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Abstract

Improving Cosmological Distance Measurements with Type Ia Supernovae: From Pixels to
Dark Energy

by

Kyle Boone

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Saul Perlmutter, Chair

In the late 1990s, precise distance measurements with Type Ia supernovae (SNe Ia)
were used to show that the expansion of the universe is accelerating. One possibility is
that this accelerated expansion is due to an additional form of energy referred to as “dark
energy” which contributes roughly 70% of the total energy in the present day universe. The
properties of dark energy are not currently well-constrained, and a wide range of different
cosmological probes are currently being designed to explore the fundamental nature of the
accelerated expansion of the universe. SNe Ia have remained one of the strongest cosmological
probes, and upcoming experiments such as the Large Synoptic Survey Telescope (LSST) are
expected to discover over 100,000 SNe Ia that can be used for cosmology. The uncertainties
on cosmological parameters derived from these large samples of SNe Ia will be entirely
dominated by the systematic uncertainties of distance measurements to SNe Ia. In this
dissertation, we discuss several different methods of improving the systematic uncertainties
in distance measurements to SNe Ia.

This dissertation is split into three main chapters each discussing how to improve a differ-
ent aspect of distance measurements to SNe Ia. In Chapter 2, we examine how instrumental
calibration can affect these distance measurements, and discuss a new anomalous behaviour
of CCD readout electronics related to the binary encoding of pixel values that affects most
astronomical instruments currently in use. For the Nearby Supernova Factory, this anomaly
introduces a dispersion in the measured B-band/U-band magnitudes of 0.11 mag/0.51 mag
for the faintest 20% of measurements.

Another major source of systematic uncertainty in distance measurements to SNe Ia is
intrinsic variation of the SNe Ia. In Chapter 3, we develop a new method of parametrizing
SNe Ia using manifold learning to generate a non-linear decomposition of the intrinsic di-
versity of their spectra near maximum light. We identify regions of the parameter space of
SNe Ia where previous standardization methods such as SALT2 have biases of up to 0.3 mag,
and show how correlations between host galaxy properties and distance estimates are greatly
reduced when standardizing SNe Ia using our new parametrization.
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Finally, in Chapter 4, we discuss how upcoming surveys such as LSST will need to rely on
photometric classification to identify the majority of the transients that they discover, which
means that samples of SNe Ia used for cosmology will be contaminated with other types of
transients. We developed a set of techniques for photometric classification to address the
fact that spectroscopic subsamples used for training classifiers are typically highly biased
compared to the full samples of transients and variables that will be discovered. Using
these techniques, we built a photometric classifier that won the PLAsTiCC photometric
classification challenge out of 1,094 competing teams.
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Chapter 1

Introduction

1.1 Cosmology and the Evolution of the Universe
One of the main goals of cosmology is to understand how the size of the universe evolves

over time. In an isotropic and homogeneous universe, the relative size of the universe can
be parameterized using the scale factor a(t). This scale factor is defined to be one at the
present time, and has increased over time from an initial value after the Big Bang approach-
ing zero. The expansion of the universe can be seen directly by measuring the recessional
velocities of extragalactic objects. For not-too-distant objects, these recessional velocities
are proportional to the distances to these objects, and the constant of proportionality is
labeled the “Hubble parameter”. The Hubble parameter can be written in terms of the scale
factor as H = ȧ/a where ȧ is the derivative of a with respect to time. The time evolution
of the Hubble parameter is uniquely determined using the Friedmann equation derived from
General Relativity if the energy density of the universe ρ and the curvature k are known:

H2 =

(
ȧ

a

)2

=
8πGρ

3
− kc2

a2
(1.1)

Here G is Newton’s gravitational constant, and c is the speed of light.
In this equation, the time evolution of the Hubble parameter depends on how the energy

density ρ evolves. This, in turn, depends on the composition of the universe. The energy
density of relativistic particles or radiation scales as a−4, while the energy density of matter
scales as a−3. A cosmological constant introduces a constant energy density regardless of the
scale factor. For a universe consisting of only radiation, matter, curvature and a cosmological
constant, the Friedmann equation can then be rewritten by defining the “critical density”:

ρc =
3H2

8πG
(1.2)

and by defining the density parameter for each component of the universe:

Ω =
ρ

ρc
(1.3)
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We also define the Hubble constant H0 to be the value of the Hubble parameter at the
present time (t = 0), resulting in the following formula:

H2

H2
0

= ΩR,0a
−4 + ΩM,0a

−3 + Ωk,0a
−2 + ΩΛ,0 (1.4)

The density parameters ΩR,0, ΩM,0, Ωk,0, and ΩΛ,0 are effectively the fractional energy
compositions of the universe at the present time from radiation, matter, curvature, and a
cosmological constant, respectively, satisfying:

ΩR,0 + ΩM,0 + Ωk,0 + ΩΛ,0 = 1 (1.5)

With the separation of matter into baryonic and dark matter components, the introduc-
tion of initial density fluctuations (both of which do not affect the universe at large scales),
and the assumption that Ωk,0 = 0, this model is referred to as the ΛCDM model or the
“standard model” of cosmology. Here Λ refers to the presence of dark energy in the form of
a cosmological constant, and CDM refers to the presence of cold dark matter. The ΛCDM
model has been shown to be a very good description of the universe on large scales. The same
set of parameters can explain the behavior of many different cosmological probes such as
the brightnesses of Type Ia supernovae, the length scales of baryon acoustic oscillations, the
power spectrum of the cosmic microwave background, and the abundance of galaxy clusters
(Planck Collaboration et al., 2016).

1.2 The Hubble Constant Discrepancy
One current source of discrepancy in cosmology is in measurements of the Hubble constant

(H0) that is effectively a measure of the expansion rate of the universe at the present time.
A local measurement of H0 can be made using distances to individual objects in the local
universe. Currently, direct distance measurements can only be made for relatively nearby
objects. For these objects, the peculiar velocities of galaxies overwhelm the signal of the
expansion rate of the universe. To address this, we use the direct measurements to nearby
objects to calibrate a sequence of increasingly distant indirect distance measurements that
extend out into the “Hubble flow” where the expansion rate of the universe can be accurately
measured. This procedure is referred to as the “cosmic distance ladder”.

The current best local measurements of H0 (Riess et al., 2016, 2019) first use a variety of
direct distance estimates to nearby galaxies. These include using detached eclipsing binaries
to measure the distance to the Large Magellanic Cloud to 1.2% (Pietrzyński et al., 2019),
modeling masers to obtain a geometric distance to NGC 4258 accurate to 3.4% (Humphreys
et al., 2013), and obtaining geometric distances to individual objects in the Milky Way using
parallax. These measurements are then used to calibrate the period-luminosity relationship
of Cepheid variables. The absolute luminosity of Type Ia supernovae (SNe Ia) is then
calibrated by measuring the distances to Cepheid variables in a variety of galaxies that
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hosted SNe Ia. Finally, SNe Ia can be observed well out into the Hubble flow, giving a
measurement of H0. This procedure results in a measurement of H0 of 74.03± 1.42 km s−1

Mpc−1 (Riess et al., 2019).
Alternatively, the Hubble constant can be estimated by measuring cosmological parame-

ters in the early universe from the cosmic microwave background (CMB). Under the assump-
tion that the ΛCDM model holds, we can then infer what the current value of H0 should be.
Using measurements of the CMB from the Planck mission, this results in an inferred value for
H0 of 67.36±0.54 km s−1 Mpc−1 (Planck Collaboration et al., 2018). The Planck results can
be combined with various measurements of the scale of baryon acoustic oscillations (BAO)
at lower redshifts, resulting in an inferred value for H0 of 67.66±0.42 km s−1 Mpc−1 (Planck
Collaboration et al., 2018). These results show that there is a 4.4σ discrepancy between local
measurements of H0 and ones inferred from the CMB assuming ΛCDM, implying either that
there is some unknown systematic issue with one of our cosmological probes, or that there
is a need for additional physics beyond ΛCDM.

Several different methods have been introduced to provide alternative local measurements
of H0. Freedman et al. (2019) used Tip of the Red Giant Branch distances to calibrate the
intrinsic luminosity of SNe Ia directly, bypassing the calibration of Cepheid variables, and
find a local H0 value of 69.8 ± 0.8 (stat.) ± 1.7 (sys.) which is consistent with the Planck
results to within 1.2σ. Alternatively, time delays of gravitationally lensed quasars can be
used to provide a geometric measurement of H0 that is entirely independent of both the
cosmic distance ladder and the CMB results. The latest analysis by the H0LiCOW team
finds a value of H0 = 73.3+1.8

−1.7 km s−1 Mpc−1 (Wong et al., 2019) which is consistent with
the local H0 measurements. Finally, gravitational wave sources can be used as “standard
sirens” to estimate their distances, providing another path to an independent measurement
of H0. With measurements of a single gravitational wave source GW170817, Hotokezaka
et al. (2019) measured H0 = 70.3+5.3

−5.0 km s−1 Mpc−1, and estimated that with 15 more
similar events they would have the sensitivity to distinguish between the Planck and cosmic
distance ladder measurements of H0.

Further work will need to be done to understand the source of the H0 discrepancy and
determine whether or not there is a need for additional physics beyond ΛCDM. SNe Ia are
one of the keys probes for these measurements, and unknown or unmodeled systematics
of SNe Ia could potentially be the source of the H0 discrepancy. For example, as will be
discussed in Section 1.5, the measured distances to SNe Ia are correlated with properties of
their host galaxies. SNe Ia hosted in galaxies with Cepheid variables are predominately in
locally star-forming environments. Rigault et al. (2015) showed that this biases the measured
value of H0, and find H0 = 70.6 ± 2.6 km s−1 Mpc−1 when this bias is taken into account.
Understanding the source of the correlations of the distances to SNe Ia with host galaxy
properties is essential for resolving the H0 discrepancy.
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1.3 Beyond ΛCDM
Many extensions of the ΛCDM model have been proposed that can be tested with obser-

vations. For example, Einstein’s cosmological constant is only one of many different models
that are consistent with our current observations of the accelerated expansion of the universe.
These other models include among many others the introduction of a dynamic field, often
referred to as “quintessence” (Ratra & Peebles, 1988; Zlatev et al., 1999), allowing gravity
to leak into extra dimensions (Dvali et al., 2000) or modifications to general relativity (e.g.
Capozziello & Fang, 2002; Carroll et al., 2004). To capture the effects of these other models
of dark energy, the ΛCDM model can be extended with what is effectively a Taylor expansion
of how dark energy scales with density (Chevallier & Polarski, 2001; Linder, 2003):

Ωde = Ωde,0a
−3[1+w0+wa(1−a)] (1.6)

Different models of the accelerated expansion of the universe will result in different val-
ues of w0 and wa, with w0 = −1 and wa = 0 corresponding to a cosmological constant.
Combining the results of analyses of the CMB, BAO, Type Ia supernovae and local H0

measurements, the state-of-the-art constraints on these parameters are w0 = −1.007± 0.089
and wa = −0.222 ± 0.407, which remains consistent with a cosmological constant (Scolnic
et al., 2018). All of these probes provide complementary constraints on these cosmological
parameters, and improved measurements with all of them will be essential to constrain the
properties of dark energy.

1.4 Measurements of Cosmological Parameters with
Standard Candles

One method of probing cosmology is by using “standard candles”: astronomical objects
with known intrinsic luminosities. Assuming that we know the intrinsic luminosity L of an
astronomical object, the observed brightness F can be used to infer the luminosity distance
dL to that object:

dL =

√
L

4πF
(1.7)

As light from the object travels through space, the wavelength of that light will be
stretched, such that:

λobserved = λemitted(1 + z) (1.8)

where the redshift z is defined as:
a =

1

1 + z
(1.9)

If the restframe spectrum of the object is known, then we can compare the observed spectrum
to the restframe spectrum to determine the redshift.
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The relationship between the redshift and the luminosity distance can be calculated
directly from a given set of cosmological parameters. For a flat universe (Ωk = 0), we have:

dL(z) = c(1 + z)

∫ z

0

dz′

H(z′)
(1.10)

where H(z′) is given by the Friedmann equation shown in Equation 1.4. For the ΛCDM
model, there is no closed form for dL(z), but it can easily be evaluated numerically. By
observing many standard candles at different redshifts, we can constrain the functional form
of dL(z) and thus the underlying cosmological parameters.

In practice, the observed brightnesses of astronomical objects are typically expressed in
magnitudes, with the “apparent magnitude” m for an object with an observed brightness F
given as:

m = −2.5 log10(F ) + zero point (1.11)

where the zero point can be chosen arbitrarily. In this work we use “AB magnitudes”
where the zeropoint is chosen so that an apparent magnitude of zero corresponds to 3,631
janskys. Similarly, the “absolute magnitude” M is defined as the apparent magnitude for an
object if it were located 10 pc away. We define the “distance modulus” µ to be the difference
between an object’s apparent and absolute magnitudes:

µ = m−M = 5 log10(dL/10 pc) (1.12)

1.5 Type Ia Supernovae as Standardizable Candles
Type Ia supernovae (SNe Ia) have proven to be one of the strongest probes of cosmology

because of their ability to be used as standard candles. Using supernovae as standard candles
for cosmological measurements has been suggested since the earliest studies of supernovae
(Baade, 1938). However, due to the challenge of reliably discovering and following up SNe Ia
with high quality observations, it took until the 1990s for light curves of SNe Ia to be
obtained that were useful for cosmology (Branch & Tammann, 1992; Branch, 1998) and at
high redshifts (Perlmutter et al., 1995). The first distance measurements with reasonably
sized samples of high redshift SNe Ia led to the initial discovery of the accelerating expansion
of the universe (Riess et al., 1998; Perlmutter et al., 1999). Subsequent studies have collected
a sample of over 1,000 spectroscopically-confirmed SNe Ia, providing increasingly strong
constraints on cosmological parameters (Knop et al., 2003; Riess et al., 2004; Astier et al.,
2006; Kowalski et al., 2008; Suzuki et al., 2012; Betoule et al., 2014; Scolnic et al., 2018).

The ability to use SNe Ia as standard candles for cosmology depends on how well their
brightnesses can be standardized. The brightnesses will be affected by both astronomical
diversity in properties of SNe Ia, and uncertainties in the observations of SNe Ia. Unfor-
tunately, SNe Ia are not perfect standard candles, and should instead be referred to as
“standardizable candles”: they have an intrinsic dispersion in their peak brightnesses in the
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B-band of ∼0.4 mag. With this level of intrinsic dispersion, using Equation 1.12, the dis-
tance to an individual SN Ia can be measured with a fractional uncertainty of ∼20%, and
the value of H0 can be inferred with a similar fractional uncertainty.

To use SNe Ia as distance estimators for cosmology, several corrections need to be applied
to their peak brightnesses. Phillips (1993) showed that the peak brightnesses of SNe Ia are
tightly correlated with the rate of decline of their light curves, commonly referred to as
the “stretch”. The rate of decline, measured as the difference in magnitudes between the
peak brightness of a supernova in the B-band and its brightness 15 days later, or ∆m15(B),
can therefore be used to apply a correction to distance estimates to SNe Ia. Riess et al.
(1996) and Tripp (1998) showed that the color of the light curve, measured as the difference
between the peak brightnesses in the B and V bands, is also highly correlated with the peak
brightnesses of SNe Ia. By combining information from the stretch and color of an SN Ia, the
dispersion in the corrected peak brightnesses of the SNe Ia is reduced to ∼0.15 mag. The
SALT2 model of the spectral energy distribution of SNe Ia (Guy et al., 2007, 2010; Betoule
et al., 2014) implements these two corrections, and is used to estimate distances to SNe Ia
in most modern cosmological analyses. With SALT2 corrected peak brightnesses, we can
measure the distances to individual SNe Ia with a fractional uncertainty of ∼7%.

To complicate matters, estimates of the peak brightnesses of SNe Ia corrected using
only the stretch and color of the light curve have been shown to be correlated with vari-
ous properties of the host galaxies of SNe Ia. These correlations are typically modeled as
a “host step” where SNe Ia with a given host property below some threshold have a sys-
tematic offset in their measured distances compared to SNe Ia higher than this threshold.
SALT2-standardized residual magnitudes have been shown to have “host steps” of ∼0.1 mag
when comparing SNe Ia from host galaxies with different masses, metallicities, local colors,
local star-formation rates or global star-formation rates (Kelly et al., 2010; Sullivan et al.,
2010; Gupta et al., 2011; Hayden et al., 2013; Rigault et al., 2013, 2015, 2018; Roman et al.,
2018). As galaxy properties evolve with redshift, correlations of the peak brightness of SNe Ia
with their host galaxy properties must be well-understood to produce robust cosmological
measurements. Host galaxy properties are simply a proxy for some uncaptured instrinsic
variability of SNe Ia. Ideally, new standardization techniques could be developed that iden-
tify this intrinsic variability using properties of the SNe Ia themselves rather than properties
of their host galaxies.

Several different techniques have been proposed to improve standardization of SNe Ia.
One option is to add additional components to a linear model like SALT2. Saunders
et al. (2018) built a seven component linear model (SNEMO) SNEMO that is capable of
parametrizing additional diversity in the light curves of SNe Ia compared to SALT2, and
standardizes SNe Ia to within 0.113±0.007 mag. Alternatively, Léget et al. (2019, submitted
to A&A) built a three-component linear model by first performing a PCA decomposition
of the spectral features of SNe Ia near maximum light and then using the resulting PCA
coefficients to build a linear SED model. Another option is to incorporate additional infor-
mation beyond optical light curves into the standardization procedure. The brightnesses of
SNe Ia in the NIR are less sensitive to the intrinsic diversity of SNe Ia and effects such as
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astrophysical dust (Kasen, 2006): the corrected peak brightness of NIR light curves have
intrinsic dispersions of ∼ 0.11 mag (Krisciunas et al., 2004; Wood-Vasey et al., 2008; Mandel
et al., 2011; Barone-Nugent et al., 2012; Burns et al., 2018; Stanishev et al., 2018).

Various attempts have been made to use the spectra of SNe Ia to standardize their bright-
nesses. Bailey et al. (2009) showed that spectral flux ratios at specific wavelengths can be
used to standardize SNe Ia to within 0.125±0.011 mag. Blondin et al. (2011) and Silverman
et al. (2012) used various spectral features directly in their standardization and achieved dis-
persions of 0.143± 0.020 mag and 0.130± 0.017 mag, respectively. These previous methods
only used specific features of the supernova spectrum for their classification. Fakhouri et al.
(2015) introduced the first method to use the full spectrum simultaneously with “twin super-
novae”. In the twins methodology, the spectrum of a new supernova is compared to a large
reference sample to find pairs of spectra with very similar spectral features that are called
“twins”. Standardization using twin supernovae resulted in a dispersion of 0.083±0.012 mag
for the sample of Fakhouri et al. (2015), although there is some evidence that not all twin
supernovae have similar brightnesses (Foley et al., 2018).

Most previous standardization procedures have focused on either building a model of
many different linear components to model the spectral energy distribution of SNe Ia, or
applying linear corrections to the peak brightness based off of specific spectral features or
measurements such as the light curve stretch. However, there are visible spectral sequences
for SNe Ia that are highly non-linear (Nugent et al., 1995; Branch et al., 2006; Blondin et al.,
2012; Siebert et al., 2019), and that cannot be captured in a low-dimensional space with
linear models. Methods that do not depend on linear components, such as the twins method
of Fakhouri et al. (2015), are necessary to identify these spectral sequences. Sasdelli et al.
(2016) used deep learning model of the spectra of SNe Ia, and showed that a non-linear four
parameter feature space (plus one dimension for time) can capture the spectral diversity of
SNe Ia as well as a 15 component linear model. Rubin (2019) showed that the twins pair-
ings from Fakhouri et al. (2015) are consistent with an underlying three to five parameter
non-linear model. In Chapter 3, we expand on these techniques and develop a new non-lin-
ear parametrization of the spectra of SNe Ia at maximum light. We show that for some
regions of this parameter space there are systematic biases of up to 0.3 mag for standardiza-
tion methods such as SALT2. Standardization using this new non-linear parametrization of
SNe Ia significantly reduces the correlations of distance residuals with host properties. Tech-
niques such as this one are essential for reducing systematic biases in upcoming cosmological
analyses with SNe Ia.

1.6 Calibrating observations of Type Ia supernovae
Even if SNe Ia were perfect standard candles, there are many systematic errors that can

be introduced in the process of observing SNe Ia. Historically, statistical uncertainties have
dominated cosmological analyses with SNe Ia due to the observed dispersion in brightness
of SNe Ia (e.g. Conley et al., 2011, with 472 SNe Ia). However, recent surveys are beginning
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to obtain observations of large enough numbers of SNe Ia for the statistical uncertainties to
be comparable in size to the systematic uncertainties (e.g., Scolnic et al., 2018, with 1048
SNe Ia). Upcoming surveys, such as the Large Synoptic Survey Telescope (LSST; LSST
Science Collaboration et al., 2009) are projected to obtain light curves for ∼100,000 SNe Ia
(The LSST Dark Energy Science Collaboration et al., 2018), and the sensitivities of their
cosmological analyses will be entirely dominated by systematic uncertainties.

One significant source of systematic uncertainties is at the detector level in the measure-
ment of the observed flux levels of SNe Ia. Charge coupled devices (CCDs) have been the
dominant astronomical detector for the past three decades. Ideally, light at the focal plane
of the telescope is detected on a grid of pixels which each provide independent information
about the incident light at their location. In practice, astronomical CCDs and the associ-
ated instruments are subject to many anomalies that introduce spurious signals, correlations
between pixels or deviation from linear behavior. These anomalies will lead to errors in the
derived scientific results if they are not understood and accounted for. There are several
locations in the instrument where such anomalies can be introduced.

Many of the anomalies are related to imperfections in the production of the sensor. These
include variations in the pixel areas, fringing due to variations in thickness of the CCD, “tree
ring” patterns due to impurities in the production of the silicon wafers, manufacturing defects
in the CCD electronics, and edge effects due to interactions with other components or guard
rings. See Janesick (2001) or Stubbs (2014) for in-depth discussions of these effects. Localized
contamination of the silicon can also lead to many undesirable effects, including hot pixels
with high dark current and traps that interfere with the charge transfer of pixels read out
later in the same column. Large traps can produce dead or hot columns, while smaller
traps lead to charge transfer inefficiency (CTI). Baggett et al. (2012) discusses localized
contamination in the HST WFC3 UVIS detectors and studies how it evolves with time.

Several anomalies arise due to normal instrument operations even with a defect-free CCD.
For very bright sources, the CCD can saturate, leading to effects such as blooming where
charge spills into neighboring pixels. In general, the presence of charge on the CCD distorts
the nearby electric field. This distortion manifests itself as effects like the “brighter-fatter
effect” where the widths of point-spread functions vary by up to 2% for bright and faint
objects (Antilogus et al., 2014). It is also possible to accumulate charge on the CCD from
sources other than the desired science target, such as cosmic rays which deposit charge as
they pass through the CCD (Janesick, 2001), or optical reflections (“ghosts”) that appear
when light reflects in unintended ways off of external optical components such as filters
(Brown & Lupie, 2004) or within the CCD itself.

Readout electronics can introduce another set of anomalies. Many readout systems are
susceptible to pickup that appears as periodic oscillations in the measured values of pixels
that are observed sequentially. This can introduce a herring-bone pattern across the CCD
image (Jansen et al., 2003). Other potential artifacts of the readout electronics include under-
shooting after reading a bright pixel (Caldwell et al., 2010), crosstalk between the readouts
from different amplifiers (Baggett et al., 2004), and biased/sticky bits in analog-to-digital
converters (Robberto & Hilbert, 2005). Understanding how all of these effects interact with
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scientific data is essential for proper calibration of the science output of an instrument. Tech-
niques have been developed to correct for most of these effects, and data reduction pipelines
typically endeavor to treat the ones that have a sizeable effect on the data taken by their
targeted instrument.

While developing our manifold learning analysis that is discussed in Chapter 3, we dis-
covered an artifact in the CCD electronic chain that introduced a significant amount of sys-
tematic uncertainty into our data. We identified crosstalk between the binary-coded output
of the analog-to-digital converter in our CCD readout electronics and subsequently read-out
pixels. We showed that this effect is not limited to our detector, and in fact is present in
most CCDs currently used for astronomical observations. In Chapter 2, we discuss this CCD
artifact, how to model and correct for it, and how scientific results will be impacted by it if
not properly handled. This analysis was published in Boone et al. (2018).

1.7 Photometric classification of SNe Ia
With modern surveys, the discovery rate of SNe Ia is rapidly outpacing the growth of

resources to acquire spectroscopic classifications. The Dark Energy Survey (DES; The Dark
Energy Survey Collaboration, 2005) was projected to acquire spectroscopic classifications for
only 20% of their sample of up to 4,000 SN Ia light curves (Bernstein et al., 2012). Similarly,
the Pan-STARRS Medium Deep Survey (PS1; Kaiser et al., 2010) discovered over 5,000 likely
supernovae, but only obtained spectroscopic classifications for 10% of this sample (Jones
et al., 2017). Upcoming large-scale surveys such as the Large Synoptic Survey Telescope
(LSST; LSST Science Collaboration et al., 2009) are projected to obtain light curves for
∼100,000 SNe Ia (The LSST Dark Energy Science Collaboration et al., 2018), and will
almost certainly have spectroscopic classifications for a much smaller fraction of their full
sample.

Cosmological analyses with photometrically-classified SNe Ia are complicated by the fact
that there is contamination from other transients in the sample, such as Type Ib/c or Type II
supernovae. These other transients do not have the same intrinsic luminosity as SNe Ia, and
they will bias cosmological measurements if they are accidentally included in a cosmological
analysis. In principle, unbiased cosmological parameters can be recovered from photometri-
cally-classified samples of SNe Ia by using Bayesian methods to model the contamination of
the non-SN Ia transients in the sample (Kunz et al., 2007; Hlozek et al., 2012; Rubin et al.,
2015; Jones et al., 2017). The performance of these methods depends heavily on their ability
to distinguish SNe Ia from other transients, so accurate photometric classifiers are essential
to their operation.

There are several major challenges to designing a photometric classification algorithm.
The light curves generated by surveys such as LSST are sparsely sampled, and the observa-
tions do not occur on regular time intervals. Observations occur in different bands, and only
a subset of the bands are typically available on any given night. The uncertainties on the
photometry are heteroskedastic, and some bands have much higher noise levels than others.
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Currently, photometric classifiers are typically trained on a subset of light curves from the
survey in question that have spectroscopic confirmation. Brighter, nearby transients are
significantly easier to spectroscopically classify than fainter, more distant ones, so training
sets for transient surveys will typically be highly biased towards bright, nearby objects.

To understand the performance and limitations of photometric classifiers for DES, the
Supernova Photometric Classification Challenge (SNPhotCC, Kessler et al., 2010) was ini-
tiated. The organizers of this challenge produced a simulation of Type Ia, Ib, Ic and II
supernovae observed with realistic DES observing conditions. The SNPhotCC dataset con-
sists of a training set of 1,103 spectroscopically confirmed objects and a test set of 20,216
objects without spectroscopic confirmation. Participants were challenged to develop classi-
fiers that could use the known labels of the training set to infer the types of objects in the
test set.

A wide variety of models and techniques were developed for, or applied to, data from
the SNPhotCC. The techniques that have been applied to photometric classification on this
dataset include Bayesian template comparisons (Poznanski et al., 2007; Sako et al., 2011),
diffusion maps with random forests (Richards et al., 2012), neural networks (Karpenka et al.,
2013), kernel PCA with nearest neighbours (Ishida & de Souza, 2013), convolutional neural
networks (Pasquet et al., 2019), and deep recurrent neural networks (Charnock & Moss,
2017). Lochner et al. (2016) compared the performance of several different machine learning
algorithms on the SNPhotCC dataset, and found that fitting the SALT2 model of SNe Ia
(Guy et al., 2007) to observations and training a boosted decision tree on the parameters of
that model gave the best classifier performance of the methods that they tested.

The major concern with all of these photometric classification methods is that they have
poor performance when the training set of objects with spectroscopically-determined types
is not representative of the full dataset. One common method of evaluating the performance
of a classifier is by calculating the Area under the Receiver Operator Characteristic Curve
(AUC), defined in Section 4.2.2, with a value of 1 representing a perfect classifier and a
value of 0.5 representing random guessing. Lochner et al. (2016) achieve an AUC for the
classification of SNe Ia of 0.98 when the training set is representative of the full dataset, but
an AUC of only 0.88 when training on the non-representative training set in the SNPhotCC.
Revsbech et al. (2018) introduced the first effective attempt to deal with non-representative
training sets in a model that they call STACCATO. They augment the original training data
by generating new light curves from ones in the training sample to produce a new training
set that is more representative of the full dataset. STACCATO achieves an AUC of 0.96 when
trained on their augmented training set compared to 0.92 when trained on the original
training set.

Most of the previously discussed classifiers were trained and evaluated on the SNPhotCC
dataset. Following the success of the SNPhotCC, a new challenge was created focusing on
photometric classification for the LSST. This challenge, the Photometric LSST Astronomical
Time-Series Classification Challenge (Kessler et al., 2019, PLAsTiCC,), includes 18 different
kinds of transients and variables, and is not limited to supernovae like the SNPhotCC was.
From September 28, 2018 to December 17, 2018, a blinded version of the PLAsTiCC dataset
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was provided through the Kaggle platform1 with class labels available only for the training
set of spectroscopically-classified objects. Teams were challenged to determine the types for
the remainder of the dataset, and submit their predictions to the Kaggle platform where a
score was assigned to their predictions. A total of 1,094 teams submitted predictions as part
of this challenge.

We developed a new photometric classifier that we applied to the PLAsTiCC dataset that
expands on the previously described techniques. This classifier is discussed in Chapter 4.
Out of all of the models submitted during the blinded phase of the PLAsTiCC, our classifier
achieved the best performance on the PLAsTiCC test set measured using the weighted
log-loss metric proposed by the PLAsTiCC team (Malz et al., 2018). Fundamental to our
classifier is the concept of “augmentation” where we generate a variety of simulated light
curves from each given observed light curve. Using Gaussian process regression, we developed
a technique to modify the redshift of the light curves in the training set. Our method does
not require a representative training set to be effective for classification, and we instead
suggest that future surveys relying on photometric classification focus their spectroscopic
efforts on typing large numbers of well-observed, intermediate redshift transients.

1.8 Gaussian process regression
Several of our analyses make use of Gaussian process regression. A stochastic process

P (x) is a Gaussian process (GP) if for any finite set of points x1, x2, ..., xn the distribution
P (x1), P (x2), ..., P (xn) is a multivariate normal distribution. A GP can be thought of as a
prior over a set of functions. By conditioning the GP on observations, we obtain a posterior
containing the set of functions that are consistent with the observations. For a detailed
discussion of GPs and their applications, see Rasmussen & Williams (2006).

A GP is uniquely defined by its mean function:

µ(x) = E[P (x)] (1.13)

and its covariance function, or “kernel”:

K(x1, x2) = E[(P (x1)− µ(x1))× (P (x2)− µ(x2))] (1.14)

The choice of µ and K determines how different functions are weighted in the prior of the
GP. There are several possible choices for the kernel. One common choice in the astronomy
literature is the squared-exponential kernel (e.g. Kim et al. 2013 and Lochner et al. 2016).
This kernel produces infinitely differentiable functions which can often be unrealistically
smooth and produce poor models of data (Stein, 1999). Instead, for our analyses, we prefer
to use a Matérn 3/2 kernel whose predictions are only once differentiable:

K3/2(x1, x2;α, l) = α2

(
1 +

√
3

(x1 − x2)2

l2

)
exp

(
−
√

3
(x1 − x2)2

l2

)
(1.15)

1https://www.kaggle.com/c/PLAsTiCC-2018

https://www.kaggle.com/c/PLAsTiCC-2018
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The parameter α describes the amplitude scale of the functions that will be produced by the
GP, and l sets the length scale over which functions vary. Although we prefer the Matérn
3/2 kernel for theoretical reasons, we do not typically notice significant differences in the
performance of the GPs that we use with this kernel compared to the squared-exponential
one.
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Chapter 2

The Binary Offset Effect

2.1 Overview
In this Chapter, we report a newly discovered CCD electronic chain artifact which orig-

inates in the readout electronics of many commonly-used CCD electronics systems. This
chapter was previously published in the Publications of the Astronomical Society of the Pa-
cific in May 2018, and was authored by K. Boone, G. Aldering, Y. Copin, S. Dixon, R. S.
Domagalski, E. Gangler, E. Pecontal, and S. Perlmutter (Boone et al., 2018).

For many instruments, we find an offset in the digitization of the CCD output voltage
that depends on the binary encoding of one pixel is added to pixels that are read out one,
two and/or three pixels later. One result of this effect is the introduction of a differential
offset in the background when comparing regions with and without flux from science targets.
Conventional data reduction methods do not correct for this offset. We find this effect
in 16 of 22 instruments investigated, covering a variety of telescopes and many different
front-end electronics systems. The affected instruments include LRIS and DEIMOS on
the Keck telescopes, WFC3-UVIS and STIS on HST, MegaCam on CFHT, SNIFS on the
UH88 telescope, GMOS on the Gemini telescopes, HSC on Subaru, and FORS on VLT.
The amplitude of the introduced offset is up to 4.5 ADU per pixel, and it is not directly
proportional to the measured ADU level. We have characterized this effect and modeled
it with high accuracy in the SuperNova Integral Field Spectrograph (SNIFS; Lantz et al.,
2004) instrument used by the Nearby Supernova Factory collaboration (SNfactory; Aldering
et al., 2002) on the UH88 telescope. We call this CCD-electronics-chain artifact the “binary
offset effect”.

We proceed as follows. In Section 2.2 we discuss how to identify this effect in CCD data.
In Section 2.3, we build a model of the effect which can predict the size of the introduced
offsets given the adjacent pixel values, and we provide an example of data corrected with
this model. In Section 2.4, we then discuss how scientific results can be impacted by this
effect if it is not corrected for.
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2.2 Identifying the Binary Offset Effect

2.2.1 Evidence of the Binary Offset Effect in SNIFS Data

The binary offset effect was first observed in data taken with SNIFS for the SNfac-
tory (Lantz et al., 2004; Aldering et al., 2002). SNIFS contains two lenslet integral field
unit (IFU) spectrographs which produce spectra over a 15×15 grid of spatial elements
(spaxels). The spectrographs simultaneously cover wavelength ranges of 3200–5200 Å and
5100–10000 Å for the blue and red channels respectively. Each spectrograph uses a CCD
composed of 2048×4096 15 micron pixels. The blue channel uses a thinned E2V model 44-82
CCD while the red channel uses a thinned and deep depleted E2V CCD44-82-0-A72 CCD.
These CCDs are of the highest scientific grade. Each CCD is read out by two independent
amplifiers using an Astronomical Research Cameras (ARC) Generation II video board (Leach
et al., 1998).

The binary offset effect can be easily seen by looking at images where there is an accurate
model of the light on the CCD, and by probing the residuals after this model is subtracted
from the data. Here, we examine a set of 1 second dome flat exposures taken with SNIFS.
We take a 300 second exposure in the same configuration, and we treat this exposure as a
model of the true light on the CCD because this exposure has high count levels compared to
the size of the effects that we are looking into. An example of these dome flat CCD exposures
is shown in Figure 2.1, where the spectral traces due to the IFU reformatting of the dome
flat are all visible. We systematically work with the output of the CCD in analog-to-digital
units (ADU) throughout this chapter. The top two panels of Figure 2.1 show examples of
the dome flat exposures after applying an overscan subtraction, a bias correction, and a dark
correction. The bottom panel of this figure shows slices through both one of the 1 second
dome flat exposures and the 300 second exposure scaled to match the exposure time of the
1 second exposure. On the right amplifier, there is a count deficit of 1–2 ADU in between
each of the spaxels on the 1 second exposure relative to the 300 second one. This same deficit
is not seen on the left amplifier.

To probe the cause this deficit, we subtract a scaled version of the 300 second exposure
(which we use here as our reference model) from each of the 1 second exposures to obtain
residual images. For each 1 second exposure, we then compare the residual values of each
pixel after the model was subtracted to the raw value (number of ADU) measured in a pixel
that was read out 2 pixels earlier. We call the pixel read out 2 pixels earlier the “driver
pixel.” We take the mean of all residuals that have the same driver pixel value, and we plot
the mean residual as a function of the driver pixel value. The results of this procedure are
shown in Figure 2.2.

The resulting plot gives a very jagged function: a single ADU difference in the driver
pixel value can correspond to a difference of up to 2.5 ADU in the mean of the residuals of
the pixel read out 2 pixels afterwards. These differences are highly statistically significant;
the measurement uncertainties are less than 0.05 ADU between driver pixel values of 1260
and 1290. A careful analysis of these large differences reveals that they map out the number
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Figure 2.1: Comparison of 1 and 300 second dome flat exposures with the SNIFS instrument.
Top panel: 1 second exposure. Middle panel: 300 second exposure. The CCD is read out
from left to right. The vertical lines (which saturate the scale) are the traces of spectra
for each of the individual spaxels. The amplifier boundary on the CCD is indicated with a
vertical red line. Bottom panel: slices through the previous images showing the mean values
of the pixels in each CCD column with CCD row values between 1400 and 2000. The 300
second exposure has been scaled by its exposure time to match the 1 second exposure. On
the right amplifier, there is a deficit in the measured counts between each spaxel for the 1
second exposure relative to the 300 second exposure, although the background regions are
in agreement. These large deficits are not present on the left amplifier.
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Figure 2.2: Example of the binary offset effect on the SNIFS blue channel right amplifier.
See text for details on how this plot was produced. Top panel: mean residuals as a function
of the raw driver pixel value read out 2 pixels earlier along with an uncertainty band. Bottom
panel: number of “1” bits in the binary representation of the driver pixel value. We label
transitions where more than 5 bits flip with a vertical dashed line. All of the features in
the bottom panel, including the large transitions, are visible in the residual data. The mean
background level and one standard deviation of read noise are illustrated with a vertical
orange line and surrounding band.
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of “1” bits in the binary representation of the driver pixel value. For example, Figure 2.2
shows that there is a difference of 2.5 ADU when transitioning from a driver pixel value
of 1279 ADU to a driver pixel value of 1280 ADU. The binary representations of these
two numbers are 100 1111 1111 and 101 0000 0000 respectively. Other large differences
occur between 1311 ADU and 1312 ADU (101 0001 1111 and 101 0010 0000) and between
1343 ADU and 1344 ADU (101 0011 1111 and 101 0100 0000). The lower panel of Figure 2.2
shows the plot of the number of “1” bits in the binary representation of the driver pixel for
comparison. All of the features in this plot are seen in the residual data, from the large
binary transitions down to odd-even effects.

Figure 2.3 shows the same residuals from Figure 2.2 plotted directly against the number
of “1” bits in the binary representation of the driver pixel value. There is a linear trend
between the mean of the residuals and the number of “1” bits in the binary representation
of the driver pixel value. This is consistent with this effect being mostly related to the total
number of “1” bits rather than it being due to some issue with the uppermost bits. There is
an offset in the zeropoint of this linear relation for values below 1280 ADU indicating that
a linear model with the number of “1” bits is not a complete description of the effect. In
Section 2.3 we will discuss how to properly model this effect.

2.2.2 Implications of the Binary Offset Effect in SNIFS Data

The binary offset effect introduces a highly non-linear signal into images taken with the
CCD. The main consequence of the binary offset effect is that an offset can be introduced to
CCD data that only appears in regions where sufficient flux from science targets is present
on the CCD. To show how this appears in data, we examine stacks of face-on cosmic rays
in dark exposures taken with the SNIFS instrument. An example of such a stack is shown
in Figure 2.4. These images were originally taken in effort to measure the in-situ CTI of
the SNIFS instrument (Dixon et al., 2016), and a small CTI tail can be seen on the upper
part of the image. We also find a deficit in the measured count levels of pixels read out 2–3
pixels after a cosmic ray compared to the background level. We find that the size of the
deficit varies from night to night, from no effect up to around 1 ADU per pixel. The size of
the deficit is not the same on each amplifier. This deficit is the result of the binary offset
effect, and it can be thought of as an offset that is added to the data when the count levels
of previous pixels cross a specific threshold. The deficit has a roughly fixed count value that
does not scale with the amount of flux in the preceding pixels, so it does not behave as a
simple modification to the PSF. The binary offset effect hence effectively introduces a deficit
wherever there is sufficient flux from science targets on the CCD, leading to a local offset in
the measured count values for regions on the CCD with flux from science targets compared
to those without any flux.

An explanation of how the binary offset effect can cause such a deficit can be seen from
Figure 2.2. The raw background level (before overscan subtraction) on the dome flat images
used to generate this figure is around 1274 ADU with 4.5 ADU (or 3 electrons) of read noise
per unstacked pixel. This background level is illustrated with an orange line and surrounding
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Figure 2.3: Example of the binary offset effect on the SNIFS blue channel right amplifier.
This plot shows the same data as in Figure 2.2 with a cut requiring that the uncertainty on
the mean of the residuals be less the 0.2 ADU. Instead of plotting the mean of the residuals
directly against the driver pixel values as in Figure 2.2, we sum the number of “1” bits in
the binary representation of each driver pixel value in ADU, and we plot the mean of the
residuals against this number. There is a clear linear trend in the mean of the residuals with
the number of “1” bits in the binary representation, at all scales. It is also apparent that
there are some additional effects, such as an offset in the zeropoint of the linear relation near
a driver pixel value of 1280 ADU.
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Figure 2.4: Stacked cosmic ray frames from the right amplifier of the SNIFS blue channel.
This image was generated by taking a series of dark exposures on a night, identifying all
face-on cosmic rays in the image, and taking the clipped mean of all pixels around cosmic
rays. The color scale on this plot changes from linear to logarithmic at 0.5 ADU in order
to capture the full dynamic range of the image. The serial readout reads pixels from left to
right in this image. There is a visible deficit of ∼0.5 ADU 2–3 pixels following the cosmic
ray. The faint tail above the cosmic ray is due to the well-known effect of charge transfer
inefficiency.
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band on the figure. Most background pixels are therefore below the threshold of 1280 ADU,
where there is a large change in the binary representation of the driver pixel value. When
there is at least a small amount of signal on the CCD, the pixel values are brought above
the 1280 ADU threshold and a ∼2 ADU offset is introduced into subsequently read pixels
compared to the background regions. The consequences of the binary offset effect for a
science image can be seen in the lower panel of Figure 2.1: for the right amplifier, a deficit
appears in the 1 second dome flat exposure compared to the 300 second exposure wherever
the average count levels are above a few counts. On the left amplifier, the bias level is at
1285 ADU, and there are no major binary transitions in the nearby higher count levels. The
binary offset effect is still present, but introduced offsets are similar for all pixels so no major
difference is observed between background and science regions.

When extracting the spectra from images affected by the binary offset effect, the intro-
duced offsets will propagate to the extracted spectra. The two amplifiers will, in general,
have different bias levels, so they will be affected in different ways by the binary offset ef-
fect. Hence, systematic differences will be observed in spectra extracted from each of the
two amplifiers. The SNfactory collaboration discovered these systematic differences before
the cause was known, and dubbed this effect the “blue step” as it was primarily noticed
at the bluest wavelengths where the expected fluxes of SNIFS’s primary objects of interest
(Type Ia supernovae) can be faint. To illustrate the blue step, we extract spectra for each
of the IFU spaxels in one of the 1 second dome flat exposures using the standard SNfactory
pipeline (Aldering et al., 2006; Scalzo et al., 2010), and we calculate the average flux in the
4000 to 4500 Å region. The results of this procedure are shown in Figure 2.5. We find a
2.2 ADU difference in the measured counts between the two amplifiers, corresponding to a
4.2% difference in the measured fluxes between the two amplifiers for this exposure. The
observed difference is well-modeled by a flat difference in the background level between the
different amplifiers, as expected for a signal introduced in the previously described manner.
The average offset introduced by the binary offset is different in regions on the CCD with
and without flux present, meaning that there is a effectively a pathological local background
offset that only appears where there is flux on the CCD. Conventional background subtrac-
tion routines cannot identify or correct for the difference in background levels introduced by
the binary offset effect because these methods measure the background level in locations on
the CCD where there is no flux present.

2.2.3 Cause of the Binary Offset Effect

The discussion up to this point has shown that an offset is introduced into pixels that are
read out two pixels after the driver pixel. We find a similar offset three pixels after the driver
pixel for each CCD amplifier on both the blue and red SNIFS channels. There is no effect 1
pixel after or 4 or more pixels after, nor is there an offset for pixels before the driver pixel.
The ARC video board used by SNIFS processes pixels one at a time, so the timeframe of 2–3
pixels between the driver and affected pixels implies that there must be some feedback in
the electronics chain from somewhere after the ADC conversion. We varied the gain of the
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Figure 2.5: Exposure-time normalized difference between extracted 1 second and 300 second
dome flats from the SNIFS blue channel, illustrating the “blue step”. Each point corresponds
to the average flux of a spaxel in the 4000 to 4500 Å region. We indicate the boundary where
the readout switches from the left to the right amplifier with a vertical red line. We find a
2.2 ADU difference in the measured fluxes between the two amplifiers which corresponds to
a 4.2% difference in the measured flux for this example.

SNIFS front-end electronics by a factor of 10, and we find that the amplitude of the effect
is constant in ADU. This implies that the introduction of the feedback must occur past the
gain electronics in the CCD electronics chain. We also notice that the binary offset effect
shows up across amplifiers: a driver pixel will introduce an offset in the pixels that are read
out 3 pixels later in the other amplifier with a similar amplitude to the offset introduced on
the driver pixel’s amplifier.

Combining all of these findings, we propose that the binary offset effect is being caused
by feedback into the reference voltage of the ADC. The ADC is highly sensitive to small
changes in its reference voltages: one ADU for a 16-bit ADC corresponds to a change of only
0.0015%. When earlier pixels are read out, the ADC outputs their binary representations
and stores them temporarily. We propose that these charges (representing the ones in the
binary code) then introduce a slight offset into the reference voltage when they are released
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and the next pixel is read out.

2.2.4 The Binary Offset Effect in Other Instruments

We wrote a program that can identify the binary offset effect in CCD data from any
telescope by looking for the characteristic saw-tooth shape in the mean of the residuals as
a function of the driver pixel value seen in Figure 2.2. We find that the effect is present in
most astronomical instruments that are currently in use across a variety of different readout
systems. As we are not able to build a model using different length exposures of our own
on all of these instruments, we use bias or dark images to probe the effect, and we assume
that the pixel values in these images can be modeled by a smooth function. We fit for such
a model using the background determined by sep (Barbary, 2016; Bertin & Arnouts, 1996)
with 64×64 pixel boxes. We subtract this model from the original images to obtain residual
images. With dark and bias images, we are limited to probing the effect over a smaller
baseline of driver values (typically around 10 ADU). We are, however, able to achieve very
high signal-to-noise by averaging the residuals over the full image and by examining multiple
images. We estimate the amplitude of the binary offset effect by measuring the largest
difference in residuals between two adjacent driver pixel values. For the SNIFS images
shown in Figure 2.2, this corresponds to the size of the transition from 1279 to 1280. We
note that the measurement uncertainties on the stacked residuals are around 0.01 ADU for
most instruments, so this method is sensitive to effects larger than ∼0.05 ADU. The results
are summarized in Table 2.1.

We are able to detect the binary offset effect in 16 of 22 instruments that were investi-
gated. The amplitude of the offset varies significantly between the different instruments. We
provide a Jupyter notebook (Kluyver et al., 2016) that contains code to probe this effect for
all of the instruments listed in Table 2.1. This Jupyter notebook is available on GitHub1,
and the main algorithms from that notebook are reproduces in Appendix 2.7. Plots of the
binary offset effect are shown for a representative sample of the different instruments in
Figure 2.6.

For all of the detections in Table 2.1 from instruments on the CFHT, Gemini, Keck, UH88
and VLT telescopes (11 of the 22 instruments investigated), we see an offset in the mean of the
residuals that is roughly proportional to the number of “1” bits in the binary representation
of the driver pixel, similar to what is seen for SNIFS. The amplitude of the effect varies
significantly between instruments, from a peak-to-peak amplitude of approximately 0.1 ADU
for FORS 2 on VLT to a peak-to-peak amplitude of approximately 2.6 ADU for DEIMOS on
Keck (see Figure 2.6a). We also find that the number of pixels following the driver pixel at
which the binary offset effect appears varies from 1 to 3 pixels for the different instruments.
All of the instruments tested using ARC Generation I or II controllers (Leach et al., 1998)
show this kind of binary offset effect, although the size of the effect varies from instrument

1https://www.github.com/snfactory/binaryoffset

https://www.github.com/snfactory/binaryoffset
https://www.github.com/snfactory/binaryoffset
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The median measurement uncertainty for the
residuals is 0.030 ADU.
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Figure 2.6: Examples of the binary offset effect in other instruments. For half of the
instruments that were investigated, such as DEIMOS on Keck, we see an effect that has
similar properties to the effect on SNIFS. For other instruments, such as Hyper Suprime-Cam
on Subaru, ACS on HST, or STIS on HST, we find evidence of offsets related to the binary
representation, but the offsets have a different dependence on the binary encoding. All
plots are shown with their measurement uncertainties as a shaded contour, and the median
measurement uncertainty is given in the subpanel caption. These measurement uncertainties
are very small compared to the size of the observed effects, and all of these observed effects
are highly statistically significant. The specific observations used to generate each plot are
listed in the figure legends.
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to instrument. The newer ARC Generation III controllers used in GMOS-S and GMOS-N
do not show any evidence of the binary offset effect.

In the images from Hyper Suprime-Cam (HSC) on Subaru, we find offsets in the mean
of the residuals, but they do not appear to be linearly related to the number of “1” bits in
the binary encoding of the driver pixel value (see Figure 2.6b). The mean of the residuals
shows peak-to-peak offsets of 0.5 ADU between adjacent driver pixel values with a median
measurement uncertainty of 0.006 ADU, so the detection of an offset related to the driver
pixel value is highly significant. There appears to be a correlation of the least-significant bit
(i.e. whether the driver pixel value is even or odd) with the mean of the residuals. Unlike the
previously-described instruments, large changes in the binary representation do not appear
to correlate with large offsets in the mean of the residuals. The introduced offsets do still
have a highly nonlinear and nonmonotonic dependence on the driver pixel values, although
additional work is needed to understand these offsets. For images taken with the FOCAS
instrument on Subaru we see a similar effect, although the amplitude is smaller.

Images from all of the HST instruments that were examined (WFC3 UVIS, STIS and
ACS) show evidence of an effect related to the binary encoding of driver pixels but with
somewhat different behavior. An example of the effect in ACS is shown in Figure 2.6c. The
least-significant bit (odd-even) has a large effect on the mean of the residuals, but transitions
of the next several bits do not appear to have a significant impact. However, when the sixth
bit or higher is changed, a step is introduced into the mean of the residuals. For the ACS
images shown in Figure 2.6c, we see an offset of 0.4 ADU at the transition from 2463 ADU
to 2464 ADU (1001 1001 1111 to 1001 1010 0000).

The STIS instrument on HST displays a similar behavior to ACS. An example of the
binary offset effect on STIS is shown in Figure 2.6d. For STIS, when the fifth bit or higher
is changed, we notice a large offset, but there is little effect for the less significant bits.
At the transition from 1343 ADU to 1344 ADU (101 0011 1111 to 101 0100 0000) there is
a 4.5 ADU offset in the mean of the residuals. We find that the size of the offsets when
the upper bits are changed varies dramatically, from 0.5 ADU up to the offset of 4.5 ADU
previously mentioned.

For several instruments, the binary offset effect introduces artifacts that are large com-
pared to the size of the signals being observed. On SNIFS, the blue step was identified and
characterized before it was understood as being a result of the binary offset effect. It is likely
that the consequences of the binary offset effect have been identified in other instruments
without the root cause being fully understood.

2.3 Modeling and Correcting the Offset for Active
Instruments

The binary offset effect is present in a large fraction of existing CCD data, as illustrated
by Table 2.1, and correcting for the effect will both improve the quality of existing data and
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allow previously unusable data to be recovered. As a working example of such a correction,
we have derived a model that can calculate the introduced offsets in SNIFS data.

As illustrated in Figure 2.3, the amplitude of the effect is primarily proportional to the
number of “1” bits in the binary encoding of the driver pixel. However, this figure illustrates
that the effect is not simply a linear function of the driver pixel value, as the zeropoint
of the linear relation appears to shift when the driver pixel values drop below 1280 ADU.
These details of the effect are second order, but must be taken into account to generate an
accurate model. We have developed a 9-parameter model which can capture the behavior
of the binary offset effect in SNIFS data. We trained this model on a set of bias images
covering the full history of SNIFS operations (2004–2017). The details of this model can be
found in Appendix 2.6.

We find that this single set of model parameters is able to describe the behavior of an
amplifier over the entire history of the SNIFS instrument. That is; the model parameters
do not vary over time, and a single set of parameters per amplifier is sufficient to cover the
full range of observed temperatures, bias levels and signal levels. The behavior of the binary
offset effect does vary significantly between amplifiers, and we therefore use a unique set of
model parameters for each amplifier. This is consistent with the idea that the digitization
is the root cause, since each amplifier has its own video board. With this model, we are
able to predict the amplitude of the offsets introduced by the binary offset effect to within
0.11–0.16 ADU depending on the amplifier. We can predict the amplitudes of the offsets for
every pixel in an image, and we can use these predictions to build a correction image which
can be subtracted from the data to remove the binary offset effect. Applying this procedure
to a new image only requires the raw pixel counts of the image and a set of previously-derived
model parameters for that amplifier. No additional fitting is required.

As a test of the model, we applied the derived correction to the set of 1 and 300 second
dome flat exposures described in Section 2.2.1. The results of this procedure can be seen
in Figure 2.7. The dome flat images were not included the dataset on which the model
was trained, so this is an out-of-sample test of the model. The deficits seen on the right
amplifier in the slice plot of Figure 2.1 are no longer present after correction. We applied
the same algorithm used to produce Figure 2.2 to the corrected data. The results of this
procedure are shown in Figure 2.8. As seen from this figure, the offsets introduced by the
binary offset effect are effectively removed from the data when the correction is applied.
The remaining linear slope in the residuals is a consequence of the high frequency pickup
described in Appendix 2.6, and is not a feature of the binary offset effect.
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Figure 2.7: Results of the binary offset effect model for the SNIFS image shown in Fig-
ure 2.1. Top panel: original 1 second exposure. Middle panel: model prediction of the signal
introduced by the binary offset effect. Bottom panel: slices through the previous images
showing the mean values of the pixels in each CCD column with CCD row values between
1400 and 2000. For the right amplifier, the model predicts that the binary offset effect in-
troduces an offset of ∼2 ADU (∼1.3 electrons) at the specific locations on the CCD where
spectral traces are found relative to the background locations. When these corrections are
applied to the data, the count deficits seen in Figure 2.1 for the slice of the 1 second exposure
on the right amplifier are eliminated.
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Figure 2.8: Example of data that previously exhibited the binary offset effect on the SNIFS
blue channel right amplifier, after correcting for the effect. See Figure 2.2 for the same data
before correction and an explanation of how this figure was produced. The residuals after
correction no longer have a strong dependence on the binary encoding. There is a slight linear
slope in the residuals for driver pixel values between ∼1250–1280 ADU; this slope arises due
to correlations introduced by high frequency pickup, as discussed in Appendix 2.6, and is
not related to the binary offset effect.

2.4 Impact of the Binary Offset Effect on Scientific
Results

2.4.1 Impact of the Binary Offset Effect on SNIFS/SNfactory
Data

The binary offset effect introduces a highly non-linear signal into CCD data that affects
science results in several ways. As discussed in Section 2.2.2, for the SNIFS instrument, the
binary offset effect can introduce an offset to the data that only appears at locations on the
CCD with a significant amount of flux. This can be seen directly in the model in Figure 2.7:
on the right amplifier, there is a visible offset of ∼2 ADU (∼1.3 electrons) at the specific
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Figure 2.9: Corrected exposure-time normalized difference between extracted 1 second and
300 second dome flats from the SNIFS blue channel. See Figure 2.5 for details and compar-
ison. We find that the offsets between the two amplifiers are consistent to within 0.2 ADU
(0.13 electrons) after correction.

locations on the CCD where spectral traces are found relative to the background regions.
The model predicts that the binary offset effect has little impact on the left amplifier due to
the bias level being above the large binary transition at 1280.

We subtract the derived model from one of the 1 second dome flat exposures, and we
extract the spectra in the corrected image using the SNfactory pipeline. The result of this
procedure is shown in Figure 2.9, which can be compared to Figure 2.5 on the same data
before corrections. The previous offset of 2.2 ADU has been removed and we constrain the
corrected offset between the amplifiers to be less than 0.2 ADU (0.13 electrons), confirming
that the binary offset effect was the cause of the “blue step” in this data and that our model
is capable of removing it.

We apply the binary offset correction to a series of SNfactory observations of Type Ia
supernovae that are representative of the range of measured flux levels on the CCD for
scientific observations. We find that the blue channel is the most strongly affected by the
binary offset effect. For the full dataset, the NMAD (normalized median absolute deviation)
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of the applied corrections ranges is 0.04 mag at UV wavelengths and 0.02 mag for blue
(B-band) wavelengths, while if we look at the faintest 20th percentile of data ordered by flux
level, we find that the corrections in UV have a much larger NMAD of 0.51 mag and those in
the blue have an NMAD of 0.11 mag. Corrections on the red channel have an NMAD of less
than 0.008 mag over the full dataset, and an NMAD of less than 0.05 mag for the faintest
20 percent of observations. The binary offset correction is therefore relatively small for the
majority of the dataset, but it has a disproportionately high impact on fainter regions of our
spectra on the blue channel.

The affected spectra in SNfactory data are typically at late phases of the supernova
lightcurves where the intrinsic supernova flux is low. In practice, however, the SNfactory
collaboration had previously developed methods to identify spectra affected by the binary
offset effect (before recognizing the cause), primarily by looking for anomalous behavior in
the UV, where it stands out. These spectra were not included in previous published analyses.
Although the corrections for the binary offset thus should not affect any previous results,
we do expect that it will allow future analyses to include many spectra that were previously
rejected, especially spectra at late phases.

2.4.2 Impact of the Binary Offset Effect on General Astronomical
Data

There are several science scenarios where the binary offset effect can have large impacts
on science data. The conditions that lead to the largest potential impact are:

• Low background noise.

• Low signal levels.

• A background level just below a large binary transition.

Low-flux observations with fiber-fed, lenslet, or similar spectrographs are very suscepti-
ble to this effect. In these cases, most of the CCD is not in the path of any light, so the
background in those regions is entirely dominated by read noise. For modern instruments,
this means that the background noise will be very low, on the order of a few ADU or less.
When measuring the background level on the CCD with conventional methods, one will ef-
fectively sample the binary offset curve at the given bias level instead of measuring what the
background truly is under the science data due to the small range of pixel values covered in
the region used to measure the background level. Observations with ground-based slit spec-
trographs may be highly susceptible by the binary offset effect, although their susceptibility
depends on how they are used. Observations of faint emission lines with low sky background
or target continuum will be affected for the same reasons as fiber-fed and IFU spectrographs.
As the binary offset effect introduces an offset that is shifted by 1–3 pixels from the data
that it is applied to, the recovered wavelengths of emission lines may be biased. Higher
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resolution spectrographs are likely to be more strongly affected because of the reduction in
sky background per pixel leading to low background noise levels on the CCD.

Science applications using ground-based CCD imaging are not as susceptible as spectro-
graphs to the binary offset effect. Measurements of faint targets with these detectors are
often limited by the sky background, so the potential size of the offset is suppressed. Imaging
applications that have low backgrounds and low signals (for example U-band observations,
narrow band imaging, imaging of standard stars, or very short exposures) are more likely
to be affected. An additional issue for imaging is that the local background offset will have
the same shape as the science signal, but will be shifted by 1–3 pixels depending on the
instrument. This can affect measurements of the shape of a galaxy and may be a concern
for some weak lensing analyses. The binary offset effect will also introduce some correlations
between nearby pixels on the CCD.

Science applications using detectors in space-based missions are highly susceptible to the
binary offset effect, regardless of whether they are being used as an imager or any type of
spectrograph. For these instruments, the sky noise is often low compared to the readout
noise so conventional background subtraction routines will effectively sample from a point
on the binary offset curve rather than averaging over it. The STIS spectrograph on HST is
of particular interest. We find an offset of up to 4.5 ADU for some binary transitions in this
instrument. This offset is per pixel, so it can easily add up to a significant fraction of the
science signal.

2.5 Conclusions
We have discovered an anomalous behavior in the read-out of CCDs: the introduction of

spurious counts into a pixel, with an amplitude that depends on the binary encoding of a
pixel read out 1–3 pixels previously. One consequence of this effect is that it can introduce a
local background offset that only appears where sufficient flux from science targets is present
on the CCD. This background offset is not removed by conventional background subtraction
procedures. In SNIFS data, the effect can cause an offset in the final measured fluxes of up
to 2 ADU per pixel. The binary offset effect explains several effects previously noticed in
SNIFS data, notably the “blue step” where there is a flat offset between data from different
amplifiers, and a fixed count deficit in pixels following cosmic rays. We find evidence of the
binary offset effect in 16 of 22 different instruments that were investigated, indicating that
the effect is present in a significant amount of existing astronomical data.

In this analysis, we built a model that can predict, and thus reliably correct, the offsets
introduced by this effect in affected CCD data, and we applied this model to SNIFS data.
We find that the model parameters are stable in time, but that they are unique to the
readout electronics of each amplifier. With this model, we can predict the amplitudes of
the introduced offsets, and we use these predictions to correct for the binary offset effect.
The model derived in this analysis is general, and a variant of it should be applicable to any
instrument. Because of the relatively large amplitudes of the introduced offsets relative to
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the noise levels, only a single bias image is typically required to characterize the effect and
fit the model.

The binary offset effect can also be mitigated in hardware. Reducing opportunities for
stray signals to affect the input of the ADC, e.g. using a differential input, should eliminate
the binary offset effect. We find that 6 of the 22 instruments that we investigated do not show
signs of this effect, as shown in Table 2.1. These can serve as a guide to design new readout
electronics that are not susceptible to the binary offset effect. The size of the binary offset
effect should be measured and characterized in any new CCD readout system to determine
whether or not it will impact the science results. For systems where modifying the readout
electronics is not practical, the bias level can at least be set to a level where there are no large
binary transitions immediately above said bias level. This will minimize the potential size
of the offsets although it will not eliminate them. Finally, the tests outlined in this analysis
should be performed for any CCD-based instrument likely to exhibit the binary offset effect,
and the correction procedure that we present in this analysis should be incorporated in the
data-reduction pipeline of all instruments where the binary offset effect is found.

2.6 Appendix: Modeling the Binary Offset Effect in
SNIFS Data

In SNIFS data, we notice that an offset is introduced into the affected pixel related to
the binary encodings of the driver pixels read out 2 and 3 pixels earlier. In the following
discussion, we refer to a pixel that is affected by the binary offset as the “target”. Each pixel
on the CCD serves as a driver pixel for several other pixels. We subtract a model of the
counts on the CCD from the measured data to obtain a residual image, and we compare the
value of the residual image for each pixel to the raw ADU measured on the corresponding
driver pixels. We refer to driver pixels that were read out N pixels before the target pixel
as T-N. There is also some crosstalk between the amplifiers: the value of the pixel that was
read out 3 pixels earlier in time on the other amplifier also affects the introduced offsets. We
note that the timing of the readout of the other amplifier is what matters rather than the
physical location on the CCD. We refer to driver pixels that were read out N pixels before
the target pixel on the other amplifier as O-N.

We find that the binary codes of the driver pixels interact with each other in a complex
way to produce the offset that is applied to the target pixel. There is a baseline linear trend
of the introduced offsets with the number of “1” bits in pixels T-2 and T-3. However, there
is also some interaction between these pixels: a bit in pixel T-2 behaves differently if that
same bit was on in pixel T-3 compared to if it was off. The largest offsets occur when a
bit is “1” in both T-2 and T-3. For pixel T-2, we find that the more significant bits have
a larger effect on the introduced offset than the less significant bits. For pixel T-3, we find
evidence of interactions across amplifiers: turning a bit from “0” to “1” in T-3 introduces an
offset that depends on how many bits were already on in T-3 and in O-3. We model this
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interaction with a second order polynomial in the number of bits that are “1” in each of T-3
and O-3. We do not find any evidence of direct interactions across bits (e.g.: bit 8 does not
directly affect the behavior of bit 0).

We incorporate all of these effects into a model capturing the time-invariant behavior of
the electronics, which is then fit to the data. The model includes 9 parameters which are
used to predict the offsets introduced by the binary offset effect as a simple function of the
three pixel values T-2, T-3, and O-3. The terms can be summarized as follows: a base effect
in the number of bits in T-2 are “1” that depends on whether the same bits are “1” in T-3 or
not (2 parameters), larger effects for more significant bits in T-2 and T-3 (2 parameters), and
a 2-dimensional polynomial in how many bits are “1” in T-3 and how many are “1” in O-3
in order to capture the cross-amplifier effects (5 parameters). The zeropoint is arbitrarily
chosen such that the model predicts an offset of 0 when all of the driver pixels are 0. These
terms and the effects that they capture are shown in Table 2.2.

A challenge in fitting such a model to data is that effects other than the binary offset
effect can introduce correlations between the observed driver and target pixels. For example,
cosmic rays will produce large signals on the detector that will show up in the residual images.
To mitigate this, we mask out cosmic rays (and any other bright pixels) by identifying any
pixels that are over five standard deviations above the background noise level in the residual
images and flagging a region with a border of 2 pixels around them. Another challenge is that
low-order spatial variations over the image can also introduce local correlations between pixel
values. We perform a background subtraction on the residual images using sep (Barbary,
2016; Bertin & Arnouts, 1996) with 64 × 64 pixel boxes to reduce the potential impact of
these variations. A more challenging feature of the data is a pickup signal that appears in
many of the SNIFS images with a frequency of 15–20 kHz (a period of roughly 3 pixels)
and an amplitude of ∼ 1 ADU. This pickup signal is very challenging to model due to its
low amplitude, and it effectively introduces a smooth variation in the mean of the target
pixel residuals as a function of the driver pixel value. We note that the binary offset effect
introduces large offsets into the target pixel value when a driver pixel value increases by
1 ADU while most other effects are continuous. We therefore fit for the effect of a 1 ADU
change in a driver pixel on the target pixel rather than trying to fit for the offset that was
added to each target pixel as a function of the driver pixel values directly.

The final fitting procedure is as follows. Given a raw image, we mask out pixels with
known issues, and then perform a background subtraction to obtain a residual image. For
every unique set of three driver pixel values T-2, T-3, and O-3, we find all target pixels in
the raw image with those driver pixel values. We calculate the mean value of the residuals
for those target pixels and we estimate the uncertainty on that mean value. Note that the
mean value of the target pixel residuals is a sum of the amplitude of the binary offset effect
and other effects like pickup that introduce correlated residuals. After calculating the mean
of the target pixel residuals for every combination of driver pixel values, we identify sets of
driver pixel values where one driver pixel value changed by 1 ADU, and we calculate the
difference in the mean of the target pixel residuals associated with that change in driver
pixel value and the measurement uncertainty on this difference. We fit our model to these
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differential measurements which mitigates the impact of effects like pickup.
We fit the 9-parameter model described in Table 2.2 to a subset of bias images taken

roughly evenly spaced in time across the full history of the SNIFS instrument by performing
a χ2 minimization. There are 98 images included in this fit for the blue channel and 99
images for the red channel. Each sample is split into 10 subsamples, and we fit the model
parameters on each of these subsamples individually. We then calculate the mean model
parameters from each of these fits, and we use the standard deviation of the fitted parameters
across subsamples as an estimate of the systematic uncertainty associated with the model.
The fitted model parameters are shown in Table 2.2.

We find that when a bit is “1” in both pixels T-2 and T-3, an offset of up to 0.663 ±
0.012 ADU is introduced in the target pixel. The fitted model parameters are not consistent
across amplifiers: on the red channel, the left amplifier has an offset of −0.503± 0.006 ADU
per bit that is “1” in both T-2 and T-3 while the right amplifier has an offset of −0.091 ±
0.004 ADU per “1” bit. The introduced offsets for the interaction across amplifiers can be
up to 0.144 ± 0.024 ADU per “1” bit for the left amplifier on the red channel, and the fit
finds a strong interaction between the bits in pixels T-3 and O-3 on the blue channel.

The model is not a perfect description of the effect: when fitting the model to the data,
we find that the chi-squared per degree of freedom (χ2/DoF ) of the fits is between 1.11
and 1.23 when using the measurement uncertainties estimated in the previously described
procedure, while it would be 1 if the model perfectly described the data. We estimate the
remaining dispersion of the data due to the binary offset effect by adding an uncertainty
term in quadrature to the measurement uncertainty in order to set the χ2/DoF to 1. For
the blue channel, this requires an additional 0.156 ADU and 0.164 ADU of dispersion for
the left and right amplifiers respectively. For the red channel, this requires an additional
0.126 ADU and 0.110 ADU of dispersion for the left and right amplifiers respectively.

We estimate the uncertainty in the model parameters by taking the standard deviation of
the fits to the 10 different subsets. As a conservative estimate of the systematic uncertainties,
we adopt the standard deviations of the fitted parameters directly rather than attempting
to take out the statistical component by combining datasets. The derived uncertainties are
shown in Table 2.2. These uncertainties are highly correlated, especially the terms relating
higher orders in the same bit counts (eg: parameters 5 and 7) and the terms related to larger
effects for more significant bits (eg: parameters 1 and 3). We estimate the impact of the
variation in the model parameters on the derived corrections by repeatedly sampling realiza-
tions of model parameters from a Gaussian distribution following the full fitted covariance
matrix of the model parameters. For each realization of model parameters, we calculate the
implied corrections for a group of images. Across realizations, we find that the standard
deviation of the implied corrections is less than 0.01 ADU for images on the blue channel,
and less than 0.005 ADU for images on the red channel, so the uncertainties in the model
parameters do not significantly affect the final corrections. The uncertainty of the correction
is therefore dominated by the unexplained residual dispersion described previously, and is
between 0.11–0.16 ADU depending on the amplifier. We do not detect any significant vari-
ation in the behavior of the binary offset effect or the model parameters over the history of
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SNIFS (from 2004 to 2017).

2.7 Appendix: Code used to identify the Binary Offset
Effect in arbitrary instruments.

A Jupyter notebook is available on GitHub2 with code that can be used to identify the
binary offset effect in arbitrary instruments. The main algorithms from this notebook are
reproduced in this Appendix for posterity:

1 import sep
2 import glob
3 import numpy as np
4 from scipy.stats import sigmaclip
5 from scipy.signal import convolve2d
6 from matplotlib import pyplot as plt
7
8
9 def subtract_background(data):

10 """ Subtract the background from data.
11
12 We assume that we are working with a bias or dark frame , so we
13 don’t have to worry about detecting and masking out objects.
14 """
15 background = sep.Background(data)
16
17 sub_data = data - background.back()
18
19 return sub_data
20
21
22 def build_cosmic_mask(data):
23 """
24 Build a cosmic ray mask for a residual image.
25
26 This is a very naive algorithm. We are running on residuals , so we
27 cut anything that is 5 sigma high or low. We then mask by a couple
28 pixels around the cut too to capture the tail.
29 """
30 target_nmad = nmad(data)
31 start_mask = np.abs(data - np.median(data)) > 5. * target_nmad
32
33 num_edge_pixels = 2
34 mask = ~( convolve2d(
35 start_mask ,
36 np.ones ((2* num_edge_pixels +1, 2* num_edge_pixels +1)),
37 mode=’same’

2https://www.github.com/snfactory/binaryoffset

https://www.github.com/snfactory/binaryoffset
https://www.github.com/snfactory/binaryoffset
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38 ).astype(bool))
39
40 return mask
41
42
43 def clipped_mean(data):
44 clip_data , min_clip , max_clip = sigmaclip(data)
45
46 mean = np.mean(clip_data)
47 mean_err = np.std(clip_data) / np.sqrt(len(clip_data) - 1)
48
49 return mean , mean_err
50
51
52 def nmad(data , *args , ** kwargs):
53 return 1.4826 * np.median(
54 np.abs(np.asarray(data) - np.median(data , *args , ** kwargs)),
55 *args , ** kwargs
56 )
57
58
59 _cache_num_ones = {}
60 def cached_num_binary_ones(x):
61 try:
62 return _cache_num_ones[x]
63 except KeyError:
64 num_ones = _num_binary_ones(x)
65 _cache_num_ones[x] = num_ones
66 return num_ones
67
68
69 def _num_binary_ones(x):
70 return bin(x).count(’1’)
71
72
73 def calc_num_binary_ones(x):
74 x = np.atleast_1d(x)
75 out = np.zeros(x.shape)
76 for i in range(len(x.flat)):
77 out.flat[i] = cached_num_binary_ones(x.flat[i])
78
79 return out
80
81
82 def calculate_mean_residual(data , offset , do_diff=True ,
83 residuals=None):
84 """ Calculate the mean residuals as a function of the value of a
85 reference pixel.
86
87 This will return a list of raw pixel values and the average
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88 residuals for pixels separated by "offset" from pixels with those
89 values.
90
91 If do_diff is True , we look at a difference between the offset in
92 the left direction and the right direction to cancel out effects
93 like pickup. Otherwise , we only look in the direction specified
94 by offset.
95
96 The sign of offset doesn ’t really matter if used in diff mode since
97 the positive and negative offsets will be subtracted from each
98 other. However , if do_diff is False then they do matter. I have not
99 determined the readout direction on each instrument tested here , so

100 a positive offset may or may not be in the readout direction.
101 """
102 if residuals is None:
103 # If we weren ’t given residuals , just assume that the image is
104 # relatively flat and do a local background subtraction.
105 residuals = subtract_background(data.astype(float).copy())
106
107 # We look at the difference in residuals from one side to the next.
108 ref_1 = np.roll(data , offset)
109 ref_2 = np.roll(data , -offset)
110
111 # Generate a mask to filter out cosmic rays/bad pixels.
112 mask = build_cosmic_mask(data)
113 use_residuals = residuals[mask]
114 use_ref_1 = ref_1[mask]
115 use_ref_2 = ref_2[mask]
116
117 # Figure out which range of pixel values to probe.
118 min_values = np.percentile(data , 2)
119 max_values = np.percentile(data , 98)
120 pixel_values = np.arange(min_values , max_values +1)
121
122 residual_means_1 = []
123 residual_means_2 = []
124 residual_errs_1 = []
125 residual_errs_2 = []
126
127 for pixel_value in pixel_values:
128 cut_1 = use_ref_1 == pixel_value
129 cut_2 = use_ref_2 == pixel_value
130
131 # For each value that is found in at least 20 pixels we
132 # calculate a clipped mean of the residuals and estimate an
133 # error on it.
134 if np.sum(cut_1) > 20:
135 mean_1 , mean_err_1 = clipped_mean(use_residuals[cut_1 ])
136 else:
137 mean_1 = np.nan



CHAPTER 2. THE BINARY OFFSET EFFECT 39

138 mean_err_1 = np.nan
139
140 if np.sum(cut_2) > 20:
141 mean_2 , mean_err_2 = clipped_mean(use_residuals[cut_2 ])
142 else:
143 mean_2 = np.nan
144 mean_err_2 = np.nan
145
146 residual_means_1.append(mean_1)
147 residual_means_2.append(mean_2)
148 residual_errs_1.append(mean_err_1)
149 residual_errs_2.append(mean_err_2)
150
151 residual_means_1 = np.array(residual_means_1)
152 residual_means_2 = np.array(residual_means_2)
153 residual_errs_1 = np.array(residual_errs_1)
154 residual_errs_2 = np.array(residual_errs_2)
155
156 # Calculate the difference in residuals in each direction. This is
157 # what we will look at to see if the binary offset effect is
158 # present since it is relatively clean.
159 if do_diff:
160 residual_means = residual_means_1 - residual_means_2
161 residual_errs = np.sqrt(residual_errs_1 **2
162 + residual_errs_2 **2)
163 else:
164 residual_means = residual_means_1
165 residual_errs = residual_errs_1
166
167 return pixel_values , residual_means , residual_errs
168
169
170 def setup_figure ():
171 fig , (ax1 , ax2) = plt.subplots(2, 1, sharex=True ,
172 gridspec_kw ={’height_ratios ’: [2.5, 1], ’hspace ’: 0.})
173
174 fig_parts = (fig , ax1 , ax2)
175
176 return fig_parts
177
178
179 def plot_mean_residual(data , offset , label=None , do_diff=True ,
180 residuals=None , fig_parts=None):
181 """ Plot the mean residuals calculated using
182 calculate_mean_residual.
183 """
184 pixel_values , residual_means , residual_errs = \
185 calculate_mean_residual(data , offset , do_diff=do_diff ,
186 residuals=residuals)
187
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188 if fig_parts is not None:
189 fig = fig_parts [0]
190 ax = fig_parts [1]
191 else:
192 fig = plt.gcf()
193 ax = fig.add_subplot (111)
194 xlabel = ’Value of driver pixel (ADU)’
195 ax.set_xlabel(xlabel)
196
197 if offset == 1:
198 offset_label = ’1 pixel ’
199 else:
200 offset_label = ’%d pixels ’ % offset
201 plt.ylabel(’Mean residuals for an offset of %s (ADU)’ %
202 offset_label)
203
204 ax.plot(pixel_values , residual_means , label=label)
205 ax.fill_between(
206 pixel_values ,
207 residual_means -residual_errs ,
208 residual_means+residual_errs ,
209 alpha =0.2
210 )
211
212 print(’Median residual errors: %.4f’ % np.median(residual_errs))
213
214 return pixel_values
215
216
217 def finalize_figure(fig_parts , show_bits=4, min_bits=0, max_bits =11,
218 legend_loc =0):
219 fig , ax1 , ax2 = fig_parts
220 label_bit_changes(show_bits , ax1)
221 labelled_locations = label_bit_changes(show_bits , ax2 ,
222 legend=False)
223
224 ax1.set_ylabel(’Residuals (ADU)’)
225
226 xmin , xmax = ax1.get_xlim ()
227 x = np.arange(int(np.floor(xmin)), int(np.ceil(xmax)))
228
229 x_binary_count = calc_num_binary_ones(x)
230 ax2.plot(x, x_binary_count , c=’C0’,
231 label=’Number of "1" bits in binary representation ’)
232 ax2.set_ylabel(’Number of "1" bits’)
233 ax2.set_xlabel(’Driver pixel value (ADU)’)
234 ax2.set_ylim(min_bits , max_bits)
235 ax2.legend(loc=legend_loc)
236
237 ax2.set_xticks(labelled_locations)
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238
239 ax1.legend ()
240
241
242 def calc_num_bits(x):
243 return bin(int(x)).count(’1’)
244
245
246 def label_bit_changes(min_bits=4, axis=None , legend=True):
247 if axis is None:
248 axis = plt.gca()
249
250 x_lim = plt.gca().get_xlim ()
251 x_start = int(np.floor(x_lim [0]))
252 x_end = int(np.ceil(x_lim [-1]))
253
254 x_range = np.arange(x_start , x_end)
255
256 first = True
257 labelled_locations = []
258 for x in x_range:
259 num_diff_bits = calc_num_bits(x ^ (x+1))
260 if num_diff_bits >= min_bits:
261 if first and legend:
262 label = ’Large binary transitions ’
263 first = False
264 else:
265 label = None
266 axis.axvline(x+0.5, c=’black ’, ls=’--’, alpha =0.2,
267 label=label)
268
269 labelled_locations.append(x + 0.5)
270
271 return labelled_locations

The following code shows an example of how to use the previous code to process a set of
dark files from the DEIMOS instrument. This code produces the plot shown in Figure 2.6a:

1 filenames = glob.glob(’./data/deimos /*. fits.gz’)
2
3 fig_parts = setup_figure ()
4
5 for filename in filenames:
6 index = 4
7 print("Processing", filename)
8
9 with fits.open(filename) as fits_file:

10 data = fits_file[index ].data
11 target_name = filename.split(’/’)[-1][: -8]
12 plot_mean_residual(data , 2, label=target_name ,
13 fig_parts=fig_parts)
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14
15 finalize_figure(fig_parts , show_bits =4, legend_loc =3, min_bits =-5)
16
17 plt.savefig(’./ binary_offset_deimos.pdf’)
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Chapter 3

Mapping the Diversity of Type Ia
Supernovae with Manifold Learning

3.1 Overview
In Fakhouri et al. (2015) (hereafter F15), we showed that pairs of “twin supernovae”,

identified by matching their spectral features, can be used to standardize Type Ia supernovae
(SNe Ia) with a much lower dispersion in brightness than template based methods. While this
standardization method is effective, it can only be applied for SNe Ia with spectrophotometry
near maximum light. In this chapter, we build upon the twins analysis, and we show how
we can use similar techniques to develop a new non-linear parametrization of the intrinsic
diversity of SNe Ia. Standardization of SNe Ia with this parametrization results in low
dispersions in brightness, similar to the twins method. With our parametrization, we can
identify subsets of SNe Ia that are not correctly standardized by traditional standardization
methods such as SALT2 (Betoule et al., 2014) with systematic offsets of up to 0.3 mag for
some regions of the parameter space. We show that correlations between the standardized
brightnesses and host galaxy properties can be greatly reduced using our parametrization of
SNe Ia.

This analysis is laid out as follows. First, we discuss the dataset that we use in Section 3.2.
We then describe a method to model the differential evolution of the spectra of SNe Ia and
estimate their spectra at maximum light in Section 3.3. In Section 3.4, we introduce a pro-
cedure that we call “Reading Between the Lines”, where we use the regions of the supernova
spectra with low spectral diversity to remove the extrinsic contributions to the spectra from
distance uncertainties and extinction due to dust. This analysis produces dereddened spectra
that only have intrinsic variation of SNe Ia remaining. Using these dereddened spectra, we
perform a manifold learning embedding in Section 3.5 and examine the recovered parameter
space of SNe Ia. In Section 3.6, we show how the recovered parameter space of SNe Ia can
be used to standardize SNe Ia, and evaluate the performance of our methods. Finally, in
Section 3.7, we discuss future extensions to this standardization method and how it can be
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applied to other datasets.

3.2 Dataset
For this analysis, we make use of the spectrophotometric timeseries of SNe Ia obtained by

the Nearby Supernova Factory (SNfactory; Aldering et al., 2002). The spectrophotometric
timeseries were collected using the Super Nova Integral Field Spectrograph (SNIFS; Lantz
et al., 2004). The SNIFS spectroscopic channels consist of two lenslet integral field spectro-
graphs (IFS, “à la TIGER”; Bacon et al., 1995, 2001), which split a fully-filled 6.′′4×6.′′4 field
of view into a grid of 15×15 spatial elements. The two spectrographs cover the 3200–5200 Å
and 5100–10000 Å wavelength ranges simultaneously. A photometric channel images the field
around the IFS to monitor atmospheric transmission. The SNIFS instrument is continuously
mounted on the south bent Cassegrain port of the University of Hawaii 2.2 m telescope on
Mauna Kea.

The spectra from SNIFS were reduced using the SNfactory data reduction pipeline (Bacon
et al., 2001; Aldering et al., 2006; Scalzo et al., 2010). The flux calibration procedure for
this pipeline is described in Buton et al. (2013), and the host-galaxy subtraction procedure
is presented in Bongard et al. (2011). The full SNfactory dataset at the time of this analysis
consists of a total of 3951 spectra of 438 different SNe Ia between the redshifts of 0.001 to
0.14.

We fit the light curve of each of the SNe Ia in our sample using the SALT2 light curve fitter
(Betoule et al., 2014) version 2.4 that is currently used for most cosmological analyses with
SNe Ia (e.g., Scolnic et al., 2018). To perform these fits, we synthesize synthetic photometry
in the SNfactory U, B, V, R, and I bands defined as tophat filters with wavelength ranges
shown in Table 3.1. As the SALT2 model is unreliable outside of the optical bands, we fit
the SALT2 model using only the B, V, and R bands, but we calculate the model residuals
in all bands. We use these SALT2 fits for several different purposes. First, for this analysis,
we are specifically interested in the spectra from the SNfactory dataset near maximum light.
We use the SALT2 fits to determine the time of maximum light for each supernova. To
ensure that we have a reasonable determination of the time of maximum, we require that
each supernova have at least five spectra, and that the SALT2 day of maximum uncertainty
is less than one day. We then keep all of the spectra within five restframe days of maximum
light for our analysis, and reject any supernova that doesn’t have such a spectrum.

We also compare the standardization of the luminosity of SNe Ia with our techniques to
standardization with the SALT2 fitter in Section 3.6. For these analyses, we impose addi-
tional criteria on the SALT2 fits to ensure that the fit quality is acceptable. First, we impose
phase coverage criteria similar to Guy et al. (2010), requiring at least four measurements
at restframe times t relative to maximum light satisfying −10 < t < 35 days, at least one
measurement with −10 < t < 7 days, at least one measurement with 7 < t < 20 days
and measurements in at least two different synthetic filters with −8 < t < 10 days. We
then require that the normalized median absolute deviation (NMAD) of the SALT2 model
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Table 3.1: SNfactory synthetic filter definitions. We synthesize photometry from the SNIFS
spectra in various bands using tophat filters with perfect throughput in a given wavelength
range and no throughput outside of that range. The wavelength ranges for the different
bands are shown in this table.

Band name Wavelength range (Å)
U 3300–4102
B 4102–5100
V 5200–6289
R 6289–7607
I 7607–9200

residuals be less than 0.12 mag and that no more than 20% of the SALT2 model residuals
have an amplitude of more than 0.2 mag.

For analyses on the spectra of SNe Ia, we shift the wavelengths of all of our spectra to
the supernova’s restframe, and we rebin these spectra with a common binning of 1000 km/s
between 3300–8600 Å. This results in a total of 288 wavelength bins, and is the same binning
used in F15 and Saunders et al. (2018). Assuming a set of fiducial cosmological parameters
from Komatsu et al. (2011), we shift the brightness of each supernova so that they all appear
to be at a common redshift of 0.05.

We find that low signal-to-noise (S/N) spectra from the SNIFS instrument have large
systematic uncertainties, especially at the bluer ends of the spectra. These uncertainties
appear to be primarily due to poor fits of the model in the extraction from the CCD,
which introduces a correlated offset that gets larger towards bluer wavelengths. We do not
notice strong biases in the SNIFS spectra for repeated observations of the same target. To
illustrate this effect, we examined the SALT2 model residuals for all of the SNe Ia in the
SNfactory sample passing the SALT2 selection criteria previously described. To probe for
large systematic uncertainties, we examined how the fraction of SALT2 residuals with an
amplitude of more than 0.2 mag depends on various measurement properties. First, the
SALT2 model has large modeling uncertainties in the U and I bands, especially for phases
away from maximum light. We plot the binned outlier fraction as a function of SALT2 phase
in Figure 3.1. We find that the outlier fractions are lowest in most bands near maximum
light. In Figure 3.2, we show the fraction of outliers both with and without a SALT2 phase
cut between −3 and +15 days as a function of the statistical S/N in the bluest 500 Å of the
spectrum (3300 to 3800 Å).

Regardless of whether or not the phase cuts are applied, the outlier fraction has a strong
dependence on S/N, especially in the U-band. Note that the S/N in the U-band is roughly
twice the S/N in the bluest 500 Å of the spectrum, so for a S/N of 10 in this bluest 500 Å
of the spectrum, we would only expect less than 1% of U-band SALT2 residuals to have
an amplitude of more than 0.2 mag due to statistical uncertainty. The observed outlier
fraction of ∼60% is entirely due to correlated systematic uncertainties in the extraction of
the spectrum from the CCD. In this analysis, we are interested in understanding the intrinsic
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Figure 3.1: SALT2 residual outliers as a function of SALT2 phase. From the full set of
valid SALT2 fits to SNfactory light curves of SNe Ia, we calculate the SALT2 residuals in
each of the SNfactory bands described in Table 3.1. For each band, we calculate the fraction
of spectra that have SALT2 fits residuals with an amplitude larger than 0.2 mag in bins
of the SALT2 phase. The results of this procedure are shown in different colors for each
band. Uncertainties on the outlier fractions in each bin are estimated using the Wilson score
interval (Wilson, 1927).

spectral diversity of SNe Ia, and large instrumental sources of spectral diversity would be
recovered in such an analysis and potentially confused with intrinsic spectral diversity. To
avoid this issue, we require that the statistical S/N of all of the spectra used in this analysis
be larger than 100 in the bluest 500 Å of the spectrum.

We also examined how the SALT2 residuals of SNIFS spectra correlate with other prop-
erties of the observations. We find that the statistical S/N in the bluest 500 Å is a better
predictor of SALT2 outliers than the S/N in other redder bands because the outliers are
primarily in the bluer bands: there are almost no outliers in the V or R bands, and the
outliers in the I-band appear to be primarily due to SALT2 modeling uncertainties rather
than S/N issues, as can be seen in Figures 3.1 and 3.2. We examined the effect of redshift,
airmass, seeing, sky background level, properties of standard stars used for calibration on a
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Figure 3.2: SALT2 residual outliers as a function of the statistical S/N in the bluest 500 Å
of the spectrum (3300 Å to 3800 Å). See Figure 3.1 for details of the plot. Top panel: SALT2
outlier fraction in bins of S/N for all spectra. Bottom panel: SALT2 outlier fraction in bins
of S/N for spectra with SALT2 phases between −3 and +15 days.
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Table 3.2: Summary of sample selection requirements. The general selection requirements,
listed in the first section of the table, are applied to all analyses. For other analyses described
in this document, we apply different selection requirements, listed in the different sections
of the table.

Selection Requirement Number of Supernovae
passing requirement

General selection requirements
Initial sample 415
More than 5 spectra 280
SALT2 date of maximum light uncertainty < 1 day 277
At least one spectrum within 5 days of maximum light 254
At least one spectrum with S/N 3300-3800 Å > 100 207
Estimation of the spectra at maximum light
(Section 3.4.4)
Spectrum uncertainty < 10% of intrinsic power 175
Valid supernova brightness requirements
(Section 3.6.1)
Host galaxy redshift available 170
Host galaxy redshift above 0.02 146
Measured AV < 0.5 mag 135
Blinded training subsample 73
Comparisons to SALT2 fits
(Section 3.6.6)
SNfactory SALT2 selection requirements 184
Passes host galaxy redshift and color requirements 152
Has a valid interpolation to maximum light 128
Blinded training subsample 66

given night, photometricity of the night, moon location, detector temperatures, time that the
detector was on, and many other variables on the SALT2 residuals. For the latest SNfactory
spectral reductions, we do not notice any relationships between the SALT2 residuals and
these properties beyond S/N. A summary of the attrition for each of these steps, along with
analysis specific selections that will be discussed in the following sections, are shown in Ta-
ble 3.2. A total of 207 supernovae pass all of the previously described selection requirements
with a total of 606 spectra within five days of maximum light passing the S/N requirements.

Note that our goal is to have a sample that covers the full diversity of SNe Ia. We
include every target in the SNfactory dataset that was identified as an SN Ia in this analysis,
including SNe Ia that have been labeled as “peculiar”. The objective of this analysis is to
understand the full diversity of the spectra of SNe Ia near maximum light, and understanding
how peculiar SNe Ia are related to “normal” SNe Ia is therefore crucial to our analysis. One
potential issue is that the requirement on S/N in the 3300-3800 Å wavelength range could
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bias our analysis towards a specific subtype of SNe Ia. However, the variation in S/N simply
due to the observed brightnesses of SNe Ia at the wide range of different redshifts considered
is much larger than the intrinsic variation in brightness in this band, and is unlikely to
introduce any significant selection bias into our analysis.

3.3 Estimating the Spectra of SNe Ia at Maximum
Light

To compare different SNe Ia to each other, their spectral time series must be interpolated
so that their spectra are compared at the same times relative to maximum light (their
“phases”). Even though we have only included supernovae with spectra within five days of
maximum light for this analysis, we could still potentially be comparing spectra with phases
that differ by as much as ten days to each other if we do not perform any sort of interpolation
in phase.

In F15, we performed this interpolation using Gaussian Process (GP) regression to gen-
erate models of the spectral timeseries for each supernova. This method is very effective
when the time series is well-sampled, but each supernova is fit completely independently of
all other supernovae, so the GP predictions have large uncertainties when interpolating or
extrapolating a spectrum more than a couple days from observed data. As a result, 11 of
the 66 supernovae that could otherwise have been used in the F15 analysis were rejected
due to having unreliable GP predictions, a somewhat subjective cut that relied on human
judgement about whether the GP predictions seemed like a reasonable model of the light
curve.

In this work, we build a new interpolation method that simultaneously models the time
evolution of all SNe Ia in a sample. With such a model, if we know the time of maximum
for a supernova, then we can estimate the spectrum of that supernova at maximum light
even if we have only a single spectrum of that supernova and a reliable estimate of the time
of maximum. We do this by modeling the differential evolution of supernovae rather than
the supernova spectra themselves. We find that despite the large differences in supernova
spectra near maximum light, the spectra of SNe Ia evolve in time in a remarkably similar
way. An example of this is seen in Figure 3.3.

3.3.1 Modeling the Differential Time Evolution of SNe Ia

We take advantage of the similarity in the time evolution of SNe Ia to build a differential
model that can be applied to supernovae to both interpolate their spectra to maximum light
and to produce an estimate of the uncertainty of the interpolated spectra. We assume that
the differential evolution of a supernova from maximum light to some nearby phase can be
modeled in each wavelength bin using a quadratic function in wavelength. We also include a
correction to this function that depends on the stretch of the supernova measured as SALT2’s
x1 parameter:
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Figure 3.3: Comparison of the spectral evolution of different SNe Ia near maximum light
for a randomly chosen subset of supernovae in the sample. For each supernova, we take its
spectra at two different phases, and we calculate the difference in brightness in magnitudes
per day between the two spectra. Despite the fact that these supernovae have a wide range
of different properties (for example, SALT2 x1 values range from −2.3 to 1.2), they show
remarkable similarity in their spectral evolution in time.

mtrue(p;λ) = mmax(λ) + p · c1(λ) + p2 · c2(λ) + p · x1 · c3(λ) + p2 · x1 · c4(λ) (3.1)

where mmax(λ) is the flux of the supernova at maximum light in magnitudes, mtrue(p;λ)
is the flux of the supernova at phase p in days away from maximum light, x1 is the SALT2
x1 parameter for that supernova, and c1(λ) through c4(λ) are arbitrary functions of wave-
length that are fixed for all SNe Ia and that represent the time evolution of supernovae near
maximum light. Note that because we are only modeling the differential evolution of the
supernova’s spectrum, any static extrinsic effects such as the distance to the supernova or
reddening due to static interstellar dust will be absorbed into mmax(λ) and have no impact
on the model.

This simple model will not be able to capture all of the diversity in spectral evolution
of SNe Ia. To account for this, we model the dispersion of the interpolation residuals as
a function of phase using a broken linear function that is fixed to zero at maximum light
(where there is no interpolation uncertainty by definition) and with nodes at −5, −2.5, 2.5,
and 5 days for each wavelength bin. Another potential challenge with the SNfactory dataset



CHAPTER 3. MANIFOLD LEARNING FOR TYPE IA SUPERNOVAE 51

is that we find “gray dispersions” in brightness of a flat ∼0.02 mag independent of wavelength
for spectra of standard stars after calibration. We add these gray dispersions to our model
of the observed supernova flux. Finally, we include the measurement uncertainties in our
model. Combining all of these effects together, the model of an observed supernova spectrum
becomes:

f(p;λ) = 10−0.4(mtrue(p;λ)+mgray) (3.2)

mgray ∼ N(0;σ2
gray) (3.3)

σ2
obs(p;λ) = σ2

meas(λ) + (εinterp(p;λ) · f(p;λ))2 (3.4)

fobs(p;λ) ∼ N(f(p;λ);σ2
obs(p;λ)) (3.5)

where mgray is the gray offset of the spectrum in magnitudes, and we assume that it is
drawn from a normal distribution with a variance common to all spectra of σ2

gray. σmeas(λ)
is the measurement uncertainty of the observed spectrum. εinterp(p;λ) is the previously
described function representing the dispersion of the interpolation residuals, and as imple-
mented it specifically represents the fractional uncertainty of the interpolation. Finally,
fobs(p;λ) is the final observed spectrum at a given phase and wavelength, and we assume
that it is drawn from a normal distribution with a mean of f(p;λ) and a variance of σ2

obs(p;λ)
which contains all of the previously described contributions to the variance.

We implement this model using the Stan modeling language (Carpenter et al., 2017), and
fit it to our full sample of 606 spectra for 207 different SNe Ia. For each supernova, we fit for a
single spectrum at maximum that combines the information from all of the different spectra
of that supernova taken within 5 days of maximum light. With our spectra binned in 288
wavelength bins as described in Section 3.2, this model has a total of 288× 207 parameters
representing the spectra at maximum light, 288× 4 parameters for the ci(λ) functions that
represent the time evolution of spectra, 288 × 4 parameters for the broken linear function
that we use to model the interpolation uncertainty εinterp(p;λ), 606 parameters for the gray
offsets mgray of each spectrum, and finally one parameter for the gray offset dispersion σ2

gray.
We use Stan to optimize the parameters of this model to obtain the maximum a posteriori

probability (MAP) estimate of the model parameters (Carpenter et al., 2017), including the
predicted spectrum at the time of maximum light of each supernova. We propagate the
various sources of uncertainty to obtain an estimate of the uncertainty on the spectrum at
maximum light of each supernova.

This model is effectively using the supernovae that have observations at multiple phases
to constrain the ci(λ) and εinterp(p;λ) parameters that describe the spectral evolution in time
of SNe Ia near maximum light. The actual spectrum at maximum light is then effectively
predicted by shifting all of the different observations of the supernova to maximum light
using these parameters, and taking the mean of these shifted observations weighted by the
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observational and interpolation uncertainties. Supernovae that only have a single spectrum
provide no constraint on the spectral evolution parameters. Instead, these parameters are
simply used to shift the spectrum to maximum light, and to provide an estimate of the
uncertainty on that shift.

3.3.2 Estimated Spectra at Maximum Light

An example of the results of our procedure to estimate the spectra of supernovae at
maximum light can be seen for PTF13ayw in Figure 3.4. The difference in brightness between
each spectrum of PTF13ayw and the predicted spectrum at maximum light can be seen in
Figure 3.5, along with residuals of the modeled differences. The predicted models of the
spectral differences relative to maximum light agree very well with the observed differences,
and there is very little structure in the residuals. As described in the previous section, a
single set of ci(λ) terms is used for all supernovae, so the modeled differences only depend
on the phases of the different spectra and the SALT2 x1 parameter of PTF13ayw. One
subtlety with Figure 3.5 is that the spectrum at maximum light is estimated as part of the
fitting procedure. This means that the magnitude zeropoint at each wavelength is effectively
floating, and there are only two degrees of freedom in the model for each wavelength rather
than the three that appear to be plotted.

A more direct way of illustrating the accuracy of the model’s interpolation can be seen
by looking at the results for direct differences of pairs of spectra from the same supernovae.
In Figure 3.3, we plotted this difference for a randomly selected set of different supernovae
in units of magnitudes per day. We plot the same difference after removing the estimated
difference from our model in Figure 3.6. In this case, we are looking at the time evolution
between two spectra directly, so the estimated spectrum at maximum light is irrelevant.
The model depends only on the phases of the two spectra that are being compared, and the
SALT2 x1 value of that supernova. The original spectra showed differences due to spectral
evolution in time of up to 0.2 mag/day. After applying our model of spectral evolution,
the residuals appear to be almost entirely random noise with possibly some structure at the
< 0.05 mag/day level near the Ca II lines around 3800 Å.

For supernovae that only have a single spectrum near maximum light, the model that
is derived from supernovae with multiple spectra is effectively applied to estimate their
brightness at maximum light. An example of this is shown in Figure 3.7 for the supernova
SN2004gc. For this supernova, we only have a single spectrum at 3.42 days after maximum
light. The model is nevertheless able to produce a robust estimate of the spectrum at
maximum light along with an estimate of the uncertainty on this predicted spectrum.

3.3.3 Model of Spectral Evolution Near Maximum Light

The actual model of spectral evolution near maximum light for a supernova with a
SALT2 x1 of zero is shown in Figure 3.8. There are several interesting results in this plot.
First, note that we aligned all of our supernovae to the SALT2-determined time of maximum
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Figure 3.4: Estimated spectrum of PTF13ayw at maximum light. This supernova has three
different spectra passing the selection criteria, shown in different colors. The information
from all three of these spectra is used to predict the spectrum at maximum light, shown
with a dashed black line. A shaded gray contour around this dashed black line shows the
uncertainty on the estimate of the spectrum at maximum light, although the uncertainty is
very small for this prediction so it is not easily visible.

light, which is the time of maximum light in the B-band, a filter that roughly corresponds
to the integrated flux between 4000 and 5000 Å. As expected, our model predicts that the
supernova gets fainter in either direction relative to maximum light in this wavelength band.
We find that the time of maximum light is consistent from roughly 3900 to 6800 Å. However,
for wavelengths bluer than 3900 Å or redder than 6800 Å, we find that the time of maximum
light of the light curve occurs significantly earlier.

We also see very large variation in the light curve in the bluer and redder bands. For
wavelengths between 3300 to 3500 Å, we find that the light curve declines by up to 0.2
mag/day, with this decline being increasingly rapid at later phases. Similarly, in the redder
bands, we find that the light curve declines by up to 0.1 mag/day in two regions of the
spectrum, corresponding to the OI absorption triplet and the Ca II IR triplet. If these
effects are not taken into account, then the spectrum of a supernova observed 5 days after
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Figure 3.5: Top panel: Estimated differences between the observed spectra of PTF13ayw
and its spectrum at maximum light. For each of the three spectra that we have for this
supernova, we show the difference in brightness in magnitudes between that supernova and
the predicted spectrum at maximum light that is produced by our model. For each spectrum,
we overplot the modeled difference that is given by the ci(λ) terms. Bottom panel: Residuals
of the measured differences compared to the modeled differences. For all three spectra there
is very little structure to the residuals.
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Figure 3.6: Residuals of the spectral evolution of different SNe Ia near maximum light for a
randomly chosen subset of supernovae in the sample, after model correction. See Figure 3.3
for the uncorrected spectral evolution of the same set of supernovae and details of this plot.
After the model correction, the residuals have very little structure at most wavelengths.

maximum light could have systematic differences of up to 0.8 mag from the true spectrum
at maximum light.

Our model of spectral evolution near maximum light also takes into account the stretch
of the supernova through the SALT2 x1 parameter. The modeled effect of varying x1 for
a range of differences in phase is shown in Figure 3.9. We find that changing the SALT2
x1 parameter does not have a major impact on the spectral evolution near maximum light.
For differences of one day in either direction from maximum light, the effect is negligible,
with an effect on the spectrum of less than 0.02 mag at all wavelengths even for extreme
values of x1. Before maximum light, the effect on the spectrum is relatively gray, with
an offset of ∼0.05 mag added to the spectrum for extreme values of x1 three days before
maximum light, and ∼0.1 mag added to the spectrum five days before maximum light. After
maximum light, the effect on the spectrum is highly structured. We find large effects in the
bluer bands when varying x1, with deviations of more than 0.3 mag for the Ca II H&K lines
around 3900 Å. For our analysis, a gray offset in brightness will be absorbed by the fit to
the overall brightness for a given supernova, and it will not have a major impact on the final
results. Any structured residuals due to modeling errors could, however, be interpreted as
real supernova variation, so the observed differences due to different stretch values for later
phases could negatively impact our analysis.
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Figure 3.7: Estimated spectrum of SN2004gc at maximum light. This supernova has only
a single spectrum passing our selection criteria, shown in blue. The model effectively uses
information from other supernovae in the sample to predict the spectrum at maximum light,
shown with a dashed black line. A shaded gray contour around this dashed black line shows
the uncertainty on the estimate of the spectrum at maximum light, incorporating both
observational and modeling uncertainties.

One potential issue with using the SALT2 x1 parameter in the model of spectral evolution
near maximum light is that the SALT2 x1 parameter is not sufficient to fully describe SNe Ia
and could potentially introduce artificial signals into the spectra near maximum light. To
address this, we tested running the rest of the analysis described in this chapter both with and
without the SALT2 x1 parameter included in the model. We do not find major differences in
the performance of our algorithms in either case. For SNe Ia with a spectrum within three
days of maximum light, the x1 value used has very little effect on the estimated spectrum at
maximum light, as seen in Figure 3.9. For SNe Ia with a larger phase difference, we propagate
the uncertainty in the estimate of the spectrum at maximum light. In Section 3.4.4, we will
cut SNe Ia from the sample with large uncertainties, effectively removing the SNe Ia that
only have spectra at phases where the stretch has a large effect on the differential evolution
of the spectrum. We find that two additional spectra are cut if the x1 parameter is not
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Figure 3.8: Model of the differential spectral evolution near maximum light for a supernova
with a SALT2 x1 of zero. The modeled differences are shown in different colors for phases
within five days of maximum light with a spacing of one day. The color bar indicates which
phase corresponds to which line on this plot.

included in the model of differential evolution, but the results of the rest of our analysis are
otherwise unchanged.

3.3.4 Recovered Gray Offsets

As part of this analysis, we fit for a “gray offset” for each spectrum. For standard
stars observed with SNIFS, we find that there is a residual dispersion of ∼0.02 mag after
calibration that can be modeled as a flat “gray” offset that is the same at all wavelengths.
In this analysis, we fit for this gray dispersion for the spectra of SNe Ia, which are at a
significantly lower S/N than most of the standard stars. We recover a gray dispersion of
0.026 mag, which is consistent with what is found for standard stars. One potential issue is
that this gray offset term in the model could mask actual variation in the spectra of SNe Ia.
In our model, we fit for the gray offset of each supernova explicitly. To probe whether any
biases are introduced, we show the recovered individual gray offsets as a function of phase
for all of the supernovae in our sample in Figure 3.10.

We find that the mean of the gray offsets is consistent with zero at all wavelengths, and
that the RMS of the gray offsets is flat with redshift. There is no evidence that the inclusion
of gray offsets in our model is biasing the recovered spectral evolution in any way. We do,
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Figure 3.9: Model of the spectral evolution near maximum light for different supernova
stretch values. For a given difference in phase, we show the effect of varying the SALT2 x1

parameter relative to an x1 value of zero. The modeled differences are shown in different
colors, and the color bar indicates which SALT x1 value corresponds to which line on this
plot.
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Figure 3.10: Recovered gray offsets as a function of the phase of a spectrum. The recovered
gray offsets for individual spectra are shown with blue points, and the binned mean and
RMS of the gray offsets are shown with green and red lines respectively. The mean of the
gray offsets is consistent with zero at all phases, and there is no evidence of increased RMS
for the gray offsets away from maximum light.

however, find that there are some spectra with vary large gray offsets, such as one spectrum
of PTF09fox which has a recovered gray offset of −0.17 mag. For this supernova, we have
another spectrum taken minutes earlier that has a recovered gray offset of +0.05 mag, and the
difference between these two spectra appears to be well-modeled by a flat offset in magnitude.
This large offset is due to the fact that these spectra were taken on a non-photometric night
where clouds were present in the sky. For non-photometric nights, the dimming from clouds
is taken into account by comparing photometry of nearby stars taken with the photometric
channel to the photometry on a photometric night. The accuracy of this comparison was
poor for this night, introducing a large gray offset into the calibration. While there is a
large gray offset for this particular spectrum, these gray offset outliers are rare, and they are
difficult to identify within our pipeline framework without another spectrum to compare to.
Furthermore, when multiple spectra are available for a supernova, the effect of gray offset
outliers is mitigated (PTF09fox has five spectra passing our selection requirements). As
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spectra that are gray offset outliers are difficult to identify and are unlikely to significantly
affect our analysis, we choose to keep them in our analysis.

3.3.5 Accuracy of the Model of Spectral Evolution Near
Maximum Light

Along with modeling the spectral evolution of the spectra of SNe Ia, our model also fits
for the residual dispersion in the spectral evolution after the model has been applied. As
described in Section 3.3.1, this residual dispersion model is implemented for each wavelength
bin separately as a broken linear function with nodes at phases of −5, −2.5, 2.5, and 5 days.
The results of this model are shown in Figure 3.11.

We find that our model is able to estimate the spectra of supernovae 2.5 days away from
maximum light in either direction with an uncertainty of less than 0.05 mag at almost all
wavelengths. For spectra 5 days away from maximum, the interpolation uncertainties are
around 0.05 mag at most wavelengths, but the model has a lot of difficulty modeling the
spectral evolution of the Ca II H&K feature around 3900 Å. Five days before maximum light,
the uncertainty of the spectral evolution of this feature is more than 0.35 mag for the worst
wavelengths, indicating that there is significant additional variation in the spectral evolution
at these wavelengths that is not captured by a model that only takes into account the phase
of the spectrum and the SALT2 x1 parameter of the supernova.

As part of our modeling procedure, we propagate the observational uncertainties and
modeling uncertainties to our estimates of the spectra at maximum light. Examples of these
uncertainties on the spectra at maximum light are shown in Figure 3.12. Note that the
uncertainties on the estimated spectra at maximum light show large variations depending
on the quality and timing of the observed spectra. For SNF20080514-002, we have six very
high S/N spectra at phases between −5.0 and +4.7 days, so the spectrum at maximum light
is very well constrained and the model assigns a very low uncertainty to its prediction of the
spectrum at maximum light. For SNF20070424-003, on the other hand, there is only a single
spectrum available at −4.64 days. As shown in Figure 3.11, the model cannot accurately
predict the time evolution of the Ca II H&K lines at early times, so it outputs a large
uncertainty on the prediction of the spectrum at maximum light at those wavelengths.

We propagate these uncertainties on the spectra at maximum light into our subsequent
analyses. In Section 3.4, we incorporate the model uncertainties directly into our analysis, so
poor estimates of the spectra at maximum light will be deweighted and they will not impact
the analysis. As part of the analysis in Section 3.4, we estimate the intrinsic variation of
SNe Ia at maximum light in each wavelength bin. We will use this estimate of the intrinsic
variation to determine which features of our estimated spectra SNe Ia at maximum light
are due to intrinsic variation of SNe Ia, and which are simply due to uncertainties in the
interpolation to maximum light.
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Figure 3.11: Model uncertainties for the interpolation of spectra to maximum light. Top
panel: examples of the broken linear uncertainty model for a selection of different wave-
lengths. Bottom panel: Interpolation uncertainties for all wavelengths for the nodes of the
broken linear model. Note that the interpolation uncertainty at maximum light is zero by
definition.



CHAPTER 3. MANIFOLD LEARNING FOR TYPE IA SUPERNOVAE 62

4000 5000 6000 7000 8000
Wavelength (Å)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Un

ce
rta

in
ty

 o
n 

f m
ax

 (m
ag

)
PTF09dnp
PTF12ecm
SN2006cj
SNF20060512-002

SNF20070630-006
SNF20080531-000
SNF20080926-009

Figure 3.12: Uncertainties on the estimated spectra at maximum light for a selection of
supernovae. Both the observational and modeling uncertainties are included.

3.3.6 Importance of Different Components of the Model of
Spectral Evolution Near Maximum Light

We probe how the different components of our model impact the accuracy of predictions
of spectral evolution in time. For each supernova with multiple spectra passing our selection
requirements, we look at the difference in brightness in each wavelength bin between the
spectrum closest to maximum light for that supernova and all of its other spectra. We then
apply a subset of the components of our model of the difference in brightness for those two
spectra, and calculate the RMS of the residuals over all supernovae and all wavelength bins.
The results of this procedure are summarized in Table 3.3.

We find that the phase correction that is common to all supernovae has the largest impact
on the RMS of the residuals, indicating that most of the spectral evolution is common among
supernovae. Taking into account the gray offsets that result from the SNIFS calibration
has the next largest impact on reducing the residuals. The SALT2 x1 correction does not
significantly affect the quality of the residuals, which is consistent with the small effects seen
for most phases in Figure 3.9. Note that for this analysis we were comparing pairs of spectra
within five days of maximum, so differences of up to ten days are possible. For the actual
estimation of the spectrum at maximum light, the phase difference is never more than five
days.
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Table 3.3: Effect of different components of the model of spectral evolution near maximum
light. For different pairs of spectra from the same supernova, we calculate the RMS of the
differences between those pairs of spectra in magnitudes for different combinations of the
components of our model.

Components applied RMS for pairs of spectra with
a given phase difference (mag)

0–1.5 days 1.5–2.5 days 2.5–5.5 days >5.5 days
No model applied 0.052 0.115 0.179 0.202
Phase only 0.046 0.080 0.095 0.102
Phase + SALT2 x1 0.047 0.078 0.087 0.103
Phase + gray offset 0.032 0.061 0.083 0.087
Phase + gray offset + SALT2 x1 0.032 0.059 0.074 0.081

3.4 Reading Between the Lines

3.4.1 Extrinsic Contributions to the Spectra of Type Ia
Supernovae

From the analysis in Section 3.3, we have estimates of the spectra at maximum light
for all of the 207 SNe Ia in our analysis, along with uncertainties on those estimates. Our
objective is to decompose the variability of those spectra. There are two major components
of the variability of SNe Ia that are not intrinsic to SNe Ia. First, the distance to SNe Ia
introduces a flat offset to the brightness of a supernova in magnitudes. Second, interstellar
dust will dim the observed brightness of a supernova and redden the observed spectrum.

As described in Section 3.2, we use a fiducial cosmology model to shift all of our super-
novae to the same effective distance away. Unfortunately, this correction relies on using the
redshift of a supernova to estimate the distance to it, and the measured redshift contains
both contributions from the cosmological redshift and the peculiar velocity of the supernova.
The peculiar velocity contributions will introduce uncertainties into the estimated distances,
and thus there will be some residual gray dispersion in the observed spectra, even after
correcting for their distances. Typically, these peculiar velocities are assumed to have a
dispersion of ∼300 km/s, contributing a dispersion in brightness of 0.11 mag at z = 0.02,
0.07 mag at z = 0.03 and 0.02 mag at z = 0.10.

Interstellar dust is present in both the supernova host galaxy and the Milky Way. In
the preprocessing of SNfactory data, we apply a correction for Milky Way dust to all of
our supernovae using the dust map from Schlegel et al. (1998) with a reddening law from
Cardelli et al. (1989). As shown in Chotard et al. (2011), the reddening of supernova flux
due to dust in the supernova’s host galaxy is consistent with dust with a total-to-selective
extinction ratio of RV = 2.8 ± 0.3. For this analysis, we choose to use a fiducial color law
with RV = 2.8 to fit for the contributions from extragalactic dust, and we use the reddening
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law from Fitzpatrick (1999). We will examine the validity of this color law, and discuss the
value of RV that best fits our spectra of SNe Ia in Section 3.6.4.

We therefore have functional forms for both extrinsic contributions due to distance un-
certainties and host galaxy dust reddening for spectra of SNe Ia. In F15, for each pair
of supernovae, the difference in brightness and in color between those two supernovae was
calculated by effectively minimizing a chi-square difference between the spectra of the two
supernovae while fitting for the coefficients of the difference in brightness and color. If two
supernovae are perfect twins, then their spectral features should match perfectly, so only
differences due to extrinsic effects like interstellar dust extinction should remain. We found
that the estimated differences in brightness and color between two supernovae were consistent
even when comparing two supernovae that are not twins, with differences in the estimated
magnitudes of less than 0.02 mag for most pairings. This is due to the fact that the spectra
of SNe Ia at maximum light are remarkably consistent: the spectral variation of SNe Ia
at maximum light is mostly constrained to a handful of spectral lines, and the regions in
between those lines have very little spectral variation, as will be shown in Section 3.4.3.

This result motivates a different approach to fitting for the brightness and color of each
of the supernovae in our sample. Rather that compute pairwise differences between twins,
we determine a “mean spectrum” of a SN Ia at maximum light, and we compare the spectra
of each supernova in our sample to this mean spectrum to determine its brightness and
color offset. To avoid our estimates of the brightness being biased by spectral features,
we simultaneously solve for the amplitude of the intrinsic dispersion of SNe Ia at each
wavelength. By weighting by this intrinsic dispersion, we effectively deweight regions of the
spectrum with large intrinsic variance, and estimate the brightness and color of the spectrum
using the regions where there is low intrinsic variability. We call this procedure “Reading
Between the Lines”.

One caveat with this model is that any intrinsic variability that modifies the spectrum of
an SN Ia in a way that looks like brightness or color will be incorrectly labeled as extrinsic
variability at this stage. Assuming that this intrinsic variability also affects the spectrum
in some other way, such as modifying the equivalent widths of absorption features, we can
recover the intrinsic variability that was confused as extrinsic variability in a later analysis.
This procedure is similar to what is done in models like SALT2, where the true B-band
maximum brightness is determined by correcting by some function of the SALT2 stretch
parameter x1 and color c.

3.4.2 The Reading Between the Lines Model

Our “Reading Between the Lines” (hereafter: RBTL) model is implemented as follows.
For each supernova i, we begin with a spectrum at maximum light fmax,i(λ) with associated
uncertainties σfmax,i

(λ). We represent the mean spectrum of an SN Ia at maximum light as
fmean(λ). Each supernova i then has a parameter Mi representing its difference in bright-
ness compared to the mean spectrum in magnitudes, and a parameter AV,i representing the
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coefficient of the color law C(λ) that best matches the supernova’s spectrum to the mean
function. The modeled flux of the spectrum at maximum light of supernova i is then:

fmodel,i(λ) = fmean(λ)× 10−0.4(Mi+AV,iC(λ)) (3.6)

We then assume that the intrinsic dispersion of SNe Ia, εintrinsic(λ) can be modeled as an
additional normal uncertainty that is uncorrelated in wavelength, with an amplitude that is
a fraction of the modeled flux. The total uncertainty of the spectrum at maximum light for
a supernova relative to the modeled spectrum is therefore:

σ2
total,i(λ) = σ2

fmax,i
(λ) + (εintrinsic(λ)fmodel,i(λ))2 (3.7)

The observed spectrum at maximum light is therefore modeled as:

fmax,i(λ) ∼ N(fmodel,i(λ);σ2
total,i(λ)) (3.8)

As in Section 3.3.1, we implement this model using the Stan modeling language (Car-
penter et al., 2017), and we fit it to our sample of 207 spectra of SNe Ia at maximum light.
To avoid degeneracies in the model, we constrain the sum of each of Mi and AV,i to be zero
across the whole sample. As our spectra are binned in 288 wavelength bins, as described in
Section 3.2, the model has a total of 288 parameters for the mean spectrum fmean(λ), 288
parameters for the intrinsic dispersion εintrinsic(λ), and 207 − 1 parameters for each of Mi

and AV,i (the sum-to-zero constraint removes one parameter).
As in Section 3.3.1, we use Stan to optimize the parameters of this and obtain the MAP

estimate of the model parameters. Finally, we apply the inverse of the magnitude and color
corrections to obtain “dereddened spectra” fdereddened,i(λ) for each of our spectra at maximum
light:

fdereddened,i(λ) = fmax,i(λ)× 10+0.4(Mi+AV,iC(λ)) (3.9)

3.4.3 Similarity of the Spectra of SNe Ia at Maximum Light

The estimated spectra at maximum light of the 207 supernovae in our sample both before
and after dereddening are shown in Figure 3.13, and the modeled intrinsic dispersion of SNe Ia
is shown in Figure 3.14. The dereddened spectra show remarkable similarity, especially in
wavelength regions away from the main absorption lines, such as between 6600 and 7200 Å
where the model finds that an intrinsic dispersion of only roughly 0.02 mag is required to
explain the remaining dispersion of SNe Ia after taking the brightness and color into account.
The Ca II H&K lines, the Ca II IR triplet and the Si II 6355 Å feature are the locations in
the spectra of SNe Ia with the largest intrinsic dispersions. Interestingly, there are several
regions of the spectra that are blanketed by lines but that still show relatively low intrinsic
dispersion. From 3900 Å to 5900 Å, the spectra of SNe Ia show a variety of absorption
lines, but the intrinsic variability is recovered to be ∼0.08 mag at most wavelengths, with
the exception of a handful of stronger lines that introduce variability at up to 0.13 mag.
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Figure 3.13: Comparison of the diversity of spectra at maximum light before and after
dereddening. Top panel: All of the spectra of SNe Ia in our sample estimated at maximum
light are shown, after shifting all of these spectra to a common redshift. There is a wide range
of diversity in these spectra due to uncertainties in the distance correction and reddening
due to host galaxy dust. Bottom panel: The same spectra are shown after estimating
and removing the residual brightness and color relative to a mean spectrum following the
procedure in Section 3.4.2. The estimated mean spectrum is shown with a dashed black line.
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Figure 3.14: Intrinsic dispersion of SNe Ia at maximum light, as modeled by the RBTL
modeling procedure. Top panel: The recovered mean supernova spectrum at maximum light
is shown along with the one standard-deviation dispersion as a blue contour. Bottom panel:
The modeled intrinsic dispersion is shown in magnitudes for each wavelength.
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This model is effectively using the intrinsic variance of SNe Ia to weight each wavelength
when determining how to fit for the brightness and color of each supernova. Hence, the lines
with strong variability are deweighted, and the model effectively “reads between the lines”
to estimate the brightness and color.

3.4.4 Comparison of the Uncertainties on the Spectra at
Maximum Light to the Intrinsic Dispersion of SNe Ia

In Figure 3.15, we compare the uncertainties on the estimated spectra at maximum light
to the recovered intrinsic dispersion of SNe Ia. For the vast majority of the SNe Ia in our
sample, the uncertainties on the spectrum at maximum light are negligible compared to the
recovered intrinsic dispersion of SNe Ia. However, for some of the supernovae in the sample,
the uncertainty on the spectrum at maximum light is comparable to the intrinsic dispersion.

In Section 3.5, we will decompose the intrinsic dispersion into its different components.
If spectra with large uncertainties are included, this analysis could confuse true variability
with the uncertainty in our estimate of the spectrum at maximum light. To mitigate this,
we choose to remove any supernovae at this stage of the analysis whose uncertainties on the
spectrum at maximum light are large compared to the intrinsic dispersion. We choose to
require that the total variance of the estimate of the spectrum at maximum light be less than
10% of the total intrinsic variance of SNe Ia. Choosing this threshold requires somewhat of
a trade off: with better measured spectra, we can potentially recover more components of
the intrinsic dispersion, but a stricter threshold reduces the number of SNe Ia in the sample
which limits the coverage of parameter space. As we will find in Section 3.5, this threshold
roughly corresponds to the variance scale of the third non-linear component of the intrinsic
dispersion. Out of the original sample of 207 SNe Ia, 175 SNe Ia have an uncertainty on
their spectrum at maximum light that passes this threshold.

Note that in the RBTL analysis we included the estimates of the uncertainties for the
spectra at maximum light, so the spectra that were cut due to this threshold will not have
a major impact on the RBTL analysis. We attempted to refit the RBTL model on only the
spectra that pass the uncertainty of the spectrum at maximum light requirement, and found
that the changes were negligible (the estimated brightnesses change by <0.005 mag). As a
result, we choose to use the RBTL model with all of the spectra for further analysis.

3.5 Manifold Learning on Spectra of SNe Ia
From the “Reading Between the Lines” analysis in Section 3.4, we have spectra at max-

imum light for 175 different SNe Ia with extrinsic contributions from the overall bright-
ness/distance to the supernova and the dust in the supernova’s host galaxy removed. The
resulting “dereddened” spectra, shown in the lower panel of Figure 3.13, exhibit a range of
intrinsic diversity. In this section, we will decompose this intrinsic diversity using manifold
learning to generate a non-linear parametric model of the intrinsic diversity of SNe Ia.
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Figure 3.15: Comparison of the uncertainties on the spectra at maximum light to the
recovered intrinsic dispersion of SNe Ia. Top panel: The intrinsic dispersion is plotted along
with the uncertainties on the spectra at maximum light for the same selection of SNe Ia shown
in Figure 3.12. Bottom panel: The intrinsic dispersion is plotted along with the uncertainties
in the spectrum at maximum light for the spectrum with the lowest uncertainty, the one with
the highest uncertainty, and several percentiles in between.
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3.5.1 Manifold Learning

Manifold learning has been shown to be very effective for constructing non-linear parame-
trizations of the spectra and light curves of astronomical objects (Richards et al., 2009, 2012;
Daniel et al., 2011; Matijevič et al., 2012; Sasdelli et al., 2016). There are many different
manifold learning algorithms, each with different objectives. Fundamentally, most manifold
learning algorithms take as input a set of data points represented by high-dimension vectors
(here, the dereddened spectra of different SNe Ia), and they embed these data points into a
low-dimensional manifold that preserves some measure of the distances between data points
in the high-dimensional space. For this analysis, we choose to use the Isomap algorithm
(Tenenbaum et al., 2000). The Isomap algorithm produces an embedding using the neigh-
bors of each data point in the high-dimensional space, and effectively aims to preserve the
distances between neighboring data points. For neighboring data points, the Isomap algo-
rithm measures a distance between those points that is equivalent to the Euclidean distance
in the high-dimensional space. For data points that are far away from each other, how-
ever, the Isomap algorithm instead finds a path between these two data points by traversing
through pairs of neighboring points and using the total path length as the distance estimate
between the far away data points. The Isomap algorithm attempts to preserve these total
path lengths, which effectively preserves the local structure and ordering of the data points.

The Isomap algorithm has many similarities to the twinning framework of F15: the
neighbors that are found by the Isomap algorithm are the best twins for a supernova. To
estimate the distance between two supernovae that are very different, the Isomap algorithm
effectively finds the shortest path through pairs of twins. This naturally handles features of
the spectra of SNe Ia like different line velocities: a linear model will require multiple linear
components to accurately capture the different possible velocities of a line. In contrast, if
we have spectra for a large enough sample of SNe Ia, the Isomap algorithm can use pairs
of supernovae with increasing line velocities to recover the sequence of line velocities in the
sample and use a single component to represent them in the final embedding.

We choose to use as input to the Isomap algorithm the dereddened spectra for each of our
SNe Ia divided by the mean spectrum. This means that we are using the relative deviations at
each wavelength rather than the absolute deviations. For high S/N spectra, the distances for
neighbors that the Isomap algorithm uses are then calculated in same way as the “twinness” in
F15. The Isomap algorithm has two parameters that must be set to produce the embedding:
the number of neighbors to use, and the number of components (i.e. dimensions) to produce
for the low-dimensional embedding. We find that the number of neighbors does not have a
major impact on the resulting embedding, and for a range of different values tested between 4
and 20 we obtain similar embeddings and overall performance. We choose to use 10 neighbors
for the rest of our analysis.
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3.5.2 Number of Components of SNe Ia at Maximum Light

Choosing the correct number of components for the Isomap embedding is a more chal-
lenging problem. SNe Ia are complex objects, and while most of the variation of SNe Ia
might be able to be explained by a small number of components, asymmetries of the explo-
sions, initial conditions and local environment of the SN Ia are likely to introduce countless
additional components with small amplitudes that may or may not be relevant for standard-
ization. If we had perfect observations, then we could extract an arbitrarily large number
of components. However, for realistic data, at some point measurement uncertainties will
overwhelm the small intrinsic variation of the higher order components. In this section, we
attempt to determine how many real components of the intrinsic variation of SNe Ia we can
extract from our dataset.

Isomap is a deterministic algorithm, and if an embedding with N > M components is
produced, then the first M components will be identical to those from an embedding where
only M components were produced. Hence, we generate an embedding with an arbitrarily
large number of components and use this to determine how many of the components are cap-
turing real intrinsic variation of SNe Ia. We ran several analyses on this embedding. First,
we examined the contributed variance from each of the Isomap components. The results of
this procedure are shown in Figure 3.16. Isomap will recover the relative variance contribu-
tions of different components accurately. However, unlike techniques such as PCA, it does
not have a concept of the “total variance” of a set of data points because of how the distances
are calculated (described in Section 3.5.1). We can therefore only compare the relative con-
tributions from each component with an arbitrary scale, and we choose to normalize to the
variance of the first component. In Figure 3.16, we also show several comparisons with the
uncertainties associated with estimating the spectra at maximum light that are described
in Section 3.3.5, hereafter referred to simply as the “measurement variances”. As described
previously, the measurement variances cannot be directly compared to the variance of the
Isomap components, so we normalize the overall scale of the measurement variances to the
total variance of the first ten Isomap components.

As seen in this plot, the relative contributions of each component to the intrinsic variance
of SNe Ia declines rapidly, with the fourth component contributing only 11% as much as the
first component. Comparing to our estimates of the measurement variance, where the mean
of the measurement variances across all SNe Ia is shown as a dashed green line in Figure 3.16,
the first three components are unambiguously detected as being much larger than the typical
measurement variance of a SN Ia in the sample, but the fourth and following components
are at a comparable scale to the typical measurement variance and could be a result of
uncertainties in our estimates of the spectra at maximum light rather than intrinsic variance
of SNe Ia. The plot suggests that we limit our analysis to using the first three components.
Any additional components are constrained to contribute less than 6% of the total variance
of the first three components.

An alternate method of determining how many components are required to explain the
intrinsic variation of SNe Ia is to look at how well we preserve the ordering of distances
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Figure 3.16: Total variance explained by each of the Isomap components. The blue points
show the contribution to the total variance from each component. The dashed red line shows
an approximation of the cut on the measurement variance. The green dashed line shows an
approximation of the mean of the measurement variances for all spectra passing the cut.
Note that the relative variances of different components are meaningful for Isomap, but
there is no concept of a total variance, so we normalize everything to the variance of the first
component. The scale of the measurement variances has been approximated by normalizing
to the total variance of the first ten components.
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between supernovae (the twinness from F15) in the embedded space. For each pair of SNe Ia,
we calculate their spectral twinness as the Euclidean distance between their normalized
dereddened spectra at maximum light. For high S/N spectra, this is equivalent to the
“twinness” calculated in F15. We then calculate the “Isomap twinness” as the Euclidean
distance between the Isomap embedded coordinates of those SNe Ia for a given number of
components. We rank the supernovae in terms of their twinnesses. In Figure 3.17, we show
how well the spectral twinness rankings are recovered in the embedded space for different
numbers of components. We summarize how many “non-twins” are confused as “twins” in
the embedded space in Figure 3.18 for different numbers of Isomap components.

We find that three Isomap components are required to correctly preserve the twinness
ranking in the embedded space. With only one (two) Isomap components, over 8% (2%)
of poorly matches pairs of SNe Ia are incorrectly recovered as “twin supernovae”, defined
here to be pairs of SNe Ia in the best 20% of pairings in the embedded space. With three
components, less than 0.5% of non-twins are incorrectly identified as twins, and adding
additional components does make any additional significant improvements. This analysis
suggests that three components are sufficient for identifying the main intrinsic differences
between spectra of SNe Ia at maximum light, in agreement with our analysis of the variance
scales of different components. We will therefore use three components for the rest of this
analysis.

3.5.3 Understanding the Isomap Components

At this point, we have shown that a three-component non-linear model is sufficient to
describe the intrinsic diversity in the spectra of SNe Ia at maximum light (along with the
extrinsic contributions from color and brightness removed in Section 3.4). We now examine
how the Isomap components affect the different spectral features. For each component, we
calculate the median spectrum in ten evenly-spaced bins of that component. We plot these
median spectra in Figure 3.19. For comparison purposes, we also show a zoom-in around
the Ca II H&K lines in Figure 3.20, a zoom-in around the Si II 5972 Å and 6355 Å features
in Figure 3.21, and a zoom-in around the OI triplet and Ca II IR triplet in Figure 3.22.

The first Isomap component primarily affects the pseudo-equivalent widths of the Ca II
features. As seen in Figure 3.20, this component maps out a full spectral sequence of the
changing pseudo-equivalent width of the Ca II H&K feature, and a similar spectral sequence
is seen for the Ca II IR triplet in Figure 3.22. Additionally, as seen in Figure 3.21, this
component shows a spectral sequence for the Si II 6355 Å feature. This component is the
only one that affects the emission profile of this feature, and the velocity and depth of the
absorption profile evolve together. This component has very little effect on the Si II 5972 Å
feature.

The second Isomap component primarily affects the pseudo-equivalent widths of the Si II
lines. As shown in Figure 3.21, a spectral sequence is identified in both of the Si II 5972 Å
and 6355 Å features. Interestingly, this component directly changes the depths of these lines
without having a major effect on the line velocities themselves. This component also has
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Figure 3.17: Recovery of the F15 spectral “twinness” for different numbers of Isomap
components. We rank each pair of SNe Ia by both their spectral twinness and their twinness
in the Isomap embedded space (see text for details). We then show the recovered Isomap
twinness values for different percentile bins of spectral twinness. Each panel shows the results
for a different number of Isomap components. For fewer than three components, a significant
number of non-twins are confused as twins, as seen by the number of “non-twins” (shown
in red) that leak into the best twinness bins. We measure this leakage as the number of
non-twins that end up left of the vertical dashed line at 20%. Note that Isomap does not
attempt to preserve the input distances (twinnesses) between far-away points, so even with
very large numbers of components there will be differences between the two rankings.
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Figure 3.18: Fraction of non-twins confused as twins for different numbers of Isomap
components. For a given number of Isomap components, we identify the worst 50% of
spectral pairings and determine the fraction of those pairings that are recovered in the best
20% of pairings in the Isomap embedded space. This is equivalent to the fraction of pairings
shown in red in Figure 3.17 that are recovered in the best 20% of pairings in the embedded
space. When fewer than three components are used, a significant number of non-twins are
confused as twins.

a large effect around 3700 Å, as seen in Figure 3.20. This variation appears to be due to
absorption by a set of Si II lines at rest frame wavelengths between 3853 and 3863 Å in
addition to the Ca II H&K absorption typically associated with these wavelengths. We also
see a fairly significant variation in the Si II 4130 Åfeature.

The third Isomap component primarily affects the ejecta velocity of the supernova. As
seen in Figure 3.21, this component identifies a spectral sequence in the velocity of the S II
doublet feature near 5400 Å and in the velocity of the Si II 6355 Å feature. Similar effects are
seen for the velocities of many other lines in the spectra. This component does not appear
to have a major effect on any of the line depths in the spectrum. However, we see a sequence
in the pseudo-continuum level around the Si II 5972 Å feature that does not appear to be
strongly associated with the line depth.
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Figure 3.19: Effect of different Isomap components on the spectra of SNe Ia at maximum
light. For each component, we show the median spectrum in ten evenly-spaced bins of that
component. The spectra are colored according to their component value.
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Figure 3.20: Effect of different Isomap components on the spectra of SNe Ia at maximum
light between 3300 and 4500 Å, highlighting the Ca II H&K feature. See Figure 3.19 for the
details of this figure.
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Figure 3.21: Effect of different Isomap components on the spectra of SNe Ia at maximum
light between 4900 and 6700 Å, highlighting the Si II 5972 Å and 6355 Å features. See
Figure 3.19 for the details of this figure.
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Figure 3.22: Effect of different Isomap components on the spectra of SNe Ia at maximum
light between 7200 and 8600 Å, highlighting the Ca II IR triplet features. See Figure 3.19
for the details of this figure.
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Figure 3.23: Branch classifications for our spectra of SNe Ia at maximum light, using the
class definitions from B06.

3.5.4 Comparison to the Branch classification scheme

The spectra of SNe Ia near maximum light are often labeled in the literature using
the “Branch classification scheme” (Branch et al., 2006, hereafter B06). In this classification
scheme, the spectra of SNe Ia are subdivided into four classes based on the pseudo-equivalent
widths (pEWs) of the Si II 5972 and 6355 Å absorption features. We measure the pEWs of
these lines for our spectra using the methodology described in Chotard et al. (2011). The
Branch classifications for our sample are shown in Figure 3.23 using the class definitions
from B06. As has been previously shown for large samples of spectra of SNe Ia (e.g. Blondin
et al. (2012)), the Branch classifications do not identify distinct subtypes of SNe Ia, and we
find a continuous distribution across all of the label boundaries.

We compare the Branch classifications to the result of our Isomap embedding in Fig-
ure 3.24. We find that the first two components of our embedding map cleanly separate
the different Branch classes from each other: with a set of slices in the Isomap parameter
space, we would be able to recreate the Branch classification scheme. There is some confu-
sion between the Shallow Silicon and Core Normal subclasses which appears to be due to
uncertainties in the equivalent width measurements used for the Branch classification. In the
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Figure 3.24: Comparison of the Branch classifications to the first two components of the
Isomap embedding. We find that with these two components we are able to cleanly recover
the Branch classification labels.

Isomap parameter space, the different groups from the Branch classification scheme appear
to be “stretched”: the Core Normal supernovae lie in a very tight cluster in Figure 3.23, but
they are spread over a fairly large region of parameter space in Figure 3.24.

To examine whether or not the Isomap embedding is identifying real differences between
different core normal spectra, we calculated the median spectra near different points in the
Isomap parameter space where the nearby spectra are identified primarily as “core normal”.
The results of this procedure are shown in Figure 3.25. All of these median spectra have
similar pEWs for the Si II 6355 Å absorption feature, and have a small pEW for the Si II
5972 Å feature. However, the pseudo-continuum level near the Si II 5972 Å feature varies
quite dramatically between the different median spectra. As analyses such as B06 focused
only on the pEW and ignore the pseudo-continuum level, they were not able to identify this
difference. We also see large differences for these spectra near 3800 Å. This is likely due to
a set of Si II lines between 3853 and 3863 Å. These differences were not seen in B06 because
of a lack of spectral coverage. Finally, we see a spectral sequence for an absorption feature
near 8000 Å. This difference was identified in B06 for SN2001el, and was suggested to be due
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Figure 3.25: Comparison of spectra of Core Normal supernovae that are separated by the
Isomap embedding. We calculate the median spectrum for all spectra whose first two Isomap
coefficients are within a radius of one unit of a target coordinate. The target coordinates are
shown in the legend. All of these spectra are identified as Core Normal by the classification of
B06. We find that although these spectra have similar pEWs for the Si II 5972 and 6355 Å
absorption features, the Isomap algorithm identifies a spectral sequence in an absorption
feature near 3800 Å in the pseudo-continuum level around the Si II 5972 Å feature, and in
an absorption feature around 8000 Å.

to high velocity Ca II. Hence, with only the first two components, the Isomap embedding is
able to reproduce previous work on the spectral diversity of SNe Ia and identify additional
diversity that is not solely limited to the pEWs and velocities of different lines.

3.5.5 Recovering the Phillips relation with spectra at maximum
light

When looking at broadband light curves of SNe Ia, the diversity of light curves has been
primarily explained by the color and stretch of the light curve (Phillips, 1993; Riess et al.,
1996; Tripp, 1998). While we can directly measure the color of a supernova’s light curve
using only a spectrum at maximum light, we can’t directly measure the light curve width
since we have no baseline in time. One interesting question is whether or not the stretch of
the light curve can be recovered directly from a single spectrum at maximum light. It has
previously been shown that many of the features of spectra at maximum light correlate with
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Figure 3.26: Comparison of the SALT2 x1 parameter to the first two components of the
Isomap embedding. Each supernova is colored according to its SALT2 x1 value.

stretch, such as the ratio of the pEW of the Si II 5972 Å absorption feature to the pEW of
the Si II 6355 Å absorption feature (Nugent et al., 1995).

We calculate the stretch of each of our SNe Ia by fitting the SALT2 model to each of our
light curves as described in Section 3.2, and using the SALT2 x1 parameter as our measure
of stretch. We show the first two Isomap components, colored as a function of the SALT2 x1

parameter, in Figure 3.26. The sequence of SALT2 x1 values is clearly visible, although it is
slightly rotated relative to the individual component axes. To account for this, we fit for the
rotation of the components that best predicts SALT2 x1 using a linear combination of the
different Isomap components. We find that a combination of the three Isomap components
with amplitudes of 0.31, 0.93, and −0.21 respectively produces the best prediction of SALT2
x1.

The measured SALT2 x1 value is plotted against this best prediction in Figure 3.27.
We also label the SALT2 fits by whether or not they are deemed to be well-fit by SALT2
by the SNfactory pipeline, which is primarily a measure of the normalized median absolute
deviation (NMAD) and number of outliers in the SALT2 fit. Note that supernovae can
be labeled as having bad SALT2 fits either because they have many observations that are
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Figure 3.27: Predictions of the SALT2 x1 parameter from the Isomap embedding. We
determine the best rotation of the Isomap components to predict the SALT2 x1 parameter,
as described in the text. Supernovae with good SALT2 fits are shown in blue, and supernovae
whose SALT2 fits have been deemed to be bad are shown in red.

outliers due to data reduction issues or because they are outside of the range of SNe Ia that
SALT2 can properly fit. For the SNe Ia with good SALT2 fits, we are able to recover the
SALT2 x1 value very well, with a Pearson correlation of 0.79, although the relation appears
to be somewhat non-linear.

We find that there are three supernovae for which we are unable to recover their SALT2
x1 values properly. These supernovae can be seen easily in Figure 3.26 as blue outliers in the
top right corner of the plot. These three supernovae, LSQ12fhs, SN2005cc and SN2011ay
are unusual Type Iax supernovae (Foley et al., 2013). They are not able to be fit very well
with SALT2, and are cleanly separated from the rest of the SNe Ia in the Isomap embedding.
The spectra of these three supernovae are shown in Figure 3.28. With only three Type Iax
supernovae in our sample it is difficult to make definitive statements about this subset, but
our results suggest that these supernovae do not belong to the same spectral sequence as the
larger sample of SNe Ia.
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Figure 3.28: Spectra of different Type Iax supernovae that are outliers in the Isomap
embedding. For comparison purposes, we also show the spectrum of SNF20070803-005, the
next closest supernova to the Type Iax supernovae in the Isomap embedding. While the
spectra of these SNe Iax are similar to some of the spectra of SNe Ia at maximum light, they
have several unique features, particularly near the Si II 6355Å absorption feature, and are
cleanly separated from the remainder of the sample in the Isomap embedding.

3.6 Standardization of Type Ia Supernovae With
Manifold Learning

3.6.1 Sample of Type Ia Supernovae for Standardization Analyses

As part of the Reading Between the Lines (RBTL) algorithm described in Section 3.4,
we estimate an overall brightness in magnitudes for each SN Ia in the sample. Because we
shifted all of our supernovae to a common redshift, as described in Section 3.2, the output
magnitudes can be interpreted as residual magnitudes relative to the mean spectrum of an
SN Ia, and ideally would be zero if SNe Ia were perfect standard candles with no observa-
tional uncertainties. We look at the properties of these residual magnitudes to evaluate the
performance of our techniques for standardizing SNe Ia. To avoid tuning our analysis to op-
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timize the distribution of the residual magnitudes, we perform a “blinded” analysis: we split
the dataset into a training and a validation set at this stage, and we optimized our analysis
while only examining the training set, leaving the validation set to only be examined when
the analysis and selection requirements were complete and well-understood for the training
set.

The SNfactory pipeline automatically splits the dataset into three categories. For SNe Ia
whose light curves are well-fit by the SALT2 model, the pipeline splits them into “training”
and “validation” subsets, attempting to keep the observables of SNe Ia such as redshift and
color similar between the two subsets. For SNe Ia whose light curves are not fit well by
the SALT2 model, using the criteria described in Section 3.2, the pipeline creates a “bad”
subset. The “bad” subset contains a combination of unusual SNe Ia and SNe Ia with major
issues with their data processing. The “bad” subset is small, containing only 20 of the 175
with spectra at maximum light that pass the criteria for this analysis. Spectra with major
issues with data processing could highly influence our analysis, so we chose to use both the
SNfactory-labeled “training” and “bad” subsets to develop our model and to decide upon a
set of selection requirements that removes spectra with data processing issues. We leave
all of the supernovae in the “validation” subset to use as a test once we settle on the final
model and selection requirements. A total of 79 of the 175 passing our uncertainty on the
spectrum at maximum light requirement are in the SNfactory-labeled “training” subset, 76
are in the “validation” subset, and 20 are in the “bad” subset. The blinding was implemented
by immediately deleting all of the magnitudes estimated for SNe Ia in the “validation” subset
as soon as the RBTL model had been run, so that it was impossible to accidentally unblind
the distributions of the residual magnitudes. At the time of writing, this analysis is still
blinded, so all of the following results discussing magnitudes only use the supernovae in our
training set comprising the SNfactory-labeled “training” and “bad” subsets.

There are several additional sources of uncertainty that could affect the measured resid-
ual magnitudes. As described in Section 3.4.1, because we use the observed redshifts to
determine the distances to the supernovae when shifting them to a constant distance away,
any additional uncertainties on these redshifts will propagate into our residual magnitudes.
Five of the 175 passing our uncertainty on the spectrum at maximum light requirement have
redshifts derived from the supernova spectrum rather than ones derived from the host galaxy
spectrum. The uncertainties on these redshifts are ∼0.005, introducing uncertainties in the
measured residual magnitudes of more than 0.10 mag at all redshifts. We therefore reject
these supernovae from any analysis of the residual magnitudes.

Similarly, as described in Section 3.4.1, peculiar velocities will introduce an additional
contribution to the measured residual magnitudes. Assuming that the peculiar velocities
have a dispersion of 300 km/s, the introduced dispersion in brightness becomes comparable
to the dispersion in brightness of SNe Ia around z = 0.02 where 0.11 mag of dispersion are
introduced. We reject 24 SNe Ia that are at redshifts lower than 0.02 out of the 175 passing
our uncertainty on the spectrum at maximum light requirement. For redshifts above 0.02,
the contribution from peculiar velocities is still significant, so we include these uncertainties
in our analyses.
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Finally, as discussed in 3.4.1, the dust in the host galaxies of an SN Ia can significantly
dim the observed brightness of the SN Ia. While the mean total-to-selective extinction ratio
dust was shown to be RV = 2.8± 0.3 in Chotard et al. (2011), there are examples of SNe Ia
with very different values of the total-to-selective extinction ratio RV . For example, the
extinction of the highly reddened SN2014J has been suggested to be either interstellar dust
with RV = 1.4 ± 0.1 (Amanullah et al., 2014) or circumstellar dust with a similar effect on
the observed spectrum (Foley et al., 2014). For this supernova, the difference in assuming
a dust law with RV = 2.8 instead of RV = 1.4 would introduce an offset of ∼1 mag into
the observed magnitude. To avoid having differences in dust properties affect our analysis
of residual magnitudes, we choose to reject any supernovae with a measured AV > 0.5. For
a supernova with AV = 0.5, a 20% difference in RV would introduce a ∼0.1 mag offset into
its residual magnitude. 19 supernovae have measured AV values larger than this threshold
out of the 175 passing our uncertainty on the spectrum at maximum light requirement.

The results of all of these selection requirements are summarized in Table 3.2. We find
that a total of 135 SNe Ia pass all of the selection requirements for their magnitudes to be
expected to have low contributions from non-intrinsic sources, and a total of 73 of those
SNe Ia are included in our training set with 62 held back for the validation set.

3.6.2 Residual Magnitudes from Reading Between the Lines

The residual magnitudes measured by the RBTL algorithm are shown in Figure 3.29,
both with and without the selection requirements from Section 3.6.1 applied. With the
selection criteria applied, we find that the residual magnitudes of the remaining sample of
SNe Ia have a dispersion with a standard deviation of 0.123 ± 0.013 mag and an NMAD of
0.092 ± 0.017 mag. The uncertainties on these measurements, and all other uncertainties
on measurements of dispersion in this analysis, are calculated using bootstrapping (Efron,
1979). Note that these residual magnitudes have been corrected using a baseline color law
(correcting for both dust and any intrinsic color), but they have not been corrected at all
for intrinsic properties of SNe Ia that could affect the overall brightness of the SN Ia, such
as the stretch of the supernova. In the rest of this Section, we will use the RBTL-estimated
residual magnitudes as a baseline for additional studies on how the intrinsic variation of
SNe Ia can be used to improve our estimates of the brightness of SNe Ia.

3.6.3 RBTL Residual Magnitudes and Manifold Learning

The RBTL algorithm provides a robust estimate of the brightness and color of the spec-
trum of an SN Ia. However, as described in Section 3.4.1, if there is intrinsic variability
that affects the spectrum in a similar manner to the brightness or the color, then it will be
confused as extrinsic variability by the RBTL algorithm. This means that at some level the
RBTL residual magnitudes will include contributions from intrinsic variability. Assuming
that the intrinsic variability that affects the brightness of the supernova also affects other
intrinsic properties of the spectra, such as the absorption features seen in the spectra of
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Figure 3.29: Residual magnitudes estimated by the Reading Between the Lines algorithm.
Top panel: Supernovae passing our selection requirements of having low contributions to the
residual magnitudes from redshift and dust uncertainties are shown in blue, and supernovae
failing these selection requirements are shown in red. The shaded blue region indicates one
standard deviation of the expected contribution to the residual magnitudes from peculiar
velocities assuming a velocity dispersion of 300 km/s. Bottom panel: Zoom in on this figure
with only the supernovae passing our selection requirements shown.
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Figure 3.30: RBTL residual magnitudes as a function of the Isomap components 1 and
2. Each data point represents a single supernova. The data points are colored according to
their RBTL residual magnitudes, as labeled in the colorbar.

SNe Ia, then we can use the intrinsic diversity measured from the spectral features to re-
move the intrinsic contributions to the residual magnitudes. For example, light curve fitters
such as SALT2 use the measured intrinsic diversity of the light curve stretch to correct for
its contributions to the estimated brightnesses of SNe Ia.

The Isomap embedding described in Section 3.5 produces a parametrization of the intrin-
sic diversity of SNe Ia, and we examine whether this parametrization provides additional
information about the peak brightnesses of SNe Ia. In Figures 3.30 through 3.32, we show
the RBTL residual magnitudes as a function of the Isomap components. There are visible
trends in the residual magnitudes as a function of each of the components, indicating that
supernovae with similar intrinsic variation have similar residual magnitudes.

3.6.4 Standardization of the RBTL Residual Magnitudes with the
Isomap Embedding

As the Isomap embedding is designed to produce a highly non-linear manifold, there is
no reason to expect that the resulting embedding will be linearly correlated with the peak
brightnesses of SNe Ia, so linear standardization as is traditionally done for classifiers such
as SALT2 is unlikely to be sufficient. Instead, we choose to use Gaussian Process (GP)
regression to model the residual magnitudes of SNe Ia over the Isomap embedded parameter
space. For an introduction to Gaussian process regression, see Section 1.8. We choose
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Figure 3.31: RBTL residual magnitudes as a function of the Isomap components 1 and
3. Each data point represents a single supernova. The data points are colored according to
their RBTL residual magnitudes, as labeled in the colorbar.
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Figure 3.32: RBTL residual magnitudes as a function of the Isomap components 2 and
3. Each data point represents a single supernova. The data points are colored according to
their RBTL residual magnitudes, as labeled in the colorbar.
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Table 3.4: Parameters for the Gaussian pro-
cess standardization model described in Sec-
tion 3.6.4.

Parameter Value
Color law RV 2.77 ± 0.20
GP kernel amplitude 0.098 ± 0.029 mag
GP kernel length scale 2.23 ± 1.40
Intrinsic dispersion 0.071 ± 0.013 mag

to use a Gaussian process with a Matérn 3/2 kernel to describe the residual magnitudes
of SNe Ia. This kernel has two parameters: an amplitude that sets the amplitude scale of
coherent intrinsic brightness variations for different SNe Ia and a length scale that determines
the distances in parameter space over which the intrinsic brightness varies. The Isomap
embedding is designed to maintain the “spectral distances” between SNe Ia in the embedded
space, so we choose to use a three-dimensional Matérn kernel with a single length scale.

When determining the RBTL residual magnitudes, as described in Section 3.4.1, we chose
to use a fiducial color law with RV = 2.8. If the wrong mean value of RV is chosen, then
the first order effect is that a correlation is introduced between the measured color and
residual magnitude. For this reason, we add an additional linear correction term in color to
our model of the residual magnitudes that we interpret as the true RV value used for the
color correction. Finally, we expect there to be some residual dispersion even after these
corrections due to additional unmodeled effects. We model this residual dispersion using a
Gaussian with an intrinsic dispersion parameter σint that will be determined.

We implement this Gaussian process model using the George package (Ambikasaran
et al., 2015). The full model has a total of four parameters: the Gaussian process kernel
amplitude, the Gaussian process kernel length scale, the color correction and the intrinsic
dispersion. We fit this model to the sample of SNe Ia described in Section 3.6.1 optimizing
the maximum likelihood. The results of this fit are shown in Table 3.4.

We find that our measurements prefer an RV value of 2.77 ± 0.20, which is consistent with
the results of Chotard et al. (2011) and the fiducial color law that we assumed in Section 3.4.1.
We verified that different choices of fiducial color laws result in similar recovered RV values
when rerunning the entire analysis. The recovered intrinsic dispersion of 0.071 ± 0.013 mag
is significantly lower than what is typically found for light curve fitters that only rely on
stretch and color, and is consistent with the results of F15 for pairs of twin supernovae, as
will be discussed in Section 3.7.1. To understand the behavior of the GP, we show the GP
predictions after applying the updated RV color correction in Figures 3.33 through 3.35. In
these figures, we hold one component value fixed to zero, and show the effects of varying the
other two components over the Isomap embedded space. Qualitatively, the GP appears to
be able to capture the non-linear diversity in RBTL residual magnitudes of SNe Ia.

The GP effectively uses the brightnesses of nearby SNe Ia to generate its predictions. To
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Figure 3.33: GP predictions for the RBTL residual magnitudes as a function of the Isomap
components 1 and 2. Each data point represents a single supernova. The data points
are colored according to their color-corrected RBTL residual magnitudes, as labeled in the
colorbar, and are identical to the data points shown in Figure 3.30. The GP predictions are
shown as a smooth color in the background, indicating the amplitude of the GP prediction
for each value of component 1 and 2 when component 3 is fixed to zero. Note that this
figure only shows a slice through the GP predictions, and the individual predictions will also
include information from component 3 that cannot be plotted in only two dimensions.

generate GP predictions of the residual magnitudes for our sample of SNe Ia, we calculate
individual “leave-one-out” predictions for each supernova where the GP is conditioned on
all SNe Ia except the supernova of interest. This ensures that the measured brightness of
the supernova itself cannot contribute to its own predictions. Using these predictions, we
calculate GP corrected residual magnitudes for each SN Ia in our sample. We find that the
GP corrected residual magnitudes have a dispersion in brightness with a standard deviation
of 0.100 ± 0.010 mag and an NMAD of 0.079 mag. These residual magnitudes will be
compared with other methods of calculating residual magnitudes in Section 3.7.1.

3.6.5 Twins Standardization

As shown in F15, “twin” SNe Ia that have similar spectral features have a much lower
dispersion in brightness than the larger sample of SNe Ia. As described in Section 3.5.2, the
distances between spectra that we calculate for the Isomap algorithm are equivalent to the
“twinness” from F15 for high S/N spectra. The RBTL residual magnitudes are also similar to
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Figure 3.34: GP predictions for the RBTL residual magnitudes as a function of the Isomap
components 1 and 3. See Figure 3.33 for details of this figure.
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Figure 3.35: GP predictions for the RBTL residual magnitudes as a function of the Isomap
components 2 and 3. See Figure 3.33 for details of this figure.
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Figure 3.36: Difference in measured RBTL residual magnitudes for pairs of SNe Ia as a
function of their twinness, following a similar procedure to F15. We rank each pair of SNe Ia
in terms of their twinness, and calculate the RMS of the difference in brightness for all sets of
pairs in a bin, corrected to report the implied dispersion in brightness for a single supernova.

the brightness differences calculated in F15, although we weight the spectra by the intrinsic
dispersion when estimating the RBTL residual magnitudes.

For direct comparison with the results of F15, for each pair of SNe Ia, we calculate their
“twinness percentile”, i.e. the percentile of their twinness relative to the twinness values for
all sets of pairs. In bins of the twinness percentile, we calculate the RMS of the RBTL
magnitude differences for pairs of SNe Ia in that bin. In this analysis, we are measuring the
dispersion in brightness of pairs of SNe Ia, so we divide the resulting RMS by

√
2 to report

the implied single SN Ia dispersion in brightness that can be directly compared to other
standardization techniques. The results of this procedure are shown in Figure 3.36. We find
that the best 20% of twins pairs have an implied single SN Ia dispersion with an RMS of
0.105 mag and an NMAD of 0.094 mag.
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3.6.6 SALT2 Standardization

For comparison purposes, we standardize our SNe Ia using SALT2. From the SALT2
fits described in Section 3.2, we determine the SALT2 parameters x1,i and ci of each SN Ia
along with the observed peak B-band magnitude mB,i. Here we restrict our sample to the set
of supernovae passing both the SALT2 fit criteria described in Section 3.2 and the redshift
and color criteria described in Section 3.6.1. Assuming a fiducial cosmology (described
in Section 3.2), we calculate the distance modulus for each supernova µi. Given a set of
standardization parameters α and β along with the absolute magnitude of an SN Ia at
maximum light MB, we calculate the SALT2 residual magnitudes mres,i for each supernova
as:

mres,i = mB,i −MB − µi + α× x1,i − β × ci (3.10)

We estimate the uncertainty onmres,i for each supernova by propagating the uncertainties
from the SALT2 fits for x1,i, ci andmB,i. Additionally, we include the contribution of peculiar
velocities σpv,i assuming a dispersion of 300 km/s as described in Section 3.4.1. The SALT2
model is known to not explain all of the dispersion of SNe Ia, so the uncertainty on this
residual magnitude must include an intrinsic dispersion term σint. The final uncertainty
model for mres,i is:

σ2
mres,i =σ2

mB ,i
+ σ2

pv,i + σ2
int + α2σ2

x1,i
+ β2σ2

c,i (3.11)
+ 2α Cov[mB,i, x1]− 2β Cov[mB, c]− 2αβ Cov[x1, c] (3.12)

Given a set of parameters for the above equations, we define the following weighted RMS
(WRMS) and chi-square per degree-of-freedom (χ2/DoF ):

WRMS =

√√√√∑N
i m

2
res,i/σ

2
mres,i∑N

i 1/σ2
mres,i

(3.13)

χ2/DoF =
1

N − 4

N∑
i

m2
res,i

σ2
mres,i

(3.14)

where N is the total number of supernovae in the sample. We iteratively minimize these
two equations to determine the values of α, β, MB and σint. First, we set σint to a guess
of 0.1 mag. We then minimize the WRMS in Equation 3.13 to determine the optimal
parameters for α, β, and MB. Given the fitted values of these parameters, we determine the
value of σint that sets the χ2/DoF in Equation 3.14 to 1. We repeat these two fits until the
parameter values converge.

The results of this SALT2 standardization procedure are summarized in Table 3.5. We
find a WRMS of 0.149 mag for this sample. Because the light curves of the SNe Ia in our
sample are almost all well measured, there is little difference in the uncertainties σmres,i
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Table 3.5: SALT2 standardization parameters fit using the pro-
cedure described in Section 3.6.6.

Parameter Value
MB -19.07 mag
α 0.131
β 3.02
σint 0.126 mag
Weighted RMS of mres,i 0.149 mag
Unweighted standard deviation of mres,i 0.150 ± 0.011 mag
NMAD of mres,i 0.116 ± 0.013 mag

between SNe Ia, with values ranging between 0.14 mag to 0.18 mag. Hence the unweighted
standard deviation of 0.150 ± 0.011 mag is nearly identical to the WRMS. To compare with
other standardization techniques and avoid having different weights for different techniques,
we therefore use the unweighted standard deviation in further analyses. Interestingly, we
also find that this distribution has a tight core with wider wings compared to a Gaussian
distribution, as seen in the low NMAD of only 0.116 ± 0.013 mag for this sample. This
suggests that while SALT2 standardization is effective for the core of the sample, there are
some regions of the parameter space of SNe Ia where there is additional dispersion in the
peak brightness that is not captured by SALT2.

We can identify the regions of parameter space where SALT2 standardization is biased
using the Isomap embedding. As shown in Figure 3.37, SALT2 corrected residual magnitudes
show a strong bias for large values of the first Isomap component. Comparing SALT2 residual
magnitudes with Isomap component 1 values of less than 2 to residual magnitudes with
component 1 values greater than 2, we find a difference of 0.172 ± 0.038 mag in the mean
brightnesses between these two samples. Note that the location of this cut was selected
after examining the distribution which reduces the statistical power of this measurement.
However, this strongly suggests that the Isomap algorithm is identifying additional intrinsic
variation of SNe Ia that affects the peak brightness estimates of SNe Ia and that is not
captured by the SALT2 algorithm.

3.6.7 Standardization using SALT2 with Isomap components

We investigate a hybrid standardization method where we use the peak brightness and
color from a SALT2 light curve fit, and the Isomap components to parametrize the intrinsic
variation of SNe Ia instead of the SALT2 x1 parameter. While the RBTL method requires
that the input spectra be spectrophotometric to obtain accurate estimates of the brightness
and color of each supernova, the Isomap components themselves could potentially be derived
from slit-based spectrographs or other forms of spectroscopy that are not flux-calibrated
since most of the information is in local spectral feature variation. External estimates of the
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Figure 3.37: Comparison of SALT2 corrected residual magnitudes to the first Isomap
component. The SALT2 residual magnitudes are shown for individual supernovae as blue
points. The mean residual magnitude in evenly-spaced bins of this component are shown
with green lines. We estimate uncertainties on the mean residual magnitude in each bin
using the sample standard deviation in each bin. We find that SALT2 Hubble residuals
show a strong bias for large values of the first Isomap component.

brightness and color, from SALT2 fits for example, could then be corrected using the Isomap
components.

To test whether this method of standardization is effective, we ran the GP standardiza-
tion procedure described in Section 3.6.4 using the Isomap components, but with the raw
SALT2 residual magnitudes and colors (uncorrected for x1) instead of the RBTL residual
magnitudes. As for the RBTL analysis, we include a linear term to correct for the SALT2
color which is equivalent to the β parameter in traditional SALT2 analyses. The results of
the GP fit for this model are summarized in Table 3.6.

As in Section 3.6.4, we calculate the GP predicted brightness for each supernova in our
sample using a leave-one-out prediction to ensure that we are not biasing the predictions.
When raw SALT2 residual magnitudes are standardized using the Isomap embedding, the
standardization performance is significantly better than standardizing only on SALT2 x1.
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Table 3.6: Parameters for the hybrid Isomap and SALT2 stan-
dardization model described in Section 3.6.7.

Parameter Value
SALT2 color standardization term (β) 3.09 ± 0.16
GP kernel amplitude 0.423 ± 0.259 mag
GP kernel length scale 9.15 ± 5.50
Intrinsic dispersion 0.090 ± 0.009 mag

The resulting standard deviation of the SALT2 + Isomap standardized residual magnitudes
is 0.117 ± 0.007 mag compared to 0.146 ± 0.012 mag for SALT2 with traditional x1 stan-
dardization for the same set of SNe Ia.

To illustrate the effect of the Isomap components for standardization of raw SALT2
residual magnitudes, we reproduced Figure 3.33 for the SALT2 + Isomap standardization
analysis in Figure 3.38. We remove the linear color correction, and show the remaining
residual magnitudes for each supernova in the sample along with the GP predicted brightness
for each point of the parameter space. First, we note that the amplitude of the differences in
the residual magnitudes before GP correction is much larger for the raw SALT2 magnitudes
compared to the raw RBTL magnitudes, as reflected in the GP kernel amplitudes of 0.423
± 0.259 mag and 0.098 ± 0.029 mag respectively. This is expected: in the RBTL analysis
we used the full spectrum at maximum light to estimate the peak brightness of SNe Ia, and
we explicitly avoided using regions of the spectrum with large variation in this estimate.
The SALT2 peak brightness on the other hand is explicitly estimated in the B-band without
taking intrinsic variation into account.

We show the difference in the applied standardization between the SALT2 + Isomap
standardization and traditional SALT2 standardization in Figure 3.39. We find major differ-
ences for these standardization methods, especially for SALT x1 parameters between 0 and
1, that are related to the first Isomap component. The applied standardization varies by as
much as 0.5 mag for SNe Ia with the same SALT2 x1 values.

3.7 Discussion

3.7.1 Comparison of Standardization Techniques

We have defined several different standardization techniques that output residual magni-
tudes for each supernova in a sample. In this Section, we compare the residual magnitudes
from these different techniques. In Section 3.4, we showed that we can obtain a robust es-
timate of a supernova’s overall brightness and color using regions of the spectrum with low
intrinsic dispersion in a process that we called “Reading Between the Lines”. We refer to the
residual magnitudes derived from this technique as the “Raw RBTL” residual magnitudes
because they have not been corrected for intrinsic dispersion. In Section 3.6.4, we showed
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Figure 3.38: GP predictions for the SALT2 residual magnitudes as a function of the Isomap
components 1 and 2. Each data point represents a single supernova. The data points are
colored according to their color-corrected SALT2 residual magnitudes, as labeled in the
colorbar. The GP predictions are shown as a smooth color in the background, indicating
the amplitude of the GP prediction for each value of component 1 and 2 when component
3 is fixed to zero. Note that this figure only shows a slice through the GP predictions, and
the individual predictions will also include information from component 3 that cannot be
plotted in only two dimensions.
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Figure 3.39: Differences between the SALT2 + Isomap standardization and traditional
SALT2 standardization. We show the individual differences for all SNe Ia in our sample.
The data points are colored by the value of the first Isomap component. We find a large
difference in the standardized magnitudes for SNe Ia with SALT2 x1 values between roughly
0 and 1, related to the measured value of the first Isomap component for these SNe Ia.

how a Gaussian process model over the Isomap parameter space can be used to correct the
RBTL residual magnitudes, which we will refer to as “RBTL + Isomap standardization”. In
Section 3.6.6, we applied traditional “SALT2 + x1 standardization” to our sample. In Sec-
tion 3.6.7, we corrected estimates of the peak brightness and color of an SN Ia from SALT2
using the Isomap embedding, which we call “SALT2 + Isomap standardization”.

These standardiztion techniques all required different selection criteria in order to be
applied. The raw RBTL, RBTL + Isomap and SALT2 + Isomap standardization techniques
both require a spectrum at maximum light with low uncertainty for the Isomap embedding,
as described in Section 3.4.4. Both of the SALT2-based standardization techniques require
a set of SNe Ia with valid SALT2 fits. Finally, the raw RBTL and RBTL + Isomap analyses
are still blinded, so those analyses only include SNe Ia in the training set described in
Section 3.6.1. Statistics for the dispersions of residual magnitudes for each of the these
techniques are shown for different subsets of SNe Ia in Table 3.7.
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For the sample of SNe Ia in common to these three standardization methods, we find
that the RBTL + Isomap standardization significantly outperforms both of the SALT2
standardization methods. The variance of the residual magnitudes from the SALT2 + x1

standardization are over twice those from the RBTL + Isomap standardization, meaning that
a SN Ia corrected with RBTL + Isomap standardization will have over twice the weight in a
cosmological analysis compared to a supernova corrected with SALT2 + x1 standardization.
Note that the quoted uncertainties on the measured standard deviations do not apply for
comparisons between different standardization methods because we are examining the same
set of supernovae and most of the residual variation is highly correlated.

One somewhat unexpected result is that we find better dispersions for the Raw RBTL
residual magnitudes compared to SALT2 + x1 corrected magnitudes (standard deviations
of 0.115 ± 0.010 mag compared to 0.135 ± 0.013 mag for the set of SNe Ia with all cuts
applied). This suggests that even without applying any additional corrections using the
intrinsic variation of the SNe Ia, the base RBTL method standardizes SNe Ia better than
SALT2 does with corrections for intrinsic variation. This was also seen in F15, where even
the worst twins had a smaller dispersion in brightness than the SALT2 fits to that same
dataset.

Finally, the standard deviations calculated in Table 3.7 have a contribution in their resid-
ual magnitudes from the peculiar velocities of the host galaxies of the SNe Ia, as described
in Section 3.4.1. Assuming a 300 km/s dispersion in velocity, this contributes an added
dispersion of 0.056 mag to the quoted standard deviation for the combination of all cuts and
very similar amounts for the other sets of cuts. This dispersion can be removed in quadra-
ture from the quoted values to obtain an estimate of the standard deviations of residual
magnitudes that would be obtained for samples of SNe Ia at higher redshifts where peculiar
velocity uncertainties have less of an impact on the residual magnitudes. We also show these
“peculiar velocity removed” standard deviations in Table 3.7.

3.7.2 Correlations with Host Galaxy Properties

As described in Section 1.5, future cosmological analyses of SNe Ia will be limited by their
ability to understand the evolution of the peak brightnesses of SNe Ia with redshift. SALT2
standardized residual magnitudes have been shown to have differences of ∼0.1 mag when
comparing SNe Ia from host galaxies with different masses, metallicities, local colors, local
star-formation rates or global star-formation rates (Kelly et al., 2010; Sullivan et al., 2010;
Gupta et al., 2011; Hayden et al., 2013; Rigault et al., 2013, 2015, 2018; Roman et al., 2018).
As galaxy properties evolve with redshift, such correlations of the peak brightness of SNe Ia
with their host galaxy properties must be well-understood to produce robust cosmological
measurements. While it is possible to correct the peak brightnesses of SNe Ia using host
galaxy properties, the host galaxy measurements are really indirect measurements of some
underlying properties of the SNe Ia. Ideally, it would be better to identify these differences
directly from properties of the SNe Ia.
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We examined how standardizing using the Isomap embedding affects these correlations
with host galaxy properties. We use the measurements of host galaxy properties from Rigault
et al. (2018) (hereafter R18) which includes much of the same data used in our analysis.
The authors of this analysis found that there is a step of ∆Y = 0.163 ± 0.029 mag when
comparing SALT2 residuals from younger environments to older ones, and a step of ∆M =
0.119 ± 0.032 mag for high-mass hosts compared to low-mass hosts. We reproduced these
results for the subset of SNe Ia in our analysis using the published host masses and local
specific star formation rates (lsSFR) from R18. The results of this procedure can be found
in Figure 3.40.

We estimate the residual steps by estimating the mean of the residual magnitudes on
either side of a threshold, using the thresholds defined in R18. For SNe Ia near the threshold
we assign a probability of that SN Ia being on either side of the threshold, following the
procedure in R18. We then fit a Gaussian mixture model to the data with different means and
standard deviations for the residual magnitudes of SNe Ia on either side of the step. In R18,
the authors simultaneously fit for the step parameters along with the SALT2 standardization
parameters α and β. Here, we are attempting to determine how large of a step is left over
after standardization, so we do not incorporate the step into our standardization model,
and instead calculate the size of the step on standardized residual magnitudes. This results
in a fundamentally different measurement of the steps than what was done in R18: we
are effectively measuring how large the host correlations are in the residual magnitudes of
SNe Ia if host property measurements are not available, while R18 instead examined how
host property measurements can be incorporated into a standardization procedure.

Using the host data from R18 with the subset of SNe Ia in our dataset and our method of
measuring the mass step, we find a step in the residual SALT2 magnitudes in lsSFR of 0.112±
0.024 mag and a host mass step of 0.093 ± 0.024 mag. These numbers are somewhat smaller
than what is found in R18 (0.163±0.029 mag for lsSFR and 0.119±0.032 mag for host mass)
because we are calculating the step after the standardization procedure rather than including
it in the standardization procedure. For the full dataset in R18, when the host parameters
are not included in the standardization procedure, we find steps of 0.125 ± 0.023 mag for
lsSFR and 0.102± 0.024 mag for host mass. These step sizes are consistent with the results
seen for our analysis on a subset of the SNe Ia.

We calculate the host property step sizes for our other standardization methods. To
compare all of these techniques on the same sample, we unfortunately must apply a large
number of different cuts: we require that a supernova have a good interpolation to maximum
light for the Isomap analysis, a good SALT2 fit, measured host properties in R18 and because
the RBTL + Isomap magnitudes are still blinded, we are limited to the training set. This
leaves us with a set of 46 SNe Ia in the blinded sample and 86 SNe Ia in the full sample. We
report a preliminary analysis for the host properties for the blinded sample in this Section,
although the conclusions will be much stronger with the full sample.

For each of our standardization methods, we plot the residual magnitudes passing these
selection cuts as a function of the host properties. The results of this procedure can be seen
in Figure 3.41 for the SALT2 + x1 standardization, Figure 3.42 for the SALT2 + Isomap
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Figure 3.40: Reproduction of the host correlations seen in R18 for the SNe Ia in our analysis.
Top panel: Step in SALT2-corrected residual magnitudes as a function of the local specific
star formation rate (lsSFR). Bottom panel: Step in SALT2-corrected residual magnitudes
as a function of the mass of the host galaxy. We use the thresholds from R18 to define the
steps. Each supernova is assigned a probability to be on each side of the threshold according
to the measurement uncertainties on its host properties. These probabilities are shown as
the color of the data points.
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Table 3.8: Measured host-galaxy property step sizes for different standardization
methods. For each standardization method and set of cuts, we calculate the step size
for various host galaxy properties following the procedure from R18. For all samples,
we require that the low-dispersion-magnitude selection requirements described in
Section 3.6.1 are satisfied and that the supernova has valid host properties in R18.
We apply additional cuts to different samples as listed in the second column, including
requiring a valid SALT2 fit (SALT2), requiring a valid spectrum at maximum light
(max), and the training sample cut (train). We choose to set the sign of the step to
be positive for the SALT2 + x1 analysis: a negative step means that we recover a
step in the opposite direction from the one for the SALT2 + x1 analysis.

Standardization method Cuts applied ∆lsSFR (mag) ∆Host mass (mag)
SALT2 + x1 SALT2 0.112 ± 0.024 0.093 ± 0.024
SALT2 + x1 SALT2 + max + train 0.111 ± 0.034 0.078 ± 0.035
RBTL + Isomap SALT2 + max + train 0.060 ± 0.026 0.045 ± 0.025
SALT2 + Isomap SALT2 + max + train 0.043 ± 0.032 0.012 ± 0.034

standardization, and Figure 3.43 for the RBTL + Isomap standardization.
We measure the size of the residual steps for each of these standardization methods. The

results of this procedure are shown in Table 3.8. We find that the size of the residual mag-
nitude steps in both lsSFR and host mass are decreased for the two Isomap standardization
techniques compared to SALT2 + x1 standardization. In both cases, the resulting step sizes
are consistent with there being no residual correlation with host properties, although we have
a small sample size so it is difficult to make definite conclusions. With the full unblinded
dataset, the sample size will roughly double leading to much better constraints on the host
steps.

3.7.3 Future work

As discussed in Section 3.6.1, the analyses using the magnitudes of SNe Ia are still
blinded. We are only using half of the sample to tune the analysis, and have not looked at
the residual magnitudes for the other half of the sample. This blinded half of the sample will
be used to evaluate the performance of our finalized model. At this stage, we are confident
in our analysis techniques, although we identified some issues with the convergence of our
host galaxy subtraction models that we are in the process of addressing and that we would
like to solve before unblinding the analysis.

Now that we have identified a three-dimensional parameter space that more fully maps
out the intrinsic diversity of SNe Ia at maximum light, the next step is to determine what data
is necessary to locate a new supernova in this parameter space. As discussed in Section 3.6.7,
we are able to reproduce our low dispersions in brightness and reduced correlations with host
properties, using a peak brightness and color estimated from a fitter like SALT2. It seems
likely that the Isomap coordinates can be identified from a non-spectrophotometric spectrum
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Figure 3.41: Host correlations for SALT2 + x1 standardization for the subset of SNe Ia in
common to all of our analyses. See Figure 3.40 for details of this plot.
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Figure 3.42: Host correlations for SALT2 + Isomap standardization for the subset of SNe Ia
in common to all of our analyses. See Figure 3.40 for details of this plot.



CHAPTER 3. MANIFOLD LEARNING FOR TYPE IA SUPERNOVAE 108

14 13 12 11 10
log(lsSFR)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

RB
TL

 +
 Is

om
ap

 re
sid

ua
l m

ag
ni

tu
de

s

0

20

40

60

80

100

P Y
ou

ng

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
log(M * /M ) (global)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

RB
TL

 +
 Is

om
ap

 re
sid

ua
l m

ag
ni

tu
de

s

0

20

40

60

80

100

P h
ig

h
m

as
s

Figure 3.43: Host correlations for RBTL + Isomap standardization for the subset of SNe Ia
in common to all of our analyses. See Figure 3.40 for details of this plot.
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since most of the information is in variation of different localized features in the spectrum.
Further analysis is needed to assess what data quality is necessary from a spectrograph to
reproduce these results.

Another option is to build a new spectral timeseries model from the Isomap embedding.
Once the Isomap parameter space has been established, a model can be built using the data
available for all of our SNe Ia away from maximum light that predicts the spectrum at any
phase for a given set of Isomap coordinates, similar to the procedure used for the SNooPy
light curve fitter from Burns et al. (2011). This would also potentially allow for the Isomap
coordinates for a new SN Ia to be recovered using only photometric observations, perhaps
with strategic choices of the photometry bands used and the observation dates.

The Isomap parameter space effectively parametrizes the different subpopulations of
SNe Ia. It is possible that some subpopulations of SNe Ia could be more standardizable
than others. In Figure 3.30 we see some hints of this with what appears to be lower disper-
sions for small values of the second Isomap component, but we do not have a large enough
sample of SNe Ia to perform a statistically sound study. With a larger sample of SNe Ia, it
would be possible to examine the dispersion of the residual magnitudes in different regions
of the Isomap parameter space and compare the recovered intrinsic dispersions. This could
potentially be used to identify subsets of SNe Ia that are better distance indicators than the
larger sample.

Our model was only trained on spectra at maximum light. There could be additional
intrinsic diversity in the light curves of SNe Ia that is not captured in the spectra at maximum
light, although F15 did show that their twinning procedure performed as well using only
spectra near maximum light as it did with the full spectral timeseries. The range of additional
intrinsic variability at other wavelengths could be probed by comparing the full timeseries
of SNe Ia with similar Isomap coordinates. A similar concern is diversity in the extrinsic
variation of SNe Ia. For example, as discussed in Section 3.6.1, there are some SNe Ia
with extinction due to dust with very different properties from the color law assumed in
our analysis. While we addressed this issue for this analysis by simply removing highly
reddened SNe Ia from our sample, the Isomap embedding could actually be used to model
the intrinsic diversity of SNe Ia and then probe the variations in extrinsic diversity for these
extreme objects.

Finally, as the results of this analysis show strong biases for certain regions of the SN Ia
parameter space, this could lead to biases in cosmological analyses if their selection of SNe Ia
preferentially select SNe Ia in these regions of the parameter space or not. This is particularly
of interest for the measurement of the Hubble constant with SNe Ia as the results rely on the
fact that SNe Ia in hosts with Cepheids have similar distributions in brightness to the larger
sample of SNe Ia (Riess et al., 2016, 2019; Rigault et al., 2015). By locating these SNe Ia in
the Isomap parameter space, we will be able to determine whether or not this assumption
affects the analysis, and apply a correction if necessary.
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3.7.4 Conclusions

In this work, we developed an alternative method of standardizing SNe Ia using only a
single spectrum near maximum light. In Section 3.3.1, we showed how we can estimate the
spectrum at maximum light for a SN Ia using spectra within five days of maximum light.
We use the SNe Ia with multiple spectra to build a model of the spectral evolution of SNe Ia
near maximum light, and we can then apply this model to SNe Ia that have only a single
spectrum in this phase range. Our model is completely agnostic to any extrinsic effects on
the spectrum of an SN Ia like dust extinction or distance uncertainties, and these will be
properly propagated into the estimated spectrum at maximum light.

In Section 3.4, we developed a new technique to estimate the brightness and color of
SNe Ia at maximum light that we call “Reading Between the Lines” (RBTL). This technique
effectively uses the regions of the spectra of SNe Ia where there is little intrinsic variation in
between major spectral features to estimate the extrinsic effects on the spectrum such as the
overall brightness and reddening due to dust. With this technique, we are able to produce
a set of dereddened spectra for all of our SNe Ia at maximum light, along with an estimate
of the brightness and color for those SNe Ia. We find that the RBTL method on its own
is a very good estimator of the distances to SNe Ia, calibrating the brightness of arbitrary
SNe Ia to 0.123 ± 0.013 mag. This sample includes many SNe Ia that would normally be
labeled as “outliers” by a fitter like SALT2, and the RBTL distance estimate does not take
into account any intrinsic variation of SNe Ia beyond that coded in the intrinsic color.

Using the dereddened spectra produced by the RBTL algorithm, in Section 3.5, we showed
how manifold learning can be used to parametrize the intrinsic diversity of SNe Ia. Using
the Isomap algorithm, we find that a three component non-linear model is able to capture
the spectral diversity of SNe Ia. The three Isomap components primarily affect the Ca II
features, the Si II features, and the line velocities respectively. We are able to reproduce
previously identified subtypes of SNe Ia, such as the subtypes of Branch et al. (2006), directly
from the Isomap embedding, and we find a smooth spectral sequence between these subtypes.
We also are able to cleanly separate Type Iax supernovae from the rest of the sample, and
our results suggest that these supernovae do not belong to the same spectral sequence as the
larger sample of SNe Ia.

With the Isomap embedding, we showed that we can improve the standardization of
SNe Ia in Section 3.6. We find that SALT2 residual magnitudes corrected for SALT2 x1 and
c show a bias of up to 0.3 mag for large values of the first Isomap component. We can use the
Isomap embedding to correct either the RBTL residual magnitudes or the SALT2 residual
magnitudes directly. With this correction, we find that the dispersion in brightness of the
residual magnitudes is greatly reduced compared to SALT2 + x1 standardization. As op-
posed to other standardization methods such as SALT2, we are able to use the entire sample
of SNe Ia, and we do not need to perform any cuts to remove “peculiar” SNe Ia. Stan-
dardizing with the Isomap components also significantly reduces the correlations between
distance estimates and host galaxy properties seen for traditional SALT2 + x1 standardiza-
tion. This is important for standardization efforts because it implies that we are identifying
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a direct signature of the remaining differences between SNe Ia rather than relying on indirect
measurements of the properties of the host galaxies.

A final concern is that the rates of different subpopulations of SNe Ia could evolve with
redshift, which could dramatically impact cosmological analyses. As previously described,
we identified a region of parameter space where SALT2 residual magnitudes are biased by
0.3 mag. If SNe Ia in this region of parameter space have a different rate at high redshifts
compared to low redshifts, then they could significantly bias cosmological measurements.
These SNe Ia cannot be identified with a SALT2 light curve fit, but we showed in this
analysis that we can distinguish them from the rest of the sample using spectrophotometry.
Future work needs to be done to determine whether or not these biased subpopulations can
be identified with other techniques such a slit spectroscopy or more advanced light curve
fitters.
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Chapter 4

Photometric Classification of
Astronomical Transients with Gaussian
Process Augmentation

4.1 Overview
In this chapter, we discuss several new techniques that we developed to improve the

performance of photometric classifiers when trained on a spectroscopically-confirmed light
curve sample that is not representative of the full light curve sample. This chapter was
submitted for publication in the Astronomical Journal in July 2019, and was authored by
K. Boone. All of the algorithms described in this chapter are implemented in the avocado
software package1.

Upcoming astronomical surveys such as the LSST will rely on photometric classification
to identify the majority of the transients and variables that they discover. This introduces a
potential source of systematic uncertainty: other kinds of supernovae can leak into the sample
of SNe Ia and bias the cosmology analysis. In this chapter, we present a set of techniques
for photometric classification that can be applied to experiments such as LSST where the
training set of spectroscopically-confirmed objects will likely be heavily biased towards bright,
low-redshift objects. Using Gaussian process regression to model arbitrary light curves in
all bands simultaneously, we “augment” the training set by generating new versions of the
original light curves covering a range of redshifts and observing conditions. We train a
boosted decision tree classifier on features extracted from the augmented light curves, and
we show how such a classifier can be designed to produce classifications that are independent
of the redshift distributions of objects in the training sample. Our classification algorithm
was the best-performing among the 1,094 models considered in the blinded phase of the
Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC), scoring
0.468 on the organizers’ logarithmic-loss metric with flat weights for all object classes in the

1https://www.github.com/kboone/avocado

https://www.github.com/kboone/avocado
https://www.github.com/kboone/avocado
https://www.github.com/kboone/avocado
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training set, and achieving an AUC of 0.957 for classification of Type Ia supernovae. Our
results suggest that spectroscopic campaigns used for training photometric classifiers should
focus on typing large numbers of well-observed, intermediate redshift transients instead of
attempting to type a sample of transients that is directly representative of the full dataset
being classified.

In Section 4.2, we discuss the PLAsTiCC dataset along with several metrics that can be
used to evaluate the performance of photometric classifiers on this dataset. We describe the
new techniques that we developed for photometric classification in Section 4.3. In Section 4.4
we discuss the performance and limitations of our classification techniques, and compare
them to other techniques. Finally, in Section 4.5, we discuss future work that could be done
to improve classifier performance, and how the techniques described in this chapter could be
applied to other classifiers.

4.2 Dataset

4.2.1 The PLAsTiCC dataset

The PLAsTiCC dataset (PLAsTiCC Team & PLAsTiCC Modelers, 2019) is a simulation
of transients observed by LSST under realistic observing conditions. The full details of this
simulation can be found in Kessler et al. (2019) (hereafter: K19). The PLAsTiCC dataset
contains 3,500,734 light curves of 18 different kinds of transient and variable sources. In
contrast to the SNPhotCC dataset, which only included different kinds of supernovae, the
PLAsTiCC dataset also includes other object types such as variable stars, micro-lensing
events and active galactic nuclei. This introduces several challenges, as classifiers must be
able to handle more than just supernova-like objects. The details of all of the object types
included in the simulations are shown in Table 4.1 along with their counts.

Realistic observing conditions were simulated using the LSST Operations Simulator (Del-
gado et al., 2014) for a three year period of LSST operations. The SNANA package (Kessler
et al., 2009) was then used to simulate observations for each of the included models following
the generated observing conditions. A simulated trigger model is applied to all of the gen-
erated transients following the DES supernova detection model (Kessler et al., 2015), and
only objects passing this trigger are kept.

Two distinct LSST survey components were simulated for the PLAsTiCC. The Wide-
Fast-Deep (WFD) component consists of observations covering almost half the sky. The
Deep-Drilling-Fields (DDF) component consists of 5 different telescope pointings covering
∼50 deg2. For the PLAsTiCC simulations, any observations on the same night are co-added,
so the DDF observations are effectively ∼1.5 mag deeper and ∼2.5 times more frequent than
the WFD observations. There are significantly more observations in the WFD component,
and only 1% of the objects passing the detection trigger are in the DDF sample.

The PLAsTiCC simulations include a model of the photometric and spectroscopic red-
shifts that will be obtained for LSST. The simulations assume that Galactic objects can
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Table 4.1: Summary of the object types included in the PLAsTiCC simulations (Kessler
et al., 2019). For each object type, the number of objects both with and without spectro-
scopic confirmations is listed. The objects with spectroscopic confirmations are a small
fraction of the full sample, and they are not representative of the distribution of the full
sample.

IDa Object type Nconfirmed Nunconfirmed Galactic Weightb

90 Type Ia SN 2,313 1,659,831 No 1
67 Peculiar Type Ia SN – 91bg-like 208 40,193 No 1
52 Peculiar Type Ia SN – SNIax 183 63,664 No 1
42 Type II SN 1,193 1,000,150 No 1
62 Type Ibc SN 484 175,094 No 1
95 Superluminous SN (Magnetar model) 175 35,782 No 1
15 Tidal disruption event 495 13,555 No 2
64 Kilonova 100 131 No 2
88 Active galactic nuclei 370 101,424 No 1
92 RR Lyrae 239 197,155 Yes 1
65 M-dwarf stellar flare 981 93,494 Yes 1
16 Eclipsing binary stars 924 96,472 Yes 1
53 Mira variables 30 1,453 Yes 1
6 Microlens from single lens 151 1,303 Yes 1

991c Microlens from binary lens 0 533 Yes 2
992c Intermediate luminous optical transient 0 1,702 No 2
993c Calcium rich transient 0 9,680 No 2
994c Pair instability SN 0 1,172 No 2

Total 7,846 3,492,888
a Each object type was assigned a random ID number to identify it during the blinded phase of
the PLAsTiCC.
b During the blinded phase of the PLAsTiCC, classifier performance was evaluated using the
metric defined Equation 4.1 with the class weights shown in this column.
c These object types had no spectroscopically confirmed examples, and were included in the
PLAsTiCC to test anomaly detection algorithms. During the blinded phase of this challenge,
they were all assigned the same ID of 99 and treated as a single class.
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be cleanly separated from extragalactic objects, and the measured photometric and spectro-
scopic redshifts of the Galactic objects are set to zero. The simulation includes a model of a
follow-up survey for extragalactic objects as described in K19. With this follow-up survey,
3.6% of the extragalactic objects have spectroscopic redshifts for their hosts. Extragalactic
objects without spectroscopic redshifts are assigned photometric redshifts and uncertainties
on those photometric redshifts following a model described in K19. In addition to spec-
troscopic redshifts, a total of 7,846 of the objects have spectroscopic confirmation of their
types, representing only 0.2% of the total dataset. These spectroscopically-classified objects
are referred to as a “training” set for the rest of this article as they are used to train the
classifiers that will be applied to the “test set” of objects that do not have spectroscopic
classifications.

The training set for surveys such as LSST will likely be highly biased since spectra are
required to categorize each object in the training set. Typical choices of followup strategies
will preferentially select brighter, closer objects. For the PLAsTiCC simulations, this bias
can be seen in Figure 4.1. The median redshift of the training set is 0.18, compared to 0.43
for the full dataset. An additional challenge is that the different transients and variables
have very different redshift distributions, as illustrated in Figure 4.2, so the biases in the
training set will not be the same across different object types.

4.2.2 Metrics

Flat-weighted metric

As discussed in Malz et al. (2018), the PLAsTiCC team proposed to evaluate the per-
formance of different classifiers on the PLAsTiCC dataset using a weighted multi-class loga-
rithmic loss metric:

logarithmic loss = −

(∑M
i=1 wi

∑Ni

j=1
yij
Ni

ln pij∑M
i=1wi

)
(4.1)

where M is the total number of classes and Ni is the number of objects of each class. yij
is 1 if the object j belongs to class i and 0 otherwise. pij are the predictions of a classifier,
and for each object j we should have

∑
j pij = 1. The class weights wi can be chosen to

emphasize the performance of the classifier on specific classes.
An unweighted logarithmic loss is minimized when the classifier outputs predictions for

each class that match the conditional probabilities of each class given the observations. By
dividing by the total counts for each class, the logarithmic loss is normalized so that each
class effectively has the same weight. This is important for the PLAsTiCC simulations
because some classes have many more observations than others (e.g., over 10,000 SNe Ia for
each kilonova), and an unweighted logarithmic loss would favor a classifier that does not
attempt to classify the poorly-represented classes. For an optimal classifier trained on this
metric, pij can be interpreted as a probability. By this, we mean that given a sample with
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Figure 4.1: True redshift distributions for both the training and test sets in the PLAsTiCC
dataset. The simulated followup strategy for the training dataset is strongly biased towards
bright low-redshift objects.

equal number of objects from each class, 40% of the objects that are assigned pij = 0.4 will
belong to class j.

In our main analysis, we choose to use the metric of Equation 4.1 with class weights of
wi = 1 for all of the classes present in the training set. We did not attempt to produce a
classifier that can identify objects that do not have examples in the training set, so we set
wi = 0 for all such classes (the classes with IDs starting with 99 in Table 4.1). We call this
metric the “flat-weighted metric” because it gives all of the classes the same weights. The
flat-weighted metric can be written as:

Flat-weighted metric = −

(∑T
i=1

∑Ni

j=1
yij
Ni

ln pij

T

)
(4.2)

where the iteration i over classes only considers classes that have examples in the training
set, and T is the number of such classes.



CHAPTER 4. PHOTOMETRIC CLASSIFICATION OF TRANSIENTS 117

0.1 1
Redshift

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

na
l c

om
po

sit
io

n
Kilonova
SNIa-91bg
SNIax
SNIbc
SNIa
SNII
TDE
SLSN-I
AGN

Figure 4.2: Stacked histogram of the fraction of objects belonging to each extragalactic
object type as a function of redshift for the PLAsTiCC test dataset. The different object
types have very different redshift distributions.

Redshift-weighted metric

For some science cases, a subtle issue with the flat-weighted metric in Equation 4.2 is
that it does not take the redshift of extragalactic transients into account. If a classifier
trained on this metric is given information about the redshifts of the different objects, the
classifier will learn to use the redshift distributions of different transients in the training set to
perform its classification. For example, SNe Ia tend to be discovered at higher redshifts than
most other kinds of supernovae, so a classifier trained on the flat-weighted metric will tend
to classify ambiguous supernovae at high-redshifts as SNe Ia, and ambiguous supernovae at
lower redshifts as other kinds of supernovae. Examples of this effect for the classifiers trained
in this analysis will be shown in Section 4.4.2.

For photometric classification, classifiers are typically trained on datasets of spectroscopi-
cally-confirmed objects that have biased redshift distributions. It is the redshift distributions
of these biased training sets that will be encoded into the predictions, not the redshift dis-
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tributions of the test set. For a classifier trained on a metric similar to Equation 4.1, any
analysis that depends on understanding the performance of the classifier as a function of
redshift (such as cosmology with SNe Ia) requires accurate estimates of the differences be-
tween the redshift distributions in the training and full datasets. This is a difficult task if the
spectroscopic followup is distributed across many different telescopes with varying observing
strategies and objectives. One naive approach to dealing with this issue is to not input
measurements of the redshifts of objects into the classifier, in an attempt to prevent it from
using the redshifts to make its decisions. However, the redshift affects almost all features of
a light curve, so a classifier can obtain a fairly accurate estimate of the redshift of an object
through features such as the relative flux levels in different bands or the time dilation of the
light curve, and it can use these estimated redshifts to make its predictions.

To mitigate this issue, we introduce the concept of a redshift-weighted metric. We
reweight the objects in the training set so that every object class effectively has the same
chosen redshift distribution. When a classifier is trained to optimize such a metric, the
classifier cannot use the redshift distributions of the objects in the training sample for classi-
fication because they are all identical. We implement such a metric by splitting the redshift
range into 10 logarithmically-spaced redshift bins between redshifts 0.1 and 3, along with
an additional bin for Galactic objects for a total of 11 redshift bins. We then assign weights
to each object to normalize the number of objects of each class in each redshift bin. This
results in the following redshift-weighted metric:

Redshift-weighted metric = −

(∑M
i=1wi

∑K
k=1

∑Ni

j=1
yijk
Cik

ln pij∑M
i=1wi

)
(4.3)

Here, yijk is 1 if object i belongs to class j and is in redshift bin k. K is the total number
of redshift bins. Cik is the total number of objects in class i and redshift bin k. To avoid
extremely large weights for objects in bins that have very few counts, we impose a floor on
Cik of 100 objects. For extragalactic objects, we choose to set the weight to wi = 1. A
typical extragalactic class is well-represented in roughly half of the different redshift bins
while Galactic objects only have a single bin. To roughly maintain a flat class weighting,
we set the weight for Galactic objects to the average number of bins that are well-populated
for extragalactic classes (∼5). As for the flat-weighted metric, we set wi = 0 for the objects
that were not present in the training set since we did not attempt to classify them.

Kaggle metric

For the blinded phase of the PLAsTiCC hosted on Kaggle, the performance of classifiers
was evaluated using the “Kaggle metric” which is of the weighted multiclass logarithmic-loss
metric in Equation 4.1 with the class weights shown in Table 4.1. One part of the blinded
phase of the PLAsTiCC was identifying new kinds of objects that had no examples in the
training set (the “class 99” objects). In this work, we did not attempt to address this part
of the challenge. Use of the Kaggle metric requires values for the class 99 objects. Hence,
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to evaluate the performance of our classifiers on the Kaggle metric, we generate artificial
predictions for the class 99 objects using formulae that were tuned by probing the metric
during the blinded phase of the PLAsTiCC. For Galactic objects, we assign a flat predicted
probability of 4% to the class 99 objects. For each extragalactic object, we assign a predicted
probability according to the following formula:

P99 = P42 + 0.6 · P62 + 0.2 · P52 + 0.2 · P95 (4.4)

where PX is the predicted probability assigned to the class with ID X (see Table 4.1 for
the list of IDs). We then rescale all of the predicted probabilities so that they sum to 1 for
each object. Note that these formulae are not a proper way of identifying new objects in the
data. All of the top 5 performing teams in the blinded phase of the PLAsTiCC used similar
formulae, and we are not aware of any successful attempts to identify new objects. For our
analyses, we primarily use the flat-weighted metric and redshift-weighted metric, which both
ignore the class 99 objects. We do however evaluate our performance on the Kaggle metric
using these formulae for the class 99 predictions for comparison purposes.

Single class metrics

Finally, we evaluate several standard metrics for the performance of a deterministic clas-
sifier when identifying objects of a single specific type. The confusion matrix and corre-
sponding labels for each of the outcomes of classification of one transient type out of a larger
sample are shown in Table 4.2. Using the labels from this table, we define the following
metrics that will be used in further analysis:

true positive rate (TPR) =
TP

TP + FN
(4.5)

false positive rate (FPR) =
FP

FP + TN
(4.6)

purity =
TP

TP + FP
(4.7)

completeness =
TP

TP + FN
(4.8)

We also calculate the Area under the Receiver Operator Characteristic Curve (AUC) for
each of our classes. This metric is defined as the area under the curve of the TPR plotted
against the FPR, and ranges between 0.5 for a random classifier to 1 for a perfect classifier.
See Lochner et al. (2016) for more complete definitions of all of these metrics.
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Table 4.2: Confusion matrix for classification of a single ob-
ject type (P) out of a larger sample of other object types (N).

True Class
P N

Predicted P True positive (TP) False positive (FP)
Class N False negative (FN) True negative (TN)

4.3 Methods

4.3.1 Overview

Our approach to photometric classification combines several techniques. We first prepro-
cess the light curves as described in section 4.3.2. In Section 4.3.3, we describe how we use
Gaussian process (GP) regression to predict smooth models for each of our sparsely sampled
light curves. Using these GP models, as discussed in Section 4.3.4, we augment the spectro-
scopically-confirmed dataset, generating artificial light curves that are more representative
of the full dataset. In Section 4.3.5, we describe how for each light curve in the augmented
training set, we calculate a set of features from the GP models. We then train a tree-based
classifier on the extracted features to perform the final classification predictions, the details
of which can be found in Section 4.3.6.

4.3.2 Light curve preprocessing

The fluxes of transients are typically determined by subtracting newly measured fluxes
from fluxes measured from a set of reference images. For long-lived transients, these reference
images may contain light from the transients themselves. The blinded PLAsTiCC dataset
did not provide the reference fluxes of the sources, so for objects such as variable stars,
the “background” level of the light curve is simply the flux of the light curve at an arbitrary
point in time. To address this issue, we estimate new “background” levels for each light curve
using a biweight estimator (Beers et al., 1990). For short-lived transients, this background
estimator will return the flux level at times when there is no light from the transient. For
sources such as variable stars or active galactic nuclei, this robust estimator will effectively
return the mean value of the light curve.

4.3.3 Modeling light curves with Gaussian process regression

Gaussian process (GP) regression has been shown to be effective for several applications
of astronomical light curve modeling. Kim et al. (2013) used GPs to model the light curves
of SNe Ia and predict their peak brightnesses. Fakhouri et al. (2015) and Saunders et al.
(2018) modeled the full spectral time-series of SNe Ia with GPs, and used these models to
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evaluate the spectra of these objects at arbitrary times. Lochner et al. (2016) (hereafter:
L16) introduced GP modeling for astronomical transient classification. Revsbech et al. (2018)
(hereafter: RTV18) showed that GP models can be used to augment a biased training set
by generating additional training data from the GPs. These works all focused specifically
on using GPs to model particular kinds of supernovae. We extend these techniques so that
they can be applied to a wider range of transients and variables. An introduction to GP
regression can be found in Section 1.8.

Previous works using GPs for photometric classification (e.g., L16 and RTV18) evaluated
separate GPs for each band of the light curve, so the GP was not able to take cross-band
information into account. However, there are strong correlations in the light curve behavior
between different bands. Surveys such as LSST will not observe each band every night, so
incorporating cross-band information into the model is essential. As shown in Fakhouri et al.
(2015), a GP with a two-dimensional kernel can be used with separate length scales in both
time and in wavelength to naturally incorporate this information. For this analysis, we use
a GP kernel that is the product of Matérn kernels in both wavelength and time:

K2D(t1, t2, λ1, λ2;α, lt, lλ) = α2K3/2(t1, t2; 1, lt)K3/2(λ1, λ2; 1, lλ) (4.9)

This kernel has three hyperparameters: the amplitude (α) and length scales in both time
(lt) and wavelength (lλ).

We do not attempt to explicitly model the throughputs of the different filters. Instead, we
calculate central wavelengths for each of the bands using the estimated LSST throughputs2
assuming a source with a constant Fλ spectrum. We use these central wavelengths as the
coordinates for the wavelength dimension of the GP. This effectively means that the GP is
producing a model of the spectrum convolved with a broad filter rather than modeling the
spectrum directly.

We use the George package (Ambikasaran et al., 2015) to implement our GPs. Using
maximum likelihood estimation, we fit for both the amplitude (α) and time length scale (lt)
parameters on a per-object basis. It is difficult to reliably fit the length scale in wavelength
on a per-object basis due to the fact that there are only 6 filters used for observations.
We choose to fix the length scale in wavelength to 6000Å because we find that this value
produces reasonable models for all of the transients and variables in the PLAsTiCC dataset.
The results of this analysis are not highly sensitive to the choice of the length scale in
wavelength.

Examples of the GP model for a well-sampled SN Ia light curve and a poorly sampled one
are shown in Figure 4.3. The GP produces reasonable non-parametric models of the light
curves that can be used for further analysis, along with estimates of the model uncertainties.
Because we are using a kernel in both wavelength and time, the GP is able to use cross-band
information to infer the supernova light curve even in bands where there are few observations.
This can be seen in the right plot of Figure 4.3 where the GP produces a reasonable model

2https://github.com/lsst/throughputs

https://github.com/lsst/throughputs
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(with high uncertainty) of the light curve in the LSST u band even though there are no
observations in this band.

4.3.4 Augmenting the training dataset

The spectroscopically-classified objects that are used as a training set for photometric
classifiers tend to be highly non-representative of the full dataset in terms of their redshift
and signal-to-noise distributions. These training sets are typically strongly biased towards
bright, low-redshift objects. Most previous attempts at producing photometric classifiers
have seen strongly degraded performance when trained on non-representative datasets, and
have concluded that obtaining representative training sets is essential for photometric clas-
sification (e.g., L16). More recently, RTV18 showed that it is possible to apply various
transformations to the light curves in the original training set to generate a new training
set that is more representative of the test set. We call this process “augmentation” of the
training set. Using their STACCATO framework for augmentation, RTV18 train a classifier
whose performance is significantly better (AUC of 0.96 on the SNPhotCC dataset) than one
trained on the original non-representative training set (AUC of 0.93), and approaching the
performance of a classifier trained on a representative training set (AUC of 0.977).

In STACCATO, GPs are fit to the observations of each object in the training set, with
separate GPs for each band. “Synthetic light curves” are then produced for each object by
sampling from the GPs. Each sample from a GP produces a different continuous function
that can be interpreted as a synthetic light curve that is consistent with the observations of
the original object. By repeatedly sampling from the GPs, many synthetic light curves can
be produced for each object in the training set. In STACCATO, for every object, a “propensity
score” is calculated, which is an estimate of how likely the object is to make it into the
training set. The propensity score is then used to determine how many different synthetic
light curves to make for each object in the training set. By generating different number
of synthetic light curves for each object in the training set, an “augmented” training set
of synthetic light curves is produced that is more representative of the test set. Finally, a
classifier is trained on the set of synthetic light curves.

Our approach to augmentation differs in several ways from the approach of RTV18. In
STACCATO, different synthetic light curves are generated for each object, but these synthetic
light curves all use the same set of observations. Instead, our augmentation procedure
involves simulating entirely new sets of observations for each object. When augmenting a
light curve from the training set, we throw out large blocks of observations to simulate season
boundaries, take originally well-sampled light curves and degrade their sampling, and add
noise to the light curve in different bands. We measure the cadence and depth of observations
in the test set, and generate augmented light curves that have similar cadences and depths
of observations to the test set. This ensures that the light curves in the augmented training
set have observations that are representative of the observations of light curves in the test
set regardless of the light curve quality in the original training set. We also interpret the
GP uncertainty as an uncertainty due to poor measurement rather than intrinsic variation
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Figure 4.3: Examples of GP models for SN Ia light curves. Top panel: A well-sampled,
high signal-to-noise light curve. Bottom panel: a poorly-sampled, lower signal-to-noise light
curve. The mean GP flux prediction for each band is shown as a solid line surrounded by a
shaded contour indicating the one-standard-deviation uncertainty on the flux prediction.
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of the light curve. For this reason, we choose to use the mean prediction of the GP for
our augmented light curves, and we propagate the GP prediction uncertainties into the
uncertainties of the generated observations.

Additionally, we introduce the concept of “redshift augmentation” where we take an
object in the training set and simulate observations of it at different redshifts. Because we
are using a Gaussian process in both time and wavelength, we can shift the redshift of an
object by evaluating the Gaussian process predictions for the light curve of that object at
the redshifted wavelengths. Note that the GP is effectively modeling the spectrum of the
object convolved with a filter. Assuming that this convolved spectrum is reasonably smooth
and that the different filters have similar profiles, the two-dimensional GP predictions will
automatically include k-corrections (Oke & Sandage, 1968) to the observed brightnesses in
each filter. There will be higher-order corrections due to sharp structure in the spectrum
(e.g., emission lines) and differences in the filter shape, but these are unlikely to significantly
affect the classification in most cases. When redshifting the observations of an object, we
then update the observed brightnesses by calculating the difference in distance modulus
assuming a fiducial cosmology. After these procedures, we have effectively simulated the
light curve for an object at a different redshift than it was originally observed at.

With redshift augmentation, if we observe an object at one redshift, then we can effec-
tively use that object for training at all redshifts. Because training samples are typically
biased towards bright, low-redshift objects, this means that we can use redshift augmentation
to fill in the missing regions of parameter space in the training sample at high redshifts. This
differs from the augmentation procedure in STACCATO. While STACCATO is making additional
versions of light curves for objects that were already at high redshifts, we are instead taking
low-redshift light curves and simulating what they would look like if they had been observed
at high redshifts. A potential caveat with redshift augmentation is that the subpopulations
of different object types could evolve with redshift. We discuss how this this can be addressed
in Section 4.5.3.

One major challenge with augmentation is determining where in parameter space to
generate new objects to match the training set to the test set. STACCATO uses a “propensity
score” to decide how many new versions should be generated for each object in the training
set. Unfortunately, for this technique to be effective, the rates and selection efficiencies in
the test set must be known for each object type. The rates of different transients are not
currently well known in many regions of parameter space. For SNe Ia and core-collapse
supernovae, the current best measurements of the rates above redshift 1 have uncertainties
of roughly 50% of the measured rates (e.g., Okumura et al. 2014; Rodney et al. 2014; Strolger
et al. 2015). To address this issue, we instead choose to design a classifier whose performance
is independent of the rates and selection efficiencies in the training set. This can be done
by training a classifier to optimize the metric described in Section 4.2.2; a discussion of the
effectiveness of this procedure will be shown in Section 4.4.2. When training a classifier with
these properties, for the augmentation procedure, we simply need to ensure that we generate
a set of light curves covering the full parameter space for any object type at a given redshift.
We therefore simulate each object in our training set the same number of times at a range
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of different redshifts.
The full details of our augmentation procedure can be found in Section 4.6. A summary

of our approach to augmentation is as follows:

1. Fit a GP to a light curve in the original training sample to use as a template.

2. Choose a new redshift for extragalactic objects, or brightness for Galactic objects.

3. Evaluate the mean GP prediction and uncertainty to obtain a new light curve at the
chosen brightness/redshift.

4. Drop observations to simulate poorly-sampled light curves from the well-sampled train-
ing light curves.

5. Add measurement uncertainties that are representative of the test dataset.

6. Ensure that the generated light curve would be detected.

7. Simulate a photometric redshift following the mapping between spectroscopic and pho-
tometric redshifts in the test dataset.

8. Repeat these steps until a large enough augmented sample has been obtained.

For this analysis, we use the same augmented training set to train all of the different
classifiers that will be discussed. We generate up to 100 different versions of each light curve
in the training set, which results in a total of 591,410 light curves in the augmented training
set.

4.3.5 Extracting features from the light curves

To extract features from a light curve, we begin by performing a GP fit as described in
Section 4.3.3 and computing the mean GP flux predictions in the LSST g, i, and y bands.
We choose to use the observer-frame LSST i band as the reference for many of our features
because this band typically has a reasonable flux level for both the low and high-redshift
objects in our sample. We extract a variety of features from the GP flux predictions in each
of these three bands, the details of which can be found in Table 4.3.

Table 4.3: Overview of features used for classification. Unless
specified otherwise, all features are calculated using the mean
flux predictions of a GP fit to the light curve.

Feature name Description

host_photoz Host-galaxy photometric redshift, taken directly from the
PLAsTiCC metadata.
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Table 4.3 continued

Feature name Description

host_photoz_err Host-galaxy photometric redshift error, taken directly from
the PLAsTiCC metadata.

length_scale Fitted GP length scale hyperparameter, in days.

max_mag Peak magnitude of the GP flux prediction in the LSST i band.

pos_flux_ratio Ratio of the maximum positive flux to the maximum-minus-
minimum flux in the LSST i band.

[max,min]_flux_ratio
_[blue,red]

Normalized difference of the light curve colors at maxi-
mum/minimum light. The blue measurement is the difference
between the LSST i and g bands, and the red measurement
is the difference between the LSST y and i bands. The nor-
malized difference is calculated by taking the difference of the
fluxes in the two bands divided by their sum.

max_dt Difference of the time of maximum in the LSST y and g bands
in days.

[positive,negative]
_width

An estimate of the light curve “width” that is applicable even
for non-supernova-like transients and variables. This is imple-
mented as the integral of the positive/negative parts of the
GP flux predictions divided by the positive/negative maxi-
mum fluxes.

time_[fwd,bwd]_max
_[0.2,0.5]

Measurements of the rise and decline times of a light curve.
This measurement is defined as the time in days for the light
curve to rise (bwd) or decline (fwd) to a given fraction (either
20% or 50%) of maximum light in the LSST i band.

time_[fwd,bwd]_max
_[0.2,0.5]_ratio
_[blue,red]

Ratio of the rise/decline times calculated as described above
in different bands. The blue measurement is the difference
between the LSST i and g bands, and the red measurement
is the difference between the LSST y and i bands.

frac_s2n_[5,-5] Fraction of observations that have a signal greater than 5/less
than -5 times the noise level.

frac_background Fraction of observations that have an absolute signal-to-noise
less than 3.

time_width_s2n_5 Time difference in days between the first observation with a
signal-to-noise greater than 5 and the last such observation
(in any band).
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Table 4.3 continued

Feature name Description

count_max_center Number of observations in any band within 5 days of maxi-
mum light.

count_max_rise
_[20,50,100]

Number of observations in any band between 20, 50, or 100
days before maximum light and 5 days after maximum light.

count_max_fall
_[20,50,100]

Number of observations in any band between 5 days before
maximum light and 20, 50, or 100 days after maximum light.

peak_frac_2 Ratio of the maximum flux in the second most prominent
peak in the light curve to the maximum flux in the main peak,
averaged over all LSST bands. This is intended to identify
supernova-like objects that only have a single large peak in
most bands.

total_s2n Total signal-to-noise of all observations of the object.

percentile_diff
_[10,30,70,90]_50

Measurements of the distributions of the observed fluxes. For
each band, we calculate the flux level for a given percentile
of observations, and normalize it by the maximum-minus-
minimum of the GP flux predictions. We then take differences
between this measurement for various percentiles and the 50th

percentile measurement. The final value is the median of the
calculated differences in all bands.

In general, we find that in the PLAsTiCC dataset, the non-supernova-like variables and
transients end up being relatively easy to distinguish, so most our our effort went to iden-
tifying features that are effective for distinguishing the different kinds of supernovae. We
initially generated hundreds of different features, and we used both the feature importance
ranking of our classifier and cross-validation performance (discussed in Section 4.3.6) to select
a subset of 41 features that give good performance. Most of the features that we include are
standard features that are well-known to distinguish transients, such as the apparent peak
brightness of the transient and the photometric redshift. We include measures of the colors
of the objects by taking ratios of the peak brightnesses in different bands, and estimates of
the rise time and fall times that help distinguish between the different supernova types.

One major difference between this analysis and most previous ones is that our light
curve model includes cross-band information. The GP flux predictions in a given band
incorporate information from nearby bands because of the GP kernel in the wavelength
direction. We only calculate features from the GP predictions in the LSST-g, i, and y
bands, but these features capture the observations in all of the different bands. This can be
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seen for the poorly-sampled light curve in Figure 4.3 where we have reasonable models of
the light curve even in bands with no observations. We find that calculating features off of
GP flux predictions in additional bands beyond the three previously listed does not improve
the classification for the PLAsTiCC sample. This kind of analysis is only possible with a
light curve model that fits both wavelength and time directions simultaneously as opposed to
traditional models where each band is fit independently. Although we chose to perform the
GP flux predictions at the wavelengths associated with several LSST bands for simplicity,
the GP flux predictions can be performed at arbitrary wavelengths, and observations from
different bands or other telescopes can easily be included in the GP model.

There are a handful of notable features that we introduced that have not been included
in previous analyses. First, we add several features that are effective at classifying variable
object types, most notably the percentile_diff_X_Y features that measure the distribution
of the photometry values. These features are effective at distinguishing object types with
large wings in their photometry distributions (e.g., eclipsing binaries) from object types that
have more even distributions (e.g., Mira variables), even with relatively few observations.

Another novel technique in this work is the introduction of features that measure the
fit quality. In many cases, the available photometry for an object does not cover its full
light curve. An example of such a light curve for a Type Ia supernova can be seen in
Figure 4.4. Without any photometry before maximum light, the GP produces a model with
large uncertainties, and the measurement of the rise time will be both uncertain and biased.
We experimented with several approaches to incorporating this information into the classifier,
and found that measuring the number of observations in various bands around maximum
light provides an excellent way to evaluate the accuracy of the rise time measurements. The
right panel of Figure 4.4 illustrates this for SNe Ia: light curves that have an observation
between 20 observer-frame days before maximum light and 5 days after maximum light
have a tight distribution of measured rise times, while light curves without this information
have a wide, biased distribution of rise times. By adding features measuring the number
of observations in various time intervals, the classifier can effectively determine how reliable
other features, such as the rise time information, are.

4.3.6 Training a LightGBM model

We train a gradient boosted decision tree classifier on features extracted from the aug-
mented training set. Decision trees are a classification technique where objects are filtered
through a variety of cuts to attempt to separate them into their different classes. Boosted
decision trees combine a large number of these trees to produce a robust classifier, and have
proven to be very effective at a variety of different classification tasks in astronomy (e.g: Bai-
ley et al. (2007), L16). Using the LightGBM implementation of gradient boosted decision
trees (Ke et al., 2017), we train separate classifiers to optimize objective functions that are
direct implementations of the metrics in Equations 4.1 and 4.3.

To evaluate and optimize the performance of the classifier, we use five-fold cross-validation
on the augmented training set. We partition the augmented training data into five separate
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Figure 4.4: Example of a feature that probes the fit quality. Top panel: Example of the
GP model for a SN Ia light curve with no data before maximum light. See Figure 4.3 for
details of the plot. The GP is unable to constrain the rise time, and produces a model
with large uncertainties. Bottom panel: Histogram of the measured rise times for SNe Ia.
The rise time is well-constrained (blue histogram) for objects with an observation between
20 observer-frame days before maximum light and 5 days after maximum light. Objects
without such an observation (orange histogram) have rise time measurements that are biased
to higher values with large dispersions.
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Table 4.4: Optimized hyperparameter values used for the LightGBM model.

Hyperparameter name Value
boosting_type gbdt
learning_rate multi_logloss
colsample_bytree 0.05
reg_alpha 0
reg_lambda 0
min_split_gain 10
min_child_weight 2000
max_depth 7
num_leaves 50
early_stopping_rounds 50

subsets that each have equal ratios of the different targets. We then train five separate
classifiers, each of which is trained on four of the five subsets, and we evaluate its performance
on the remaining subset. By repeating this procedure for each of the subsets, we obtain
out-of-sample predictions for every object in the augmented training set. We then evaluate
the PLAsTiCC metric on these predictions, and use this cross-validation performance to
tune our model. For the augmented dataset, we ensure that all light curves generated from
the same original light curve are included in the same subset to avoid leaking information
across the subset boundaries. When generating predictions for objects that are in the test
set, we evaluate the average of the classification probabilities for the new objects from each
of the five trained classifiers.

We optimize the hyperparameter values of the LightGBM model by scanning over each
hyperparameter individually and then evaluating the cross-validation performance on the
flat-weighted metric. The resulting hyperparameter values are shown in Table 4.4. The
optimal hyperparameter values are relatively stable across different sets of features and
target metrics, so for simplicity we use the same hyperparameter values for all of the analysis
variants.

We train two separate versions of our classifier, one of which is optimized for performance
on the flat-weighted metric defined in Equation 4.2, and one of which is optimized for perfor-
mance on the redshift-weighted metric defined in Equation 4.3. Both of these classifiers are
trained on the same augmented training set. For the training set, the Kaggle metric is nearly
identical to the flat-weighted metric, so we do not train a separate classifier to optimize it.

LightGBM outputs a measure of how much each feature contributed to the classification.
We call this measure the “importance” of that feature for classification. The importance
of each feature for a classifier trained to optimize the flat-weighted metric are shown in
Figure 4.5. The most important features for classification are the photometric redshift of
the host galaxy, the peak brightness, and the colors of the light curves at maximum light.
The feature importance plot for a classifier trained to optimize the redshift-weighted metric
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looks nearly identical.

4.4 Results

4.4.1 Overall performance

The results of both of our classifiers for many of the metrics defined in 4.2.2 are shown
in Table 4.5. In general, we find that both classifiers have similar performance across all
of these global metrics. In the blinded phase of the PLAsTiCC, an earlier version of our
algorithm won the challenge with a score of 0.680 on the Kaggle metric (lower is better).
The updated algorithm presented in this chapter achieves a slightly better score of 0.649 on
this metric. This improvement mainly came from restricting the allowable redshift range for
the data augmentation procedure and propagating uncertainties. Our original augmentation
algorithm was allowed to modify the redshifts of objects arbitrarily. At high redshifts, unre-
liable extrapolations of the GP models far into the restframe UV were being used to produce
the light curves. Additionally, we were not propagating the GP modeling uncertainties into
the generated fluxes. These issues were fixed for the version of the algorithm described in
this chapter which dramatically improved performance at high redshifts.

Figure 4.6 shows a confusion matrix for the flat-weighted classifier which can be used
to evaluate its performance on specific classes. For most classes, the top prediction of this
classifier is correct with an accuracy over over 80%. The main challenge for the classifier is
distinguishing between the different types of supernovae. For example, Type Iax supernovae
are misclassified as Type Ia supernovae 27% of the time, and Type Ibc supernovae are mis-
classified as Type Ia-91bg supernovae 17% of the time. This misclassification is often highly
asymmetrical: only 3% of Type Ia supernovae are misclassified as Type Iax supernovae.
This is likely due to the fact that the training set of Type Iax supernovae (183 objects) is
small compared to the sample of Type Ia supernovae (2,313 objects), and there is additional
diversity in the test set that is not seen in this small training set of Type Iax supernovae.
Methods to address these differences will be discussed in Section 4.5.2. The redshift-weighted
classifier has a confusion matrix that is nearly identical to the one for the flat-weighted clas-
sifier. Note that the confusion matrix only considers the top prediction for each object while
our classifier outputs a probability for each object type, meaning that there is additional
information available for further analyses that is not captured by the confusion matrix.

4.4.2 Redshift-dependent performance

Despite the similarity in performance between the flat-weighted classifier and the red-
shift-weighted classifier on most global metrics, they exhibit very different performance as a
function of redshift. For a fixed overall sample purity of 95%, we calculate the completeness
of the SN Ia sample as a function of redshift. The results of this procedure can be seen in
Figure 4.7.
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Figure 4.5: Relative importance of each feature for classification for a classifier trained to
optimize the flat-weighted metric. Definitions of these features can be found in Table 4.3.
Five separate classifiers were trained on different folds of the training set. The blue bars
represent the mean importance of each feature across the five classifiers. The thin black bars
indicate the range of importance across the five classifiers.
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Figure 4.6: Confusion matrix for the flat-weighted classifier. We assign each object a “pre-
dicted class” based on whichever class has the highest prediction probability for that object.
We then calculate the fraction of objects for each true class that end up being predicted to
be a given class. These fractions are shown in the figure for each pairing of true class and
predicted class. A perfect classifier would have all ones for the diagonal terms, where the
predicted class is the true class, and all zeros for the off-diagonal terms.
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Figure 4.7: Completeness of the sample of SNe Ia in the test set as a function of redshift for
a fixed overall sample purity of 95%. Top panel: Results for objects observed in the WFD
survey. Bottom panel: Results for objects observed in the DDF survey. The Flat-weighted
classifier produces classifications that encode the redshift distributions of different object
types in the training set, and shows undesirable performance as a function of redshift. The
redshift-weighted classifier produces classifications that are relatively stable with redshift.



CHAPTER 4. PHOTOMETRIC CLASSIFICATION OF TRANSIENTS 135

Table 4.5: Classifier performance on various metrics. For the flat-weighted, redshift-weighted
and Kaggle metrics, lower numbers are better. An optimal classifier will have an AUC of 1,
and higher AUCs are better.

Metric name Flat-weighted Redshift-weighted
classifier classifier

Flat-weighted metric 0.468 0.510
Redshift-weighted metric 0.523 0.500
Kaggle metric 0.649 0.709
AUC – 90: Type Ia SN 0.95721 0.95204
AUC – 67: Peculiar Type Ia SN – 91bg-like 0.96672 0.96015
AUC – 52: Peculiar Type Ia SN – SNIax 0.85988 0.84203
AUC – 42: Type II SN 0.93570 0.90826
AUC – 62: Type Ibc SN 0.92851 0.91558
AUC – 95: Superluminous SN (Magnetar model) 0.99442 0.99257
AUC – 15: Tidal disruption event 0.99254 0.99243
AUC – 64: Kilonova 0.99815 0.99579
AUC – 88: Active galactic nuclei 0.99772 0.99706
AUC – 92: RR Lyrae 0.99987 0.99986
AUC – 65: M-dwarf stellar flare 0.99999 0.99999
AUC – 16: Eclipsing binary stars 0.99983 0.99983
AUC – 53: Mira variables 0.99947 0.99937
AUC – 6: Microlens from single lens 0.99962 0.99966

We find that the performance of the flat-weighted classifier has undesirable behavior as a
function of redshift. For objects observed in the WFD survey, we find that this classifier has
its peak completeness at redshift 0.8 where it correctly classifies 80% of the SNe Ia. At nearby
redshifts, its completeness drops to below 40%. The reason for this strange performance can
be seen in Figure 4.2. Around redshift 0.8, nearly 70% of the observed objects are Type Ia
supernovae, so the flat-weighted classifier is using information about the redshift distributions
of the different transients at different redshifts as part of its classification. Only 0.6% of the
SNe Ia in the sample are at a redshift less than 0.1, so the flat-weighted classifier infers
that any object at those redshifts is likely not to be a SN Ia, and therefore has a very poor
completeness for low-redshift SNe Ia. We see similar effects for the DDF survey.

Any classifier trained to optimize traditional metrics on a biased training sample will run
into these issues if it is allowed to incorporate redshift information into its predictions. Fur-
thermore, the classifier is learning to use the redshift distributions of objects in the training
set, not the redshift distributions of ones in the test set. As described in Section 4.3.4, we
expect there to be large discrepancies in the redshift distributions of these two sets, even
for augmented training sets. A classifier trained on the redshift-weighted metric provides
a solution to this problem by outputing a probability for each object type assuming that
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each class has the same arbitrarily chosen redshift distribution in the training set. The per-
formance of such a classifier will not depend on the redshift distributions of the different
kinds of objects in the training set. This can be seen in Figure 4.7: for the WFD survey,
the redshift-weighted classifier shows a stable completeness of ∼70% at low redshifts, and
its completeness declines nearly monotonically at higher redshifts as the signal-to-noise de-
creases. The redshift-weighted classifier is able to classify objects in the DDF survey with
a completeness of above 80% at most redshifts, maintaining this performance for even the
highest-redshift SNe Ia in the test sample at z = 1.55.

To validate the claim that the classifications produced by a classifier trained on the red-
shift-weighted metric are independent of the redshift distributions of objects in the training
set, we simulated modifying the redshift distribution of the SNe Ia in the training set. Start-
ing with the same augmented training set used to train the original classifiers, we create
a low-redshift-biased training set by randomly dropping light curves of SNe Ia from the
training set with probability p(z) = exp(−z). Similarly, we create a high-redshift-biased
training set by randomly dropping light curves of SNe Ia from the training set with prob-
ability p(z) = min(exp(z) − 1, 1). We keep all light curves from the transients that are
not SNe Ia so that only the redshift distribution of SNe Ia is changing between the origi-
nal augmented training set and the biased training sets. We then retrain our flat-weighted
and redshift-weighted classifiers on these new training sets. The results of this procedure
can be seen in Figure 4.8. For the flat-weighted classifier, the classifier performance varies
dramatically for these different training sets. At low and high redshifts, the difference in
completeness between the different classifiers varies by more than a factor of two. For the
redshift-weighted classifier, however, the different classifiers have nearly identical complete-
nesses as a function of redshift. Only small deviations from the original performance are seen
at the very edges of the redshift range where we have thrown out almost all of the SNe Ia in
the biased training sets.

4.4.3 Comparison to other models

A full comparison of our classifier to all of the other classifiers submitted to the blinded
phase of the PLAsTiCC will be presented in Hložek et al. (2019, in prep.). Those classifiers
used a wide range of techniques that were not explored in this analysis, including template
fitting, recurrent neural networks and denoising autoencoders. However, all of those models
were trained to optimize the Kaggle metric, and we find that they exhibit the same problem-
atic performance with redshift as discussed for our flat-weighted classifier in Section 4.4.2.
The classifiers presented in this chapter are currently the best-performing models on the
PLAsTiCC dataset, scoring 0.468 on the flat-weighted metric compared to 0.481 for the
next-best model submitted to the blinded phase of the PLAsTiCC challenge. On the red-
shift-weighted metric, our redshift-weighted classifier scores 0.500, significantly better than
the next-best model which scores 0.609. Our classifier can therefore serve as a benchmark
for future photometric classifiers.
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Figure 4.8: Completeness of the sample of SNe Ia in the WFD sample of the test set as a
function of redshift for a fixed overall sample purity of 95% when different biases have been
introduced in the training set. Top panel: Results for classifiers trained on the flat-weighted
metric. Bottom panel: Results for classifiers trained on the redshift-weighted metric. The
flat-weighted classifier is highly sensitive to the redshift distribution of objects in the training
set while the redshift-weighted classifier shows very little difference in performance.
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4.5 Discussion

4.5.1 Computing resources

The main limitation on computing speed for this model is the GP regression. We perform
our computation on an Intel Xeon E3-1270 v3 CPU. A single core on this machine can fit
the GP hyperparameters and extract features for ∼10 objects per second. Training the
LightGBM classifier takes ∼30 minutes for an augmented training set of 591,410 objects
after the features have been computed. Generating predictions with the trained classifier
takes a negligible amount of time compared to feature extraction (∼1000 objects per second).
Processing the entire PLAsTiCC dataset therefore takes ∼100 core hours of computing time.

Predictions from this classifier can easily be done in real time. A machine with 100 CPU
cores similar to the one used for our testing could process ∼1000 objects per second and
provide live typing estimates for all of the transients and variables discovered in a survey.
As new spectroscopic confirmations of objects are obtained, the classifier could periodically
be retrained to incorporate that new data into its training set. The GP fits and feature
extractions do not need to be redone for older data so long as the feature extraction algorithm
is unchanged, so retraining the classifier on new data can be done in under an hour in most
cases.

4.5.2 Representativeness of the augmented training set

Ideally, our data augmentation procedure would produce an augmented training set that
is fully representative of the test set. In practice, however, there are several reasons why an
augmented training set may differ from the test set. First, the training set must cover the full
intrinsic diversity of objects of the test set. Note that the augmentation procedure does not
attempt to simulate new objects, it simply produces light curves for previously-measured
objects under different observing conditions and at different redshifts. If there are rare
subtypes of objects that only appear in the test set (e.g., peculiar supernovae), and that
have very different light curves from the objects in the training set, then the augmentation
procedure will not be able to produce light curves that are similar to the ones observed
for these objects. This issue can be addressed by using active learning when obtaining the
training set used for classification, as described in Ishida et al. (2019). In this procedure, the
output of the classifier is used to determine which objects should be targeted for spectroscopic
followup. This helps to ensure that the original training set contains examples of all of the
different object types that are present in the full dataset.

The second major challenge for representativeness is in handling the different redshift dis-
tributions for object types between the training and test sets. As discussed in Section 4.3.4,
the rates of different transients are not currently known well enough as a function of redshift
to produce an augmented dataset that is truly representative of the test dataset. Instead,
by training a classifier on a redshift-weighted metric, we obtain a classifier whose output
is independent of the redshift distributions of the classes in the training sample, as shown
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in Section 4.4.2. Such a classifier effectively produces classification probabilities assuming
the same arbitrarily chosen redshift distribution for every class. In our implementation,
we are using a log-uniform distribution in redshift for our classification, and this assumed
distribution can easily be propagated to further analyses. Analyses that depend on photo-
metric classification, such as cosmology with SNe Ia, are already typically required to fit
for or model the rates and selection efficiencies of different transient types as a function of
redshift to achieve their science goals. A redshift-weighted classifier produces output classi-
fication probabilities that depend on known redshift distributions, and the biased redshift
distributions in the original training set will have no effect on the classification probabilities.

Our redshift-dependent classifier specifically addressed the issue of having different red-
shift distributions between the training and test sets. A similar procedure could be applied
to other observables of the transients, including but not limited to their peak brightnesses,
host properties, or rise and fall times. Assuming that these properties can be measured
accurately enough in the training set, we can simply reweight objects in the training set to
force the classifier to assume the same arbitrarily chosen distribution over this observable
for each object type. This effectively means that the classifier cannot learn anything from
the distribution of this observable, or any indirect measurements of the distribution of this
observable to classify objects. The observable only needs to be available for the training set,
and does not necessarily need to be a feature that is used for classification. For example, our
redshift-weighted classifier is reweighted using the spectroscopic host redshifts of the objects
in our training sample, but spectroscopic host redshifts are not available for most objects
in the full dataset. Nevertheless, the classifier outputs probabilities that are independent of
the distributions of spectroscopic host redshifts for different object types in the full dataset.

4.5.3 Handling drifting subpopulations with redshift

One potential issue with any kind of photometric classification, including redshift aug-
mentation, is drift in the subpopulations of different types of transients as a function of
redshift. For example, the properties of SNe Ia are correlated with the properties of their
host galaxies such as host mass (Kelly et al., 2010). As galaxy properties evolve with red-
shift, the distributions of different subpopulations of SNe Ia also evolve with redshift (Rigault
et al., 2013). If the spectroscopically-confirmed training set is biased to low redshifts, then
a redshift-augmented training sample will have a different subpopulation distribution than
the true one at high redshifts leading to a bias in the classification probabilities. This is
a challenge for any photometric classification method, not just ones that use redshift aug-
mentation, because the high-redshift followup strategy itself could be biased towards some
subpopulation.

If the subpopulations of an object type can be identified in the training set using some
observable, then we can reweight the training set as described previously to produce a clas-
sification assuming an arbitrarily chosen distribution over this observable, with the same
assumed distribution for all object types in the sample. For instance, a dedicated campaign
to measure the host masses of every galaxy in the training set could be used to produce a



CHAPTER 4. PHOTOMETRIC CLASSIFICATION OF TRANSIENTS 140

photometric classifier that classifies SNe Ia without taking the host mass distributions, or
any indirect measurements of the host mass distributions, into account. This classifier will
therefore produce classification probabilities that are independent of the change in subpop-
ulations as a function of redshift associated with host mass. Note that this procedure could
introduce biases if the observable is not available for all objects in the training sample, e.g.,
if it were not possible to reliably determine the host masses for higher redshift objects in the
training sample.

A final concern about changing subpopulations would be if new subpopulations appear
at high redshifts that are not present at low redshifts. While the survey is running, active
learning, as described in Ishida et al. (2019) can be used to attempt to identify these sub-
populations and trigger spectroscopic followup to add them to the training set. If, however,
these new subpopulations are missed entirely in the training set, then the classifier is unlikely
to be able to accurately classify objects from them.

Specific science applications may be more or less sensitive to the evolution of subpopu-
lations with redshift. For cosmology with SNe Ia, for example, if a new subtype of SN Ia
appeared at high redshift that wasn’t identified at low redshift, then it could significantly
bias the cosmological analysis. This is an issue regardless of the analysis strategy: at high
redshifts, a “representative sample” will likely only be able to spectroscopically type a small
number of objects, potentially missing new subpopulations. A lower-redshift followup strat-
egy that intends to use redshift-augmentation may be able to obtain a larger and more
complete sample at the lower redshift, but it relies on the assumption that we can produce a
reasonable model of the differences between the low and high-redshift samples. In practice,
there is a trade-off between all of these concerns, and a variety of different followup strategies
should be simulated to determine the optimal strategy for the science objectives.

4.5.4 Implications for future surveys

The results of this analysis have several implications for future surveys. For surveys
with limited spectroscopic resources devoted to obtaining training samples for photometric
classification, previous work (e.g., L16) has suggested that these surveys should attempt to
produce a training set of objects with spectroscopically-confirmed types that is as represen-
tative of the full dataset as possible. With our augmentation technique, we instead suggest
that spectroscopic resources may better be used to obtain spectroscopic classifications of as
many intermediate-redshift well-sampled light curves as possible. We can then use these
well-sampled light curves to simulate high-redshift light curves rather than having to spend
large amounts of spectroscopic followup to type high-redshift objects directly.

With augmentation, a light curve is most valuable if it has good-quality observations
with a high cadence. While the labels for all of the objects in the test set that the classifier
will be applied to are not known, we do know the cadence, observation depths, whether or
not the light curve was impacted by season boundaries, etc. of every object in the test set.
A well sampled light curve can always be degraded to simulate all of these effects, as shown
in our augmentation procedure. One potential limitation of redshift augmentation is that



CHAPTER 4. PHOTOMETRIC CLASSIFICATION OF TRANSIENTS 141

the redshift range to which a light curve model can be shifted is limited by the wavelength
coverage of its input observations. As discussed in Section 4.6, we find that we must limit the
change in wavelength to less than 50% to avoid having large GP extrapolation uncertainties
for the bluer bands. This can be somewhat addressed by adding additional followup in bluer
bands, even including observations from other telescopes, but it effectively means that there
is a maximum change in redshift that can be applied in the augmentation procedure. For
this reason, intermediate-redshift light curves that can be augmented to high redshifts are
more valuable to have in the training set than very low-redshift light curves.

This suggests that an alternative strategy can be used to generate training sets for pho-
tometric classification. At the start of a large survey such as LSST, a small, coordinated
campaign can be undertaken to obtain very deep, high-cadence observations in a limited
region of the sky. Coincident spectroscopic campaigns can obtain redshifts for many of the
transients discovered in this small survey. These light curves can then be used as templates
for the augmentation procedure to produce light curves at any redshift, and the well-ob-
served light curves can easily be degraded to match the lower signal-to-noise and cadence
light curves from other parts of the survey. At this point, the classifier should be able to
accurately classify the majority of “normal” objects in the test sample.

For unusual objects that are not present in this first training set, we can attempt to use
active learning following a procedure similar to Ishida et al. (2019) to identify these objects
and launch additional followup campaigns to obtain good quality observations for them. We
can also develop additional spectroscopic followup strategies tailored to the goals of specific
scientific programs where the presence of unusual objects would impact the scientific results,
such as searching for new subtypes of SNe Ia at high redshifts that could bias cosmological
measurements.

Finally, spectroscopic observations will be obtained for purposes other than simply build-
ing training sets for photometric classification or checking for new subpopulations of SNe Ia
at high redshifts. For example, there may be spectroscopic campaigns dedicated to specific
subtypes or rare subpopulations of other object types. The teams obtaining these obser-
vations may have differing goals and selection requirements. It is essential to coordinate
spectroscopic efforts with other teams to best utilize the available spectroscopic resources.

4.5.5 Improvements to the classifier

There are several improvements that could be made to our classifier. First, for this
analysis, we restricted ourselves to a single GP kernel that was required to fit all the different
kinds of transients. Different kernels could perform better for different transients, so a natural
extension is to investigate the use of different kernels for the GP. As shown in RTV18, a
Gibbs kernel provides better fits to supernova-like light curves than the Matérn kernel used
for this analysis. Periodic light curves, such as different types of variable stars, could be
fit with periodic kernels (Rasmussen & Williams, 2006) to take advantage of the known
periodicity. In general, each light curve could be fit with GPs with multiple different kernels,
and different features could be computed from each of these fits, at the cost of increased
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computing time per object. The features from all of these different fits could be used as
input for a single LightGBM classifier. Additional features computed with other means,
such as features from a Lomb-Scargle periodogram (VanderPlas, 2018) which have shown to
be very useful for classification of periodic light curves, could also easily be added to the
classifier, again, at the expense of additional computation time.

An additional approach for further work is to combine the results of multiple independent
classifiers. As described in Hložek et al. (2019, in prep.), combining the results of the
top classifiers submitted to the blinded phase of the PLAsTiCC resulted in much better
performance than any single classifier. These additional classifiers could also be trained on
the augmented dataset to improve their performance.

4.5.6 Conclusions

We have developed a new framework for photometric classification of transients and
variables from surveys such as LSST. Our classifier is designed to be trained on datasets of
spectroscopically-confirmed transients and variables and is able to handle training sets that
are biased towards bright low-redshift objects. Using GP regression, we augment the set of
light curves used for training to generate light curves over a wider range of redshifts and
observing conditions than present in the original training set. This procedure is designed so
that no specific model or parametrization of the light curve is required: it can be performed
even on poorly sampled light curves or ones with large gaps of observations in time.

Our classifier achieves the best performance on the PLAsTiCC dataset of any single
algorithm to date, scoring 0.468 on the metric defined by the PLAsTiCC team with flat
weights for all objects in the training set. It achieves an AUC of 0.957 for classification of
SNe Ia compared to 0.934 for the next best single classifier submitted to the blinded phase
of the PLAsTiCC challenge. Our classifier sets a benchmark for the performance of future
photometric classifiers on the PLAsTiCC dataset and for the LSST. Additionally, we have
shown how a metric can be designed to produce classifiers whose output probabilities are
independent of the redshift distributions of the different kinds of transients in the training
sample. This leads to a better understanding of the output probabilities of the classifier,
which is essential for analyses such as the determination of cosmological parameters using
photometrically classified SNe Ia.

All of the results in this chapter can be reproduced with the avocado classification pack-
age. A Jupyter notebook is provided as part of that package which was used to produce all
of the figures shown in this chapter.

4.6 Appendix: Implementation of the training set
augmentation

An overview of the augmentation procedure can be found in Section 4.3.4. In this section,
we provide the details necessary to reproduce our procedure. In general, we attempt to use

https://www.github.com/kboone/avocado
https://www.github.com/kboone/avocado
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as few tuned parameters as possible and to use the available information in the full dataset
whenever possible. For each object in the training sample, we generate up to 100 new versions
of that object under different observing conditions and at different redshifts.

For each new augmented extragalactic object, we first choose a new redshift for that ob-
ject. We limit the new redshift so that 0.95 zoriginal < znew < 5 zoriginal. A hard lower bound
is used here to avoid making faint objects much brighter and having their new simulated
observations be dominated by large modeling uncertainties. As our training set is biased
toward bright, low-redshift objects, this does not limit the performance of the classifier at
low redshifts. A loose upper bound is used to prevent the augmentation procedure from
repeatedly trying to generate objects that are very faint and not able to be detected by the
instrument. We impose an additional upper bound on the redshift of 1+znew < 1.5 (1+zold).
If the wavelength range is shifted too far, the GP is required to extrapolate far from where
there is available data, and modeling uncertainties dominate its prediction. For this reason,
we limit the possible shift in wavelength to 50% which results in the previous inequality. We
choose a new redshift with a log-uniform distribution between the lower and upper redshift
bounds described previously. For augmented Galactic objects, we simply modify the bright-
ness of the object by adding an offset in magnitudes drawn from a Gaussian distribution
with a mean of 0 and a standard deviation of 0.5 mag.

Once a new redshift or brightness has been chosen, we choose to simulate it either as
part of the WFD survey or the DDF survey. Light curves in the DDF survey are much
better sampled than light curves in the WFD survey, so for WFD template light curves we
only generate WFD light curves. For DDF template light curves, we randomly choose to
generate either a WFD or a DDF light curve. We choose a target number of observations
for the new light curve using a distribution that roughly matches the distribution of the
PLAsTiCC test dataset. For the DDF survey, we choose a target number of observations
following a Gaussian distribution with a mean of 330 and a standard deviation of 30. For the
WFD survey, we find that the number of observations of each light curve can be described
reasonably well with a three component Gaussian mixture model, with probabilities for each
component of [0.05, 0.4, 0.55], means of [95, 115, 138] observations and standard deviations
of [20, 8, 8] observations. These numbers were all determined empirically by tuning our
model to match the observed distribution in the test set.

We then choose the observation times and bands of these new observations. Our goal for
this procedure is to generate light curves under a wide range of different observing conditions.
To account for a change in redshift, we stretch the light curve in time to account for the time
dilation due to the redshift difference. When shifting an object to higher redshifts, we fill
in the light curve to account for the fact that there is a lower density of observations after
applying the time dilation compared to at lower redshifts. This is done by adding additional
observations to the new light curve at the same times as existing observations in the template
light curve in randomly selected bands. We do not attempt to sample observations at new
times because we find that when doing so the uncertainty in the GP flux predictions leads
to unrealistic light curves with large uncertainties. For example, for the light curve shown
in Figure 4.4, the GP flux predictions for the rise of the light curve are highly unrealistic
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and have large uncertainties. Our method ensures that new light curves generated using this
light curve as a template will only include fall-time data where the GP flux predictions are
accurate.

We shift the dates of the light curve by up to 50 days either forward or backward.
This shifting does not affect our classifier, but will affect classifiers that use absolute date
information. To create light curves that are cut off by season boundaries, we randomly drop a
block of observations with a width of 250 days. Following this, we randomly drop observations
so that we have no more than the target number of observations chosen previously, and we
drop at least 10% of observations to ensure that we are introducing some variation in the
augmented light curves.

After these procedures, we have chosen a set of observation times and bands for the
new light curve. We compute the mean GP flux prediction at those times and at a set of
wavelengths corresponding to the bands shifted by the new redshift. We choose to use the
mean GP flux predictions rather than drawing flux predictions from the GP because our goal
is not to produce all light curves consistent with our data, but instead to provide a reliable
interpolation or extrapolation of the template observations. We include the uncertainty of
the GP flux predictions in the uncertainties for each new observation.

Using the previously assigned new redshift, we adjust the brightness of the new light
curve. This is done assuming a fiducial flat ΛCDM cosmology with H0 = 70 km/s/Mpc
and Ωm = 0.3. We find that the classification results are not sensitive to the choice of
fiducial cosmology. We then add simulated observation noise to each of the light curves.
To determine the appropriate noise levels for each of the WFD and DDF surveys, we fit
lognormal distributions to a random subset of the observations in the test set and draw from
those distributions for our new simulated observations. We add this noise in quadrature with
the uncertainties from the GP flux predictions.

We naively estimate a photometric redshift for each of our new objects. For each new ob-
ject, we draw one reference object from the full PLAsTiCC dataset that has a spectroscopic
redshift for its host. We then calculate the difference between its photometric and spectro-
scopic redshifts, and we add this difference to the spectroscopic redshift of the new object
to estimate its photometric redshift. This procedure is not a proper model of photometric
redshifts, but it does ensure that the augmented training set contains any issues present for
the photometric redshifts in the full dataset. Incorporating a proper photometric redshift
model into the augmenting procedure would improve performance.

Finally, we apply a selection model to the augmented light curve. The original PLAsTiCC
observations have a detection flag that is set in a non-deterministic way. We fit an error
function to the observations from the full dataset to predict the probability of detection as
a function of signal-to-noise, and use this to predict the probability that an observation is
flagged as detected. As was done for the original dataset, we then only keep objects that
have at least two detections in their light curves. If the object is rejected, then we repeatedly
attempt to generate a new light curve from the same template at the same redshift until the
generated object passes the selection criteria. If more than ten attempts at generating a new
light curve fail to pass the selection criteria, the template is skipped and we move on to the
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Figure 4.9: Examples of augmented light curves for a Mira variable. Top panel: the original
light curve. Bottom two panels: examples of light curves generated using the original light
curve as a template. See Figure 4.3 for an explanation of the colors and shading of these
plots.

next template. This failure is common, and typically indicates that we chose too high of a
redshift for the new light curve, and that the generated fluxes are too faint to be detectable
by the telescope. We explicitly try to generate light curves at these high redshifts to ensure
that our augmented set covers the full range of light curves that it is possible to detect.

Examples of the final augmented light curves are shown in Figures 4.9 through 4.11.
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Figure 4.10: Examples of augmented light curves for a single lens microlensing event. Top
panel: the original light curve. Bottom two panels: examples of light curves generated using
the original light curve as a template. See Figure 4.3 for an explanation of the colors and
shading of these plots.
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Figure 4.11: Examples of augmented light curves for a superluminous supernova light curve.
Top panel: the original light curve. Bottom two panels: examples of light curves generated
using the original light curve as a template. See Figure 4.3 for an explanation of the colors
and shading of these plots.
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Chapter 5

Conclusions

In this dissertation, we discussed several different methods of improving the systematic
uncertainties in distance measurements to SNe Ia. These methods will be essential for the
next generation of cosmological analyses using SNe Ia with experiments such as LSST.

In Chapter 2, we discussed a newly discovered CCD anomaly that affects most astronom-
ical instruments in use, and we showed how it impacts the measured brightnesses of SNe Ia
with the SNIFS instrument. We found that there is crosstalk between the binary-coded out-
put of the analog-to-digital converter (ADC) and subsequently read-out pixels. An offset is
introduced into the subsequently read-out pixels which is roughly proportional to the num-
ber of “1” bits in the binary encoding of a driver pixel. This “binary offset effect” is present
in a wide variety of currently-used instruments with different electronics configurations. We
characterized the effect and modeled it with high accuracy in the SNIFS instrument used
by the Nearby Supernova Factory collaboration on the UH88 telescope. We then showed
how the effect can be corrected to prevent it from affecting analyses using data from this
instrument.

Another major source of systematic uncertainty in cosmological analyses with SNe Ia is
intrinsic variation of SNe Ia. Traditional methods of estimating the distances to SNe Ia, such
as SALT2, result in systematic biases that depend on the properties of the host galaxies.
In Chapter 3, we discussed a new method of parametrizing SNe Ia using manifold learning
to generate a non-linear decomposition of the intrinsic diversity of their spectra near maxi-
mum light. We found that a three-component non-linear embedding is able to capture this
intrinsic diversity, and we identified regions of the parameter space of SNe Ia where previous
standardization methods such as SALT2 have biases of up to 0.3 mag. We showed how our
parametrization of SNe Ia can be used to standardize the brightnesses of SNe Ia, resulting in
an RMS of 0.100 ± 0.010 mag with an intrinsic dispersion of 0.071 ± 0.013 mag. We found
that correlations between host galaxy properties and distance estimates are greatly reduced
using this new parametrization, which is essential for precise cosmological measurements
with SNe Ia.

In Chapter 4, we developed a new photometric classifier to address the issue that future
surveys such as LSST will only be able to spectroscopically type a small fraction of the
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transients that they discover. Our classifier was designed to be able to be applied to training
samples of spectroscopically-typed objects that are heavily biased toward bright, low-red-
shift objects. This classifier was developed as part of the Photometric LSST Astronomical
Time-Series Classification Challenge. Out of all of the models submitted during the blinded
phase of the PLAsTiCC, our classifier achieved the best performance on the PLAsTiCC test
set measured using the weighted log-loss metric proposed by the PLAsTiCC team. We used
Gaussian processes in both time and wavelength to build light curve models for each object
in the sample that incorporate information from all bands simultaneously. Using these light
curve models, we showed how one can take a training set that is heavily biased towards
bright, low-redshift objects, and “augment” it by generating new light curves covering a
range of redshifts and observing conditions. This augmented dataset contains light curves
that are much more representative of the full light curve sample. We then showed how a
classifier can be trained whose performance is independent of the redshift distributions of
the different object types in the training sample. These techniques described in this chap-
ter will significantly improve the performance of photometric classifiers for surveys such as
LSST, and they will help both reduce and characterize the levels of contamination from other
transients in cosmological analyses of SNe Ia.
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