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Abstract. Let f and g be orientation-preserving surface homeomorphisms

that commute under composition. Conditions are found ensuring that the

fixed point set of f contains a fixed or periodic point for g. Proofs are based

on Brouwer’s Plane Translation Theorem and the Cartwright-Littlewood

Fixed Point Theorem.

1. Introduction

Throughout this paper we make the following assumptions:
Standing Hypothesis:

• M is a connected oriented surface, with empty boundary unless the con-
trary is indicated

• f and g belong to the group H+(M) of orientation-preserving homeomor-
phisms of M

• f and g commute under composition: g(f(x)) = f(g(x)) for all x ∈ M .
• The fixed point set Fix (f) is nonempty.

The main question is:

Under what conditions do f and g have a common fixed point?

More generally, we seek conditions guaranteeing that Fix (gk) ∩ Fix (f) 6= ∅ for
some k > 0, with a bound on k. The main results are in Section 4 and 5.

To focus ideas, we hazard the following conjecture:
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962 MORRIS W. HIRSCH

Conjecture 1.1. Two commuting, orientation-preserving homeomorphisms of
R2 have a common fixed point, provided the fixed point set of one of them is
nonempty and compact.

The analogous conjecture for the unit sphere S2 ⊂ R3 is false:

Example 1.2. Let f and g be the rotations of S2 having the diagonal matrices
with diagonal entries (1,−1,−1) and (−1,−1, 1). Then Fix (f) ∩ Fix (g) = ∅.

This well known counterexample refutes other plausible conjectures. It suggests
a curious question: Are there four commuting, orientation-preserving homeomor-
phisms of S2, no two of which have a common fixed point?

Structure of the paper. The main results assume that Fix (f) has at at least
one and most finitely many compact components. The general method for proving
Fix (gk) ∩ Fix (f) 6= ∅ is as follows:

(1): Find an open cell E invariant under f and some iterate gk, k ≥ 1, such
that E ∩ Fix (f) is compact and the frontier Fr(E) lies in Fix (f).

(2): If E∩Fix (f) = ∅, then E is disjoint from the nonwandering set NW(f)
by a corollary of Brouwer’s Plane Translation Theorem (see 2.1). Suitable
assumptions imply Clos(E)∩Fix (gk) 6= ∅, and there is usually an explicit
upper bound for k. The Complementary Cell Principle 3.2 is used to
conclude that Fr(E) meets Fix (gk) ∩ Fix (f).

(3): If E∩Fix (f) 6= ∅, let K ⊂ E be a compact component of Fix (f). There
exists k ∈ N+ such that gk(K) = K. If K is acyclic, the Cartwright-
Littlewood Theorem 2.2 implies Fix (gk) ∩ K 6= ∅. If no component of
E ∩ Fix (f) is acyclic, then E can be replaced by a different open cell
permitting step (2) to be carried out. Here the Acyclic Hull Principle 2.5
is used.

After a brief discussion of earlier work, terminology and basic topological and
dynamical concepts are reviewed. Basic tools are developed in Sections 2 and 3.

Section 5 shows that for general surfaces, Per(g) meets certain Nielsen classes
in Fix (f).

Many theorems adapt readily to surfaces with nonempty boundary by assuming
Fix (f) does not meet the boundary and working with M \ ∂M , or by doubling
M along its boundary; in a few cases this is made explicit.

Earlier work. On the question of existence of a common fixed point for groups
of homeomorphisms, diverse sufficient conditions have been found in a variety of
settings.
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Shields [37] proved there is a common fixed point for any family of commuting
homeomorphisms of the closed unit disk that are holomorphic in the open disk.
Several generalizations have been obtained, including work by Abate [1], Behan
[4], Bracci [5], Eustice [17], Kuczumow et al. [28], Suffridge [39] and Tauraso
[40].

Lima’s pioneering work [30, 31, 32] showed that commuting flows on a compact
surface of nonzero Euler characteristic have a common fixed point; for a recent
proof, see Turiel [42]. Lima’s theorem was extended to nilpotent Lie groups
by Plante [36], and to analytic actions of supersoluble Lie groups by Hirsch &
Weinstein [26].

Bonatti [9] proved that two commuting real analytic flows on a compact 4-
manifold of nonzero Euler characteristic must have a common fixed point.

Hirsch [23] considered a commuting family F of real analytic, orientation-
preserving homeomorphisms of R2, and showed that if the fixed point set of
h ∈ F is nonempty and compact, then some point of Fix (h) is periodic under
every element of F . Pairs of commuting homeomorphisms of R2 and S2 were
treated briefly in Hirsch [24] (see Proposition 4.7 below).

Hu [27] investigated ergodic properties of commuting diffeomorphisms on man-
ifolds of arbitrary dimension.

Perhaps the deepest results are due to Bonatti [8] and Handel [21]. Bonatti
proved there is a neighborhood U of the identity map in the group Diff+(S2)
of orientation-preserving C1 diffeomorphisms of S2, such that any commuting
family in U has a common fixed point. Handel [21] extended Bonatti’s theorem
by means of an invariant W(f, g) (credited to J. Mather) in the fundamental
group π1(H+(S2)) ∼= Z2 of the orientation-preserving homeomorphisms of S2,
defined as follows. Given f, g ∈ H+(S2), let ft and gt be isotopies ft and gt from
f and g to the identity, and define W(f, g) to be the homotopy class of the loop
ftgtf

−1
t g−1

t . Handel proved:

Theorem 1.3 (Handel’s Theorem). Let f, g ∈ H+(S2) commute, and suppose
W(f, g) = 0. If f and g are C1 diffeomorphisms, or have finite fixed point sets,
then Fix (g) ∩ Fix (f) 6= ∅.

This implies Bonatti’s theorem; it has the striking consequence that f and g2

always have a common fixed point. Theorem 4.9 is another corollary.
It is remarkable that the theorems of Bonatti and Handel for diffeomorphisms

do not need any finiteness assumptions.
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Terminology. The sets of real numbers, integers, natural numbers, and positive
natural numbers are denoted respectively by R,Z, N and N+. If c denotes a
cardinal number, we write c = ∞ to mean c ≥ ℵ0. Homeomorphism is indicated
by ≈, group isomorphism by ∼=.

The set of connected components of a space X is denoted by Comp(X). The
closure of S ⊂ X is denoted by clos(S) or S and the interior by Int(S). The
frontier of S is Fr(S) = clos(S) ∩ clos(X \ S).

The closed unit interval is I = [0, 1]. Euclidean n-space is Rn. The Euclidean
norm of x ∈ Rn is written ||x||. The closed unit disk in Rn is Dn; its boundary
is the unit sphere ∂Dn = Sn−1. A disk, circle or annulus means a homeomorph
of the standard object Dn, S1 or S1 × I, respectively. An open cell, or simply a
cell, means a homeomorph of R2.

Surfaces and other manifolds are assumed connected and without boundary
unless the contrary is indicated. A manifold is closed if it is compact, connected
and without boundary.

The surface M has a metric d. The distance from x ∈ X to S ⊂ X is
dist(x, S) = infy∈S d(x, y).

Area in M is defined by a Borel measure which is positive, finite and nonempty
on precompact open sets.

A continuum is a nonempty compact, connected space.
A space is triangulable if it is homeomorphic to the underlying space of a

simplicial complex. Surfaces and analytic varieties are triangulable.
f is piecewise linear if there is a triangulation of M having rectilinear sub-

divisions τ0, τ1 such that f maps each simplex of τ0 affinely onto a simplex of
τ1.

A set S ⊂ M is invariant under f if S is nonempty and f(S) = S. The orbit of
x is γ(x) = {fn(x)}n∈Z; its closure is γ(x). The omega and alpha limit sets of x

are respectively ω(x) =
⋂

j>0 γ(f j(x)) and α(x) =
⋂

j>0 γ(f−j(x)). To indicate
f we may write γf (x), etc

x is recurrent if x ∈ ωf (p). When f preserves area, Poincaré’s Recurrence
Theorem implies recurrent points are dense in every open invariant set having
finite area.

x is nonwandering if every neighborhood U of x meets fn(U) for some n > 0;
all other points are wandering. The set NW(f) of nonwandering points is closed
and invariant. The open invariant set of wandering points is denoted by W(f).

x is chain recurrent if for every ε > 0 there exists m ∈ N+ and points x0, . . . , xm

such that x0 = xm = x and d(xj , f(xj−1)) < ε, j = 1, . . . m. This notion is
independent of the metric when X is compact. The set CR(f) of chain recurrent
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points is closed and invariant, and contains NW(f). For chain recurrence see Akin
[2], Conley [14], Hirsch & Hurley [25].

An attractor for f is a compact, proper invariant set A possessing a neighbor-
hood W such that limn→∞ dist(fn(x), A) = 0 uniformly for x ∈ N . The union
of all such sets W is the basin of A. No point of the basin is chain recurrent.
A repellor is an attractor for f−1. When M is compact, the complement of the
basin of A is a repellor R; in this case (A, R) is called a dual attractor-repellor
pair.

Ȟi(X) denotes the ith Čech cohomology group of a space X (Spanier [38]).
Its rank is the ith Čech number ci(X). Thus c0(X) is the number of components
of X. If X is triangulable, ci(X) equals the ith Betti number bi(X), defined as
the rank of the ith singular homology group Hi(X).

X has finite type if its Čech numbers are finite and have finite sum. In this
case we define the Čech characteristic χ̌(X) =

∑

(−1)ici(X). When such an X

is triangulable, χ̌(X) equals the Euler characteristic χ(X) =
∑

(−1)ibi(X). If
X $ M then Ȟi(X) = {0} for i > 1. The connected surface M has finite type if
and only if H1(M) is finitely generated.

X is acyclic if it has the same Čech cohomology as a point; equivalently, X is
connected and nonempty and Ȟi(X) = {0} for i > 0. A connected subset of M

is acyclic if and only if its Čech characteristic is 1. An acyclic open set in M is
an open cell. A compact acyclic analytic variety is a singleton (Borel & Haefliger
[7]). The number of acyclic components of X is denoted by ac(X).

The following fact is of great importance: A continuum in R2 or S2 is acyclic
if and only if its complement is connected. This is a consequence of the Alexander
duality theorem (Dold [16], Theorem VIII.8.15; Spanier [38], Theorem 6.2.16).

Suppose X has finite type and h : X → X is continuous. The Lefschetz number
Lef(h) ∈ Z is the alternating sum of the traces of the endomorphisms induced by
f in the rational cohomology groups Hi(X)⊗Q. If X is compact and triangulable
and Lef(h) 6= 0, Lefschetz’s Fixed Point Theorem implies every map sufficiently
close to h has a fixed point.

2. Basic topological tools

This section presents some basic results used throughout the paper.

Proposition 2.1 (Brouwer’s Nonwandering Theorem). A homeomorphism
of R2 that preserves orientation has a fixed point provided it has a nonwandering
point.
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This fundamental result is a corollary of Brouwer’s Plane Translation Theorem
(Brouwer [10], Franks [18]).

Proposition 2.2 (Cartwright-Littlewood Fixed Point Theorem). An
orientation-preserving homeomorphism of a surface has a fixed point in any in-
variant acyclic continuum.

This was proved for R2 by Cartwright & Littlewood [13]. There is a two-page
proof by Hamilton [20] and a one-page proof by Brown [11]. The extension to
general surfaces is given in Hirsch [24], section 4.4.1 There are generalizations
to orientation-reversing homeomorphisms by Bell [6] and Kuperberg [29], and to
smooth noninvertible maps by Akis [3].

Proposition 2.3 (Brown-Kister Invariance Theorem). Let V a connected
orientable manifold with empty boundary, and h ∈ H+(V ). Then every component
of V \ Fix (h) is invariant.

We need this useful result, due to Brown & Kister [12], only for surfaces.

Proposition 2.4.

(i): Let E ⊂ M be an open cell with compact nonempty frontier Fr(E).
Then Clos(E) is compact and Fr(E) is connected.

(ii): Let W be a complementary component of a continuum in S2, or a
bounded complementary component of a continuum in R2. Then W is a
precompact open cell.

(iii): Let U, V ⊂ M be open sets with disjoint frontiers, such that U∩V 6= ∅.
Then:

(a): the frontier of one of the sets has a component lying in the other
set

(b): if U and V are precompact cells, either Clos(U) ⊂ V , or Clos(V ) ⊂
U , or U ∪ V = M and M ≈ S2

(iv): Assume M 6≈ S2 and let T ⊂ R2 be an acyclic continuum containing
the boundary of an open cell U . Then U ⊂ T .

Proof. A proof of (i) is given in Hirsch [24], Lemma 4.1. Part (ii) is proved in
Newman [35], Theorem VI.4.1.

Under the assumptions of (iii) there exists p ∈ Fr (U ∩ V ), and p lies in Fr(U)
or Fr(V ) but not both. We assume without loss of generality that p ∈ Fr(U).
Then p ∈ U \ Fr(V ) ⊂ V . Therefore the component of p in Fr(U) must lie in V ,
proving (a).

1In 4.4 of [24], g should be a homeomorphism.
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Now assume U and V are precompact cells. Consider the case U ∪ V = M .
By shrinking U and V slightly we obtain compact surfaces B ⊂ U, D ⊂ V such
that B ∪D = M and Fr(B) ⊂ Int(D). We now have M as the union of compact
surfaces B and D \ IntB that meet only in their common boundary; thus M is
a closed surface. If U and V are cells then B and D \ IntB are disks, whence
M ≈ S2.

Suppose U ∪ V 6= M . Then there exists q ∈ Fr (U ∪ V ), and q must belong
either to Fr(U) \ V or Fr(V ) \ U , but not both because Fr(U) and Fr(V ) are
disjoint. But Fr(U) ⊂ V , thus q ∈ Fr(V ) \U . Thus Fr(V ) meets M \U ; therefore
Fr(V ) ⊂ M \ Clos(U), because Fr(V ) is connected and disjoint from Fr(U). This
shows that the connected set Clos(U) lies in a complementary component of Fr(V ).
As Clos(U) meets V , we have Clos(U) ⊂ V . This completes the proof of (b).

To prove (iv), let ε > 0. Expand T slightly to a polyhedral disk B (Hirsch [24],
Proposition 4.5), and shrink U slightly to the interior of a polyhedral disk D with
Fr(D) ⊂ Int(B), and such that T and U lie in the ε-neighborhoods of B and D,
respectively. The interiors of D and B are overlapping cells in M with disjoint
boundaries. Therefore the closure of one lies in the other by (iii). This implies
D ⊂ B. Since ε is arbitrary, it follows that U ⊂ T . £

Let E be an open cell and R ⊂ E a continuum. Among the components of
E \ R there is a unique component W whose closure in E is not compact; when
E = M = R2, this is the unbounded complementary component of R. The acyclic
hull of R in E is the union AE(R) of R and the precompact components of E \R;
equivalently, AE(R) = E \W . When E = R2 we set A(R) = AR2(R).

Proposition 2.5 (Acyclic Hull Principle). Let R ⊂ R2 be a continuum and
W its unbounded complementary component.

(a): A(R) is an acyclic continuum, Fr (A(R)) is a continuum, and
Fr (A(R)) = Fr (W ).

(b): A(R) lies in every acyclic continuum containing R. Therefore R is
acyclic ⇔ A(R) = R; and A(R) lies in the convex hull of R.

(c): If Q and R are disjoint continua in the plane, then A(Q) ∩ A(R) = ∅,
or A(Q) ⊂ Int A(R), or A(R) ⊂ Int A(Q).

Proof. (a) The identity A(R) = R2 \W shows that A(R) and its frontier are
compact and Fr(A(R)) = Fr(W ); and also that A(R) is acyclic because W is
connected.
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(b) Suppose R lies in an acyclic continuum T ⊂ R2. Let U be a bounded
complementary component of R. Then Fr (U) ⊂ T , so U ⊂ T by Proposition
2.4(iv).

(c) Suppose A(Q)∩A(R) 6= ∅. As Q∩R = ∅, there exist bounded open sets
U ∈ Comp(R1 \ Q) and V ∈ Comp(R1 \ R) such that U ∩ V 6= ∅ and Fr(U) ∩
Fr(V ) 6= ∅. Observe that U and V are cells by 2.4(ii); now apply 2.4(iii). £

A cell E ⊂ M is complementary to X ⊂ M if E is a component of M \X. When
X is compact, every complementary cell is precompact with connected frontier
(Proposition 2.4(i)).

The following result is a paraphrase of Hirsch [24], Theorem 4.6:

Proposition 2.6. Assume M has finite type. Let X ⊂ M be compact and
nonempty with c0(X) < ∞. Then X admits a complementary cell in each of
the following cases:

(a): X has finite type and χ̌(X) < χ(M)
(b): X is not of finite type
(c): M \X is not of finite type £

Proposition 2.7. Let X ⊂ R2 be a nonempty closed set of which no complemen-
tary component is a cell. If K is a compact component of X, then A(K) contains
an acyclic component of X.

Proof. Let U be a bounded complementary component of K. Because U is a
cell (Proposition 2.4(ii)), the hypothesis implies X ∩ U is a nonempty compact
set whose components are components of X. By Zorn ’s Lemma, there is a family
C of components of X whose acyclic hulls form a nested family F of acyclic
continua, and C is maximal for this property. Let Z denote the intersection of the
elements of F . Then Z is acyclic continuum, owing to the continuity property
of Čech cohomology. It is not hard to see that Ż lies in a component J of K,
and J ∈ C by maximality of C. I claim J is acyclic. Otherwise, choose any
component E of A(J) \ J , necessarily an open cell. It is not hard to show that
E is a bounded complementary component of J , so E meets X by hypothesis.
Therefore E contains a component Q of K; but C∪{Q} contradicts the maximality
of C. £

The dynamical significance of cells complementary to Fix (f) is shown by the
next result, in which M may have nonempty boundary:

Proposition 2.8. If E is a precompact cell complementary to Fix (f), every point
of E is wandering and chain recurrent for f .
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Proof. If ∂M = ∅, this is a special case of Lemma 4.2 of Hirsch [24]. The
general case follows by the doubling trick, i.e., extending f to a homeomorphism
of a boundary-free surface consisting of two copies of M meeting only along their
common boundary ∂M . £

Consider the following subsets of H+(M):

P+(M) = {h ∈ H+(M) : Fix (h) meets every precompact invariant open cell}

Q+(M) = {h ∈ H+(M) : NW(h) meets every precompact invariant open set}
These are rather broad classes of maps:

Proposition 2.9. If h ∈ H+(M), then h ∈ Q+(M) provided one of the following
conditions holds:

(a): every point with compact orbit closure is nonwandering
(b): area is preserved
(c): there is a nowhere dense global attractor
(d): there is an attractor-repellor pair (A, R) such that A ∪ R is nowhere

dense

Moreover Q+(M) ⊂ P+(M).

Proof. Case (a) is obvious. When (b) holds, for every precompact open set W

we have CR(h)∩W 6= ∅ by Poincaré’s Recurrence Theorem. Under (c) there is no
precompact invariant open set, so the defining condition of Q+(M) is vacuously
satisfied by h; likewise for (d).

For the final conclusion, suppose h ∈ Q+(M) and let E be a precompact cell
invariant by h. Poincaré’s Recurrence Theorem implies NW(f) ∩E 6= ∅, whence
Fix (h) ∩ E 6= ∅ by Brouwer’s Nonwandering Theorem 2.1. £

Proposition 2.10. Let E ⊂ M be an open cell. Assume f ∈ P+(M) and
K ∈ Comp(Fix (f)) is compact. If K lies in an open cell E, then AE(K) contains
an acyclic component of Fix (f).

Proof. Note that E ≈ R2, set X = Fix (f) ∩ E, and apply Proposition 2.7. £

Proposition 2.11. Let E ⊂ M be a precompact cell with triangulable closure. If
a homeomorphism E ≈ E extends to a continuous map h : Clos(E) → Clos(E),
then h has a fixed point.

Proof. Note that Fr(E) and Clos(E) are invariant. Denote by τ ′, τ and τ ′′

respectively the alternating sum of the traces of the endomorphisms induced by h

in the singular homology groups of Fr(E), Clos(E) and (Clos(E), Fr(E)). Thus τ ′
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and τ are the Lefschetz numbers of h|Fr(E) and h|Clos(E) respectively. Exactness
of the homology sequence of the pair (Clos(E), Fr(E)) implies τ = τ ′ + τ ′′.

We will show that τ ′′ 6= 0. Now Hn(Clos(E), Fr(E)) ∼= Z and all other homology
groups of (Clos(E), Fr(E)) vanish, because the quotient space S = Clos(E)/ Fr(E),
obtained by collapsing Fr(E) to a point, is a sphere. τ ′′ is the trace of homology
endomorphism in dimension n of the map S → S induced by h. Because h|E is
a homeomorphism, τ ′′ ∈ {±1}.

It follows that τ or τ ′ is nonzero. As Clos(E) and Fr(E) are triangulable, the
conclusion follows from Lefschetz’s Fixed Point Theorem. £

Example 2.12. The conclusion of Proposition 2.11 is not valid if Clos(E) is not
assumed triangulable. Consider a Denjoy homeomorphism u : S1 ≈ S1, meaning
that there is a invariant Cantor set C which is the alpha and omega limit set
of every orbit (Denjoy [15]). Suspending u gives a flow Φ on a torus V . The
complement in V of the suspension of C is an open 2-cell E which is dense in
the torus. Evidently the time-one map of Φ leaves E invariant, but has no fixed
point.

It is not known whether there is a nontriangulable counterexample to Proposi-
tion 2.11 in R2 or S2. A flow construction similar to Example 2.12 will not work,
owing to the Poincaré-Bendixson theorem. Hence we are led to:

Conjecture 2.13. Let E ⊂ S2 be an open cell. If a homeomorphism of E extends
to a continuous map h : Clos(E) → Clos(E), then h has a fixed point.

3. Complementary cell principles

In this section we obtain important methods for locating common fixed points.
Most results are easily extended to surfaces with boundary.

Lemma 3.1. Let E be a precompact cell complementary to Fix (f). If g(E) meets
E, then g(E) = E.

Proof. E is f -invariant by the Brown-Kister Invariance Theorem 2.3, and M \
Fix (f) is g-invariant because g is a homeomorphism that commutes with f . There-
fore both E and g(E) are components of M \ Fix (f); as they intersect, they
coincide. £

Theorem 3.2 (Complementary Cell Principle). Let E be a precompact cell
that is complementary to Fix (f) and contains a nonwandering point of g. Then
Fix (g) ∩ E 6= ∅ and Fix (g) ∩ Fix (f) ∩ Fr(E) 6= ∅. For all p ∈ Fix (g) ∩ E:

(a): γf (p) is an infinite discrete subset of E ∩ Fix (g) ∩ CR(f) ∩W(f)



TWO COMMUTING SURFACE HOMEOMORPHISMS 971

(b): ωf (p) and αf (p) are nonempty subsets of Fix (g) ∩ Fix (f) ∩ Fr(E)

Proof. E is f -invariant by the Brown-Kister Invariance Theorem 2.3, and g-
invariant by Lemma 3.1. Brouwer’s Nonwandering Theorem 2.1, applied to
g : E ≈ E, proves Fix (g) ∩ E 6= ∅.

The orbit γf (p) is a nonempty f -invariant subset of Fix (g)∩E. The limit sets
αf (p) and ωf (p) are nonempty because E is compact. Brouwer’s Nonwandering
Theorem 2.1, applied to f : E ≈ E, implies γf (p) has no limit points in E,
and Proposition 2.8 shows that E ⊂ CR(f) ∩ W(f). This proves (a), and (b)
follows. £

Fix (f) is triangulable provided f is analytic, and in other cases as well (see
Proposition 4.12). When this holds, M has a triangulation in which components of
Fix (f), and closures of complementary components of Fix (f), are subcomplexes.
In this situation there is a conclusion similar to the Complementary Cell Principle
3.2, even without assuming that g has a nonwandering point in E:

Theorem 3.3. Let E be a precompact cell complementary to Fix (f) and invariant
under g. If Clos(E) is triangulable, then Fix (g) ∩ Fix (f) ∩ Fr(E) 6= ∅.

Proof. There exists p ∈ Fix (g) ∩ Clos(E) by Proposition 2.11. If p ∈ Fr(E) the
conclusion follows. If p ∈ Int(E), apply the Complementary Cell Principle. £

The following theorem is applicable to area-preserving g:

Theorem 3.4. Assume Fix (f) is compact and E is a precompact open cell com-
plementary to Fix (f). Let g ∈ Q+(M). Then Fix (g) ∩ E 6= ∅ is infinite and
Fix (g) ∩ Fix (f) ∩ Fr(E) is nonempty.

Proof. Every iterate gn maps E onto another complementary component of
Fix (f), and the frontier of gn(E) lies in the compact set Fix (f). This implies the
set W =

⋃

j∈Z gj(E) has compact closure. Therefore NW(g)∩W 6= ∅ because W

is g invariant and g ∈ Q+(M). Let p ∈ NW(g)∩gj(E). Then g−n(p) ∈ NW(g)∩E,
whence Fix (g)∩E 6= ∅ by Brouwer’s Nonwandering Theorem 2.1. Now apply the
Complementary Cell Principle 3.2. £

A folk theorem states that when M is compact with a smooth area form, there
is Baire set of area-preserving C1 diffeomorphisms having discrete fixed point sets.
In this sense, the condition on h in the following negative result is satisfied by a
generic generic set of area-preserving diffeomorph of a compact surface:
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Theorem 3.5. Assume Fix (f) is compact and some component of M \ Fix (f) is
an open cell (see Proposition 2.6). If h ∈ Q+(M) and Fix (h) is discrete, then h

does not commute with f .

Proof. Otherwise Theorem 3.4, applied to g = h, would lead to the contradiction
that the compact set Clos(E) contains infinitely many fixed points of h. £

4. Main results

Throughout this section we assume:

Hypothesis 4.1. Fix (f) has exactly ν ∈ N+ compact components (and perhaps
some noncompact components).

This is a severe restriction, but it holds whenever f is analytic or piecewise
linear and Fix (f) is compact.

Proposition 4.2. Let L ∈ Comp(Fix (f)) be compact. There exists a smallest
k ∈ {1, . . . , ν} such that gk(L) = L; and k = 1 if g is sufficiently close to
{f j}j∈N+ .

Proof. g induces a permutation of the set of compact components of Fix (f),
which has cardinality ν; this proves the first conclusion. Choose a neighborhood
N of L containing no other compact component of Fix (f). If j ∈ N+ and g is
sufficiently close to f j in the compact open topology, then g(L) is a component
of Fix (f) contained in N , so g(L) = L. £

We denote the k described in Proposition 4.2 by k(L) ∈ {1, . . . , ν}.

Theorem 4.3. Assume Fix (f) is compact, M and Fix (f) have finite type, and
χ(M) > χ̌(Fix (f)). If g ∈ Q+(M), then Fix (g) is infinite and Fix (g) ∩ Fix (f) is
nonempty.

Proof. Fix (f) admits a precompact complementary open cell E by Proposition
2.6. Now apply Theorem 3.4. £

Proposition 4.4. Let K be a compact component of Fix (f) lying in a precompact
open cell U .

(i): AU (K) contains a component L of Fix (f) such that Fix (gk(L))∩L 6= ∅.
(ii): If f ∈ P+(M), then L can be chosen to be acyclic.

Proof. Finiteness of ν implies Fix (f) has a compact component L ⊂ AU (K)
such that Fix (f)∩ (AU (L) \L) = ∅. This means every precompact component of
AU (L) \ L is an open cell complementary to Fix (f).
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Choose such an L and set k = k(L). If L is acyclic, Fix (gk) ∩ L 6= ∅ by the
Cartwright-Littlewood Theorem. This proves (ii), because when f ∈ P+(M), we
can choose L to be acyclic by Proposition 2.10.

Suppose L is not acyclic. Consider the case gk(AU (L)) = AU (L). As AU (L) is
compact and acyclic by the Acyclic Hull Principle 2.5, there exists q ∈ Fix (gk ∩
AU (L)) by the Cartwright-Littlewood Theorem 2.2. If q ∈ L the proof is over.
Assume q belongs to a component E of AU (L) \ L, necessarily a precompact
open cell. E is complementary to Fix (f) by the choice of L. The Brown-Kister
Theorem 2.3 implies E is f -invariant, and E is gk-invariant because gk(E) and E

are components of AU (L) \ L that contain p. Therefore Fix (gk) ∩ L 6= ∅ by the
Complementary Cell Principle 3.2.

Now assume gk(AU (L)) 6= AU (L). There exists a precompact component V of
AU (L) \ L such that gk(V ) is not a precompact component of AU (L) \ L. Now
Fr(V ) ⊂ L, so Fr(g(V )) ⊂ L. This implies g(V ) is a precompact cell complemen-
tary to AU (L). Therefore M is the disjoint union of the precompact open cell
gk(V ) and the acyclic continuum AU (L).

It follows that M ≈ S2, so there exists p ∈ Fix (g). If p ∈ L there is nothing
more to prove. If p /∈ L then p lies in a component E of M \ L. As M ≈ S2,
we see that E is a precompact cell. The Complementary Cell Principle proves
Fix (g) ∩ L 6= ∅. This proves (i), and Proposition 2.10 implies (ii). £

Theorem 4.5. Assume M is R2, S2 or D2. Then there is a compact component
L of Fix (f) such that Fix (gk(L)) ∩ L 6= ∅.

Since k(L) = 1 when Fix (f) is connected, we have:

Corollary 4.6. If Fix (f) is connected, it meets Fix (g).

Proof of Theorem 4.5. By the doubling trick we may assume M = R2 or
S2. Let K ∈ Comp(Fix (f)) be compact and apply Proposition 4.4(i) to an open
cell U containing K. £

It is interesting to compare the preceding theorems to the following result from
Hirsch [24]:

Proposition 4.7. Take M = R2 or S2. Assume f ∈ P+(M), with Fix (f)
compact and 0 < c0(Fix (f)) < ∞. Then:

(i): Fix (f) and its complement have finite type
(ii): Fix (f) has an acyclic component, and two acyclic components when

M = S2

(iii): each acyclic component L of Fix (f) meets Fix (gk(L)).
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Proof. (i) proved in [24], Theorem 2.2(i) (see also Proposition 2.6). Conclusion
(ii) follows from [24], Corollary 3.13 and its proof. Statement 1(iii), which does not
require f ∈ P+(M), is a consequence of the Cartwright-Littlewood Theorem. £

In 4.7, Fix (f) is assumed not to have any complementary cells. In 4.3, on the
other hand, such cells are mandatory for f , but forbidden to g.

The following result extends Proposition 4.7 to surfaces of finite type:

Theorem 4.8. Assume :

(a): f ∈ P+(M)
(b): M and Fix (f) have finite type
(c): there exists compact subset X ⊂ Fix (f) that is a nonempty union of

components of Fix (f), and such that χ̌(X) < χ̌(M)

Then Fix (f) has an acyclic component L disjoint from X, and Fix (gk(L))∩L 6= ∅.

Proof. Proposition 2.6(a) implies X admits a complementary cell U , necessarily
precompact by Proposition 2.4. But U cannot be complementary to Fix (f),
because f ∈ P+(M). Therefore U meets Fix (f). The fact that Fr(U) ⊂ X implies
every component of U ∩ Fix (f) is compact. Now apply Proposition 4.4. £

The following corollary to Handel’s Theorem 1.3 has some overlap with Theo-
rem 4.5:

Theorem 4.9 (Handel). f has a neighborhood N ⊂ H+(S2) such that if g ∈ N ,
then Fix (g)∩ Fix (f) 6= ∅ provided f and g are diffeomorphisms, or f and g have
finite fixed point sets. £

Proposition 4.7(ii)(iii) shows that when M = S2 and f ∈ P+(M), at least
two components of Fix (f) meet Per(g). The following two theorems have similar
conclusions.

Let ν ∈ N+ be as in Hypothesis 4.1.

Theorem 4.10. Take M = S2 and assume ν ≥ 2. Then there are two compo-
nents Ki, i = 1, 2 of Fix (f) such that Fix (gk(Ki)) ∩Ki 6= ∅.

Proof. By Theorem 4.5 there exists K1 ∈ Comp(Fix (f)) and p ∈ gk(K1) ∩K1.
As ν ≥ 2, the open cell U = S2 \ {p} contains a component L 6= K1 of Fix (f).
Now apply Proposition 4.4(i) to infer that U contains the required K2. £

Theorem 4.11. Take M = S2 and assume ν = 2.

(i): Each component of Fix (f) meet Fix (g2).
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(ii): If the two components are not homeomorphic, each one meets Fix (g).

Proof. Both conclusions follow from Theorem 4.10, because k(K) ≤ ν = 2
for each K ∈ Comp(Fix (f)), and k(K) = 1 when the two components are not
homeomorphic. £

A useful condition guaranteeing triangulability of Fix (fn) for all n is that f

or f−1 is analytic. It suffices to consider n = 1. The graph Γ(f) ⊂ M × M of
f and the diagonal ∆ are analytic varieties Γ(f) ⊂ M × M , as is the diagonal
∆. Therefore Γ(f) ∩ ∆ is also a variety, hence triangulable (Lojasiewicz [33]).
Hence Fix (f) is triangulable, as it is the homeomorphic image of Γ(f)∩∆ under
projection on the first factor, Π1 : M ×M → M .

A similar argument shows that Fix (fn) is triangulable when f is piecewise
linear.

Call f locally subanalytic if every point in Γ(f) has a neighborhood in Γ(f)
that is the image of an analytic variety V under an analytic map V → M ×M .
It is not hard to see that locally subanalytic homeomorphisms form a subgroup
of H+(M). The results of Hardt [22] imply:

Proposition 4.12. If f is locally subanalytic, Fix (fn) is triangulable for all
n. £

Theorem 4.13. Assume K ∈ Comp(Fix (f)) is compact and triangulable.

(i): Suppose χ(K) 6= 0. Then Fix (gk) ∩ K 6= ∅ with 1 ≤ k ≤ k(K) ·
max{1, b1(K)}.

(ii): Suppose Per(g) ∩K = ∅. Then:
(a): K is either a circle or a compact annulus
(b): the inclusion map K → M induces an injective homomorphism of

fundamental groups

Proof. The only nonzero Betti numbers of K are b0(K) = 1, and also b0(K)
provided K is not acyclic. To prove case (i), apply to gk(K) : K ≈ K the general
theorem of Fuller [19]:

If h is a homeomorphism of a compact polyhedron P having nonzero
Euler characteristic, then Fix (hν) 6= ∅, with

1 ≤ ν ≤ max

(

∑

i

b2i(P ),
∑

i

b2i+1(P )

)

In case (ii), note that the set of points where K is not locally a manifold (possibly
with boundary) is finite and invariant by g, hence empty because g : K ≈ K has
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no periodic points. Thus K is a compact connected manifold of dimension 1 or 2,
hence a circle or compact annulus because χ(K) = 0 by (i). This proves (ii)(a).

We prove (ii)(b) by contradiction, assuming for this purpose either that K is a
circle bounding a disk D, or that K is an annulus and each of the two boundary
circles Ci, i = 1, 2 of K bounds a disk Di. The assumption in (ii) implies M 6≈ S2,
by Theorem 4.5. This means that D (respectively, Di) is unique. Note that D

(respectively, Di) is f -invariant.
Set m = k(K). If K is a circle, gm(D) = D. But then Theorem 4.5, applied

to f, gm : D ≈ D, yields a contradiction.
If K is an annulus, Lefschetz’s Fixed Point theorem implies gm|K induces the

identity automorphism of H1(K), for otherwise Fix (gm) ∩ K 6= ∅. Because g

preserves orientation, it follows that the disks Di are g-invariant. Again Theorem
4.5 gives a contradiction. £

Theorem 4.14. Assume Fix (f) compact and triangulable. Let E be an open cell
complementary to Fix (f), with frontier in L ∈ Comp(Fix (f)). Then

Fix (gk) ∩ Fix (f) ∩ Clos(E) 6= ∅, 1 ≤ k ≤ k(L)(b1(L) + 1)

and k = 1 provided g is sufficiently near {f i}i∈Z.

Proof. E is a precompact cell complementary to L. The number of cells com-
plementary to L is bounded by b1(L)+1; this can be deduced from the Lefschetz
duality isomorphism H1(L) ∼= H1(M, M \L) (Spanier [38], Theorem 6.2.19). Be-
cause gk(L) permutes these cells, there exists a smallest n ∈ {1, . . . , c1(L) + 1}
such that gk(L)n(Clos(E)) = E. Set k = k(L)n. Theorem 3.3 shows that gk has
a fixed point in L.

E is invariant under f and its iterates by the Brown-Kister Theorem 2.3. It is
easy to see that g(E) meets E provided g is sufficiently near {f i}i∈Z. Under this
assumption g(E) = E because g permutes complementary components of Fix (f);
hence g(Fr(E)) = Fr(E). As Fr(E) ⊂ L and g permutes components of Fix (f),
we have g(L) = L. Hence k = 1. £

In Theorem 4.14, the assumption that Fix (f) admits a complementary cell
holds provided M has finite type and χ(K) < χ(M). This follows from Proposi-
tion 2.6(a).

In the next result, M is a closed surface whose metric is induced from a smooth
Riemannian metric g. Let ρ = ρ(g) > 0 denote the largest real number with the
following property: At every x ∈ M , the exponential map expx : Mx → M is
injective on the open disk Mx(ρ) of radius ρ about the origin in the tangent plane
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Mx. If g has constant nonpositive curvature, ρ(g) equals half the minimum of the
lengths of closed geodesics. Note that expx(Mx(ρ)) is an open cell which contains
the open ball of radius ρ about x.

Theorem 4.15. Let M be closed, with ρ = ρ(g) as above. Assume c0(Fix (f)) <

∞. If a component K of Fix (f) has diameter < ρ, then Fix (gk) ∩ Fix (f) 6= ∅
with 1 ≤ k ≤ c0(Fix (f)).

Proof. For every x ∈ K we see that have K lies in the open cell U = expx(Mx(ρ));
apply Proposition 4.4(i). £

Example 4.16. Take M to be the torus S1×S1. Give S1 its standard Riemannian
metric, in which it has length 2π. Give M the corresponding product Riemannian
metric g, which is flat. Thus M has diameter π

√
2, while ρ(g) = π. Suppose

Fix (f) has a unique component K, and K has diameter < π. Then Corollary
4.15 implies Fix (g) ∩ Fix (f) 6= ∅.

The upper bound π is best possible. To see this, define f, g ∈ H+(S1 × S1) to
be the maps covered by the maps of R2 that send (x, y) to (x, y +sinx/2) and to
(x, y + 1), respectively. Then f and g commute, Fix (f) is the circle of diameter
π covered by {0} ×R, but Fix (g) is empty. In fact Per(g) is empty because π is
irrational.

5. Nielsen classes

Here we show that certain kinds of Nielsen classes in Fix (f) meet Per(g).
Fix a universal covering space ψ : R2 → M , with its group Γ ⊂ H+(R2) of

deck transformations. Recall that every q ∈ ψ−1(p) determines an isomorphism
Θq : Γ ∼= π1(M, p), as follows: If T ∈ Γ then Θq(T ) ∈ π1(M, p) is represented by
any loop in M that is covered by a path in M̂ from q to T (q).

If u denotes a map M → M , the symbol û denotes a lift of u, i.e., a map
û ∈ C(M̂) such that ψ ◦ û = u ◦ ψ. If w ∈ C(M̂) is another lift of u, there is a
unique deck transformation T such that w = T ◦ û.

For any set X ⊂ M , a lift of X denotes a set X̂ ⊂ R2 mapped homeomorphi-
cally onto X under ψ.

For p ∈ Fix (f) we denote by fp# : π1(M, p) ∼= π1(M, p) the fundamental group
automorphism induced by f . If q ∈ ψ−1(p), the isomorphism Θq conjugates fp#

to the automorphism of Γ given by T 7→ f̂ ◦ T ◦ f̂−1, where f̂ is the unique lift of
f that fixes q.

Fixed points p, q of f are Nielsen equivalent if there is a lift f̂ having fixed
points p̂, q̂ mapped by ψ to p, q respectively. Equivalently, there is a path λ in M
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joining p to q such that the loop obtained by following first λ and then f ◦λ is null
homotopic. In this case fq# = λ# ◦ fp# ◦ λ−1

# , where λ# : π1(M, p) ∼= π1(M, q) is
the isomorphism determined by λ.

A Nielsen class in Fix (f) is an equivalence class for the relation of being Nielsen
equivalent. Every Nielsen class is relatively open and closed in Fix (f), hence it is
a union of components of Fix (f). If its fixed point index is nonzero, the class is
essential.

When Fix (f) is compact there are only finitely many Nielsen classes. For any
lift f̂ having a fixed point, the image of Fix (f̂)) under ψ : R2 → M is a Nielsen
class for f . A partial converse is given in Lemma 5.2.

Each Nielsen class N relatively open and closed in the fixed point set.
Suppose h0, h1 ∈ H+(M) are isotopic, and let {ht}t∈I be an isotopy from h0 to

h1. Define H : V × I ≈ V × I by H(x, t) = (ht(x), t). Suppose P0 is an essential
Nielsen class for h0. Let Q ⊂ M × I be the Nielsen class of H that contains
P0×{0}. Because P0 is essential, Q∩M×{1} = P1×{1} where P1 is an essential
Nielsen class for h1. We say P0 and P1 are related by continuation.

In the rest of this section we make the following assumption:

Hypothesis 5.1. N ⊂ Fix (f) is a compact Nielsen class such that for some
(hence any) p ∈ N , the automorphism fp# of π1(M, p) fixes only the unit element.

Suppose this holds and f is isotopic to f1. If N1 is a compact Nielsen class for
f1, and N1 is related to N by continuation, then it can be shown that Hypothesis
5.1 also holds for f1 and N1.

Suppose M is closed, f is pseudo-Anosov, and p ∈ Fix (f). Results of Nielsen
(see Thurston [41]) show that {p} is an essential Nielsen class satisfying Hypoth-
esis 5.1.

Lemma 5.2. Assume Hypothesis 5.1 and suppose g(N) = N . Then:
(i): there is a lift f̂ such that Fix (f̂) is a lift of N

(ii): there is lift ĝ commuting with f̂ .

Proof. Let p ∈ N and choose a lift f̂ having a fixed point p̂ ∈ ψ−1(p). It
is easy to see that ψ : Fix (f̂) → N is a surjective local homeomorphism, so it
suffices to prove this map injective. Suppose y, x ∈ Fix (f̂) ∩ ψ−1N are such that
ψ(y) = ψ(x). Choose a path γ : I → R2 joining y to x. Then ψ◦γ is a loop in M

representing a homotopy class α ∈ ψ1(M, p) that is fixed under fp#. Therefore α

is trivial, implying y = x.
Let h : R2 ≈ R2 be a lift of g. For every z ∈ N̂ we have ψ ◦ h(z) = g ◦ ψ(z),

which lies in g(N) = N . Thus h(z) ∈ ψ−1(N), so there is a unique Tz ∈ Γ such
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that Tz ◦h(z) ∈ N̂ . Compactness of N̂ and total discontinuity of Γ implies all the
Tz coincide with some T ∈ Γ. The lift ĝ = T−1◦h of g maps N̂ homeomorphically
onto N̂ .

Because g and f commute, there is a deck transformation S such that ĝ ◦ f̂ =
S ◦ f̂ ◦ ĝ; therefore

N̂ = ĝ ◦ f̂(N̂) = S ◦ f̂ ◦ ĝ(N̂) = S ◦ f̂(N) = S(N̂).

Thus p̂ = S(z) for some z ∈ N , entailing ψ(p̂) = ψ(z); therefore p̂ = z because
ψ|N is injective. This proves S(z) = z, so S is the identity. £

Theorem 5.3. Assume Hypothesis 5.1, and let c0(N) = ν ∈ N+. Then Fix (gk)∩
Fix (f) ∩N 6= ∅ with k ∈ {1, . . . , ν}, and k = 1 provided g is sufficiently close to
{f i}n∈Z.

Proof. By Proposition 5.2, there exist commuting lifts f̂ , ĝ such that ψ : Fix (f̂) ≈
N . The conclusion follows from Theorem 4.5 applied to f̂ and ĝ. £

Theorem 5.4. Let M be closed and assume:

(a): Lef(f) 6= 0
(b): c0(N) < ∞ for every essential Nielsen class N

(c): f is isotopic to a pseudo-Anosov homeomorphism h

Then Per(g) ∩ Fix (f) 6= ∅.
More precisely: f admits an essential Nielsen class. If N ⊂ Fix (f) is an

essential Nielsen class and c0(N) = ν ∈ N+, there exists l ∈ N+ such that

Fix (gl) ∩ Fix (f) ∩N 6= ∅, l = mk, 1 ≤ m ≤ µ, 1 ≤ k ≤ ν

And k = 1 if g is sufficiently close to {f i}n∈Z.

Proof. h and f have the same nonzero Lefschetz number. Therefore h has a
fixed point p, and {p} is an essential Nielsen class for h obeying Hypothesis 5.1.

There is a Nielsen class N for f related to {p} by continuation; such a class
is essential, and every essential Nielsen class for f arises in this way. Therefore
Hypothesis 5.1 holds for f and N . The proof is completed by applying Theorem
5.3 to lifts f̂ and ĝ. £
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