotamer free energies, alanine was separately perturbed to each valine or serine

rotamer while the X1 torsion was restrained with a flat-well restraint identical to that used

in the CMC/MD calculation. The TI calculation was carried out with 25 windows each

consisting of 3 picoseconds each of equilibration and data collection. The calculated free

energies for each rotamer were Boltzmann weighted[4, 18] to yield the overall free

energy difference between alanine and valine or alanine and serine. For example,

AGvac (ala->ser) = -RT ln[X-123 (1/3 * e^***")]

T4 calculation

T4 lysozyme was simulated with eight different amino acids at position 133;

alanine (ALA), ethylglycine (ETH), valine (VAL), norvaline (NVL), O-methylserine

(MSE), leucine (LEU), isoleucine (ILE) and phenylalanine (PHE). For all residues

except alanine, each rotamer was included in the calculation. A total of forty-nine

different side chains, varying in both chemistry and conformation, were used in this

CMC/MD calculation. The parameters used were either from the Cornell, et. al. force

field[30] or those used in prior free energy calculations[4] (NVL, MSE) and molecular

dynamics modeling[35] (ETH) on T4 lysozyme.

Starting from the x-ray crystal structure of wild-type (L133) T4 lysozyme■ 24],

each CMC/MD residue was modeled in by hand using the MidasPlus molecular modeling

software. Like the blocked dipeptide, the CMC/MD residues were superimposed and

each covalently bonded to the N- (D132) and C-terminal (A134) residues of the amino
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acid chain. Each side chain was fixed in its rotamer via flat-well torsional restraints, as

before. For the T4 lysozyme calculation, we used wells of +/- 30 degrees that were

harmonic between 30 and 50 degrees and linear for torsions beyond 50 degrees, with a

force constant of 50.0 kcal/mol"A". No backbone torsional restraints were used in the

protein.

Once the model was built, it was solvated with the crystallographically observed

water molecules plus a 17.0 angstrom spherical cap centered on alanine 133, using the

TIP3P water model. As with prior calculations, neutralizing counterions were placed

next to solvent-exposed charged residues. Single chloride ions were placed near R8,

R14, K16, K19, K35, K43, K65, K85, R96, R119, K124, K135, and K147. Sodium ions

were placed near D20, D47, D61, and the terminal carboxyl group of L164. The total

system was 4770 atoms in size, including 433 water molecules and the 49 Monte Carlo

residues. Following the protocol established by Veenstra and Kollman, we allowed the

entire simulated system to move during molecular dynamics, but restrained the backbone

(CA, N, C) atoms of residues distant from the cavity to their crystallographic positions

with harmonic restraints of 10.0 kcal/mol"A". This corresponds to the “cavity

constraints” protocol of the prior work. Figure 6 shows position 133 in the protein, and

depicts the ALA and LEU residues as they are modeled in at this position.

Also following Veenstra and Kollman, the unfolded state of T4 lysozyme was

modeled as a blocked, solvated pentapeptide. This model was shown to represent the

unfolded state of the molecule sufficiently well enough to allow thermodynamic

integration (TI) calculations in good agreement with experiment. The “true” unfolded

state environment of residue 133 is expected to be a mix of solvent water and transient,

169



weakly-structured contacts with other protein residues, so we might expect our extended

peptide model to exaggerate the solvent exposure in the unfolded state. This is somewhat

balanced, however, by the limited sampling possible in our folded-state model, which

does not necessarily permit sampling of all low-energy protein conformations for each

mutant. The CMC/MD residue coordinates from our protein model, plus one flanking

residue on either side, were used to build a blocked peptide model (ACE-ASN-XXX

ALA-NME, where XXX denotes the CMC/MD residues). Again, the side chain

coordinates were restrained with flat well torsional restraints of +/- 30 degrees, 50.0

kcal/mol”A*. In addition, the b and u■ angles of the CMC/MD residues were restrained

with flat well torsional restraints. () was unrestrained between 185 and 355 degrees, with

harmonic restraints from 185 to 170 and from 355 to 370 degrees. The u■ torsion angle

was unrestrained from 5 to 175 degrees, with harmonic restraints from -10 to 5 degrees

and from 175 to 190 degrees. Outside of these regions, the restraints were linear. Like

the side chain restraints, a force constant of 50.0 kcal/mol”A was used. This peptide

model was solvated with a periodic box of 1165 TIP3P water molecules, forming a total

system of 4360 atoms.

For both T4 simulations, a 1 femtosecond (1 fs) timestep was used in conjunction

with SHAKE to constrain the length of all bonds containing hydrogen. MC steps

occurred every 100 MD steps. The temperature of the system was kept at 300K with

Andersen temperature coupling at a frequency of 2500 MD steps. For the iterative

calculation, the biasing offsets were adjusted every 25 picoseconds, and their

convergence was monitored graphically. The unfolded state was simulated at a constant

pressure of 1 atmosphere using Berendsen pressure coupling[36] with a time constant of
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0.2 ps. Since the folded state was simulated as a finite system, no pressure coupling was

used. Nonbonded interactions were truncated with an 8 Angstrom cutoff.

The overall strategy described in Figure 5 was used for these calculations as well.

An initial 2.0 ns of adaptive CMC/MD (80 iterations of 25 ps each) was carried out with

the unfolded state model. The biasing offsets from this calculation were then used for

extensive non-adaptive calculations in both the folded and unfolded states. This required

1.0 ns of simulation for the folded state and 4.0 ns of simulation for the unfolded state.

Two separate trajectories using different initial velocities and random number seeds were

run for each state and the free energies reported are the average of those two trajectories.

The results of these non-adaptive calculations were then used to calculate the relative free

energies of folding for each residue.

Results

Peptide

Figures 6 and 7 show the results of our vacuum calculations for the peptide

model, where Figure 6 depicts the convergence of the adaptive phase. The non-adaptive

vacuum calculations are shown in Figure 7. The adaptive calculation takes a very long

time (14 ns) to achieve stable values when the intra-perturbed groups are included

(CMC/MD-2b, Figure 6b). Graph 7a shows the relative free energy of valine and serine

versus alanine when the intraperturbed group terms are not included in the calculation.

Graph 7b is identical except that here we show the results of calculations where the

intraperturbed group contributions are included. Here the agreement between CMC/MD
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and TI calculations (Table 1) is not as good, but that is expected given the large

magnitude of the free energy changes involved and the topological difference in the

calculations. Population-based free energy calculations like CMC/MD necessarily have

problems with large free energy differences, since a free energy difference of 20 kcal/mol

corresponds to a population ratio of less than 1 in 10^14. The judicious use of umbrella

sampling biasing potentials (Figure 5) permitted the convergence of the calculation

shown in Graph 6b, though it is still slow.

Figure 8 shows the convergence of our solvent calculations, again showing the

simulations without (CMC/MD-1, Figure 8a) and with (CMC/MD-2b, Figure 8b) intra

perturbed group contributions and flat-well backbone restraints. As expected, these

calculations require much more simulation time to converge, with free energies only

reaching stable values after nanoseconds of simulation. The final free energy values

(AGvac, AGsol) and corresponding relative free energies of solvation (AAGsolv) are

reported in Table 1, which includes reference values from both thermodynamic

-

integration free energy calculations and from the experiments of Wolfenden, et. al■ ó].

The relative free energies of the solvated state were also extracted and reported separately

in Table 1. Inclusion of the intramolecular energy terms in the calculated free energy

makes valine and serine both significantly more favorable than alanine in either phase, as

noted above.

While the inclusion of rotamers for valine and serine was necessary to calculate

accurate relative free energies, our approach also allows us to evaluate the relative free

energies of each rotamer for a particular side chain. Table 2 shows the relative free

energy of each valine and serine rotamer in vacuum, as calculated by both CMC/MD and
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TI. The values are in good agreement, while the inter-residue free energies differ more

substantially between our calculations. These inter-rotamer free energy differences can

be calculated directly from the CMC/MD calculation, by comparing the relative

probability of observing different rotamers of the same side chain. For the TI calculation,

however, 2 separate simulations were required to determine each value in Table 2. First,

the free energy difference between alanine and the side chain (valine or serine) restrained

to X1 = 60 degrees was determined. The second calculation determined the free energy

difference between alanine and an alternative rotamer (X1 = 180 or 300) of the side chain.

The free energy difference for the two rotamers can then be calculated as

AG (V60 => V180) = AG(V60 => A) – AG(V180 => A)

Both the CMC/MD and TI calculations detailed in Table 2 show that the inter

rotamer free energy differences in vacuum are significant (greater than 0.5 kcal/mol) but

small enough that several rotamers are significantly populated for each side chain.

As noted, one interesting advantage of the CMC/MD calculation is that it is very

straightforward to observe which side chain rotamers are populated in a given

environment, providing detailed insight into the complex mechanism of amino acid

solvation. Table 3 shows the normalized populations of valine and serine rotamers in

vacuum and in Solution, from each CMC/MD calculation. For CMC/MD-1 in vacuum,

valine populates mostly the X1 = 60 and X1 = 300 rotamers, which make favorable van

der Waals contacts with the peptide backbone. The “trans” (X1 = 180) rotamer is less

favorable in vacuum, since the methyl groups are maximally distant from the peptide
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backbone. In water, these populations shift substantially, and the X1 = 300 rotamer is the

only populated species. Interestingly, Sun, et. al.[3]’s TI calculation on ALA tº VAL in

water sampled only the X1 = 180 “trans “rotamer and found valine disfavored by 1.14 +/-

0.05 kcal/mol. However, both our vacuum TI and CMC/MD-1 calculations confirm that

this is the least favorable valine rotamer. By indirectly excluding the more favorable X1

= 60 and X1 = 300 rotamers from their calculation, Sun, et. al. appear to have

overestimated the free energy for valine. Even when intramolecular terms are ignored,

the vacuum state also makes a significant contribution to the relative free energy of

solvation, another contribution neglected by the prior TI calculation.

When intramolecular terms are included (CMC/MD-2a), we calculate that the

solvation free energies of alanine and valine differ by 1.2 kcal/mol in favor of alanine.

This is analogous to the preference of 1.14 kcal/mol observed above. However, the

“trans” rotamer is still the least populated species. More importantly, this preference for

alanine is substantially reduced if the peptide backbone is not held in an extended

conformation (CMC/MD-2b). Allowing the backbone to relax moves the free energy

difference closer to its expected value (+0.5 kcal/mol vs. the calculated value of +0.3

kcal/mol for Me => Prp). This relaxation also shifts the rotamer preferences to favor X1

= 300 (and, to a lesser extent X1 = 180) both in the gas phase and in solution. The data

from CMC/MD-2a and CMC/MD-2b suggest that the strong preference for alanine seen

by Sun, et. al., is primarily the result of the relatively unfavorable extended backbone

conformation used in their calculations.

The rotamer preferences for serine are smaller, but still interesting. Table 1

shows that serine is always preferred to alanine in the gas phase. This is due to the ability
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of the serine hydroxyl group to make a strong intramolecular hydrogen bond to either the

carbonyl of the N-acetyl blocking group or the carbonyl group of the serine itself. In our

first calculation, CMC/MD-1, we see a strong hydrogen bond between the X1 = 300

rotamer and the N-acetyl group's carbonyl. The dominance of this rotamer decreases

somewhat when intramolecular interactions are included (CMC/MD-2a), since some

strain is induced by the formation of the hydrogen bond. In solution, the contribution of

an intramolecular hydrogen bond is insignificant given the preponderance of

intermolecular hydrogen bonds between the solute and the water solvent. When the

peptide backbone is in an extended conformation, an almost uniform distribution of

serine rotamers is observed in solvent (Table 3). However, when the backbone is allowed

to relax (CMC/MD-2b), the X1 = 180 rotamer is significantly disfavored in both phases,

and the contribution of the X1 = 300 intramolecular hydrogen bond becomes less

significant. Instead, there is a significant contribution from a hydrogen bond between the

X1 = 60 rotamer and the amino acid's own carbonyl group. In vacuum, the backbone

adopts a C7 equatorial (C7eq) conformation, while it samples more broadly in solution.

The shifting contributions of different rotamers depending on the precise conformation of

the peptide and the simulation protocol used emphasize the need for careful inclusion of

rotameric states in free energy calculations.

T4 results

The results of our T4 lysozyme free energy calculations are shown in Table 4,

along with values from experiment and traditional thermodynamic integration (TI) free

energy calculations, where available. There is reasonable agreement with the
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experimental data, with an average absolute error of 0.8 kcal/mol. The data presented are

the average results of two separate CMC/MD calculations for each state. As others have

noted, the contribution of the residue 133 sidechain to the stability of T4 lysozyme is

primarily driven by the burial of hydrophobic groups. The cavity itself is highly

structured, showing only small differences between wild-type and L133A crystal

structures(37]. Thus, the hydrophobic side chain that fills the cavity best makes for the

most stable protein.

As expected, the 3-branched side chains valine and isoleucine are relatively

unfavorable in the helical environment of residue 133. Isoleucine is able to compensate

somewhat for its 3-branching by burial of substantial hydrophobic surface area, but is

still much less favorable than norvaline, leucine, or phenylalanine. The values for the

extended norvaline and O-methylserine side chains are calculated in excellent agreement

with experiment.

While the CMC/MD calculation successfully identifies LEU and PHE as the most

favorable mutants, PHE is calculated to be somewhat less favored than expected and the

preference for leucine is somewhat overestimated. This may be in part due to the use of

the L133 crystal structure as the starting point for the simulation, but it is also due to the

uncertainty and difficulty in calculating free energy values for phenylalanine. Due to the

very large steric volume of the PHE aromatic ring, Monte Carlo moves that select PHE as

a trial move are often rejected due to unfavorable van der Waals overlaps between the

aromatic ring and the surroundings. This makes the relative solvation free energy of

phenylalanine difficult to determine (especially versus alanine). It must be pointed out,

however, that ALA tº PHE perturbations are also very challenging for traditional free
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energy calculations. Bias due to the L133 crystal structure might be ameliorated by

carrying out separate calculations starting from both the wild type and L133A structures

and comparing their predictions.

In addition to allowing the calculation of free energies for many side chains at one

position in T4 lysozyme, the CMC/MD calculation also provides some important general

insights. Like our dipeptide calculations, the explicit inclusion of each rotamer in the T4

calculation allows us to monitor the relative population of each rotamer for a given

residue type. Fundamentally, rotamers are just conformational minima separated by

significant (~3 kcal/mol) free energy barriers. The height of these barriers means that it

is difficult to sample over them with short (sub-nanosecond) molecular dynamics or free

energy calculations. This is a particularly crucial issue for protein free energy

calculations. Prior work has suggested that single preferred rotamers dominate free

energy differences between side chains. Figure 10 shows the relative population of each

rotamer for the folded and unfolded states of our CMC/MD calculation. Clearly, several

side chains populate multiple rotamers in each state, each of which contributes to the

calculated free energy. In solution, most side chains populate several rotamers, while

only a few are populated in the protein. X1 = 60 rotamers are excluded for most side

chains in either environment, probably due to the local structure of the peptide backbone.

The highly flexible side chains (NVL, MSE) populate several species in both

environments, while the larger species (LEU, ILE, PHE – data not shown) populate only

a single rotamer in the restricted environment of the protein. As expected, LEU

populates the wild-type X1 = 300, X2 = 180 rotamer, while PHE is restricted to the X1 =

300, X2 = 0 flat-well, compatible with its experimental X1 value of 273 degrees.
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Discussion and Conclusions

We have successfully extended CMC/MD calculations to the realm of protein side

chains. Our present calculations have yielded quantitative determination of the relative

solvation free energies of alanine, valine, and serine in good agreement with prior free

energy calculations. As expected, the order of solvation free energies is VAL - ALA >>

SER, with alanine preferred to valine by 0.3 to 0.5 kcal/mol and serine preferred to

alanine by 0.9 to 2.3 kcal/mol. However, these are substantial deviations from the

expected solvation free energies based on the gas phase to water transfer free energies of

the model compounds studied by Wolfenden, et. al■ ó]. Since the solvation free energies

of methane and propane are very similar, it was a surprise that valine appeared so

unfavorable relative to alanine in water during prior free energy calculations[3].

However, the previous calculations did not take into account the entropy loss associated

with the rotamers of valine's X1 torsion or the contribution of the gas phase free energy

difference to the calculated solvation free energy. More importantly, a non-optimum

extended backbone model was used. These effects all contribute significantly to the

calculated free energy difference between alanine and valine. When the vacuum state

and rotamer contributions are properly accounted for, valine is calculated to have an

unfavorable solvation free energy of +0.3 kcal/mol relative to alanine. If the

intramolecular contributions are taken into account, this rises to +1.2 kcal/mol if the

peptide backbone is still restrained to an extended conformation. When the backbone is

allowed to relax to an optimum conformation in each phase, the relative solvation free
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energy of valine versus alanine returns to +0.5 kcal/mol. In the present work, a different

effect is observed with serine. Ala => ser is calculated to be —0.9 to —2.0 kcal/mol, yet

their analogs (methane and methanol) differ in solvation free energy by —6.8

kcal/mol(38]. An intramolecular hydrogen bond formed by the serine side chain means

that serine is favored in vacuum by –1.9 kcal/mol, when intramolecular terms are not

included. This is in contrast with the vacuum free energy difference of methane and

methanol, which is expected to be small.

In a more ambitious calculation, we determined the relative stability of eight

different mutants of T4 lysozyme. Our calculation clearly identifies leucine and

phenylalanine as the most stabilizing residues at position 133, with alanine being the

least-favorable residue. This is compatible with the observations of Karpusas, et. al.[23]

that residue 133 occupies a well-structured hydrophobic cavity. The relative free

energies of folding (AAGfold) versus alanine are summarized in Table 4, and show good

agreement with both the experimental data of Mendel, et. al. and the prior free energy

-

calculations of Veenstra, et. al. The sole exception is ethylglycine (ETH), where we

calculate this residue to be preferred by —2.4 kcal/mol over alanine in comparison to the

experimental –0.2 kcal/mol. It is important, to note, however, that the ethylglycine

mutant shows a significantly lowered Tm from the wild-type enzyme (~31 vs. 43.5

degrees C), requiring an extrapolation to determine the value of AAGfold. Even with the

ethylglycine outlier, the average absolute error of the 5 free energies calculated from

CMC/MD is 0.8 kcal/mol. We somewhat overestimate the stability of the two large

hydrophobic mutants (LEU and PHE), especially phenylalanine. For PHE, this error

appears to be due to significant uncertainties in its solvation free energy (AAGwat).
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These uncertainties are expected, given the large steric differences between ALA and

PHE and the difficulty of sampling between them during a Monte Carlo step.

Reassuringly, however, we find that neither 3-branched amino acid (VAL, ILE) is highly

favored at this position. As expected, 3-branching is incompatible with the helical

location of residue 133, though ILE is able to compensate for this somewhat by the burial

of significant hydrophobic surface area.

In carrying out these calculations, we needed to extend the CMC/MD method to

include both conformational and chemical sampling, allowing Monte Carlo steps to occur

in a hybrid space of rotamers and chemical species. The appreciable free energy penalty

associated with the “freezing” of a protein side chain in a single rotamer (ca. 0.6–2.6

kcal/mol) is a substantial contribution that must be considered in quantitative free energy

calculations on proteins and peptides. In our case, we see significant shifts in the relative

populations of rotamers depending on the environment, underscoring the complexity of

the issue (Table 3, Figure 10). In particular, side chains need not be “frozen” in a single

rotamer — some rotamers are simply more or less populated depending on the context. As

previously observed, the contribution of each rotamer to the calculated free energy must

be determined and included in order to yield an accurate free energy. Highly flexible side

chains (NVL and MSE in the current work; MET, LYS) can often occupy several

different rotamers that each satisfy the steric constraints of a tightly-packed cavity.

While substantial progress has been made in computational approaches to large

scale protein engineering[21], quantitative calculations of the effect of single amino acid

changes on protein properties are still difficult computational tasks(4]. In contrast, our

CMC/MD approach brings multi-coordinate free energy methods to the arena of protein
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free energy calculations, allowing the quantitative comparison of many different side

chains in a single computer “experiment”. As we have noted, this is analogous to

“exhaustive mutagenesis” of a single residue. Unlike the biochemical experiment,

however, CMC/MD has some difficulty in sampling between chemical states separated

by large changes in volume (arginine and glycine, for instance) or charge (glutamic acid

versus lysine). Instead, we expect that CMC/MD will best be used to compare a family

of similarly-sized amino acids (ala-ser-val-ile-leu-thr, for instance). This is particularly

useful in the context of non-natural side chains.[39], where the significant difficulty of

synthesis and in vitro transcription for a single substitiution prompt a need for accurate

predictions.

With our calculations on the blocked dipeptide and T4 lysozyme, we have now

entered the era of “exhaustive mutagenesis” in silico – quantitative free energy

calculations on many different side chains at one position of a protein. While there are

still substantial technical and practical limitations to the determination of protein stability

with free energy calculations, substantial progress has been made. Multicoordinate free

energy methods like CMC/MD and the lambda-dynamics of Brooks, et. al.[22], serve to

expand the predictive power of theoretical methods by allowing the rapid comparison of

many chemical states in a single calculation. Species of interest are quickly picked out

for further study by either computational or experimental means. This “winnowing” and

discarding of uninteresting states allows more time to be spent synthesizing and studying

the compounds of interest — whether they are novel guests[1], new ligands[2] or new

proteins.

181



The developments outlined in this paper transform CMC/MD into a uniquely

powerful tool for free energy calculations. By allowing a combination of chemical and

conformational sampling in the same calculation, we can accurately include both in

studies of free energy differences at modest cost. It is difficult to do this efficiently with

traditional free energy calculations, as demonstrated by our vacuum state TI calculations

on the dipeptide. Our peptide calculation underscores the need for extensive and detailed

conformational sampling in any free energy calculation on flexible molecules. The

inclusion of intramolecular energies allows CMC/MD calculations to be carried out on

“mutations” in any polymeric species, including but not limited to proteins and nucleic

acids. With the present additions, CMC/MD will also become an even better tool for

ligand design, able to rapidly rank the binding free energies of a series of ligands that

vary both in composition and flexibility.
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Table1:
AAGsolvforalanine,valine,andserine Methodalanine=>valineAlanine=>SerineInternalSidechainBackbone

Energies
|

Restraintrestraint

AGvacAGwat
|

AAGsolv
|

AGvac
|

AGwatAAGsolv

TI1.51.14(-0.4)–3.7NX1+/-40
(-160,160) CMC/MD-1

0.50.8+0.3
-1.9-4.2–2.3NX1+/-40
(-160,160)

TI-18.9–9.4YX1+/-40
(-160,160) CMC/MD-2a

-
15.3
-
14.1+1.24–7.9–8.5-0.6YX1+/-40
(-160,160) CMC/MD-2b

-
15.8
-
15.3+0.5-8.1–9.0-0.9YX1+/-40
(-17530-5,

5<\;<175)

ExperimentMe=>Prp+0.0Me=>MeOH–6.8
3.



Table 2: Inter-rotamer relative free energies, vacuum state, harmonic backbone
restraints

Residue X1 (degrees) | AG, No internal AG, internal contributions
contributions (kcal/mol) (kcal/mol)
CMC/MD TI CMC/MD TI

Serine 60 => 180 +0.1 +1.0 -0.9 -0.5
60 => 300 –0.8 -1.4 -1.2 -0.9

Valine 60 => 180 +2.4 +4.0 +0.4 +1.3
60 => 300 +0.7 +0.5 +1.2 +1.7
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Table 3: Rotamer populations for the peptide calculations
CMC/MD | Phase Valine X1 = Serine X1 =
Method 60 180 300 || 60 180 300
1 Vacuum || 0.77 || 0.02 || 0.21 0.17 | 0.13 0.68
1 Water 0.01 |0.00 || 0.99 |0.67 0.22 || 0.11
2a Vacuum || 0.54 0.06 || 0.40 || 0.04 || 0.71 0.24
2a ||Water | 0.48 || 0.02 || 0.50 || 0.39 || 0.25 || 0.36
2b Vacuum || 0.14 || 0.33 0.52 0.81 || 0.02 0.16

2b | Water 1001 |0.18 10.81 10.71 1001 1028
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Table 4: AAGfold for T4 lysozyme side chains
Alanine => | AGprot | AGwat AAGfold AAGfold, exp’t
ETH 6.3 8.8 –2.5 +/- 0.7 -0.2 (*)
VAL 3.2 2.6 +0.5 +/- 0.1 ND

NVL 2.6 4.9 –2.3 +/- 0.4 -2.4 (-3.4, TI)
MSE 0.8 2.0 -1.2 +/- 0.6 -0.8 (-1.6, TI)
LEU 2.9 7.7 –4.8 +/- 0.2 | -3.5
ILE 5.0 6.0 -1.0 +/- 0.7 ND
PHE 7.7 10.4 –2.7 +/- 1.4 -3.3

*: All experimental AAGfold values reported by Mendel, et. al. are at the wild-type Tm of
316.6 K except for the ETH mutant. In this case, the reported AAGfold is at the mutant
Tim of 304 K, and the wild-type value has been extrapolated down from the higher
temperature based on a AH■ old of 96 kcal/mol and ACP of 1.80 kcal/mol.
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Figure Captions

Figure 1: Thermodynamic cycle used to calculate relative solvation free energies

(AAGsolv) the peptide calculation.

Figure 2: Thermodynamic cycle used to calculate relative stabilities (AAGfold) of T4

lysozyme mutants.

Figure 3: Schematic representation of the topology (3a) and Monte Carlo trial move

space (3b) for the peptide calculation.

Figure 4: Stick representation of the ACE-(ALA,VALX3,SERX3)-NMA molecule, in a

representative conformation from the vacuum CMC/MD-2b calculation. Alanine

is colored light grey and all other residues are colored by atom type.

Figure 5: Computational strategy used for the CMC/MD calculations described in this

paper.

Figure 6: Ribbon model of T4 lysozyme from our CMC/MD trajectory, showing some of

the residues studied at position 133. The dominant leucine rotamer is depicted in

black, and the other 8 leucine rotamers are shown in light gray.
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Figure 7: Convergence of the adaptive vacuum phase of the peptide calculation. Figure

7a shows the results when intraperturbed contributions are not included

(CMC/MD-1) while Figure 7b depicts the results when intraperturbed groups are

included as well as flat-well backbone restraints (CMC/MD-2b). In all cases, the

solid line shows the free energy value for ALA => VAL, while the dashed line

depicts ALA => SER.

Figure 8: Convergence of the non-adaptive vacuum phase of the peptide calculation.

Again, 8a shows the CMC/MD-1 result, and the CMC/MD-2b result is shown in

8b. The solid line is the data for ALA => VAL and the dashed line is the value

for ALA => SER.

Figure 9: Convergence of the non-adaptive solvent phase of the peptide calculation.

Figure 9a depicts the convergence of the CMC/MD-1 calculation. The results of

including intraperturbed group contributions and flat-well backbone restraints

(CMC/MD-2b) are shown in Figure 9b. Again, ALA => VAL is the solid line

and ALA => SER is the dotted line.

Figure 10: Relative rotamer populations from T4 lysozyme calculations in the unfolded

(white) and folded (grey) states. Populations are depicted for ETH, VAL, NVL,

MSE, LEU and ILE. Statistics for PHE were too poor to determine meaningful

populations.
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Chapter 8: Statistical issues in free energy determination with CMC/MD.

The population-based free energy determination used in CMC/MD has some

statistical limitations. Specifically, when one determines free energy differences by

taking the ratio of two observed populations

AG(i->j) = -RT ln (P(j)/P(i))

there are two major difficulties that arise. The first is simply the logarithmic relationship

of the population ratio to the free energy. This is illustrated in Table 1, which shows the

population ratios that correspond to a range of free energies.

Table 1

Free energy difference at 300K lation ratio
O 1:1
0.6 1:2.7
1.0 1:5.3
2.0 1:28.6
3.0 1:153.3
4.0 1:820.0
5.0 1:4393
10.0 1:1.9x10
20.0 1:3.7x10

Now, if we make one observation every picosecond, it will take over 10' picoseconds (10

microseconds) to sample a population ratio that corresponds to a 10 kcal/mol free energy

difference. At present, available computer power restricts practical calculations to less

than 10 nanoseconds, several orders of magnitude below the time scale necessary. This
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first issue is largely addressed by the use of an adaptive CMC/MD calculation, as

described in Chapter 6. In the adaptive CMC/MD calculation, a biasing potential is

added to the energy of each state, and these values are iteratively adjusted until they yield

a uniform population distribution in a CMC/MD calculation. In this fashion, chemical

species that have large free energy differences (10–20 kcal/mol) can be efficiently

compared.

Free energy differences that are very large relative to kT (greater than 60

kcal/mol) are still not accessible with CMC/MD, since the huge biasing potential required

allows the acceptance of Monte Carlo steps that would normally be impossible at 300K.

Fortunately, this is not an issue in the comparison of families of highly related ligands.

Free energy differences of this magnitude can arise in biomolecular systems, however,

especially in the comparison of ionic and neutral systems. The free energy of solvation

of a monoatomic ion in water is favorable by hundreds of kcal/mol, compared to less than

ten kcal/mol for a similarly-sized noble gas atom. It should be noted that these sorts of

comparisons are difficult for traditional free energy calculations as well, requiring

addition of a Born or reaction-field correction'.

The second statistical issue arises from the ability of CMC/MD to compare many

different species in a single calculation. The number of species that can be compared is

limited by the need to determine accurate populations for each of them. Due to the

logarithmic relationship between population ratios and free energies (as shown above),

this process is largely limited by the population of the least favorable species. For

example, the minimum number of samples to determine population ratios for a system of

7 solutes with relative free energies of 0,1,2,3,4,5 and 10 kcal/mol is approximately
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(1.9x10' +7x10" + 3.5x10" + 6.6x10' + 1.2x10' + 2.3x10' + 4393 + 1 = 3.0x10^7). The

adaptive CMC/MD procedure described in Chapter 6 was specifically developed to

sidestep this limitation and allow the determination of free energies for unfavorable states

as well as favorable ones. This is achieved by iteratively determining biasing potentials

that convert the calculation from a comparison of species with differing free energies into

a sampling between isoenergetic species.

One can also learn something by considering these systems with small, or zero,

free energy differences. Consider two calculations: the first, comparing two solutes with

zero free energy difference; and the second, comparing ten solutes all with equivalent

free energies. A calculation of many (N) steps will yield populations of N/2 for each

solute in the first calculation. In the second calculation, the same computation will yield

populations of N/10. To determine free energy differences with equivalent accuracy, the

populations observed from the two calculations should be equal in magnitude. Thus, our

10-solute calculation will require 5 times longer (5N) to yield equivalently accurate free

energy values, since (5N)/10 = N/2. More generally, a CMC/MD calculation comparing

M isoenergetic states will require M/2 times more calculations to determine free energies

of the same accuracy as a two-state calculation. More complicated (non-isoenergetic)

situations are very case-dependent. As a practical rule, I have found that 5-10 species can

be accurately ranked with CMC/MD in a calculation of 1-2 nanoseconds, but

convergence to quantitative free energy values requires longer (2-4 nanoseconds).

In considering quantitative free energy calculations, one question is the

relationship of error in the population ratio to error in the determined free energy. The

propagation of error is relatively straightforward. If we compare two states I and J with
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populations P(I), P(J), and a corresponding free energy difference AG(I->J), how does an

error in one population (dP) translate to an error in the determined free energy (dG)?

AG = -RT ln[P(J)/P(I)]

AG + dO = -RT ln[(P(J)+dP)/P(I)]

dG = -RT (ln [(P(J)+dP)/P(I)]- ln [P(J)/P(I)] }

dG = -RT ln[(P(J)+dP)/P(J)]

dG = -RT ln[1 + dB/P(J)]

What does this mean? For a fixed magnitude of error, one can calculate how

doubling the (long) simulation will affect the expected error in the free energies:

dG2/dG1 = {lm [1 + dP/2P(J)] }/{ln [1 + dB/P(J)] }

In a very unfavorable case, dP = P(J), yielding

dG2/dG1 = { ln[1 + 1/2] }/{ ln [ 1 + 1] }

dG2/dG1 = { ln[3/2] }/{ ln[2] } = 0.58

As P(J) increases relative to dP, the expected error should be halved by doubling

the simulation time:

Lim (P(J) -> co, dG2/dG1 = 0.5
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So, for simple propagation of a fixed error in the probabilities, extending the

simulation time is expected to decrease the error in the calculated free energy in a

straightforward way – doubling the simulation time will roughly halve the expected error

in the calculated free energy. Now, our assumption of a fixed error is not entirely

realistic. Instead, one might expect that the magnitude of the error increases in parallel

with the magnitude of the observed probability (i.e. dp oc P(I)). In this case, the error in

the calculated free energy is constant regardless of the simulation length. Practically

speaking, the behavior of the error is expected to lie somewhere between these two

extremes (fixed vs. proportional to P(I)). Fortunately for our calculations, in this regime

increasing the length of the simulation can only have the effect of decreasing the

expected error or at worst keeping it constant.

The first two issues we have discussed are general properties of probability-based

free energy calculations. There is one final statistical issue that should also be considered

with regard to the specific use of CMC/MD in molecular systems. Our previous

discussions of minimum sampling and error are based on the assumption that our Monte

Carlo steps are independent samples. That is, between any two Monte Carlo steps there

are enough molecular dynamics steps that the system has a chance to relax and explore

phase space. A historically useful rule for molecular systems? is to base the sampling

frequency on the relaxation time associated with significant processes in the system. For

the calculation of an ensemble average property, it is not necessary to discretize the

sampling with a frequency longer than the relaxation time. Instead, the sampling just

needs to be carried out over a significantly longer length of time than the relaxation time

– if the significant relaxation time in the system is 1 picosecond, averaging needs to be

208



carried out over 100+ picoseconds. This is actually a significant and little-discussed

limitation of traditional free energy calculations. The numerical integration used in FEP

or TI calculations usually requires breaking the calculation into several discrete windows

and calculating a free energy difference for each window. These windows are effectively

separate simulations, and each needs to be carried out for at least the sampling time

described above. However, typical free energy calculations use less than 25 picoseconds

of sampling time for each window. This is insufficient to sample contributions from

minima separated by appreciable free energy barriers, like protein side chain rotamers”.

Table 2 shows some of these time constants for processes in biomolecular

systems, as listed in McCammon and Harvey*. For the specific case of CMC/MD in

solution, a good lower bound on the sampling frequency is the pairlist update frequency.

In a correctly run molecular simulation, the pairlist update is set to occur more frequently

than significant changes in the conformation of the system. For the typical AMBER

molecular dynamics simulation in solution, the pairlist is updated every 10 to 20

femtoseconds. Repeating Monte Carlo steps more frequently than this value will just

produce the “Boltzmann probability” distribution described in Chapter 5 at additional

computational expense. The studies reported in this thesis have typically used a 10 fs

spacing for CMC/MD steps in vacuo, and a spacing of 100-500 fs (0.1-0.5 ps) for

CMC/MD calculations in proteins or in solution. The total simulation lengths were, as

noted previously, typically greater than or equal to 1 nanosecond (10'ps). The stochastic

nature of the Metropolis Monte Carlo process helps to prevent the CMC/MD simulation

from getting trapped in non-ergodic regions of phase space. This is augmented by the use
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of stochastic temperature coupling methods to maintain the system at the desired

temperature.

Motion Amplitude (Angstrom) Characteristic time

Vibration of bonded atoms 0.01 to 0.1 1-10 femtoseconds

Elastic vibration of globular 0.05 to 0.5 1 to 10 picoseconds

protein

Surface sidechain rotation 5 to 10 10 to 100 picoseconds

Libration of buried 0.5 100 picoseconds to 1

sidechains nanosecond

Hinge bending, domain 1 to 5 100 picoseconds to 0.1

motion microsecond

Buried sidechain rotation 5 Microseconds to seconds
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Abstract

We present molecular dynamics (MD) simulations on two enzymes: a human

hypoxanthine-guanine-phosphoribosyltransferase (HGPRTase) and its analog in the

protozoan parasite Tritichomonas foetus. The parasite enzyme has an additional ability to

process xanthine as a substrate, making it a hypoxanthine-guanine-xanthine

phosphoribosyltransferase (HGXPRTase).(1) X-ray crystal structures of both enzymes

complexed to guanine monoribosylphosphate (GMP) have been solved, and show only

subtle differences in the two active sites.(2,3) Most of the direct contacts with the base

region of the substrate are made by the protein backbone, complicating the identification

of residues significantly associated with xanthine recognition. Our calculations suggest

that the broader specificity of the parasite enzyme is due to a significantly more flexible

base-binding region, and rationalize the effect of two mutations, R155E and D163N, that

alter substrate specificity.(4) In addition, our simulations suggested a double mutant

(D106EID163N) that might rescue the D163N mutant. This double mutant was

expressed and assayed, and its catalytic activity confirmed.

Our molecular dynamics trajectories were also used with a structure-based design

program, Pictorial Representation Of Free Energy Changes (PROFEC), to suggest

parasite-selective derivatives of GMP. Our calculations here successfully rationalize the

parasite-selectivity of two novel inhibitors derived from the computer-aided design of

Somoza, et. al.(5) and demonstrate the utililty of PROFEC in the design of species

Selective inhibitors.
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Phosphoribosyltransferases (PRTases) are enzymes that catalyze the addition of a

nucleobase to the alpha-carbon of alpha-phosphoribosylpyrophosphate to form a

nucleoside monophosphate and pyrophosphate (Figure 1). They also typically catalyze

the reverse reaction at high efficiency. For many parasitic organisms, purine PRTases are

essential enzymes of the purine salvage pathway. In the protozoan Tritichomonas foetus

(T. foetus) the essential purine PRTase operates with relatively high efficiency on

hypoxanthine (H;R2 = H), xanthine (X;R2 = O) and guanine (G;R2 = NH2). In contrast

to the protozoan HGXPRTase, the corresponding human enzyme shows a substantial

preference for hypoxanthine and guanine and minimal xanthine activity (human

HGPRTase). Competitive inhibition data (Ki) values show that the human HGPRTase

has a 100-fold reduced affinity for xanthine (250 puM) versus hypoxanthine or guanine

(1.8 and 2.4 plM)(6). The kinetics of both enzymes have also been extensively studied(7–

9), and kcat's, Km's, and catalytic efficiencies for the forward reactions of both human

and parasite enzymes are summarized in Table 1. Detailed data for the reaction of

xanthine with the human enzyme have not been reported in the literature, presumably due

to the low affinity of the enzyme for this substrate. Also listed in Table 1 are the

properties of two mutant parasite enzymes (R155E, D163N). These two mutants were

designed by Munagala and Wang(4) to help understand the broad substrate specificity of

the parasite enzyme. R155E is particularly interesting since this mutation distant from

the active site serves to substantially reduce the ability of the enzyme to process xanthine,

XMP and GMP (data not shown). Closer to the substrate, the backbone of residue 163

forms direct hydrogen bonds to the C2 substituent of the base. The D163N mutant is
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interesting since the side chain of this residue does not form any direct contacts with the

substrate. However, the substitution of asparagine for aspartic acid substantially

decreases the xanthine activity of the HGXPRTase while only slightly affecting the other

two substrates.

X-ray crystal structures of the human HGPRTase complexed with GMP and the

parasite HGXPRTase-GMP complex were solved by Eads, et. al.(2) and Somoza, et.

al.(3). The two enzymes show about 30% sequence identity. Both active sites are very

similar in structure, and use almost identical residues to recognize the substrate. The two

complexes are superimposed and shown in Figure 2, with several key residues labeled.

The similarity of the two active sites does not answer why the parasite enzyme recognizes

xanthine or XMP while the human enzyme does not. To attempt to answer this question,

we carried out molecular dynamics (MD) simulations of the human-GMP, human-XMP,

parasite-GMP and parasite-XMP complexes. In addition, we simulated the two mutant

parasite complexes (R155E-XMP and D163N-XMP) in order to attempt to understand

the effects of these alterations on enzyme specificity. Our molecular dynamics

calculations provide a detailed, microscopic picture of the structure and dynamics of each

complex, and are discussed in detail below. After this work was initiated, several

structures of complete purine phosphoribosyltransferase catalytic complexes were solved

(10,11). These structures show the positions of the substrate base, phosphoribosyl

phosphate, and catalytic metal ions just prior to the formation of the nucleotide. As

expected, the crucial protein contacts that recognize the base are mir in these new

structures and the previous nucleotide complexes which we have simulated.
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Methods

Setup and model building

The models of each complex were prepared using the LEAP module of AMBER

5.0(12). The PDB coordinates of the human-GMP (1hmp) and parasite-GMP (1hgx)

complex were used as starting points for all calculations. They were modified as

necessary to represent alternative substrates (XMP) or mutant structures (D163N,

R155E). XMP was built onto the GMP coordinates by hand, while the mutant

coordinates were built using the “swapaa” function of MidasPlus(13). A sulfate ion

(SO4°) distant from the ligand binding site was deleted from the parasite structures. All

ionizable amino acids were set to their most probable protonation state at pH 7.0, with no

exceptions.

It was necessary to build molecular mechanics models of both XMP and GMP for

our calculations, since these molecules are not part of the usual AMBER parameter set.

While all necessary bond, angle, dihedral and van der Waals terms were already present

in the Cornell, et. al.(14) force field, we had to derive charges for both substrates. The

restrained electrostatic potential (RESP) method(15) was used to determine a set of point

charges for each molecule that best fit their electrostatic potential. These electrostatic

potentials were derived from single-point restricted Hartree-Fock quantum mechanical

calculations carried out with the Gaussian 94 computer program(16). It was necessary to

split the nucleotides into two parts: the base and sugar, which were treated as a single

neutral species; and the phosphate group, which was treated as a singly charged anion

(17). In both calculations, a 6-31G* basis set was used. The two calculations were

combined to yield ribonucleoside phosphates each with a net charge of –1.0. The charges
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and parameters used are available from the authors. In preparing our model of XMP, we

considered only the 2-oxo tautomer, as enolic tautomers of the nucleobases are rarely

populated in solution.(18)

Equilibration

Using these molecular mechanics models and the protein structures described

above, including any counterions and crystallographic waters, we solvated each complex

with a 25.0 Angstrom cap of TIP3P(19) water molecules centered on the substrate.

Though both the human and parasite structures are dimeric enzymes, we concentrated our

attentions on a single active site in each case. In fact, only atoms closer than 25

Angstroms from the substrate were permitted to move in each simulation.

Each complex was equilibrated and simulated using an identical protocol and the

SANDER molecular dynamics package of AMBER 5.0(12). The molecular mechanics

model described above was first subjected to 100 steps of steepest descent minimization

followed by 1000 steps of conjugate gradient minimization to fix any errors introduced in

the model-building process. After this minimization, a short (2 picoseconds (2 ps),

heating from 0 to 300K) molecular dynamics run was started where only the water

molecules were allowed to move while the protein, ligand, and counterions remained

fixed. This served to equilibrate the water structure around the complex prior to the

production runs. The equilibrated complex was then gradually heated from OK to 300K

over 8 ps. During this heating period, the protein and ligand heavy atoms were restrained

to their original positions with weak (1.0 kcal/mol/AA2) positional restraints. Once the

heating was over, the positional restraints were released, and each complex was simulated
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for a total of 300 ps. For all runs, Berendsen temperature coupling(20) was used to

maintain the system at its assigned temperature, while the SHAKE algorithm constrained

the length of all hydrogen containing bonds to their equilibrium values. The latter serves

to permit the use of a 2 femtosecond timestep in the dynamics calculations. In order to

minimize computational expense, long-ranged energies and forces (electrostatic and van

der Waals) were only calculated out to a fixed (residue-based) cutoff distance. In the

past, typical molecular dynamics or Monte Carlo protocols have used 8 or 9 Angstrom

cutoffs(21). The recent development of Particle Mesh Ewald (PME) electrostatics(22)

and related algorithms(23) allow all long-range contributions to be included at a

reasonable cost in periodic systems. Since our complexes were aperiodic, it was

necessary to use a cutoff-based approach for our calculations. We initially simulated

each complex using a 9 Angstrom cutoff. However, this resulted in rapid distortions of

the binding complex including movement of XMP or GMP phosphate groups out of the

phosphate-binding loop and into solution. These distortions are commonly seen when

using cutoffs in simulations of highly charged systems(24). Due to the distortions, these

calculations were discarded and a 14.0 Angstrom cutoff was used for all subsequent

calculations. The longer cutoff resulted in much lower structural distortions and

relatively stable structures for each complex. A similar effect has also been observed in

complexes of isocitrate dehydrogenase(25). All calculations reported in this paper used

the longer 14 Angstrom cutoff. Attempts to simulate the complex in vacuum with a 14

Angstrom cutoff and a distance-dependent dielectric of 4Rii were unsuccessful due to

unrealistic fluctuations of the ligand and Y.156 or F186, the protein side chain that stacks

atop the base portion of the ligand.
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Analysis

The CARNAL trajectory analysis software of AMBER 5.0 was used to calculate

the root-mean-square (RMS) deviations and interatomic distances for each trajectory.

The MDANAL part of the AMBER 5.0 package was used to calculate the atomic

fluctuations of each complex. Structures were displayed and compared using the

Midasplus graphical visualization software(13).

PROFEC

The PROFEC free energy extrapolation software(26) was used to suggest

modifications to GMP or guanine that would increase the parasite selectivity of the

resulting compound. Both the parasite-GMP and human-GMP trajectories were analyzed

to find locations where the ligand could be favorably derivatized. This is done by

calculating the free energy cost of inserting a test particle at various locations near the C2

of GMP. The difference of these two analyses yields a map of positions where GMP

could be changed to yield a parasite-selective compound. For these calculations, an

uncharged carbonyl oxygen-sized particle was used as the test particle. Once the map

was calculated, it was projected on the parasite-XMP complex and displayed using

MidasPlus, which also served to superimpose the DOCKed coordinates of the compounds

described by Somoza, et. al.(5) The free energy map was contoured at levels of –2.0, 0.0

and +1.0 kcal/mol in order to show regions where modifications to the ligand would be

favorable, neutral, or unfavorable, respectively.
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Simulations

A total of six simulations were carried out to permit a detailed comparison of the

structure and dynamics of human and parasite enzymes bound to each substrate (GMP,

XMP) as well as model the behavior of two parasite mutants (D163N, R155E) bound to

XMP. In all cases, the binding complex is well maintained, and the overall geometry of

the initial model-built complex was preserved.

Site-directed Mutagenesis

Site-directed mutagenesis and expression and purification of the D106E/D163N

double mutant was carried out as previously described(1)[(4). Oligonucleotide primers

were designed, synthesized, and used with a Stratagene kit for site-directed mutagenesis.

The plasmid (pBTfprt) containing the full-length gene encoding T. foetus was

transformed into an E. coli mutant strain Sö606. Expression of the mutant T. foetus

HGXPRTase gene in the plasmid was induced in the low-phosphate culture medium.

The recombinant mutant protein was purified to homogeneity from the transformed cells,

and steady state kinetic analysis was performed on the purified enzyme. The kinetic

constants were obtained by monitoring the catalysis spectrophotometrically, as previously

described(9).

Results

Simulations of wild-type complexes

The enzymological data (Table 1) show that the human enzyme substantially

prefers guanine over xanthine, whereas the parasite HGXPRTase shows only a slight
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preference. Our simulations of each wild-type enzyme bound to both substrates were

intended to address this issue. The structural changes and fluctuations seen in each

simulation help explain the observed substrate specificity.

A rough measure of structural change during each simulation is the root-mean

square (RMS) deviation of the protein backbone from its initial position. Compared to

the corresponding parasite complexes, the protein backbones of the human complexes

diverge further from the x-ray structure, as measured by RMS deviation (Figure 3a,3b).

The average structures of the human-GMP and human-XMP simulations are shown

superimposed on the x-ray structure in Figure 4, highlighting a few differences. The salt

bridge between D193 and K68 is broken in the human-XMP complex, while it is

preserved in the human-GMP complex. In the human-XMP complex, K68 moves to

form a salt bridge with D134, which normally interacts with the sugar hydroxyls. In this

complex, D193 is also displaced slightly away from the base, minimizing unfavorable

interactions between its backbone carbonyl and the C2 carbonyl of XMP. In contrast,

this same residue superimposes closely with the crystal structure in our human-GMP

simulation, maintaining a good hydrogen bond between its main chain carbonyl and the

GMP amino group. Despite these structural differences, both simulations show

uniformly low fluctuations of the protein backbone in this ligand-binding region. Also,

the phosphate- and sugar-binding regions of both complexes are well preserved, as

expected for substrates that differ only at the C2 position.

In contrast to the human complexes, the parasite-XMP and parasite-GMP

backbones show smaller RMS deviations from the initial x-ray structure (Figure 3b).

However, the two parasite structures are more different from each other than the two
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human structures are from each other, especially in the C2-pocket region. This is best

shown by Figure 5, which superimposes the C2 pockets of each parasite complex. From

this figure, one can see that both structures have diverged somewhat from the x-ray

crystal structure, primarily due to the loss of the hydrogen bond between the D163

backbone carbonyl and the Y156 hydroxyl group. In the parasite-XMP complex, D163

has moved away from the C2 carbonyl of xanthine, allowing water molecules more

access to donate hydrogen bonds to the substrate. With the Y156 hydrogen bond broken,

D163 shifts to make a much better hydrogen bond to the GMP NH2 in the parasite-GMP

complex. Again, the phosphate- and sugar-binding regions of both the parasite-GMP and

parasite-XMP complexes remain well-structured throughout the calculation.

Simulations of mutant complexes

In addition to the wild-type simulations, we carried out simulations on two

mutants of the parasite enzyme bound to XMP. During the extensive enzymological and

mutagenic studies of T. foetus HGXPRTase by Munagala et al.(4,9), two anomalous

mutations were observed. First, the mutation of arginine 155 to a glutamic acid (R155E)

disrupts a salt bridge relatively distant (~15 Angstrom) from the C2 pocket, yet it

substantially reduces the affinity of the enzyme for some C2-substituted substrates

(xanthine, XMP and GMP) while influencing hypoxanthine/IMP binding much less. Our

simulation of the parasite R155E-XMP complex shows no large structural differences

from the wild type enzyme, and has a low overall RMS deviaton (Figure 3c). However,

the backbone fluctuations of residue 163 (and the C2 pocket) are substantially decreased
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in the mutant complex. This suggests that R155E may exert its effect by reducing the

ability of the parasite C2 pocket to reorganize and recognize C2-substituted substrates.

In contrast, the D163N mutant changes the amino acid that forms most of the C2

pocket in the parasite enzyme. Since the C2 pocket is largely formed by the backbone of

residue 163, it is interesting that this mutation substantially affects the affinity of the

parasite for XMP and xanthine (Table 1). In our simulations, exchange of the negatively

charged carboxylic acid for the neutral amide group of asparagine causes substantial

structural distortions of the ligand-binding complex. In the wild-type structure, D163

acts as a salt bridge partner for R169. In the D163N mutant, R169 lacks a nearby

negatively charged salt bridge partner. Over the course of our simulations, this arginine

moves towards the carboxylic acids of D103 and E102 which normally recognize the

hydroxyl groups of the ligand. While we do not expect that these specific distortions

occur in the actual D163N mutant, it does suggest that the deleterious effect of the

D163N mutant is due to a substantial reorganization of the enzyme, rather than a specific

contact with the substrate. In support of this observation, we must note that Munagala,
et. al. found the D163E mutant to have almost wild-type activity(4). The D163E mutant

preserves the negative charge at this position and presumably maintains the D163-R169

salt bridge as well.

Analysis of the simulations

The backbone (N,CA,C,C) atomic fluctuations (B-factors) of each complex are

presented in Figure 6. They are shown for residues 153-173 (in the parasite enzyme;

183-203 in the human), which includes the amino acids that recognize the C6, N1, and
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C2 positions of the base. Figure 6A shows the B-factors in this region for the two

starting crystal structures. Both the human-GMP and parasite-GMP complexes show low

fluctuations in this region according to the crystal structures. For comparison, panels B

and C show the fluctuations calculated from our wild-type simulations. Here, both

human complexes show the expected low fluctuations in this region. The parasite-GMP

and parasite-XMP simulations show much larger fluctuations in this region. This

suggests that the parasite enzyme has a far less rigid C2 pocket which permits it to

recognize both the amino group of GMP and the carbonyl oxygen of XMP. While the

main-chain carbonyl of residue D163/D193 provides an appropriate hydrogen-bond

acceptor for GMP's amino group, the C2 pocket needs to reorganize to properly

recognize XMP’s carbonyl group. While buried hydrogen bonds are not necessarily

expected to add to binding affinity, the failure to form an expected enzyme-substrate

hydrogen bond can cost substantial affinity or stability(27). The necessary hydrogen

bonds to recognize XMP appear to be provided largely by nearby water molecules in our

simulations. In fact, our parasite-XMP simulations shows a very intermittent hydrogen

bond between the D163 carbonyl and the hydroxyl of tyrosine Y156. Breaking this

hydrogen bond allows the tyrosine and aspartic acid to separate enough that a water

molecule can approach the oxygen of XMP from above the plane of the base.

Interestingly, the C2 pocket fluctuations of both mutant parasite complexes are

decreased relative to their wild-type counterparts (Figure 6, panel D). In the case of

R155E-XMP, this may be the mechanism by which the R155E mutation exerts its effects

on some C2-substituted substrates (xanthine, XMP, GMP). In contrast, the D163N

mutant shows moderate fluctuations in the backbone of residue 163, but slightly
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increased fluctuations in residue 153-154 and the region around R165. Since this latter

residue shifts substantially during our simulation, its increased fluctuations are expected.

To get a picture of the specific contacts that form the C2 pocket, we monitored the

distance between nearby hydrogen bond donors and acceptors during our simulations.

There are three major hydrogen bonds that can be formed with the base C2 substituent in

both enzymes, as seen in Figure 2. First, the main-chain carbonyl of I157/I187 is seen to

accept a hydrogen bond from GMP in both human and parasite crystal structures.

Second, the backbone carbonyl of D163/D193 can also accept a hydrogen bond from the

amino group of guanine. Third, the amide nitrogen of that same residue can donate a

hydrogen bond to the C2 carbonyl of xanthine or XMP if they are present, though this

would require some reorganization to achieve the optimal geometry. We monitored the

time course of these three distances over each of our simulations, and found that only a

few varied significantly over our trajectories. As expected, the D163 backbone – C2

distances are significantly longer in the two wild type parasite complexes. The averages

and standard deviations of each distance are shown in Table 2, along with the values from

the two crystal structures for comparison.

Both mutant complexes (R155E, D163N) also show very short distances between

the amide nitrogen of residue 163 and the C2 oxygen of XMP, indicating that the base

has “tipped down” in the C2 pocket to form this good hydrogen bond.

In addition to contacts along the edges of the base, we also monitored the distance

between the N7 atom of each base and the oxygen atoms of aspartic acid D106/D137

(both shown in Figure 2). Proton transfer between this carboxylic acid and the N7
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nitrogen has been implicated as the critical catalytic step in the human enzyme(28).

Distances from the nearest carboxyl oxygen to N7 of each substrate are shown in Table 3.

These distances were calculated over the last 200 picoseconds of each trajectory,

to allow for the initial relaxation of each structure. Although we are not necessarily

simulating a catalytically competent complex (D106/D137 would need to be protonated

to initiate a proton transfer to N7 of the base), the human-XMP and D163N-XMP

complexes stand out in the above table as having larger average and maximum distances

than the other complexes. Interestingly, these are two of the three complexes that show

reduced affinity and catalytic activity (Table 1). The last, R155E, appears to be impaired

due to its decreased fluctuations in the C2 pocket, as mentioned above.

Our Observation of an increased D106-XMP N7 distance in the D163N-XMP

simulation prompted the design of a double mutant D106E/D163N. The substitution of

glutamic for aspartic acid at position 106 allows the double mutant to partially

compensate for the deleterious effects of the D163N mutation. This double mutant was

made, expressed and assayed by N. Mungala using the previously-described protocols for

biochemical studies of the parasite HGXPRTase(1,4). The double mutant restores

catalytic activity to the D163N enzyme, as shown in table 4. As well as supporting our

model, the activity of the double mutant is additional evidence that the carboxylic acid at

position 106 (137 in the human enzyme) is essential to the catalytic mechanism of these

enzymes(28).

A model of the double mutant was hand-built from the structure of the simulated

D163N-XMP complex. The side chain dihedrals of glutamic acid were kept to canonical

(rotameric) values(29). The D106E substitution allows the catalytic carboxylic acid to be
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placed within 2.5 Angstroms of the N7 nitrogen without significant distortion of the side

chain. In contrast, the corresponding D163N-XMP structure shows a carboxylic acid-N7

distance of over 4 Angstroms.

PROFEC analysis

The PROFEC free energy estimation software(26) was used to suggest how GMP

could be modified to yield a parasite-selective ligand. The free energy cost of adding a

test particle (or potential modification) the C2 position of the base was evaluated for both

the human-GMP and parasite-GMP trajectories. These two free energy “maps” were

then combined to yield a picture of how GMP (or GMP-like ligands) could be modified

to improve their parasite-selectivity, either by enhancing their affinity for the

HGXPRTase, or by impairing their affinity for the human enzyme. Interestingly, there is

a large region along the edge of the base by the N2 and N3 positions where our software

suggests that modifications be made. This region is shown in Figure 7A. Since the

parasite-GMP complex is much more solvent exposed along the N2/N3 edge of the base,

it is not surprising that PROFEC picks this region for parasite-selective modifications.

Additional atoms here would displace a water molecule in the parasite-GMP complex,

while they would probably have a steric clash with D193 or K68 in the slightly better

packed human-GMP complex.

The recent computer-aided design of several parasite-selective ligands here at

UCSF(5) allows us to test our observations. Somoza, et. al., found two lead compounds

via computer database screening with the DOCK program(30). These two compounds, a

phthalic anhydride-nitrobenzene and an indol-2-one-nitrobenzene, are shown in Figure
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7B, superimposed upon GMP in their DOCKed conformations(31). Figure 7B also

includes the PROFEC contour map showing where GMP could be modified to increase

or decrease its parasite selectivity. Interestingly, the two compounds superimpose

somewhat with the parasite-favoring region shown in Figure 7A. Moreover, the indol-2-

one projects substantially into the region that we expect to be unfavorable for parasite

selectivity, while the phthalic anhydride follows the parasite-selective contour much

more closely. This only becomes significant when considered in the context of Table 5,

which lists the IC50s and selectivity (IC50/IC50) of both compounds as reported by

Somoza, et. al. Here we see that the indol-2-one is in fact relatively nonspecific, while

the phthalic anhydride shows a greater than threefold preference for the parasite enzyme.

Discussion and Conclusions

In any molecular modeling study, one must be aware of the limitations of the

model used and how they relate to the questions of interest. In our case, we were

interested in the qualitative details of molecular recognition between

HGPRTase/HGXPRTase and GMP or XMP. These two substrates only differ by the

substitution of a carbonyl (xanthine, XMP) for an amino group (guanine, GMP) at the C2

position. In addition, the two enzymes we studied show only subtle structural differences

in their C2-binding pockets. Given these observations, we chose a computational model

that allowed us to simulate a number of enzyme-substrate complexes for a reasonable

time, and took care to ensure that the representation was sufficient to maintain the

structure of each complex relatively well. Since we were interested in the local structure

and dynamics of each active site, we chose to model those regions in detail while holding
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most of each enzyme fixed. While our calculations are relatively short (300 picoseconds

each), they appear to be sufficient to highlight the differences between the enzyme

substrate complexes. In each case, enzyme-substrate interactions and geometries are well

converged, with the possible exception of our D163N-XMP complex, which shows

substantial structural deviations. Given the representation used, we do not expect that we

have definitively divined the structure of each simulated complex, nor completely

modeled the overall dynamics of either enzyme in solution. Our calculations have,

however, allowed us to rationalize the ability of T. foetus to process xanthine, explain the

effects of two mutations, and suggest the basis for the parasite-selectivity of different

ligands.

With the above limitations in mind, our calculations have revealed a plausible

model for the ability of the T. foetus HGXPRTase to process XMP. The residues of the

C2 pocket, specifically D163/D193, show much higher fluctuations in the parasite

enzyme when compared to the human enzyme. This is particularly significant given the

lower overall RMS deviation of the parasite simulations from their starting structures.

The parasite enzyme appears to be able to reorganize to accommodate both the C2

carbonyl of XMP and the C2 amino group of GMP, while the C2 pocket of the human

enzyme is relatively “frozen” in a conformation that only recognizes GMP. In addition,

the R155E parasite mutant shows reduced fluctuations in this region, compatible with its

reduced ability to process xanthine – it too becomes “frozen” in the GMP-binding

conformation. It is important to note (Figure 6) that neither the parasite/GMP or

human/GMP crystal structures show this difference in their C2 pocket temperature

factors. However, the most important observation is probably the difference in human
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XMP and parasite-XMP fluctuations, since this helps to explain why the parasite enzyme

can recognize XMP while the human cannot. Since there are no crystal structures of

either of these complexes, our simulations provide the only structural information of how

xanthine and XMP are recognized.

In contrast to R155E, where our simulations show a stable structure with reduced

fluctuations from the wild type enzyme, our D163N model is substantially distorted. The

removal of a negative charge associated with the aspartic acid to asparagine mutation

removes a salt bridge necessary for structuring R169. Without its salt-bridging partner,

R169 is drawn toward the nearby negative charges of E102 and D103. This attraction

distorts the structure of the complex. Most importantly, it significantly increases the

distance between the N7 nitrogen of XMP and the catalytic carboxylic acid of aspartic

acid D106. This model prompted the design and testing of a D106E/D163N double

mutant. The increased length of the catalytic carboxylic acid at position 106 restores

catalytic activity to the parasite enzyme. While we do not expect that our simulation

precisely describes the structure of the D163N/XMP complex, our calculations are

substantially validated by the efficacy of the D106E/D163N double mutant.

Interestingly, the homologous residues of D163 and R169 form most of the magnesium

ion binding site seen in the enzyme-base-PRPP structure solved by Focia, et. al.(11) This

led them to conclude, like our study, that the D163N mutation exerts its effects through

significant structural changes in the enzyme (distortion of the Mg++ binding site) rather

than direct or water-mediated contacts with the base.

In addition to understanding the mechanistic basis of xanthine specificity and

providing a model of the specific effect of some parasite mutants, our calculations have
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shown how GMP could be modified to form a xanthine-Selective Substrate or inhibitor.

These PROFEC calculations indicate a region along the edge of the base, near the C2

substituent and the N3 position, where added derivatives would be preferred in the

parasite enzyme but unfavorable in the human. Interestingly, this region is occupied by

the parasite-selective ligands recently developed by the Kuntz group at UCSF. As far as

we are aware, this represents the first case where free energy extrapolation methods have

been used to study species-selective ligand modifications. While PROFEC calculations

only yield qualitative suggestions, our results here imply that they will be a useful tool in

species-selective drug design.
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Table 1: Kinetic parameters for human HGPRTase and T. foetus HGXPRTase activity

Table la'

Enzyme Substrate Km, app (HM) Kcat (secº') kcat/Km Relative rate
(HM'sec")

Human Hypoxanthine | 1.9 +/- 0.3 8.4 2.7 1
Human Xanthine NA NA NA NA
Human Guanine 3.1 +/- 0.9 14.2 7.5 2.7

Table 1b."
Enzyme Substrate Km (puM) Kcat (sec') kcat/Km Efficiency

(uM'sec')
Parasite Hypoxanthine || 3.05 +/- 0.54 8.92 +/- 0.46 2.92 1
Parasite Xanthine 6.08 +/- 0.81 4.82 +/- 0.8 0.78 0.26
Parasite Guanine 2.4 +/- 0.74 2.48 +/- 0.24 1.03 0.35

Table 1.cº.

Parasite Hypoxanthine 4.92 +/- 0.8 8.95 +/- 0.67 1.81 0.62
D163N

Xanthine >300
-- -- --

Guanine 9. 13 +/- 1.1 2.17 +/- 0.13 0.24 0.08

Parasite Hypoxanthine | 2.06 +/- 0.51 10.22 +/- 0.8 4.96 1.69
R155E

Xanthine 95.8 +/- 18.4 33.05 +/- 2.6 0.34 0.11
Guanine 3.01 +/- 0.23 25.98 +/- 1.9 8.63 2.95

“ data from (8)
" data from (9)
“ data from (4)
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Table 2: Distances associated with enzyme-substrate hydrogen bonds (in Angstroms)

Table 2

Simulation/Structure I157/I187 O – R2 D163/D 193 O – R2 D163/D 193 N – R2

Human-GMP (xray) || 3.0 3.0 4.1

Human-GMP 3.5 +/- 0.4 3.3 +/- 0.4 4.0 +/- 0.5

Human-XMP 3.8 +/- 0.2 3.6 +/- 0.3 3.9 +/- 0.7

Parasite-GMP (xray) |3.3 3.2 3.8

Parasite-GMP 3.2 +/- 0.3 4.7 +/- 1.3 4.1 +/- 0.7

Parasite-XMP 3.6 +/- 0.2 4.0 +/- 0.4 4.2 +/- 0.7

R155E-XMP 3.8 +/- 0.2 3.4 +/- 0.2 2.1 +/- 0.4

D163N-XMP 3.8 +/- 0.2 3.4 +/- 0.3 2.0 +/- 0.3
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Table 3: Distances between the catalytic D106/D136 and the substrate N7 nitrogen (in

Angstroms)

Table 3

Simulation Minimum distance | Average Maximum

Human-GMP 2.8 3.9 5.4

Human-XMP 3.0 4.4 6.0

Parasite-GMP 2.8 3.5 4.8

Parasite-XMP 2.9 3.5 4.7

R155E-XMP 2.9 3.6 5.0

D163N-XMP 3.0 4.2 6.0
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Table 4: Kinetic parameters of the D106E/D163N double mutant

Table 4

Enzyme Substrate Kcat (sec') Km (HM) Kcat/Km

(uM'sec')

Wild type Xanthine 4.8 +/- 0.8 6.08 +/- 0.8 0.78

D163N Xanthine >300
- -

D106E/D163N | Xanthine 0.39 21.5 0.18
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Table 5: IC50s of lead compounds studied by Somoza, et. al.(5)

Table 5

Compound Parasite IC50 (uM) || Human IC50 (HM) || Ratio (Hum/Par)

Phthalic anhydride 300 >1000 >3

Indol-2-one 240 200 0.83
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Figure Legends

Figure 1: Schematic of the reaction carried out by the human and parasite

phosphoribosyltransferases.

Figure 2: Superimposition of the human-GMP and parasite-GMP active sites from their

crystal structures. The parasite complex is colored by atom type, and the human

complex is displayed in cyan. Key protein residues and substrate atoms

mentioned in the text are labeled, with the human residue number in parentheses.

Several enzyme-substrate hydrogen bonds are highlighted for both complexes.

The additional salt bridge between D193 and K68 in the human structure is also

displayed.

Figure 3: Carbon-alpha root mean square deviation of each simulation from its starting

structure. Complexes with GMP are solid lines; complexes with XMP are

graphed as long dashed lines.

Figure 4: Superimposition of the human-GMP crystal structure (colored by atom) with

the human-GMP (cyan) and human-XMP (yellow) structures averaged over each

simulation. The enzyme-substrate hydrogen bonds shown in Figure 2 are also

displayed for the x-ray coordinates, for reference.
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Figure 5: Superimposition of the parasite-GMP crystal structure (colored by atom) with

the parasite-GMP (cyan) and parasite-XMP (yellow) structures averaged over

each simulation. The enzyme-substrate hydrogen bonds shown in Figure 2 are

also displayed for the x-ray coordinates, for reference.

Figure 6: Protein backbone atomic fluctuations (B-factors) for each set of coordinates.

These are only plotted for the residues near the C2 pocket; 153-173 in the parasite

and 183-203 in the human enzyme. The parasite numbering is used in this figure

and the human enzyme data has been translated to superimpose corresponding

residues. For each residue, B-factors are listed for the N, CA, C, and O atoms of

the protein backbone.

Figure 7a: PROFEC contour map of parasite selectivity. A slice through the contour map

of suggestions provided by the PROFEC software is shown superimposed on the

parasite-bound structure of GMP. The green contours correspond to regions

where modifications are predicted to enhance parasite selectivity by —2.0

kcal/mol. The black contours correspond to the 0.0 kcal/mol contour, while the

red contour is unfavorable by +1.0 kcal/mol. Since this is a contour map, addition

of heavy atom modifications to GMP within the black contour is expected to

increase parasite selectivity, while derivatives that place heavy atoms beyond the

black contour or in the red regions are expected to show decreased parasite

selectivity.
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Figure 7b; PROFEC/DOCK comparison. The DOCKed binding conformations of the

phthalic anhydride (yellow) and indol-2-one (cyan) compounds found by Somoza,

et. al. are superimposed on the parasite-bound structure of GMP and the same

PROFEC map used above. Again, the contour levels are green (-2.0 kcal/mol),

black (0.0 kcal/mol) and red (+1.0 kcal/mol), while several thicknesses of the map

have been drawn to aid comparison. Both compounds place several atoms in the

favorable region suggested by PROFEC. In addition, the indol-2-one projects

significantly beyond the first black contour and into the unfavorable region, while

the phthalic anhydride only projects slightly past this region. This is compatible

with the higher parasite-selectivity seen for the phthalic anyhydride.
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Chapter 10: Future perspectives

The future of CMC/MD

The CMC/MD software that I developed for my thesis is scheduled to be included

in the 6.0 release of the AMBER molecular mechanics/molecular dynamics package". It

will most likely be included as a compile-time option for the SANDER molecular

dynamics program, since the potential masking associated with the CMC/MD steps

requires considerable computational overhead. At present, it is not compatible with

SANDER's Particle Mesh Ewald (PME)2 method of calculating long-range electrostatic

contributions. Ewald sums, by their very nature, calculate the long-range electrostatic

terms for each atom in the system in a single calculation. This collective nature is at odds

with the mixed system – some surrounding residues, one real MC residue, several

“ghost” MC residues – simulated with CMC/MD. For a CMC/MD calculation with nine

MC residues, nine Ewald sums are required for every force evaluation or every Monte

Carlo step. As a single PME calculation is still a 20-50% additional cost versus the

corresponding cutoff calculation, our prospective nine residue CMC/MD-PME

calculation would be 180-450% slower than its cutoff counterpart. The judicious use of

some approximations might reduce the number of Ewald sums necessary. For example,

if PME is used for the forces and energies of the “real” system but a cutoff is used to treat

the “ghost” MC residues, the cost of a more-accurate electrostatic representation is

reduced somewhat. MC steps could be based on the cutoff interaction energy (cheap) or

the full PME interaction energy (more accurate but computationally more expensive).

The above approach would be very suitable for comparing the association of similarly
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charged ligands to a highly charged system — netropsin and analogs binding to DNA, for

example.

Mean-field dynamics, Representative dynamics

The ability of the CMC/MD software to perform molecular dynamics with a

number of similar ligands occupying the same position in a single protein active site

offers some new opportunities in free energy estimation. Instead of doing CMC/MD,

with its accumulating populations of different chemical species, one can imagine running

a single simulation that samples coordinates for many ligands. Post-processing of the

coordinates from this simulation could be used in a perturbation method 3 or linear

interaction energy estimation method 4 to estimate the free energies of many ligands

from a single simulation, and do so more rapidly than CMC/MD. Unlike CMC/MD,

however, these approaches will not serve to rapidly sort or rank ligands based on their

binding free energies. In addition, they do not correspond to any proper thermodynamic

ensemble. I have implemented two types of dynamics using the CMC/MD software that

will be used for these types of simulations. It should be noted that these methods are

similar in spirit to the “ensemble dynamics” facility provided by the SPASMS molecular

simulation package”.

The first method, called “mean-field dynamics” is also somewhat related to the

Locally Enhanced Sampling (LES) method of Elber, et. al.6 With LES, a portion of the

simulated system (like the ligand) is divided into N equivalent copies. Each copy

interacts in a mean-field way with the remainder of the system — forces and energies are

divided by 1/N. It has been formally proven that global minima of the LES system

250



correspond to global minima of the real (non-LES) system, prompting its use in

optimization calculations, like simulated annealing of small peptides or protein side chain

loops7. In our “mean-field” dynamics, N ligands are simulated in a binding site. Each

ligand feels the full interaction with the protein, but the protein only feels 1/N of the

normal interaction with each ligand. Hopefully, this will allow each ligand to sample

numerous low-energy binding conformations while preventing the protein from

“organizing” around one ligand to the exclusion of others. The input specification for

mean-field dynamics is detailed in Appendix 4.

The second method, “representative dynamics”. is somewhat simpler than mean

field dynamics. From the family of N ligands, a single “representative” ligand is

selected. A calculation is carried out with all N ligands and the receptor, where the

“representative” ligand interacts fully with the receptor. The receptor feels the

interaction with the representative ligand, but does not feel the forces from any of the

other ligands. The remaining ligands, however, feel the full force of their interaction

with the receptor. “Representative dynamics" is exactly equivalent to a CMC/MD

calculation with forces on the ghost ligands but where the “real” ligand is never changed

— i.e. no Monte Carlo steps are carried out. Again, the input specification for

representative dynamics is detailed in Appendix 4.

The future of free energy calculations

Interestingly, as my thesis has progressed, interest in free energy calculations for

binding predictions has waned somewhat in the computational chemistry community. To

some extent, it appears to be perceived as a “solved problem” — traditional free energy
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methods like FEP and TI are assumed to give the correct answer for any two-ligand

comparison, provided computer power is available to run the calculation for a sufficiently

long time. The presence of multiple conformational minima separated by significant free

energy barriers, whether in the ligand or in the receptor, is probably the major limiting

factor in such calculations today (Chapter 7, references 89). Substantial advances have

been made in the comparison of charged and neutral systems. Both Resat & McCammon

and Archontis, et. al. have shown that an extended thermodynamic cycle involving a

continuum electrostatics calculation (essentially a Born correction) in addition to a

thermodynamic integration step permits quantitative free energy calculations that

compare neutral and net charged species 10.1 1.

A second force working against interest in free energy calculations for binding

predictions is the explosive adoption of combinatorial chemistry methods and the

associated high-throughput screening methodologies. The ability to rapidly (and

cheaply) synthesize and test thousands to hundreds of thousands of compounds has

changed the role of the computational chemist in a pharmaceutical context. Instead of

providing insight to explain and extend structure-activity relationships derived from

traditional medicinal chemistry compound series, or make single compound suggestions

for synthesis, computational chemists are now expected to take an active role in library

design, monomer selection, and data analysis from high-throughput screening runs.

Much of “computational chemistry” in these contexts consists of statistical analysis using

large datasets and experimental design, making use of computational chemistry tools

such as conformational analysis and pharmacophore mapping in conjunction with

methods from other fields, including information theory and statistics. However, these
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alternative advances primarily impact lead discovery, and there is a recognition that the

“solved problem” of pairwise free energy calculations provides a powerful tool for the

subsequent optimization of a lead compound, especially given the increased availability

of high-resolution structural information.

While direct industrial focus on free energy calculations has faded somewhat, the

present robustness of traditional free energy methods, coupled with developments like

CMC/MD, has opened new academic arenas for free energy calculations. The ability of

free energy calculations to decompose contributions to relative free energies from

different phases (vacuum versus solution or folded versus unfolded states, for example)

lets them provide unique insights into fundamental physical processes. Nonadditivities in

partitioning behavior; the competition between hydrophobicity, local strain, and internal

entropy in peptide solvation; the role of conformational entropy and the “macrocyclic

effect” in ligand binding — all these are fertile areas for new free energy calculations.
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Appendix 1: Pseudocode for the CMC/MD algorithm

Control statements are in ITALICS; important variable names are UPPERCASE; time,
temperature, energy and forces are highlighted in BOLD.

Read standard molecular dynamics input
Topology file (potential function, connectivity)
Dynamics input (temperature coupling, timestep, simulation length, constraints or

restraints, cutoff, dielectric, number of runs, run length)
Initialize CMC/MD variables to default values
Read CMC/MD input

FILENAMES
MCFIL (file for Monte Carlo statistics)
MCRST (file for restart/reinitialization of CMC/MD)

CONTROL VARIABLES
IMCDO (main CMC/MD control variable)
IMCRST (initialize/restart CMC/MD)
IMCSOL (control variable for solvation offset, adaptive CMC/MD)
IMCCP (control variable for multicopy CMC/MD)
IMCNS (Monte Carlo step frequency)
IMCINT (control variable for inclusion of intramolecular energies)
EMCIF (floating point multiplier for intramolecular CMC/MD forces felt by MC

residues)
EMCNF (floating point multiplier for nonbonded CMC/MD forces felt by MC residues)
EMCSF (floating point multiplier for nonbonded CMC/MD forces felt by non-MC

residues)
EMCOFE (floating point multiplier for 1-4 electrostatic energy included in MC energy)
EMCOFN (floating point multiplier for 1-4 nonbonded energy included in MC energy)
IMCFIL (frequency of updates to Monte Carlo history file MCFIL)

MONTE CARLO VARIABLES (block format)
IMCFRS (residue number of first MC residue)
IMCLST (residue number of last MC residue)
IMCCUR (residue number of current MC residue)
IMCNS (Monte Carlo step frequency)
Loop over MC residues, for each read

EMCREO (solvation or adaptive offset for each MC residue)
DMCWIN (width of trial move probability window for this residue, read if

IMCCP × 2)
IMCSET (set-membership for this residue, read if IMCCP-3)

IF IMCDO is not -1, set up Monte Carlo calculation
Loop over atoms

Assign IMCMSKCI) for each atom.
IF the atom is in a non-MC residue,

IMCMSKCI) = 0
IF the atom is in a MC residue,

IMCMSKCI) = residue number — IMCFRS + 1
Loop over MC residues

-

IFDMCWIN has not been read, assign DMCWIN for this residue
DMCWIN(I) = 1/N + (residue number — IMCFRS + 1)

Initialize EMCRES(I), MC energy accumulator for each residue
Initialize IMCCNT(I), number of MC counts for each residue
Initialize PMCRES(I), Boltzmann probability accumulator for residue I
Initialize DMCRES(I), Boltzmann probability accumulator for residue I when

EMCREO offset is subtracted
IF IMCRST = 1, read MCRST input file
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Read IMCCNT, DMCRES, and EMCREO for each residue

BEGIN Enter main dynamics loop

R(T), T Calculate energies and forces; bonds, angles, dihedrals, vdW and electrostatics
Bonds

Loop over I,J bonded pairs
Calculate bond interaction
Look up potential function masking in bonds table

Multiply forces on atoms I, J by mask terms
Add bond energy to total energy if appropriate
Add bond energy to EMCRES(MC) if appropriate

Angles
Loop over I,J,K angle triples

Calculate angle interaction
Look up potential function masking in angle table

Multiply forces on I,J,K by mask terms
Add angle energy to total energy if appropriate
Add angle energy to EMCRES(MC) if appropriate

Dihedrals
Loop over I,J,K,IL dihedral quadruplets

Calculate dihedral interaction
Look up potential function masking in dihedral table

Multiply forces on I,J,K,I, by mask terms
Add dihedral energy to total energy if appropriate
Add dihedral energy to EMCRES(MC) if appropriate

Loop over I,L 1-4 interaction pairs
Calculate 1-4 vil'W and electrostatic interaction
Look up potential function masking in dihedral table

Multiply forces on I,J,K,I, by mask terms
Add 1-4 energy to total energy if appropriate
Add 1-4 energy to EMCRES(MC) if appropriate

Van der Waals/ElectroStatics
Loop over I,J nonbonded pairs

Calculate nonbonded vôW and electrostatic interaction
Look up potential function masking in nonbond table

Multiply forces on I,J by mask terms
Add nonbonded energy to total energy if appropriate
Add nonbonded energy to EMCRES(MC) if

appropriate
NOTE: Force masking is also applied to the molecular virial used to calculate
the pressure — the system pressure is calculated considering only the “real”
(imccur) MC residue.

R(T), F(R,T), T
if T is an integer multiple of IMCNS, enter Monte Carlo routine

calculate “Boltzmann probabilities” for each residue.
calculate exp_value(I) = exp(-EMCRES(I)/kT)
sum up exp_values
PMCRES(I) = PMCRES(I) + exp_value(I)/sum

calculate “corrected Boltzmann probabilities” for each residue
calculate exp_value(I) = exp(-(EMCRES(I)-EMCREO(I))/kT)
sum up exp_values
DMCRES(I) = DMCRES(I) + exp_value(I)/sum
add 1 to total # of Boltzmann probability accumulations

select trial move — generate random number in the range {0,1}
loop over residues
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IF random number < DMCWIN(I)
test MC acceptance

ELSE
check next residue

update IMCCUR based on accept/reject of trial move
add 1 to Monte Carlo history for the IMCCUR residue

exit main Monte Carlo routine
IFT & Timax, dynamics continues

given the position and force on each atom at time T, carry out a leapfrog integration step:

R(T+dT), T+dT

acceleration (T) = force(T)/mass
velocity (T + dT/2) = velocity (T – dT/2) + acceleration (T) * dT
position (T + dT) = position (T) + velocity (T + dT/2) * dT
T = T + dT
Return to beginning of main dynamics loop (BEGIN)

ELSE (T = Tmax)
Number of runs = number of runs + 1
Write out molecular dynamics restart information
Write out Monte Carlo restart information (MCRST)
IF IMCSOL - 1 do adaptive CMC/MD

ELSE

Calculate relative free energy (DGRES(I))of each MC residue (vs. IMCFRS),
based on IMCCNT (IMCSOL = 2) or DMCRES (IMCSOL = 3).

If IMCSOL = 2, correct this free energy for the current EMCREO offsets
Set new EMCREO = -DGRES(I)
Write new EMCREO to MDOUT, MCFIL
Re-initialize IMCCNT(I)'s to zero
Re-initialize PMCWIN(I)'s to zero
EMCREO(I)'s and IMCCUR are the only elements of the MC history

carried to the next run.

Write out Monte Carlo acceptance probabilities (MCWTRA)
IF number of runs < max

Return to beginning of main dynamics loop (BEGIN)
IF number of runs = max

End simulation (END)

END End of main dynamics loop
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Lookuptablesforpotentialfunctionmasking: Nonbonded(vanderWaalsand
electrostatics)lookup(subroutineMCMSK) Atom

I

Atom
J
Force
I

Force
J
EtotEmcres
if
Emcres
ifNotes

iMCINT
=0||
imCint
=1

001.01.01.0-----2
non-MCatomsalwaysseeeachother IMCCURIMCCUR1.01.01.0---

IMCCURTheIMCCURresidue
ispartofthe

“real"system&addstototalenergy andvirial.

MC-1MC-11.01.00.0---MC2MCatomsinthesameresiduealways

seeeachother

MC-1MC-20.00.00.0-----2MCatomsin
differentresiduesnever

seeeachother

MC-2MC-10.00.00.0------
(symmetric) iMCCUR

01.01.01.0imCCURiMCCURTheIMCCURresidue
ispartofthe

“real”system&addstototalenergy andvirial.

0
IMCCUR1.01.01.0IMCCURIMCCUR(symmetric) MC-1

O
EMCNF0.00.0MCMCMC“ghost”feelssurroundings
if

EMCNF
-0

0
MC-10.0EMCNF0.0MCMC(symmetric) Bondlookuptable(subroutineMCMSK) Atom

I

Atom
J
Force
I

Force
J
EtotEmcres
if
Emcres
ifNotes

imCint
=0||
imcint
=1

001.01.01.0------2
non-MCatomsalwaysseeeachother IMCCURiMCCUR1.01.01.0---

IMCCURTheIMCCURresidue
ispartofthe

“real”system&addstototalenergy andvirial.

MC-1MC-11.01.00.0---MC2MCatomsinthesameresiduealways

seeeachother

MC-1MC-20.00.00.0-----2MCatomsin
differentresiduesnever

Seeeachother

MC-2MC-10.00.00.0------
(symmetric) IMCCUR

01.01.01.0---
imCCURTheIMCCURresidue
ispartofthe

“real"system&addstototalenergy andvirial.

0
IMCCUR1.01.01.0---

IMCCUR(symmetric) MC-1
0
EMCIF0.00.0--MCMC“ghost”feelssurroundings
if

EMCNF
-0

0
MC-10.0EMCIF0.0---MC(symmetric)
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Notethat2
differentMCresiduesshouldneverbe
covalentlybondedtooneanother(rows
4&5,
above).Also,bondsneveraddtotheMCinteractionenergies (EMCRES)unlessintra-perturbedgrouptermsareincluded

inthecalculation(IMCINT
=1). Anglelookuptable(subroutineMCAMSK) Atom

I

Atom
J
AtomKForce
I|

Force
J|
ForceEtot
|

Emcres
if
IMCINT
=|
Notes

K0l

0001.01.01.01.0------non-MCatomsalwaysseeeachother IMCCUR
|

IMCCUR
|

IMCCUR
|
1.01.01.01.0---
IMCCURTheIMCCURresidue
ispartofthe“real”system

-&addstototalenergyandvirial.

MC-1MC-1MC-11.01.01.00.0---MCMCatomsinthesameresiduealwaysseeeach

other

MC-1MC-2MC-30.00.00.00.0------AnymixofMCatomsin
differentresiduesnever

seeeachother

MC-1MC-2
O0.00.00.00.0------AnymixofMCatomsin
differentresiduesand

“real”atomsfeelnoangleinteractions

IMCCUR
001.01.01.01.0---
IMCCURAnymixof
IMCCURatomsandrealatomsacts 0

IMCCUR
0aspartofthe“real”system&addstothetotal 0()

IMCCURenergy.
..

MC0()EMCIF
|
0.00.00.0---MCMC“ghosts”feelsurroundings
if
EMCIF>
0; 0MC00.0EMCIF
|
0.00.0---MCrealatomsneverfeelforcesduetoangles

00MC0.00.0EMCIF
|
0.0---MCinvolving“ghost”atoms MCMCO

EMCIF
|

EMCIF
|
0.00.0---MC MC0MCEMCIF
|
0.0EMCIF
|
0.0---MC 0MCMC0.0EMCIF
|

EMCIF
|
0.0---MCIMCCURIMCCUR

|0

IMCCUR
|0
IMCCUR

0
IMCCUR
|

IMCCUR §



Dihedrallookuptable(subroutineMCPMSK) Atom
I

Atom
J
AtomKAtomLForce
I|
Force
J|
ForceForce
L|Etot
|

Emcres
ifNotes

K
IMCINT
=

01

00001.01.01.01.01.0------non-MCatomsalwayssee

eachother

IMCCURIMCCUR
|

IMCCUR
|

IMCCUR1.01.01.01.01.0---
IMCCUR
|

TheIMCCURresidue
is

partofthe“real”system& addstototalenergyand virial.

MC-1MC-1MC-1MC-11.01.01.01.00.0--MCMCatomsinthesame

residuealwaysseeeach other

MC-1MC-2MC-3MC-40.00.00.00.00.0-----AnymixofMCatomsin

differentresiduesneversee eachother.

MC-1MC-2MC-3
00.00.00.00.00.0---

-
---AnymixofMCatomsin

differentresiduesandreal atomsneverinteract.

IMCCUR
O0()1.01.01.01.01.0---

IMCCURAnymixof
IMCCURatoms

0
IMCCUR
|00andrealatomsactsaspart O0

IMCCUR
|0ofthe“real”system
&adds 00O

IMCCUR
tothetotalenergy...not
all

IMCCURIMCCURIMCCUR
0areenumerated IMCCURIMCCUR
|0
IMCCUR IMCCUR

()
IMCCUR
|

IMCCUR
()

IMCCUR
|

IMCCUR
|

IMCCUR MC000EMCIF0.00.00.00.0---MCMC“ghosts"feel 0MC000.0EMCIF0.00.00.0---MCsurroundings
if
EMCIF>
0, ()0MC00.00.0EMCIF
|
0.00.0---
||
MCrealatomsneverfeelthe MCMC0MCEMCIF
|

EMCIF0.0EMCIF
|
0.0---MCassociatedforce. MC0MCMCEMCIF
|
0.0EMCIF
|

EMCIF
|
0.0---MC ()MCMCMC0.0EMCIF
|

EMCIF
|

EMCIF
|
0.0---MC Notallatomcombinations

are
enumerated
inthetable,for
readability.

§

GeneralrulesarelistedintheNotessectionofthetable.



1-4interaction(vanderWaalsand
electrostatics)lookup(subroutineMCMSK) Atom

I

AtomLForce
I

ForceLEtotEmcres
if
Emcres
ifNotes

IMCINT
=0|
IMCINT
=1

001.01.01.0-----2
non-MCatomsalwaysseeeachother IMCCURIMCCUR1.01.01.0--IMCCURTheIMCCURresidue

ispartofthe

“real”system
&addstototalenergy andvirial.

MC-1MC-11.01.00.0---MC2MCatomsinthesameresiduealways

seeeachother

MC-1MC-20.00.00.0------2MCatomsin
differentresiduesnever

seeeachother

MC-2MC-10.00.00.0------
(symmetric) IMCCUR

01.01.01.0---
IMCCURTheIMCCURresidue
ispartofthe

“real”system
&addstototalenergy andvirial.

0
IMCCUR1.01.01.0---
IMCCUR(symmetric) MC0EMCIF0.00.0---MCMC“ghost”feelssurroundings

if

EMCNF
-0

0MC0.0EMCIF0.0---MC(symmetric)
3.



Nonbonded(vanderWaalsand
electrostatics)lookupformean-fielddynamicswithN
residues (subroutineMCMSK,IMCDO

=-2) Atom
I
Atom
J
Force
I
Force
J
Etot
|

Notes
001.01.01.02non-MCatomsalwayssee

eachother

MC-1MC-11.01.01/N
|2
MCatomsinthesame

residuealwaysseeeachother

MC-1MC-20.00.00.02MCatomsin
different

residuesneverseeeachother

MC-2MC-10.00.00.0(symmetric) MC0EMCNFEMCSF1/N
|
MC“ghost”feelssurroundings

if
EMCNF
S.()

0MCEMCSFEMCNF1/N(symmetric) Notethatfor
mean-fielddynamicsthereisnosingle“real”MCresidue
—
IMCCUR
is

meaningless.Instead,allMCresiduesaddtothetotalsystemenergy,but thisquantity
isnotformallywell-defined.EMCNF
is
usuallysetto1.0–eachMCatomfeelsthefullforceof
surroundingatoms.TheMCenergyaccumulators (EMCRES(n])

aresimilarlymeaningless.EMCSF
is
usuallysetto1/N–eachatomofthe
surroundingsfeels1/NofthenormalinteractionwithanyMCatom. §



Appendix 2: Description of CMC/MD inputs and specifications, including topology
files and coordinate issues

Since it was built as a modification of the SANDER molecular dynamics package, the
input files for CMC/MD are generally similar to those described for SANDER in the
AMBER 5.0 manual.

PRMTOP (“topology file”): The CMC/MD topology should contain one of each Monte
Carlo residue of interest (guests; sidechains) in addition to the receptor or solvent. For a
host:guest, Solvation, or protein:ligand calculation, all of the guests should be treated as
one “molecule” in order to avoid pressure artifacts. Though they are all part of the same
“molecule”, the ligands should still not be covalently connected. A somewhat different
topology is required for CMC/MD on peptides or protein side chains. This topology is
described in detail in Chapter 5, where we present our calculations on dipeptides and T4
lysozyme. All the MC residues are part of the single polymer molecule, which includes
non-MC and MC regions. The first MC residue (N) is covalently connected to the
preceding residue (N-1) as usual. The remaining MC residues are specified in order but
not covalently connected to one another. The final MC residue (M) is connected to the
subsequent normal residue (M+1) as usual. Covalent crosslinks are then specified
between each MC residue and the N-1 and M+1 normal residues. This way, each MC
residue is connected to the normal residues that flank the MC region in exactly the same
way.

INPCRD (“input coordinates”): Input coordinates for the CMC/MD run should again
contain data for each CMC/MD residue, in addition to the remainder of the system.
Typically, the CMC/MD residues will all be roughly superimposed in the binding pocket.
For the HIV-RT:TIBO work, each ligand was minimized in the presence of the receptor,
and these ligand coordinates were combined with a single copy of HIV-RT to make the
CMC/MD input coordinates. One caveat; since the nonbonded pairlist subroutine was
not modified, the CMC/MD residues cannot overlap exactly. If this occurs, a divide-by
zero error will result when the interatomic distances are calculated between precisely
overlapped atoms. Note that this is only an issue with the initial PDB input (coordinates
specified to 10^-3 Angstrom). Due to the additional precision of the internal and external
(restart, coordinate file, etc.) AMBER coordinate specifications, this is not an issue once
dynamics has started.

MDIN: Several additional control variables were added to the main SANDER namelist.
In addition, CMC/MD requires a short stretch of block formatted input for input that
varies from one MC residue to the next (like solvation offsets, etc.). Each control
variable is detailed below, along with the block input:

IMCDO (main CMC/MD control variable)
= -2 “Mean-field” dynamics. CMC/MD input is read from the MDIN file, but

the current MC residue is ignored. Instead, all MC residues are treated as “ghosts” with
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fractional interactions with the surroundings. Monte Carlo steps are not carried out, and
statistics are not accumulated.

= -1 Default. CMC/MD is turned off, normal SANDER behavior
= 0 Equilibration. CMC/MD input is read from the MDIN file, the current

MC residue is set to IMCCUR, and the potential function is masked appropriately.
Monte Carlo steps are not carried out, and statistics are not accumulated.

= 1 CMC/MD, ghost forces on. CMC/MD input is read from the MDIN file,
etc. Monte Carlo steps are carried out every IMCNS steps. EMCNF is set to 1.0, EMCIF
to 1.0, and EMCSF to 0.0.

= 2 CMC/MD, ghost forces off. CMC/MD input is read from the MDIN file,
etc. Monte Carlo steps are carried out every IMCNS steps. EMCNF is set to 0.0, EMCIF
to 1.0, and EMCSF to 0.0.

= 3 CMC/MD, general case. CMC/MD input is read from the MDIN file, etc.
Monte Carlo steps are carried out every IMCNS steps. EMCNF, EMCIF, and EMCSF
are taken from the namelist input.

IMCRST (initialize/restart CMC/MD)
= 0 No restart. All CMC/MD arrays, history are initialized to zero. At the end

of each run, a MC restart file is written to the file specified by MCRST
= 1 Restart. Prior CMC/MD history, including IMCCUR and solvation

offsets, are read from MCRST before the calculation begins. Again, at the end of each
run, MCRST is overwritten with the current MC history.

IMCSOL (control variable for solvation offset, adaptive CMC/MD)
= 0 Default. No Solvation offsets are read from the MC block data.
= 1 Offsets. Solvation offsets are read from the MC block data and used to

bias the MC sampling.
= 2 Adaptive CMC/MD. Free energies for the adaptive offsets are calculated

based on the number of MC counts accumulated for each residue. Adaptive offsets are
updated at the end of every NSTLIM dynamics steps (1 dynamics run)

= 3 Adaptive CMC/MD. Free energies for the adaptive offsets are calculated
based on the “Boltzmann” probabilities of each residue. Adaptive offsets are updated at
the end of every NSTLIM dynamics steps (1 dynamics run). IMCSOL = 3 provides
better convergence of the free energy offsets for unfavorable (high free energy) states.

IMCCP (control variable for multicopy CMC/MD)
= 0 Default. Each MC residue is treated as an independent entity, with a trial

probability of 1/N
= 1 MC Copies. The trial probability windows for each MC residue are read

from the block MC input. The value specified in the MC input is the upper bound of the
trial move range for that residue, on the range {0,1}. If there are M copies of a residue,
each should be assigned a trial move range of (1/N)*(1/M). Note that there can be
different numbers of copies for different MC residues.

= 2 MC Sets. The set-memberships and trial probability windows for each
MC residue are read from the block MC input. Copies of the same chemical species (i.e.
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side chain rotamers) should be assigned to the same set. IMCCP = 2 is required for
adaptive CMC/MD with MC copies.

IMCNS (Monte Carlo step frequency)
= 0 Default. No MC steps are carried out.
= n MC steps are carried out every N dynamics steps. IMCNS should never

be less than NSNB, the nonbonded pairlist update.

IMCINT (control variable for inclusion of intramolecular energies)
= 0 Default. No intramolecular terms contribute to the CMC/MD energies.

By intramolecular terms, we mean all terms (bond, angle, dihedral, 1-4, nonbond and
electrostatic) between atoms in the same MC residue or between a MC atom and atoms of
the surroundings. If IMCINT = 0, only nonbond and electrostatic energies between MC
atoms and the surroundings are included in the calculated MC free energy.

= 1 All inter- and intra-molecular terms contribute to the free energy
differences calculated by CMC/MD. IMCINT = 1 is necessary for the calculation of free
energy differences that involve significant contributions from strain or intra-perturbed
group interactions.

EMCIF (floating point multiplier for intramolecular CMC/MD forces felt by MC
residues)

= 1.0 Default. EMCIF should always be set to 1.0, and is included only for
debugging purposes. This preserves bond, angle, and dihedral interactions and
geometries within MC residues and between MC residues and atoms of the surroundings
they are covalently bonded to.

EMCNF (floating point multiplier for nonbonded CMC/MD forces felt by MC residues)
= 0.0 Default. Only the IMCCURMC residue feels forces exerted by the

surroundings. Ghost MC residues behave as though they were in the gas phase.
= 1.0 Full ghost forces. All (“real” and “ghost”) MC residues feel forces

exerted by the surrounding non-MC residues. This will often yield unacceptably large
forces and velocities (with correspondingly unstable dynamics) if there is significant van
der Waals overlap between “ghost” MC residues and the surroundings. Smaller values of
EMCNF (0.1, 0.01) may mitigate this problem somewhat.

EMCSF (floating point multiplier for nonbonded CMC/MD forces felt by non-MC
residues)

= 0.0 Default. The surroundings never feel forces corresponding to the “ghost”
MC residues.

> 0.0 Mean-field dynamics. For mean-field dynamics, this value is typically set
to 1/N, where N is the number of mean-field MC residues.

EMCOFE (floating point multiplier for 1-4 electrostatic energy included in MC energy)
= 1.0 Default.
= 0.0 1-4 electrostatic interactions are excluded from the MC energy. This

option was originally used as a debugging aid.
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EMCOFN (floating point multiplier for 1-4 nonbonded energy included in MC energy)
= 1.0 Default

= 0.0 1-4 nonbonded interactions are excluded from the MC energy. Similar to
EMCOFE, above.

IMCFIL (frequency of updates to Monte Carlo history file MCFIL)
= 99999 Default. Effectively no updates to MC history file MCFIL.
= n MCFIL is updated every n dynamics steps. MCFIL provides a useful

history of the CMC/MD calculation that can be used for convergence graphs, etc.

MONTE CARLO VARIABLES (block format)

Line 1: (315) IMCFRS, IMCLST, IMCCUR
IMCFRS (residue number of first MC residue)
IMCLST (residue number of last MC residue)

Self-explanatory. The MC residues are required to be a contiguous stretch
of residues in the topology file.

IMCCUR (residue number of current MC residue)
IMCCUR denotes the current (or “real”) MC residue for the purposes of

potential function masking and trial move acceptance/rejection. It is read from the block
MC input in MDIN, but can be superseded by data from MCRST if this is a restarted MC
calculation (IMCRST = 1).

Line 2: (I5) IMCNS
IMCNS (Monte Carlo step frequency)

Monte Carlo moves will be attempted every IMCNS dynamics steps.

Lines 3 to 3 + (IMCLST-IMCFRS+1): per-residue input
I5,F8.3,F14.11,I5: I, EMCREO(I), PMCWIN(I), IMCSET(I)
I: number of the MC residue (IMCFRS = 1, etc.). Not used, placeholder for

readability.
EMCREO(I); Umbrella sampling offset for residue I.

Could be solvation offset or adaptive offset.
PMCWIN(I); Upper bound of MC trial move range for residue I. The lower

bound of the trial move range is specified by considering the upper bound of the N-1
residue, or zero in the case of the first MC residue. Only read if IMCCP > 0.

IMCSET(I): Chemical species set to which residue I belongs. All copies of a
given species should be assigned to the same set. Different species should be assigned to
different sets. Only read if IMCCP - 1, and only necessary for adaptive CMC/MD with
residue copies.

MCRST: Typically, the user will not have to prepare their own MCRST file. The first
CMC/MD run should be started with IMCRST = 0, and no MCRST file will be read.
This run will generate a MCRST file that summarizes the Monte Carlo history during the
calculation. Subsequent (restarted) CMC/MD runs should use IMCRST = 1 and specify
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the correct MCRST input file. To simplify input and output, the MCRST file is read at
the beginning of the run, but that same filename is used for the output of the next
MCRST file. Care should be taken that important MCRST files are not accidentally
overwritten. You can also directly use the restart file from an adaptive CMC/MD run in a
non-adaptive calculation. The MCRST file is a FORTRAN formatted file, with the
following specifications:

Line 1: (315) IMCFRS, IMCLST, IMCCUR
IMCFRS and IMCLST are compared with the values from MDIN to

ensure that this restart file is correct for the current MC topology. IMCCUR, the current
MC residue, overrides the value read from MDIN.

Line 2: (2I10) IMCTOT, IMCTOB
IMCTOT is the total number of MC steps tried so far. IMCTOB is the

same, and a legacy from prior code.

Lines 3 to 3 + (IMCLST-IMCFRS + 1):
(I5,I10,2F14.4) I, IMCCNT(I), DMCRES(I), EMCREO(I)
I: MC residue number; again IMCFRS = 1.
IMCCNT(I): Number of times I was the “real” (IMCCUR) residue after a

MC step. In other words, the accumulated population of species I.
DMCRES(I): Accumulated “Boltzmann” probability of species I.
EMCREO(I); Umbrella sampling offset for residue I.

Overrides the value read from MDIN.

OUTPUTS

When a CMC/MD run is started, the input parameters are written out in the standard
output (MDOUT). In addition, MC data are reported periodically as the trajectory
progresses. Every time the MDINFO file is updated, the current MC data are reported,
including the current MC residue, the accumulated number of counts per residue, and the
accumulated “Boltzmann” probability data. Along with the MDINFO data, the
CMC/MD statistics file (MCFIL) is updated every IMCFIL steps. Two kinds of data are
written to this file. For non-adaptive calculations, each time the file is updated one line is
added for each MC residue. This line specifies the current timestep, MC residue number,
number of MC counts, current MC energy (EMCRES), and the difference between this
energy and EMCRES for the first MC residue. These latter two are reported for
debugging, analysis, or post-processing purposes. The format used is

(18,15,il0,2F14.4). NSTEP.I.IMCCNT(I),EMCRES(I),EMCRES(I) - EMCRES(1)

and one line is printed for each MC residue.

In an adaptive calculation, the biasing potentials are also printed to this file each time
they are adapted.
The following format is used:
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("OFF:",I7,10F14.10) IMCTOT, EMCREOII, I;1->n]

where IMCTOT is the total number of MC steps thus far and EMCREO() are the biasing
offsets of each residue (or set if IMCCP = 2). The MCFIL output file can thus be
searched for the “OFF:” string to produce a history of the adaptive offsets.

Finally, the MCRST file described above is updated at the end of each MD “run”, when
the usual MD coordinate and velocity restart file is being written.

SAMPLE FILES

Sample link.in input file for CMC/MD in the host-guest system from Chapter 3, showing
the MC residues as a single molecule, separate from the receptor(s):

rebek host dimer + 9 solutes + CHC13 Solvent

HOS 0host.res
ME OME.res
ENE OENE.reS
FMT OFMT.res
DFM ODFM.reS
TFM OTFM.reS
CF4 0CF4.res
MCL OMCL.res
DCM ODCM.res
CLF OCLF.reS
CL3 Ochclis.res

DU
1 0 0 0 0

all nine guests
O 0 0 1 3 1
ME 2*** ENE xkxk:k FMT xk:k:k DFM xk:k:k TFM xk:k:k CF4 >k:k:k

MCL *** DCM +** CLF

host monomer 1
O 0 0 1 3 1
HOS 2

host monomer 2
O 0 0 1 3 1
HOS 2

QUIT
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Sample link.in file for CMC/MD on a peptide. Note the additional bonds that need to be
specified between the CMC/MD residues and the surrounding polymer.

MCMD dipeptide with PARM94; ala, val, ser
--placeholder line (formerly dbase name)

DU
0 1 1 1 0

MCMD dipeptide
O 1 0 1 3 0
ACE 2ALA *** VAL *** VAL *** VAL ***
SER +** SER +** SER NME

2 9C N 0
3 9C N 0
4 9C N 0
5 9C N 0
6 9C N 0
7 9C N 0
1 3C N 0
1 4C N 0
1 5C N 0
1 6C N 0
1 7C N 0
1 8C N 0

QUIT

Sample MDIN file for CMC/MD in a simple (2-solute) system

298K NPT SHAKE
&cntrl
IREST = 0, IMIN = 0, NRUN = 1,
NTX 1, NSTLIM= 50000,
NTB 2, NTP = 1,
TEMPI = 0.0, TEMPO =300.0,
DT = 0.0010, NTT = 1,
NTC = 1, NTF = 1,
NSNB = 1, CUT = 9.0, SCEE = 1.2, IDIEL = 1,
NTPR = 5000, NTWX = 50000,
IBELLY = 0,
IMCDO = 1,

&end
1 2 2 1
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Sample adaptive CMC/MD input (MDIN) for the HIV/RT-TIBO system – adapting on
single residues only.

HIV RT complex with water and 10 TIBO derivates. bonds SHAKEn.
mcmd run w/ solvation offset, imcfrc = 0
&cntrl imin = 0, ibelly = 1,
nrun = 15, nstlinn = 2000, dt = 0.0015, nsnb = 20,

tempo =300.0, ntt = 1, tautp = 2, tauts = .2,
ntc = 3, ntf = 3, ntwz = 5000, irest = 0, ntx = 1, idiel=1,
cut = 9.0, scnb = 2.0, scee = 1.2, iveap=1, matcap=7801,
ntpre-500, init =3, tol=0.05, irest=0,ntr=1,
imcdo = 1, imcsol = 3, imcfil = 20, trand = 500, ig = 71277,
vlimit = 20.0, imcrst=0

&end
constrained resiudues
2.0
RES 365 374
END
END
flexible residues in belly
RES 37 38 4058 87 87 90.91 94.94
RES 97 98 101 119 124 125 127 128
RES 131 131 135 135 147 147 149 149 150 167
RES 187187 190 190 217 223 242 242
RES 248 249 270 272 341 347
END
tibo derivatives
RES 365 374
END
counter ion
RES 375 375
END
flexible water
RES 795 1301
END
END

365 374 369 1
20

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

10 0. 00

270



Sample MDIN for adaptive CMC/MD with multiple copies (from the ALA-VAL-SER
case above):

# mc/md using sander
&cntrl
init = 4, irest=1, ntx=7,
nrun=50, nstlin=50000,
nsnb=10, tempi=300.0, temp■ )=300.0,
ntt=-5000, trand = 0, tautp = 0.2, tauts = 0.2,
dtemp = 20.0,
ig = 71277, icteor = 0, vlimit = 20.0,
ntc=2, ntf=2, tol = 0.00001, dt = 0.001,
idiel=1, cut-8.0, scee = 1.2,
ntb-2, ntp = 1, npscal = 1,
nmropt=1, iftres=1,
ntpr=2500, ntwk = 10000,
ibelly - 0, ntra- 0,
imcdo = 3, imcsol = 1, imcfil = 1000, imccp = 2,
imcrst = 0, EMCIF = 1.0, EMCNF = 0.0, IMCINT = 1,
emcofe = 1.0d0, emcofn = 1.0d0,

&end
&wt

type = 'REST, value1 = 1.0,
&end
&wt

type = 'END',
&end

DISANG = rmc2.rest
2 8 4 3

100
0.000 0.333333333 1
16.000 0.444444444 2
16.000 0.555555555 2
16.000 0.666666666 2
8,000 0.777777777 3
8.000 0.888888888 3
8.000 0.999999999 3
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Sample non-adaptive CMC/MD input for a calculation with multiple side-chain copies
(T4 lysozyme):

equil/test of t+ topology
&cntrl

TIMLIM = 360000,
IREST = 0,
NTX = 1, INIT = 3,
NRUN = 9, NSTLIM= 25000, DT = .001,
NTB = 0, NTP = 0, PRES0 = 1.0, NPSCAL = 1,
NTT = -2500,
TAUTP = 0.2, TAUTS = 0.2, TEMPI = 298.0,
TEMPO = 298.0, DTEMP = 10.0, TRAND = 0,
NTC = 2, TOL = 0.000005,
NTF = 2, VLIMIT = 20.0,
CUT = 8.0, IFTRES = 1,
IDIEL = 1, SCNB = 2.0, SCEE = 3.3,
NSNB = 20, NTNB = 1,
NDFMIN = 0, NTCM = 0, NSCM = -1,
IBELLY = 0, NMROPT = 1, NTR = 1,
IVCAP = 0, FCAP = 1.5,
NTPR = 1000, NTWX = 12500, NTXO = 1,
imcdo = 3, imcsol = 1, imcfil = 1000, imccp = 2,
imcrst = 0, EMCIF = 1.0, EMCNF = 0.0, IMCINT = 0,
emcofe = 1.0d0, emcofn = 1.0d0,

&end
&wt

type = 'REST, value1 = 1.0,
&end
&wt

type = 'END',
&end

DISANG = ../setup/cal_chil_chi2.rest
veenstra cavity-constraint groups
10.0
FIND
CA >k xk xk

N xk xk sk

C xk xk xk

SEARCH
RES 1 97
RES 100 101
RES 103 105
RES 107 110
RES 112 113
RES 115 115
RES 122 125
RES 188 193
RES 196 196
RES 203 212
END
END

133 181 133 3
100

1 0.000 0.125000000 |
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–7.200 0.166666667
–7.200 0.208.333333
–7.200 0.250000000
-3.300 0.291666667
-3.300 0.333333333
-3.300 0.375000000
–4,400 0.388888889
–4,400 0.402777778

10 —4.400 0.416666667
11 —4,400 0.430555556
12 –4.400 0.444444444
13 –4,400 0.458.333333
14 –4,400 0.472222222
15 –4,400 0.486111111
16 —4,400 0.500000000
17 -1.200 0.513888889
18 - 1,200 0.527777778
19 -1.200 0.541666667
20 -1.200 0.555555556
21 -1.200 0.569444444
22 -1.200 0.583333333
23 -1.200 0.597222222
24 -1.200 0.611111111
25 -1.200 0.625000000
26 -7.000 0.638888.889
27 -7.000 0.652777778
28 -7.000 0.666666667
29 -7.000 0.680555556
30 -7.000 0.694.444444
31 -7.000 0.708333333
32 -7.000 0.722222222
33 -7.000 0.736,111111
34 -7.000 0.750000000
35 -5.300 0.763888889
36 -5.300 0.777777778
37 -5.300 0.791666667
38 -5.300 1.205555556
39 -5.300 1.219.444444
40 -5.300 1.233333333
41 -5.300 1.247222222
42 -5.300 1.261111111
43 -5.300 1.275000000
44 -11.500 1.2958.33333
45 - 11.500 0.916666667
46 -11.500 0.937500000
47-11.500 0.958.333333
48 -11.500 0.979166667
49 -11.500 1.000000000
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Appendix 3: Message-Passing Parallel Pseudocode for the CMC/MD algorithm

CMC/MD was implemented in a Message Passing (MPI) parallel version of SANDER
from AMBER 5.0. MPI is a general framework for writing parallel computer programs
that are easily transportable across architectures. MPI SANDER uses a relatively
straightforward master/slave parallelization scheme. A single “master” node is
responsible for I/O and the main flow of control of the program. Parallelization is
restricted to computationally intensive parts of the calculation, like the evaluation of
forces and energies. The work in these routines is divided among several processors,
synchronized by the master node. Information flows between processors by explicit
function calls to message passing routines from the MPI library. The MPI
implementation of CMC/MD involves only small modifications to the MPI SANDER
parallel code, described below.

The master node reads all of the molecular dynamics input, including the CMC/MD
input, and broadcasts it to all of the slave nodes. This broadcast includes all variables
necessary for masking the potential function The potential energy evaluation is split
among nodes, with each node calculating the interactions for a few residues. Each
processor accumulates MC interaction energies (EMCMSKCI)) independently. After the
energy evaluation is completed by all processors, the master node collects and sums these
accumulated values for each MC residue. The master node then carries out the trial move
generation, Metropolis Monte Carlo, accumulation and reporting of the Monte Carlo
history. Once the MC move is carried out, the new value of IMCCUR is broadcast by the
master to all the slave nodes. The master node also handles writing of the MCRST file at
the end of each MD run. This is all shown in the following pseudocode; “MASTER”
refers to a task done only by the master node; “EVERY” denotes tasks carried out by
both master and slave nodes, and “MPI” is used to show interprocessor communications.
It may help to refer to the pseudocode in Appendix 1 for comparison.

MASTER initiates SANDER calculation
MASTER reads input file (MDIN), topology, input coordinates/velocities,

MC restart file if necessary (MCRST)
MASTER initializes variables, based on input files
MPI MASTER broadcasts control variables to slave nodes
BEGIN main dynamics loop
MPI barrier to synchronize all nodes
MPI MASTER broadcasts coordinates of every particle to slave nodes
EVERY node initializes its copy of EMCMSKCI) = 0
EVERY node calculates its subset of bonds, angles, dihedrals, 1-4's and nonbonds

During this evaluation, the potential is masked as necessary and interaction
energies are accumulated to each node's EMCMSKCI)

MPI barrier to synchronize all nodes when energy evaluation is complete
MPI collection to calculate total system energy, forces on each atom from individual

nodes' copies
MPI collection to calculate total EMCMSKCI)'s from individual nodes' copies
MPI barrier to synchronize all nodes prior to Monte Carlo step
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MASTER enters main MC routine, carries out Metropolis MC, etc.
MPI MASTER broadcasts new MC residue (IMCCUR) to slave nodes
MPI barrier to synchronize all nodes prior to integration
EVERY node carries out its fraction of the integration step
MPI MASTER collects coordinates for every particle from individual nodes
MASTER does any necessary output, control variables, etc.
END end of main dynamics loop;

usual control statements for return to beginning of loop or
end of simulation, as necessary. . .
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Appendix 4: Description of CMC/MD inputs for mean-field and ensemble dynamics.

Sample MDIN file for mean-field dynamics in the host-guest system from Chapter 3. For
mean-field dynamics, IMCDO is set to -2 (mean-field dynamics, no MC steps); EMCNF
is set to 1.0 (“ghosts” feel full forces from the receptor), and EMCSF is set to 1/N, where
N is the number of MC residues (the surroundings feel 1/N of the normal interaction with
each MC residue).

Mean-field MC/MD of host+9 guests in chloroform, production
&cntrl
imin = 0, maxcyc = 0, nsnb = 25,
init = 4, ntx = 7, IREST = 1,
ntc = 2, ntf = 2, tol = 0.00001,
ntb = 2, ntp = 1, comp = 108.6, mpscal = 1,
idiel = 1, cut = 12.0, scee = 1.2,
nrun = 1, nstlinn = 1000, dt = .001,
ntt = 1, tempo = 300.0, dtemp = 20.0,
trand = 1000, ig = 77752,
ntpr = 50, ntwk = 50,
ictcor = 1, vlimit = 20.0,
nmropt = 1,
imcdo = -2,
EMCIF = 1.0, EMCNF = 1.0, EMCSF = 0.111,
IMCINT = 1, EMCOFE = 1.0, EMCOFN = 1.0,
imcsol = 0, imccp = 0, imcfil = 500, imcrst = 0,

&end
&wt

type = 'REST, value1 = 0.5,
&end
&wt

type = 'END',
&end

DISANG = open.dist2
1 9 1 -2

500
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
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Sample MDIN file for representative dynamics in the same host-guest system. For
representative dynamics, IMCDO is set to 0 (no Monte Carlo steps), EMCNF to 1.0
(ghosts feel the full force of the surroundings) and EMCSF to 0.0 (the surroundings feel
no forces from the ghosts).

representative dynamics of host+9 guests in chloroform, production
&cntrl
imin = 0, maxcyc = 0, nsnb = 25,
init = 4, ntx = 7, IREST = 1,
ntc = 2, ntf = 2, tol = 0.00001,
ntb = 2, ntp = 1, comp = 108.6, npscal = 1,
idiel = 1, cut = 12.0, scee = 1.2,
nrun = 1, nstlinn = 1000, dt = .001,
ntt = 1, temp0= 300.0, dtemp = 20.0,
trand = 1000, ig = 77752,
ntpr = 50, ntwk = 50,
ictcor = 1, vlimit = 20.0,
nmropt = 1,
imcdo = 0,
EMCIF = 1.0, EMCNF = 1.0, EMCSF = 0.0,
IMCINT = 1, EMCOFE = 1.0, EMCOFN = 1.0,
imcsol = 0, imccp = 0, imcfil = 500, imcrst = 0,

&end
&wt

type = 'REST, value1 = 0.5,
&end
&wt

type = 'END',
&end

DISANG = open.dist2
1 9 1 0

500
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

NOTE: guest 1 (specified by IMCCUR) is the only one that exerts forces on the host
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