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ABSTRACT OF THE DISSERTATION 

 

Towards more biologically plausible computational models of the cerebellum 

with emphasis on the molecular layer interneurons 

 

by 

 

William Charles Lennon, Jr. 

 

Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics 

and Control) 

 

University of California, San Diego, 2015 

 

Professor Robert Hecht-Nielsen, Chair 

Professor Clark Guest, Co-Chair 

 

We join the efforts of over a century of modern scientific inquiry to  

understand what the cerebellum does and how the cerebellum implements its 

function. A myriad of anatomical and physiological facts about the cerebellum 

exist and have been woven into theories of cerebellar computation, but most of 
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these theories ignore the role of a certain neuron type in the cerebellar cortex -

- the molecular layer interneurons (MLIs). In this body of work, we propose 

mathematical models for the anatomy, physiology and synaptic plasticity of 

these neurons in order to characterize their role in cerebellar function. 

First, we introduce a simple model of the physiology of the MLI which 

exhibits spontaneous firing as observed in vivo. Further, we model the 

synaptic connectivity of MLIs with other MLIs and with Purkinje cells (PKJs). 

We validate the model by simulating the network of MLIs and PKJs and show 

that it reproduces the irregular firing activity of MLIs and PKJs as observed 

in vitro. 

Second, we introduce a phenomenological model of plasticity at parallel 

fiber (PF) - MLI synapses. We show via computer simulation that this model 

reproduces the changes in synaptic efficacy observed in vitro under a number 

of experimental protocols. Further, we hypothesize what biological mechanisms 

govern plasticity at this synapse and give rise to the model we introduce. 

Finally, we show analytically that the model of plasticity at PF-MLI 

synapses can implement temporal difference learning at these synapses under 

certain assumptions about the function of cerebellar cortical circuitry. This 

result supports the idea that reinforcement learning is the method of learning 

used by the cerebellum. 
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Chapter 1 Introduction 

1.1 Why study the cerebellum? 

The cerebellum is a mysterious brain structure. Despite being the target 

of intense scientific inquiry for over a century (Glickstein et al., 2009), we still 

cannot answer the basic question, “What does the cerebellum do?”. In contrast, 

brain structures like the motor cortex seem to have clearer answers to this 

question: to voluntarily control movement (Kandel, 2013). To illustrate this, 

consider the difference in the effects of an acute lesion (e.g. by stroke) to the 

motor cortex versus the cerebellar cortex (let’s assume we lesion the respective 

sub-regions in both structures involved in arm movements). When the motor 

cortex is damaged, the individual experiences flaccid paralysis, in addition to 

other symptoms (Fulton, 1935). In contrast, a lesion to the cerebellum leaves 

the individual with the ability to move, but the movements are imprecise, 

uncoordinated, and require tremendous mental effort to achieve (Kandel, 

2013). So then, what is the cerebellum doing to make these movements 

smooth, precise and effortless? Even stranger, there are rare cases of 

individuals who are born without a cerebellum and lead relatively normal lives 

(Romaniello and Borgatti, 2013).  

All of this is not to say that the cerebellum is exclusively involved in 

motor function. Over the last two decades, many lines of evidence have led to 

the consensus that the cerebellum is also involved in cognitive function (Koziol 

et al., 2014). Lesions to the regions of the cerebellum involved in cognitive 

function in humans lead to seemingly analogous deficits in cognition as in 



2 
 

 
 

motor function, termed dysmetria of thought (Schmahmann, 2004). The fact 

that the circuitry is stereotyped throughout the entire cerebellar cortex implies 

that whatever the cerebellum is doing for movement, it is doing the same for 

cognition.  

Despite not having a unified understanding of cerebellar function, our 

knowledge of the anatomy and physiology of this structure is rich. In addition, 

new subtleties are being learned as a result of experimental techniques such as 

optogenetics. Such detailed knowledge of the cerebellar circuitry lends itself 

well to theoretical and computational investigation of cerebellar function. Not 

surprisingly, shortly after the first blueprint-like diagrams of cerebellar circuits 

were published (Eccles et al., 1967) the first theoretical and mathematical 

models of cerebellar computation emerged (Grossberg, 1969;Marr, 1969;Albus, 

1971). 

1.2 Two fundamental questions 

We have already explicitly stated one important question, “What does 

the cerebellum do?”. The other, which we have stated implicitly is, “How does 

the cerebellum do this?”. Or, more formally, “What function does the 

cerebellum compute and how does it implement this computation in neuronal 

circuitry?”. The former is a top-down inquiry from the level of behavior while 

the latter is bottom-up from the level of neurons and synapses. Our 

understanding of the cerebellum must also come from understanding the 

context in which it operates. That is, by understanding what the role of the 

cerebellum is in the system which it co-exists -- the set of brain structures 

which it co-evolved to support and be supported by -- in order to achieve 
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behavioral success for the organism. Fully understanding how the cerebellum 

works will likely require all of these approaches. The approach taken for the 

research presented in this dissertation is motivated by in vitro, in vivo, and 

behavioral results but constructs a bottom-up model to explain cerebellar 

function. 

1.3 The role of the molecular layer interneurons 

The molecular layer interneurons (MLIs) are a type of inhibitory 

interneuron found in the cerebellar cortex that historically have been 

overlooked by theorists and experimentalists in models of cerebellar function. 

The MLIs provide feedforward inhibition onto the historically recognized 

"principal" neuron of the cerebellar cortex -- the Purkinje cell (PKJ) -- which 

provides the sole output of the cerebellar cortex. Because the PKJs have such 

a remarkable morphology, an immense number of synaptic inputs from parallel 

fibers (PFs), and form the sole output of the cerebellar cortex, they have been 

the focus of experimental and theoretical cerebellar neuroscience for the last 

century. The MLIs were relegated to the role of providing "sculpting" and 

"global" inhibition to prevent runaway PKJ excitation, a decidedly second-

class role in neural systems.  

Recent evidence (reviewed in Chapter 2) suggests a more significant 

role for these neurons in cerebellar function. A number of clues led to the idea 

that these neurons have a more sophisticated role in cerebellar function. First, 

PKJs fire spontaneously in absence of all synaptic input (Hausser and Clark, 

1997), so observed decreases in PKJ firing require inhibition provided by MLIs 

(Miyashita and Nagao, 1984;Jirenhed et al., 2007). Second, plasticity exists at 

synapses formed by and onto MLIs, so feedforward inhibition can be learned 
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(Gao et al., 2012). Finally, genetically modified mice lacking MLI-PKJ 

feedforward inhibition exhibit significant motor learning deficits (Wulff et al., 

2009). The accumulation of this evidence and the holes in previous theories of 

cerebellar function are what motivated the research in this dissertation. 

Namely, that by understanding the role of MLIs and including them in 

mechanistic explanations of how the cerebellum learns and operates, we would 

be able to explain more experimental and behavioral data. 

1.4 The role of theoretical and computational neuroscience 

The role of theoretical neuroscience is to distil experimental results into 

theoretical models of a neural system which correctly predicts new, unknown 

experimental results. The goal of computational neuroscience is to describe the 

function of neural systems mathematically and carry out computer simulations 

of these models which reproduce existing experimental results and predict new, 

untested experimental results. A computational model is "good" when it is as 

simple as possible, accounts for all of the extant experimental results, and 

consistently predicts new results. Essentially, the role of these disciplines is to 

compress the volume of neuroscience facts into the most minimal form and 

provide experimentalists with avenues for research with a high probability of 

yielding new insight. 

1.5 Summary and Contributions 

Chapter 2 introduces background material about cerebellar anatomy, 

physiology and functional circuitry of the cerebellum which emphasizes the 

role of the MLIs. 
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Chapter 3 presents a computational model of the MLI and the network 

formed by spontaneously active MLIs and Purkinje cells connected according 

to known anatomy that exhibits activity similar to that observed in vitro. 

Chapter 4 presents a theory of learning at parallel fiber - MLI synapses 

and carries out a number of computer simulations which show this model 

reproduces experimental evidence of plasticity observed in vitro. 

Chapter 5 extends the work of Chapter 4 and shows that this model of 

plasticity at parallel fiber - MLI synapses implements a form of learning known 

as temporal difference learning. 

Chapter 6 concludes the dissertation and presents promising 

opportunities for future research on the molecular layer interneurons. 
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Chapter 2 Background and 

Motivation: Anatomy and 

Physiology of the Cerebellum 

This chapter introduces the essential anatomy and physiology of the 

cerebellum to provide context to our study of the molecular layer interneurons 

(MLIs). Additionally, this chapter describes the "trail of breadcrumbs" which 

led to the fundamental research question proposed in this dissertation, "What 

is the role of the molecular layer interneurons?". While this chapter will briefly 

review the gross anatomy, microscopic anatomy and physiology, it is no 

substitute for an excellent introductory textbook chapter on the cerebellum 

(e.g. Principles of Neural Science, 5th edition). 

In the most basic sense, a neural system is composed of individual 

processing units (neurons, glia, etc.) which are connected in some way to 

influence each other (synapses, gap junctions, etc.) whose state dynamically 

changes in response to input stimuli. The state of all or some subset of the 

processing units can then be used as output. E.g. a generic neural system takes 

sensory information as input and generates motor control signals as output. 

Neuroanatomy is the "blue-print" or "wiring diagram" describing the structure 

and connectivity of neural systems, and neurophysiology is the set of "rules" 

which govern the state dynamics of the constituents of the neural system 

(neurons, synapses, etc). Neural systems change their response to the same 

input stimuli via learning, typically by synaptic plasticity -- changes in the 
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efficacy of synapses. The cerebellum is ideal for studying neural systems 

because its anatomy is relatively simple and well-known (but not exhaustively 

known), stereotyped throughout the entire cerebellum (Llinas et al., 2004) and 

conserved across vertebrates (Butler and Hodos, 2005). Further, we know a 

tremendous amount about cerebellar neurophysiology and are constantly 

learning more about the synaptic plasticity.  

 
Figure 2.1 The gross anatomy of the human brain with the cerebellum depicted as a 
foliated structure situated caudal to the cerebrum and posterior to the brain stem. 
Also denoted are the three fiber pathways to/from the cerebellum -- the superior, 
middle and inferior peduncles. "Gray677" from Gray's Anatomy. Licensed under 
Public Domain via Wikimedia Commons. 

2.1 Gross Anatomy 

The cerebellar cortex is a grossly visible foliated structure composed of 

two hemispheres (Figure 2.1), while other parts of the cerebellum (discussed 

below) are embedded in the interior of the cerebellum or reside within the 

brainstem and require dissection of the neural tissue to observe (Figure 2.2). 
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One remarkable property about the cerebellum is that the neuronal circuitry is 

stereotyped throughout the entire cerebellar cortex; that is, the same pattern 

of connections among neuron types is observed in any part of the cerebellar 

cortex (described in the next section). Despite this, regions of the cerebellar 

cortex (and corresponding components in the brain stem) are functionally 

specialized (Kandel, 2013). E.g. the medial portion, referred to as the 

spinocerebellum, is involved in body and limb movement, while the lateral 

portions of the hemispheres known as the cerebrocerebellum appear to be 

involved in cognitive functions and motor planning. Table 2.1 shows the gross 

anatomical regions and their connections. There are several other regions 

which won’t be mentioned. Since the anatomy is uniform across regions, the 

input and output connections determine their function. For the remainder of 

the dissertation, unless otherwise mentioned, we will consider only the 

generalized circuitry of the cerebellum to investigate its function. We refer to 

this a stereotypical microcircuit. 
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Figure 2.2 A midsagittal section of the cerebellum depicting the components that are 
not grossly visible including the dentate nucleus and inferior olive. "Gray707". 
Licensed under Public Domain via Wikimedia Commons. 

 

Table 2.1 Major inputs and outputs to the cerebellum 

Functional Subdivision Inputs Outputs 

Vestibulocerebellum Semicircular canals, 
vestibular nuclei, 
superior colliculus, 
visual cortex (via 
pontine nuclei) 

vestibular nuclei 

Spinocerebellum spinocerebellar tract,  cerebral cortex, brain 
stem 

Cerebrocerebellum Cerebral cortex, 
especially parietal lobe 
(via pontine nuclei) 

primary motor cortex 
and premotor cortex via 
ventrolateral thalamus, 
red nucleus  

 

  



10 
 

 
 

The cerebellum is composed of three main components: the cerebellar 

cortex (CC), deep cerebellar nuclei/vestibular nuclei (DCN/VN) and inferior 

olive (IO) (Figures 2.2 & 2.3). The cortex is the largest structure, being grossly 

visible without dissection into the neural tissue, situated caudal to the 

occipital lobe and posterior to the brain stem. The DCN and IO are embedded 

within the brainstem and only visible upon dissection. Together, these 

structures form the basic circuit of the cerebellum. Input information (e.g. 

sensory, cognitive state, etc.) to the cerebellum is distributed to both the CC 

and DCN/VN via the mossy fibers (MFs). In most cases, this information 

arrives via the pontine nuclei (PN) located in the pons. In some cases, e.g. 

vestibular, it arrives directly from the sensory organ (Ito , 1984). Information 

then flows from CC to DCN/VN via a purely inhibitory projection made up 

from the axons of a single neuron type -- the Purkinje cell (PKJ). From the 

DCN/VN information flows to nuclei outside the cerebellum to affect behavior 

(e.g. motor nuclei controlling eye movements, via thalamus to cerebral cortex, 

etc.). Information arriving to the IO is relayed to the cerebellar cortex. This 

information can come directly from sensory systems (e.g. skin receptors, retina, 

etc.) via the spinal cord and brain stem nuclei (Ito  , 1984) or from the cerebral 

cortex via the red nucleus (Burman et al., 2000). There is also an inhibitory 

feedback pathway from DCN/VN to IO (Ito  , 2012).  
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Figure 2.3 The circuitry formed by the gross anatomical constituents of the 
cerebellum. Excitatory connections are depicted with a solid filled circle, inhibitory 
with an open fill, and mixed with an error. 

2.2 Microscopic Anatomy 

By some estimates, over half of the neurons in the mammalian brain are 

found in the cerebellum, largely comprised of neurons with tiny cell bodies 

called granule cells (GRs) (Williams and Herrup, 1988). GRs will be the 

starting point for our description of the cerebellar cortex as they are the input 

stage for information flow into the cerebellar cortex. Mossy fibers (MF) 

emanating from the pontine nuclei (PN) form intricate synapses onto granule 

cells in a special arrangement called a rosette. MFs and GRs are both 

excitatory and release glutamate as their neurotransmitter (Ito  , 2012).  

The cerebellar cortex is a laminar structure composed of three layers: 

the granule layer (innermost), the Purkinje layer and the molecular layer 

(outermost). Each layer is named for the principal cell bodies they house but 

the axons and dendrites of these cells may extend into other layers. 

Unsurprisingly, the granule layer contains the cell bodies of GRs, in addition 

to a number of other cell types: Golgi cells (GO), Lugaro cells (LC), and 

unipolar brush cells (UBC) (Table 2.2). In addition to receiving MF input, 

GOs also receive significant input from GRs, and in turn provide inhibitory 
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inputs to GRs. The functional significance of this GR-GO circuit is discussed 

in a later section. 

 
Table 2.2 Summary of neuronal constituents of the cerebellar cortex and their 
connections. 

Neuron type Synapse 
polarity 

Cell Body 
Location 

Main 
Inputs 

Main targets 

Granule cell (GR) Excitatory Granular Layer MF GO, MLI, 
PKJ 

Golgi cell (GO) Inhibitory Granular Layer GR, MF GR 

Unipolar Brush 
Cell (UBC) 

Excitatory Granular Layer MF GR, UBC 

Lugaro cell Inhibitory Granular Layer PKJ MLI, GO 

Molecular Layer 
Interneuron (MLI) 

Inhibitory Molecular 
Layer 

PF MLI, PKJ 

Purkinje cell 
(PKJ) 

Inhibitory Purkinje Layer PF, 
MLI 

MLI, DCN 

 

The Purkinje layer exclusively houses the cell bodies of Purkinje cells 

(PKJs) while the PKJ dendrites extend into the molecular layer and form a 

remarkable and extensive two-dimensional planar dendritic arborization 

(Figure 2.4). The GRs give rise to axons that extend upwards toward the 

molecular layer, forming synapses onto the PKJs along the way, and then 

branch in two directions forming a "T" passing through the 2D PKJ dendrites 

in an orthogonal orientation forming en passant synapses (Figure 2.5). These 

branched axons are known as parallel fibers (PFs). While individual PFs make 

only a few synapses onto a single PKJ, because the GRs are so numerous, 

PKJs receive may receive up to 200,000 PF-PKJ synapses in human (Llinas et 

al., 2004). However, only a fraction (~15%) of these synapses are electrically 
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active resulting in an effective number of synapses on the order tens of 

thousands (Isope and Barbour, 2002).  

 

 

Figure 2.4 A Purkinje cell injected with a fluorescent dye. The exquisite dendritic 
arborization extends into a nearly two dimensional plane. "3 recon 512x512" by 
Project leader: Maryann Martone. Experimenters: Andrea Thor & Diana Price - Cell 
Centered Database, National Center for Microscopy and Imaging Research, University 
of California. Microscopy product ID: 3Image basename: e1cb4a5. Licensed under CC 
BY 3.0 via Wikimedia Commons. 

 

The molecular layer is home to the cell bodies of basket cells (BC) and 

stellate cells (SC). Historically, these neurons have been classified as two 

distinct neuron types but more recent anatomical and physiological evidence 

suggests they are a single neuron type with morphological variation along a 

spectrum (Sultan and Bower, 1998;Ruigrok et al., 2011;Chu et al., 2012). 

Collectively they are referred to as the molecular layer interneurons (MLIs). 

BCs were named so because they were found in the lower molecular layer and 

their axons form dense basket-like structures around the PKJ cell bodies 
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forming many synapses (Palay and Chan-Palay, 1974). Like basket-type cells, 

stellate-type cells’ dendrites span the molecular layer and receive input from 

PFs and other MLIs, however they’re typically found in the outer ⅔ of the 

molecular layer and their prototypical axonal input to PKJs are onto the PKJ 

dendrites. It’s now known that stellate-type MLIs can also from basket-type 

synapses onto PKJs (Jorntell and Ekerot, 2003). MLIs are inhibitory neurons 

and form a vast network through inhibitory synapses with other MLIs and 

PKJs (Rieubland et al., 2014). In addition, MLIs are connected via gap 

junctions, a type of electrical synapse. While PKJ axons are the sole output of 

the cerebellar cortex, targeting the DCN/VN, they also provide recurrent 

collaterals to MLIs in the lower molecular layer (typically basket-type MLIs) 

(Chan-Palay, 1971). PKJs also provide inhibitory recurrent inputs to other 

PKJs during development, but apparently not in adult animals (Watt et al., 

2009), suggesting there is some developmental process which utilizes these 

connections. 

The second and last source of input to the cerebellar cortex (the other 

being mossy fibers) is the CF -- the axon originating from cell bodies located 

in the IO. The climbing fiber wraps itself around PKJs like a vine and forms 

numerous synapses onto the PKJ having a powerful excitatory effect on the 

PKJ when active (Ito  , 2012). Each PKJ receives only one CF but each neuron 

in the IO can form up to 10 CFs, i.e. 10:1 divergence (Llinas et al., 2004). The 

CF also has an excitatory effect onto MLIs but through a different means of 

transmission. CFs do not make direct synapses onto MLIs but instead excite 

them through spillover transmission, i.e. neurotransmitter released from CFs 

spills over from the release site to places where AMPA and NMDA receptors 
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are located (Szapiro and Barbour, 2007). As a result, CF-MLI excitation has a 

volume effect and is less specific than CF-PKJ input. In contrast to PKJs, 

MLIs can be excited by multiple CFs. The termination zone of CF inputs into 

the cerebellar cortex is perpendicular to the span of parallel fibers (Llinas et 

al., 2004). 

 
Figure 2.5 A depiction of cerebellar circuitry composed of the major neuronal 
constituents. Here, mf (MF), cf (CF), GrC (GR), Goc (GO), pf (PF), , PC (PKJ), 
DCN-C (DCN/VN), IO-C (IO). Reproduced under the Creative Commons License 
from (D'Angelo and Casali, 2012). 

2.3 Specific Physiology 

There are an immense number of physiological details known about the 

cerebellum, of which entire textbooks are devoted. Only the most pertinent 
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facts to understanding the functional perspective and results presented in 

Chapters 3-5 will be presented here. 

Beginning with the input layer of the cerebellar cortex, GRs are only 

sparsely active, firing spontaneously at ~1 Hz, but fire high frequency bursts of 

up to several hundred hertz when active (Chadderton et al., 2004;van Beugen 

et al., 2013). This low level of GR activity is mediated by a blanket of GO 

inhibition. Thus, converging MF input to GRs must be sufficiently strong and 

synchronized to surpass a threshold and then GRs are highly excited. This 

results in a spatiotemporally sparse coding of the sensory input among GRs. 

PKJs fire spontaneously at rates of about 50 Hz while an animal is at 

rest (Armstrong and Edgley, 1984). Surprisingly, this spontaneously firing is 

not due to the immense number of PF inputs, but is an intrinsic mechanism to 

the PKJ (Hausser and Clark, 1997;Raman and Bean, 1999); that is, when all 

excitatory and inhibitory inputs to PKJs are removed, PKJs continue to fire 

spontaneously. MLIs also fire spontaneously at rates of about 15-30 Hz 

(Hausser and Clark, 1997). The activity of both MLIs and PKJs is increased 

by excitatory inputs from PFs and CFs. Likewise, MLI and PKJ activity is 

decreased by MLI inhibitory inputs (Park et al., 2012). Finally, climbing fibers 

fire at a low irregular rate ~1 Hz (Ito  , 2012). 

2.4 Synaptic plasticity 

Synaptic plasticity refers to learning-related changes in the efficacy of 

synapses. Effectively, this translates to the ability of a pre-synaptic neuron to 

influence the membrane potential or action potential firing probability of a 

post-synaptic neuron. Synaptic plasticity in the cerebellar cortex takes place 

both pre-synaptically and post-synaptically through a variety of mechanisms 
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and at both excitatory and inhibitory synapse types (Gao et al., 2012). In 

particular, PF-MLI, PF-PKJ and MLI-PKJ synapses have been shown to 

undergo plasticity, in addition to others.  

The most studied locus of learning and memory in the cerebellar cortex 

is the PF-PKJ synapse. Plasticity at this synapse was hypothesized in purely 

theoretical models of cerebellar function by David Marr and James Albus and 

later confirmed experimentally by Masao Ito (Ito  , 2012). The basic "learning 

rule" is that long-term potentiation (LTP) at this synapse occurs when PFs 

fire alone while long-term depression (LTD) occurs when PFs fire at nearly the 

same time as CFs impinging onto the same PKJ. The latter is termed 

"conjunctive LTD". Thus, CFs act as a "teaching" signal which reduce the 

efficacy of PF-PKJ synapses presenting a stimulus pattern at the time of CF 

activation. This led to the idea that PKJs can reduce their activity in response 

to a learned stimulus in order to disinhibit the DCN/VN to elicit movement. 

Most models used this as the primary mechanism for learning and memory. 

However, PKJs have been shown to fire spontaneously in absence of all 

synaptic inputs (Hausser and Clark, 1997), so simply decreasing the efficacy of 

PF-PKJ synapses does not account for the pauses of PKJ activity seen in 

learned behaviors (Jirenhed et al., 2007). 

Feedforward inhibition from MLIs is one mechanism for reducing PKJ 

activity, and this feedforward inhibition can be learned by synaptic plasticity 

at PF-MLI and MLI-PKJ synapses (Gao et al., 2012). In vivo experiments 

showing PF-MLI receptive field changes with CF stimulation suggest a 

complementary and synergist learning rule to conjunctive LTD at PF-PKJ 

synapses (Jorntell and Ekerot, 2002;2003;2011). Namely, conjunctive PF and 

CF activation results in PF-MLI LTP while PF activation alone leads to LTD. 
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However, this learning rule does not account for PF-MLI LTP in absence of 

CF input observed in vitro (Rancillac and Crepel, 2004;Smith and Otis, 2005). 

A theoretical model of learning at PF-MLI synapses is proposed in Chapter 4 

and the experimental results are reviewed and discussed extensively. 

2.5 Functional Circuitry 

Here, a mental model of the functional components of the cerebellum is 

presented by abstracting away from individual neurons to form functional 

circuits composed of one or more neuron types. In reality, this is only a 

cartoon of the functional elements of the cerebellum that does not account for 

some neuron types and the three-dimensional geometry of actual cerebellar 

neuroanatomy. Nonetheless, it is useful as a model for thinking about 

cerebellar computation.  

The cerebellar cortex can be roughly divided into two functional 

circuits: the GR-GO loop (blue circuit in Figure 2.6) and PKJ-MLI network 

(red circuit). The sole output of the cerebellar cortex -- the PKJ axons -- 

targets the DCN/VN (purple circuit). Two inputs to the cerebellum are 

present and target the cortex and DCN/VN: the MFs (black), largely from the 

pontine nuclei, and CFs (green) arising from the inferior olive The MFs carry 

the organism's state information (i.e. sensory information, motor control 

signals, cognitive processes, etc.) to the cerebellum and the CFs carry motor 

and cognitive control "error" information. This error signal induces synaptic 

plasticity at synapses in the red circuit to modify the MLI-PKJ response to 

the state information towards a response that results in no error. 
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Figure 2.6 Functional circuitry of the cerebellum. Several circuit components are 
depicted: GR-GO circuit (blue), MLI-PKJ circuit (red), DCN (purple), IO (green), 
MF (black). 

 

Several groups have proposed that the GR-GO loop (blue circuit) is 

involved in encoding state information conveyed by the MFs in a usable form 

by the downstream circuit, by forming sparse, distributed, and temporally 

evolving representations of state information (Marr, 1969;Buonomano and 

Mauk, 1994;Yamazaki and Tanaka, 2005). The representation formed by a set 

of GRs switching their activity on and off asynchronously over some period of 

time in response to an input stimulus can be thought of as forming a 

reproducible temporal barcode of that stimulus. Yamazaki and Nagao (2012) 

propose a computational model of this circuit that can encode spatiotemporal 

information for both gain and timing control. Thus the blue circuit can be 

considered as a spatiotemporal feature encoding component of the cerebellum, 
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providing the red circuit with state information encoded in a suitable form. 

Although not depicted, unipolar brush cells also likely participate in this 

circuit to achieve this function. 

The function of the red circuit is to use the encoded state information 

provided by the PFs to modulate the activity of the DCN -- the final output 

nuclei of the cerebellum -- to achieve the accurate, coordinated and well-timed 

orchestration of movement and thought (e.g. to achieve a calibrated vestibulo-

ocular reflex while wearing corrective lenses, etc.). Since PKJs are the sole 

output of the cerebellar cortex, the success of the behavior hinges on the 

appropriate spatiotemporal pattern of PKJ activity to contribute to the 

appropriate DCN response, which in turn affects the response of the target of 

the DCN. In effect, this amounts to learning the appropriate gain (spatio-) and 

timing (temporal) of PKJ inhibition onto the neurons of the DCN. Since PKJs 

are spontaneously active at about 50 Hz their activity can either increase or 

decrease the amount of inhibition onto the DCN. A decrease in inhibition is 

also referred to as disinhibition. The simplest way of increasing PKJ inhibition 

onto DCN targets is for PF inputs to excite the PKJ, and the clearest way of 

disinhibition PKJ targets is by MLIs inhibiting PKJs. 

A popular theory is that CFs provide a supervised error learning signal 

to the cerebellar cortex that acts to selectively modify synaptic strengths to 

change the input-output response that does not generate error signals (Doya, 

1999). More generally, the CFs can be considered to encode an error signal in 

the context of the organism’s world (sensory or cognitive environment) in 

response to the presence or absence of a behavior, as in the case of a 

reinforcement learning signal (Swain et al., 2011). This synaptic modification 

guides the stimulus-response pattern of the PKJ-MLI circuit towards a 
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reduction in the error signal and thus a successful behavior. In some cases, 

these error signals appear to be hard-wired as in the retinal slip signal of the 

VOR (Ito , 1984). In other cases, these signals may be more dynamic, such as 

the signals conveyed to the IO from the cerebral cortex (Habas et al., 2010). 

For completeness, an alternative theory views CFs as conveying timing signals 

for the execution of behaviors (Llinas, 2011). 

Learning also occurs at synapses in the DCN (Zheng and Raman, 2010) 

and theoretical models support the idea that motor learning memories are 

consolidated here (Yamazaki et al., 2015). 

The focus of the work presented in Chapters 3-5 is how the MLI-PKJ 

(red) circuit learns to operate on the state information to effectively modulate 

the activity of the DCN for the adaptive control of movement in the presence 

of feedback error signals from the CFs.  

2.6 Functional Role of MLIs 

The hypothesis that motivated the work presented in this dissertation is 

that the functional role of MLIs is the precise control of PKJ disinhibition of 

the deep cerebellar nuclei (DCN) and that PF-MLI, MLI-MLI, and MLI-PKJ 

synapses are important locations of learning and memory for adaptive control. 

This is supported by recent optogenetic experiments allowing precise control of 

MLI firing in vivo that shows MLI activity can directly control movement 

kinematics (Heiney et al., 2014).  

The role of MLI feedforward inhibition can most clearly be seen in the 

conditioned eyeblink response in animals, a type of Pavlovian response where 

the animal learns to blink its eye in response to a conditioned stimulus (CS) to 

avoid an aversive unconditioned stimulus (CS). In the naive animal, recordings 
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from PKJs in the part of the cerebellum responsible for generating eyeblink 

control signals fire spontaneously at about 50 Hz throughout the presentation 

of the CS (Jirenhed et al., 2007). After training and the acquisition of an 

appropriately timed eyeblink, the PKJs exhibit a strong pause in the firing 

activity. Since the PKJ spontaneous firing is intrinsic to the PKJ and not due 

to the total PF synaptic input, this pause is likely due to MLI feedforward 

inhibition. 

The role of MLI inhibition can also be seen in the vestibulo-ocular reflex 

(VOR) of animals by local application of chemical blockers of GABA 

(Miyashita and Nagao, 1984). During application, the amplitude of PKJ firing 

during VOR is increased and the phase is shifted by 180 degrees due to block 

of feedforward inhibition. 

Following the detailed investigation of the anatomy and physiology of 

the cerebellum (Eccles et al., 1967), the first theories of cerebellar learning 

emerged (Grossberg, 1969;Marr, 1969;Albus, 1971). Albus hypothesized that 

long-term depression (LTD) at the PF-PKJ synapses would be sufficient to 

modify cerebellar output in response to some stimulus pattern and error signal. 

Following experimental verification of LTD at these synapses (Ito, 1982), PF-

PKJ LTD became the dominant mechanism of learning in cerebellar learning 

theory. This theory, that LTD (i.e. a weakening of synaptic efficacy) at the 

PF-PKJ  synapses driven by concomitant activation of CFs and PFs is the 

principal form of learning in the cerebellar cortex has dominated for the last 30 

years. Recent evidence suggests that targeted blocking of LTD at these 

synapses does not yield remarkable motor deficits in animal models 

(Schonewille et al., 2011). Moreover, blocking long-term potentiation (LTP) 

(i.e. a strengthening of synaptic efficacy) at PF-PKJ synapses or removing 
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plasticity at molecular layer interneurons (MLIs) (PF-MLI and MLI-PKJ 

together) results in profound motor deficits in animal models (Gao et al., 

2012). Either LTD at PF-PKJ synapses is not the principal form of learning in 

the cerebellar cortex, or its loss is compensated for by other mechanisms of 

plasticity (e.g. plasticity at MLIs), or it is some combination of the two.  
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Chapter 3 A spiking network 

model of cerebellar Purkinje cells 

and molecular layer interneurons 

exhibiting irregular firing 

While the anatomy of the cerebellar microcircuit is well studied, how it 

implements cerebellar function is not understood. A number of models have 

been proposed to describe this mechanism but few emphasize the role of the 

vast network Purkinje cells (PKJs) form with the molecular layer interneurons 

(MLIs) – the stellate and basket cells. We propose a model of the MLI-PKJ 

network composed of simple spiking neurons incorporating the major 

anatomical and physiological features. In computer simulations, the model 

reproduces the irregular firing patterns observed in PKJs and MLIs in vitro 

and a shift toward faster, more regular firing patterns when inhibitory 

synaptic currents are blocked. In the model, the time between PKJ spikes is 

shown to be proportional to the amount of feedforward inhibition from an MLI 

on average. The two key elements of the model are: (1) spontaneously active 

PKJs and MLIs due to an endogenous depolarizing current, and (2) adherence 

to known anatomical connectivity along a parasagittal strip of cerebellar 

cortex. We propose this model to extend previous spiking network models of 

the cerebellum and for further computational investigation into the role of 

irregular firing and MLIs in cerebellar learning and function. 
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3.1 Introduction 

The cerebellum is thought to be involved in producing smooth and 

coordinated movements which are both spatially and temporally precise. How 

the cerebellum achieves this is not understood. One approach to elucidate this 

mechanism is to construct a model from known anatomy and physiology to 

explain how the constituent neurons compute the function implemented by the 

cerebellum. Numerous theoretical and computational models have been 

proposed (Grossberg, 1969;Marr, 1969;Albus, 1971;Fujita, 1982;Medina et al., 

2000;Dean et al., 2010;Yamazaki and Nagao, 2012), however few of these 

models emphasize the functional role of the molecular layer interneurons 

(MLIs). Typically, these inhibitory interneurons are described as providing 

“global inhibition” or “sculpting” the overall response of the Purkinje cells 

(PKJs); however, recent experimental evidence questions this hypothesis 

(Bower, 2010;Jorntell et al., 2010). We seek to understand the role of the MLIs 

in concert with the PKJs which they form a vast network with by means of 

computational modeling. 

A key feature of the network of MLIs and PKJs is that these neurons 

fire spontaneously in absence of excitatory synaptic input (Hausser and Clark, 

1997;Raman and Bean, 1997). When inhibitory synaptic currents are blocked 

in vitro, MLIs and PKJs fire regularly (Hausser and Clark, 1997). In the 

presence of inhibitory synaptic currents, they exhibit relatively irregular firing. 

Understanding how PKJ spontaneous activity is modified to control their 

targets in the deep cerebellar nuclei and vestibular nuclei (DCN/VN) is central 

to understanding the operation of the cerebellar cortex. In conditioned eye 

blink response (CER) learning, PKJs learn to make an appropriately timed 
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pause in firing in response to a conditioned stimulus, which in turn disinhibits 

their DCN targets and elicits an eye blink (Jirenhed et al., 2007). Since PKJs 

are spontaneously active and blocking excitatory synaptic inputs to PKJs only 

modestly decreases the spontaneous PKJ activity in vivo (Cerminara and 

Rawson, 2004) and in vitro (Hausser and Clark, 1997), a decrease in efficacy at 

parallel fiber (PF) to PKJ synapses is insufficient to explain the learned pause 

in PKJ activity. Feedforward inhibition provided by MLIs may be one 

mechanism to produce this pause. Furthermore, using an optogenetic 

technique to increase the firing rates of a target population of MLIs in awake 

mice, movements can be elicited and kinematics controlled by varying the 

photostimulation parameters (Heiney et al., 2014). Finally, in mutant mice 

lacking PKJ gamma-aminobutyric acid A (GABAA) receptors, effectively 

removing MLI feedforward inhibition, motor learning deficits are observed 

(Wulff et al., 2009). The accumulating evidence points to a greater functional 

role for MLIs than previous theories suggest.  

In this study we construct a spiking network model of spontaneously 

active MLIs and PKJs composed of leaky integrate-and-fire neuron models 

connected according to known anatomy. We show that despite using simple 

neuron models, this network reproduces the irregular ISIs observed in PKJs 

and MLIs in vitro. We further show that the relative contribution of MLI-MLI 

feedback inhibition to produce irregular firing in MLIs is greater than the 

PKJ-MLI feedback inhibition contribution. Finally, this model provides a 

substrate for additional experiments investigating the functional role of 

irregular firing patterns and MLIs in cerebellar learning and function. 
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3.2 Materials and methods 

3.2.1 Network Model 

The network is composed of PKJs and MLIs and is modeled after a 1 

mm x 32 μm microzone of the cerebellar cortex with the long axis extending 

parasagittally. In cats, 330 PKJs are contained within a 1 mm2 sheet of 

cerebellar cortex arranged in a grid-like arrangement (Palkovits et al., 1971). 

We therefore modeled 16 PKJs along a one dimensional grid with an even 64 

μm spacing between cell body centers and assume PKJ cell bodies are 32 μm  

in diameter. The network includes 160 MLIs in accordance with the 

anatomical data of a 10:1 ratio of MLIs to PKJs (Korbo et al., 1993). Thus, 

each PKJ has 10 nearest MLIs; three are designated as lower molecular layer 

interneurons and are eligible to receive PKJ recurrent collaterals (described 

below). Figure 3.1 illustrates the network and basic connectivity. Synapse 

formation in the network is probabilistic subject to the anatomical constraints 

described next.  

 

Figure 3.1 A schematic of the model network. 160 MLIs (red) and 16 PKJs (blue) 
were simulated. Each PKJ has 10 corresponding MLIs that are closest to it along the 
long axis. Of the 10 closest, three are eligible to receive PKJ recurrent collaterals 
(shown in a lighter shade of red) and seven are ineligible to receive PKJ recurrent 
collaterals (shown in a darker shade of red). Examples of allowed connections are 
shown. All synapses are inhibitory. Further details on the network connectivity are 
described in the Methods section. 
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In vivo, PKJ recurrent collaterals extend parasagittally and can span 

more than 200 μm, appearing to contact both PKJs and MLIs in the lower 

molecular layer (Chan-Palay, 1971;Hawkes and Leclerc, 1989;O'Donoghue et 

al., 1989;Apps and Hawkes, 2009). (Watt et al., 2009) showed PKJ recurrent 

collaterals extend asymmetrically and predominantly terminate within 100 μm 

of the parent cell soma but do not make functional synapses onto PKJs after 

post-natal day 21. To model this, PKJs in our network model extend their 

recurrent collaterals asymmetrically in the vicinity of the two nearest PKJs 

and can form synapses onto MLIs in the lower molecular layer, i.e. the first 

three of ten MLIs corresponding to a particular PKJ. We chose a probability 

of forming a PKJ-MLI synapse such that, on average, each eligible MLI 

receives one PKJ input and each PKJ forms synapses onto three MLIs. Table 

3.1 summarizes these convergence and divergence values. We assume the 

model network belongs to an adult animal and do not allow PKJ to PKJ 

connections. 

In vivo, MLI axons extend parasagittally and terminate up to 500 μm 

away from the parent soma, contacting both PKJs and other MLIs (Ito  , 1984). 

In the model, we assume MLI axons extend asymmetrically and span a 

distance of eight PKJs. Each MLI axon branches in one direction or the other 

determined randomly with equal probability; i.e. an MLI can form synapses 

with MLIs and PKJs either to its left or to its right, but not both directions. 

We chose a probability of forming MLI-PKJ synapses such that, on average, 

20 MLIs formed synapses onto one PKJ, consistent with the anatomical data 

(Eccles et al., 1967;Palay and Chan-Palay, 1974). Synapse formation is 

determined by iterating through the list of candidate target neurons for a 
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source neuron and randomly drawing a value from Unif(0,1) ; if the drawn 

value is less than some chosen probability, then a synapse is formed. Thus, all 

target neurons within the axon span had an equal probability of forming a 

synapse whereas those neurons outside this distance had zero probability of 

forming synapses. We also chose a probability of forming MLI-MLI synapses 

such that, on average, each MLI received inputs from four other MLIs, 

consistent with physiological data (Hausser and Clark, 1997;Kondo and Marty, 

1998). While gap junctions between MLIs are known to exist (Mann-Metzer 

and Yarom, 1999), we chose to model only chemical synapses as a first 

approximation to this network. 

Peak inhibitory post synaptic conductances (IPSCs) for each neuron 

type are summarized in Table 3.1. These peak IPSCs are multiplied by 

synaptic weights, specific to each synapse (Eq. 2). Synaptic weights are drawn 

from a random distribution to simulate the diversity of synaptic conductances 

up to the peak conductance as observed in vitro, e.g. (Kondo and Marty, 

1998). MLI-MLI synapse weights are drawn from a uniform distribution 

between 0 and 1, i.e. Unif(0,1)w
MLIMLI

 ~


; also, 5)Unif(0,1.2w
PKJMLI

 ~


 and 

Unif(0,1)w
MLIPKJ

 ~


. 

3.2.2 Neuron Model 

Neurons are modeled as conductance-based leaky integrate-and-fire 

units (Gerstner and Kistler, 2002). The membrane potential, )(tV , is governed 

by Eq.(1), where C  is the membrane capacitance, 
leak

g is a constant leak 

conductance, )(tg
ahp

is an after-hyperpolarization (AHP) conductance 



30 
 

 
 

(described by Eq.(4)), )(tg
GABA

 is the inhibitory GABA conductance and 

)(tI
spont

is a spontaneous depolarizing current (described below). 
leak

E , 
ahp

E , 

GABA
E  are the respective reversal potentials. Table 3.1 summarizes the 

physiological values used in the neuron models derived from the literature. The 

model did not include any excitatory synaptic conductances. 

)())()(())()(())(( tIEtVtgEtVtgEtVg
dt

dV
C

spontGABAGABAahpahpleakleak
  (3.1) 

The total synaptic conductance is described by Eq.(2), where 
GABA

g  is 

the maximum synaptic conductance, 
i

w  is the weight of the 
th

i  synapse, )(t is 

the conductance kinetics function described by Eq.(3), and )(t
i

 is a Dirac 

delta function for the 
th

i  synapse onto a target neuron, indicating whether the 

presynaptic neuron has spiked at time t. 
GABA

 is the inhibitory conductance 

time constant. 

 




i

t

iiGABAGABA
dssstwgtg )()()(   (3.2) 

)/exp()(
GABA

tt    (3.3) 

When the membrane potential for the neuron model surpasses 
threshold

V , 

the neuron emits a spike and an AHP conductance is triggered. The AHP is 

described by Eq.(4), where spiked
t  is the time the neuron last spiked and 

ahp
 is a 

time constant. 

)
)(

exp()(

ahp

spiked

spikedahp

tt
ttg




  (3.4) 
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The spontaneous firing activity of MLIs and PKJs has been shown to 

be an intrinsic neuron property and not driven by the background activity of 

parallel fibers (Hausser and Clark, 1997). In PKJs, the spontaneous firing is 

primarily mediated by tetrodotoxin (TTX) sensitive sodium channels which 

produce a sub-threshold depolarizing current (Raman and Bean, 1999). While 

the mechanism for this endogenous current in MLIs is not well studied, MLIs 

presumably share a similar mechanism to PKJs since blocking TTX-sensitive 

sodium channels abolishes this sub-threshold depolarizing response in MLIs 

(Midtgaard, 1992). To model this spontaneous activity of MLIs and PKJs, we 

inject a random depolarizing current drawn from a gamma distribution, 

),(~)( tI
spont  (in units of nA), every time step of the simulation. A gamma 

distribution was chosen since its support is strictly non-negative and has 

flexible shape and scale (controlled by κ and β, respectively). We performed a 

grid search over κ and β for MLIs and PKJs separately to find the parameters 

which resulted in the neuron model reproducing the mean firing rate and inter-

spike interval coefficient of variation (CV) that was close to the example data 

reported in (Hausser and Clark, 1997) in the presence of GABA blockers. 

Table 3.1 summarizes gamma distribution parameters for each neuron type. 

Figures 3.2&3.3 A-C show the resulting neuron model activity when neurons 

are isolated, i.e. no synaptic inputs are present. 
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Table 3.1 A summary of the neuron model and network parameters. PKJ, Purkinje 
cell (De Schutter and Bower, 1994a;Puia et al., 1994); MLI, molecular layer 
interneuron (Midtgaard, 1992;Hausser and Clark, 1997;Kondo and Marty, 

1998;Lachamp et al., 2009). –, nonexistent. Convergence and divergence values are 
averages since the network is constructed randomly subject to anatomical constraints. 
*, Convergence was calculated on average for the entire population of MLIs, despite 
PKJ-MLI synapses only being made on the lower molecular layer interneurons. 

 Neuron Type 

Cell parameters  PKJ  MLI  

V
threshold

 (mV)  -55.0  -53.0  

C (pF)  107.0  14.6  

ḡ
leak

 (nS)  2.32  1.6  

E
leak

 (mV)  -68.0  -68.0  

ḡ
GABA

 (nS)  1.0  4.0  

E
GABA

 (mV)  -75.0  -82.0  

τ
GABA

 (msec)  10.0  4.6  

ḡ
AHP

 (nS)  100.0  50.0  

E
AHP

 (mV)  -70.0  -82.0  

τ
AHP

 (msec)  2.5  2.5  

κ  0.430303  3.966333  

β  0.195962  0.006653  

MLI convergence  20  4  

PKJ convergence  --  .3*  

MLI divergence  2  4  

PKJ divergence  --  3  

 
 

We used the PKJ model parameters from (Yamazaki and Nagao, 2012) 

but replaced the constant spontaneous current with one drawn from a gamma 

distribution. A single neuron model for basket and stellate cells was derived 

from physiological data reported in the literature (Table 3.1). Anatomical and 

physiological evidence suggests that basket and stellate cells belong to one 

homogenous group of interneurons whose properties vary smoothly by depth of 

the soma in the molecular layer (Sultan and Bower, 1998;Ruigrok et al., 

2011;Chu et al., 2012) and which share common receptive field properties 

(Jorntell and Ekerot, 2003). Since PKJs and MLIs are modeled as single 
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compartment neuron models, we combine the effects of stellate-type synapses 

onto the PKJ dendrites with basket-type synapses onto the PKJ somas (Eccles 

et al., 1967;Palay and Chan-Palay, 1974) by modeling a single idealized MLI 

that makes synapses of one type onto the model PKJ. 

3.2.3 Software & Data Analysis 

Simulations were performed using BRIAN Simulator, a Python library 

for spiking neural network simulations (Goodman and Brette, 2009). 

Simulations were carried out using Euler's method for temporal integration 

with a time step of 0.25 ms for numerical stability. Data analysis and plotting 

were performed using BRIAN Simulator, SciPy, Matplotlib, Plotly and custom 

software written in Python. The source code for these experiments will be 

made freely available online. 

Artificial action potential (AP) waveforms were drawn for Figures 

3.2A,D; 3.3A,D; 3.5A,B. For Figures 3.2 and 3.3, a value of 0 mV was inserted 

when the spike occurred. For Figure 5, these waveforms were a hand-crafted 

series of six values at 0.25 ms intervals for a total AP waveform length of 1.5 

ms. Exact values can be found in the published code. Mean, variances and 

coefficient of variations were computed assuming a normal distribution in all 

cases to make the values comparable to (Hausser and Clark, 1997). 

3.3 Results 

3.3.1 Model PKJs and MLIs in isolation exhibit regular firing 

First, we examined the spike patterns of isolated MLI and PKJ neuron 

models (no synaptic currents)  with spontaneous depolarizing currents. The 
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top rows of Figures 3.2 and 3.3 show the response of a model MLI and PKJ, 

respectively, under these conditions. The random current was sufficient to 

drive the neuron past threshold potential to fire spontaneously (Figures 3.2, 

3.3A). A histogram of the inter-spike intervals (ISIs) reveals the degree of 

regularity of firing by the average baseline firing rate of the neuron and 

variability in timing between spike pairs (Figures 3.2, 3.3B). These results are 

consistent with MLIs and PKJs recorded in vitro when GABAergic 

transmission has been blocked chemically (Hausser and Clark, 1997). The 

model PKJ produced a mean firing rate of 38.9 Hz and an ISI coefficient of 

variation (CV) of 0.17 compared to 40 Hz and 0.18, respectively, for an 

exemplar neuron in vitro (Hausser and Clark, 1997).  The model MLI 

produced a mean firing rate of 29.1 Hz and an ISI CV of 0.14 compared to 30 

Hz and 0.14, respectively, for an exemplar neuron in vitro (Hausser and Clark, 

1997). The model MLI appeared slightly more skewed towards longer ISIs 

compared to the in vitro data, possibly due to longer recording times of 300 

seconds in our experiments. While the model PKJ ISI histogram appeared 

symmetric, it failed a test of normality (Shapiro-Wilk test, p<10-12) as did the 

MLI ISI histogram (Shapiro-Wilk test, p<10-38). Tests of normality were not 

reported by (Hausser and Clark, 1997), though the authors noted Gaussian-

shaped ISI histograms. A spike autocorrelogram revealed regularity in trains of 

successive spikes with several peaks at integer multiples of the baseline 

frequency (Figures 3.2, 3.3C). These results suggest that a simple neuron 

model with a spontaneous random current is capable of reproducing similar 

spike timing phenomena as observed in vitro under conditions of GABAergic 

transmission block. 
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Figure 3.2 Spontaneously active MLI neuron models reproduce similar firing patterns 
as observed in vitro. A.) Trace of an isolated MLI membrane potential with spikes 
artificially drawn. The neuron appears to fire regularly in absence of inhibitory 
synaptic currents. B.) Inter-spike interval (ISI) histogram of the isolated MLI. The 
parameters for the gamma distribution governing the random depolarizing current 
injected into the neuron were chosen such that the mean firing rate and ISI coefficient 

of variation (CV) were similar to the example neuron shown in  Häusser and Clark 
(1997). All simulations were run for 300 seconds. C.) A spike autocorrelogram of the 
isolated MLI showing regularity in trains of spikes. D.) Membrane potential trace of 
one MLI selected from the intact network of MLIs and PKJs where inhibitory 
synaptic currents a present. From the trace, the neuron visibly fires irregularly 
compared to the isolated case. E.) An inter-spike interval histogram of the same MLI. 
The distribution shifts rightward and becomes broader, suggesting a slower and more 
irregular firing pattern. F.) A spike autocorrelogram of the same MLI showing the 
regularity in spike trains has disappeared. 
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Figure 3.3 Spontaneously active PKJ neuron models reproduce similar firing dynamics 
as observed in vitro. Conventions are as in Figure 3.2 

3.3.2 Model PKJs and MLIs in the network exhibit irregular firing 

Next, we examined the spike patterns of interconnected, spontaneously 

active MLI and PKJ neurons in a network (Figure 3.1). We used the same 

neuron models for MLI and PKJ neurons, respectively, with dynamics depicted 

in the top panels of Figures 3.2 and 3.3, to form the network. Despite the same 

prototypical MLI and PKJ being used repeatedly, the random connectivity 

and random synaptic weight assigned when constructing the network resulted 

in a diversity of neuron responses (Figure 3.4) with MLI mean firing rates of 

13.1 ± 8.0 Hz (n = 160, range: 0.2 - 29.2 Hz) and PKJ mean firing rates of 25.9 

± 3.5 Hz (n = 16, range: 19.1 - 33.1 Hz). The firing patterns of MLIs and PKJs 

in the network changed substantially due to the constant bombardment by 

inhibitory postsynaptic currents (IPSCs) from presynaptic neurons. The 

decreased firing rate and irregular spiking of these neurons is apparent in a 

trace of the membrane potential (Figures 3.2, 3.3D). The ISI histogram 

becomes significantly skewed favoring longer and more irregular ISIs (Figures 
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3.2, 3.3E). MLI ISI coefficients of variation increased markedly from the 

isolated case to 0.61 ± .24 (range: .14 - 1.04; n=160), as did the PKJ ISI CVs 

0.28 ± .04 (range: .21 - .39; n=16). (Hausser and Clark, 1997) reported ISI 

coefficients in control conditions of 0.51 ± .024 (range: .19 - .85; n=43) for 

MLIs and 0.28 ± .038 (n=160, range: .05 - 1.13; n=68) for PKJs. We also 

found examples of both MLIs and PKJs in the model network that closely 

matched exemplar neurons reported in vitro data in control conditions. A 

model PKJ found in the network produces a mean firing rate of 24.5 Hz and 

an ISI coefficient of variation (CV) of 0.30 compared to 35 Hz and 0.49, 

respectively, for an exemplar neuron in vitro (Hausser and Clark, 1997).  A 

model MLI found in the network produces a mean firing rate of 17.8 Hz and 

an ISI CV of 0.43 compared to 15 Hz and 0.40, respectively, for an exemplar 

neuron in vitro (Hausser and Clark, 1997). It should be noted that the 

background activity of parallel fiber input is present in control conditions 

reported for in vitro data but was shown to contribute only a modest increase 

in MLI and PKJ firing rates in a separate experiment of the same study. No 

parallel fiber background activity is present in this model. A significant 

correlation between mean firing rate and CV was found in both MLIs 

(Spearman rank-order coefficient r = -0.996, p < 10-167) and PKJs (Spearman 

rank-order coefficient r = -0.991, p < 10-12). Many of the peaks in the spike 

autocorrelogram disappeared suggesting that trains of spikes are no longer 

regularly spaced. These results suggest that a simple neuron model of 

spontaneously active MLIs and PKJs when interconnected in accordance with 

known anatomy is capable of reproducing the irregular firing patterns of MLIs 
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and PKJs observed in vitro. Finally, analyses of the consistency of the model 

results among different random instantiations of the network constrained by 

the same parameters and of the robustness of the model to random 

perturbations in the parameters of up to 10% of the original values were 

performed (Supplementary Figures 3.7-3.9). These results suggest the model 

reproduces similar results under different random instantiations of the network 

(Supplementary Figures 3.7-3.8) and is robust to small changes in the 

parameters (Supplementary Figure 3.9).   

 

 

Figure 3.4 The network of MLIs and PKJs exhibits a diversity of responses. A.) A 
histogram of mean firing rates of MLIs from the network during one simulation. B.) A 
histogram of mean firing rates of PKJs from the network during one simulation. 
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3.3.3 Feedforward inhibition produces variable delays in the 

postsynaptic neuron 

Next, we ran simulations to illustrate the effect of feedforward 

inhibition on the membrane potential of PKJs between successive spikes. 

Multiple traces of the membrane potential of an isolated PKJ showing two 

successive spikes are aligned to the first spike and overlaid (Figure 5A). Action 

potential waveforms have been artificially drawn since the leaky integrate-and-

fire model does not explicitly model the membrane potential during action 

potentials. The random spontaneous current resulted in variable delays 

between spikes. A model MLI was then synaptically connected providing 

feedforward inhibition onto the PKJ with a peak IPSC of 4 nS. The MLI was 

triggered to fire 12 ms after the PKJ's first spike. The effect of feedforward 

inhibition from the MLI to the PKJ delays the time of the second PKJ spike 

(Figure 5B). The mean delay with feedforward inhibition is significant (Mann-

Whitney U test, p < 10-96, n = 500) (Figure 5C). Moreover, a linear 

relationship between the peak IPSC and the ISI can be seen (Figure 5D). This 

suggests the mean ISI is a function of the total synaptic conductance during 

the interval preceding the second spike. More elaborate methods for 

characterizing the response of neurons to synaptic input, such as measuring 

the phase response curves (PRC) of PKJs (Phoka et al., 2010), can be 

straightforwardly applied to this model in future work. 
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Figure 3.5 Feedforward inhibition causes prolonged inter-spike intervals in the target 
neuron. A.) 30 membrane potential traces overlaid with first spike aligned from a 
single isolated PKJ. Spikes are artificially drawn. The variable ISI can be seen. B.) A 
model MLI was then synaptically connected to the PKJ providing feedforward 
inhibition and caused to fire 12 ms (marked by the black arrowhead) after the first 
PKJ spike. 30 membrane potential traces with the first spike aligned from the PKJ 
are shown. The effect of the IPSC (4 nS peak in this simulation) can be shown to 
increase the average ISI. C.) Histograms of ISIs in the case without feedforward 
inhibition (as in A) (darker shade, left histogram) and with feedforward inhibition (as 
in B) (lighter shade, right histogram). D.) The relationship between IPSC and ISI can 
be seen by varying the synaptic conductance randomly in separate trials and 
measuring the resulting ISI. 

3.3.4 The effects of removing MLI-MLI or PKJ-MLI synapses 

Finally, to explore the effects of MLI-MLI and PKJ-MLI connections on 

the baseline activity of the network, we simulated the network activity when a 

random subset of synapses from one connection type or the other were 
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randomly pruned (i.e. removed). We simulated scenarios where a random 

subset of 25%, 50% or 75% of the original MLI-MLI or PKJ-MLI synapses 

were pruned, as well as when the network is fully intact (0%) or all synapses 

of that connection type are removed (100%) (Figure 6). The activity of each 

neuron was recorded for 60 seconds and a mean firing rate and mean ISI CV 

were calculated for each neuron in each neuron-type population. The median 

(i.e. second quartile) of each population for both measures was computed and 

is depicted with filled circles. The first and third quartiles for each measure 

was also computed and is depicted with bars -- where the lower bar is the first 

quartile and the upper bar is the third quartile -- to show the distribution of 

values across the population. The population mean was also computed and is 

depicted by a cross in a contrasting color. As more MLI-MLI synapses are 

pruned, the MLI firing rates (Figure 6, top-left panel, dark red line) increase 

due to decreased mutual inhibition. The MLI ISI CVs (light red) decrease due 

to increased regularity in firing. The result of increased MLI firing is increased 

inhibition onto PKJs, resulting in decreased PKJ firing rates (Figure 6, lower-

left panel) and increased PKJ ISI CVs. In contrast to the significant changes 

in MLI and PKJ firing rates and ISI CVs when MLI-MLI synapses are pruned, 

pruning PKJ-MLI synapses has only a subtle effect on the activity of MLIs 

(Figure 6, top-right) and PKJs (Figure 6, bottom-right). Statistical tests show 

that the difference between population firing rates in the fully intact network 

(0%) and the fully pruned PKJ-MLI connections (100%) is not significant for 

MLIs (Mann-Whitney U test, p<.13, n=160) or PKJs (Mann-Whitney U test, 

p <.19, n=16). These results show that MLI-MLI mutual inhibition has a 

significant influence on the baseline activity of the network by governing the 
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average firing rate and variability of spike timing of MLIs and PKJs whereas 

the effect of PKJ-MLI connections on the baseline activity of the network is 

more subtle. 

 

Figure 3.6 Changes in network activity by pruning MLI-MLI or PKJ-MLI synapses. 
Simulations were performed where a random set of synapses of either MLI-MLI or 
PKJ-MLI connections were removed from the model network to investigate the effect 
of these connection types on the activity of the network. Left column: measurements 
of MLI population (top row, in red) and PKJ population (bottom row, in blue) firing 
rates (darker shade) and ISI CVs (lighter shade) when MLI-MLI synapses are 
randomly pruned by 25%, 50% and 75% as well as fully intact (0%) and fully pruned 
(100%, i.e. no MLI-MLI left synapses at all). Each neuron's mean firing rate and ISI 
CV was measured over a 60 second simulation of the operation of the network. Solid 
circles denote the median of the population for each of these statistics. Bars show the 
first and third quartile to depict the distribution of values across the population. The 
cross mark denotes the population mean. Right column: similar measurements in the 
case of PKJ-MLI synapses pruned. Top-left panel: As more MLI-MLI synapses are 
pruned, the median firing rate of the population of MLIs (dark red) increases due to 
decreased mutual inhibition. When the synapses are completely pruned, there is very 
little variance in the population response and quartile bars overlap with the filled 
circle and are not visible. Additionally, the median ISI CV decreases as more MLI-
MLI synapses are pruned (light pink). Bottom-left: As more MLI-MLI synapses are 
pruned, inhibition onto PKJs from MLIs increases, thus decreasing the median PKJ 
population firing rate (dark blue) and increases the median PKJ ISI CV (light blue). 
Top-right: pruning PKJ-MLI synapses has only a subtle effect on the MLI population 
median firing right and ISI CV. Bottom right: similarly, pruning PKJ-MLI synapses 
has only a subtle effect on the PKJ population median firing right and ISI CV. 
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3.4 Discussion 

In this study, we demonstrate that a network composed of simple 

neuron models of MLIs and PKJs is sufficient to reproduce the irregular firing 

patterns of their biological counterparts as observed in vitro. The key elements 

to the model are neurons with endogenous depolarizing currents that are 

interconnected via inhibitory synapses in accordance with known anatomy. 

The random endogenous current drives each neuron to spike in the absence of 

all input to the neuron in a regular but still variable way. In the event of an 

inhibitory input from another neuron, the membrane potential of the target 

neuron is temporarily decreased, requiring more spontaneous depolarizing 

current and thereby more time to reach threshold, resulting in a longer inter-

spike interval. The time between two spikes is dependent on the amount of the 

endogenous current and the amount of inhibitory post synaptic conductance. 

The results suggest that a more elaborate neuron model is not necessary to 

reproduce these phenomena. In addition, simulations investigating the relative 

importance of MLI-MLI and PKJ-MLI connections on regulating the baseline 

activity of the network revealed the significant role of MLI mutual inhibition 

to achieve results matching in vitro data and relatively subtle role of MLI-PKJ 

synapses.  Finally, this network model provides a substrate for additional 

experimental investigation into the role of MLIs in cerebellar learning and 

function. 

3.4.1 Implications of irregular firing 

Whether irregular firing has a functional role or is simply a consequence 

of interconnected spontaneously active neurons is not clear. Some evidence 

suggests a functional role for these firing patterns. (Wulff et al., 2009) found 
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that genetically modified mice lacking PKJ GABAA receptors exhibited normal 

motor performance but were unable to consolidate motor learning following 

VOR gain down training. Interestingly, while the ISIs of PKJs were more 

regular in the genetically modified mice compared to control, the mean firing 

rate was nearly the same. Motor learning in the cerebellum may initially take 

place in the cortex and then be partially transferred to the deep cerebellar 

nuclei/vestibular nuclei (DCN/VN) where it is consolidated for long term 

storage (Kassardjian et al., 2005;Shutoh et al., 2006). While the overall 

quantity of PKJ inhibition onto their targets in the DCN/VN is unchanged in 

knockout mice, the quality of PKJ firing patterns may be enough to disrupt 

consolidation of memory to the DCN/VN and could explain the failure of 

knockout mice to consolidate VOR gain down learning. This is consistent with 

electrophysiological results showing that PKJ inhibition onto DCN/VN targets 

controls learning at mossy fiber (MF) to DCN/VN synapses (McElvain et al., 

2010;Person and Raman, 2010), a putative location for memory consolidation. 

Mechanistically, irregular PKJ firing may favor rebound depolarizations (RDs) 

occurring in PKJ targets in DCN/VN (Aizenman and Linden, 1999) by 

providing a period of intense inhibition followed by a period of relative relief, 

which in turn may control learning at DCN/VN synapses (Pugh and Raman, 

2008). In the absence of spontaneous feedforward inhibition provided by MLIs, 

the PKJs fire more regularly and prevent DCN/VN targets from firing 

appropriately, possibly resulting in impaired memory transfer. However, too 

much feedforward inhibition leads to more irregular PKJ firing (Figure 6), 

which might also interfere with learning or motor performance. Episodic ataxia 

type-2 is a condition caused by mutations to P/Q-type voltage-gated calcium 

channels expressed in PKJs which leads to increased irregularity in PKJ firing 
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and impaired motor performance (Walter et al., 2006). Thus, feedforward 

inhibition onto PKJs must be carefully balanced to achieve stable learning and 

motor performance. 

The irregular firing of PKJs may also be a means of preventing 

synchronous PKJ activity during periods of rest when the cerebellar cortex is 

not actively emitting control signals. If many PKJs did synchronize their firing 

in response to input stimulus, then the summed activity could encode a 

sequence of ON periods, when most PKJs are firing, and OFF periods, when 

most PKJs are silent. (Maex and De Schutter, 2003) showed computationally 

that the synaptic conductance delay in a homogeneous network of inhibitory 

neurons is the primary parameter controlling the frequency of synchronicity 

among these neurons. While this model does not implement spike propagation 

or synaptic transmission delays, this could be one way of evoking synchronized 

activity among MLIs and PKJs. This ON-OFF pattern might be a means of 

implementing Pulse Width Modulation (PWM), a digital control signal used to 

represent analog values. (Person and Raman, 2012) found that many 

synchronous inhibitory inputs to a neuron in the DCN/VN can entrain the 

neuron to fire at a high and regular rate. This firing rate could be the analog 

value desired by the PWM control scheme. On the other hand, if irregular 

firing prevents PKJ synchrony during behavior as well, then the summed 

activity of asynchronous PKJs could represent an analog value for control of 

the DCN/VN targets. It is also possible that PKJs can switch between 

operating modes to convey the most appropriate control signal. 
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3.4.2 Function of MLI-PKJ network 

A more general inquiry is into the functional role of spontaneously 

active PKJs and MLIs. One advantage of spontaneously active neurons is that 

their firing rates can be both increased and decreased, by excitation and 

inhibition, respectively. Presumably, PKJs need to actively inhibit their 

DCN/VN targets which are spontaneously active and exhibit rebound 

depolarizations (Aizenman and Linden, 1999). Tonic inhibition by PKJs can 

be increased and possibly synchronized by excitatory PF inputs which could 

hyperpolarize or entrain DCN/VN targets. A decrease in PKJ tonic activity, 

via MLI feedforward inhibition, disinhibits DCN/VN targets. Such a scheme 

would allow for several modes of control and a similar argument can be made 

for the spontaneously active MLIs.  

A key feature present in this model is MLI-MLI and PKJ-MLI 

inhibition. In the model, MLI-MLI inhibition is shown to have a significant 

effect on regulating the baseline firing rate and spike regularity in both MLIs 

and PKJs (Figure 6). As discussed, a careful balance between these two 

properties may be needed to ensure effective motor performance and learning. 

The presence of MLI-MLI inhibition also theoretically allows for competition 

among MLIs to take place in response to PF stimuli. Electrophysiological 

evidence suggests an activity dependent form of learning at PF-MLI synapses 

may exist (Liu and Cull-Candy, 2000;Rancillac and Crepel, 2004;Smith and 

Otis, 2005), but see also (Jorntell and Ekerot, 2002). If this is correct, a 

diverse set of MLI receptive fields and responses could emerge from this 

competition. Plasticity at MLI-PKJ synapses (Gao et al., 2012) could enable 

PKJs to learn the most appropriate set of inhibitory inputs to achieve the 

desired output response. While the anatomical data on MLI-PKJ convergence 
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between cat and rat differs (Eccles et al., 1967;Palay and Chan-Palay, 1974), 

plasticity at these synapses could also tune the total inhibitory conductance 

onto a PKJ to ensure that the baseline PKJ activity is appropriate. In the 

present model, this would be achieved by altering the synaptic weights. In 

another computer model, PKJ-PKJ feedback inhibition enables PKJs in a 

network with MLIs to perform temporal integration on a time-scale of seconds 

(Maex and Steuber, 2013); the role of MLI-MLI and PKJ-MLI inhibition may 

serve a similar function. In contrast, PKJ-MLI connections appear to have 

only a small effect on the resting activity of the network (Figure 6). Taken 

together, these ideas suggest the information storage capacity and 

expressiveness of the PKJ-MLI network is even greater than previous theories 

describe (Brunel et al., 2004;Clopath et al., 2012). The model proposed here 

provides an initial step towards carrying out further computational 

investigations into these questions.  

3.4.3 Comparison with Other Models 

De Schutter and Bower (1994b) model a Purkinje cell as a Hodgkin-

Huxley-type, multi-compartmental model that reproduces asymmetric ISI 

distributions in response to PF and MLI inputs. However, in these experiments 

the model PKJ relies exclusively on PF inputs to drive spiking and not an 

endogenous depolarizing current. Further the influence of MLIs is modeled 

indirectly as Poisson spike trains which assumes the ISI distribution is 

exponential, whereas our model generates MLI spikes by simulating MLI 

dynamics directly and results in an appropriate ISI distribution. Finally, by 

simulating the network of MLIs and PKJs, our model enables simulating the 

response of the MLI-PKJ network to PF input to investigate cerebellar 
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function. Previous computational network models of the cerebellum that 

include MLIs typically ignore a number of anatomical or physiological facts. 

For example, models do not include the spontaneous activity of MLIs 

(Yamazaki and Nagao, 2012) or MLI-MLI and PKJ-MLI connectivity 

(Contreras-Vidal et al., 1997;Schweighofer et al., 1998;Medina et al., 

2000;Maex and Steuber, 2013). Adaptive filter models implicitly model the 

inhibitory effect of MLIs by allowing the PF-PKJ filter weights to be negative 

(Fujita, 1982;Dean et al., 2010). While our network models a parasagittal strip 

of cerebellar cortex, other work has modeled a medio-lateral strip to 

investigate the effects of spontaneously active MLIs on PKJs along a beam of 

PF inputs (Santamaria et al., 2007). Further effort to extend the model 

proposed in our study to include the medio-lateral axis would be worthwhile. 
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3.6  Supplementary Figures 

 

Figure 3.7 Consistency analysis of the model: MLI responses. To test whether 
different random instantiations of the model governed by fixed parameters (synapse 
probabilities, axon lengths, and spontaneous current parameters) will produce 
consistent (similar) results, we simulated 100 different random networks constrained 
by the parameters described in the Methods section. From these 100 simulations, four 
were chosen randomly to be visualized. The mean firing rates and ISI CVs of MLIs 
were measured during each simulation lasting 30 seconds. A scatter plot of mean 
firing rate and ISI CV was plotted for each neuron (denoted with a plus sign). Each 
of the four randomly chosen simulation results was assigned a different color. The 
clouds of points generated by each simulation overlap extensively suggesting the 
model network consistently produces results similar to those presented in Figures 3.2-
3.5 and that they are not the result of selection bias by the experimenter. 
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Figure 3.8 Consistency analysis of the model: PKJ responses. Similar to Figure S1 but 
for PKJs. 
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Figure 3.9 Robustness analysis of the model to random perturbations in the 
parameters. To test the robustness of the model to changes in the parameters, 100 
simulations were performed where all parameters (synapse probabilities, axon lengths, 
and spontaneous current parameters) were randomly perturbed by up to 10% of their 
original value (drawn from a uniform random distribution).  Population mean firing 
rates and ISI CVs are computed and histograms of these values across trials are 
plotted. Blue histograms show the responses from the perturbed networks. Red 
histograms show the responses from 100 randomly instantiated networks with the 
original (fixed) parameters. There is significant overlap in network activity across 
simulations in the perturbed and unperturbed cases indicating that the network 
produces similar activity that is robust to small changes in the model parameters. 
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Chapter 4 A model of learning at 

the parallel fiber - molecular layer 

interneuron synapses 

Theoretical and computational models of the cerebellum typically focus 

on the role of parallel fiber (PF) - Purkinje cell (PKJ) synapses for learned 

behavior, but few emphasize the role of the molecular layer interneurons 

(MLIs) -- the stellate and basket cells. A number of recent experimental results 

suggests the role of MLIs is more important than previous models suggest. We 

investigate learning at PF - MLI synapses and propose a mathematical model 

to describe plasticity at this synapse. We perform computer simulations with 

this form of learning using a spiking neuron model of the MLI and show that it 

reproduces several in vitro experimental results. Further, we show how this 

model can predict the results of other experimental protocols that are not 

simulated and describe how the model could be extended to reproduce the 

receptive field changes of MLIs observed in vivo. Finally, we hypothesize what 

the biological mechanisms are for changes in synaptic efficacy that embody the 

phenomenological model proposed here. 

4.1 Introduction 

The parallel fiber (PF) - Purkinje cell (PKJ) excitatory synapse has 

historically been considered the locus of learning and memory in the cerebellar 

cortex, driven by climbing fiber (CF) inputs (Grossberg, 1969;Marr, 
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1969;Albus, 1971;Ito et al., 2014). While the number of PF-PKJ synapses 

formed and capacity for information storage is massive (Brunel et al., 2004;Ito, 

2006), excitatory inputs to PKJs alone do not explain the bidirectional 

changes in PKJ activity observed during behavior (Miyashita and Nagao, 

1984;Jirenhed et al., 2007) since PKJs fire spontaneously in absence of 

excitatory inputs (Hausser and Clark, 1997;Cerminara and Rawson, 2004). The 

molecular layer interneurons (MLI) -- stellate and basket cells -- also receive 

PF inputs and provide feedforward inhibitory inputs to the PKJs in addition 

to the recurrent inhibitory inputs they form with other MLIs (Eccles et al., 

1967;Palay and Chan-Palay, 1974). Learned changes to PF-MLI and MLI-PKJ 

synapses are postulated to increase the information capacity of the MLI-PKJ 

network and richness of PKJ output dynamics (Albus, 1971;Dean et al., 2010), 

however relatively little is known about plasticity at these synapses. 

There is mounting experimental evidence that MLIs play an important 

role in cerebellar function. Genetically modified mice lacking PKJ gamma-

aminobutyric acid A (GABAA) receptors exhibit significant motor learning 

deficits (Wulff et al., 2009), suggesting a significant functional role for MLI 

feedforward inhibition in motor learning. Further, using optogenetics to 

selectively modulate the firing rates of MLIs via photostimulation elicits 

movement and controls movement kinematics in awake mice (Heiney et al., 

2014). Thus, orchestrated MLI activity is functionally capable of controlling 

the gain and timing of movement components. Understanding the learned 

changes in MLI feedforward inhibition onto PKJs is crucial to understanding 

the learned output of the cerebellar cortex.   

PF-MLI synapses are one such locus of learned changes in MLI-PKJ 

inhibition. Previous in vivo studies showing CF driven changes to the MLI PF 
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receptive fields (RF) led to the hypothesis that concomitant PF and CF 

activation strengthens PF-MLI synapses and PF stimulation alone weakens 

them (Jorntell and Ekerot, 2002;2003;2011). Thus, this form of learning is said 

to be complementary and synergistic to PF-PKJ learning (Gao et al., 2012). 

However, in vitro experimental evidence suggests that bidirectional changes in 

synaptic efficacy can occur in absence of CF activity (Rancillac and Crepel, 

2004;Smith and Otis, 2005;Kelly et al., 2009). 

In this study, we propose a mathematical model of learning at PF-MLI 

synapses that is consistent with in vitro experimental findings. We perform 

computer simulations with spiking neuron models and reproduce a number of 

these in vitro experimental results. Finally, we speculate on the biological 

mechanisms underlying this model and describe future work for extending the 

model to reproduce the receptive field changes seen in vivo. 

4.2 Methods  

4.2.1 Neuron Model 

The MLI neuron model is similar to the neuron model we used in our 

previous simulations (Lennon et al., 2014) except that it excludes inhibitory 

synaptic conductances and includes excitatory synaptic conductances described 

below. Briefly, the MLI is modeled as a conductance-based leaky integrate-

and-fire neuron model (Gerstner and Kistler, 2002) with α-Amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) and N-Methyl-D-aspartic acid 

(NMDA) conductances and an intrinsic depolarizing current which is drawn 

from a gamma distribution, ),(~)( tI
spont  (in units nA), that causes the 
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neuron to fire spontaneously. Actual parameters used are summarized in Table 

4.1. 

)())())(()(())()(())(( tIEtVtgtgEtVtgEtVg
dt

dV
C

spontexcNMDAAMPAahpahpleakleak
  (4.1) 

 
Granule cells were not modeled directly and instead we simulated the 

arrival of PF spikes to PF-MLI synapses according to Poisson statistics with 

variable rate      which is controlled during simulations. 

 
Table 4.1 Summary of simulation parameters. MLI biophysical parameters 
(Midtgaard, 1992;Hausser and Clark, 1997;Carter and Regehr, 2002;Lachamp et al., 
2009) AMPA receptor parameters (Carter and Regehr, 2002;Satake et al., 2012); 

NMDA receptor parameters (Gabbiani et al., 1994);  τn derived by hand to match 

(Carter and Regehr, 2002); κ, β from (Lennon et al., 2014) 

MLI Neuron Parameters  Value 

V
threshold

 (mV)  -53.0  

C (pF)  14.6  

ḡ
leak

 (nS)  1.6  

E
leak

 (mV)  -68.0  

ḡ
AMPA

 (nS)  3.0 

E
exc

 (mV)  0.0 

τ
fast

 (ms)  0.8 

τ
slow

 (ms)  18.0 

α
fast

  0.8 

α
slow

  0.2 

ḡ
NMDA

 (nS) 1.0 

τ
rise

 (ms)  3.0 

τ
decay

 (ms)  40.0 

τ
n
 (ms) 10.0 

ḡ
AHP

 (nS)  50.0  

E
AHP

 (mV)  -82.0  

τ
AHP

 (msec)  2.5  

κ  3.966333  

β  0.006653  
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Table 4.2 Learning Rule Parameters 

Neuron trace and weight update parameters  MLI PF 

  (ms) 60.0 10.0 

  (ms) 15.0 2.0 

    (Hz) 150 300 

  .001 

   0.2 
 

4.2.2 Synaptic conductances 

Model PF-MLI synapses contain both AMPA and NMDA receptor 

conductances. Total AMPA synaptic conductances are computed according to 

Equation 4.2, where 
syn

g is the maximal synaptic conductance, 
i

w is the 

synaptic weight, )(t is the synaptic conductance kinetics function, and )(t
i

  is 

a Dirac delta function for the 
th

i  synapse onto the target neuron, indicating 

whether the presynaptic neuron has spiked at time t. We use the terms 

"synaptic weight", "synaptic efficacy" and "synaptic strength" 

interchangeably. PF-MLI AMPAR conductance rise times are modeled as 

instantaneous increases whereas decay times are modeled as double 

exponentials to approximately fit the prolonged conductances at these 

synapses (Carter and Regehr, 2000) (Equation 4.3).   

 




i

t

iAMPAiAMPAAMPA
dssstwgtg )()()(   (4.2) 

                    
 

     
            

 

     
  (4.3) 

 
PF-MLI synaptic weights are modeled with a fixed minimum value, 

          and a variable component,           that changes according to the 
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weight update equation described in the next section. Equation 4.4 ensures the 

effective synaptic weight,   , lies within the range       . 

                 (4.4) 

 
Voltage sensitive NMDAR conductances are modeled in accordance 

with Equations 5-7 which roughly capture the neurotransmitter availability in 

the synaptic cleft and the opening and closing kinetics of NMDA receptors, 

respectively. Where              ,                is the extracellular 

magnesium concentration, and                 (McCormick et al., 

1993;Gabbiani et al., 1994). The logarithm of      in Equation 4.6 is used for 

numerical stability. 

  

           
   

  
       

 

  

 (4.5) 

  

  
 
                

     
          (4.6) 

                             
      (4.7) 

4.2.3 Neuron Traces 

A trace of the neuron spiking activity is calculated every time step of 

the simulation and used to compute a smooth measure of the instantaneous 

neuron firing rate that is normalized using a neuron specific maximum firing 

rate,     . If the actual firing rate of the neuron exceeded     , the trace is 

truncated to       This results in a unitless measure of the neuron firing 

activity bounded by zero and one, i.e.             . Throughout the paper we 
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refer to this as the neuron "activity trace" or "firing trace". In several figures 

we plot the non-normalized "firing rate trace" (in units Hz) as well. 

      
 
  
    

  
  

     
 (4.8) 

        
 

    
              

 

  

 (4.9) 

4.2.4 Synapse learning rule 

Synapses are updated according to the gated steepest descent learning 

rule (Chen, 2007). The weight update is correlative based on the activity of 

the presynaptic neuron,           , and the difference between the post-synaptic 

activity,              , and a measure of the synaptic strength,     .   is the learning 

rate parameter, and   is a free parameter that is adjusted during certain 

experiments, but is otherwise set to one. A biological interpretation of the 

learning rule can be found in the Discussion. 

      

  
                                   (4.10) 

4.2.5 Software and Data Analysis 

Simulations were performed in Python using BRIAN simulator -- a 

spiking neural network framework (Goodman and Brette, 2009). All 

simulations are performed with a time step of .25 ms using Euler's method for 

integration of differential equations to ensure numerical stability. Data was 

analyzed and plotted using BRIAN Simulator, SciPy, Numpy, Matplotlib, 

Seaborn and homemade software written in Python. Action potentials are 



59 
 

 
 

drawn in plots by inserting a value of 0 mV in recordings of neuron model 

membrane potentials immediately after the model neuron reaches threshold. 

The source code for all experiments will be made freely available online upon 

publication. 

4.3 Results 

4.3.1 Model of Synaptic Plasticity 

Plasticity at the PF-MLI synapses involves several mechanisms that 

produce both pre- and post-synaptic changes (Liu and Cull-Candy, 

2000;Rancillac and Crepel, 2004;Smith and Otis, 2005;Soler-Llavina and 

Sabatini, 2006;Sun and June Liu, 2007;Bender et al., 2009;Kelly et al., 2009). 

Here, we present a phenomenological model of PF-MLI plasticity that is a 

function of PF and MLI activity and a measure of the synaptic efficacy, w.  

While we mainly focus on evidence for post-synaptic plasticity, it is expected 

that this model also accounts for pre-synaptic changes in synaptic efficacy in 

physiologically realistic conditions. Post-synaptic plasticity involves changes in 

the AMPA receptor phenotype composition (Liu and Cull-Candy, 2000;Liu 

and Cull-Candy, 2002;Liu and Savtchouk, 2012). Both LTP and LTD are 

observed and dependent on post-synaptic calcium signaling (Liu and Cull-

Candy, 2000;Rancillac and Crepel, 2004;Smith and Otis, 2005). 

We hypothesize that activity-dependent post-synaptic Ca2+ transients 

induce changes in post-synaptic plasticity. These transients can induce both 

LTD and LTP, dependent on a dynamic cytosolic Ca2+ threshold. We roughly 

capture the effects of activity dependent calcium transients as unit-less traces 

of the pre- (         ) and post-synaptic activities (           ), and the dynamic 
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threshold as a variable synaptic strength, w, multiplied by a variable scaling 

factor  . For the purpose of these simulations,     unless otherwise stated.   

serves as a learning rate and is typically small,         This learning rule is 

also known as gated steepest descent (Chen, 2007) and is similar to the BCM 

learning rule (Bienenstock et al., 1982) and mechanistic models of calcium-

dependent synaptic plasticity (Shouval et al., 2002).  

  

  
                            (4.11) 

Due to   serving as a dynamic threshold for plasticity, this learning 

rule exhibits LTP when             and               , and LTD when             

and                and is self-stabilizing so that synaptic weights do not "blow 

up". The effect of this learning rule can be seen as   "chasing" the value of 

           , when the presynaptic activity is non-zero, i.e.            , and the pre-

synaptic activity serves as a dynamic learning rate. The learning rule is 

Hebbian in the sense that it is the sum of a correlative term,                     , and 

a weight decay term,             , which can be seen by multiplying the pre-

synaptic activity term through. The model of synaptic efficacy implemented 

for the simulations described next has a fixed component to simulate a 

minimal synaptic efficacy and a variable component that is governed by 

Equation 4.11. 

4.3.2 Simulation Results 

In this section, we present the results of computer simulations 

implementing this learning rule at PF-MLI synapses. The simulations consist 
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of a single MLI spontaneously firing at about 30 Hz (simulating isolation from 

all inhibitory synaptic currents) with either a single PF or a bundle of 8 PFs 

forming synapses onto the MLI. Input spikes from PFs are modeled according 

to Poisson statistics with a variable rate which is controlled during the 

simulation. PF spikes produce both AMPA and NMDA conductances 

(described in Methods) in the MLI. In simulations I-IV, we simulate novel 

protocols to demonstrate the variety of synaptic weight changes depending on 

pre- and post- synaptic activities. In these simulations  the simulated MLI 

receives only one PF input. In simulations V-X, we attempt to replicate the 

plasticity inducing protocols from a number of in vitro experiments and show 

that the simulations reproduce similar changes in synaptic efficacy. Table  4.3 

summarizes the simulation protocols and results while Table  4.4 summarizes 

the corresponding in vitro experiments and interpretations in terms of this 

learning rule. 
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Table 4.3 Summary of Simulations 

Simulation Simulation Protocol Result Figure(s) 

I 
Single PF bursts at 100 Hz, isolated MLI 
fires spontaneously at baseline. n=10 

LTP 4.1,4.2 

II 
Single PF fires continuously at 10Hz with a 
depolarizing current injected into an 
isolated MLI. n=10 

LTP 4.2, S1 

III 
Single PF fires continuously at 10Hz with a 
hyperpolarizing current injected into an 
isolated MLI. n=10 

LTD 4.2,S2 

IV 
Single PF fires continuously at 2Hz, 
isolated MLI fires spontaneously at 
baseline. n=10 

--- 4.2, S3 

V 
A bundle of 8 PFs fires at 50 Hz while the 
target MLI is voltage clamped to -60 mV. 

LTD 4.3, 4.5 

VI 
A bundle of 8 PFs fires 100 Hz bursts while 
the target MLI is current clamped to -80 
mV. 

LTP 4.4, 4.5 

VII 
A bundle of 8 PFs fires at 1 Hz while the 
target MLI is current clamped to -80 mV. 

LTD 4.5, S4 

VIII 
A bundle of 8 PFs fires at 2 Hz while the 
target MLI is injected with a depolarizing 
current. 

LTP 4.5, S5 

IX 
A bundle of 8 PFs fires at 1 Hz while the 
MLI fires spontaneously and the weight 

update parameter   is increased to      . 
LTD 4.5,S6 

X 
A bundle of 8 PFs fires at 1 Hz while the 
MLI fires spontaneously and the weight 

update parameter   is decreased to      . 
LTP 4.5,S7 

 

4.3.2.1 Simulation I: High-frequency PF bursts induce LTP in 

spontaneously firing MLIs 

Simulation I investigates the effects of PF burst stimulation on the 

firing rate of a spontaneously firing isolated MLI and the consequent changes 

to synaptic efficacy. The simulation begins with a five second baseline period 

where the MLI and PF fire spontaneously at their baseline rates of 30 Hz and 

.33 Hz respectively (Figure 4.1). After five seconds, the PF is then stimulated 

to fire approximately 100 Hz bursts (according to Poisson statistics) for 100 

ms every one second. Each one second period starting after the baseline period 

constitutes one trial and 60 trials are simulated for a total simulation time of 
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65 seconds. The simulation is repeated independently ten times (n=10); Figure 

4.1 shows the first 10 seconds of an example of one simulation. A recording of 

the MLI voltage is shown in the top panel (red) and a non-normalized firing 

rate trace is shown in the middle panel below (red). This firing rate trace is 

divided by a maximum firing rate parameter to normalize its value between 

[0,1] yielding             which is used in the weight update equation (described in 

Methods).  A non-normalized trace of the PF firing rate is shown in the 

bottom panel (blue). The value of the synaptic strength,  , starts near its 

equilibrium value (where                when PF stimulation is low but non-zero) 

and is plotted in the bottom panel (green). PF bursts increase the MLI firing 

rate above its baseline value. During periods where PF activity is non-zero and 

where the normalized MLI firing activity (not shown) is greater than the 

variable weight component,   , the synapse strengthens. The PF activity serves 

two functions: first to increase the MLI firing rate, and second to gate 

plasticity. The trajectory of the synaptic weight across trials and averaged 

over independent simulations is shown in Figure 4.2. One important feature of 

this learning rule is that the synaptic weight asymptotes instead of "blowing 

up" and is thus stable compared to a purely Hebbian rule. The asymptote is 

the result of the synaptic weight catching up to the MLI activity -- as it gets 

closer, the change in synaptic efficacy is smaller. 
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Figure 4.1 Simulation I: PF-driven long term potentiation. An example of one 
simulation run with an isolated MLI firing spontaneously (red traces; top panel: 
membrane potential; middle panel: firing rate trace) which receives one PF input 
(blue trace). Only the first 10 seconds of the simulation are shown. The value of the 
synaptic strength, w, is shown in green in the lower panel and begins near its 
equilibrium value. During the first five seconds both PF and MLI firing at baseline at 
about .33 Hz and 30 Hz, respectively. After five seconds, the PF fires 100 Hz bursts 
for 100 ms every one second. Starting at five seconds, each one second interval is 
considered a trial. The increased PF firing causes the MLI to increase its firing rate; 
at the same time, the synaptic weight, w, increases to compensate for the difference 
between the normalized MLI firing rate and the current value of w. 
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Figure 4.2. Summary of Simulations I-IV. The left panel shows the mean (solid lines) 
and range (shaded regions) percent change of synapse weight from starting values at 
the end of each trial across all simulated neurons (n=10) for a particular simulation. 
For simulation I where the PF is stimulated to fire 100 Hz bursts for 100 ms every 
one second (i.e. one second trials), the synapse weights reach an equilibrium value of 
about 20% greater than starting values. The right panel shows the final mean (bar 
height) and range (black error bar) of weight values normalized to their starting 
values for each simulation. 

4.3.2.2 Simulation II: Continuous 10 Hz PF firing with paired MLI 

depolarizing current injection induces LTP 

Simulation II investigates the effects of a continuous 10 Hz stimulation 

of the PF with a paired depolarizing current injected into the MLI. Similar to 

the previous simulation, a 2.5 second baseline period is simulated where both 

PF and MLI fire spontaneously. Beginning at 2.5 seconds the MLI is injected 

with a constant depolarizing current sufficient to increase the MLI firing rate 

to approximately 40 Hz. Beginning at 5 seconds, the PF is continuously 

stimulated to fire at approximately 10 Hz (according to Poisson statistics) for 

the remainder of the simulation, 60 seconds (Supplementary Figure 4.6, 

analogous to Figure 4.1). Thus, the total simulation time is 65 seconds and we 

again refer to the one second periods beginning at 5 seconds as trials. Because 

the PF firing rate is non-zero and the MLI firing rate increases above baseline, 

the synaptic weight increases (Figure 4.2). 
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4.3.2.3 Simulation III: Continuous 10 Hz PF firing with paired MLI 

hyperpolarizing current injection induces LTD 

Simulation III is identical to simulation II, except that a constant 

hyperpolarizing current is injected into the MLI to reduce its firing rate to 

approximately 10 Hz beginning at 2.5 seconds. Again, the PF is stimulated 

continuously to fire at approximately 10 Hz beginning at 5 seconds and 

continuing for 60 seconds. During this period, where non-zero PF activity 

gates plasticity, the synaptic weight decreases since the MLI activity is below 

the synaptic weight value (Figure 4.2; Supplementary Figure 4.7). 

4.3.2.4 Simulation IV: Low-frequency PF stimulation with spontaneous 

MLI firing results in unremarkable changes in synaptic efficacy 

Simulation IV investigates the effect of a constant low frequency 

stimulation of the PF (2 Hz) while the MLI fires spontaneously at its baseline 

rate of 30 Hz. Similar to simulation I, a 5 second baseline period is simulated 

where the PF and MLI fire at .33 Hz and 30 Hz, respectively. After 5 seconds, 

for another 60 seconds, the PF fires at 2 Hz (according to Poisson statistics). 

Since this PF firing rate does not sufficiently change the MLI firing rate and 

the weight value begins near equilibrium for baseline PF and MLI rates, the 

synaptic weight value does not change remarkably (Figure 4.2; Supplementary 

Figure 4.8). 

4.3.2.5 Simulation V: PF bundle stimulation at 50 Hz with paired MLI 

voltage clamp induces LTD 

Simulation V emulates the experimental conditions from Liu and Cull-

Candy (2000) used to induce PF-MLI LTD. Table  4.4 summarizes the 

experimental protocols. The simulation models a single isolated MLI with eight 
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PF inputs to emulate the effect of stimulating a bundle of PFs with an 

electrode in vitro. The simulation begins with a 2.5 second baseline period 

where the PFs and MLI fire at baseline rates of .33 Hz and 30 Hz, respectively 

(Figure 4.3). At 2.5 seconds, the MLI is then voltage clamped to -60 mV.  At 

5 seconds, the PFs are stimulated to individually fire at approximately 50 Hz 

(according to Poisson statistics) which continues for 60 seconds. As before, 

each one second interval starting at 5 seconds is considered a trial to allow 

comparison among simulations. Concomitant with the activation of PFs, the 

synaptic weights decrease since the MLI firing activity is effectively zero, 

below the value of the synapse weight. Figure 4.3 depicts these changes, where 

figure conventions are the same as before except that the weight trace is the 

mean weight of all PF synapses impinging on the MLI and only one example 

PF trace is shown. The trajectory of the mean and range of synaptic weights 

onto this MLI is summarized in Figure 4.5. The synaptic weight 

asymptotically decreases to the minimum weight value,   . The synaptic 

weight decrease in the simulation is consistent with the observed decrease in 

synaptic efficacy by Liu and Cull-Candy (2000).  
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Figure 4.3. Simulation V: Voltage clamping MLI induces PF-MLI LTD. An isolated 
MLI fires spontaneously for the first 2.5 seconds of the simulation and is then voltage 
clamped to -60 mV for the remainder of the simulation. Starting at 5 seconds, each 
PF in the bundle fires at 50 Hz. Figure conventions are the same as Figure 4.1 except 
that the mean synaptic weight value across all PF synapses converging onto this MLI 
is shown (green) and only one sample PF trace is shown (blue). Between 2.5 and 5 
seconds, the synaptic weights do not change significantly since the PFs are firing at a 
low .33 Hz. However, once the PFs begin firing at 50 Hz, the synaptic weight 
decreases rapidly since the normalized value of MLI firing is effectively 0 and below 
the synaptic weight value. This simulation attempts to reproduce the experimental 
results of Liu and Cull-Candy (2000). 

4.3.2.6 Simulation VI: PF bundle burst stimulation with paired MLI 

current clamp induces LTP 

Simulation VI models the experimental protocol used by Smith and 

Otis (2005) to induce PF-driven LTP at PF-MLI synapses. A single isolated, 

spontaneously firing MLI receiving eight PF inputs is simulated. The 

simulation begins with the MLI and PFs firing at their baseline rates of 30 Hz 

and .33 Hz, respectively (Figure 4.4). After 2.5 seconds, a constant current is 
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injected into the MLI to hold it near -80 mV. Beginning at 5 seconds, each PF 

is stimulated to fire at 100 Hz (according to Poisson statistics) for 100 ms 

every one second and continues for 60 seconds. Despite being injected with a 

hyperpolarizing current, the cumulative PF input is sufficient to cause the 

MLI to depolarize and fire action potentials, raising the MLI activity trace 

from near zero to above the original weight equilibrium values when both PF 

and MLI fire spontaneously. Thus, the synaptic weights increase during these 

periods of PF activity and results in a cumulative LTP (Figure 4.5). 

 

Figure 4.4 Simulation VI: Current clamping MLI with PF bursting results in LTP. 
An isolated MLI fires spontaneously for the first 2.5 seconds of the simulation and is 
then injected with a constant current to keep the membrane potential near -80 mV 
for the remainder of the simulation. Starting at 5 seconds, each PF in the bundle fires 
100 Hz bursts for 100 ms every one second. Figure conventions are the same as Figure 
4.3. Synchronous PF burst firing is sufficient to depolarize the MLI and cause it to 
fire. During periods where the PFs are active, the MLI firing rate trace rises above 
the value of the synaptic weight and thus results in an increase in the synaptic 
weight, i.e. LTP. This simulation attempts to reproduce the experimental results of 
Smith and Otis (2005). 
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4.3.2.7 Simulation VII: PF bundle low-frequency stimulation with paired 

MLI current clamp induces LTD 

Simulation VII models a different experimental protocol used by Smith 

and Otis (2005) which was shown to induce PF-MLI LTD. The simulation 

protocol is identical to the one described for simulation VI except that each 

PF is stimulated to produce 2 Hz firing continuously (Supplementary Figure 

4.9) beginning at 5 seconds. The low frequency spike inputs from all 8 

simulated PFs is insufficient to regularly depolarize the MLI. Thus, the MLI 

activity trace remains zero while the PF activity trace is briefly greater than 

zero for short periods of time. The cumulative effect is a decrease in the mean 

PF-MLI synaptic strength, i.e. LTD (Figure 4.5). 
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Figure 4.5. Summary of Simulations V-X. Top panel depicts the mean (solid lines) 
and range (shaded) percent weight change of synaptic weights converging onto the 
MLI at the end of each trial for simulations V-VIII. Middle panel shows the mean 
(solid lines) and range (shaded) percent weight change of synaptic weights converging 
onto the MLI at the end of each minute of simulation time for simulations IX and X. 
The bottom panel compares the final mean normalized synaptic weights at the end of 
the simulation for each simulation (bar height) and range of values (black error bars). 
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4.3.2.8 Simulation VIII: PF bundle low-frequency stimulation with paired 

MLI depolarizing current injection induces LTP 

Simulation VIII attempts to model one of the experimental protocols 

used by Rancillac and Crepel (2004) which results in PF-MLI LTP. The 

protocol consists of an induction period of low-frequency (.33 Hz) stimulation 

of the PF bundle for 8 minutes while simultaneously holding the MLI in 

voltage clamp at -60 mV. After the induction period, the PFs are stimulated 

to fire at 2 Hz while the MLI is depolarized to 0 mV for 60 seconds. We 

hypothesized that during this induction period the synaptic efficacy would 

decrease from its previous equilibrium value since the PF is somewhat active 

and the MLI is in voltage clamp. To investigate this in the simulation, we 

begin the simulation with the MLI in voltage clamp at -60 mV and the 

synaptic weight at a lower value than previous experiments. The MLI is held 

in voltage clamp for the first 5 seconds of the simulation while the PFs fire 

spontaneously around .33 Hz. After 5 seconds, the MLI is injected with current 

to fire at 50 Hz. Since holding the simulated MLI at 0 mV would not result in 

spiking and thus a zero value for the activity trace, we chose to inject current 

to depolarize the neuron to fire at 50 Hz and produce a non-zero activity trace 

as a surrogate. The result of the simulated protocol is that the MLI activity 

trace value is greater than the synaptic weight and thus a strengthening of the 

synapse occurs (Figure 4.5). This is consistent with the result of Rancillac and 

Crepel (2004). 

4.3.2.9 Simulation IX & X: Simulating changes in 'basal tone' induces 

bidirectional changes in synaptic efficacy 

Metabotropic 1 glutamate receptors (mGluR1) and gamma-

aminobutyric acid B receptors (GABABR) found in MLIs are tonically active 
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and their level of activity sets the ‘basal tone’ for PF-MLI EPSC amplitude in 

vitro (Kelly et al., 2009). Simulations IX and X reproduce the effects of 

modulating the activity of these metabotropic receptors in vitro using chemical 

agonists and antagonists by modifying   in the synaptic weight update rule. 

By increasing  , the MLI activity level needed to surpass the    threshold for 

LTP is increased. Thus, if   begins near its equilibrium value for baseline PF 

and MLI activity and   is increased,   will decrease to reach a new 

equilibrium. In Simulation IX, 8 PFs connected to a MLI all fire spontaneously 

at baseline rates of .33 Hz and 30 Hz, respectively, and the synaptic weights 

begin near their equilibrium values. Starting a five seconds, and continuing for 

10 minutes,   is raised from       to      . The result is a gradual decay 

in the synaptic weight (Figure 4.5) which is consistent with observed LTD 

when applying mGluR1 and GABABR agonists in vitro  (Kelly et al., 2009). 

Conversely, in Simulation X, by decreasing   from       to         

increases to reach a new equilibrium, reproducing the effects of applying 

chemical antagonists of applying mGluR1 and GABABR antagonists in vitro  

(Kelly et al., 2009). 

4.4 Discussion 

In this study, we present a mathematical model of plasticity at PF-MLI 

synapses that describes bidirectional changes in synaptic efficacy as observed 

in vitro. The current model depends only on the pre- and post-synaptic 

neuronal activity and a dynamic threshold partly determined by a measure of 

synaptic efficacy. The dynamic threshold enables bidirectional changes in 
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efficacy and is inherently self-stabilizing. We show via computer simulations 

that the model reproduces similar changes in synaptic efficacy as observed in a 

variety experimental results. In addition, we simulate novel protocols which 

serve as predictions to be validated by future experimental investigation. 

 
Table 4.4 Summary of Experimental Results 

Sim. Ref. 
Experimental 
Protocol 

Result Interpretation 

V 

Liu 
and 
Cull-
Candy 
(2000) 
 

In vitro, MLI voltage 
clamped at -60 mV. 
300 PF stimuli 
delivered @ 50 Hz. 
Bicuculline, 
picrotoxin, D-APV5.  

LTD  

Holding the MLI in 
voltage clamp prevents 
its spontaneous activity 
and prevents inward Ca2+ 

currents  (↓MLI). PF 
stimulation at 50 Hz 
increases PF activity 

above baseline (↑PF). 

Δw = ↑PF(↓MLI-w) < 0  

VI 

Smith 
and 
Otis 
(2005) 
 

In vitro, MLI current 
clamped at -80 mV. 
PFs stimulated (3-10 
PFs)  with 10 pulses 
at 100 Hz every 3 
seconds for 5 
minutes. Picrotoxin 
in bath.  

LTP  

Sufficient PF stimulation 

(↑PF) increases MLI 

activity (↑MLI) since 
current clamp allows the 
membrane potential to 
fluctuate. 

Δw = ↑PF(↑MLI-w) > 0  

VII 

Smith 
and 
Otis 
(2005)  

In vitro, MLI current 
clamped at -80 mV. 
PFs stimulated (3-10 
PFs)  with at 1 Hz 
for 5 min. Picrotoxin 
in bath.  

LTD  

Low frequency PF 
stimulation is a slight 
increase in PF activity 

(↑PF) but insufficient to 
increase MLI activity 
which is held in current 

clamp (↓MLI) 

Δw = ↑PF(↓MLI-w) < 0  

Similar 
to IV 

Rancil
lac 
and 
Crépel 
(2004)  

In vitro, MLI voltage 
clamp at -60 mV. 
Bicuculline in bath.  
Induction protocol of 
PF stimulation at 
.33 Hz for 8 minutes, 
then PF stimulated 
at 2 Hz for 60 
seconds.  

LTP/-
/LTD  

The induction protocol 

initially shifts ↓w to a 
new value w* since 

↓MLI. The plasticity 
protocol then increases 

PF activity (↑PF). 

Δw = ↑PF(MLI-w*) ≈ 0  
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Table 4.4 Summary of Experimental Results....................................., continued 

Sim. Ref. 
Experimental 
Protocol 

Result Interpretation 

VIII 

Rancil
lac 
and 
Crépel 
(2004) 

In vitro, MLI voltage 
clamp at -60 mV. 
Bicuculline in bath.  
Induction protocol of 
PF stimulation at 
.33 Hz for 8 minutes, 
then PF stimulated 
at 2 Hz for 60 
seconds with a 
paired MLI 
depolarization at 0 
mV  

LTP/-  

The induction protocol 

initially shifts ↓w to a 
new value w* since 

↓MLI. The plasticity 
protocol then increases 

PF activity (↑PF) and 
admits more Ca2+  
possibly via NMDARs 

and VGCCs (↑MLI). 

Δw = ↑PF(↑MLI-w*) > 0  

--- 

Sun 
and 
Liu 
(2007)  

In vitro, MLI held at 
-70 mV during 
stimulation followed 
by brief 
depolarization to 0 
mV. GYKI in path 
(AMPAR blocker). 
PF 4 stimuli @ 50 
Hz, 100 sweeps.  

LTD  

High frequency PF bursts 

(↑PF) paired with brief 
MLI depolarization, leads 
to spillover activation of 
NMDARs and limited 
Ca2+ influx via NMDARs.  
Since CP-AMPARs are 
blocked and MLI 
spontaneous activity is 
prevented via voltage 
clamp, the overall Ca2+ 

transient  is below 

threshold (↓MLI). 

Δw = ↑PF(↓MLI-w) < 0 

IX 
Kelly 
et al. 
(2009)  

In vitro, MLI voltage 
clamped at -60 mV. 
D-APV5, bicuculline 
in bath. Either 
DHPG (mGluR1 
agonist) or baclofen 
(GABABR agonist) 
added.  

LTD  

Increasing mGluR Group 

I activity (↑mGluR) can 
be interpreted as 
increasing PF activity 

(↑PF). Additionally, 

↑mGluR may directly 
increase the intracellular 
Ca2+ threshold required 

for plasticity (↑w). 
Increasing GABABR 

(↑GABABR) enhances 
mGluR activity, and a 
similar result holds.  

Δw = ↑PF(MLI-↑w) < 0 
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Table 4.4 Summary of Experimental Results....................................., continued 

Sim. Ref. 
Experimental 
Protocol 

Result Interpretation 

X 
Kelly 
et al. 
(2009)  

In vitro, MLI voltage 
clamped at -60 mV. 
D-APV5, bicuculline 
in bath. Either 
LY367385 (mGluR1 
antagonist) or 
CGP62349(GABABR 
antagonist) added.  

LTP  

Decreasing mGluR 

activity adjusts the ‘basal 

tone’ by shifting the 
intracellular Ca2+ 
threshold for plasticity 

(↓w).  Ambient 
glutamate allows some 
Ca2+ to still flow into the 
MLI. Since GABABR  
enhances mGluR 

activity, ↓GABABR 

causes  ↓mGluR, thus 

↓w. 

Δw = PF(MLI-↓w) > 0 
 

4.4.1 Biological mechanisms of the model 

The model presented in this study is a phenomenological description of 

plasticity that is a function of PF and MLI spiking activity and a measure of 

synaptic efficacy. This model serves as a high-level surrogate for describing 

plasticity until the detailed biological mechanisms are modeled directly. In this 

section, we speculate on what the underlying mechanisms are which give rise 

to this phenomenological description.  

Plasticity at the PF-MLI synapses involves several mechanisms that 

produce both pre- and post-synaptic changes (Liu and Cull-Candy, 

2000;Rancillac and Crepel, 2004;Bender et al., 2009). While we mainly focus 

on evidence for post-synaptic plasticity, it is expected that this model also 

accounts for pre-synaptic changes in synaptic efficacy in physiologically 

realistic conditions. Post-synaptic PF-MLI plasticity involves changes in the 

AMPA receptor (AMPAR) phenotype composition (Liu and Cull-Candy, 

2000). Stellate-type MLIs, and presumably basket-type MLIs, express 
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glutamate receptor 2 (GluR2) lacking calcium-permeable AMPARs (CP-

AMPARS) and GluR2-containing calcium-impermeable AMPARs (CI-

AMPAR) and have been shown to make an activity dependent switch from 

CP- to CI-AMPARs (Liu and Cull-Candy, 2000, 2002; Kelly et al., 2009). CP-

AMPARs admit more charge at negative potentials (Liu and Cull-Candy, 

2000) so a switch from CP- to CI-AMPARs results in a functional decrease in 

the strength of this synapse. Thus, the mixture of CP/CI-AMPARs at the 

post-synaptic density determines the excitatory post-synaptic potential 

(EPSC) amplitude, or 'basal tone', of the synapse. Additionally, the level of 

tonic activation of mGluR1 and GABAB receptors influence the basal tone of 

the synapse (Kelly et al., 2009). Both activity dependent LTP and LTD at 

this synapse are observed and are post-synaptic calcium signaling dependent 

(Liu and Cull-Candy, 2000;Rancillac and Crepel, 2004;Smith and Otis, 

2005;Sun and June Liu, 2007).  

We hypothesize that activity-dependent post-synaptic Ca2+ transients 

initiate changes in synaptic efficacy. These transients could induce both LTD 

and LTP dependent on a dynamic cytosolic Ca2+ threshold which could be 

reflected in the level of intracellular calcium stores. In the model proposed 

here, the dynamic threshold is captured by   , where   captures the strength 

of the synapse in terms of CP- and CI-AMPAR makeup, and   captures the 

effects of basal activity levels of metabotropic receptors involved in AMPAR 

phenotype composition. CP-AMPARs are one source of calcium influx. Indeed, 

the change in AMPAR phenotype composition could provide one mechanism 

for governing bidirectional changes in plasticity. The upper limit on synaptic 

efficacy could be governed by the dependence on sufficient amounts of calcium 
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influx simply to maintain the phenotype composition of the synapse since 

stronger synapses may require increasingly greater post-synaptic calcium 

concentrations simply to maintain or increase the strength of the synapse 

during periods of PF activation. This limit may be further enhanced by partial 

block of calcium influx through CP-AMPARs during physiologic activation 

due to intracellular polyamines (Bats et al., 2013). The lower limit on synaptic 

efficacy could be governed by the dependence of the CP- to CI-AMPAR switch 

on calcium influx through CP-AMPARs (Liu and Cull-Candy, 2000;Gardner et 

al., 2005;Liu and Cull-Candy, 2005). 

NMDARs are another source of calcium influx for signaling changes in 

plasticity which are MLI activity dependent. Indeed, blocking NMDARs 

prevents LTP and even uncovers some LTD during PF stimulation in vitro 

(Rancillac and Crepel, 2004;Smith and Otis, 2005). MLI NMDARs are located 

extrasynaptically (Clark and Cull-Candy, 2002) and can be activated by a 

single PF firing at a sufficiently high frequency (Nahir and Jahr, 2013). Since 

PFs fire high-frequency bursts in physiologically realistic conditions 

(Chadderton et al., 2004;van Beugen et al., 2013), PFs likely activity 

NMDARs in vivo when firing bursts. Furthermore, climbing fibers (CFs) 

activate MLIs exclusively via glutamate spillover (Szapiro and Barbour, 2007) 

and CF mediated EPSCs have a significant NMDAR-mediated component 

(Coddington et al., 2013). Thus, CFs may play a special role in gating calcium 

influx and biasing plasticity towards LTP in vivo. This is consistent with 

adaptive filter models of cerebellar learning which require correlated PF and 

CF firing to induce LTP at these synapses (Dean et al., 2010). 

The proposed model is also a function of PF and MLI activity which is 

a normalized, unit-less trace of the spiking activity of these neurons. Calcium 
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signals could be the common mechanism of conveying this activity. MLI 

somatic calcium concentrations change slowly as a function of the firing rate of 

these neurons (Franconville et al., 2011) and dendritic calcium concentrations 

are regulated by somatic spikes (Myoga et al., 2009). Thus, the firing rate of 

MLIs could produce a global time-varying calcium concentration in the 

dendrites of MLIs. Similarly, PF traces could be implemented using calcium 

signals since physiological PF firing results in prolonged glutamate 

conductances, and thus calcium influx, at MLI synapses (Carter and Regehr, 

2000). Furthermore, changes in PF-MLI synapses are input-specific due to 

localized synaptic Ca2+ signaling in MLI dendrites (Soler-Llavina and Sabatini, 

2006). Thus, a synapse specific trace of PF activity may use a sustained level 

of glutamate at the synapse and local calcium concentrations in the post-

synaptic membrane.  

4.4.2 Limitations of the model 

The model is limited to describing plasticity at the level of pre- and 

post-synaptic activities and is thus unable to simulate certain physiological 

conditions from past experimental protocols (Table  4.4). In particular, 

calcium currents from AMPARs and NMDARs are not directly accounted for 

in this model and their influence is based on their collective ability to 

depolarize the MLI. This makes simulating chemical NMDA channel block and 

voltage-dependent calcium conductances, such as holding the MLI in voltage 

clamp at 0 mV, (as in Simulation VIII) impossible. In addition, the effect of 

modulating metabotropic receptor activities and their downstream effects 

cannot be modeled directly. The model is also unrealistic in that changes in 

synaptic efficacy happen instantaneously whereas changes in vitro and in vivo 
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continue to take place for several minutes after stimulation (Rancillac and 

Crepel, 2004;Smith and Otis, 2005). 

4.4.3 Related models of plasticity 

BCM theory (Bienenstock et al., 1982) is a model of plasticity used to 

describe activity dependent synaptic changes in the visual cortex which also 

employs a dynamic threshold to induce bidirectional changes in synaptic 

efficacy. Using the BCM model in lieu of the gated steepest descent model 

would not reproduce all of the experimental results described here. This can be 

seen using Simulation V as an example. Using a trace of MLI spiking for the 

post-synaptic activity in the BCM weight update equation would result in no 

weight change when the MLI is held in current clamp since this trace is 

effectively zero and all other terms of the weight update equation are 

multiplied by this term. 

A number of other models of cerebellar learning have either explicitly or 

implicitly modeled learning at PF-MLI synapses, but most of these models 

were proposed before any experimental evidence describing plasticity at this 

synapse existed. Kenyon (1997) proposed a model where changes in PF-PKJ 

synapses are consolidated into long-term memories at PF-MLI synapses, but 

the weight update equation used doesn’t appear to be consistent with 

experimental evidence. Albus (1971) also predicted learned changes to PF-MLI 

synapses but suggested that CF inputs act to weaken PF-MLI synapses, 

similar to PF-PKJ synapses. Adaptive filter models of cerebellar learning have 

been proposed that use positive and negative values for adaptive weights 

which implicitly defines plasticity at MLI synapses that is complementary and 

synergistic to PF-PKJ learning (Dean et al., 2010).  
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Finally, a modified gated steepest descent learning rule has also been 

used to model plasticity at the synapses formed by mossy fibers onto neurons 

in the deep cerebellar nuclei/vestibular (Yamazaki et al., 2015). Simulations 

using this model reproduce post-training memory consolidation in learned gain 

changes of the optokinetic response.  

4.4.4 Extending the model 

Concomitant PF and climbing fiber (CF) activation leads to a drastic 

increase in the PF-MLI receptive field (RF) and subsequent PF stimulation 

alone leads to a decrease in the MLI RF (Jorntell and Ekerot, 2002;2003;2011). 

The increased RF could be due to activation of electrically silent synapses, 

however the mechanisms governing this process are not understood. One way 

to augment the current model is to include a separate equation for plasticity at 

electrically silent synapses that requires concomitant activation of PF and CF 

input in order for a synapse to become electrically active. In simulations, this 

would result in an increase in the number of synapses that depolarize the 

target MLI and an effective increase in the RF size.  

CFs may also influence plasticity at active synapses in two ways: 

indirectly, by increasing MLI firing rates thus favoring LTP, and directly, by 

modulating the threshold for plasticity through   – capturing the effects of 

glutamate spillover and changes in post-synaptic calcium concentration due to 

activation of NMDARs and CP-AMPARs. Note that this would be a separate 

mechanism than modulating metabotropic receptors to modulate  . This could 

be implemented where   is a function of the activity of CFs or the spillover of 

glutamate from CF inputs to the MLI. When CFs are inactive (active) or the 
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volume of glutamate spillover is low (high),   would be high (low). This 

mechanism would bias PF-MLI synapses with concomitant PF and CF 

activation towards potentiation by lowering the threshold in favor of LTP. 

Subsequently, if the PF were active without concomitant CF activation, the 

synapse might weaken since   and thus    is higher than before. This could 

be one mechanism for observing decreases in PF receptive field sizes with PF 

stimulation subsequent to a PF+CF protocol which results in PF receptive 

field increases (Jorntell and Ekerot, 2002). Homeostatic plasticity (Turrigiano, 

2012) such as synaptic scaling may be another mechanism that reduces 

receptive field sizes over time or causes electrically active synapses to become 

inactive. 

The model can also be extended to model calcium concentrations 

directly. Similar models based on BCM theory (Bienenstock et al., 1982) have 

been extended to model plasticity as a function of calcium concentrations 

which include influences from both AMPARs, NMDARs and action potentials 

(Shouval et al., 2002;Yeung et al., 2004). Indeed, the form of the equations 

governing plasticity as a function of calcium concentrations in these models is 

similar to the model presented here. 

4.4.5 Interpretation of experimental results 

A number of in vitro experimental protocols used to induce plasticity at 

PF-MLI synapses can be described in terms of the model presented in this 

study which also correctly predicts the experimental results. We present this 

interpretation and speculate on some of the biological mechanisms responsible 

for plasticity in each case. Table 4.4 summarizes selected experiments and 

their interpretations in terms of this model. 
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Early on, it was shown that high frequency stimulation of PFs while 

holding the MLI in voltage clamp at -60 mV induces a switch from CP- to CI-

AMPARs (Liu and Cull-Candy, 2000), i.e. LTD. This result is predicted by 

the model since holding the MLI in voltage clamp decreases its activity 

relative to baseline (       ), and stimulating PFs increases their activity 

relative to baseline (      );  i.e.                          where 

         . Chelating post-synaptic Ca2+ prevented the switch in AMPAR 

phenotype and resulted in no change in synaptic efficacy, supporting the idea 

that the mechanism of plasticity is calcium signaling dependent. Similarly, a 

separate study showed that a 30 Hz PF stimulation with the MLI held in 

voltage clamp leads to pre-synaptic LTD that is also dependent on post-

synaptic Ca2+ influx (Soler-Llavina and Sabatini, 2006), suggesting a 

complementary form of LTD. While this is a different mechanism, it is 

consistent with the model prediction by the same reasoning.  

In somewhat more realistic physiological conditions, high frequency PF 

burst stimulation was shown to induce LTP in vitro (Smith and Otis, 2005). 

This was demonstrated in two ways. In the first method, MLIs were held in 

current clamp at -80 mV while PFs were stimulated to fire brief high 

frequency bursts at 100 Hz. The bath contained picrotoxin to block inhibitory 

currents into the MLI. Following the plasticity protocol, LTP was measured 

directly by observing an increase in MLI spike firing in response to PF input 

compared to control conditions. In the second method, synaptic changes were 

induced indirectly by stimulating the PFs according to the same protocol but 

in a bath without picrotoxin and then recording responses from PKJs. After 

the protocol, PKJs initially had a higher firing rate due to PF-PKJ LTP, 
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followed by a period of spike depression caused by inhibition, presumably from 

increased MLI feedforward inhibition. Additional experimental evidence 

suggests increased depression appears to be due to PF-MLI potentiation and 

not from MLI-PKJ potentiation. The model predicts LTP in these experiments 

by                          with           since the membrane 

potential of the MLI is able to fluctuate during PF stimulation in contrast to 

the protocol used in (Liu and Cull-Candy, 2000) where it is voltage clamped. 

Using the same LTP-inducing protocol in the presence of NMDAR 

antagonists, LTP is abolished and some LTD is uncovered (Smith and Otis, 

2005). NMDARs are located extrasynaptically and can be activated by a high 

frequency train of PF stimulation (Carter and Regehr, 2000;Clark and Cull-

Candy, 2002). This suggests the 100 Hz stimulation caused spillover activation 

of NMDARs and that this is important for LTP, presumably due to Ca2+ 

influx since chelating post-synaptic Ca2+ also blocked LTP (Smith and Otis, 

2005). Using a low frequency stimulation protocol consisting of PF stimulation 

at 1 Hz for 5 minutes, PF-MLI LTD is observed both directly and indirectly 

(Smith and Otis, 2005). In the indirect case when the MLI is held in current 

clamp, the stimulus may be insufficient to perturb the MLI membrane 

potential significantly or to activate extrasynaptic NMDARs, thus the current 

clamp acts similar to voltage clamp as in previous experiments. The model 

also predicts LTD, i.e.                         . 

Sun and June Liu (2007) investigated the role of NMDARs in the CP- 

to CI-AMPAR switch. To induce this change, MLIs were held in voltage 

clamp at -60 mV while chemically blocking AMPARs; PFs were stimulated to 

produce high frequency bursts that activated NMDARs and were paired with 
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fast, 1 ms, MLI depolarizations to 0 mV to release NMDAR Mg2+ block. A 

Ca2+ dependent CP- to CI-AMPAR switch was observed, suggesting that Ca2+ 

entry through NMDARs provide an additional pathway to induce plasticity at 

the synapse. While Ca2+ enters through NMDARs during the brief 

depolarization, it is insufficient to signal LTP since the normal spiking activity 

of the MLI, and thus cytosolic calcium concentration, is reduced by voltage 

clamp. The model would reflect this as                          

where          .  

Rancillac and Crepel (2004) found that holding the MLI in voltage 

clamp at -60 mV and stimulating PFs at 2 Hz resulted in a mix of LTP and 

LTD at the PF-MLI synapse. One explanation for the mix of LTP/LTD may 

be the result of the induction protocol used which held the MLI in voltage 

clamp at -60 mV while stimulating the PFs at .33 Hz for several minutes; this 

could decrease the synaptic strength and/or the dynamic threshold down 

during this period. During the experiment, the MLI activity is compared to the 

threshold for synaptic plasticity -- for some synapses, the low activation could 

be sufficient to surpass the threshold (         ) and not for others 

(          . Thus, on average                        . In contrast, 

when repeating this stimulation and pairing it with MLI depolarization at 0 

mV more cells underwent LTP, indicating that post-synaptic activity plays a 

role in plasticity, i.e.                         . This form of LTP was 

independent of cAMP but required NO production. In another experiment 

stimulating PFs at 8Hz while holding the MLI in voltage clamp induced a mix 

of LTP or no change in tested synapses, but part of the LTP was cAMP 

dependent (Rancillac and Crepel, 2004). This last result in consistent with 
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(Bender et al., 2009) which showed pre-synaptic LTP dependent on cAMP 

through a similar induction protocol. These results reveal the complexity of 

synaptic plasticity at the PF-MLI synapse consisting of both pre- and post-

synaptic mechanisms induced under artificial physiological conditions.  

Kelly et al. (2009) found that activation of both mGluRs and CP-

AMPARs is necessary and sufficient to drive the CP- to CI-AMPAR subunit 

switch and that activation of GABABR enhances mGluR activity. Adding 

mGluR1 agonists to the in vitro preparation results in LTD at the synapse. A 

similar effect is seen when adding GABABR agonists to the bath. Assuming 

metabotropic receptors act to directly modulate the post-synaptic cytosolic 

calcium threshold used for bidirectional changes in plasticity, the effects of up-

regulating these metabotropic receptor activities can be seen as increasing   in 

the model, i.e.                        . Similarly, adding mGluR1and 

GABABR antagonists results in LTP which can be interpreted as   . 
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4.6 Supplementary Figures 

 

Figure 4.6 Simulation II. Conventions similar to Figure 4.1. See text for description. 
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Figure 4.7 Simulation III. Conventions similar to Figure 4.1. See text for description. 
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Figure 4.8 Simulation IV. Conventions similar to Figure 4.1. See text for description. 
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Figure 4.9 Simulation VII. Conventions similar to Figure 4.3. See text for description. 
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Figure 4.10 Simulation VIII. Conventions similar to Figure 4.3. See text for 
description. 
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Figure 4.11 Simulation IX. Conventions similar to Figure 4.3. See text for description. 
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Figure 4.12 Simulation X. Conventions similar to Figure 4.3. See text for description. 
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Chapter 5 Temporal difference 

learning at parallel fiber - 

molecular layer interneuron 

synapses  

5.1 Introduction 

The cerebellum is involved in producing smooth and coordinated 

movements to achieve the behavioral goals of an organism (Ito  , 2012), but how 

the cerebellar circuitry achieves this is not understood. Achieving this 

performance requires repeated practice with sensory feedback for learning. 

Climbing fibers (CFs) are postulated to be a source of feedback motor error 

signals that enable learning in the cerebellar cortex (Bloedel and Bracha, 

1998), however the method of learning in the cerebellar cortex is still under 

debate. One proposed paradigm is supervised learning (Doya, 1999) where 

climbing fibers convey directional error vectors and synaptic weights change to 

minimize this error signal. Another proposed paradigm is reinforcement 

learning (Swain et al., 2011;Magal, 2013) where climbing fibers convey scalar 

reinforcement or reward signals and synaptic weights change to maximize 

positive rewards or, equivalently, minimize negative rewards. In this study, we 

analytically show that a recently proposed mathematical model of parallel fiber 

(PF) - molecular layer interneuron (MLI) synaptic plasticity can be used to 
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show analytically that these synapses implement temporal difference learning, 

a type of learning used in reinforcement learning systems. 

PF – Purkinje cell (PKJ) synapses are one location for CF-driven 

learning and memory in the cerebellum (Ito et al., 2014). Another, less well-

studied location, is the PF-MLI synapse, where learning adjusts the amount of 

feedforward inhibition onto the PKJs by MLIs (Gao et al., 2012). Previously, 

we proposed a mathematical model of plasticity at the PF-MLI synapse 

(Chapter 4) which reproduces a number of experimental results of plasticity at 

this synapse via computer simulation. The mathematical model for learning at 

electrically active synapses takes the form of the gated steepest descent 

learning rule, a correlative, activity-dependent learning rule that allows for 

bidirectional changes in synaptic efficacy. Using this learning rule, and 

interpreting climbing fiber signals as reinforcement signals, we analytically 

show that PF-MLI synapses can be seen to implement temporal difference 

learning (TD-learning) (Barto et al., 1983;Sutton, 1988). Further, we show 

that the structure cerebellar cortical circuitry can be interpreted as a 

derivative of the Actor-Critic framework proposed by (Barto et al., 1983).  

5.2 Background 

TD-learning is a learning paradigm for iteratively updating an estimate 

of a value that depends on some future value of a signal (Barto, 2007). It is 

used in reinforcement learning to predict the expected value that being in 

some state will lead to a future reward (the signal). Since rewarding signals are 

typically temporally sparse, this paradigm learns to temporally backpropagate 

expectations of the reward to states which likely lead to the reward. Thus, an 

expected reward signal is created that is a function of state and is not 
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temporally sparse. In reinforcement learning, this new expected reward signal 

can be used to learn actions which lead to states with even higher expected 

rewards and ultimately to states with the actual reward. Barto et al. (1983) 

proposed the Actor-Critic Framework to achieve just this. The Actor-Critic 

framework consists of a decoder which receives state (i.e. sensory) information 

about a controlled object as input and transforms it into usable signals, 

       , by the controller. The controller consists of an actor and a critic. 

The actor chooses actions or control signals based on the current state of the 

system,     , which are most likely to lead to reward/reinforcement signals, 

           . The critic receives the actual reinforcement signal and the 

current state information and learns to predict an expected value of reward for 

being in the current state,               , by modifying weights         . 

The critic provides as output to the actor an internal reinforcement signal, 

      (Equation 5.1), used for choosing the optimal actions, where       is 

a discount factor. The internal reinforcement signal consists of the actual 

reinforcement signal, a discounted current value estimate, and the value 

estimate from the moment immediately prior.  

                         (5.1) 

The critic learns to predict as early as possible indications of future 

reward using TD-learning (Equation 5.2).     is a moving average trace of the 

    input to the critic and   is a constant learning rate. 

                                (5.2) 
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The key insight into TD-learning is that by learning to predict future 

predictions of reward, i.e.             , the system learns to predict as 

early as possible any indication of future reward. This can be thought of as 

backpropagating the reward signal across states that likely lead to reward. The 

parameter   results in an extinction of predicted value when external 

reinforcement disappears for a long time. Systems that implement this form of 

learning solve the temporal credit assignment problem of reinforcement 

learning. 

5.3 Results 

To begin, we introduce a model of the activity of MLIs. The firing rate 

of the     MLI is modeled as a linear function of its inputs from a single CF, 

multiple PFs and laterally connected MLIs (Equation 5.3).      is the synaptic 

weight from the     PF to the     MLI;      is the synaptic weight of the     

MLI to the     MLI. MLIs have been shown to form autapses and these are 

included in this formulation (Pouzat and Marty, 1998). MLIs also form gap 

junctions with other MLIs (Rieubland et al., 2014) which are not explicitly 

modeled here but could result in ensembles of MLIs acting in unison. If this 

were the case, we can consider         to be the     MLI ensemble. 

                                         
  

 (5.3) 

A connection can be made to reinforcement learning by drawing an 

isomorphism between the components of the Actor-Critic framework and 

cerebellar circuitry. First, the climbing fiber can be interpreted as the 
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reinforcement signal, since it is known to convey motor error signals (a 

negative reward), is temporally sparse, and involved in learning and memory, 

i.e.           . The granule cell - Golgi cell circuit acts as the decoder, 

receiving sensory information in the form of mossy fibers and passing a state 

signal along as PFs. The PF-MLI synapses learn to compute the discounted 

value estimate, i.e.                    . The recurrent inhibitory 

conductances from other MLIs provide the previous value estimate, i.e. 

                       . Thus, the MLIs can be seen to act as the critic 

and through MLI-PKJ connections provide the internal reinforcement signal to 

PKJs -- the actor. 

                              

                                   
 

        

 

  

Equation 5.4 describes the learning law we proposed previously 

(Chapter 4), where   is a constant learning rate parameter,            is a trace of 

the      PF input,         
     is a trace of the     MLI neuron in the target 

population, and      is the value of the synaptic weight undergoing plasticity 

and it is implicit that this is          . 

                           
           (5.4) 

If we substitute                
    , as described previously, 
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Letting                                      , 

                                     (5.5) 

Thus, we arrive at an equivalent form to the original TD-learning rule. 

5.4 Discussion 

We propose an interpretation of the cerebellum that draws 

correspondences between the Actor-Critic framework (Barto et al., 1983) and 

the functional cerebellar circuitry (Ito, 2006). The main result is that a 

theoretical model of learning at PF-MLI synapses can be seen to implement 

TD-learning.  

The hypothesis that PF-MLI synapses implement TD-learning would 

predict that MLIs learn to predict motor error signals conveyed to the 

cerebellar cortex via climbing fibers. Indeed, a simple experimental paradigm 

exists for testing this prediction and preliminary evidence exists in support. 

The conditioned eyeblink response (CER) is a classical conditioning paradigm 

where an animal is presented with a conditioned stimulus (CS) -- usually a 

tone -- for several hundred milliseconds, and an unconditioned stimulus (US) -- 

usually an air puff to the eye -- for several tens of milliseconds which co-

terminates with the CS (Thompson and Steinmetz, 2009). The CS causes the 

animal to reflexively blink. After many trials, the animal learns to blink in 
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response to the CS before the onset of the US to avoid the aversive US. This 

learned response is cerebellum dependent (McCormick and Thompson, 1984) 

and requires learning an appropriately timed PKJ response to the CS which is 

conveyed via the mossy fiber - parallel fiber input pathway into the cerebellum 

(Jirenhed et al., 2007). The climbing fibers convey the US which can be 

considered a reinforcement signal that reinforces the blink in response to the 

CS. If TD-learning were implemented at PF-MLI synapses, we would expect 

their activity to predict the arrival of the US upon presentation of the CS. 

Indeed, recordings from PKJs suggest feedforward inhibition from these 

neurons precedes the US and causes a decrease in the PKJ activity to 

disinhibits the deep cerebellar nuclei (DCN) which results in an eyeblink 

(Jirenhed et al., 2007). Preliminary evidence of direct recordings from stellate-

type MLIs during this learned behavior also support this, while basket-type 

MLIs which receive PKJ recurrent collaterals synchronize to strongly inhibit 

PKJs immediately before the expected US onset (Halverson et al., 2014).More 

generally, the function of PF-MLI TD learning could be to predict motor 

errors and influence the activity of the PKJs towards choosing the appropriate 

output to mitigate these errors. Additional experimental investigation is 

needed to characterize the time-course of MLIs in naive and trained animal 

behaviors. 

A number of differences between the Actor-Critic framework and the 

cerebellar circuitry exist as described in the Results. First, PKJs also receive 

CF inputs which drive PF-PKJ long term depression at these synapses. 

However, the Actor-Critic framework does not have the reinforcement signal 

conveyed directly to the 'actor'. Second, the output of the 'critic' is used in the 

'actor' learning rule directly and does not directly affect the "activity" of the 
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'actor'. In the cerebellum, MLI output to PKJs provide feedforward inhibition 

to PKJs, directly affecting the PKJ activity. Finally, the model assumes that 

the targets of the PKJ -- the DCN -- are the 'controlled object'. One could 

also consider the network formed by the MLIs and PKJs as the 'critic' and the 

DCN as the 'actor'. Future theoretical work is needed to validate this idea, 

however. 
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Chapter 6 Conclusion and Future 

Work 

For more than 30 years of experimental and theoretical study, the 

molecular layer interneurons have been relegated to the background of 

cerebellar neuroscience. Like many inhibitory interneurons throughout the rest 

of the brain, the MLIs were once thought to simply provide “blanket” 

inhibition to the principal neurons (in this case the Purkinje cells) to prevent 

runaway activity. Through a series of surprising experimental results, the 

MLIs came to the foreground of study and in the past few years have been 

recognized by the cerebellar neuroscience community as playing a critical role 

in cerebellar learning and function. With the advent of new tools such as 

optogenetics and genetic knockouts, the next decade will be an exciting era of 

study of the molecular layer interneurons. 

6.1 Future Work 

Throughout the course of performing research a myriad of possibilities 

for further investigation inevitably present themselves. This section will briefly 

describe the next steps in extending the research described in this dissertation. 

6.1.1 Improvements to the MLI-PKJ network 

A number of improvements can be made to the MLI-PKJ network 

described in Chapter 3 to make it more biologically plausible. These 

improvements should endow the network with greater information processing 
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capabilities whose function can be investigated via simulation. We list a 

number of improvements that can be made below. 

6.1.1.1 Add gap junctions to MLI-PKJ network 

Gap junctions connect nearby MLIs in a patterned way and allow small 

amounts of current to flow between connected neurons (Rieubland et al., 

2014). Gap junctions could enable connected neurons to quickly synchronize 

their activity and enable high frequency oscillations in MLIs. Since MLIs form 

inhibitory synapses with each other, gap junctions could operate like very fast, 

low gain excitatory synapses. This could result in cell assemblies of MLIs that 

become excited in response to stimulus (e.g. a sequence of PF input activity). 

6.1.1.2 Add more realistic connectivity to MLI-PKJ net 

We now know more details about the pattern of synaptic connectivity 

between the MLIs (Rieubland et al., 2014). This should be incorporated into a 

new iteration of the network model and can be done so with relative ease using 

the published code (Lennon et al., 2014) and Brian Simulator framework 

(Goodman and Brette, 2009). 

6.1.1.3 Improve parallel fiber synaptic model: STP and probabilistic 

neurotransmitter release 

Parallel fiber synapses exhibit rapid dynamics whereby increased 

amounts of neurotransmitter are released with shorter intervals between PF 

spikes (Goto et al., 2006;Bender et al., 2009). This phenomenon is known as 

short term plasticity (STP) and probably plays an important role in cerebellar 

information processing. STP has been proposed to act as a filtering mechanism 

for information transmission (Abbott and Regehr, 2004). It may also be 
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involved in producing sequences of activity in the target neuron population -- 

MLIs and PKJs. 

An additional feature present in biologically PF synapses is probabilistic 

release. Biological synapses do not release neurotransmitter in response to the 

arrival of an action potential with perfect fidelity. PFs in particular exhibit 

relatively low probabilities of releasing neurotransmitter (Bender et al., 2009). 

This stochastic component should be included in the synapse model. 

6.1.1.4 Improve neuron models 

More realistic neuron models that capture the morphology and 

membrane dynamics should be incorporated into the model. PKJs are large 

neurons with complex dendritic morphology that most likely endows these 

neurons with powerful information processing capabilities. The PKJ neurons 

simulated in this dissertation are considered point models since they do not 

directly model the volume and morphology of PKJs. By modeling PKJ 

morphology, the model can also take advantage of the diversity of phenotype 

of MLI morphology -- a gradient ranging from basket type to stellate type (see 

Chapter 2 for details). In particular, the model can take advantage of 

axodendritic synapses made by stellate cells onto PKJ dendrites that play a 

role in local information processing in contrast to the more global inhibition by 

basket-type synapses. Modeling membrane dynamics is important to capture 

the transfer function implemented by these neurons. PKJs exhibit dynamics 

where their firing rate can exist in multiple modes: spontaneous firing, 

quiescence and periodic pauses in firing (Engbers et al., 2013). 
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6.1.2 PF-MLI Plasticity 

6.1.2.1 Experimentally test plasticity model prediction 

The model presented in Chapter 4 makes explicit predictions about the 

changes in synaptic efficacy based on different stimulation and MLI activity 

levels. Some experiments that have not been performed in vitro include 

stimulating the PF to a high rate of activity while allowing the MLIs to fire 

spontaneous (not voltage or current clamped). The model predicts a 

potentiation of synapses. Further experiments should investigate the role of 

climbing fiber activity to test whether it modifies the plasticity threshold as 

proposed. 

6.1.2.2 Cerebellum network simulation with PF-MLI learning on multiple 

behavioral tasks 

A full-scale model of the cerebellum should be implemented that 

includes the cerebellar cortex, deep cerebellar nuclei, and inferior olive. A 

starting place is to extend Yamazaki and Nagao (2012) by replacing the MLI-

PKJ network in that model with Lennon et al. (2014) (the code for both 

models is freely available online). We describe preliminary experiments with 

this setup in Appendix A, however the PF-MLI plasticity implemented is not 

consistent with the learning rule proposed in Chapter 4. Finally, modify the 

GR neuron model to exhibit bursting dynamics. This model should be applied 

to learning on multiple behavioral tasks such as the optokinetic response 

(OKR), vestibulo-ocular reflex (VOR) learning, VOR phase reversal, and 

conditioned eyeblink response (CER). The latter is the simplest to implement 

and make predictions for. One prediction is that due to the PF-MLI learning 

rule implemented, MLIs learn to begin firing during the conditioned stimulus 
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and long before the onset of the conditioned stimulus (see Discussion of 

Chapter 5).  

6.1.2.3 Biophysical Model PF-MLI learning 

The PF-MLI learning model presented in Chapter 4 is a 

phenomenological model of learning based on the activities of PF, MLI and CF 

inputs. As such, it is difficult and/or impossible at times to explain the 

mechanisms of plasticity at a biophysical level. The current model should be 

extended to explain changes in synaptic efficacy as a function of changes in 

Ca2+ concentrations and eventually downstream signaling cascades (see 

discussion of Chapter 4). The work of Shouval et al. (2002) should be valuable 

as guidance. 

6.1.3 MLI-MLI and MLI-PKJ Plasticity 

Plasticity is known to occur at MLI-MLI and MLI-PKJ synapses (Gao 

et al., 2012), however a mathematical formulation of learning or “learning rule” 

has not been proposed. Understanding how plasticity is governed at these 

synapses will greatly enrich our understanding of the role of MLIs in cerebellar 

function. While PF-MLI plasticity may capture stimuli statistics and encode a 

control signal as their sequence of activity, this is relatively useless unless it 

appropriately affects PKJ activity. Achieving this requires tuning MLI-PKJ 

synapses. One possible scheme may be that sequences of MLI ensembles may 

encode control signals and MLI-PKJ synapses are tuned to either use or ignore 

them. Thus, understanding plasticity is key to utilizing MLI activity. 
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6.2 The Future 

Computational neuroscience is a promising approach for solving 

problems in intelligent systems, robotics and control. If we understand the 

brain well-enough to simulate it, then endowing machines with brain-like 

capabilities is corollary. The cerebellum is one piece of this puzzle.  

Presently, the human brain is the pinnacle of known intelligence, but 

even mice are more capable than today's best machine learning and control 

algorithms on many tasks. Theoretically, brain simulations will enable 

machines to perceive and understand the world as we do, to control their 

robotic anthropomorphic bodies as we do, and imagine and feel as we do. This 

possibility is both exciting and terrifying. Today, we are just beginning to 

understand the brain well enough to build brain simulations that perceive and 

perform elementary control. True simulated intelligence is probably over a 

century away. However, by understanding the principles of brain function, we 

can design powerful new applications in both perception and control that will 

greatly benefit the world.  

6.3 Farewell 

The cerebellum is a beautiful and fascinating brain structure with 

untold treasures waiting to be discovered. It is a rich system for study that 

provides rigorous training as a theoretical and computational neuroscientist -- 

covering neuroanatomy, neurophysiology, mathematics, and numerical 

methods in an accessible way for rapid progress. My work on the cerebellum 

studying the molecular layer interneurons was largely about overcoming biases 

in the mental models built up by the cerebellum neuroscience community over 
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the past several decades. I should state that even my own mental model of 

cerebellar function (see Chapter 2) excludes exhaustive understanding of a 

number of neuron types in the cerebellum; namely, unipolar brush cell and 

Lugaro cells. So, I too fall victim to certain biases. More generally, my mental 

model does not fully incorporate the role of certain connections and nuclei, 

sometimes due to lack of data. In particular, further investigation into the 

pontine nuclei, parvocellular red nucleus and inferior olive will likely lead to 

surprising results. I leave it to the next scientist to expose these biases and 

build upon the best models available at that time. 

And that’s all I have to say about that. 
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Appendix A  Cerebellum 

network simulations with parallel 

fiber plasticity 

We simulated a learned optokinetic response (OKR) using the network 

model from Yamazaki and Nagao (2012) but replacing the MLI-PKJ network 

with the one described in Lennon et al. (2014). We simulate learning at PF-

PKJ and PF-MLI synapses. The learning rule for PF-MLI synapses is 

complementary and synergistic to learning at PF-PKJ synapses, a theory 

espoused by some (Gao et al., 2012); however, it is not the learning rule 

described in Chapter 4. 

A.1 Introduction 

The functional role of the molecular layer interneurons (MLIs) (basket  

and stellate cells) in the cerebellar cortex is poorly understood. Experimental 

evidence from genetically modified mice lacking MLI feedforward inhibition 

onto Purkinje cells (PKJs) show significant impairments in their ability to 

consolidate VOR gain down learning over 24 hours and their ability to learn 

VOR phase reversals (Gao et al., 2012). These deficits suggest a significant 

role for MLIs in cerebellar function. To investigate the role of MLIs, we extend 

a spiking neural network model of the cerebellum (Yamazaki and Nagao, 2012) 

to account for MLI physiology, anatomy and plasticity at the parallel fiber 

(PF) - MLI synapses. We model MLIs as conductance-based leaky integrate-
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and-fire neurons with a spontaneous depolarizing current and physiological 

parameters derived from the literature.  We model plasticity at the PF-MLI 

synapse as a complementary and synergistic form of learning to plasticity at 

the PF-PKJ synapse, as argued by some (Gao et al., 2012). The network 

successfully learns an appropriate opto-kinetic response (OKR) given 

simulated mossy fiber (MF) and climbing fiber (CF) input.  The network also 

exhibits additional physiological phenomena observed in vivo: blocking GABA 

shifts PKJ firing rate from out-of-phase with MF input to in-phase, as 

observed in the VOR (Miyashita and Nagao, 1984).  

A.2 Simulated Behavior 

We simulate the OKR -- a learned eye reflex that moves the eye in the 

opposite direction of a slowly moving visual scene to reduce image blur on the 

retina (Ito , 2012). Mossy fibers convey retinal information from the brainstem 

optic nuclei (accessory optic system (AOS), nucleus reticularis tegmenti pontis 

(NRTP)) about the flow of the visual scene. Figure A.1 shows the cerebellar 

and brainstem circuitry in a schematic system which receives visual input of a 

moving grating pattern. The IO also receives retinal slip information and 

conveys it to the cerebellar cortex via CFs. The output of the cerebellum -- via 

the vestibular nuclei (VN) -- sends control signals to the brainstem motor 

nuclei that control the muscles of the eye (AN and ON here). 
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Figure A.1 OKR model schematic. Model of the brainstem nuclei and cerebellum 
responsible for OKR learning 

A.3 Network Model 

The model simulated is identical to network presented in Yamazaki and 

Nagao (2012) except that the MLI-PKJ network has been substituted for the 

one presented in Lennon et al. (2014). The network is depicted in Figure A.2. 

The network consists of a 160x160 grid of granule cells (GRs) and 32x32 grid 

of Golgi cells (GRs). GRs received mossy fiber (MF) input and send their 

outputs to GOs, MLIs and PKJs. GOs in turn provide reciprocal inhibition to 

GRs. Mossy fibers are simulated as Poisson spike trains with a variable rate 

that is sinusoidally modulated to represent sinusoidally modulated visual input 

from a visual grating pattern oscillating back-and-forth horizontally. Similarly, 

a single climbing fiber connecting to all MLIs and PKJs conveys a Poisson 

spike train with rate parameter modulated according to the  
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Figure A.2 Cerebellum network model. The MLI-PKJ net is identical to the network 
in Lennon et al. (2014). 

A.4 Plasticity Model 

 

 

 

(A.1) 

 
(A.2) 

A.5 Results 

Figure A.3 shows the GR response to the input stimuli. Figure A.4 

shows the MLI and PKJ response to the GR response (via parallel fibers) in 

the untrained model. After 150 trials, the model changes the PF-MLI and PF-

PKJ synaptic weight sufficiently to reverse the phase of the PKJ response 

(Figure A.5). MLIs now firing in-phase with the GRs; previously their weights 

were so low the GRs had only a minor effect on their firing rates. Simulating 

block of feedforward inhibition shifts the PKJ response 180 degrees out of 

phase (Figure A.6). This reproduces the results seen in Miyashita and Nagao 

(1984). 
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Figure A.3 The raster plot is the granule cell population response to sinusoidally 
modulated visual input via the mossy fibers.  The climbing fiber response (not shown) 
is a Poisson spike process with sinusoidal rate in phase.  Two cycles of the OKR are 
shown. All plots: sub-population raster plot (blue) with population mean firing rate 
superimposed (black). 
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Figure A.4 MLI and PKJ response to PF input in naive model. In the untrained 
model, parallel fiber input strongly activates PKJs, modulating their firing rate in 
phase.  The MLIs hardly respond since the PF-MLI weights are initialized small. 
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Figure A.5 MLI and PKJ response to PF input in trained model. After 150 trials, the 
model learns to decrease the PKJ firing rate (as observed in vitro) to disinhibit the 
DCN to increase the gain of the eye movement.  The MLIs now fire in phase with the 
PF input and provide feedforward inhibition to the PKJs. 
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Figure A.6 MLI and PKJ response to PF input in trained model. Response of the 
trained model with GABA blocked (simulated). Notice the baseline firing rate of the 
PKJ shifts up compared to D.  Also, the firing rate is now in-phase with the MF and 
PF input.  We see a shift from out-of-phase to in-phase as in Miyashita and Nagao 
(1984). 
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