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Article

Evaluation of [125I]α-Bungarotoxin Binding to α7 Nicotinic
Acetylcholinergic Receptors in Hippocampus–Subiculum of
Postmortem Human Alzheimer’s Disease Brain
Allyson Ngo , Fariha Karim , Oshini V. Keerthisinghe, Tram B. Danh, Christopher Liang
and Jogeshwar Mukherjee *

Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA;
allyson1@uci.edu (A.N.); fkarim1@uci.edu (F.K.); okeerthi@uci.edu (O.V.K.); tbdanh@uci.edu (T.B.D.);
liangc@uci.edu (C.L.)
* Correspondence: mukherjj@hs.uci.edu; Tel.: +1-(949)-824-2018

Abstract: Background/Objectives: Alzheimer’s disease (AD) severely hinders cognitive
function in the hippocampus (HP) and subiculum (SUB), impacting the expression of
nicotinic acetylcholine receptors (nAChRs) such as the α7-subtype. To investigate α7
nAChRs as a potential PET imaging biomarker, we report the quantitative binding of
[125I]α-Bungarotoxin ([125I]α-Bgtx) for binding to postmortem human AD (n = 29; 13 males,
16 females) HP compared to cognitively normal (CN) (n = 28; 13 male, 15 female) HP.
Methods: For comparisons with common AD biomarkers, adjacent slices were anti-Aβ

and anti-Tau immunostained for analysis using QuPath. Results: The [125I]α-Bgtx average
SUB/HP ratio was 0.5 among the CN subjects, suggesting higher [125I]α-Bgtx binding in
the HP gray matter regions. The AD subjects showed overall less binding than the CN
subjects, with no statistical significance. A positive correlation was found in the [125I]α-Bgtx
binding in the AD subjects as the age increased. The Braak stage comparisons of [125I]α-
Bgtx were made with [18F]flotaza binding to Aβ plaques and [125I]IPPI binding to Tau.
A positive correlation was found between [125I]α-Bgtx and [18F]flotaza and there was a
negative correlation between [125I]α-Bgtx and [125I]IPPI, implicating intricate relationships
between the different AD biomarkers. Conclusions: [125I]α-Bgtx shows complimentary
potential as a α7 nAChR imaging agent but needs more preclinical assessments to confirm
effectiveness for translational PET studies using α7 nAChR radioligands.

Keywords: [125I]α-Bungarotoxin; α7 nicotinic acetylcholine receptors; human Aβ plaques;
human tau tangles; hippocampus; Alzheimer’s disease; PET imaging

1. Introduction
Nicotinic acetylcholine α7-subtype receptors (α7 nAChRs) are pentameric ligand-

gated ion channels implicated in Alzheimer’s disease (AD) pathology [1,2]. Located in
presynaptic and postsynaptic neurons of brain regions including the cerebral cortex and
hippocampus (HP) [3], α7 nAChRs are important mediators of intracellular signaling
and neurotransmitter release, which are necessary for maintaining normal cognitive func-
tion [4,5]. In addition, studies have identified the receptor’s contribution to neuroprotection,
synaptic plasticity, and other factors affecting neuronal survival and typical immune re-
sponses [6]. A role of α7 nAChRs in neurodegeneration has been suggested in which
α7 nAChRs in AD may be influenced by the accumulation of amyloid plaques (Aβ) and
neurofibrillary tangles (NFTs) containing Tau protein (Figure 1) [7,8]. As such, Aβ plaques
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and NFTs are both common AD biomarkers currently necessary for clinical definition,
staging, and indications of therapeutic interventions [9,10]. In AD progression, oligomeric
Aβ accumulates and may directly interact with α7 nAChRs [11,12]. Neurochemical abnor-
malities and potential changes in α7 nAChRs along with other cholinergic pathways in AD
may be associated with cognitive impairment and emphasize the importance of further
investigating the receptor’s role in AD.
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Figure 1. Schematic showing AD biomarkers. (A,B). Cholinergic abnormalities are being investigated
as potential biomarkers. (A). α7 nAChRs using [125I]α-Bgtx have been evaluated in this work.
(B). α4β2* nAChRs using [18F]nifene and other radiotracers have been reported; (C). PET imaging of
Aβ plaques (senile plaques, SPs) is currently used in AD subjects. [18F]Flotaza was used in this work
as an Aβ plaque imaging agent. (D). PET imaging of Tau (neurofibrillary tangles, NFTs) is currently
used in AD subjects. [125I]IPPI was used in this work to evaluate Tau.

To better visualize α7 nAChRs, the involvement of positron emission tomography
(PET) imaging and the development of radioligands are being investigated. [18F]ASEM
was one of the first PET radioligands to successfully demonstrate the ability to bind with
high specificity to α7 nAChRs in human subjects [13]. Previous research has identified
[18F]ASEM binding in mild cognitive impairment (MCI), suggesting [18F]ASEM as a promis-
ing radioligand with the potential to draw relationships between α7 nAChR availability
and MCI [14]. PET imaging of α7 nAChRs with radioligands may assist in the effective
detection of neurochemical abnormalities and diagnostic assessments of AD. Although a
significant amount of knowledge has been garnered on α7 nAChRs, PET studies on AD
have not been sufficiently reported.

Extensively used to measure the α7 nAChR concentration in the brain, α-bungarotoxin
(α-Bgtx) is a familiar antagonist composed of a 74-amino-acid toxin extracted from the
venom of Bungarus multicinctus snakes [15]. α-Bgtx has been considerably researched and
its mechanism of action is well understood, including its high affinity for α7 nAChRs in the
mammalian CNS, making it worth investigating as a possible radioligand for measuring
the receptor’s concentration in neurological diseases [16,17]. Specifically, the previous
use of radioligand [125I]α-Bgtx has been successful in detecting the reduced α7 nAChR
concentration in the brain of schizophrenic patients [18]. Using [18F]ASEM, decreased
hippocampal α7 receptor availability has been reported in recent-onset psychosis [19].
Despite the volume of experiments where α-Bgtx is used, little research has been performed
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on α-Bgtx’s ability to act as an imaging agent for α7 nAChR in postmortem AD brains.
This study was undertaken to measure the in vitro binding of [125I]α-Bgtx to α7 nAChR
sites in AD subjects compared to cognitively normal (CN) subjects and assess potential
relationships between other AD biomarkers such as Aβ plaques and Tau tangles using
[18F]flotaza and [125I]IPPI, respectively (Figure 1) [20]. The findings of this study on α7
nAChRs using [125I]α-Bgtx may have implications on future PET studies because of the
similarities in the binding of [125I]α-Bgtx with ASEM analogs [21].

2. Materials and Methods
2.1. General Methods

[125I]α-bungarotoxin was purchased from American Radiolabeled Chemicals, Inc.,
St Louis, MO, USA, for autoradiographic studies, in which tissue samples were exposed on
storage phosphor screens. Cyclone phosphor autoradiographic imaging system (Packard
Instruments Co., Boonton, NJ, USA) and Optiquant Imaging System software (Version
4.00.01) were used for analysis.

2.2. Postmortem Human Brain

Human postmortem brain tissue sections of HP plus SUB (known to contain abundant
NFTs and Aβ plaques, [22]), which were 10 µm thick, on Fisher slides, were obtained
from Banner Sun Health Research Institute (BHRI), Sun City, AZ, USA, from the brain
tissue repository for in vitro experiments [23]. Age- and gender-matched AD brain and CN
brain tissue samples were used for the study. A total of 28 CN (13 males (age 71–97) and
15 females (age 53–95)) and 29 AD (13 males (age 70–91) and 16 female (age 59–93)) subjects
were used in this study (Table 1). Brain sections were stored at −80 ◦C. All postmortem
human brain studies were approved by Institutional Biosafety Committee of University of
California, Irvine.

Table 1. Patient samples and data *.

Subjects,
N

CERAD
Pathology Gender Age Range,

Mean ± SD
PMI,
hrs

Brain
Region

Plaque
Total

Tangle
Total LB Braak

Score

13 CN Male 71–97
(79.9 ± 8.55) 2–5.4 HP 0–5.5 0–6 0 I–III

15 CN Female 53–95
(80.4 ± 13.1) 2.1–4.8 HP 0–10 0.5–6.5 0 I–III

13 AD Male 70–91
(80.4 ± 5.98) 2.3–4.8 HP 14–15 10–15 0 V–VI

16 AD Female 59–93
(81.3 ± 9.26) 1.8–5 HP 10–15 12–15 0 V–VI

* Frozen brain samples were obtained from Banner Sun Health Institute, Sun City, Arizona [24]; CN = cognitively
normal and may include mild cognitive impairment (MCI) subjects; AD = Alzheimer’s disease; PMI = postmortem
interval in hours; HP = hippocampus; LB = Lewy Bodies. Plaque total includes neuritic, cored, and diffuse,
in frontal, temporal, parietal, hippocampal, and entorhinal cortex. Semi-quantitative scores of none, sparse,
moderate, and frequent were converted into numerical values 0–3 for each region and summed to provide the
plaque total. Tangle total: Neurofibrillary tangle density in frontal, temporal, and parietal lobes, hippocampal
CA1 region and entorhinal cortical regions. Numerical values 0–3 for each region were summed to provide tangle
total. Braak score: Braak neurofibrillary stage (0–VI). Brain slices (10 µm thickness) were obtained from the chunks
of frozen tissue on a Leica 1850 cryotome (LeicaMicrosystems, Inc., Deer Park, IL, USA) cooled to −20 ◦C and
collected on Fisher slides.

2.3. Immunohistochemistry

Immunostaining for Aβ and Tau of all brain sections was carried out by University of
California, Irvine, Pathology services using Ventana BenchMark Ultra protocols. All IHC
stained slides were scanned using the Ventana Roche instrumentation (Ventana Medical
Systems, Oro Valley, AZ, USA) and analyzed using QuPath (version QuPath-0.4.2) [20,22].
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2.4. Radiopharmaceuticals

[125I]α-Bgtx: [125I]α-Bgtx was purchased from American Radiolabeled Chemi-
cals, Inc. Radiochemical purity was >98% and chemical purity was found to be
>95% with a measured molar activity > 70 GBq/µmol. [18F]Flotaza: [18F]Flotaza
(measured molar activity > 70 GBq/µmol) is a radiotracer for imaging Aβ plaques and
exhibited selective binding to human AD brain Aβ plaques [22]. [125I]IPPI: [125I]IPPI
(molar activity > 500 GBq/µmol) is a radiotracer for imaging human AD Tau [20].

2.5. [125I]α-Bgtx Autoradiography

Autoradiography of [125I]α-Bgtx in mice and rat brain slices was previously reported [25].
The horizontal brain slices were preincubated in 50 mM Tris HCl, pH 7.3, containing 0.1%
bovine serum albumin (BSA) at room temperature for 30 min. After the preincubation,
the slices were incubated with [125I]α-Bgtx (0.2 nM, molar activity > 70 GBq/µmol) at room
temperature for 120 min. Nonspecific binding was measured in separate chambers in the
presence of 300 µM nicotine. After incubation, slices were washed three times (10 min each
wash) with ice-cold Tris buffer, pH 7.3, followed by a quick rinse in cold (0–5 ◦C) deionized
water. The brain sections were air-dried, exposed for a week on a phosphor film, and then
placed in the Phosphor Autoradiographic Imaging System/Cyclone Storage Phosphor System
(Packard Instruments Co.). Regions of interest (ROIs) were drawn on the slices and the extent
of binding of [125I]α-Bgtx was measured in DLU/mm2 values provided by the OptiQuant
acquisition and analysis program (Packard Instruments Co.).

2.6. Image Analysis

All ROIs in the GM and WM autoradiographic images of [125I]α-Bgtx were quantified
by OptiQuant in DLU/mm2. Immunostained sections were analyzed using QuPath. GM
and WM binding of [125I]α-Bgtx in AD and CN subjects were measured.

2.7. Statistical Analysis

Group differences between AD and CN subjects were assessed using average GM/WM
ratios and were determined using Microsoft Excel 16 and GraphPad Prism 9. Statistical
power was determined with Student’s t-test and p values of <0.05 were considered to indi-
cate statistical significance. Spearman’s correlation was carried out to assess aging effects.

3. Results
3.1. [125I]Bgtx Binding in Hippocampal Versus Subiculum Regions

Figure 2A is an H&E-stained section of a male CN subject’s brain with labels for the
hippocampal (HP), subiculum (SUB), and white matter (WM) regions. The slice from
subject CN 08-40 (autopsied subjects listed by year and number, e.g., 08-40 is the 40th
autopsy performed in 2008) was labeled by [18F]flotaza showing low levels of Aβ plaques
in the gray matter (GM; Figure 2B), consistent with [18F]flotaza autoradiography (Figure 2B
inset), while the WM regions showed near-background levels. The autoradiogram of
[18F]nifene displays binding to α4β2* nAChRs (Figure 2C), while the autoradiogram of
[125I]α-Bgtx displays binding to α7 nAChRs (Figure 2D). The regions of interest for the
SUB and HP areas were drawn for three subjects to compare the amount of [18F]nifene
and [125I]α-Bgtx binding (Figure 2E). The average SUB/HP ratio for [18F]nifene binding
was 1.9, suggesting higher binding of [18F]nifene to α4β2 nAChRs in the SUB regions
compared to that in the HP. On the other hand, the SUB/HP ratio for [125I]α-Bgtx binding
to α7 nAChRs was 0.5, suggesting higher levels of α7 nAChRs in the HP, confirmed by
[125I]α-Bgtx binding. These differences are visually evident in Figure 2C,D. A significant
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difference was found between the [18F]nifene (α4β2 nAChR) and [125I]α-Bgtx (α7 nAChR)
average binding to the HP (p = 0.017) and SUB regions (p = 0.049) (Figure 2F).
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Figure 2. Comparisons between α7 nAChRs and α4β2* nAChRs in the hippocampus–subiculum (HP-
SUB): in vitro human HP-SUB brain slices of CN subjects with [125I]α-Bgtx and [18F]nifene binding.
(A). H&E-stained CN 08-40 brain section indicating HP, SUB, and white matter (WM) regions.
(B). Anti-Aβ immunohistochemical staining of CN 08-40 measuring Aβ plaque with trace amount
(arrow), confirmed by [18F]flotaza autoradiography (inset). (C). Autoradiogram of [18F]nifene binding
in adjacent brain section of CN 08-40 shown in inset (scale bar 0–225 digital light units per square
millimeter (DLU/mm2)). (D). Autoradiograph of adjacent brain section of CN 08-40 showing HP and
SUB regions used for [125I]α-Bgtx binding (scale bar 0–1300 DLU/mm2). (E). [18F]Nifene and [125I]α-
Bgtx binding to HP and SUB regions in 3 subjects: CN 08-40 (male), CN 18-17 (female), and CN 97-09
(female). (F). Averaged [18F]nifene and [125I]α-Bgtx binding in DLU/mm2 to HP and SUB regions of
same 3 subjects (individually represented by circles). Unpaired two-tail parametric t-tests calculated
statistical significance (*) between [18F]nifene and [125I]α-Bgtx binding to HP (p value = 0.0172) and
SUB (p value = 0.0491).

These human brain findings on regional differences in the two receptor subtypes,
[18F]nifene (α4β2 nAChR) and [125I]α-Bgtx (α7 nAChR), are consistent 3/20/2025with our
recently reported results in mice and rat brain slices on the differences in [125I]α-Bgtx and
[18F]nifene between the HP and SUB [25]. Thus, there appeared to be similarities in the
distribution in the HP and SUB of these two brain nAChR subtypes across species.

3.2. CN Female and CN Male Human Postmortem Subjects

All of the female and male CN subjects were observed for [125I]α-Bgtx binding to
α7 nAChRs (Figure 3). The CN subjects were largely found to be free of Aβ plaques,
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measured using [18F]flotaza [22], and free of NFT Tau, measured using [125I]IPPI [20]. All
of the female and male CN subjects displayed extensive amounts of α7 nAChRs in the
GM regions. [125I]α-Bgtx consistently bound to α7 nAChRs in the GM regions, as visually
indicated by the autoradiograph of subjects CN 13-49 (Figure 3A,B) and 97-10 (Figure 3D,E).
The ages of both the female and male subjects in this study spanned over at least three
decades. All of the female (n = 15; Figure 3C) and male (n = 13; Figure 3F) CN subjects
exhibited similar levels of [125I]α-Bgtx dispersion in binding in the GM hippocampal
regions. Because of this dispersion in binding, the aging effects were not clear. Recent
findings with [18F]ASEM PET have suggested a higher availability of α7 receptors in older
CN individuals [26].
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Figure 3. [125I]α-Bgtx in CN subjects: in vitro human HP brain slices of representative female and
male subjects. (A). The HP slice scan of CN female subject 13-49 mapping the distribution of gray
matter (GM) and white matter (WM). (B). Autoradiograph of [125I]α-Bgtx showing higher binding to
GM regions of SUB and HP. [125I]α-Bgtx autoradiography scale bar: 0–900 DLU/mm2. (C). [125I]α-
Bgtx binding correlated with age of all CN female subjects, n = 15 (Spearman’s ρ= −0.08229; p value
= 0.7699). The purple-colored point indicates CN 13-49. (D). The HP slice scan of CN male subject
08-40 mapping the distribution of GM and WM. (E). Autoradiograph of [125I]α-Bgtx, showing higher
binding to GM regions of SUB and HP. [125I]α-Bgtx autoradiography scale bar: 0–900 DLU/mm2.
(F). [125I]α-Bgtx binding correlated with age of all CN male subjects, n = 13 (Spearman’s ρ = −0.1214;
p value = 0.6915). The purple-colored point indicates CN 97-10.

3.3. AD Female and AD Male Human Postmortem Subjects

All of the female AD subjects were positively immunostained and confirmed with
autoradiographs to be positive for Aβ plaques and Tau. Figure 4A–C demonstrate [125I]α-
Bgtx binding in female subject AD 13-46 (Figure 4B) with a brain slice scan indicating
the GM and WM regions (Figure 4A). The [125I]α-Bgtx binding levels in the AD female
subjects were consistently higher in the GM than WM regions. Specifically, the HP region
visually reveals high [125I]α-Bgtx binding in the brain slices (Figure 4B). As the AD female
subjects aged, there was an overall increase in the [125I]α-Bgtx binding over three decades
(Figure 4C).
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Figure 4. [125I]α-Bgtx in AD subjects: in vitro human HP brain slices of representative female and
male subjects. (A). The HP slice scan of AD female subject 13-46 mapping the distribution of GM
and WM. (B). Autoradiography of [125I]α-Bgtx showing binding to GM regions in SUB and HP.
(C). [125I]α-Bgtx binding correlated with age of all AD female subjects, n = 16 (Spearman’s ρ = 0.6544;
p value = 0.007204). The purple-colored point indicates AD 13-46. (D). The HP slice scan of AD
male subject 17-63 mapping the distribution of GM and WM. (E). Autoradiography of [125I]α-Bgtx
showing binding to GM regions in SUB and HP. (F). [125I]α-Bgtx binding correlated with age of all AD
male subjects, n = 13 (Spearman’s ρ = 0.06345; p value = 0.8378). The purple-colored point indicates
AD 17-63.

All of the male AD subjects were also confirmed with autoradiographs to be positive
for Aβ plaques and Tau. Figure 4E displays the [125I]α-Bgtx binding in male subject
AD 17-63 with an autoradiograph of the representative brain slice scan with labels for the
GM and WM regions (Figure 4D). In all of the AD male subjects, there were consistently
higher [125I]α-Bgtx binding levels in the GM than those in the WM regions. With increasing
age, the AD male subjects experienced a small increase in [125I]α-Bgtx binding over two
decades (Figure 4F). Thus, in both the female and male AD subjects, a trend towards the
increased availability of α7 receptors was observed.

3.4. CN-AD Gender Comparisons of [125I]α-Bgtx

Several comparisons were made between the CN and AD subjects in regard to [125I]α-
Bgtx binding in the GM and the entire slice (GM + WM), as shown in Figure 5. In all
of the subjects, regardless of gender, there were no significant differences between the
CN and AD subjects in the binding in the GM and GM + WM (Figure 5A). Despite there
being no significance, the CN subjects consistently displayed higher binding than the AD
subjects. A reduction of 14% in [125I]α-Bgtx binding in the GM of the AD subjects was
observed, while the entire slice exhibited a 19.8% decrease in [125I]α-Bgtx binding in the
AD subjects (Figure 5A). When comparing the female subjects, there was a decrease of 2.4%
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in [125I]α-Bgtx binding in the GM of the female AD subjects while the GM + WM showed
a reduction of 9.2% (Figure 5B). There was a 25.1% decrease in the male AD subjects in
comparison to the male CN subjects for [125I]α-Bgtx binding in the GM (Figure 5C). The
male subjects experienced the greatest difference for [125I]α-Bgtx binding in the GM + WM,
with a 29.9% decrease in the AD subjects compared to that in the CN subjects.
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Figure 5. [125I]α-Bgtx binding comparisons between CN and AD subjects: Average [125I]α-Bgtx total
binding (GM) and binding in the entire slice (GM + WM). Each parameter tested statistical significance
between CN and AD subjects with unpaired two-tail parametric t-tests. ns = not significant. The
circles represent individual subjects. (A). All subjects (female and male) for GM and GM + WM.
(B). Female subjects for GM and GM + WM. (C). Male subjects for GM and GM + WM.

3.5. Braak Stage Comparisons of [125I]α-Bgtx to [18F]Flotaza and [125I]IPPI

Braak stages I, II, III, V, and VI were assigned to all of the CN and AD subjects in
this study, with no subjects in Braak stage IV. Figure 6 consists of plots for the relationship
between the Braak stage and the binding of [125I]α-Bgtx, [18F]flotaza, and [125I]IPPI in all of
the subjects. Braak stages I–III did not have significant [18F]flotaza and [125I]IPPI binding
(Figure 6B,C), in contrast to [125I]α-Bgtx, where Braak stages I–III were generally higher
than V–VI (Figure 6A). Each Braak stage for [125I]α-Bgtx exhibited a greater variability
compared to those for [18F]flotaza and [125I]IPPI.
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Figure 6. Braak stage plots of [125I]α-Bgtx, [18F]flotaza, and [125I]IPPI binding in human HP:
(A). [125I]α-Bgtx average binding to α7 nAChRs in CN and AD subjects with respect to Braak
stages. (B). [18F]Flotaza average binding to Aβ plaques in CN and AD subjects with respect to Braak
stages. (C). [125I]IPPI average binding to Tau in CN and AD subjects with respect to Braak stages.
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The impact of Aβ plaques and Tau on α7 nAChRs was evaluated with respect to
the Braak staging (Figure 7). Spearman’s correlations for the relationship between [125I]α-
Bgtx and [18F]flotaza indicate a positive correlation (Figure 7A). However, Spearman’s
correlation revealed a negative correlation between [125I]α-Bgtx and [125I]IPPI (Figure 7B).
Overall, the accumulation of Aβ plaques and Tau moderately affected [125I]α-Bgtx binding
to α7 nAChRs in human HP.
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Figure 7. α7 nAChR binding to [125I]α-Bgtx correlated with Aβ plaques and Tau binding with respect
to Braak stage (A). Braak stage Spearman’s correlation of [125I]α-Bgtx binding with [18F]flotaza
binding to Aβ plaques (Spearman’s ρ = 0.6). (B). Braak stage Spearman’s correlation of [125I]α-Bgtx
with [125I]IPPI to Tau (Spearman’s ρ = −0.1).

4. Discussion
The HP and SUB regions play crucial roles in the cognition functions of the brain,

along with cholinergic neurotransmission. This involves various pathways including α7
nAChRs that are more abundant in these brain regions. In addition, α4β2 nAChRs are
also intricately involved in these brain regions [27]. During the several stages of AD, Aβ

plaques and Tau affect various neurochemical targets in several brain regions. They are
likely to interfere with normal cholinergic neurotransmission, as suggested by our studies
on the α4β2 nAChRs [28]. Therefore, it is necessary to study the role and characteristics of
α7 nAChRs in AD pathology in the HP and SUB for the translation of findings to in vivo
PET studies using α7 nAChR radioligands.

The autoradiography of the postmortem brain slices allowed for easier identification
of the HP and SUB regions. [125I]α-Bgtx was selective to the GM regions of the brain
slices, specifically the HP region (Figure 2D). When compared to [18F]nifene, which showed
higher binding to the SUB regions (Figure 2C), [125I]α-Bgtx demonstrated significantly
more binding in the HP regions. The CA1 region of the HP and SUB have been shown
to have higher levels of Aβ plaques and Tau compared to other regions of the HP in
AD subjects [29]. The high expression of α7 nAChRs has been reported throughout the
hippocampal circuit [30]. All of the CN subjects displayed a similar selectivity to the HP
GM regions, with the male subjects showing greater variability in [125I]α-Bgtx binding
(Figure 3). In the age correlation plots, the variability in binding was more apparent, as
indicated by the lower R2 values (Figure 3C,F). Both the age correlation plots for the CN
subjects resulted in a low negative Spearman correlation coefficient, suggesting a weak
negative association. This variability may be dependent on Tau accumulation and Aβ

deposition with older age despite cognitively healthy individuals [31]. The abundance of
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Aβ plaque and Tau was evaluated in all of the CN subjects using [18F]flotaza and [125I]IPPI,
respectively. The presence of Aβ plaque and Tau in the CN subjects remained absent or
significantly lower than in all of the AD subjects.

All of the male and female AD subjects were analyzed for [125I]α-Bgtx binding in the
HP-SUB sections (Figure 4). All of the AD subjects exhibited similar binding patterns as the
representative subjects, where more [125I]α-Bgtx binding was found in the GM compared
to in the WM. Both the male and female AD subjects displayed a positive correlation
between age and [125I]α-Bgtx binding given the positive Spearman’s correlation coefficient
(Figure 4C,F). The recent finding of increased α7 nAChRs with normal aging [26] requires
more careful and intricate aging studies between CN and AD subjects to elaborate on these
findings. Based on previous reports, a decrease in α7 nAChRs may be expected for AD
brains [32], but in our present findings, no significant difference was found between the
CN and AD subjects regardless of gender (Figure 7). Despite there being no significance,
[125I]α-Bgtx binding in the CN subjects was consistently higher than that in all of the AD
subjects for both the GM and GM + WM. This discrepancy may be attributed to a possible
binding complex of Aβ plaque and α7 nAChRs that induces a compensatory increase in α7
nAChR expression in response to inhibition by intensified exposure of Aβ in AD [33,34].
This increase may contribute to the higher than normal expression of α7 nAChRs found in
AD and lead to less of an overall difference compared to the CN subjects; however, this
relationship needs to be further investigated. The small subject size in this study may also
exaggerate the variations in binding and therefore impact this discrepancy. The impact of
substantial Aβ plaque pathology on α7 nAChRs implies potential connections between
different AD biomarkers.

All of the CN subjects were categorized in Braak stages I–III, while all of the AD
subjects were categorized in Braak stages V and VI (Figure 6). Braak stages V and VI are
normally indicative of impaired cognition due to Aβ and Tau accumulation in later AD
progression [10]. This accumulation in AD patients may play a role in the reduced activity
of α7 nAChRs in brain regions responsible for cognition such as the HP [35]. Aβ acts as a
modulator by directly affecting the function of α7 nAChRs, eventually deteriorating the
presence of α7 nAChRs but activating α7 nAChRs at low Aβ concentrations. However, it is
difficult to determine this direct relationship in the context of Braak staging, where a posi-
tive correlation was observed (Figure 7A). The negative correlation between the binding to
α7 nAChRs and Tau implies a complementary effect of imaging multiple AD biomarkers
to confirm and track AD (Figure 7B). These correlations may be associated with how α7
nAChRs mediate a high Ca2+ influx upon Aβ activation that may phosphorylate Tau while
affecting Aβ toxicity [36]. With this, α7 nAChRs may be affected by Aβ accumulation and
Tau pathology primarily in early AD. Another explanation behind this correlation may
involve the neuroinflammation present in AD brains. As essential regulators of neuronal
health and cholinergic signaling, α7 nAChRs play a role in managing the inflammation
caused by neuritic plaques surrounded by hyper-phosphorylated Tau protein [37,38]. In
response to this neuroinflammation during AD progression, there may be an upregulation
of α7 nAChRs as a compensatory mechanism. Both speculations may establish a connection
between Aβ and Tau pathology and α7 nAChRs. Recent studies have indicated that the
efficacy of clinically used acetylcholinesterase inhibitors, AChEIs (donepezil, rivastigmine,
and galantamine), in the management of AD has been less than optimal, mild, and may
not be clinically significant [39,40]. The effect of AChEIs on α7 nAChRs is less clear, since
the affinity of acetylcholine and nicotine is significantly weaker compared to that of α4β2
nAChRs [27]. Some benefit of AChEIs in late-onset AD (LOAD) has been observed [41].
Understanding the connection between α7 nAChRs and other AD biomarkers can pro-
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vide valuable insight into effectively imaging α7 nAChRs using PET imaging agents and
potentially assist in evaluating AChEIs vis-à-vis α7 nAChRs.

Limitations in this study include the small number of CN and AD subjects; the relation-
ship between aging, sex, and α7 nAChR expression could not be more thoroughly analyzed.
There have been previous reports on male/female differences in α7 RNA expression in
the nucleus accumbens of AD subjects [42]. In recent PET studies of the related α4β2
nAChRs using [18F]nifene, no sex differences were found in several brain regions [43]. In
this work, there are preliminary findings of assessing [125I]α-Bgtx binding to α7 nAChRs in
the HP-SUB brain region that require continued studies with larger sample sizes. Because
the study uses brain slices, a complete picture of the HP and SUB is difficult to acquire.
Small inter-subject variations in the brain tissue may have caused some variations in the
GM binding of [125I]α-Bgtx. Despite these limitations, this study sufficiently analyzes the
potential of [125I]α-Bgtx as a PET imaging agent binding to α7 nAChRs in the HP-SUB
regions of postmortem human AD and CN subjects. The promise of [125I]α-Bgtx as a
supportive PET imaging agent is implied with these findings but also highlights the need to
further investigate the sophisticated features of α7 nAChRs among other AD biomarkers.

5. Conclusions
The role of α7 nAChRs in cognitive function undoubtedly has a substantial impact

on several neurological and psychiatric disorders including AD. Although this study did
not find a significant difference in [125I]α-Bgtx binding between the AD and CN subjects,
[125I]α-Bgtx is still useful as a complementary tool in the study of α7 nAChRs [44]. The
findings of our study appear to be consistent with the reported findings of the characteristics
of α7 nAChRs in the HP-SUB region; however, regarding the discrepancies in α7 nAChR
expression, future studies should aim to comprehensively understand the nature of α7
nAChR expression in AD. Transgenic AD mice studies expressing Aβ plaques in 5xFAD
mice and Aβ plaques and tau in 3xTg mice [45] may be useful in longitudinal PET studies
to study alterations in α7 nAChRs in transgenic mice models [46,47].
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