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Abstract

Objective—Therapeutic efficacy of deep brain stimulation (DBS) in both established and 

emerging indications, is highly dependent on accurate lead placement and optimized clinical 

programming. The latter relies on clinicians’ experience to search among available sets of 

stimulation parameters and can be limited by the time constraints of clinical practice. Recent 

innovations in device technology have expanded the number of possible electrode configurations 

and parameter sets available to clinicians, amplifying the challenge of time constraints. We 

hypothesize that patient specific neuroimaging data which can effectively assist the clinical 

programming using automated algorithms.

Approach—This paper introduces the DBS Illumina 3D algorithm as a tool which uses 

patient-specific imaging to find stimulation settings that optimizes activating a target area while 

minimizing the stimulation of areas outside the target that could result in unknown or undesired 

side effects. This approach utilizes preoperative neuroimaging data paired with the postoperative 

reconstruction of lead trajectory to search the available stimulation space and identify optimized 

stimulation parameters. We describe the application of this algorithm in three patients with 

treatment-resistant depression who underwent bilateral implantation of DBS in subcallosal 

cingulate cortex (SCC) and ventral capsule/ventral striatum (VC/VS) using tractography optimized 

targeting with an imaging defined target previously described.
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Main results—Compared to the stimulation settings selected by the clinicians (informed 

by anatomy), stimulation settings produced by the algorithm that achieved similar or greater 

target coverage, produced a significantly smaller stimulation area that spilled outside the target 

(P=0.002).

Significance—The DBS Illumina 3D algorithm is seamlessly integrated with the clinician 

programmer software and effectively and rapidly assists clinicians with the analysis of image 

based anatomy, and provides a starting point for the clinicians to search the highly complex 

stimulation parameter space and arrive at the stimulation settings that optimize activating a target 

area.

Clinical trial registration number:  NCT 03437928

Keywords

DBS; Neuroanatomy; Programming; Treatment resistant depression

Introduction

Deep brain stimulation (DBS) is an established and effective therapy for a diverse array of 

neuropathological conditions ranging from motor to cognitive and mood disorders. Standard 

clinical programming in DBS heavily relies on clinical experience and expertise and is 

often performed based on trial and error. During programming sessions, the clinician usually 

uses a programming device that communicates with the implanted pulse generator (IPG) 

to test many different stimulation settings, including electrode configuration, stimulation 

amplitude, pulse width, frequency and pulse patterns, and examine the patient for clinical 

response and the presence of potential side effects. This search aims to arrive at a 

stimulation setting that maximizes therapeutic benefit while minimizing the side effects 

[1,2]. Newest generations of DBS technology, such as those providing segmented leads 

and multiple independent current control (MICC), further expand the possible stimulation 

settings [3,4]. Although general guidelines for DBS programming are available [5-7], 

testing numerous stimulation settings is time consuming and exhaust clinicians, patients, 

and clinical resources.

Understanding the position of the electrode relative to the neuroanatomy could potentially 

facilitate both targeting and programming [8]. The value of imaging is highlighted by the 

significant increase in reports of equally efficacious outcomes with image-guided “asleep” 

implantation [9-11]. Patient-specific imaging data can also be paired with three-dimensional 

stimulation field models (SFMs) representing the volume of tissue activated (VTA) [12]. 

Pre-operative images are routinely used during DBS targeting and planning procedures. 

Anatomical segmentation of the pre-operative images, along with the reconstruction of the 

lead trajectory using post-operative imaging can provide unique information on the position 

of the lead with respect to the brain anatomy. Access to patient-specific anatomy, combined 

with information about stimulating various brain regions leading to clinical benefit or side 

effects, provides the ability to visualize the interaction of the stimulation models with 

respect to these structures and to potentially maximize the stimulation of beneficial areas 

and minimize the stimulation of regions that may adversely affect the patient. While SFM-
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guided programming is increasingly utilized in clinical practice, there is a need for tools 

which help the clinician optimize stimulation parameters to achieve maximal coverage of the 

targeted region by the estimated SFM.

In this paper we introduce and test a novel inverse programming algorithm, called the DBS 

Illumina 3D Algorithm which automates selection of optimized stimulation parameters for 

overlapping the SFM with a desired anatomical or functional target. The algorithm utilizes 

clinician-selected benefit and side effect regions from relevant anatomy to determine a set of 

suggested electrode configurations and stimulation amplitudes that maximize benefit-region 

coverage while minimizing the stimulation of regions of avoidance that could result in 

unknown or side effects. The user can prioritize both the importance of target region 

coverage versus total SFM volume and target region coverage versus side effect region 

stimulation. The DBS Illumina 3D Algorithm can be run multiple times to refine preferences 

and produce multiple sets of suggested initial stimulation parameters. These parameters can 

be used as a starting point to explore the options for treatment.

The target structure used in this report is from a set of clinician-chosen brain areas in a 

series of patients with treatment-resistant depression (TRD), using a target described in prior 

publications [13]. We compared clinician-chosen stimulation settings to algorithm-based 

settings and assessed the performance of algorithm. We demonstrate that the algorithm is 

fast and effective at placing the SFM to maximally overlap with a target structure, while 

minimizing the stimulation of non-target brain areas that could lead to unknown or undesired 

effects. Moreover, we demonstrate its performance in consistently stimulating the target 

across various pulse widths, emphasizing its utility in effectively searching the stimulation 

space based on the said criteria of maximally stimulating the target.

Materials and Methods

Patients

Individuals who participated in this study were all enrolled in the clinical trial (NCT 

03437928) aimed at using a novel platform for therapy development based on elucidating 

the electrophysiological mechanisms underlying DBS for treatment resistant depression 

(TRD) [14,15]. These individuals were all diagnosed with treatment resistant major 

depressive disorder without psychotic features, and all provided written informed consent 

as approved by the Baylor College of Medicine IRB (H-43036) prior to participation. Details 

of the study participants are described elsewhere [14,15].

Neuroimaging and implant procedure

Details of neuroimaging are provided previously [14,15]. T1-weighted anatomical 

imaging (MPRAGE; 1mm isotropic, TR/TE/TI=2400/2.24/1160; FOV=256; 208 slices; flip 

angle=8°) and Diffusion weighted imaging data (DWI) were acquired prior to surgical 

implantation of DBS. DWI data were acquired (1.5mm isotropic) with two phase encoding 

directions (anterior-to-posterior and posterior-to-anterior), 92 diffusion-sensitizing gradient 

directions, and 7 interleaved b=0 volumes. The diffusion-encoded volumes alternated 
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between b=2000 and b=1000, with TR=3.2s, TE=87ms, TA=5:34 per scan, matrix 

140x140x92, multi-slice acceleration=4 on a Siemens Prisma 3T scanner.

Study participants each underwent stereotactic implantation of four directional DBS leads 

(Cartesia™, Boston Scientific, Valencia, CA, USA), featuring 8 contacts in a 1-3-3-1 

electrode configuration, where two leads were implanted in bilateral subcallosal cingulate 

cortex (SCC) and the other two were implanted in bilateral ventral striatum/ ventral capsule 

(VC/VS). The target area for implantation, here referred to as the tractography- guided 

optimized target (TOT), was derived using pre-operative structural and diffusion weighted 

MR scans [13,16], Figure 1a. Each set of two leads were subcutaneously connected to a 

16-contact Vercise Gevia rechargeable pulse generator (Boston Scientific, Valencia, CA, 

USA). The two pulse generators were implanted in the bilateral infraclavicular pockets of 

the chest wall.

The post-implantation clinical CT scan was acquired on a Philips iCT 256 system, using a 

reconstruction diameter of 250mm, slice thickness of 0.67mm and a space between slices 

of 0.67mm, image size = 512x512, view size 1664x1236. Post-implantation CT scan was 

loaded in Brainlab Elements and co-registered to the preoperative structural scans using 

Image fusion module (Brainlab, Munich, Germany). The trajectory and orientation of each 

DBS lead was automatically extracted using the ‘Lead Localization’ module and was 

subsequently verified by visual inspection (Brainlab, Munich, Germany), Figure 1a [17]. 

Anatomical structures were defined with FSL (please see “Target area for Stimulation” 

below). The anatomical volumes and DBS lead trajectories were then transferred to 

Vercise Neural Navigator Software (Boston Scientific, Valencia, CA, USA) for clinical 

programming of the stimulation. The neural navigator enabled traditional manual adjustment 

to the DBS parameter settings, as well as experimental access to the Illumina algorithms for 

target-based optimization programming, Figure 1b (see next section for more details).

Stimulation Field modeling

We use the term “fractionalization” to refer to the unique arrangement of current driven to 

each electrode, expressed as a percentage (fraction) of the total current. A fractionalization 

can include anodes (+), cathodes (−), and combinations of both polarities (Figure 1C, Table 

1). To generate the stimulation field model (SFM) associated with each fractionalization, 

electric fields resulting from the stimulation setting are constructed as finite element models 

(FEM) using COMSOL Multiphysics software (COMSOL Inc., Burlington, MA, USA). 

The model consists of an insulating lead body having conducting electrodes, surrounded by 

an encapsulation layer, inside a cylinder of neural tissue. The neural tissue is modeled as 

isotropic and homogenous with conductivity of .2 S/m, and the encapsulation layer with a 

lower conductivity of .1 S/m. A multi-resolute mesh is created to encompass both the lead 

body and the encapsulation layer, with highest resolution at electrode-tissue interface and 

higher resolution in a region of interest (ROI) surrounding the electrode array versus the 

remaining volume. The scalar potentials at the mesh nodes are calculated and the model is 

solved once per electrode at unit current (1 mA).

The electric field results from the RoI are then exported from COMSOL and interpolated 

onto a regular grid of model axons that surround the DBS lead at 0.5 mm spacing (221-
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compartment, 21-node MRG myelinated axons of length of 10 mm and diameter of 5.7 

μm [18]). The model consists of axons which are oriented orthogonally relative to the 

lead body and have identical behavior to a given stimulus. The response to each stimulus 

is computed by temporally scaling the potentials along the axon compartments using a 

waveform modeled on stimulator recordings to estimate the threshold current (‘Ith’, in mA) 

at which each axon in the grid fires an action potential from quiescence (NEURON, Yale, 

Version 7.3) [19]. A machine learning algorithm (Bootstrap Aggregated Random Forest) 

which takes features of the axon voltage profile as input and estimates axon’s response is 

trained on over 100 million axon simulations.

Basis files and the trained predictor are included in the Guide XT and Vercise Neural 

Navigator programmer software and can be integrated with the anatomical model of the 

patient. The output current amplitude thresholds for the axon models are iso-surfaced at 

the selected stimulation current amplitude. The resulting surface is displayed as the SFM. 

Exemplar SFM from Vercise Neural Navigator software is shown in Figure 1b.

Target Area for Stimulation

Subject-specific TOT area within SCCwas defined in a semi-automated fashion, using 

methods previously described [13,16]. First, FSL probabilistic tractography [20] was 

performed to delineate the connectivity of SCC with patient-specific masks (ventral 

striatum (VS), uncinate fasciculus (UCF), anterior cingulate cortex (ACC) and bilateral 

medial prefrontal cortex (mFPC)) per hemisphere. A curvature threshold of 0.2 was used 

(approximately 80 degrees) for stopping streamline trajectories. The default 0.5mm voxel 

step length, 5000 samples and 2000 steps were used. Fibers with volume of fraction 

lower than 0.01 were discarded during tractography using the default value subsidiary fiber 

volume threshold. To avoid artifactual loops, streamlines that loop back on themselves were 

discarded. Using the -opd and -os2t flags 3D image files were created that contained the 

number of streamlines that reached each target voxel and seed segmentation maps to each 

target were derived where the value of each voxel corresponded to the number of streamlines 

seeded from that voxel reaching the target mask divided by the total number of streamlines 

(probability maps). Then the SCC probability maps for each target were smoothed using a 

Gaussian kernel (2 mm), multiplied on a voxel-by-voxel basis and then a high pass filter was 

applied (via thresholding) to include only voxels with probability higher than 10% of the 

maximum joint probability value.

Considering the activated tissue area surrounding the DBS electrode, the filtering of 2mm 

was considered the optimal option to simulate the area within SCC/VCVS that will present 

strong connectivity to each target in case of stimulation. Although the performed filtering 

approach might reduce the variability seen within the segmentation map between the 

voxels with low and high connectivity value, it highlights the areas within SCC/VCVS 

maps with higher probability of connectivity to each target. Finally, TOT within SCC was 

defined as the subregion with the highest joint probability of connectivity with all target 

areas. The same approach was followed to define the TOT within VCVS area using as 

targets the dorsolateral prefrontal cortex, nucleus accumbens, amygdala, medial and lateral 

orbitofrontal cortex.
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The DBS Illumina 3D Algorithm

The DBS Illumina 3D Algorithm (Boston Scientific, Valencia, CA USA) uses a metric 

optimization algorithm Bound Optimization by Quadratic Approximation (BOBQYA) [21]. 

The goal of the algorithm is to maximize stimulation of a target volume while staying within 

clinician-specified constraints. The algorithm incorporates the cost of increasing the size of 

the SFM, the cost of overlapping with avoidance volumes, including possible side effect 

regions, as well as stimulation safety limits.

The cost function, or metric, for the optimizer, for each fractionalization, is a weighted 

summation of the stimulated volumes for each structure (one target and one or more 

avoidance regions) and the SFM (background volume). The Target structure has a positive 

weight, and the avoidance structures and background have negative weights. For each 

fractionalization, the highest possible metric value is calculated, and the corresponding 

amplitude is determined. The clinician can specify one target region, zero or more avoidance 

region(s), the priority of not stimulating the avoidance regions (controlled by a slider to set 

‘avoidance ratio’), and prioritization of reduced SFM volume (controlled by a slider to set 

the ‘background ratio’). The equation to calculate the optimized metric is therefore:

m = ∑ vtarget − (vavidance ∗ avoidance ratio) − (vSFM ∗ background ratio)

Where:

m = metric value

vtarget = stimulated target volume in mm3

vavoidance = stimulated avoidance volume in mm3

vSFM = total SFM volume in mm3

In summary, the metric is the sum of the stimulated target volume (in mm3) minus the total 

volume of stimulated avoidance region (in mm3), weighted by the avoidance ratio, minus 

the total volume of background stimulation (in mm3), weighted by the background ratio. 

Where the avoidance ratio is the ratio of the cost (reduction in metric value) of stimulating 

avoidance region to the benefit (increase in metric value) of stimulating target region, and 

the background ratio is the ratio of the cost of stimulating background volume to the benefit 

of stimulating target region. The stimulated background volume is the same as the volume of 

the SFM.

The optimization algorithm is run once for each of two Virtual Electrode (see below) types 

(one equivalent to the ring electrodes on the lead, and one equivalent to the segmented 

electrodes on the lead, but with arbitrary placement and rotation).First, the optimizer is run 

using the ring virtual electrode, and a best solution is determined. If the lead is directional, 

the optimizer is run using the directional virtual electrode. As the optimization algorithm 

tests each virtual electrode’s position, the position is converted to a fractionalization on the 

real electrodes of the lead. For each fractionalization, the best metric among the possible 
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amplitudes is compared to the metric of the current best solution. If the new metric is better 

than the previous best metric, the new metric, virtual electrode type, position, and derived 

amplitude are stored as the new best solution. When the optimization algorithm has met the 

stop conditions the best solution is returned and displayed for the clinician.

A Virtual Electrode is a ring (1.5 mm height and 360 degrees around the lead) or directional 

(1.5 mm height and 90 degrees around the lead) electrode that, for the calculation of the 

electrode’s voltage field, is modeled as the only electrode on a lead of infinite length with 

the same nominal lead diameter and material as a real lead. The Virtual Electrode’s voltage 

field is rotated around the axis of the lead and translated along the axis of the lead to model 

the placement of the virtual electrode at some arbitrary location along and around the active 

length of the lead. Least-squares fitting is used to determine the fractionalization on the real 

electrodes that would produce the best fit between the voltage field generated by the real 

electrodes on the real lead and the voltage field of the virtual electrode placed at the selected 

location.

Selection of Stimulation Parameters

The electrical stimulation was delivered as biphasic pulses of with passive recharge and at 

the frequency of 130 Hz. As part of the study protocol, SFMs from a series of pre-identified 

stimulation configurations were compared to find thosethat would maximally stimulate the 

target area. These pre-identified stimulation sets included four ring-mode configurations 

and 3 vertically stacked segments (Figure 1c), for each of the three pulse-width (PW) 

values of 50, 100 and 180 μs (total of 21 settings). Herein these sets are referred to as 

Study Sets. Per protocol, for each target, clinicians [NP and SS] selected a final setting 

across all available Study Sets, based on the maximal volume of overlap with the target 

area (for more information on how these volumes were calculated please refer to the next 

section on statistical analysis). These final sets which we refer to as Image Guided Sets, 

represent anatomically-informed clinician-selected parameter sets that were subsequently 

used to program the patient as per study protocol (Table 1).

We subsequently used the DBS Illumina 3D Algorithm at each pulse width (50, 100 and 

180 μs) to identify solutions for different selections of optimization cost, which we call here 

the Illumina Sets. In this application, the DBS Illumina 3D Algorithm only had one target 

area (i.e., TOT area corresponding to that lead) specified while no avoidance regions were 

selected.

Statistical analysis

For each stimulation setting in the Study Sets, Image Guided Sets, and Illumina Sets, we 

calculated the volume of resulting SFM by voxelizing the SFM isosurface and finding the 

number of voxels within the voxelized SFM, multiplied by the single voxel volume (1 mm3). 

The volume of overlap between the SFM and the target area, which is referred to as Fill 

Volume was similarly calculated by identifying the number of voxels that were common 

to both the SFM and the target area, multiplied by the single voxel volume (1 mm3). This 

volume was then normalized to the total target volume and converted to percentage to define 

% stimulated target volume. We also calculated the total volume of each SFM that spilled 
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outside the target area (i.e., Spill Volume) by subtracting the Fill Volume from the total 

volume of the SFM. These parameters were then shared with the clinicians (NP and SS) who 

compared various stimulation settings with respect to the objective criteria of maximally 

activating the brain target and selected the Image Guided sets.

Statistically significant difference in Spill volume between Image guided Sets and Illumina 

Sets producing closest non-smaller target coverage was assessed using a non-parametric 

paired sample test (Wilcoxon signed rank test), P-values smaller than 0.5 were determined to 

be statistically significant. This specific comparison was motivated by the selection criteria 

for generation of Image Guided sets, to be maximally stimulating the target area.

Total charge deposited to the tissue per stimulation pulse was calculated by multiplying 

stimulation amplitude and pulse-width. Total charge was used to establish decision guiding 

criteria for selection of stimulation parameters across various combinations.

Results

Stimulation settings were evaluated in four targets in each of the three individuals enrolled 

in this study (Table 1). After performing image processing steps described in the methods 

sections, brain targets (i.e., TOT areas) and lead trajectories were defined for each lead and 

Study sets and Illumina sets were generated according to the study protocol.

We first generated SFMs from Illumina sets, Study sets, and Image Guided sets to identify 

which group provided optimized target coverage (i.e., Fill) versus spill volume. Example in 

Figure 2a shows a sample from Study sets from Left SCC in TRD003 (top panel, highlighted 

by a red filled square in Figure 2b) and a comparable sample from Illumina sets (bottom 

panel, highlighted by filled circle in Figure 2b). Image Guided sets were selected from Study 

sets as those providing maximal volume of target coverage.

DBS Illumina 3D Algorithm allowed the user to move a slider to adjust the Background 

Ratio which establishes the cost of stimulating the target area versus stimulating the area 

outside the target (Color bar in Figure 2b). Hence, a series of Illumina sets were generated 

for each pulsewidth. For each target, one single Illumina Set, that provided closest non-

smaller Fill Volume to its corresponding Image Guided set was selected to be compared 

against Image Guided sets (Table 1). We then performed a series of comparisons between 

these groups of settings and present our findings below

The DBS Illumina 3D algorithm found stimulation settings with optimized target coverage

Detailed comparison across Illumina sets for different values of Background Ratio and 

all the study sets, indicated that for a given Spill Volume, across three pulse-widths, the 

algorithm identifies solutions with Fill Volumes at least on par but usually greater that the 

largest fill volumes seen with the Study set (Figure 2b). Conversely, for similar values of 

target coverage (% stimulated target volume), SFMs generated from Illumina sets, provide at 

least the same or more often smaller Spill Volume compared to Study sets. These findings 

were consistently observed across all targets in all study participants. Statistical comparison 

between Image Guided Set, which represent what clinicians selected among Study sets to 
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maximize target coverage, and their matching Illumina Set (i.e., those providing closest 

non-smaller Fill Volume), indicated that Illumina Sets provided significantly smaller Spill 

Volume (Wilcoxon signed rank test, P= 0.002, Figure 2C).

Illumina sets showed similar target coverage vs spill volume across various pulse widths

Flexibility of DBS Illumina 3D algorithm allows for identifying various stimulation sets 

per pulsewidth via selecting different values for Background Ratio (Color bar in Figure 

2b). In all the 12 targets, for each Background ratio, the stimulation sets offered similar 

target coverage across three PWs of 50, 100 and 180 μs (Figure 2b). To create a better 

understanding of this behavior, we expanded the selection of PW to include values between 

20 and 180 μs (at 10 μs steps) and found corresponding Illumina results. We then calculated 

% Stimulated target Volume for all the resulting stimulation sets (Figure 3a). When 

collapsed across the PW dimension, we confirmed that for every selected Background 

Ratio, variability in % Stimulated target Volume is small (standard deviation: 0.28- 3.1 % 

Stimulated Target Volume) across all PWs (between 20 and 180 μs), Figure 2b.

Given the consistent behavior of the DBS Illumina 3D algorithm in providing similar target 

coverage vs Spill profile across various pulse widths, it is important to provide potential 

guidance to the user clinicians to assist with selection of appropriate background ratio. 

This selection can potentially be informed by gaining greater quantitative understanding 

of the adverse effects related to stimulation of avoidance regions. Other factors such as 

efficiency of stimulation can and should also be considered. For example, holding constant 

the amount of total energy or charge delivered per pulse, which affects both the rate of 

battery usage and the total volume of the produced SFM, can be used as a technique for 

making comparisons across different combinations of DBS parameters [22]. To provide an 

example, we have performed some basic analysis to create SFM families that provide a 

constant charge deposited to the tissue for various selections of PW and amplitude (Figure 

4).

Discussion

DBS has become an established therapy for the management of movement disorders (such 

as Parkinson disease, essential tremor, and dystonia) and is being actively investigated for 

emerging new indications such as treatment resistant depression, and other neuropsychiatric 

indications. Effective symptom control for both established and emerging applications is 

directly related to identifying the right brain area to implant the lead and subsequently 

to program the lead to optimally stimulate the designated target area. Once DBS lead 

implantation has been finalized, programming adjustment is the only factor that could 

affect the therapy, highlighting the crucial role of programming, especially when the DBS 

electrodes are sub optimally placed at the border of the intended target structure.

Over the past few years, there has been an emerging interest to develop tools that use 

neuroimaging data to assist with identification of stimulation settings that could assist with 

DBS programming [23,24]. Nevertheless, these advances have been mostly restricted to 

highly specialized centers with a strong computational background and are not approved for 

clinical use. Efforts are being undertaken to develop user-friendly and clinically validated 
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software which may foster a more refined search strategy for identifying stimulation settings 

that would optimize activating a pre-specified target area.

Here we have introduced and characterized the DBS Illumina 3D Algorithm as a novel 

inverse programming algorithm which automates the search with providing solutions in 

a matter of seconds, and generally out-performs human experts at matching stimulation 

settings to patient-specific anatomical targets based on imaging data. Our findings suggest 

that the DBS Illumina 3D Algorithm can be effectively utilized to assist with identifying 

stimulation parameters that optimizes activating a target volume with controlled spill 

outside the target. The algorithm provided consistent performance across the wide range of 

stimulation pulse widths including those used in routine clinical practice while maintaining 

flexibility based on the user’s clinical judgment and needs, by weighting stimulation of a 

target area versus stimulating outside the target area (background ratio) to rapidly provide 

a series of initial stimulation settings that can be subsequently evaluated by clinical tests. 

Regarding the algorithm design, the idea of trading off between stimulating the target and 

stimulating avoidance volumes is based on the observation that fully stimulating the target 

may often by impossible without some activation of other structures, including avoidance 

volumes. Therefore, a trade-off is required when deciding whether to increase the volume 

of tissue activation—an increase in VTA will often increase both the activation of target 

volume and the activation of undesired areas, leaving the clinician with the need to control 

the trade-off. It is possible that volumes that are described may require a threshold of overlap 

with the stimulation field, and that the decision of how much overlap is allowed should be 

left to the clinician’s judgement.

Our philosophy in designing the objective function used in the DBS Illumina 3D algorithm 

is informed by previous work [25,26] roughly the same as that used in Pena et al, 2017, with 

SFM volume being a surrogate for power, and the optimizer in Illumina DBS maximizing 

the metric, as opposed to minimizing it [27]. More plainly, Pena et al allow the stimulation 

of avoidance region. The ratio of acceptable avoidance volume stimulation to target volume 

stimulation is hard coded to 2.0, meaning stimulating an additional 2 units in the target 

allows the stimulation of one unit in the avoidance region, and the user has no method of 

specifying some other ratio. Our philosophy behind allowing the user to select how sensitive 

they want the algorithm to be regarding increasing SFM size and Avoidance region overlap 

is one of pragmatism. While specific values could have been chosen for the algorithm, 

our belief is that the clinician will have preferences and gain experience allowing them to 

determine what they think is best, and that this is better than preselecting a set of hard coded 

ratios.

Although further work is needed to determine whether this technique results in providing 

superior therapeutic benefits for DBS patients, we believe the DBS Illumina 3D 

Algorithm holds promise to facilitate image-guided selection of stimulation parameters 

and significantly reduce the time and energy required for trial and error based clinical 

testing. Our current work focused on application of the DBS Illumina 3D Algorithm in 

newly proposed targets that are being actively investigated for DBS in treatment resistant 

depression, as an example. However, the technique is agnostic to the target, if it can be 

defined radiographically relative to DBS lead and contact positions. We purposefully avoid 
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defining a subthalamic or pallidal target of stimulation, as that in and of itself remains 

controversial. More specifically, different research groups have different ways to define the 

most clinically appropriate STN/GPi based target areas. Therefore, our intent was to focus 

on the optimization of stimulation parameters based on any target of interest.

Limitations

Our work focuses on application of the DBS Illumina 3D Algorithm in newly proposed 

targets that are being actively investigated for DBS in treatment resistant depression, as an 

example. Given the nature of this study to interrogate tractography optimized targets (TOTs) 

in TRD, the focus of study was to maximally activate the target area while avoiding the 

stimulation of areas outside the target. Future work is needed to explore application of DBS 

Illumina 3D algorithm in more complex scenarios incorporating specific avoidance areas.

The technique used in this study via DBS Illumina 3D algorithm is agnostic to the target, 

if it can be defined radiographically relative to DBS lead and contact positions. We 

purposefully avoid defining a subthalamic or pallidal target of stimulation, as that in and 

of itself remains controversial. More specifically, different research groups have different 

ways to define the most clinically appropriate STN/GPi based target areas. Therefore, our 

intent was to focus on the optimization of stimulation parameters based on any target of 

interest.

We further acknowledge that the usage of homogenous and isotropic neural tissue as 

well as selection of a single fiber diameter neuron in our SFM modeling may limit the 

DBS Illumina 3D Algorithm in providing final and anatomy specific stimulation solutions. 

Although anatomy-specific modeling will be more sensitive and certainly improve the 

accuracy of personalized treatment optimization; Recognizing these limitations, our goal 

in creating the DBS Illumina 3D algorithm was to facilitate searching the large and complex 

treatment space, which becomes increasingly important as newer generations of stimulation 

systems become available (systems capable of controlling the fractionalization at very fine 

resolutions and with mixed polarity, as well as DBS leads with complex segmented and 

directional designs). The DBS Illumina 3D algorithm aims to provide anatomically informed 

“starting” point. This optimized starting solution needs to be further refined, most likely 

accompanied by direct clinical evaluation of the patient.

Conclusion

Algorithm-guided clinical programming of DBS that uses relative position of the electrodes 

with respect to anatomical or functional neuroimaging targets may be an effective approach 

to replace traditional monopolar review. Seamless integration of this algorithm with the DBS 

surgical workflow (from targeting to programming) can enable larger group of clinicians 

with variable experience and expertise in neuroimaging to rapidly Interrogate the large 

space of possible stimulation settings and reduce time needed for programming. Although 

establishing therapeutic efficacy of this set of brain targets and their application in TRD 

has not been the focus of this work, we argue that this application could potentially lay the 

ground work for other novel indications to facilitate testing of imaging-informed selection 

Malekmohammadi et al. Page 11

J Neural Eng. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of stimulation parameters and enable interrogation of different targeting strategies, including 

those informed by aggregation of prior information derived from group SFM maps, or 

functional or structural connectivity patterns.
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Figure 1- 
(A) Brain targets and reconstructed lead trajectories (B)Snapshot from Vercise Neural 

Navigator™ software showing an exemplary program and its corresponding SFM with 

respect to anatomy (target structure, TOT on LSCC (left subcallosal cingulate cortex) is 

shown in purple)(C) Stimulation configurations defined in the study protocol (i.e., Study 

sets), including four rings and three vertical stacks.
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Figure 2- 
Study sets and Illumina sets. (A) Left panel shows exemplary stimulation setting from one 

of the Study sets at PW = 100 μS that was selected as the Image Guided set (highlighted 

in by filled red square in panel B) and how a matching output form Illumina sets (right 

panel) produces more complex current fractionalization (including multipolar stimulation) 

to optimize filling the target area (i.e., for similar or greater target coverage, produces less 

Spill Volume, see panel (B)). SFM is shown in red and brain target area shown in purple (left 

SCC). (B) a series of SFMs generated from Illumina (different symbols: ×, ○ and Δ for PW 

= 50, 100 and 180 μS respectively) and corresponding series of SFMs generated from Study 

sets (symbol: □, different colors used for PW = 50, 100 and 180 μS) are compared based on 

Spill volume vs % Stimulated target Volume. As shown by arrows outside the graph, larger 

% Stimulated Target Volume and Smaller Spill volume are desired. (C) Boxplots comparing 

Spill Volume between Image Guided sets and their paired Illumina sets, identified by 

matching the % stimulated target volume, such that Illumina Sets were providing closest 

non-smaller target coverage to the Image Guided sets. Paired sample Wilcoxon signed rank 

test indicated a significant difference between the two group (P = 0.002). Illumina results 

provided significantly smaller Spill Volume.
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Figure 3- 
DBS Illumina 3D algorithm shows consistent behavior across various selections of PW and 

background Ratios (data presented from the same target as presented in Figure 2. TRD003 

and LSCC (A) Stimulated target volume for Illumina results generated for various PW 

and background ratios. (B) Once the data is collapsed across the PW dimension, Illumina 

produces near similar % stimulated target volume for different selections of Background 

ratio.
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Figure 4 - 
Example SFM volume for a fixed fractionalization (E1: 100%) as a function of stimulation 

amplitude (mA) and pulse width (PW, μs). Solid Black and dashed gray contours (i.e., 

isolines) indicate constant volume and constant total charge produced by these SFMs.
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