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ABSTRACT

Two Methods for Selective Deprotection of Diphenylmethylsilyl Protecting Group under

Aqueous Conditions
By

Joshua A. Lieberman

alkyl sulfonyl fluoride

18-Crown-6

Up to 19 examples each
Mild Conditions
Selective
Aquesous/Surfactant media
Two, new, methods for chemo-selective deprotection of diphenylmethylsilylether of
allylic, benzylic, and alkyl alcohols is achieved. Catalytic amounts of Perfluoro-1-
butanesulfonyl fluoride or stoichiometric amounts of 18-crown-6 ether are employed for

successful deprotection. All selective deprotection can be attained under mild aqueous

conditions.



TABLE OF CONTENTS

L. Selective Deprotection of the Diphenylmethylsilylether Protecting Group
Lo INtroduction. .. ....oouiieii i 1
il. Background.............ooi 2
iii. Results and DiSCUSSION. .........ouiiuiiiiiiiiiiii e 6
1. Perfluoro-1-butanesulfonyl fluoride Deprotection............... 6
2. 18-Crown-6 Ether Deprotection...............ccovviviiiiinnnnn. 13
1V, CONCIUSION. ...ttt e 19
II. Experimental.........o.ooiiiiii e 21
I RELOIENCES. . ettt e, 52
Iv. N 01T 1 2 54



Introduction
Silyl ethers are ubiquitous in the realm of protecting group chemistry. Before their

importance in protecting group chemistry is brought to light, a general overview of these
compounds will be discussed. Silyl ethers can be described as a group of chemical compounds
which contain a silicon atom covalently bonded to an alkoxy group. A general structure to
these molecules is denoted as R'R?R>Si-O-R*where each R group can be an alkyl or aryl group.

The most commonly used silyl groups can be found in Figure 1.

+ F ot b =T oY

Ph
£t

diethylisopropylsityl  dimethylisopropyisilyl  dimethylphenylsilyl  diphenylisopropoxysilyl diphenyl- : s
(DEIPS) (OMIPS) (OMPS) OPIPS) - il

pr o S s e s

di-fertbutylsilylene  methyldiisopropylsityl  methyldiphenylsityd tert-butyldiphenylsityl """"“'Y"“"a""y' tert-butyldimethylsilyl

phenylsil
(DTBS) (MDIPS) (MDPS) (TBDPS) (TBMPS) (T8S)
| | :l:_ Et—;— WS '/ipirp 1; Me—hl‘e
Py P >—- r |
Me Et T )\ 3e
thexyldimethyisilyl triethylsilyl 1,1,3 3-tetra-isopropyldisiloxane trimathytsilyl
(TDS) (TES) (TIPDS} "iiS(E’nD;OSP)Y‘SiM (TMS)

Figure 1': Commonly used silyl ether protecting groups in the last 20 years.

There are a multitude of synthetic routes for successful silylation of alcohols; however,
the most common is the Corey protocol. This achieves silylation by the addition of an alcohol
to a solution of a silyl chloride derivative and an amine base, the most common being imidazole

or triethylamine, dissolved in DMF at a high concentration (Scheme 1).2

Scheme 1

Imidazole, SiR3ClI
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DMF R



When protection of the alcohol is no longer needed, addition of an acid or fluoride source, the
most common being tetra-n-butylammounium fluoride (TBAF), removes most silyl groups
even if more than one is present. However, when the protection of more than one hydroxyl
group is necessary, specific silyl ethers are selected so that each silyl ether can be selectively
removed at a later stage of the synthetic scheme,! thus, allowing unlike transformations of the
various hydroxyl groups in the same molecule. As the complexity of target molecules increase,
the need for chemo- and regio-selective deprotection remains crucial in synthetic organic
chemistry. Known procedures and new procedures for selective deprotection of various silyl
ether groups will be explored throughout this thesis.
Background

Silyl ether protecting groups comprise one of the most convenient and efficient
methods to protect any hydroxyl functionality.> The most commonly used of the silyl ethers
include tert-butyldimethylsilyl (TBS), triisopropylsilyl (TIPS), tert-butyldiphenylsilyl
(TBDPS) and diphenylmethylsilyl (DPMS). Many have been employed in the total synthesis
of biologically active compounds such as, taxol, brevetoxin, rapamycin, zaragozic acid, and
the avermectins.! The synthetic routes to these biologically active compounds requires the
existence of multiple silyl ether protecting groups at a given time. This demands careful
planning and execution of the deprotection conditions for each silyl group (acidic, basic,
temperature, reaction time, etc.). Fortunately, a plethora of literature exists that allows for
discrimination against different silyl ether groups and selective deprotection of one can be
achieved while leaving the other intact.! The more distinguished the steric and electronic
environments of the two silyl ethers, the more successful the selective deprotection.?

Guindon and Gillard, et al. showcased how electronic effects of silyl ethers can be
exploited to increase selectivity between certain silyl ether groups.*> Each argued that the

2



added influence of the electron-withdrawing alkoxy groups increases the difference in
reactivity between the silyl ethers and allows for selective deprotection under acidic
conditions.’

Table 1: Half-Lives of Hydrolysis of 1° Trialkylsilyl vs. Alkoxysilyl Ethers with 0.01M HCIO#

Trialkylsilyl Ethers Alkoxysilyl Ethers
n-C12H2s0TBS 14h n-C12H250DPIPS 0.7h
n-C12H2sOTBDPS >200h n-C12H2sODPTBS 17.5h

n-C12H2sOTBMPS 200 h

Gillard and Guindon et al. demonstrate the potential of selective cleavage of one 1°silyl ether
in the presence of another using the protecting groups mentioned in Table 1. Scheme 2 provides
the selective deprotection of a 1° TBS group in the presence of a 1° TBMPS ether, which

coincides with the hydrolysis data found in Table 1.

Scheme 2

0.01M HCIO 4(4)/THF (1:9)
) HO/\/\/\/\/OTBMPS

A OTBMPS

Toshima et al. has tackled the other side of the argument, sterics, with the introduction
of a “new” silyl ether protecting group DEIPS.® Utilizing the traditional acid-catalyzed
hydrolysis, acetic acid in THF/H>O, Toshima et al. was able to distinguish the DEIPS group

from the larger TBS group and the smaller TES group (Scheme 3).



HOAG/THF/H,0
RO "0DEIPS P ROTNN0oH 4 HO TN N"N0DEIPS

a)R=TBS 81% 1%
b) R =TES 1% 75%

In certain circumstances, if two identical protecting groups are present in the same
molecule, it is possible to achieve the mono-deprotected product. As stated above, this can
only be possible if there exists sufficient differences within the environments (sterically and/or
electronically) in which the silyl ether groups reside.? In the synthesis of the taxol precursor,
prepared by Nicolaou et al. (Scheme 4), the TBS at the position of the ortho-ester was
hydrolyzed with acid while the tertiary TBS group was untouched to give excellent yield of

the ring opened product.’

Scheme 4
O
o/ _/OTBS
_ CSA/MeOH/CHCI,
/ >
90%
H
© OTBS

While exploring the literature, it was apparent that selective deprotection of many silyl
ethers has been studied and successfully demonstrated. However, selective deprotection of
diphenylmethylsilyl ether was significantly less represented. The available literature for
selective deprotection of the DPMS ether employs harsh reaction conditions that do not favor
a lot of functionality.®!® Monger et al. reported the use of sodium azide in DMF at elevated
temperatures will result in the selective removal of the diphenylmethylsilyl ether in the

presence of TBDMS and TBDPS with yields as high as 93% (Scheme 5).!°



Scheme 5

NaN3; DMF, 40 °C, 48 h

o,
RO" 93% RO"
(1) R = DPMS (1) 93% Yield
(2) R = TBDPS (2) NR
(3) R = TBDMS (3) NR

Due to the limited scope of selective deprotection of the DPMS ether and the
importance of selectivity in organic synthesis, we decided to investigate the phenomenon of
selective deprotection under mild aqueous conditions. Herein, we report two new methods for
the selective deprotection of primary and secondary DPMS ethers. The deprotections were
facilitated by catalytic amounts of perfluoro-1-butanesulfonyl fluoride in 2 wt% TPGS-750-
M/ H>O (Figure 2) with a co-solvent of 15% v/v propanol, or stoichiometric amounts of 18-

crown-6 in a 2:1 H,O/PrOH solvent system.

O
o\n/\)Loé\/o)Me
0]
( O n=ca.17

TPGS-750-M

Figure 2: State of the art surfactant developed by the Lipshutz group



Results and Discussion:
Perfluoro-1-butanesulfonyl fluoride Deprotection

A few years ago, Zarko Boskovic, a member of the Lipshutz group, was investigating
aqueous Sharpless SFx chemistry and observed hydrolysis of an activated DPMS protected

alcohol in the presence of a catalytic amount of phenylmethane sulfonyl fluoride (Scheme 6).

Scheme 6

1:1 Acetonitrile/H,0, 50°C

>
ODPMS 0.2 mol % PhenylmethaneSFx OH

To elucidate whether this transformation was general to all sulfonyl fluorides, a variety of alkyl
SFx were screened to determine their abilities to enable the deprotection of the DPMS ether
(Table 2). The benzylic sulfonyl fluorides as well as sulfonyl fluorides bearing a strong
electron-withdrawing component such as 4-nitrobenzenesulfonyl fluoride and perfluoro-1-
butanesulfonyl fluoride exhibited the highest desilyating prowess on our model substrate 1a.
The remaining sulfonyl fluorides, consisting of only alkyl or aryl functionality, yielded
sluggish to no conversion after 16 hours. From this study, perfluoro-1-butane sulfonyl fluoride
was chosen for its greater reactivity and cheaper cost when compared to the 4-nitrophenyl or
other benzyl derivatives. The original Sharpless procedure called for a 1:1 acetonitrile and
water solvent system; however, after screening various solvent systems, propanol was found
to be the most effective organic solvent due to its higher conversion to product, relatively

benign nature and lower costs when compared to acetonitrile.



Table 2: Deprotection of Citronellyl-diphenylmethylsilyl ether 1a utilizing various Sulfonyl Fluorides

\lé\/\‘/\,ODPMS 20mol%RSFx o, WOH
2:1 H50/ PrOH [0.5M]

1a 50°C 16 h 1b
Entry R-Sulfonyl Fluoride Yield (%)2
1 butane-SF 0
2 phenylmethane-SF 86
3 benzene-SF 17
4 4-propylpheny-SF 0
5 perfluorobutane-SF 94
6 m-nitrophenyl-SF 920

alsolated yields

As the robustness of synthetic and bioactive molecules has increased, the need for
selectivity cannot be overstated; therefore, it was crucial to test for the chemoselectivity of this
new method. The chemoselectivity was examined with the use of different silyl ethers (Table
3). The trimethylsilyl (TMS) and the DMPS ethers resulted in full deprotection under our
conditions in 4 hours while the tert-butyldimethylsilyl (TBS), triisopropylsilyl (TIPS), and tert-
butyldiphenylsilyl (TBDPS) ether remained untouched. Due to the labile nature of the TMS
ether, its deprotection was not surprising. It should be noted, after 72 hours, the full

deprotection of the aforementioned ethers was also observed.



Table 3: Chemo-selectivity of SFx with various silyl ethers

'N; o 2”23;%252‘;';2“”]» 'N/\ o
Entry Silyl Ether Yield (%)2
1 OTMS 95
2 OTIPS 0 (86)°
3 ODPMS 91
4 OTBS 0 (89)°
5 OTBDPS 0 (84)°

2 |solated yields
b |solated yields after 72 h

Since the need for selectivity within the realm of organic chemistry is obvious, it was
exciting to see the SFx method could discriminate between different alkyl silyl ether groups.
Since the original Sharpless method used an activated DPMS ether to illustrate the
deprotection, the level of selectivity towards activated DPMS ethers needed to be examined
(Table 4). Since the TMS ether was fully deprotected in the previous set of selectivity
experiments, it was excluded in the subsequent studies. Full deprotection of the DPMS ether
was observed while the TBS and TIPS ethers remained intact. The extent of selectivity was
tested further using a protected propargyl alcohol; however, the selectivity drastically
diminished. The diminished selectivity could have been foreseen due to the electron-
withdrawing capabilities of the acetylene moiety. A silyl ether affected by an electron-

withdrawing group is more susceptible to hydrolysis.



Table 4: Chemo-selectivity of SFx with various allylic silyl ethers

BN X OSiR3 20 mol % R-SFx > X OH
| _ 2:1 H,O/ PrOH [0.25M]
50°C 8 h 4b

4a
Entry Silyl Ether Yield (%)@
1 OTIPS 0
2 ODPMS 93
3 OTBS 0

2 |solated yields

In looking to expand the scope of the reaction, we started to investigate the
effectiveness of the SFx species using our TPGS-750-M surfactant technology (Figure 2).!!
The use of TPGS-750-M enables deprotection of more difficult substrates, as solubility issues
and longer reaction times were observed when using water and propanol as the reaction
medium.

Utilizing this new medium and the previously mentioned SFx method, an extensive
substrate scope was developed (Scheme 7). Primary alcohols containing a variety of functional
groups including nitro, benzyl, propargyl, allylic and heteroaromatic systems were tolerated.
Secondary alcohols were also deprotected, but a noticeable increase in reaction time was
observed. The increased reaction time is likely due to increased steric hinderance. Increasing
the mole percent of the sulfonyl fluoride was observed to decrease reaction times. Tertiary
alcohols led to no conversion. To gain a better understanding of the mechanism and further
investigate selectivity, aryl, enolic and sp?-based silyl ethers were explored and were found to
show no reactivity to this chemistry. Mechanistically, this data suggests that the selectivity of

the method could be electronically influenced.



Scheme 7

R-ODPMS _ 20mol%RSAX o, R-OH

2 Wi% TPGS 750-M/H,0
15 % v/v PrOH [0.25M]
500C
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a. Reaction times not optimzed
b. H,O/Propanol (2:1) used as solvent system
Reactions were ran at 0.5M
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A number of possible mechanisms to describe the cleavage of silyl ethers have been
proposed in the literature.!? The steric and electronic effects around the silicon atom have been
studied and it has been concluded that the substitution around silicon plays a crucial role in the
reactivity and mechanistic pathway.!*-!# It has also been determined, under certain deprotection
conditions, that silicon can become hypervalent.! The fluoride ion has also been shown to be
responsible for the deprotection of silyl ethers;!>-1® however, the fluoride ion is not believed to
be the active species; rather the electronics of the silicon group is believed to be the driving
force. Krutak demonstrated the remarkable stability of alkyl sulfonyl fluorides under aqueous
conditions by generating SFx derivatives and their use in subsequent reactions.!” The stability
during the derivatization of the alkyl sulfonyl fluoride is suggestive of a fluoride-free
deprotection. Krutak showcases the weak reactivity of the -SO2F moiety by selectively
functionalizing other positions in the presence of many functional groups.!” Furthermore,
Gembus et al. describes the high reactivity of sulfonyl fluorides towards silyl groups during
their interconversions of silyl ethers to tosylates under basics conditions.!® This chemistry is
believed to follow a similar mechanism, in which the sulfonyl fluoride is weakly coordinated
to the silicon-oxygen bond in a 2+2 fashion (Scheme 8). By coordinating, the silicon-oxygen
bond is weakened and allows for nucleophilic attack by the protic solvent (i.e. water or
propanol). It is postulated that the electron rich nature of the DPMS ether, due to the electron
donation of the two phenyl rings, helps facilitate this coordination by stabilizing the electron
deficient SO2F group. The result leads to a free alcohol, a silanol byproduct and the sulfonyl
fluoride untouched. In the future, DFT calculations could be performed to confirm if this type

of coordination is energetically favorable.
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Scheme 8: Proposed mechanism for SFx deprotection
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18-Crown-6 Ether Deprotection
Upon optimizing the co-solvent for the SFx deprotection, the ability of 18-crown-6 to
deprotect DPMS ethers was discovered (Table 5). When testing the model substrate, 1a, rapid
deprotection was observed when utilizing a 1:1 mixture of water and 18-crown-6.
Table 5: Control studies with various co-solvents

1:1 H,0/ Co-solvent
50°C

OH
W\‘/\/ODPMS No SFx > WY\/

1a 1

Entry Co-solvent Time (h) Yield (%)2
1 None 24 0
2 PEG 200 24 0
3 PEG 400 24 0
4 12-Crown-4 24 71
5 15-Crown-5 24 56
6 18-Crown-6 15 97
7 t-Butanol 24 0
8 Propanol 24 0
9 Ethanol 24 0

a |solated Yields
Reactions were ran at 0.25M

The investigation of 18-crown-6 was continued due to its apparent ability to participate in the
reaction or facilitate the hydrolysis of the DPMS ether. To fully understand the effectiveness
of 18-crown-6, an extensive screen of 18-crown-6 at various equivalents, temperatures,
reaction times, and percent of co-solvent was completed (Table 6). As the amount of 18-crown-
6 was reduced the reaction times increased. Upon further testing, suitable reaction times were
achieved using a 2:1 ratio of water and ethanol. As the solvent system became optimized,

stoichiometric amounts of 18-crown-6 were added and complete deprotection was observed
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after four hours. Originally, 18-crown-6 was thought to aid in the solubility of the substrate;
therefore, it was understandable that an increase in reaction time was consistent with a decrease
in the amount of 18-crown-6. Because 18-crown-6 is a hazardous reagent, using catalytic
amounts of 18-crown-6 was attractive. However, when sub-stoichiometric amounts of 18-
crown-6 were utilized, substantially longer reaction times were observed, but close to complete
deprotect was still possible at 0.5 equivalents and greater. Minimal conversion was observed

at lower temperatures.

Table 6: Preliminary screening of 18-crown-6 methodology

ODPMS 18-Crown-6 OH
z > z
Y\/Y\/ 2:1 H,O/ EtOH \l/\/\r\/

1a 45°C 1b
Entry Crown (equiv.) %EtOH Co-Solvent T (°C) Time Yield (%)2
1 10 0 45 75 min 91
2 5 0 45 45h 90
3 2 0 45 45h 20
4 5 33 45 90 min 98
5 2 33 45 2h 90
6 1 0 45 45h 18
7 1 33 45 4h 94
8 1 33 25 16 h 5
9 0.5 33 45 26 h 90
10 0.2 33 45 16 h 6

a|solated Yields
Reactions were ran at 0.25M

As different co-solvents were screened, the use of a primary alcohol as a co-solvent
proved to be crucial in this reaction. When solvents such as tetrahydrofuran or ethyl acetate
were used, minimal conversion was observed after 24 hours. This gave rise to the question of

what role does the primary alcohol play in this mechanism? It is assumed, the primary alcohol
14



is acting as the nucleophile during the hydrolysis step, similar to the SFx mechanism described
in the previous section. One may ask, why is water utilized as the primary solvent versus the
surfactant technology developed by this group? Similar solvents systems as the SFx method
were tried; however, the surfactant technology was incompatible with 18-crown-6 as it yielded
significantly slower reaction times and lower conversion to the free alcohol. It is postulated
that due to the extreme hydrophilic nature of 18-crown-6, it does not partition in and out of the
micelles, resulting in minimal interaction between 18-crown-6 and the substrate. Therefore, a
2:1 mixture of water and ethanol was deemed the most effective solvent system for this
chemistry.

An apparent mechanism for how 18-crown-6 facilitates the deprotection of the DPMS
ether is not obvious. Exploration of the literature provided a greater understanding of the
known properties and abilities of 18-crown-6. It was discovered that 18-crown-6 is known to
accelerate various substitution reactions.!” In addition, Friesen et al. described the phenomenon
of silyl migration from one hydroxyl group to another.?° Based on this, it was postulated that
the oxygens of the 18-crown-6 are weakly coordinating to the electron-rich silicon, therefore,
weakening the silicon-oxygen bond enough to initiate a nucleophilic attack by the protic
solvent i.e. water or ethanol. It may also be argued that 18-crown-6 is acting as a mediator for
the silyl migration of the DPMS ether to the more readily available alkyl alcohol in solution
(i.e. ethanol).

Since 18-crown-6 is known for its ability to trap H' ions, the idea of trace acid being a
factor in this selective deprotection needed to be ruled out. Trace acid was ruled out by
referencing Davies et al. and his acid catalyzed hydrolysis of varying silyl ethers. Davies noted
all silyl ethers they tested (TMS, TBS, DPMS, TIPS, and TBDPS) hydrolyzed in a 1%
HC1/MeOH media.?! This data confirmed that selectivity cannot be achieved when trace acid

15



is present. When TBS, TIPS and TBDPS were screened, selectivity towards the DPMS ether
was observed. After 24 hours, the TIPS and TBDPS ethers remained untouched while only
minimal conversion of the TBS ether was observed. These conditions could not discriminate
between the TMS and DPMS ether for similar reasons stated earlier. As related to the SFx
studies, allylic and propargyl silyl ethers were also screened for their selectivity (Table 8). The
selectivity to the allylic and propargyl silyl ethers followed a similar trend as described for the

SFx chemistry.

Table 7: Chemo-selectivity of 18-crown-6 with various silyl ethers

i 18-Crown-6
WOSle - \r/\/\r\/OH
2:1 H,O/ EtOH Co-Solvent

1a [0.25M] 45°C 3 h 1b
Entry Silyl Ether Yield (%)2
1 OTMS 92
2 OTIPS 0 (0)°
3 ODPMS 89
4 OTBS 0 (5)°
5 OTBDPS 0 (0)°

a |solated yields
b |solated yields after 24 h
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Table 8: Chemo-selectivity of 18-crown-6 with various allylic silyl ethers

X OSiR; 18-Crown-6 X-"0H
2:1 H,0O/ EtOH Co-Solvent
[0.25M] 45°C 3 h 4b

4a
Entry Silyl Ether Yield (%)2
1 OTIPS 0
2 ODPMS 90
3 OTBS 0

a|solated yields

As with the SFx conditions, aryl and vinyl alcohols as well as enol ethers proved to be
nonreactive under these conditions; therefore, bolstering the selectivity of the 18-crown-6
method.

Results from this investigation allowed us to develop a robust substrate scope of mostly
primary alcohols (Scheme 9). Faster reaction times were noted when comparing 18-crown-6

to the SFx scope.
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Scheme 9
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A recycling study of the TPGS-750-M reaction mixture was achieved by an in-flask
extraction with a 15% ethyl acetate and hexane solution as extraction media (Scheme 10).
However, due to the lipophilic nature of propanol, an addition of 15% by volume of propanol
was necessary to gain similar reaction times. The yields and reaction times of the two recycles
did not vary significantly, while the E factor, defined as the waste produced relative to the
amount of product obtained in a chemical process, remained relatively low. The E factor
obtained using the SFx method is drastically lower than other deprotection methods found in

the literature.

Scheme 10
( )\
N 20 mol % R-SFx N\
| ODPMS - ~ras 750-M/H20> | OH
Z 2a 15 % viv PrOH [0.5M] Z 2b
50°C 4 h
Initial Reaction: 93%
E Factor = wt of solvent used (waste) 1st Recycle: 94%
wt of product isolated
2nd Recycle: 87%
E Factor: 4.51
|\ J
Conclusion

Two new chemo-selective deprotection methods for the DPMS ether were developed
using catalytic amounts of perfluoro-1-butane sulfonyl fluoride or stoichiometric amounts of
18-crown-6. Both methods are simple by design and offer mild deprotection conditions. The
cheap commercial availability and selectivity of these compounds make these new conditions
affordable and promising. The exact role of 18-crown-6 in this reaction has not yet been fully
elucidated and the mechanistic pathway is still under investigation. As it was stated for the SFx

mechanism previously, DFT calculations could give more insight into the mechanistic pathway
19



of the 18-crown-6 method. The ability of 18-crown-6 and the perfluoro-1-butane sulfonyl
fluoride to facilitate this type of chemistry may open the door to other methods not yet
discovered.

To increase the depth of this study, an investigation regarding different sized crowns,
such as 12-crown-4 or 15-crown-5, and their possible selectivity towards certain silyl ether
groups could be completed. If different sized crowns are found to be selective towards specific
silyl ether groups, then this type of chemistry could be an attractive method for selective

deprotection of common silyl ethers due to its mild nature and affordable cost.
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Two new sustainable methods for selective deprotection of DPMS Ethers under
aqueous conditions

Experimental

1 General Information

A solution of 2 wt % TPGS-750-M/H>0O was prepared by dissolving TPGS-750-M in degassed
HPLC grade water from Fisher Chemical. The resulting solution is stored under argon. The
synthesis of TPGS-750-M has been described previously in detail and is available from Sigma-
Aldrich (catalog #763896 (wax)). 18-crown-6 is commercially available from Sigma-Aldrich
(catalog #186651). Perfluoro-1-butanesulfonyl fluoride is also commercially available from
Sigma-Aldrich (catalog #319732). Certified Grade 1-propanol was purchased from Fisher
Chemical. All commercially available starting alcohols were purchased from Sigma-Aldrich

or Fisher Chemical. They were used without further purification.

Silica Gel 60 F254 plates (Merck, 0.25nm) were used for thin layer chromatography (TLC).
Flash Chromatrogaphy was done with either an Isolera™ One 3.0 Biotage or a standard glass
column using Silica Gel 60 (EMD, 40-63um). 'H and *C NMR were recorded at 25°C on
either a Varian Unity Inova S00MHz or a Varian Unity Inova 600MHz spectrometers in CDCl;3
with residual CHCI3 ('H = 7.26ppm, '3C = 77.16ppm) as the internal standard. Chemical shifts
are reported in parts per million (ppm). The data presented will be reported as follows;
chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, dd = doublet of doublet,
t = triplet, q = quartet, quin = quintet, m = multiplet), coupling constant (if applicable) and
integration. HRMS data were recorded on a Waters Micromass LCT TOF ES+ Premier mass

spectrometer using ESI ionization.
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2 General Procedure for the protection of DPMS ethers

DPMSCI, EtsN

Y\/Y\/OH . \K\/Y\/ODPMS
THF, 0°C to RT

All of the alcohols were protected using a modified literature procedure. A round bottom
flask under argon was charged with diphenylmethylchlorosilane and THF was added. The
resulting mixture was cooled to 0° C. Triethylamine was added to the flask followed by a slow
addition of a solution of the alcohol in THF over a period of 3 minutes, resulting in a
heterogenous mixture. The reaction was allowed to warm to room temperature. The reaction
progress was monitored by TLC, and upon completion (3-12 h) the reaction solvent was
evaporated under reduced pressure. The resulting crude mixture was diluted with ethyl ether
and water. The aqueous layer was extracted with ethyl ether and the combined organic layers
were washed with brine and dried over Na>;SO4. The solvent was removed under reduced

pressure. The crude mixture was purified by flash chromatography.

3 General Procedure for the protection of the various SiR3 ethers

WOH SiR,Cl, Imidazole Y\/Y\/osmg,
THF, RT

All of the other silyl ethers used for screening selectivity were synthesized using a
modified literature procedure. A round bottom flask under argon was charged with silyl
chloride and THF was added. To the resulting mixture was added imidazole followed by a
solution of the alcohol in THF over a period of 3 minutes resulting in a heterogenous mixture.
The reaction progress was monitored by TLC, and upon completion (1-6 h) the reaction solvent
was evaporated under reduced pressure. The resulting crude mixture was diluted with ethyl

ether and water. The aqueous layer was extracted with ethyl ether and the combined organic
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layers were washed with brine and dried over Na;SO4. The solvent was removed under reduced

pressure. The crude mixture was purified by flash chromatography.

4 Utilization of 18-Crown-6 for DPMS ether deprotections

\K\/Y\/ODPMS 18-crown-6 o WOH
2:1 H,0:PrOH 45°C

To a 1 dram reaction vial equipped with a magnetic stir bar was added 18-crown-6 (53 mg,
0.20 mmol, 1.00 equiv.). To this was added ethanol (0.27 mL) and HPLC water (0.53 mL).
The mixture was stirred at 45°C giving a clear, homogenous solution. To this was added 1
(70.5 mg, 0.20 mmol, 1.00 equiv.) dropwise via microliter syringe, resulting in a heterogenous
mixture. The reaction progress was monitored by TLC, and upon complete consumption of
starting material was brought to room temperature, then diluted with ethyl ether (2.00 mL).
This was shaken and allowed to separate, and the organic layer removed via pipet and filtered

over a pad of anhydrous Na>SO4 into a round-bottomed-flask. This extraction was repeated

an additional two times, and the combined organics were concentrated in vacuo to give a crude

oil. This was purified by column chromatography to give the pure product.
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5 Utilization of Perfluoro-1-butanesulfonyl Fluoride for DPMS ether deprotections

. ODPMS 20mol% Perfluoro-SF WOH
Y\/Y\/ 2 wi% TPGS 750-M /H,0

15% PrOH 50°C

To a 1 dram reaction vial equipped with a magnetic stir bar was added the DPMS ether.
To this was added a solution of 2 wt% TPGS 750-M/H>0 (0.85 mL) and Propanol (0.15 mL).
Perfluoro-1-butanesulfonyl fluoride was added via a microliter syringe, resulting in a
heterogeneous mixture. The reaction progress was monitored by TLC. Upon complete
consumption of starting material (6-24 h), the reaction was allowed to cool to room
temperature, then diluted with ethyl ether (2.0 mL). The vile was shaken and the solution was
allowed to separate. This extraction was repeated an additional two times and the combined
organics were concentrated in vacuo to give a crude oil. This was purified by column

chromatography to give the pure product.

6 Recycle study

The initial reaction was set up according to the general procedure stated above. Upon
completion of the reaction, the reaction mixture was extracted three times with MTBE (1 mL
total). The organic extractions were placed in a flask and reduced under pressure. The crude
product was purified via a plug of silica with a mixture of EtOAc/Hexanes to provide the
desired product. The surfactant solution was then charged with additional DPMS alcohol (0.25
mmol) and 15% by volume of propanol. The reaction was sealed and set to stir at 50 °C.

according to the general procedure.
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7 Analytical Data for synthesized silyl ether protected products

(9)-((3,7-Dimethyloct-6-en-1-yl)oxy(methyl)diphenylsilane

(" N\

O

WO\Si
O
J/

TH NMR (500 MHz, CDCl3) § 7.62-7.59 (dd, 4H), 7.44-7.36 (m, 6H), 5.11-5.06 (m, J =
8.5Hz 1H), 3.79-3.69(m, 2H), 2.04-1.87 (m, 2H), 1.7 (s, 3H) 1.65-1.55 (m, 2H), 1.60 (s, 3H)
1.44-1.36 (m, 1H) 1.34-1.26 (m, 1H) 1.18-1.10 (m, J = 7.6Hz 1H) 0.85 (d, J = 6.6Hz 3H)
0.65 (s, 3H).

13C NMR (126 MHz, CDCl3) 8 136.45, 134.47, 131.20, 129.86, 127.95, 127.85, 125.00,
61.92, 39.79, 37.30, 29.25, 25.86, 25.59, 19.68, 17.78, -2.88.

Yield: 89% colorless liquid.

Rt 0.8 (25% Et20 in hexanes).

HRMS for: C,,H;,08i EI-MS [M] calcd: 352.2222; found: 337.1988 [M-CH3]"

Methyldiphenyl(3-phenylpropoxy)silane

( )

o
O i |

C
'H NMR (500 MHz, CDCl3) 6 7.65-7.52 (dd, 4H), 7.47-7.39 (m, 6H), 7.30-7.27 (t, 2H), 7.21-
7.17 (m, 3H), 3.78-3.75 (t, 2H), 2.75-2.71 (t, J = 7.7Hz, 2H), 1.96-1.89 (m, 2H) 0.69 (s, 3H) .
13C NMR (126 MHz, CDCl;) & 142.19, 136.34, 134.48, 129.91, 128.58, 128.40, 128.00,
127.98, 125.81, 62.86, 34.26, 32.22, -2.90.

Yield: 87% colorless liquid.

Rt 0.8 (25% Et20 in hexanes).

HRMS for C,,H,,08i EI-MS [M] calcd: 332.1596; found: 317.1361 [M-CH;]"
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(Benzo|[d][1,3]dioxol-5-ylmethoxy)(methyl)diphenylsilane

( )\

%

OD)
<

o

'H NMR (500 MHz, CDCl3) 6 7.63-7.61 (dd, J = 6.4Hz, 4H), 7.45-7.37 (m, 6H), 6.84 (s, J =
0.9Hz, 1H), 6.75 (d, J = 1.0Hz, 2H), 5.94 (s, 2H), 4.69 (s, J = 0.7Hz, 2H) 0.69 (s, 3H).

13C NMR (126 MHz, CDCl3) & 147.75, 146.81, 135.93, 134.76, 134.54, 130.05, 128.05,
120.03, 108.12, 107.69, 101.02, 65.39, -2.74.

Yield: 83% colorless liquid.

Rt 0.3 (10% Et20 in hexanes).

HRMS for C21H2003Si EI-MS [M'] calcd: 348.1181; found: 348.1182

((2,3-Dimethoxybenzyl)oxy)(methyl)diphenylsilane

( N\

/ N\

o ©O N Q
C o-§

. J

'H NMR (500 MHz, CDCl;3) 6 7.63-7.61 (dd, 4H), 7.45-7.37 (m, 6H), 7.14-7.13 (d, 1H), 7.09-
7.05 (t, 1H) 6.86-6.85 (d, 1H) 4.87 (s, J = 1.3Hz, 2H), 3.86 (s, 3H), 3.75 (s, J = 1.0Hz,3H),
0.70 (s, 3H).

13C NMR (126 MHz, CDCl;) & 152.43, 136.11, 134.74, 134.54, 129.97, 128.00, 124.07,
120.14, 111.53, 60.75, 60.65, 55.92, -2.86.

Yield: 96% colorless oil.

Rt 0.33 (15% Et20 in hexanes).

HRMS for C22H2403Si EI-MS [M*] caled: 364.1494; found: 364.149
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1-(4-(4-((Methyldiphenylsilyl)oxy)but-1-yn-1-yl)phenyl)ethan-1-one

s N
) @)
=
D
e

TH NMR (500 MHz, CDCl3) 6 7.87 — 7.84 (m, 2H), 7.62 — 7.59 (m, 4H), 7.43 — 7.34 (m, 8H),
3.91-3.88 (t, 2H), 2.70 (t, J = 6.9 Hz, 2H), 2.57 (s, J = 0.5 Hz, 3H), 0.67 (s, J = 0.6 Hz, 3H).
13C NMR (126 MHz, CDCl3) & 197.50, 136.01, 135.84, 134.51, 134.49, 134.09, 131.86,
130.10, 130.03, 128.85, 128.29, 128.07, 91.10, 81.35, 62.01, 26.73, 23.87, -2.84.

Yield: 76% yellow oil.

R¢: 0.27 (15% EtOAc in hexanes).

HRMS for C25H240,Si EI-MS [M] caled: 384.1545; found: 384.1546

2-Methyl-6-(3-((methyldiphenylsilyl)oxy)propyl)pyridine

4 )

e
Q

TH NMR (500 MHz, CDCl3) 8 7.62 — 7.59 (m, 4H), 7.47 — 7.36 (m, 7H), 6.95 (d, J= 7.6 Hz,
1H), 6.90 (d, J=7.6 Hz, 1H), 3.77 (t,J = 6.4 Hz, 2H), 2.87 — 2.82 (m, 2H), 2.52 (s, 3H), 2.05
—1.98 (m, 2H), 0.65 (s, 3H).

13C NMR (126 MHz, CDCl3) 8 161.32, 157.86, 136.57, 136.34, 134.49, 129.89, 127.96,
120.54, 119.70, 63.07, 34.90, 32.88, 24.69, -2.91.

Yield: 91% brown oil.

Rt 0.34 (15% EtOAc in hexanes).

HRMS for C2,H250NSi EI-MS [M*] caled: 347.1705; found: 347.1711
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(E)-((3,7-Dimethylocta-2,6-dien-1-yl)oxy)(methyl)diphenylsilane

( )
N\
\ S
o"L’f'

- _J
TH NMR (500 MHz, CDCl3)  7.61 (dd,J=6.3, 1.3 Hz, 4H), 7.45 — 7.36 (m, 6H), 5.42 —
5.37 (m, 1H), 5.06 — 5.01 (m, 1H), 4.24 (dt, /= 6.7, 1.1 Hz, 2H), 1.97 (tq, J=9.7, 5.0, 3.6
Hz, 4H), 1.71 (s, J= 1.2 Hz, 3H), 1.65 (s, J = 1.5 Hz, 3H), 1.55 (s, J= 3.0 Hz, 3H), 0.66 (s, J
=0.9 Hz, 3H).

13C NMR (126 MHz, CDCl3) 6 138.46, 136.29, 134.57, 131.97, 129.88, 127.96, 124.61,
124.04, 60.27, 32.31, 26.78, 25.80, 23.57, 17.76, -2.59.

Yield: 81% colorless oil.

R¢: 0.35 (10% Et20O in hexanes).

HRMS for C23H300Si EI-MS [M*] caled: 350.2065; found: 350.2066

(2)-((5-(Benzo[1,3]dioxol-5-yl)-3-methylpent-2-en-1-yl)oxy)(methyl)diphenylsilane

SensiNe
- Si
e

L J
TH NMR (500 MHz, CDCl3) 6 7.61 — 7.58 (m, 4H), 7.39 (m, J = 12.5, 7.6, 5.9 Hz, 6H), 6.72
(d,J=7.8 Hz, 1H), 6.66 (d, J= 1.7 Hz, 1H), 6.60 (dd, J = 8.0, 1.6 Hz, 1H), 5.91 (s, 2H), 5.38
(td, J=6.5, 1.5 Hz, 1H), 4.26 (d, /= 6.5 Hz, 2H), 2.62 — 2.58 (m, 2H), 2.22 (dd, J=9.7, 6.5
Hz, 2H), 1.55 (s, 3H), 0.64 (s, 3H).

13C NMR (126 MHz, CDCl3) 8 147.62, 145.68, 137.39, 136.28, 136.15, 134.56, 129.91,
127.96, 124.22, 121.14, 108.95, 108.23, 100.86, 60.59, 41.77, 34.15, 16.58, -2.59.

Yield: 82% colorless oil.

Rt 0.32 (5% EtOAc in hexanes).

HRMS for C26H2303Si EI-MS [M] caled: 416.1807; found: 439.1700 [M+Na]*
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(E)-Methyl(3-methyl-5-phenylpent-2-en-1-yl)oxy)diphenylsilane

( N\

\ y
'TH NMR (500 MHz, CDCl3) 6 7.62 (dd, J= 6.4, 1.6 Hz, 3H), 7.55 — 7.53 (m, 1H), 7.43 —
7.38 (m, 6H), 7.35 - 7.29 (m, 3H), 7.20 (m, J=9.6, 7.7, 1.3 Hz, 3H), 5.42 (m, J= 5.3, 2.6,
1.3 Hz, 1H), 4.30-4.27 (d, 2H), 2.70 (t, /= 9.6, 6.9 Hz, 2H), 2.30 — 2.27 (d, 2H), 1.59 (s, J
= 1.5 Hz, 3H), 0.66 (s, J = 1.2 Hz, 3H).

13C NMR (126 MHz, CDCl3) 142.32, 137.55, 136.33, 134.57, 134.55, 134.15, 129.90,
129.71, 128.44, 127.97, 127.87, 125.90, 124.16, 60.62, 41.51, 34.45, 16.61, -2.57.

Yield: 78% colorless oil.

Rt 0.4 (10% Et20 in hexanes).

HRMS for C25H2303Si EI-MS [M*] calced: 404.1807; found: 357.1917 [M-CH3]"

(R)-Methyl(oct-1-en-3-yloxy)diphenylsilane

( )

H oS
TH NMR (500 MHz, CDCl3) 6 7.60 (m, J = 6.7, 5.2, 1.5 Hz, 4H), 7.41 — 7.34 (m, 6H), 5.83
(ddd, J=17.0, 10.4, 6.5 Hz, 1H), 5.08 (dt, J=17.2, 1.5 Hz, 1H), 5.01 (ddd, /=104, 1.7, 1.1
Hz, 1H), 4.20 — 4.15 (m, 1H), 1.61 — 1.55 (m, 1H), 1.51 — 1.45 (m, 1H), 1.34 — 1.15 (m, 7H),
0.84 (t,J=7.1 Hz, 3H), 0.65 (s, 3H).
13C NMR (126 MHz, CDCl3) 6 141.41, 136.94, 136.86, 134.69, 134.63, 129.86, 129.83,
127.91, 127.89, 114.42, 74.84, 37.98, 31.93, 24.93, 22.79, 14.23, -1.97.
Yield: 89% colorless liquid.
R¢: 0.42 (hexanes).
HRMS for C21H230Si EI-MS [M*] caled: 324.1909; found: 324.1909
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2-(2-((Methyldiphenylsilyl)oxy)ethoxy)-5-nitropyridine

e p

\
Q/Si'o\/\O SN

. J

TH NMR (500 MHz, CDCl3) 6 9.01 (d, /= 2.8 Hz, 1H), 8.31 (dd, J=9.1, 2.8 Hz, 1H), 7.60
—7.57 (m, 4H), 7.43 — 7.39 (m, 2H), 7.38 — 7.34 (m, 4H), 6.73 (d, /= 9.1 Hz, 1H), 4.57 -
4.54 (m, 2H), 4.08 — 4.06 (m, 2H), 0.67 (s, 3H).

13C NMR (126 MHz, CDCl3) 8 167.06, 144.81, 135.74, 134.48, 133.97, 130.10, 128.04,
111.54,77.41,77.16, 76.91, 68.68, 61.87, -2.82.

Yield: 79% yellow oil.

Rt 0.35 (25% EtOAc in hexanes).

HRMS for C20H2004N>Si EI-MS [M*] calcd: 380.1192; found: 365.0958 [M-CH3]*

Tert-butyldimethyl((5-(4-(((methyldiphenylsilyl)oxy)methyl)phenyl)pent-4-yn-1-
yDoxy)silane

( )

- J

'H NMR (500 MHz, CDCl3) 8 7.63 — 7.59 (m, 4H), 7.44 — 7.41 (m, 2H), 7.40 — 7.36 (m,
4H), 7.35-"7.33 (d, 2H), 7.23 (d, J= 7.5, 0.8 Hz, 2H), 4.77 (s, 2H), 3.76 (t, /= 6.0 Hz, 2H),
249 (t,J=17.0 Hz, 2H), 1.83 — 1.78 (m, 2H), 0.91 (s, 9H), 0.65 (s, 3H), 0.08 (s, 6H).

13C NMR (126 MHz, CDCl3) 6 140.21, 135.84, 134.53, 131.58, 130.08, 128.07, 126.39,
105.16, 89.72, 80.81, 77.41, 77.16, 76.90, 65.15, 61.80, 31.93, 26.12, 15.99, -2.78, -5.14.
Yield: 94% colorless oil.

Rt 0.32 (4% EtOAc in hexanes).

HRMS for C31H4002Si2 EI-MS [M*] calcd: 500.2566; found: 523.2465 [M+Na]"
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1-Benzhydryl-3-((methyldiphenylsilyl)oxy)azetidine

( )

O NO’%@Q
O 0O

\ J
TH NMR (500 MHz, CDCl3) 6 7.54 (d, J = 7.4 Hz, 4H), 7.39 (dd, J= 18.0, 7.2 Hz, 11H),
7.27 (s, 2H), 7.24 (s, 1H), 7.18 (t, J= 7.3 Hz, 2H), 4.53 (p, /= 6.2 Hz, 1H), 4.35 (s, 1H), 3.47
(td, J=6.2,2.3 Hz, 2H), 2.95 (td, /= 6.3, 2.3 Hz, 2H), 0.60 (s, 3H).

13C NMR (126 MHz, CDCl3) 6 142.40, 135.74, 134.39, 130.09, 128.52, 128.48, 128.05,
127.58, 127.19, 78.62, 63.55, 62.39, -2.48.

Yield: 77% colorless oil.

Rt 0.32 (15% Et20 in hexanes).

HRMS for C20H29ONSi EI-MS [M*] caled: 435.2018; found: 435.2018
((2,2-Dimethyl-3-(2-methylprop-1-en-1-yl)cyclopropyl)methoxy)(methyl)diphenylsilane

Gy

TH NMR (500 MHz, CDCIl3) major isomer reported & 7.61 — 7.59 (m, 4H), 7.40 — 7.36 (m,
6H), 4.85 (ddq, /=9.7, 7.1, 1.4 Hz, 2H), 3.89 (ddd, J=11.2, 6.2, 1.4 Hz, 1H), 3.72 (ddd, J =
7.5,4.0, 1.4 Hz, 1H), 3.63 (ddd, J=11.2, 8.3, 1.3 Hz, 1H), 1.69 (d, /= 1.7 Hz, 3H), 1.64 (d,
J=1.3Hz, 3H), 1.07 (d, /= 1.4 Hz, 3H), 1.01 (d, /= 1.3 Hz, 3H), 0.81 (ddd, /=8.3,4.2, 1.3
Hz, 1H), 0.64 (d, J = 1.4 Hz, 3H).

13C NMR (126 MHz, CDCl3) mixture of isomers 136.58, 134.66, 134.55, 134.53, 134.14,
132.84,129.82, 129.80, 127.92, 127.87, 123.89, 119.58, 77.41, 77.16, 76.91, 64.38, 61.30,
34.99, 30.81, 28.95, 28.68, 26.31, 25.86, 25.78, 22.78, 22.45, 21.57, 18.61, 18.39, 15.62, -
2.65,-2.71.

Yield: 85% colorless oil.

R¢: 0.65 (10% EtOAc in hexanes).

HRMS for C23H300Si EI-MS [M*] caled: 350.2065; found: 350.2076
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(Cinnamyloxy)(methyl)diphenylsilane

( )

SUSNe

/5\

. /

'H NMR (600 MHz, CDCl3) 8 7.64 — 7.62 (m, 4H), 7.43 — 7.41 (m, 2H), 7.40 — 7.38 (m,
4H), 7.34 (d, J= 7.6 Hz, 2H), 7.31 — 7.29 (m, 2H), 7.22 (td, J= 7.0, 1.5 Hz, 1H), 6.58 (dd, J
=159, 1.8 Hz, 1H), 6.31 — 6.27 (m, 1H), 4.42 (dd, J=5.5, 1.8 Hz, 2H), 0.69 (s, J = 1.5 Hz,
3H).

13C NMR (151 MHz, CDCl3) 6 139.76, 138.65, 137.20, 133.09, 132.70, 131.29, 131.19,
130.71, 130.21, 129.23, 67.06, -0.00.

Yield: 85% colorless oil.

Rt 0.33 (15% Et20 in hexanes).

HRMS for C,,H,,08Si EI-MS [M"] calcd: 330.1440; found: 330.1425

Tert-butyl(cinnamyloxy)dimethylsilane

>I\S|O\/\/©
/ N\

'H NMR (500 MHz, CDCl3) § 7.38 — 7.34 (m, 2H), 7.31 — 7.26 (m, 2H), 7.22 — 7.18 (m,
1H), 6.57 (dd, J=15.7, 2.0 Hz, 1H), 6.27 (dtd, /= 15.9, 5.1, 0.9 Hz, 1H), 4.34 (dt, J=5.1,
1.2 Hz, 2H), 0.93 (d, /= 0.9 Hz, 9H), 0.10 (d, /= 0.9 Hz, 6H).

13C NMR (126 MHz, CDCl3) 6 129.46, 129.18, 128.49, 127.29, 126.37, 63.89, 25.98, 18.47,
-5.13.

Yield: 75% colorless oil.

Rt 0.3 (15% Et20 in hexanes).

HRMS for C,;H,,08Si EI-MS [M] calcd: 248.1596; found: 248.1596
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(Cinnamyloxy)triisopropylsilane

( )

0~S>\
Paseg

. J/

TH NMR (500 MHz, CDCl3)  7.40 —7.37 (m, 2H), 7.33 — 7.29 (m, 2H), 7.24 — 7.20 (m,
1H), 6.65 (dd, J=15.7, 2.1 Hz, 1H), 6.33 — 6.27 (m, 1H), 4.44 (dd, /=4.8, 1.9, 0.8 Hz, 2H),
1.20 — 1.14 (m, 3H), 1.12 - 1.09 (d, 18H).

13C NMR (126 MHz, CDCl3) 6 137.41, 129.52, 129.19, 128.63, 127.35, 126.52, 64.07,
18.20, 12.24.

Yield: 89% colorless oil.

Rt 0.75 (5% EtOAc in hexanes)

HRMS for C13H300Si EI-MS [M*] caled. 290.2066 found 290.2065

5-(2-(((Methyldiphenylsilyl)oxy)methyl)phenyl)-2-(piperidin-1-yl)pyrimidine

( )

O
N~
W
TH NMR (600 MHz, CDCIl3)  8.26 (s, 2H), 7.54 (ddd, J = 6.8, 4.0, 1.6 Hz, 5H), 7.40 — 7.36
(m, 2H), 7.33 (qd, J=7.1, 1.3 Hz, 6H), 7.15 (dd, J = 7.2, 1.7 Hz, 1H), 4.68 (s, 2H), 3.82 —
3.79 (m, 4H), 1.71 — 1.67 (m, 2H), 1.65 — 1.61 (m, 4H), 0.60 (s, 3H).
13C NMR (126 MHz, CDCl3) 6 160.83, 157.40, 138.38, 135.72, 135.10, 134.39, 129.91,
129.89, 128.72, 127.92, 127.88, 127.82, 127.70, 121.75, 63.34, 44.94, 25.83, 24.93, -2.94.
Yield: 85% colorless oil.

Rt 0.30 (7.5% EtOAc in hexanes).
HRMS for C2oH310ON3Si EI-MS [M*] calcd: 465.2236; found: 466.2315 [M+H]*
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2-Methyl-6-(3-((trimethylsilyl)oxy)propyl)pyridine

'H NMR (500 MHz, CDCl3) 6 7.36 (t,J = 7.7 Hz, 1H), 6.85 (dd, J= 7.7, 2.7 Hz, 2H), 3.53
(t,J=6.5Hz, 2H), 2.71 — 2.67 (m, 2H), 2.41 (s, 3H), 1.86 — 1.82 (m, 2H), -0.01 (s, 9H).

13C NMR (126 MHz, CDCl3) 6 161.70, 158.17, 136.92, 120.88, 120.00, 62.53, 35.24, 33.31,
26.44, 24.98, -0.00.

Yield: 86% light yellow oil.

Rt 0.34 (10% EtOAc in hexanes).

HRMS for C12H21NOSi EI-MS [M*] calcd; 223.1392 found; 223.1391

2-Methyl-6-(3-((tert-butyldimethylsilyl)oxy)propyl)pyridine

4 N\
| X Ssi”
1
o)
N/
\\ J

TH NMR (500 MHz, CDCl3) 6 7.46 (t,J = 7.6 Hz, 1H), 6.95 (dd, J= 7.6, 2.2 Hz, 2H), 3.66
(t,J=6.4 Hz, 2H), 2.83 — 2.79 (m, 2H), 2.52 (s, 3H), 1.96 — 1.90 (m, 2H), 0.90 (s, 9H), 0.04
(s, 6H).

13C NMR (126 MHz, CDCl3) 6 161.72, 158.19, 136.90, 120.86, 119.98, 62.55, 35.25, 33.31,
25.00, -0.00.

Yield: 89% light yellow oil.

Rt 0.36 (10% EtOAc in hexanes).

HRMS for C15sH27NOSi EI-MS [M] caled: 265.1862; found: 265.1867
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2-Methyl-6-(3-((tert-butyldiphenylsilyl)oxy)propyl)pyridine

( )

@)

Qgfo

\ J
TH NMR (600 MHz, CDCl3) 6 7.71 — 7.68 (m, 1H), 7.65 — 7.63 (m, 4H), 7.38 — 7.33 (m,
6H), 7.24 (s, 1H), 6.91 (dd, J = 14.2, 7.6 Hz, 2H), 3.70 (t, J = 6.3 Hz, 2H), 2.85 — 2.82 (m,
2H), 2.49 (s, 3H), 1.99 — 1.94 (m, 2H), 1.04 (s, 9H).

13C NMR (151 MHz, CDCl3) 8 161.27, 157.68, 136.42, 135.54, 134.77, 133.95, 129.59,

129.48, 127.67, 127.56, 120.38, 119.57, 63.30, 34.70, 32.75, 26.85, 24.49, 19.21.

Yield: 83% light yellow oil.

R¢: 0.32 (10% EtOAc in hexanes).

HRMS for C25H31NOSi EI-MS [M*] caled: 389.2175; found: 389.2171

2-Methyl-6-(3-((triisopropylsilyl)oxy)propyl)pyridine

_gi’o\/\/fr\j\
T

J/

'TH NMR (500 MHz, CDCl3) 6 7.44 (t,J = 7.6 Hz, 1H), 6.93 (dd, J=9.8, 7.7 Hz, 2H), 3.71
(t,J=6.4 Hz, 2H), 2.83 — 2.79 (m, 2H), 2.50 (s, 3H), 1.96 — 1.90 (m, 2H), 1.03 (s, 9H).

13C NMR (126 MHz, CDCl3) 6 161.45, 157.68, 136.42, 120.36, 119.62, 62.78, 34.75, 33.23,
24.49, 18.03, 12.01.

Yield: 90% light yellow oil.

Rf: 0.28 (10% EtOAc in hexanes).

HRMS for CisH330NSi EI-MS [M*] caled: 307.2332; found: 307.2344
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((1-(4-Iodophenyl)vinyl)oxy)(methyl)diphenylsilane

( )

2,
O

. J/

TH NMR (600 MHz, C¢Ds) 6 7.65 — 7.63 (m, 4H), 7.40 — 7.37 (m, 2H), 7.21 — 7.19 (m, 2H),
7.19-7.17 (m, 7H), 4.71 (d, J= 2.2 Hz, 1H), 4.41 (d, J=2.2 Hz, 1H), 0.65 (s, 3H).

13C NMR (151 MHz, C¢Ds) 6 154.70, 137.22, 135.25, 134.26, 130.03, 127.95, 127.00,
94.03, 92.35, -3.24.

Yield: 78% colorless oil.

Rt 0.3 (5% Et20 in hexanes).

HRMS for C21H19OISi EI-MS [M] calcd: 442.0249; found: 442.0233

4-((Methyldiphenylsilyl)oxy)anisole

'H NMR (400 MHz, CDCl3) 6 7.69 — 7.65 (m, 4H), 7.46 — 7.39 (m, 6H), 6.79 — 6.71 (m,
4H), 3.73 (s, 3H), 0.75 (s, 3H).

13C NMR (151 MHz, CDCl3) 6 155.89, 150.41, 137.22, 136.04, 131.73, 129.62, 122.19,
116.12, 57.21, -1.01.

Yield: 83% colorless oil.

Rt 0.31 (5% EtOAc in hexanes)

HRMS for C20H200:Si EI-MS [M"] caled: 320.1232; found: 320.1235
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(2-Allylphenoxy)(methyl)diphenylsilane

TH NMR (500 MHz, CDCl3) 6 7.66 (dt, J = 6.6, 1.5 Hz, 4H), 7.47 — 7.37 (m, 6H), 7.14 (dd,
J=17.5,1.7Hz, 1H), 6.97 (td,J= 7.7, 1.8 Hz, 1H), 6.89 (td, J= 7.4, 1.3 Hz, 1H), 6.69 (dd, J
= 8.0, 1.3 Hz, 1H), 5.97 (ddtd, J = 16.8, 10.2, 6.6, 1.4 Hz, 1H), 5.05 — 4.99 (m, 2H), 3.42 (dt,
J=6.7,1.5 Hz, 2H), 0.76 (s, 3H).

13C NMR (151 MHz, CDCl3) 8 155.89, 150.41, 137.22, 136.04, 131.73, 129.62, 122.19,
116.12,57.21, -1.01.

Yield: 76% colorless oil.

Rt 0.3 (5% Et20 in hexanes).

HRMS for C2,H2,08i EI-MS [M*] caled: 330.1439; found: 330.1431

(8)-Tert-butyl-((3,7-dimethyloct-6-en-1-yl)oxy)diphenylsilane

N

TH NMR (500 MHz, CDCl3) 6 7.68 (dd, J=7.9, 1.6 Hz, 4H), 7.43 — 7.36 (m, 6H), 5.09
(dddd,J=7.1,5.7,2.9, 1.4 Hz, 1H), 3.73 — 3.67 (m, 2H), 1.99 — 1.92 (m, 2H), 1.68 (q, J =
1.3 Hz, 3H), 1.64 — 1.59 (m, 5H), 1.38 — 1.29 (m, 2H), 1.16 — 1.11 (m, 1H), 1.05 (s, 9H), 0.84
(d, J= 6.5 Hz, 3H).

13C NMR (151 MHz, CDCl3) 8 135.57, 134.17, 131.03, 129.47, 127.56, 124.91, 62.20,
39.63,37.17, 29.05, 26.87, 25.72, 25.49, 19.61, 19.21, 17.65.

Yield: 68% colorless oil.

R¢: 0.75 (10% EtOAc in hexanes)

HRMS for C26H330Si EI-MS [M*] caled: 394.2692 found: 394.2692
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(S)-Tert-butyl-((3,7-dimethyloct-6-en-1-yl)oxy)triisopropylsilane

1o
5%

TH NMR (600 MHz, CDCl3) 6 5.10 (m, ] = 7.0, 1.4 Hz, 1H), 3.74 — 3.68 (m, 2H), 2.02 —
1.93 (m, 2H), 1.68 (d, /= 1.4 Hz, 3H), 1.61 — 1.57 (m, 5H), 1.37 — 1.31 (m, 2H), 1.16 (dtd, J
=9.5,5.9,5.1,2.1 Hz, 1H), 1.07 — 1.05 (m, 19H), 0.89 (d, /= 6.5 Hz, 3H).

13C NMR (151 MHz, CDCl3) 8 131.19, 125.08, 105.18, 61.84, 40.24, 37.41, 29.30, 25.87,
25.67, 19.85, 18.20, 17.78, 12.19.

Yield: 94% colorless oil.

Rt 0.75 (10% EtOAc in hexanes).

HRMS for C19H40OSi EI-MS [M*] caled 312.6130; found: 269.2297 [M-CsH7]"

(8)-((3,7-Dimethyloct-6-en-1-yl)oxy)trimethylsilane

TH NMR (500 MHz, CDCl3) 6 5.09 (ddq, J= 8.4, 5.5, 1.4 Hz, 1H), 3.64 — 3.57 (m, 2H),
1.97 (tq, J=14.8, 7.6 Hz, 2H), 1.68 (s, J= 1.5 Hz, 3H), 1.60 (s, J= 1.3 Hz, 3H), 1.58 — 1.50
(m, 2H), 1.37 - 1.30 (m, 2H), 1.19 — 1.12 (m, 1H), 0.88 (d, J = 6.6 Hz, 3H), 0.11 (s, 9H).
13C NMR (126 MHz, CDCl3) 131.25, 125.01, 61.07, 39.96, 37.38, 29.35, 25.87, 25.62,
19.74, 17.78, -0.30.

Yield: 79% colorless oil.

R¢: 0.75 (10% EtOAc in hexanes).
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(S)-Tert-butyl-((3,7-dimethyloct-6-en-1-yl)oxy)dimethylsilane

s 2

TH NMR (500 MHz, CDCl3) 6 5.10 (tp, J = 7.0, 1.4 Hz, 1H), 3.67 — 3.60 (m, 2H), 2.02 —
1.93 (m, 2H), 1.68 (s, J = 1.3 Hz, 3H), 1.60 (s, J= 1.2 Hz, 3H), 1.57 — 1.54 (m, 2H), 1.33 (m,
J=10.9,5.6,2.9, 1.3 Hz, 2H), 1.19 - 1.12 (m, 1H), 0.89 (s, 9H), 0.05 (s, 6H).

13C NMR (126 MHz, CDCl3) 8 131.22, 125.05, 61.62, 40.10, 37.37, 29.28, 26.13, 25.87,
25.65,19.79, 18.50, 17.79, -5.11.

Yield: 84% colorless oil.

Rt 0.75 (10% EtOAc in hexanes).

HRMS for Ci6H340Si EI-MS [M*] calcd. 270.2379 found: 270.2376

1-(4-(3-((Methyldiphenylsilyl)oxy)prop-1-yn-1-yl)phenyl)ethan-1-one

( )

\ y
TH NMR (500 MHz, CDCl3) 6 7.90 — 7.86 (m, 2H), 7.69 — 7.66 (m, 4H), 7.41 — 7.39 (m,
8H), 4.63 (s, 2H), 2.59 (s, 3H), 0.77 (s, 3H).

13C NMR (126 MHz, CDCl3) 6 176.69, 171.11, 137.19, 134.63, 134.13, 134.10, 131.94,
131.84, 130.22, 130.04, 129.70, 128.38, 128.27, 128.10, 128.07, 127.86, 51.77, 26.77, -1.08.
Yield: 69% yellow oil.

Rt 0.65 (15 % EtOAc in hexanes).

HRMS for C24H220,Si EI-MS [M] caled: 370.1389; found: 370.1384
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9,9-Diisopropyl-10-methyl-2,2-diphenyl-3,8-dioxa-2,9-disilaundecane

O

O-Si—

Y~ O

SN

TH NMR (500 MHz, CDCl3) 8 7.59 — 7.53 (m, 4H), 7.39 — 7.32 (m, 6H), 3.69 (dd, J= 6.9,

4.4 Hz, 2H), 3.65 (dt, J= 6.3, 3.2 Hz, 2H), 1.60 (tt, J= 5.2, 2.9 Hz, 4H), 1.04 (s, /= 2.4 Hz,
21H), 0.62 (s, J=2.6 Hz, 3H).

13C NMR (126 MHz, CDCl3) 6 134.32, 129.71, 127.80, 63.47, 63.38, 63.26, 63.18, 29.54,

29.43,29.10, 18.03, 12.03, 12.00, -3.05.

Yield: 81% light yellow oil.

R¢: 0.45 (100% hexanes).

HRMS for C26H420,Si2 EI-MS [M*] calcd: 442.2723; found: 442.2720

4-((Methyldiphenylsilyl)oxy)butan-1-ol

7 N\

O-Si—

A

HO

TH NMR (500 MHz, CDCl3) 6 7.61 — 7.57 (m, 4H), 7.44 — 7.36 (m, 6H), 3.76 — 3.73 (m,
2H), 3.65 — 3.61 (m, 2H), 1.68 — 1.64 (m, 4H), 0.65 (s, 3H).

13C NMR (126 MHz, CDCl3) 6 135.81, 134.33, 129.89, 127.90, 63.45, 62.78, 29.75, 29.26, -
3.12.

Yield: 85% light yellow oil.

Rt 0.26 (25% EtOAc in hexanes).

HRMS for C17H220:Si EI-MS [M"] caled: 286.1389; found: 286.1390
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9,9,10,10-Tetramethyl-2,2-diphenyl-3,8-dioxa-2,9-disilaundecane

¢

>Lsro\/\/\o Si
O

/ N\

TH NMR (500 MHz, CDCl3) 6 7.57 — 7.55 (m, 4H), 7.38 — 7.33 (m, 6H), 3.69 (t, /= 6.3 Hz,
2H), 3.57 (t, J= 6.2 Hz, 2H), 1.61 — 1.53 (m, 4H), 0.85 (s, 9H), 0.61 (s, 3H), 0.00 (s, 8H).
13C NMR (126 MHz, CDCl3) 6 136.40, 134.48, 129.88, 127.96, 63.56, 63.14,29.41, 29.22,
26.12, 18.49, -2.88, -5.13.

Yield: 85% light yellow oil.

R¢: 0.42 (100% hexanes).

HRMS for C23H3602Si2 EI-MS [M*] calcd: 400.2254; found: 400.2254

4-((Tert-butyldimethylsilyl)oxy)butan-1-ol

>Lsro\/\/\0H
/ \

TH NMR (500 MHz, CDCl3) 6 3.63 (dt, J = 12.4, 5.7 Hz, 4H), 1.65 — 1.60 (m, 4H), 0.88 (s,
9H), 0.05 (s, 6H).

13C NMR (126 MHz, CDCl3) 8 63.33, 62.77, 30.23, 29.86, 29.69, 25.89, 18.29, -5.40.
Yield: 79% colorless oil.

R¢: 0.25 (25% EtOAc in hexanes).
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4-((Triisopropylsilyl)oxy)butan-1-ol

'TH NMR (500 MHz, CDCl3) 6 3.73 (q, /= 5.1, 4.6 Hz, 2H), 3.64 (q, /= 5.2 Hz, 2H), 2.54
(s, 1H), 1.65 (dq, J=9.9, 5.0, 4.4 Hz, 4H), 1.04 (s, J = 5.5 Hz, 21H).

13C NMR (126 MHz, CDCl3) 8 63.59, 62.85, 30.35, 30.06, 17.96, 11.94.

Yield: 89% colorless oil.

Rt 0.28 (25% EtOAc in hexanes).
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8 Analytical Data for Free Alcohols Deprotected under 18-Crown-6 and SFx
Conditions

1-(4-(4-Hydroxybut-1-yn-1-yl)phenyl)ethan-1-one

=Z
HO

'TH NMR (500 MHz, CDCIl3) 6 7.88 — 7.86 (d, 2H), 7.49 — 7.45 (d, 2H), 3.82 (q, J = 6.2 Hz,
2H), 2.71 (t,J= 6.2 Hz, 2H), 2.57 (s, 3H), 1.75 (t,J = 6.3 Hz, 1H).

13C NMR (126 MHz, CDCl3) 6 131.80, 128.31, 128.19, 104.99, 90.16, 81.82, 61.03, 26.61,
23.93.

Yield (SFx): 79% tan solid.

Yield (18-Crown-6): 93% tan solid.

Yield (Syn): 81% tan solid.

R¢: 0.35 (80% Et20 in hexanes).

HRMS for Ci2H 202 EI-MS [M] calcd: 188.0837; found: 189.0913 [M+H]*

(Z2)-5-(Benzo[1,3]dioxol-5-yl)-3-methylpent-2-en-1-o0l

OH

TH NMR (500 MHz, CDCl3) 6 6.72 (d, /= 7.9 Hz, 1H), 6.67 (d, J= 1.7 Hz, 1H), 6.61 (dd, J
=7.8,1.7 Hz, 1H), 5.91 (s, 2H), 5.41 (m, J=6.9, 5.5, 1.3 Hz, 1H), 4.14 (d, /= 6.9 Hz, 2H),
2.68 —2.63 (m, 2H), 2.28 (dd, J=8.9, 7.2 Hz, 2H), 1.71 (s, 3H), 1.25 (s, 1H).

13C NMR (126 MHz, CDCl3) 8 147.65, 145.73, 139.17, 135.95, 124.08, 121.31, 108.94,
108.23, 100.89, 59.48, 41.78, 34.21, 16.53.

Yield (SFx): 90% yellow oil.

Yield (18-Crown-6): 92% yellow oil.

Rt 0.4 (25% EtOAc in hexanes)
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1-(4-(3-Hydroxyprop-1-yn-1-yl)phenyl)ethan-1-one

( )

// OH

. J/

TH NMR (500 MHz, CDCl3) 6 7.92 — 7.89 (m, 2H), 7.53 — 7.49 (m, 2H), 4.53 (d, J = 6.2 Hz,
2H), 2.60 (s, 3H), 1.75 (t, J= 6.2 Hz, 1H).

13C NMR (126 MHz, CDCl3) 8 197.46, 136.63, 131.94, 128.38, 127.55, 90.62, 85.06, 51.78,
26.78.

Yield (SFx): 79% red oil.

Yield (18-Crown-6): 88% red oil.

Yield (Syn): 81% red oil.

Rt 0.37 (50% EtOAc in hexanes)

(4-(5-(Tert-butyldimethylsilyl)oxy)pent-1-yn-1-yl)phenyl)methanol

( )

HO

. J/

TH NMR (500 MHz, CDCl3) é 7.40 — 7.37 (m, 2H), 7.29 — 7.26 (m, 2H), 4.68 (d, /= 5.9 Hz,
2H), 3.76 (t, J = 6.0 Hz, 2H), 2.49 (t, J= 7.0 Hz, 2H), 1.84 — 1.78 (m, 2H), 1.67 (t, /= 6.0
Hz, 1H), 0.91 (s, 9H), 0.08 (s, 6H).

13C NMR (126 MHz, CDCl3) 8 140.30, 131.85, 126.90, 123.49, 90.16, 80.63, 65.20, 61.79,
31.89, 26.12, 18.53, 15.99, -5.15.

Yield (SFx): 71% brown oil.

Yield (18-Crown-6): 80% brown oil.

Yield (Syn): 81% brown oil.

R¢: 0.35 (15% EtOAc in hexanes).

HRMS for CisH30O2 EI-MS [M"] calcd: 278.2245; found: 247.1154 [M-CsHo]*
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Benzo|d][1,3]dioxol-5-ylmethanol

( )

@)
<jij
(0]

\ y
TH NMR (500 MHz, CDCl3) 6 6.86 (s, J= 1.5 Hz, 1H), 6.79 (m, J=17.9, 6.1 Hz, 2H), 5.95
(s,J=1.9 Hz, 2H), 4.57 (s, J = 3.4 Hz, 2H).

13C NMR (126 MHz, CDCl3) 6 147.90, 147.17, 135.00, 120.59, 120.46, 108.30, 108.21,
108.14, 107.98, 107.84, 101.10, 100.97, 65.29, 65.14.

Yield (SFx): 92% white solid.

Yield (18-Crown-6): 83% white solid.

Yield (Syn): 85% white solid.

R¢: 0.33 (40% Et20 in hexanes)

2-((5-Nitropyridin-2-yl)oxy)ethan-1-ol

HO\/\O \N

TH NMR (500 MHz, CDCl3) 6 9.06 (d, J = 2.8 Hz, 1H), 8.38 (dd, J=9.1, 2.9 Hz, 1H), 6.89
(d, J=8.6 Hz, 1H), 4.59 — 4.57 (m, 2H), 4.02 — 3.99 (m, 2H).

13C NMR (126 MHz, CDCl3) 8 167.06, 144.73, 139.81, 134.30, 111.64, 69.46, 69.45, 61.52.
Yield (SFx): 86% white solid.

Yield (18-Crown-6): 79% white solid.

Rt 0.35 (80% EtOAc in hexanes).
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(R)-(-)-1-Octen-3-o0l

H OH

/\W

'TH NMR (500 MHz, CDCl3) 6 5.85 (ddd, J=16.9, 10.4, 6.2 Hz, 1H), 5.20 (dt,J=17.2, 1.4
Hz, 1H), 5.08 (dt, /=10.4, 1.4 Hz, 1H), 4.07 (tdd, J= 7.4, 5.5, 1.3 Hz, 1H), 1.70 — 1.54 (m,
1H), 1.54 — 1.44 (m, 2H), 1.38 (dddd, J = 13.6, 8.5, 6.6, 3.0 Hz, 1H), 1.34 — 1.23 (m, 5H),
0.89 — 0.84 (m, 3H).

13C NMR (126 MHz, CDCl3) 6 141.32, 114.46, 73.24, 36.97, 31.74, 24.99, 22.58, 14.00.
Yield (SFx): 68% colorless oil.

Yield (18-Crown-6): 75% colorless oil.

Rf: 0.35 (25% EtOAc in hexanes).

(2E)-3-Phenyl-2-propen-1-ol

HO\/\/@

'TH NMR (500 MHz, CDCl3) 6 7.39 — 7.35 (m, 2H), 7.31 (dd, J = 8.5, 6.8 Hz, 2H), 7.25 —
7.21 (m, 1H), 6.60 (dt,J=15.9, 1.6 Hz, 1H), 6.35 (dt, J=15.9, 5.8 Hz, 1H), 4.31 (dd, J =
5.7, 1.6 Hz, 2H), 1.77 — 1.66 (m, 1H).

13C NMR (126 MHz, CDCl3) 6 136.71, 131.07, 128.61, 128.55, 127.69, 126.49, 126.438,
63.63.

Yield (SFx): 85% white solid.

Yield (18-Crown-6): 85% white solid.

Rt 0.40 (25% EtOAc in hexanes).
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(£)-3,7-Dimethylocta-2,6-dien-1-ol

/\/\)\/\ OH

TH NMR (500 MHz, CDCl3) 6 5.42 (td, J = 7.2, 1.5 Hz, 1H), 5.08 (dddq, /= 7.2, 5.8, 2.9,
1.5 Hz, 1H), 4.07 (d, J=7.2 Hz, 2H), 2.11 — 2.03 (m, 4H), 1.73 (d, /= 1.3 Hz, 3H), 1.67 (d,
J=1.3Hz, 3H), 1.58 (s, 3H), 1.17 (d, J = 6.1 Hz, 1H).

13C NMR (126 MHz, CDCl3) 6 132.31, 124.47, 124.45, 123.81, 123.80, 58.86, 58.84, 31.95,
31.94, 26.53,26.52, 25.61, 23.37, 17.60.

Yield (SFx): 85% brown oil.

Yield (18-Crown-6): 91% brown oil.

R¢: 0.36 (25% EtOAc in hexanes).

(2E)-3-Methyl-5-phenyl-2-penten-1-ol

I,

'H NMR (500 MHz, CDCl3) § 7.32 — 7.27 (m, 2H), 7.22 — 7.18 (m, 3H), 5.43 (tp, /= 6.9,
1.3 Hz, 1H), 4.16 (d, /= 6.9 Hz, 2H), 2.79 — 2.74 (m, 2H), 2.35 (dd, /= 9.5, 6.7 Hz, 2H),
1.75 (s, 3H), 1.28 — 1.16 (m, 1H).

13C NMR (126 MHz, CDCl3) 6 141.98, 128.37, 128.32, 125.85, 123.90, 59.28, 41.38, 34.34,
16.40.

Yield (SFx): 87% yellow oil.

Yield (18-Crown-6): 92% yellow oil.

R¢: 0.26 (25% EtOAc in hexanes).
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(8)-3,7-Dimethyloct-6-en-1-o0l

\K\/\(\/OH

'TH NMR (500 MHz, CDCl3) § 5.14 — 5.08 (m, 1H), 3.70 (ddddt, /= 17.0, 13.4, 10.1, 7.1,
2.7 Hz, 2H), 2.00 (tq, J = 14.8, 7.5 Hz, 2H), 1.70 (d, /= 3.0 Hz, 3H), 1.62 (d, J = 2.8 Hz,
3H), 1.37 (dtdd, J=21.2, 8.4, 5.1, 2.6 Hz, 3H), 1.21 (tdd, /= 13.6, 6.7, 3.4 Hz, 2H), 0.92
(dd, J=6.5,2.7 Hz, 3H).

13C NMR (126 MHz, CDCl3) 8 131.25, 124.69, 61.20, 39.91, 37.21, 29.17, 25.70, 25.68,
25.45,19.52, 17.63.

Yield (SFx): 88% colorless oil.

Yield (18-Crown-6): 91% colorless oil.

R¢: 0.35 (50% Et20 in hexanes).

3-Phenyl-1-propanol

@MOH

'H NMR (500 MHz, CDCl3) 6 7.31 — 7.27 (m, 2H), 7.21 (d, J= 7.7 Hz, 3H), 3.68 (td, J =
6.5, 1.2 Hz, 2H), 2.74 — 2.69 (m, 2H), 1.90 (dtd, /=9.0, 7.6, 7.0, 5.8 Hz, 2H), 1.55 (d, J =
7.1 Hz, 1H).

13C NMR (126 MHz, CDCl3) 6 141.85, 128.44, 128.41, 128.40, 125.87, 62.23, 62.04, 34.22,
34.16, 32.09.

Yield (SFx): 89% colorless oil.

Yield (18-Crown-6): 94% colorless oil.

R¢: 0.31 (25% EtOAc in hexanes).

48



3-(6-Methyl-2-pyridinyl)-1-propanol

'TH NMR (500 MHz, CDCIl3) 8 7.52 — 7.48 (m, 1H), 6.98 (d, J= 7.7 Hz, 2H), 3.72 (td, J =
5.6,2.8 Hz, 2H), 2.94 (td, /= 6.9, 2.9 Hz, 2H), 2.51 (d, J= 2.8 Hz, 3H), 1.97 (dtq, /= 8.7,
5.9,3.3, 2.5 Hz, 2H).

13C NMR (126 MHz, CDCl3) 6 160.69, 157.30, 137.06, 120.66, 120.02, 62.35, 61.91, 35.63,
31.80, 31.55, 24.07.

Yield (SFx): 91% reddish brown oil.

Yield (18-Crown-6): 90% reddish brown oil.

R¢: 0.25 (65% EtOAc in hexanes).

(2,3-Dimethoxyphenyl)methanol

HO

TH NMR (500 MHz, CDCl3) 6 7.03 (td, J = 7.9, 1.5 Hz, 1H), 6.92 — 6.86 (m, 2H), 4.68 (dd,
J=6.4,1.5Hz, 2H), 3.87 (d,J= 1.4 Hz, 3H), 3.86 (d, /= 1.5 Hz, 3H), 2.18 (tdd, /= 6.3, 4.1,
2.3 Hz, 1H).

13C NMR (126 MHz, CDCl3) 6 152.50, 134.58, 124.18, 120.64, 112.23, 61.56, 60.87, 55.81.
Yield (SFx): 83% white solid.

Yield (18-Crown-6): 93% white solid.

Yield (Syn): 95% white solid.

Rt 0.32 (25% EtOACc in hexanes).
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1-(Diphenylmethyl)-3-azetidinol

HO
T L

TH NMR (600 MHz, CDCl3) 6 7.39 — 7.36 (m, 4H), 7.26 (t,J = 7.7 Hz, 4H), 7.19 — 7.16 (m,
2H), 4.44 (p, J = 5.8 Hz, 1H), 4.33 (s, 1H), 3.54 — 3.51 (m, 2H), 2.90 — 2.87 (m, 2H).

13C NMR (151 MHz, CDCl3) 6 141.87, 128.44, 127.41, 127.16, 78.45, 63.36, 63.34, 62.08,
62.01.

Yield (SFx): 80% white solid.

Yield (18-Crown-6): 78% white solid.

R¢: 0.29 (25% EtOAc in hexanes).

(2-(2-(Piperidin-1-yl)pyrimidin-5-yl)phenyl)methanol

@“r“;
0

TH NMR (500 MHz, CDCl3) 6 8.33 (s, 2H), 7.55 — 7.52 (m, 1H), 7.39 — 7.32 (m, 2H), 7.21 —
7.19 (m, 1H), 4.61 (d, J = 4.3 Hz, 2H), 3.82 — 3.79 (m, 4H), 1.99 (d, /= 5.0 Hz, 1H), 1.68
(dddd, J=8.3, 6.9, 3.9, 2.2 Hz, 2H), 1.64 — 1.59 (m, 4H).

13C NMR (126 MHz, CDCl3) 6 160.83, 148.91, 137.72, 137.10, 129.91, 129.89, 128.72,
127.92, 127.82, 63.34, 44.94, 25.83, 24.93.

Yield (SFx): 89% colorless oil.

Yield (18-Crown-6): 86% colorless oil.

Yield (Syn): 93% colorless oil.

R¢: 0.27 (60% EtOAc in hexanes).

HRMS for Ci6H19ON3 EI-MS [M*] calcd: 269.1528; found: 270.1608 [M+H]*
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[2,2-Dimethyl-3-(2-methyl-1-propen-1-yl)cyclopropyljmethanol

OH

TH NMR (500 MHz, CDCIl3) 8 major isomer 4.87 (1H, d, J 8.1), 3.77 (1H, dd, J 6.6, 11.4),
3.55(1H,dd,J8.5,11.4),1.70 (3H, s,), 1.67 (3H, s,), 1.15 (3H, s), 1.11 (1H, dd, J 5.3, 8.1),
1.06 (3H, s), 0.83 (1H, ddd, J 8.5, 6.6, 5.3); minor isomer 4.96 (1H, d, J 8.2), 3.67 (1H,
dd,J7.6,11.6),3.61 (1H, dd, J 8.0, 11.6), 1.73 (3H, s), 1.70 (3H, s), 1.38 (1H, dd, J 8.2),
1.12 (3H, s), 1.07-1.04 (1H, m) 1.04 (3H, s).

13C NMR (126 MHz, CDCl3) 8 major isomer 133.0, 123.5, 63.5, 35.1, 28.6, 25.6, 22.7, 21.3,
18.3, 15.5; minor isomer 135.0, 119.1, 60.4, 31.0, 28.8, 26.2, 25.8, 22.3, 20.8, 18.4.

Yield (SFx): 94% colorless oil.

Yield (18-Crown-6): 94% colorless oil.

R¢: 0.32 (25% EtOAc in hexanes).
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9 1H NMR 13C NMR Spectra for Products
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