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ABSTRACT OF THE DISSERTATION

Sampling for Underdetermined Linear and Multilinear Inverse Problems: role of
geometry and statistical priors

by

Ali Koochakzadeh

Doctor of Philosophy in Electrical Engineering (Signal & Image Processing)

University of California San Diego, 2020

Professor Piya Pal, Chair

Estimating the underlying parameters of a statistical signal from noisy observations is a

central problem in signal processing, with a wide variety of applications in many different fields

such as machine learning, source localization, channel estimation for modern millimeter-wave

(mmWave) communication systems, etc. Classical algorithms for source localization guarantee

recovery of only K = O(M) sources using a Uniform Linear Array equipped with M antennas.

Recently, it has been shown that using certain non-uniform array designs, such as coprime and

nested arrays, once certain correlation priors are assumed, it is possible to break this limit and

go all the way up to K = O(M2) sources. This thesis sheds more light on this phenomena, and

xvi



more general cases of under-determined inverse problems in both linear, and non-linear settings.

We show that for linear inverse problems, not only CRB exists for the case that K = O(M2), for

certain non-uniform arrays, but also it continues to exist even if the antenna locations are perturbed

due to physical deformation of the device, or only a compressed version of the measurements are

available. For a more general class of linear inverse problems, we show that in presence of certain

correlation priors, one can recover sparse vectors of sparsity K = O(M2), where the probability of

detecting a wrong support for the sparse vector decays to zero exponentially fast as more and more

temporal snapshots are obtained. We show these results hold for a variety of different statistical

models, namely Gaussian sources, bounded sources, when the measurement matrices are equi-

angular tight frames, and finally for the case that the measurements are obtained in adaptively.

This thesis also considers multilinear inverse problems, namely tensor decompositions as well as

certain non-convex problems with applications in millimeter-wave (mmWave) communication

systems. We propose tensor decomposition algorithms for channel estimation for mmWave

communication systems equipped with hybrid analog/digital beamforming, for cases such as

multi-carrier Single-Input/Multiple-Output and single-carrier Multiple-Input/Multiple-Output,

where we show the immense benefit gained by posing certain commonly considered statistical

assumptions on the channel parameters, which leads to a provable increased identifiability

compared to the existing algorithms for mmWave channel estimation.
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Chapter 1

Introduction

Parameter estimation, i.e., estimating the defining parameters of a statistical signal from

noisy observations is a central problem in signal processing, which has been studied for decades

[KV96], and has broad applications in a wide variety of fields, such as machine learning, array

signal processing, data mining, spectrum estimation, channel estimation for modern millimeter-

wave (mmWave) communication systems, etc. Classical algorithms have been developed for

many different problem models such as the MUSIC algorithm for Direction-of-Arrival estimation,

where the goal is to find the directions of far-field narrow-band sources from the measurements

obtained by an array of antennas. Recently, it has been shown that in many cases, one can benefit

from the mathematics of the problem model in order to strategize the sampling in a judicious

manner, in order to be able to estimate the parameters defining the problem model, in a much

more efficient way, compared to the classical approaches.

Examples of such sampling strategies are co-prime[PV11], and nested sampling [PV10]

which has been shown to be successful to recover O(M2) sources from only M antennas, unlike

the classical approaches that could only recovery O(M) sources using M antennas. The design of

these novel array architectures is inspired solely by the mathematics of the problem and certain

statistical assumptions. Similar ideas have been also used to design efficient temporal samplers,

1



which use statistical properties of certain wide sense stationary processes. This thesis sheds more

light on the properties of these non-uniform sampling strategies, in order to estimate parameters

associated with linear, and multi-linear inverse problems.

This thesis is concerned with three main questions:

1. Can we provably identify K = O(M2) uncorrelated sources, by showing existence of

Cramér Rao bounds, even in presence of array imperfections such as sensor location errors?

(Addressed in Chapter 2).

2. In a Multiple Measurements Vector (MMV) problem with correlation priors, can we identify

supports of size O(M2)? How does the probability of detecting a wrong support decay, as

we get more and more measurements? (Addressed in Chapter 3).

3. In applications such as channel estimation for mmWave communication, how many chan-

nel paths can we identify once we make certain statistical assumptions on the channel

parameters? What is the role of non-uniform array, and hybrid beamforming? (Addressed

in Chapter 4).

In Chapter 2, we consider the problem of parameter estimation for linear inverse problems,

from different perspectives. Sec. 2.1 addresses this problem in the context of Direction-of-Arrival

estimation, and provides fundamental lower bounds, namely Cramér Rao bounds (CRB) on

estimation error for the parameters. The analysis provided in Sec. 2.1 show that a certain property

associated with array geometry, namely difference co-array, plays a central role on determining the

number of sources that can be recovered. For the first time, we show that the CRB exists even if

K = O(M2) sources are available. Existence of CRB is a fundamental property which guarantees

that one can come up with algorithms that can find unbiased estimates of the parameters of the

problem. Sec. 2.2 and 2.4 focus on a variant of DoA estimation problem, where the antennas

are not exactly located on their nominal locations, due to manufacturing imperfections, etc. In

Sec. 2.2, we show that even if the array suffers from perturbations, the CRB still exists as long
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as the difference co-array associated with the antenna array satisfies certain properties. Sec. 2.4

proposes an algorithm to find the source locations as well as the array perturbations, by making

the assumption that the perturbations are small enough. Sec. 2.5 presents the Cramér Rao bounds

for compressed uniform and non-uniform arrays, and shows even in presence of a compression

matrix, we can come up with sufficient conditions under which CRB exists. For both uniform and

non-uniform arrays, Sec. 2.5 shows that CRB exists for almost all N×M compression matrices

(which arise in applications such as channel estimation for mmWave communication systems

equipped with hybrid analog/digital beamforming), even if the number of sources are as large

as K = min(M,O(N2)) for uniform arrays, and K = min(O(M2),O(N2)) for nonuniform arrays

such as nested arrays. Sec. 2.3 considers the asymptotic properties of the CRB, and specifically

considers the case where the number of antennas tend to infinity. We show that even if we have

infinite number of antennas, the estimation error of the source powers cannot go below a certain

threshold. Hence, showing a fundamental limit on the estimation error even with infinite number

of spatial samples.

Chapter 3, however, focuses on the asymptotic properties of increasing the number of

temporal samples. In particular, this chapter assumes a grid-based model, where the sources

are located on a grid, which is equivalent to a Multiple Measurement Model (MMV) problem.

In chapter 3 we shows that as long as the sampling matrix satisfies certain properties, in terms

of Kruskal rank of its self Khatri-Rao product, the MMV model is fundamentally able to find

sparse signals with sparsity as large as K = O(M2), such that the probability of detecting a

wrong support1 decays to zero, exponentially fast as more and more temporal measurements are

collected. Chapter 3 proves this result under different assumptions. Sec. 3.1 considers the case

that the sources have a Gaussian distribution with equal powers. By considering an exhaustive

search decoder, the results in Sec. 3.1 show that reliable support recovery is possible even if

K = O(M2), where M is the size of each measurement vector. Sec. 3.3 shows a similar result,

1The index set corresponding to the non-zero elements. A more precise definition is given in Chapter 3.
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through proposing a greedy algorithm, for the case that the sources have unequal powers, but the

measurement matrix is an equiangular tight frame. Sec. 3.2 proves as long as N = O(M2), with N

being the length of the unknown sparse vectors, and the sources have a bounded distribution, one

can still reliably recover the support using a greedy algorithm. Finally, Sec. 3.4 shows that the

correlation aware support recovery can be extended to adaptive settings, where the measurement

matrix is designed as more and more measurements are obtained, assuming that the measurements

are obtained from uncorrelated sources. The results in Sec. 3.4 also guarantee reliable recovery

of supports of size K = O(M2).

Chapter 4 contains non-convex algorithms, and tensor decomposition algorithms with

applications in mmWave channel estimation. Sec. 4.1 presents a non-convex algorithm for

beam-pattern design based on Wirtinger flow. Sec. 4.2 presents an algorithm for Canonical

Polyadic Decomposition of Overcomplete constrained tensors, where for a constrained fourth

order tensor of size M×N×M×N, we show that it is possible to recover O(M2N) tensor factors.

The constrains assumed in Sec. 4.2 are closely related to difference set considered in Chapter 2.

Sec. 4.3 proposes a tensor decomposition algorithm for mmWave channel estimation, which is

capable of recovering L = O(NT NR) channel paths, for a single-carrier Multiple-Input/Multiple-

Output system with NT Radio-Frequency (RF) chains in the transmitter and NR RF-chains in the

receiver. Finally, Sec. 4.4, based on the ideas presented in Sec. 4.2 proposes tensor decomposition

algorithms for mmWave channel estimation in a multi-carrier Single-Input/Multiple-Output

system equipped with OFDM modulation, which are capable of recovering L = O(NK2) channel

paths, with N being the number of RF-chains of the base station, and K being the number of

frequency bins used for training. The main idea in Sec. 4.4 is to design the frequency bins used

for the pilots in a non-uniform fashion, that not only enables efficient channel training, but also

one can perform communication simultaneously with channel estimation, thereby reducing the

channel training overhead.
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Chapter 2

Linear Inverse Problems: A Cramér Rao

Bound Based Study

Direction of Arrival (DOA) estimation is a central problem in antenna array processing,

that arises in diverse scenarios such as target localization, tracking and interference suppression

in passive and active radar, radio astronomy, multi-microphone speech processing, and so forth

[KV96]. The Cramér-Rao bound (CRB) provides a fundamental lower bound on the estimation

error (mean squared error) of any unbiased DOA estimator, and hence it can be used as a universal

tool to assess the performance of DOA estimation algorithms. Over the last three decades,

CRB for DOA estimation have been extensively studied and simplified for different array signal

models [SN89, SN90b, SN90a, JGO99a]. However, almost all existing derivations assume an

overdetermined signal model, where the number of sources (say, K) is smaller than the number

(say, M) of sensors. As explained later in this chapter, this is partly because most array signal

models are based on a uniform linear array (ULA), that is incapable of resolving more sources

than sensors.

Non-uniform array sparse geometries such as nested [PV10] and coprime arrays [PV11],

however, have been shown to be capable of localizing O(M2) sources with only M antennas.
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This is achieved by exploiting their difference co-arrays (or virtual arrays) [HK90b], which

provably contain ULA segments with O(M2) elements. However, existing results mostly establish

identifiability of K ≥M DOA parameters (assuming ideal covariance matrix is available), and

there is a pressing need for analyzing the estimation performance of nested or coprime arrays for

underdetermined DOA estimation, in presence of noise and/or limited time snapshots. The first

step towards such a performance analysis would be to develop CRB for the corresponding signal

models. Existing CRB derivations are mostly applicable in the regime K < M, and they do not

indicate if it is at all possible to compute the CRB when K ≥M.

This chapter focuses on deriving CRB for underdetermined source localization problem.

We show that for a cleverly designed non-uniform linear array, the CRB can exist even if K ≥M,

and establish necessary as well as sufficient conditions for existence of CRB. We also consider

other variants of source localization problem, and their corresponding CRB. Section 2.2, focuses

on the CRB for source localization in presence of sensor location errors, where we show that

even in presence of unknown perturbations in the sensor locations, the CRB can still exists for

the regime that K ≥M.

Section 2.3 considers the asymptotic properties of the CRB, and specifically considers the

case where the number of antennas tend to infinity, while the number of sources is kept fixed. We

show that even if we have infinite number of antennas, the estimation error of the source powers

cannot go below a certain threshold. Hence, showing a fundamental limit on the estimation error

even with infinite number of spatial samples.

In Section 2.5 we provide the CRB for a compressed sparse array, where it is assumed

that instead of having direct access to the antennas, we can only obtain a lower dimensional

(compressed) set of measurements. Such scenarios arise in applications such as millimeter-wave

communication systems, which we consider in Chapter 4. We show that even in presence of

such compression schemes, the CRB still exists, for almost all compression matrices, even if the

number of sources exceed the smaller dimension of the compression matrix.
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2.1 Cramér-Rao Bounds for Underdetermined Source Local-

ization

Although Cramér-Rao bounds for array processing have been studied for decades [SN89,

SN90b, SN90a, JGO99a], the case of underdetermined DOA estimation (when there are fewer

sources than the number of physical sensors) has received little attention. In this Section, our goal

is to bridge this gap by deriving exact conditions on the geometry of the array manifold under

which the FIM is guaranteed to be non-singular even in the underdetermined setting, which is

equivalent to the existence of CRB. Under these conditions, the CRB will provide a fundamental

lower bound on the performance of any algorithm that aims to localize more sources than sensors,

such as those proposed in [CY15, PV10, ZQA14].

2.1.1 Signal Model and Stochastic Cramér-Rao Bound

Signal Model

Consider K narrowband plane waves impinging on a linear array with M sensors, where

the mth sensor is located at a distance of dm from the origin (normalized with respect to the carrier

wavelength). Let θi denote the Direction-of-Arrival (DOA) of the ith source. The received signal

model is then given by

y(l) = A(Θ)s(l)+n(l), l = 1,2, · · · ,L

where y(l) ∈ CM denotes the lth time snapshot of the signals received at the M sensors, s(l) ∈

CD are the unknown source signals and n(l) is the vector of additive noise at the M sensors.

Here, A(Θ) = [a(θ1),a(θ2) · · ·a(θK)] with a(θk) (d = 1, · · · ,D) representing the steering vector

corresponding to the angle θk, and its elements are given by [a(θk)]m = e jπdm sinθk .

Two types of assumptions on the source signals s(l) are commonly used for deriving
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the CRBs [SN90b]: (i) the conditional model assumption (CMA), and (ii) the unconditional

model assumption (UMA) [SN90b]. Under CMA, the source signals {s(l)}L
l=1 are assumed to be

deterministic unknown parameters. However, under UMA, {s(l)}L
l=1 are random vectors, often

assumed to be i.i.d realizations of a Gaussian distribution. We will show that under the UMA, it is

possible derive CRB even in the underdetermined setting (i.e. K ≥M) for suitable arrays, with

certain additional assumptions on the correlation of s(l). The main assumptions are given by

(A1) The source signal vectors {s(l)}L
l=1 are pairwise uncorrelated i.i.d Gaussian random vectors,

distributed as s(l) ∼ N (0,Λ), where Λ is a diagonal matrix with Λ = diag(σ2
1, · · · ,σ2

K),

and σ2
i is the power of the ith source signal.

(A2) The noise n(l) is spatially and temporally white Gaussian process, uncorrelated from the

source signals, i.e., n(l)∼N (0,σ2
nI),E(n(l)sH(l)) = 0. The noise power σ2

n is assumed

to be known.

Assumption (A1) will be a crucial factor enabling the recovery of more sources than sensors for

suitable arrays. Under (A1-A2), the received signal vectors {y(l)}L
l=1 are i.i.d Gaussian random

variables, distributed as

y(l)∼N (0,A(Θ)ΛAH(Θ)+σ
2
nI) (2.1)

The 2K unknown parameters describing the distribution of the received signal are

Θ = [sinθ1,sinθ2, · · · ,sinθK]
T ,

p = [σ2
1,σ

2
2, · · · ,σ2

K]
T

We denote the vector of unknown parameters as ψ = [ΘT ,pT ]T . We will study the Fisher

Information Matrix (FIM) for estimating ψ from the received signal y(l), l = 1,2, · · ·L distributed

according to (2.1) to establish precise conditions under which the CRB can be computed in the
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underdetermined setting (K ≥M).

Unconditional Cramér-Rao Bound

Consider L i.i.d realizations of a random vector y ∈ CM distributed as y∼N (0,R(ψ)).

Notice that the covariance matrix R(ψ) is parameterized by ψ. For the given signal model,

R(ψ) = A(Θ)ΛAH(Θ)+σ2
nI. In this case, the entries of (unconditional) FIM J(ψ) are given by

the general formula

1
L
[J(ψ)]m,n = vecH(

∂R(ψ)

∂Ψm
)W(ψ)vec(

∂R(ψ)

∂Ψn
), (2.2)

where W(ψ) =
(

R−T (ψ)⊗R−1(ψ)
)

[SLG01]. This representation of the FIM leads to the

following (matrix) form of the CRB derived in [SN90a]:

CRB(Θ) =
σ2

2L
{Re(DH

Π
⊥
AD)◦ (ΛAHRy

−1AΛ)T}−1 (2.3)

where D = [∂a(θ1)
∂θ1

∂a(θ2)
∂θ2

· · · ∂a(θK)
∂θK

]. In deriving (2.3), the FIM has been assumed to be invertible,

an assumption which is largely true in the regime K <M considered in [SN90a, SLG01]. However,

in this Section, we will re-evaluate the rank of J(ψ) in the regime K ≥M, and develop explicit

conditions (dictated by the array geometry), under which it is possible to compute the CRB.

However, the expression of the CRB may not be simplified to the form (2.3) when K ≥M.

2.1.2 Non-Singularity of Unconditional FIM and Cramér-Rao Bound

In this section, we study the algebraic structure of J(ψ) to understand when it is possible

to derive CRB in the underdetermined setting. Under the assumption (A1), we rewrite the FIM

which was earlier derived in [SLG01, JGO99a], and then conduct a deeper analysis on J(ψ),

highlighting the role of “co-array” as a significant factor in determining the rank of J(ψ).
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Figure 2.1: A 2-level nested array with M = 6 (top) and its difference co-array (bottom).

1 2 3 4 5 6

-5 -4 4 5

Figure 2.2: A ULA with M = 6 (top) and its difference co-array (bottom).

Co-Array and Khatri-Rao Product

Given a set S = {dm,1≤ m≤M} of sensor positions, the difference co-array associated

with S is given by

Sd = {dm−dn,1≤ m,n≤M}

Notice that the number of distinct elements in Sd (denoted as |Sk|) is completely determined

by the array geometry. It is well known that for a uniform linear array (ULA), |Sd| = 2M− 1

whereas that for nested, coprime, and minimum redundancy arrays (MRA) is O(M2) [PV10]. Fig.

2.1 (resp. 2.2) the geometries of nested array (resp. ULA) along with its corresponding difference

co-arrays.

Given the array manifold matrix A(Θ), we denote its Khatri-Rao product Aca(Θ)∈CM2×K

as Aca(Θ) = A∗(Θ)�A(Θ) where � represents column-wise Kronecker product between two

matrices with same number of columns. There is a direct connection between Aca(Θ) and Sca
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since the elements of Aca(Θ) are given by

[Aca(Θ)]k,d = e jπsinθd(dm−dn), k = (n−1)M+m (2.4)

Each distinct row of Aca(Θ) corresponds to an element in Sca and hence Aca(Θ) corresponds to

the manifold of a virtual array whose sensors are located at Sca.

We also define a related matrix B(Θ) ∈ CM2×K whose elements are given by

[B(ψ)]k,d = jπ(dm−dn)e jπsinθk(dm−dn)σ
2
k , (2.5)

where k = (n−1)M+m. It can be easily verified that B(Θ) contains the same number of repeated

rows as Aca(Θ) and they occur at identical indices. Moreover, we have rank(Aca(Θ)), rank(B(Θ))≤

min(K, |Sd|).

Non-singularity of FIM when K ≥M

We now state our main result regarding the non-singularity of J(ψ) by explicitly account-

ing for the role played by the co-array. We make the following additional assumption on the array

geometry:

(A3) Sk contains the consecutive integers between 0 and Md (and their negatives).

Many arrays such as ULA, nested and coprime satisfy this assumption, where Md = M−1 for

ULA and Md = O(M2) for nested and coprime arrays. In general, we have 2Md + 1 ≤ |Sk|.

The following theorem states the main result concerning the invertibility of J(ψ), and derives

conditions under which the CRB exists. For ease of representation, we suppress the notations ψ

and Θ in the following derivations, hoping that they will be clear from the context.

Theorem 1. Under assumptions (A1-A3), if 2K ≤ 2Md +1, the FIM J(ψ) is invertible and the
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CRB for Θ is given by

CRB(Θ) =
1
L

(
BHW1/2

Π
⊥
W1/2Aca

W1/2B
)−1

(2.6)

where Π⊥X , I−X(XHX)−1XH denotes the projection matrix onto the orthogonal complement of

range of X. When 2K > |Sk|, J(ψ) is necessarily singular.

Proof. Following [JGO99a], the FIM can be written as

J(ψ) = LGHWG

where G = [B Aca]. Since W = R−T ⊗R−1 is positive definite (because R is positive definite),

it is clear that J is non singular if and only if rank(G) = 2K. From (2.4) and (2.5), notice that each

of the matrices Aca and B contains|Sk| distinct rows and they occupy the same indices in both

matrices. Hence, rank(G)≤min{2K, |Sk|} and 2K ≤ |Sk| is a necessary condition for J(ψ) to be

non singular. To show the sufficient condition for FIM to be invertible, let A(u)
ca ∈ C(2Md+1)×K

and B(u) ∈ C(2Md+1)×K denote the submatrices of Aca and B that contain the distinct rows

corresponding to the consecutive lags in the range −Md, · · · ,Md . Then, it can be verified that, for

1≤ m≤ 2Md +1,

[A(u)
ca ]m,d = e jπ(m−Md−1)sinθk

[B(u)]m,d = jπσ
2
k(m−Md−1)e jπ(m−Md−1)sinθk

Since 2K ≤ 2Md + 1, let us consider 2K× 2K submatrices A1 ∈ C2K×2K and B1 ∈ C2K×2K of

A(u)
ca and B(u) respectively such that, for 1≤ m≤ 2K,

[A1]m,d = [A(u)
ca ]m+1+Md−D,k

[B1]m,k = [B(u)]m+1+Md−K,k
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Clearly, G1 = [A1 B1] consists of 2K rows from G and G is non singular if G1 has rank 2K. It is

easy to show that indeed rank(G1) = 2K, by contradiction. Let us assume that G1 is rank deficient.

Then ∃v ∈ C2K,v = [v1,v2, · · ·v2K]
T such that AT

1 v = 0, and BT
1 v = 0. Define polynomials

f (x),
2K

∑
m=1

vmxm−1,h(x), x−K+1 f (x),

and let f ′(x),h′(x) be their derivatives with respect to x. Then, AT
1 v = 0 implies that h(xk) = 0,

for xk = e jωk , thereby f (xk) = 0. Similarly, BT
1 v = 0 implies xkh′(xk) = 0, which is true only

if f ′(xk) = 0. Hence, the polynomial f (x) is such that both f (x) and f ′(x) have zeros given

by x = e jω1, · · · ,e jωK , implying these are double zeros for f (x). This implies that f (x) has 2K

(double) zeros. However, the degree of f (x) is 2K− 1, implying that it can only have 2K− 1

zeros, thereby contradicting our assumption that G1 is rank deficient. Hence, if 2K ≤ 2Md +1,

G has rank 2K and J(ψ) is non singular. In this case, following [SLG01, JGO99a], the CRB for

Θ is given by (2.6), which can be computed as the Schur complement of the top K×K block of

J(ψ).

Remark 1. Antenna arrays with the same number (M) of elements, but with different geometries,

can have drastically different values for Md . Therefore, the geometry of the array is the key

factor that determines if the CRB exists in the underdetermined (K ≥M) regime. For a uniform

linear array (ULA) with M antennas, Md = M−1 and |Sk|= 2Md +1 = 2M−1. Hence, from

Theorem 1, the corresponding FIM is necessarily singular if K ≥M, implying that no unbiased

estimator with finite variance exists [SM01a]. This explains why most traditional DOA estimation

algorithms (that implicitly assume a ULA geometry) require K < M. A nested array [PV10] with

M sensors, however, satisfies Md = M2/4+M/2− 1 and Sd = 2Md + 1. Hence, it is possible

to compute CRB for such an array even in the underdetermined setting (K ≥ M) as long as

K ≤M2/4+M/2−1.
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Table 2.1: CRB expressions for the signal model given by (2.1)

Problem Setting CRB
Underdetermined/Determined (K ≥M) (2.6)

Overdetermined (K < M) (2.6), can be simplified to (2.3)

Remark 2. For nested and ULA, |Sk| = 2Md +1. Hence 2K ≤ 2Md +1 is both necessary and

sufficient for J(ψ) to be invertible for these arrays. However, for coprime arrays, due to presence

of holes, |Sk|> 2Md +1 and hence there is a gap between the necessary and sufficient conditions.

This gap will be demonstrated in our numerical simulations.

We now summarize the CRB expressions for different problem settings in Table 2.1. In

particular, note that the CRB expression for the determined signal model (K = M) is also given

by (2.6). When K < M, (2.6) can be further simplified to (2.3).

Conditional versus Unconditional CRB

We have established that the unconditional FIM can be non singular even when K≥M. We

now consider the conditional signal model which has been extensively studied in [SN89, SN90b].

In [VP12], the conditional signal model was used to derive CRB for a coprime array when there

are K = 2 sources. However, we will now show that the conditional model is an inappropriate

choice for analyzing the performance of these arrays (whose difference set contains O(M2)

elements) when there are more sources than sensors, since the corresponding CRB does not

exist. To see this, recall that under the CMA, the received signal vectors {y[l]}L
l=1 are i.i.d and

distributed as

y(l)∼N (A(Θ)s(l),σ2
nI) (2.7)

Assuming the noise power σ2
n is known, there are 2LK+K unknown (real valued) parameters asso-

ciated with this model, given by ψ = [{Re(sT [l]]}L
l=1,{Im(sT [l]]}L

l=1,Θ
T , ]T . The corresponding
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FIM is given by [SN89, Eqn (E.9)]

JC(ψ) =

 Hs X

XH Γ

 (2.8)

where X,Γ are appropriately defined matrices (see Appendix E in [SN89]) and Hb ∈ R2KL×2KL

is a block diagonal matrix consisting of L blocks given by

Hs =


Hb 0 0

0 . . . 0

0 0 Hb

 (2.9)

Here Hb ∈ R2K×2K is given by Hb =

 Re(H) −Im(H)

Im(H) Re(H)

 where

H =
2

σ2 AH(Θ)A(Θ) (2.10)

Hence, from (2.8), we can say that the FIM JC(ψ) is non singular only if Hs is invertible which is

true if and only if H is non singular. However, from (2.10), H is a K×K matrix which is non

singular if and only if A(Θ) ∈ CM×K has rank K, which is true only if K ≤M.

Theorem 2. Consider the Conditional Signal Model, where the L signal vectors received at an

array of M sensors are distributed as (2.7). A necessary condition for the associated Fisher

Information Matrix Jc(ψ), given by (2.8), to be invertible, is K ≤M.

Hence, under CMA, the CRB exists only if K ≤ M, i.e., there are fewer sources than

sensors. When K > M, JC(ψ) is necessarily singular, implying that no unbiased estimator with

finite variance exists [SM01a]. This is true irrespective of the array geometry. Hence, under the

CMA, it is not possible identify more sources than sensors, even when sparse arrays such as
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coprime and nested, are used.

2.1.3 Simulations

We now conduct some proof-of-concept simulations to validate our claims and compare

the Cramér-Rao bounds of ULA and different sparse arrays both in the overdetermined (K < M)

and underdetermined (K ≥M) regimes. Firstly, we study the phase transition diagrams for non-

singularity of FIM for ULA, nested and coprime arrays. The sources are located uniformly on

the range [−π/3 π/3], all with powers equal to 1. For each value of M and K, the nonsingularity

of FIM is tested and white pixels show the values of K and M where FIM is invertible, while

black pixels denote a singular FIM. For the coprime array, given M, the coprime numbers N1, N2

are chosen such that 2N1 +N2−2 = M, N1 < N2, and Md = N1N2 attains the maximum possible

value. Here, we assume L = 1000, and σ2
n = 0.05. The necessary and sufficient bounds derived

in Theorem 1 are also overlaid. As illustrated in Figs. 2.3a, 2.3b, for the ULA and nested array,

the necessary and sufficient conditions match exactly. However, in Fig. 2.3c we observe a gap

between the two bounds, which is due to the fact that 2Md +1 can be smaller than |Sk|.

In the second set of simulations, we evaluate the CRB (calculated from the trace of the

CRB(Θ)) corresponding to ULA, coprime and nested arrays for both K < M and K ≥M. We

assume L = 1000, M = 12,N1 = 3,N2 = 7. The CRB, as a function of SNR, is plotted in Fig. 2.4.

The plots indicate that the nested array has the best performance compared to the other arrays.

2.1.4 Conclusion

In this Section, we considered an underdetermined signal model (more sources than

sensors) and derived sufficient and necessary conditions for the associated Fisher Information

Matrix to be non-singular. We established that the Conditional Model (CM) is unsuitable for

deriving the CRB in the underdetermined setting. We derived closed form expressions for the
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Figure 2.3: Phase transition for non-singularity of the Fisher Information Matrix.
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Figure 2.4: The CRB for different arrays, as a function of SNR.

Cramér-Rao bounds for underdetermined DOA estimation and numerically compared the CRB

for different array geometries such as ULA, nested and coprime arrays. We also verified our

theoretical bounds through numerical simulations and empirical phase transition diagram.
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2.2 Performance of Uniform and Sparse Non-Uniform Sam-

plers In Presence of Modeling Errors: A Cramér-Rao

Bound Based Study

In this section, we study the performance of coprime and nested samplers in non-ideal

setting, where assumptions such as such as synchronous sampling, and ability to perfectly compute

statistical expectations are violated. Using a general grid-based signal model that applies to both

spatial and temporal line spectrum estimation, the effect of perturbations in sampling instants

is evaluated by deriving fundamental Cramér-Rao Bounds (CRB) for line spectrum estimation

with perturbed samplers. For the first time, simplified expressions for the Fisher Information

matrix for perturbed coprime and nested samplers are derived, which explicitly highlight the

role of coarray. We show that even in presence of perturbations, it is possible to resolve O(M2)

spectral lines under appropriate conditions on the size of the grid. The effect of finite data on

the CRB is also studied, and necessary and sufficient conditions are derived to ensure that the

CRB decreases monotonically to zero with the number of measurements, even when there are

more sources than sensors. Finally, the theoretical results derived in this Section are supported by

extensive numerical experiments.

2.2.1 Line Spectrum Estimation and Sampling Perturbation: Fundamen-

tals

In this Section, we consider a general signal model for line spectrum estimation (which

can be used to represent both spatial and temporal line spectrum) and study the effect of sampling

perturbations. These perturbations represent (i) sensor location errors in the context of spatial

sampling, and (ii) jitter in the case of temporal sampling.
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A Unified Grid-Based Model for Line Spectrum Estimation

We consider a line spectrum process, whose power spectrum consists of K spectral lines

(which can be spatial, or temporal, as explained later) contaminated with additive white noise,

uncorrelated with the signals. We assume a grid-based model for line spectrum estimation such

that the spectral lines lie on a predefined grid of Nθ points, each of which represent a candidate

frequency ωn,0≤ n≤ Nθ−1. Assuming that we collect M samples of this line spectrum process,

acquired at the sampling instants d1,d2, · · · ,dM, the mth sample of the observed signal can be

written as

ym =
Nθ

∑
i=1

e j2πdmi/Nθxi +wm, 1≤ m≤M (2.11)

Here wm,1≤ m≤M represent M samples of white Gaussian noise, uncorrelated with the signal.

The vector x = [x1,x2, · · · ,xNθ
]T is a sparse vector with K non zero elements (i.e. ‖x‖0 = K)

representing (possibly complex) amplitudes of the K spectral lines. When the non zero elements

of x are random variables, it is well known that (2.12) represents a wide-sense stationary (WSS)

line spectrum process if and only if the non zero elements of x are also statistically uncorrelated

[Vai07]. We will use this assumption throughout this Section. Defining y = [y1,y2, · · · ,yM]T

and a matrix Agrid,0 ∈ CM,Nθ such that [Agrid,0]m,n = e jωndm and w = [w1,w2, · · · ,wM]T , we can

represent (2.11) as

y = Agrid,0x+w (2.12)

Here, Agrid,0 is a possibly overcomplete dictionary (with Nθ > M) that only depends on the

sampling instants and the grid size Nθ. The general model (2.12) for line spectrum can be further

modified and interpreted differently depending on whether the underlying line spectrum process

is spatial or temporal.

1. Spatial Line Spectrum Process: The spatial line spectrum estimation problem is closely

associated with that of estimating the directions-of-arrival (DOA) of narrow-band sources of

radiation impinging on an array of sensors. Specific instances of this problem include target

20



localization and tracking in radar and sonar systems, speaker localization with microphone

arrays, and neural source localization in medical imaging. In these cases, M denotes the

number of sensors, and K represents the number of sources. The spatial sampling instant

λ/2dm indicates the location of the mth sensor, where λ is the carrier wavelength of the

impinging waves. The frequencies associated with spectrum lines in this scenario are

determined by the direction of arrival of the sources. In particular, corresponding to each

direction of arrival (DOA) θ ∈ [−π/2,π/2], we associate a spatial frequency ω = πsinθ.

We discretize the range ([0,2π)) of possible values of ω into Nθ points, where the nth grid

point is given by

ωn =
2πn
Nθ

,n = 0,1, · · · ,Nθ−1 (2.13)

A key distinguishing feature of the signal model for spatial line spectrum estimation is that

we acquire samples in both space and time, by observing a number of temporal snapshots

(say, L) at each of the M sensors. This leads to the following space-time signal model for

spatial spectrum estimation, which is a more generalized form of (2.12):

y[l] = Agrid,0x[l]+w[l], 1≤ l ≤ L (2.14)

Here y[l] denotes the lth time snapshot of the signal received at the array of M antennas. It

is typically assumed that the L temporal samples are statistically independent. [JGO99b,

SN90c].

2. Temporal Line Spectrum Process:

It is well known that a line spectrum process in temporal domain can be represented as

s(t) =
K

∑
k=1

xke j2π fkt (2.15)

where E(xix∗j) = 0 for i 6= j, and E(xi) = 0 [Vai07, Theorem 7.3], and { fk}K
k=1 represent the

21



frequencies of the spectral lines. We assume that the signal is sampled using a periodic non

uniform sampler [AL12] with period MpT seconds, where 1/T = 2maxk fk is the Nyquist

rate. We collect a total of ML samples (M and L are integers) over MpLT seconds, by

dividing the total acquisition time into L blocks of MpT seconds (each block corresponds

to one period of the periodic sampler), and collecting M samples in each block. The rate of

such a sampler is therefore given by M
MpT Hz. The sampling instants within the lth block are

given by

tm,l = (Mp(l−1)+dm)T,1≤ l ≤ L,1≤ m≤M

We further assume that the location dMT of the last sample in each block satisfies (dM +

1)T =MpT . As will be evident later, for a uniform sampler Mp = dM+1=M, and its rate is

M/MpT = 1/T Hz (Nyquist rate). However, for a nested sampler, Mp = dM+1= M
2 (

M
2 +1)

and hence it operates at a sub-Nyquist rate of 2
(M

2 +1)T
Hz.

To facilitate a unified Cramér-Rao Bound based analysis, we will henceforth assume that

the non-zero amplitudes xk in (2.15) are slowly time varying functions of time. In particular,

each non-zero amplitude is a function of time (denoted explicitly as xk(t)), that assumes a

constant value of xk[l] over the lth block of length MpT seconds, and changes independently

from one block to another. In particular,

xk(t) = xk[l], (l−1)MpT ≤ t < lMpT

where {xk[l]}L
l=1 are zero-mean indpendent random variables. Such assumption of in-

dependence across blocks is a standard practice in spectral analysis using Bartlett type

of spectrum estimators [SM05]. The samples of s(t) in (2.15), contaminated with white
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measurement noise, can therefore be represented as

ym[l] =
K

∑
k=1

xk[l]e j2πT fkdm +wm[l] (2.16)

Here wm[l] is the additive white noise uncorrelated with the signal, and E(xi[l]x∗k [l
′]) =

γkδ[l− l′]δ[i− k] where γk represents the power of the kth source, and δ[.] is the Kronecker

delta function. Defining an equivalent digital frequency ω = 2π f T and assuming that the

K spectral lines lie on a grid of Nθ candidate frequencies ωn,0≤ n≤ N−1 with

ωn =
2πn
Nθ

,0≤ n≤ Nθ−1,

we obtain the same model (2.14) as spatial line spectrum estimation introduced earlier.

Notice that (2.14) represents an M dimensional vector valued wide-sense stationary (WSS)

process [Vai07] such that

E(y[l]) = 0, E(y[l]yH [l− k]) = Ryδ[k]

Uniform and non-Uniform Sampling for line spectrum estimation

Our goals in this section are to study how perturbation and finite number of samples affect

the quality of line spectrum estimators. To this end, we will consider two sampling strategies: (i)

uniform Nyquist sampling and (ii) non uniform sparse Sub-Nyquist sampling, special instances

of which are nested and coprime sampling. For uniform sampling, the sampling instants satisfy

dm = m−1,1≤ m≤M. For nested sampling, assuming that M is an even number, we have

dm =


m−1 1≤ m≤M/2

(M/2+1)(m−M/2)−1 M/2+1≤ m≤M

23



For coprime sampling, let us consider coprime numbers N1 and N2 (N1 < N2) such that M =

2N1 +N2−1. Then, for coprime sampling, the sampling instants dm satisfy

dm =


N2(m−1) 1≤ m≤ 2N1

N1(m−2N1) 2N1 +1≤ m≤M

In the context of spatial sampling, it is well known that with M spatial samples (or sensors),

nested and coprime sampling can resolve O(M2) spectral lines, whereas uniform sampling can

identify only O(M) such lines [PV10, VP11]. In the context of temporal sampling, nested and

coprime sampling operate at O(M) times slower rates compared to uniform Nyquist sampling,

and yet they can successfully resolve the spectral lines without aliasing [PV11]. The guarantees

for nested and coprime sampling have so far been derived under idealistic assumptions such as a

perfectly calibrated sensor array, or ignoring the effect of random jitter on temporal sampling.

We will now evaluate the performance of these samplers in the presence of perturbations in the

sampling instants that can result from calibration errors in sensor arrays, and random jitter in

temporal sampling.

Effect of Perturbation in sampling instants

It is generally known that perturbations can seriously affect the performance of line

spectrum estimation algorithms. For non uniform samplers such as nested and coprime arrays,

the difference co-array has been shown to play a key role in their ability to resolve more sources

than the number of sensors. Although perturbation of sensor locations in antenna arrays has been

studied since decades [CLYM91, WF89, VS94, LS15a], their effect on the difference co-arrays of

sparse samplers, and the ability to resolve O(M2) sources with M sensors, is much less understood.

We aim to bridge such a gap by explicitly characterizing the role of perturbation in the co-array

domain and establishing conditions for identifiability of DOAs in presence of perturbation.
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For both uniform and non-uniform sampling, the perturbed sampling instants are given

by dm +δm,1≤ m≤M where δm represents the unknown perturbation. For rest of this Section,

without loss of generality, we will assume that the first sample is at the origin of our reference,

i.e., d1 = δ1 = 0. For example, in spatial spectrum estimation, this means that the location of

other sensors are measured relative to that of the first sensor. For spatial spectrum sampling, using

(2.14), the signal received at a perturbed antenna array can be written as

y[l] = Agrid(δ)x[l]+w[l],1≤ l ≤ L (2.17)

where δ ∈ RM−1 is defined as

δ = [δ2,δ3, · · ·δM]T (2.18)

and Agrid(δ) is obtained from Agrid by replacing dm with dm+δm. Note that (2.17) also represents

the signal model for temporal line spectrum process in presence of sampling jitter (where δ

represents the unknown jitter), with L = 1.

The Co-Array Model Since the non-zero elements of x are assumed to be uncorrelated, the

vectorized form of the covariance matrix of the signal y in (2.17) is given by

z = vec
(

E(yyH)
)
= Aca(δ)γ+σ

2
w vec(I), (2.19)

where Aca(δ) = A∗grid(δ)�Agrid(δ) ∈ C M2×Nθ denotes the Khatri-Rao product [PV12a]. The

vector γ = [γ1, · · · ,γNθ
] is the diagonal of Rx = E(xxH). The location of the non zero elements of

γ coincide with those of x[l] and exactly reveal the frequencies of the spectral lines for the grid-

based model. The elements of Aca(δ) are characterized by the perturbed version of the difference

co-array. In particular, the (m+m′M,k)-th element of Aca(δ) is given by e jωk(dm+δm−dm′−δm′).
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Thus each column of Aca(δ) is a function of the perturbed difference set:

Sca = {dm−dm′+δm−δm′,1≤ m,m′ ≤M}

We can suppress the effect of noise (σ2
w) by removing the rows in z and Aca(δ) corresponding to

the difference 0 in Sca. We further sort the rows in ascending order with respect to their locations

in the difference set and only retain the elements corresponding to the positive half to obtain

zu = Au
ca(δ)γ (2.20)

where Au
ca(δ) ∈ C

|Sca|−1
2 ×Nθ , and |Sca| is the number of distinct elements in the difference set. We

use the notation Mca to denote the number of elements in the unperturbed difference set, i.e.

Mca = |Sca|(δ=0) (2.21)

Number of Recoverable Spectral Lines Recall that the support of sparse γ represents the

frequencies of spectral lines. One way to recover the support is to assume that the true γ represents

the sparsest solution to (2.20) and solve

min
γ≥0,δ
‖γ‖0 s.t. z = Au

ca(δ)γ.

The size of the recoverable sparse support (or equivalently, the number of spectral lines, K) in

this case, fundamentally depends on the Kruskal Rank of Aca(δ).

In Absence of Perturbation: In absence of perturbation (δ = 0), the sparse vector γ can be

uniquely recovered if Supp(γ)≤Mca/2, where Mca is given by (2.21). For uniform sampling, the

26



unperturbed difference set is given by

SU
ca = {n

∣∣n =−M, . . . ,M}

Hence, for uniform sampling, we have Mca = O(M). For nested sampling [PV10] with even

number of sensors and two levels of nesting,

SNested
ca = {n

∣∣n =−M′ca, . . . ,M
′
ca;M′ca =

M2

4
+

M
2
−1}

and hence Mca = 2M′ca +1 = O(M2).

Perturbation and Size of Support: The presence of perturbation has a non trivial effect on the

size of the recoverable support. By a simple equations-versus-unknown argument, it can be seen

that for nested samplers, the number of distinct equations in (2.20) is still O(M2), whereas the

number of unknowns is M +K, since we have M unknown values for the perturbation and K

unknown values for the spectral lines. Since the number of unknowns only increases by O(M),

it may be still possible to identify K = O(M2) spectral lines in presence of perturbations. In

this Section, we present a more formal study of the effect of perturbation, based on the Cramér

Rao bound, in which we study conditions under which the Fisher Information Matrix (FIM) is

guaranteed to be non singular, even in presence of perturbation. The analysis is not based on any

particular algorithm, rather on the received signal model itself, which alone determines the Fisher

Information Matrix.
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2.2.2 Effect of Perturbations: A Cramér Rao Bound Based Study

Recall that under the grid-based model, the sampled line spectrum process is given by

y[l] = Agrid(δ)x[l]+w[l], 1≤ l ≤ L (2.22)

We assume that x[l], l = 1,2, · · · ,L are i.i.d random vectors following the normal distribution

N (0,Rx), where Rx is a diagonal matrix satisfying Rx = diag(γ). Let w[l] be i.i.d Gaussian

vectors, independent of the sources signals and distributed as N (0,σ2
wI). The signal y[l] is

therefore distributed as

y[l] i.i.d∼ N (0,Agrid(δ)RxAH
grid(δ)+σ

2
wI︸ ︷︷ ︸

Ry

)

In the sequel, we will assume the noise power σ2
w to be known, since our goal is to understand

how the presence of unknown δ affects the recovery of the desired parameter γ.

Remark 3. In line spectrum estimation, a typical assumption is that xk =Cke jφk , where Ck > 0

and φk
∣∣K
k=1 are i.i.d random phases, uniformly distributed in the range [0,2π). Although this

model also leads to a line spectrum process, for the ease of exposition, we assume that xk are

normally distributed as stated above. This leads to a Gaussian model for the overall process y

and the associated Fisher Information Matrix becomes analytically tractable.

Comment on Notations: For simplicity of notation, we will use Agrid, Aca, Au
ca instead of Agrid(δ),

Aca(δ), Au
ca(δ), respectively, in the sequel. Moreover, we will use the notations Agrid,0,Aca,0,Au

ca,0

to indicate the Agrid,Aca,Au
ca evaluated at δ = 0.

Cramér Rao Bound

Singularity of the Fisher Information Matrix implies non existence of a consistent estima-

tor for γ and δ [SM01a], unless the parameters satisfy certain constraints. Hence, non-singularity
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of the FIM is a necessary condition for any algorithm to be able to exactly recover γ (in the limit

as L→ ∞). However, it is non trivial to derive explicit conditions relating the array geometry and

the range of parameters, for which the FIM is guaranteed to be non singular. In the following, we

will conduct a deeper study of the algebraic structure of the perturbed FIM and derive explicit

conditions under which such a guarantee will hold. As an important result, we will derive exact

conditions on the size of the grid Nθ, size of the co-array Mca, under which, the FIM will be

shown to be non singular for almost all values of δ and γ. We would like to point out the following

facts about the results derived in this Section:

• Sparsity Not Assumed: Although the parameter γ may be sparse (if K < Nθ), we do not

impose a sparse prior on the model for deriving the FIM and hence the guarantees hold

regardless of our prior knowledge about the sparsity of γ. In other words, under the derived

conditions, a Maximum Likelihood method can recover a sparse γ (as L→ ∞) from an

overcomplete observation model (2.12) with Nθ > M, without assuming it to be sparse.

• Number of spectral lines not assumed to be known: We also do not assume knowledge of

the number of spectral lines, K, in deriving the FIM. Hence, the guarantees hold uniformly

for any number of sources, as long as the established conditions are satisfied.

We now turn to deriving the desired Cramér Rao bound. The probability density function (pdf) of

the received signal is given by

f (y;ψ) =
1

πM det(Ry)
e−yHRy

−1y. (2.23)

where ψ = [γT δ
T ]T is the vector of parameters and Ry is a function of ψ. The Fisher Information

Matrix (FIM) is defined as

Ji j = E
(

∂

∂ψi
ln f (y;ψ)

∂

∂ψ j
ln f (y;ψ)

)
. (2.24)
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Let us denote W = Ry
−T ⊗Ry

−1, and define

H , [vec(Rδ2) vec(Rδ3) . . . vec(RδM)],Rδi ,
∂Ry

∂δi
(2.25)

The following theorem provides necessary and sufficient conditions under which the FIM in

(2.24) is non singular:

Theorem 3. Denoting ψ = [γT δ
T ]T as the parameters to be estimated, the FIM defined in (2.24)

is invertible, iff the matrix B, defined as follows, is full column rank:

B = [Aca H] (2.26)

Proof. When the observed signal consists of L i.i.d zero mean Gaussian random vectors with

covariance matrix Ry, the corresponding Fisher Information Matrix (FIM) can be derived as

[JGO99b]

1
L

Ji j = vec(
∂Ry

∂ψi
)H(Ry

−T ⊗Ry
−1)vec(

∂Ry

∂ψ j
) (2.27)

The Fisher information Matrix (FIM) for our model (2.23) can be divided into blocks correspond-

ing to parameters γ and δ as:

J =

Jγγ Jγδ

JH
γδ

Jδδ

 (2.28)

Notice that

vec(
∂Ry

∂γi
) = vec

(
a(ωi,δ)aH(ωi,δ)

)
= a∗(ωi,δ)⊗a(ωi,δ)
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Hence, from (2.27) and (2.25), we obtain

Jγγ = LAH
caWAca, Jγδ = LAH

caWH, Jδδ = LHHWH (2.29)

The FIM J can therefore be expressed as

J = LBHWB (2.30)

Since W = Ry
−T ⊗Ry

−1 is positive definite, it follows that rank(J) = rank(B). Hence J is non

singular (i.e. has rank Nθ +M−1) if and only if B ∈ CNθ+M−1 has full column rank.

For the unperturbed signal model, the FIM is given by Jγγ and the following corollary

establishes a sufficient condition for non singularity of the FIM.

Corollary 1. (FIM in absence of perturbation) The matrix Jγγ is invertible if Nθ ≤Mca.

Proof. From (2.29), rank(Jγγ) = rank(Aca,0), since W is positive definite. Hence, Jγγ is invertible

if and only if rank(Aca,0) = Nθ. Since Aca,0 has Mca distinct rows which form a Vandermonde

submatrix, Aca,0 is full column rank if Nθ ≤Mca, which concludes the proof.

Remark 4. If the array manifold is such that Aca,0 contains a Vandemonde matrix, and other

rows of Aca,0 are only repetitions of rows from that Vandermonde matrix (in other words, the

co-array does not contain any “holes”), the condition Nθ ≤Mca also becomes necessary for Jγγ

to be invertible. This happens for uniform and nested samplers, but not for coprime samplers.

Remark 5. (Cramér Rao Bound) If the FIM is invertible, the Cramér Rao bound can be

obtained by computing the inverse of J. Moreover, using the Schur complement of J, the CRB
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corresponding to the parameter γ can be written as follows

1
L

(
CRBγγ

)−1
=

1
L

(
Jγγ−JγδJ−1

δδ
JH

γδ

)
= AH

caWAca−AH
caWH

(
HHWH

)−1 HHWAca

= AH
caW1/2

Π
⊥
W1/2HW1/2Aca, (2.31)

where Π⊥W1/2H is the projection matrix onto the null space of W1/2H.

Necessary Condition on Size of Grid

The size of the co-array alone dictates the non singularity of FIM in absence of perturba-

tion. However, for a perturbed signal model, it only imposes a necessary condition (not sufficient)

on the invertibility of the FIM.

Corollary 2. If Nθ > |Sca|, J is singular.

Proof. Since |Sca| denotes the number of distinct elements in the perturbed co-array, it also

represents the number of distinct rows of Aca. Hence rank(Aca)≤ |Sca| and when Nθ > |Sca|, Aca

is necessarily column rank deficient, implying B is also column rank deficient. Therefore, by

Theorem 3, J is singular.

Remark 6. Singularity of the FIM matrix J implies that there exists no unbiased estimator for ψ

with finite variance [SM01a]. The above necessary condition imposes a restriction on the size of

the grid with respect to the size of the co-array. Recall that, in deriving J, the number of sources

K was assumed unknown. Furthermore, γ was not even assumed to be sparse; so in principle,

the number of unknowns in γ is indeed the number of points (Nθ) on the entire grid. Hence, the

necessary condition implies an equation-versus-unknown type of bound, where the number of

equations are given by the distinct elements of the co-array. If the grid size Nθ becomes larger

than |Sca|, we will necessarily need to impose sparse prior on γ for it to be identifiable. We will
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further elaborate on this point in Sec. 2.2.3.

Sufficient Conditions for Invertible FIM

We now derive sufficient conditions under which the matrix B is full column rank. Note

that J is a function of δ, and our goal will be to study for what range of values of δ, we can argue

its non singularity for almost all γ ∈ RNθ . We divide our analysis into two cases: In the first

scenario, we find sufficient conditions under which J is invertible for almost all γ when δ = 0.

Based upon this result, we will argue that under the same conditions, J will be invertible for

almost all δ ∈ RM−1 as well.

Notice that studying the non singularity of J for δ = 0 is fundamentally different from

a problem setting where the location of the sensors are known to be not perturbed. We call the

latter the “unperturbed problem”. More precisely, in the unperturbed problem, the FIM is equal

to the top left block of Jγγ of J. Hence, the unpertubed problem is identifiable if and only if Jγγ is

invertible, which simply reduces to Aca,0 being full column-rank. However, in our case, since δ is

an unknown parameter, the invertibility of Jγγ does not imply the invertibility of J at δ = 0.

Non Singularity of J at δ = 0 Establishing sufficient conditions under which J is non singular

at δ = 0 requires careful study of the co-array structure of the physical antenna array under

question, and the details vary, depending on the array geometry. The following theorems state our

main results for uniform sampling and a slightly modified version of nested sampling:

Theorem 4. (Uniform Sampling) For uniform sampling, if Nθ ≤ 2M−2, J|δ=0 is invertible for

almost all γ ∈ RNθ .

This implies a rather small grid size for the ULA. However, for nested samplers, the grid

size (for which J|δ=0 is guaranteed to be non singular) can be as large as O(M2). To prove this,

we use a slightly modified version of the original nested sampler (assuming M is even), where the
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sampling instants are given by di where

di = (i−1), di+M
2
=

M
2

i (2.32)

for 1≤ i≤M/2. In this case, we can verify that Mca = M2/2+1. For the original nested array

[PV10], Mca = M2/2+M−1. We use this configuration to simplify the proof of the following

theorem, which establishes conditions for non singularity of the FIM associated with this modified

array:

Theorem 5. (Modified Nested Sampling) For a modified nested sampler (given by (2.32), with

even M), if Nθ ≤M2/2, J|δ=0 is invertible for almost all γ ∈ RNθ .

Proof. The proofs can be found in Appendices 2.6.1 and 2.6.2.

Remark 7. We would like to point out that a slightly stronger result can be established for the

original nested array (which has more degrees of freedom, Mca = M2/2+M−1), for which the

grid size can be shown to be Nθ ≤Mca−M/2 = M2/2+M/2−1. The proof technique will be

similar to the one shown in Appendix 2.6.2, with some modifications, which we avoid for ease of

exposition.

Remark 8. This result indicates that for grids of size O(M2) (as long as the size is less than

M2/2), J is guaranteed to be non singular for almost all γ even when we do not know the number

of sources K. This holds for overcomplete grid-based array manifolds A where the number of

grid points can be as large as O(M2), without the apriori assumption that the source scene is

sparse.

Non Singularity of FIM: δ 6= 0 The non singularity of J for almost all δ immediately follows

from the conditions developed for δ = 0:

Theorem 6. For uniform and nested sampling, J is invertible for almost all δ∈RM−1 and γ∈RNθ ,

if Nθ ≤ 2M−2 (for uniform sampler) and Nθ ≤M2/2 (for modified nested sampler).
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Proof. Since elements of J are analytic functions of δ, det(J) is also an analytic function of

δ. Therefore, as long as as det(J) is not trivially zero for all δ, det(J) has isolated zeros in δ

[APP11]. However, in Theorems 4, and 5, we have shown that for uniform and modified nested

sampling, det(J) 6= 0 at δ = 0 as long as Nθ ≤ 2M−2 and Nθ ≤M2/2 respectively. This rules

out the possibility that det(J) is trivially zero ∀δ. Therefore, the zeros of det(J) are isolated in

RM−1, which has a total measure of zero. Thus, for almost all δ ∈RM−1 and γ ∈RNθ , det(J) 6= 0,

i.e., J is invertible.

Thus, we have established the following key results regarding source localization using

perturbed ULA and nested arrays:

• If we do not assume the number of spectral lines K to be known (or, equivalently, do not

assume the vector of source powers, γ, to be sparse), Nθ ≤ 2M−2 is sufficient for J to be

non singular for almost all choices of γ and δ.

• For nested sampliers, under the same assumption of K to be unknown, we can ensure

the invertibility of J for almost all choices of γ and δ using a much larger overcomplete

dictionary, where Nθ = O(M2).

2.2.3 Non Singularity of FIM for Sparse Vectors

The guarantees for non singularity of J established so far holds for almost all choices of

γ ∈ RNθ . However, they do not necessarily ensure non-singularity of J at a sparse γ, since the set

of all sparse γ has zero measure in RNθ . We therefore need to refine our arguments to make them

applicable to the set of sparse γ as well. This can be studied for two distinct range of values of Nθ.

Non singularity for small grid size

In this case, we assume that Nθ ≤ 2M−2 for uniform samplers, and Nθ ≤M2/2 for the

modified nested sampler. We show that the Fisher Information Matrix is invertible at almost all
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sparse γ. In particular, we have the following result:

Theorem 7. Assume δ = 0 and consider the grid based model (2.13). For almost all sparse

vectors γ ∈ RNθ with ‖γ‖0 = K,K < Nθ, where Nθ ≤ 2M−2 for uniform samplers and Nθ ≤ M2

2

for modified nested samplers, J is invertible for almost all δ ∈ RM−1.

Proof. The proof can be found in the Appendix 2.6.3.

Singularity and Identifiability for Nθ > Mca

According to Corollary 2, when Nθ > |Sca|, the Fisher Information Matrix is necessarily

singular. As we will show next, the parameter γ also becomes non identifiable in this case, and it

becomes necessary to assume priors (such as sparsity) on γ to render it identifiable.

Definition 1. Let f (y;γ,δ) be the probability density functions of y parameterized by (δ,γ). The

parameters (δ,γ) are identifiable if f (y;γ,δ) = f (y;γ′,δ′) implies δ = δ
′,γ = γ′.

Assuming that y has zero mean Gaussian distribution, the above definition of identifiability

boils down to the uniqueness of the covariance matrix with respect to the parameters. In particular,

for our model (2.23), uniqueness of the vectorized covariance matrices implies

Aca(δ)γ = Aca(δ
′)γ′⇔ δ = δ

′,γ = γ
′ (2.33)

We will analyze the consequences of non identifiability for two cases: δ = 0 and δ 6= 0.

1. δ = 0: In this case, Aca,0 contains a Vandermonde matrix with Mca distinct rows. One way

to ensure identifiability of γ is to assume that it is K− sparse (or, equivalently, assume the

number of sources to be known). In such a case, Aca,0γ = z will permit a unique solution

in γ, if K < k-rank(Aca)
2 , (see [DET06]), where k-rank(.) represents the Kruskal rank of a

matrix. Owing to the Vandermonde structure of Aca,0, its Kruskal rank is Mca. Hence,
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in this case, we can ensure identifiability of γ for δ = 0, by assuming it to be sparse and

ensuring that K < Mca/2.

2. δ 6= 0: Finding explicit sufficient conditions for identifiability in this case is a nontrivial

problem and can be a topic for future research. This is due to the fact that the dictionary

Aca itself is a function of δ and it no longer has a Vandermonde structure, which makes

it very difficult to ascertain its Kruskal rank. However, assuming the perturbation to be

small, we can obtain sufficient conditions for identifiability that relate δ, γ and the smallest

singular value of the unperturbed manifold Aca,0, as discussed next.

Sufficient conditions for identifiability for small perturbations

In this section, we derive sufficient conditions for (2.33) to hold, in terms of an upper

bound for δ.

Definition 2. For a vector δ ∈ RM, define ∆ as



diag(δ)−δ1I 0 · · · 0

0 diag(δ)−δ2I · · ·0
...

... . . . ...

0 0 · · · diag(δ)−δMI


(2.34)

Also, define ∆
′ by replacing the vector δ with δ

′ ∈ RM in (2.34).

Assuming that δ is small we can write the linear approximation of Aca(δ) as

(Aca(δ))(r−1)M+s,k ' e j(dr−ds)ωk(1+(δr−δs) jωk),
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for 1≤ r,s≤M, which can be also written as

Aca(δ)' Aca,0 +∆Aca,0ϒ (2.35)

where ϒ = j diag(ω1, · · · ,ωNθ
).

For this linearized model, we now proceed to establish sufficient conditions such that

(2.33) holds. We assume that the number of sources is known to be at most K, so that all vectors

γ in our ambiguity set are at most K−sparse. Suppose there exists δ
′ 6= δ and γ′ 6= γ (both at most

K− sparse) such that

(Aca,0 +∆Aca,0ϒ)γ = (Aca,0 +∆
′Aca,0ϒ)γ′ (2.36)

Let S,S′ denote the supports of γ,γ′, respectively. Moreover, let S1 = S\S′,S2 = S′\S,S12 = S∩S′,

and k1,k2,k12 be the cardinality of S1,S2,S12 respectively. Let Ãca,0 and ϒ̃ be the submatrices of

Aca,0 and ϒ, respectively, comprised by the columns indexed by S1∪S2. Define γi (or γ′i) be the

vector comprised by the elements of γ (or γ′) which are indexed by Si, where i = 1,2,12. We can

rewrite (2.36) as

(Ãca,0 +∆Ãca,0ϒ̃)


γ1

γ12

0

= (Ãca,0 +∆
′Ãca,0ϒ̃)


0

γ′12

γ′2


which is equivalent to

Ãca,0


γ1

γ12− γ′12

−γ′2

=−∆Ãca,0ϒ̃


γ1

γ12

0

+∆
′Ãca,0ϒ̃


0

γ′12

γ′2

 (2.37)
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Let us assume that each nonzero entry of γ and γ′ lie within the range [γmin γmax]. Moreover,

assume that each entry of δ and δ
′ is bounded above by δmax. We have

‖LHS‖ ≥ σmin(Ãca,0)
√

k1γmin (2.38)

Moreover,

‖RHS‖ ≤σmax(∆)σmax(Ãca,0ϒ̃)
√

k1 + k12γmax (2.39)

+σmax(∆
′)σmax(Ãca,0ϒ̃)

√
k2 + k12γmax (2.40)

in which LHS, RHS refer to the left hand side and right hand side of the equation (2.37), and

σmin(.),σmax(.) indicate the smallest and largest singular value of a given matrix, respectively.

Recall that wk =
2πk
Nθ

. Hence, σmax(ϒ̃)< 2π. We also have σmax(Ãca,0ϒ̃)< 2πσmax(Ãca,0)<

2π‖Ãca,0‖F < 2πM
√

2K and σmax(∆)≤ 2δmax.

Hence, a sufficient condition for identifiability is

‖LHS‖> ‖RHS‖

From (2.38) and (2.39) we can say that one way to ensure ‖LHS‖> ‖RHS‖ is to have

σmin(Ãca,0)
√

k1γmin >

4πδmax(
√

k1 + k12 +
√

k2 + k12)M
√

2Kγmax

which is true if

δmax <
σmin(Ãca,0)

4πM
γmin√

2Kγmax
(2.41)
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Considering all possible supports, (2.41) is satisfied if

δmax <
σ̃min

4π
√

2KM
γmin

γmax
(2.42)

where σ̃min = minσmin(Ãca,0) over all submatrices Ãca,0 with 2K columns.

We now summarize this result as the following theorem:

Theorem 8. Suppose |δm| ≤ δmax for m = 1, · · · ,M, and δmax to be small so that we can approx-

imate Aca(δ) as (2.35). Moreover, assume that ‖γ‖0 ≤ K and the non-zero elements of γ lie in

the range [γmin γmax]. The parameters [γ,δ] are identifiable for any grid size Nθ, if the maximum

perturbation value obeys (2.42).

2.2.4 Effect of Finite Temporal Samples on Cramér-Rao Bound

Given the unified signal model (2.14) for spatial and temporal line spectrum estimation,

we now study the performance of sparse (such as nested) and uniform samplers as a function of

the number (L) of temporal snapshots. For temporal line spectrum, we fix the number of samples

(M) in each block, and study the behavior of the CRB as we increase the total number of blocks

L. As argued earlier, since the support of γ reveals the source directions (on the grid), successful

recovery of γ also ensures successful recovery of source directions for the grid based model.

Recall from (2.14) that for spatial spectrum estimation, we consider L time snapshots of

the signal received at an array of M sensors. Similarly, for temporal line spectrum estimation, we

collect a total of ML measurements over L blocks, with M samples in each block. For both cases,

we have the following measurement model:

y[l] = Agrid,0x[l]+w[l],1≤ l ≤ L
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We assume that the L temporal snapshots (or equivalently, the measurements across L blocks) are

independent. In particular, we assume that {y[l]}L
l=1 are L i.i.d random vectors distributed as

y[l] i.i.d∼ N (0,Agrid,0RxAH
grid,0 +σ

2
wI), (2.43)

where Rx = diag(γ). Since our goal in this section is to study the effect of L on the Cramér Rao

bound, we consider an unperturbed model (i.e. δ = 0), and hence, the FIM is a function of only

the parameter γ. From (2.28), the FIM for γ is readily given by

Jγγ = L
(

AH
ca,0WAca,0

)
(2.44)

where Aca,0 and W are not functions of L. Therefore, we have the following theorem on the CRB

of γ as a function of L:

Theorem 9. Consider the measurement model (2.43), where L either represents the number of

temporal snapshots collected at an array of M sensors (for spatial line spectrum estimation),

or the number of blocks or periods (with M samples in each period) over which measurements

are collected using a periodic non-uniform sampler (for temporal line spectrum estimation).

Assuming that the measurements y[l],1≤ l ≤ L are distributed as (2.43), the CRB of γ exists, and

is proportional to 1/L if and only if Nθ ≤Mca.

Proof. The CRB exists if and only if Jγγ is non-singular, which is true if and only if Nθ ≤Mca

(see Corollary 1). In this case, J−1
γγ = 1

L

(
AH

ca,0WAca,0

)−1
which establishes that the CRB is

proportional to 1/L.

Since the CRB goes to zero as L→ ∞ (as long as Nθ ≤Mca), it also implies that asymp-

totically in L, the Maximum Likelihood Estimator of γ (which asymptotically attains the CRB)

will correctly identify γ and therefore recover the source directions as well (by identifying the

support of γ).
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Role of Array Geometry: The array geometry plays a role in ensuring the existence of the CRB,

since Mca is completely determined by the geometry. Hence, for a ULA, the CRB exists if and

only if Nθ ≤ 2M−1 whereas for nested array, the CRB exists if and only if Nθ ≤M2/2+M−1.

However, in the regime Nθ ≤Mca, the CRB decays to 0 with O(1/L) irrespective of the array

geometry.

Need for independence across blocks: For line spectrum estimation, the CRB behaves differ-

ently with respect to M (number of samples within a block) and L (the number of blocks). The

assumption of independence across blocks is critical to ensure that the CRB decays to 0 as L→∞

(at the rate 1/L), when M is held constant. However, the CRB does not necessarily decay to zero

if we instead let M→ ∞ (and hold L constant). This is because within a block, the M samples are

highly correlated, which can lead to saturation of the CRB at a non zero value as M→ ∞. We

will exhibit this effect in our numerical simulations.

2.2.5 Experimental Results

We conduct two sets of experiments to 1) Study the effect of perturbed sampling on

Cramér Rao bounds for line spectrum estimation with sparse and uniform samplers, and 2) Study

the behavior of Cramér Rao Bounds with increasing the number of temporal samples for temporal

spectrum estimation.

Perturbation in Spatial Line Spectrum Estimation

We evaluate the Cramér Rao bound corresponding to the parameter γ in presence of

perturbation δ, and compare it with the RMSE of a maximum likelihood estimator for jointly

estimating γ and δ. Following [VT04, Section 8.5], the log-likelihood function corresponding to

our problem can be written as

L(δ,γ) =−[lndetRy + tr(Ry
−1R̂y)] (2.45)
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where Ry = Agrid(δ)diag(γ)Agrid(δ)
H +σ2

wI and R̂y =
1
L ∑

L
l=1 y[l]yH [l] is the sample covariance

matrix. We assume that the noise variance σ2
w is known. We find the optimum values for γ and

δ by maximizing L(δ,γ) subject to the constraint γ ≥ 0, using fmincon function of MATLAB.

Notice that the sparsity of γ is not exploited since we do not use a regularized log likelihood

function.

We consider different scenarios with respect to the number of grid points, number of

sensors, array structure, and sparsity of the sources. Throughout the simulations, we consider

three different arrays: a ULA, a nested array, and, and a co-prime array (with coprime numbers

N1 = 4 and N2 = 7), all with the same number of sensors, M = 14 (for coprime array, the number

of sensors is M = 2N1 +N2− 1). In all cases, we assume the spatial frequencies to lie on a

uniform grid with Nθ grid points. We study the performance for different values of Nθ. The

variance of noise is fixed at σ2
w = 0.1 in all the experiments. We assume the spatial perturbations

to be δ = αδ0, where

δ0 = 0.1× [0,1,3,−1,−3,1,−4,2,6,9,−3,4,5,−7]T ,

and α is a scalar, which determines the strength of the perturbation. We define RMSE of

the maximum likelihood estimator as
√

∑
Ntests
i=1

‖γ̂−γ‖2

NθNtests
, where γ̂ is the estimated γ, and Ntests

indicates the number of Monte-Carlo simulations for each value of α or L. In all the simulations,

Ntests = 100. Moreover, in all the plots, CRB is computed from the trace of the Schur complement

defined in (2.31).

In the first simulation, we choose Nθ = 35. We consider two scenarios: in the first setting,

we have as many sources as the grid size (i.e. K = Nθ), all with unit power. In the second case,

(which we will refer to as the sparse setting), we assume that there are only K = 4 active sources

with powers equal to one. In this case, the support of γ is given by S = {3,7,11,16}. As stated

earlier, the ML algorithm does not assume γ to be a sparse vector apriori. Fig. 2.5 shows the
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RMSE of the ML estimate relative to the Cramér Rao bound for both sparse and non-sparse

settings. The label “n” indicates nested array while the label “c” corresponds to the coprime

array, both with M = 14 sensors. Furthermore the label “s” indicate the case where γ is sparse

with K = 4. Since Nθ > 2M−1, the CRB for ULA does not exist and is not plotted. It can be

seen that the CRB for both coprime and nested arrays do not show significant variation over

the range of α considered. However, the CRB for K = 4 (sparse setting) is significantly lower

than that for K = Nθ (non-sparse setting) However, as we increase the number of snapshots L,

the RMSE of the ML estimator can be seen to decrease as expected, and its MSE approaches

the corresponding Cramér Rao bound. Moreover, the CRB for the sparse setting is smaller than

that for the non-sparse model, although sparsity is not exploited as a prior. In Fig. 2.6, we

compare the CRB for ULA, nested and coprime arrays as a function of α when Nθ = 25. Since

Nθ = 25 < 2M− 2, the CRB for ULA exists and can be compared against that for nested and

coprime arrays. It can be seen that the coprime array exhibits the lowest CRB over this range of

α whereas the ULA has the highest CRB.

Our experiments so far indicate that in the regime Nθ < 2M−1, the CRB for both ULA

and sparse arrays are very close to each other. However, the main distinction between these

samplers is in the way their CRBs behave as the grid size Nθ increases. Our second experiment

demonstrates this, where we compare the CRB of ULA, nested and coprime arrays as a function

of Nθ (keeping M constant) and depict the result in Fig. 2.7. Here, α = 0.5 and L = 102. It can

be seen that beyond a certain grid size, the CRB corresponding to each type of array suddenly

jumps to very large values, indicating that the FIM becomes singular beyond that point. We also

observe that the value of Nθ at which this happens, is much smaller for the ULA than that for the

nested and coprime arrays. This supports the fact that nested array is capable of resolving O(M2)

sources even in the presence of perturbations, whereas ULA fails when Nθ > 2M−1 = 27. Also,

the FIM for coprime arrays becomes singular at a smaller grid size compared to a nested array

with same number of sensors.
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In the third simulation, we examine the probability of FIM being invertible for different

number of sensors and grid sizes for ULA and the nested array. For this experiment, we again

consider K = Nθ sources located on the grid points, all with powers equal to one. In each trial, we

randomly generate a δ whose entries are uniformly chosen from the range [−0.5 0.5] (keeping

δ1 = 0). For every M and Nθ, we count the events for which J is invertible, and average the result

over 100 runs. The result is demonstrated in Figure 2.8. The white pixels represent values of

(M,Nθ) for which J is invertible with high probability. The blue line indicates the value of M as a

function of Nθ, below which the FIM evaluated at δ = 0 is nonsingular. This value is computed

empirically from the experiments. The red line, however, shows the theoretical bound on Nθ that

we derived in Theorems 4, 5 (We used the bound proposed in Remark 7 for nested array). We see

that for a ULA, the blue line and the red line match exactly, meaning that the sufficient condition

that we derived in Theorem 4 is also necessary. However, there is a small gap between the red and

blue lines for the nested array, indicating the possibility of a gap between necessary and sufficient

condition for non singularity of J at δ = 0. Moreover, we observe that for both ULA and nested

array that there is a white area under the red and blue lines which represents the region where

J
∣∣
δ6=0 is invertible, although J

∣∣
δ=0 is not. This happens due to the fact that the perturbations can

slightly increase the rank of Aca(δ). Therefore, J can be invertible even though Aca,0 is not full

column rank.

Effect of Finite Temporal Samples on CRB

We now study the CRB as functions of both L (number of independent blocks or snapshots)

and M (the number of samples within each block) and demonstrate that it behaves quite differently

with respect to these two quantities. The behavior of the CRB with respect to L is depicted in

Fig. 2.5 (b), which shows that as we increase L, the CRB monotonically decays to zero at the rate

1/L, verifying the claim in Theorem 9. We next investigate the effect of increasing the number

(M) of measurements in each block, while keeping L fixed at L = 1. We choose Nθ = 40, and
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σ2
w = 0.25. The power of the active sources are assumed to be equal to 1, and they are uniformly

located in the range [−π

6
π

6 ]. In Fig. 2.9, we separately plot the CRBs corresponding to the

zero and the non-zero elements of γ, as functions of M. As can be seen, the CRB corresponding

to the zero and non-zero elements of γ exhibit completely different behaviors. For the chosen

parameters, the CRB for the zero elements monotonically decrease as we increase M. However,

the CRB corresponding to the non-zero elements do not decrease below a certain non-zero limit

(which is 1 in this case) and they essentially saturate. This means that the CRB corresponding to

non-zero powers remain strictly lower bounded by a positive constant even as M→ ∞. Hence,

by increasing the size of the blocks (for temporal line spectrum estimation), or the number of

antennas (for spatial line spectrum estimation), it is not possible to reliably estimate the parameter

γ. We will analytically characterize this interesting behavior in future.

2.2.6 Conclusion

In this section, we studied the effects of perturbations and finite sample on the performance

of coprime and nested sensing, in both spatial and temporal domains. For DOA estimation with

spatial sensor arrays, the perturbations cause uncertainty in sensor locations and are treated as

unknown deterministic parameters of the problem. We established verifiable conditions under

which the FIM is guaranteed to be non singular for such a model. For nested arrays with M

sensors, the FIM continues to be non singular as long as the grid size is O(M2). We separately

considered the case of sparse sources and established sufficient conditions for identifiability even

when the FIM becomes singular. We also studied the effect of finite number of temporal samples

on the CRB, for both temporal and spatial line spectral estimation, and showed that the CRB

converges to zero as we increase the number of snapshots for spatial line spectrum estimation (or

equivalently, the number of blocks for temporal line spectrum estimation).
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Figure 2.5: The RMSE of ML estimate compared with CRB in different cases. In these plots,
“c”, “n” indicate coprime and nested arrays, respectively. Moreover, “s” indicates the cases

where the sources are sparse with K = 5 (without using this sparsity in solving ML problem or
finding the CRB).
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Figure 2.7: The CRB vs Nθ for nested, co-prime (with co-prime numbers 4,7) and ULA with
M = 14 sensors (α = 0.5,L = 102).
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Figure 2.8: The probability of FIM being invertible over random choices of δ for different
number of sensors (M) and different grid sizes (Nθ). The blue line indicates the M above which

J
∣∣
δ=0 is invertible. The red line shows the theoretical bounds we derived in Theorems 4, 5.
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coprime arrays respectively.
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2.3 Saturation of the Cramér Rao Bound

In this section, we show that the CRB exhibits saturation with respect to the number

of spatial measurements, i.e., it can be lower bounded by a non-negative quantity that does

not go to zero even when the number of spatial measurements tends to infinity. Moreover, the

CRB corresponding to the nonzero and zero elements of the sparse hyper-parameter can exhibit

different behaviors. While the CRB for the non-zero elements always saturate regardless of

the type of dictionary, saturation of the CRB for zero elements provably happens when the

dictionary has normalized columns. For an unnormalized dictionary, singular values of certain

sub-dictionaries determine if saturation can happen, prompting future research into this interesting

phenomenon.

We consider a more general setting compared to the Sections 2.3, such that our problem

model can be also applicable to the more general problem of Sparse Bayesian Learning (SBL)

[Tip01, TF+03, WR04, WR07], and is not restricted to Direction-of-Arrival estimation type of

problems. Here, we briefly describe this more general problem setting:

Sparse Bayesian Learning (SBL) constitutes an important family of Bayesian algorithms

where the goal is to estimate a sparse signal x ∈ FN , from compressed measurement y ∈ FM

acquired as

y = Ax+w (2.46)

Here A ∈ FM×N (M < N) denotes an underdetermined dictionary and w ∈ FM×1 denotes the

additive noise. Throughout this section, F can be either the set of real (R) or complex (C) numbers.

Unlike traditional Compressed Sensing algorithms [C+06, Don06] that only exploit the sparsity

of x to solve the ill-posed problem (2.46), SBL algorithms impose a suitable prior distribution on

x (that also models its sparsity) and computes the corresponding posterior estimate. Alongside

recovering x, SBL algorithms also allow estimation of certain hyper-parameters characterizing
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the prior distribution of x that crucially control its sparsity as well as correlation structure [ZR11].

The authors in [PM13] investigated fundamental performance limits of the SBL framework

by deriving appropriate Cramér Rao Bounds (CRB) on the mean-squared error (MSE) of SBL

estimators for x and associated hyper-parameters. However, the analytical behavior of these

bounds as a function of number of measurements M, have not been investigated so far. Of

particular interest would be to understand if increasing the number of measurements M enables

us to estimate the hyper-parameters with proportionately decreasing MSE that converge to 0?

As we will show in this Section, the answer is a surprising “no”, implying that even when M

goes to infinity, the CRB does not decrease below a certain positive quantity, and it essentially

saturates. Hence, even with infinite measurements, no unbiased estimator exists that can exactly

recover the hyper-parameter. We mathematically characterize this saturation behavior of the CRB

corresponding to both zero and nonzero elements of the sparse hyper-parameter.

Related Work. Cramér-Rao Bounds for estimating sparse signals in presence of noise have

been derived in [BKT09, BHE10]. However, these results do not consider a stochastic model

(or prior) for x and hence cannot be applied for analyzing SBL. In [PM13], for the first time,

CRB expressions for the SBL framework were derived, assuming different statistical models.

In [PV14a], the authors proved that the sparse hyper-parameter can be identifiable even when

the number of non-zero elements of x exceed M, and derived corresponding CRB expressions.

This paper conducts further analysis of the CRB for sparse hyper-parameters, and mathematically

justifies its saturation behavior (which manifests differently for the non-zero and zero elements).

2.3.1 Statistical Model for SBL

Assume that the signal x is a random vector distributed as x ∼ FN (0,P) where P =

diag(p1, p2, · · · , pN), and we denote p = [p1, · · · , pN ]
T as the vector of hyper-parameters, repre-

senting the power of the elements of x. The vector p is assumed to be sparse where S denotes the

support of p, with |S |= K, i.e., p contains only K nonzero numbers. Furthermore, let w represent
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white Gaussian noise with distribution FN (0,σ2
wI), which is uncorrelated with x. We henceforth

assume that the noise variance σ2
w is also known. Under these assumptions, one can write the

probability density function (pdf) of y as

pY;p(y;P) = [(2π)M(det R)]−ηFe−ηFyHR−1y (2.47)

where R is the covariance matrix of the random variable y, given by

R = APAH +σ
2
wI,

and ηF = 1 for F= C, and ηF = 1
2 for F= R.

In SBL, both the signal x, and the hyper-parameter p can be recovered by respectively

solving the so-called Type I, and Type II estimation problems. In this Section, we are primarily

interested in estimating the underlying hyper-parameter p that characterize the signal distribution

(as well as its sparsity).

Review of Cramér Rao Bounds For Hyperparameter Estimation

It is well known that the Cramér Rao Bound (CRB) serves as a fundamental lower bound

on the Mean Squared Error (MSE) of any unbiased estimator for a (deterministic) parameter.

In [PM13], various CRB expressions (such as Hybrid, Bayesian and Marginalized CRBs) are

derived under different statistical assumptions and models. Since our goal in this Section is to

analyze the CRB for the hyperparameter p, we consider the marginalized CRB (MCRB) for p

derived in [PM13]. The authors in [PM13] also show that among all CRB expressions, the MCRB

provides the tightest lower bound.

The MCRB for p can be derived using the marginalized distribution of y given by (2.47)

and assuming that the noise power σ2
w is known. In this case, p is the only unknown parameter

characterizing pY;p(y;P), and the corresponding Fisher Information Matrix (FIM) J can be shown
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to be of the form [PV14a]

J = ηFAH
caWAca (2.48)

where Aca = A∗�A, W = R−T ⊗R−1. The matrix Aca denotes the Khatri-Rao product (or

column-wise Kronecker product) of the dictionary A and crucially controls important properties

of J. By considering the rank of Aca, the authors in [PV14a] have been able to provide the

following necessary and sufficient condition under which the MCRB for p exists:

Theorem 10. [PV14a] The FIM J given in (2.48) is non-singular if and only if N = rank(Aca).

Hence, as long as N = rank(Aca) (which can imply N = O(M2) for certain dictionaries),

the CRB exists and can be used to lower bound the MSE of any unbiased estimate of p.

2.3.2 Saturation of the MCRB

For many overdetermined estimation problems (N ≤M), the CRB typically converges

to 0 asymptotically as the number of measurements M→ ∞, implying that the parameter can be

estimated with zero MSE (as M→∞) using appropriate estimators (such as Maximum Likelihood

Estimator). However, we will now show that the MCRB for SBL (that typically involves a

compressive measurement model with N > M) can saturate at a value strictly bounded away

from zero, even when M→ ∞. This behavior implies that it is not possible to find an unbiased

estimator that can recover p with zero MSE as the number of measurements grows infinitely large.

In this regard, we will show that the non-zero and zero elements of p exhibit different saturation

behavior as follows:

(i) CRB of Non-Zero Elements: For all values of N and M and all choices of the dictionary A,

the CRB corresponding to the nonzero elements of p always exhibit a saturation effect, meaning

that we can find a lowerbound for the CRB (in terms of M) that tends to a strictly positive limit as

M→ ∞.
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(ii) CRB of Zero Elements: The CRB corresponding to the zero elements of p can be lower

bounded by a non zero quantity (even when M→ ∞) as long as the columns of the dictionary A

are normalized. If the columns of A are not normalized, saturation of the CRB is shown to be

determined by the singular values of certain submatrices of A.

Saturation of the CRB Corresponding to Nonzero Elements

Let C = J−1, where the ith diagonal element of C provides a lower bound on the MSE

of any unbiased estimator for [p]i, i.e., given any unbiased estimate p̂(y) (which is a function of

only the measurement y) of p, we have

Ey|[p]i− [p̂(y)]i|2 ≥ [C]ii

The following theorem shows that if i ∈ S (i.e., [p]i > 0), then [C]ii is strictly bounded away from

zero.

Theorem 11. Consider the model (2.46), where the measurement y is distributed according to

(2.47). If N = rank(Aca), the CRB corresponding to the unknown parameter p satisfies

[C]ii ≥ η
−1
F p2

i , i ∈ S

Proof. Since N = rank(Aca), J is invertible and the CRB exists. Following the analysis in [SM93]

and (2.48), it can be shown that ith diagonal element of the C can be written as

[C]−1
ii = ηF‖Π⊥W1/2A(−i)

ca
W1/2a(i)ca ‖2

where a(i)ca = a∗i ⊗ai,

A(−i)
ca = [a(1)ca ,a

(2)
ca , · · · ,a

(i−1)
ca ,a(i+1)

ca , · · · ,a(N)
ca ].
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In other words, A(−i)
ca contains a total of N−1 columns that excludes the column a(i)ca . Furthermore,

given any matrix B with full column rank, Π⊥B = I−B(BHB)−1BH denotes the projection onto

the orthogonal complement of range space of B. Therefore, we can write

η
−1
F [C]−1

ii = (a(i)ca )
H
(

W−

WA(−i)
ca ((A(−i)

ca )HWA(−i)
ca )−1(A(−i)

ca )HW
)

a(i)ca

≤ (a(i)ca )
HWa(i)ca = |aH

i R−1ai|2. (2.49)

where the last equality can be verified using algebraic properties of the Kronecker product. Since

i ∈ S , we can decompose R as

R = ÃiP̃iÃH
i + piaiaH

i +σ
2
wI

where Ãi is comprised of columns of A indexed by S \ i, and P̃i is a diagonal matrix composed of

the corresponding elements of p. Let us denote Ri := piaiaH
i +σ2

wI. Using Woodbury’s matrix

identity [Woo50], we have

R−1 = R−1
i −R−1

i Ãi(P̃−1
i + ÃH

i R−1
i Ãi)

−1ÃH
i R−1

i . (2.50)

We can further use the Sherman-Morison [SM50] formula to get

Ri
−1 = σ

−2
w I− σ−4

w piaiaH
i

1+σ
−2
w ‖ai‖2 pi

Therefore,

aH
i Ri

−1ai =
‖ai‖2

σ2
w
− σ−4

w ‖ai‖4 pi

1+σ
−2
w ‖ai‖2 pi

=
σ−2

w ‖ai‖2

1+σ
−2
w ‖ai‖2 pi
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Using (2.49), (2.50), and the fact that

aH
i R−1

i Ãi(P̃−1
i + ÃH

i R−1
i Ãi)

−1ÃH
i R−1

i ai ≥ 0,

we conclude that

[C]ii ≥
η
−1
F

|aH
i R−1ai|2

≥
η
−1
F

|aH
i R−1

i ai|2
= η

−1
F

(
σ2

w +‖ai‖2 pi

‖ai‖2

)2

(2.51)

≥ η
−1
F p2

i (Bnz)

where the label Bnz stands for the bound for nonzero entries. The bounds for zero entries (Bz1,Bz2)

will be studied later.

Remark 9. The theorem indicates that for all admissible values of M, N and sparsity K, the CRB

corresponding to the non zero elements of p is strictly greater than 0, regardless of the structure

of the dictionary. This happens in both overdetermined (N ≤M) and underdetermined settings

(N > M), implying that the non zero elements of p cannot be estimated with zero MSE even when

M→ ∞.

Remark 10. For the special case when AHA = MI (which holds only if N ≤M), the authors

in [PM13] show that the inequality in (2.51) holds with equality. Our result generalizes this

observation for any dictionary A and for all values of M and N.

Lower Bounds on the CRB Corresponding to Zero Elements

We will now show that for i /∈ S (i.e. [p]i = 0), saturation of the CRB may or may not

happen, depending on the structure of the dictionary A and the normalization of its columns.
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Saturation Effect for Normalized Dictionaries Let A be a dictionary with normalized columns

such that

‖ai‖2
2 = c, 1≤ i≤ N

where c is a constant that does not depend on M or N. In this case, the CRB corresponding to the

zero elements of p will saturate, as given by the following theorem:

Theorem 12. Consider the model (2.46), where the measurement y is distributed according to

(2.47), and the columns of A are normalized such that ‖ai‖2
2 = c,1≤ i≤ N where c is a universal

constant that does not depend on M or N. If N = rank(Aca), the CRB corresponding to the

unknown parameter p satisfies

[C]ii ≥
σ4

wη
−1
F

c2 i /∈ S

Proof. Similar to the proof of Theorem 11, we use Woodbury’s matrix identity on R−1, but in a

different form. In particular, we can write

R−1 = σ
−2
w (I− Ã(ÃHÃ+σ

2
wP̃−1)−1ÃH)

where Ã is the matrix comprised of columns of A indexed by S , and P̃ is a diagonal matrix

containing only the non zero elements of p. Since i /∈ S , we have

aH
i Ri

−1ai = σ
−2
w aH

i (I− Ã(ÃHÃ+σ
2
wP−1)−1ÃH)ai

≤ σ
−2
w ‖ai‖2
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which follows from the fact that

aH
i Ã(ÃHÃ+σ

2
wP̃−1)−1ÃHai ≥ 0.

Using (2.49), for i /∈ S , we can always write

[C]ii ≥
σ4

wη
−1
F

‖ai‖4 =
σ4

wη
−1
F

c2 (Bz1)

Notice that the first inequality in (Bz1) provides a valid lower bound for any dictionary

A (regardless of normalization of columns). However, for unnormalized dictionaries, if ‖ai‖2

grows monotonically with M, the lower bound σ4
wη
−1
F

‖ai‖4 in (Bz1) converges to a trivial value of 0 (as

M→ ∞) which does not shed any light into the asymptotic behavior of the CRB.

Lower Bound for Unnormalized Dictionaries, and K ≥M To better understand the behavior

of CRB for dictionaries with unnormalized columns, we consider a special case when K ≥M

and the non-zero hyper-parameters are all equal to p, i.e, [p]i = p for i ∈ S , and [p]i = 0 for

i /∈ S . We further assume that Ã has full row rank M (which is possible since K ≥M). Consider

the singular value decomposition of ÃÃH as ÃÃH = UΣUH where Σ = diag(σ1, · · · ,σM), and

σ1 ≥ σ2 ≥ ·· · ≥ σM > 0. Thus, we can write

R = pÃÃH +σ
2
wI = U[pΣ+σ

2
wI]UH

Therefore, we have

R−1 = UΓUH
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where Γ = diag( 1
pσ1+σ2

w
, 1

pσ2+σ2
w
, · · · , 1

pσM+σ2
w
). Hence,

aH
i R−1ai ≤ σmax(R−1)‖ai‖2 =

‖ai‖2

pσM +σ2
w

with σmax(.) denoting the maximum singular value of a matrix. Using (2.49), we get

[C]ii ≥ η
−1
F

(pσ2
min(Ã)+σ2

w)
2

‖ai‖4 (Bz2)

where σM = σ2
min(Ã), and σmin(.) indicates the smallest nonzero singular value of a matrix.

Proposition 1. If σmin(Ã)
‖ai‖ = O(1) (i.e. does not scale with M or N), [C]ii in (Bz2) for i /∈ S , will

be bounded below by a positive quantity as M→ ∞.

Therefore, when the columns A are not normalized, saturation may or may not happen.

This depends on the asymptotic behavior of the smallest singular value of Ã with respect to its

column norm, as we increase the sizes M,N and K.

2.3.3 Simulations

We conduct numerical experiments to examine the behavior of the CRB for zero and

nonzero elements of p, as we increase the size of dictionary A. We generate a matrix A0 with i.i.d.

standard normal entries, and let A be a submatrix of A0 by choosing the first M (resp. N) rows

(resp. columns) of A0. In each simulation, we generate p such that the support corresponding to

a smaller sparsity level K is a subset of the support corresponding to the larger value of K. We

consider L = 20 i. i. d. realizations of the vector x with the same support. This essentially scales

the CRB values by a factor of 1
L and does not affect our analysis, yet it can slightly improve the

performance of our estimator (discussed later), whose error is compared with CRB. The noise

variance is assumed to be σw = 0.05, and all the nonzero values of p are equal to 1.

We consider three different experimental settings, and for each case, we consider both
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normalized and unnormalized A. In “Setting 1”, we fix N = 100, K = 10 and increase M. In

“Setting 2”, we also let K and N grow as we increase M, such that K = bM
4 c, N = 4M. “Setting

3” differs from “Setting 2” only in the fact that K can be larger than M. In particular, we let

K = 2M, N = 4M. In all cases, we let the starting M to be M = 20, to ensure nonsingularity of

the FIM. The experimental results for each scenario are plotted in Figure 2.11, where we compare

the CRB with the lowerbounds established in this Section. In Fig. 2.10 (a,b) we also show the

Mean Square Error (MSE) of the Maximum Likelihood (ML) estimator, and compare it with the

CRB corresponding to Setting 1. The MSE of the ML estimator is computed by averaging over

2000 Monte-Carlo simulations for each M. We observe that the saturation effect always happens

for both zero and non-zero elements when the dictionary is normalized, thereby validating our

theoretical claims. When A is not normalized, the CRB corresponding to the zero elements seem

to decrease monotonically for Settings 1 and 2 (where we have K < M). In future, we will explore

the behavior of the CRB of zero elements in greater detail.
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(a) Setting 1, Normalized
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Figure 2.10: Comparisons between the CRB, the lower bounds established in this Section
(indicated by their corresponding labels), and the MSE of ML algorithm. The label “(z)”

indicates zero elements and “(nz)” represents nonzero elements.
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(e) Setting 3, Normalized
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Figure 2.11: Comparison between the CRB, and the lower bounds, established in this Section.
The labels in this Figure are the same as those in Fig. 2.10.

2.3.4 Conclusion

We considered the Marginalized Cramér Rao bound associated with hyper-parameter

estimation in Sparse Bayesian Learning. We showed that the CRB corresponding to the nonzero

elements is always bounded below by a positive quantity which does not go to zero as we

increase the number measurements, thereby exhibiting saturation. However, for the zero elements,

saturation of the CRB may or may not happen, depending on the column norm as well as the

algebraic structure of the dictionary. We will further investigate this phenomena in future by

deriving suitable upper bounds for the CRB corresponding to zero elements.
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2.4 Sparse Source Localization Using Perturbed Arrays via

Bi-Affine Modeling

Array imperfections such as gain and/or phase error, perturbations in sensor locations,

and mutual coupling, can significantly degrade the performance of DOA estimation algorithms

[SCG87], [CLYM91]. This is mainly due to the strong dependence of these algorithms on the

accurate knowledge of the underlying array manifold. In this Section, similar to Sec. 2.2, we

consider the sensor location error as the only imperfection associated with the physical array, i.e.,

we assume that the sensor locations are perturbed from their nominal positions. The problem of

DOA estimation using such perturbed arrays has been well studied for more than two decades.

Existing approaches mostly treat the perturbations as unknown but deterministic parameters, and

then estimate these parameters jointly with the DOAs. Classical methods such as [CLYM91],

[WF89], [PK85] [VS94], resolve array uncertainties using eigenstructure-based methods, or

variants of the maximum-likelihood approach. Recently, [LZ13] proposed a unified framework

for different kind of array imperfections, and proposed a Bayesian approach for array calibration

and DOA estimation. However, these approaches mostly work for an overdetermined signal

model (fewer sources than sensors), primarily because many of them consider a uniform linear

array.

In recent times, the problem of blind gain and phase calibration (BGPC) has been for-

mulated as a bilinear problem [LLB15], which in turn, can be recast as a convex optimization

problem, using the idea of “lifting” [CSV13, ARR14b, LS15b]. However, such a formulation

does not consider the concept of co-array, and, hence their guarantees are not applicable for an

underdetermined signal model where the number of sources can possibly be O(M2).

In contrast, the authors in [HYN15], studied the effect of co-array geometry on the

BGPC problem and proposed a new self-calibration algorithm for nested arrays in presence

of gain/phase errors. Their approach builds on and extends the method in [PK85], which was
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originally proposed for a ULA. However, in this Section, we consider perturbations in sensor

locations, which gives rise to a signal model, which is distinctly different from that considered in

[HYN15]. In BGPC problems, the gain and/or phase of the sensors are unknown, and the goal is

to resolve both unknown gain and/or phase and the DOAs. In our case, we assume that the phase

and gain of the signals received from the sensors are ideal, but the location of the sensors are

perturbed. We will compare the signal model defined for gain/phase error, which has been studied

in [HYN15], against sensor location error in Section 2.4.1, and establish important differences

between them.

Since the self calibration algorithm developed in [HYN15] cannot be directly applied

to our case, we follow a different approach in this Section. We assume that the perturbations

are small, so that we can approximate the coarray manifold using its first order Taylor series

expansion. This formulation leads to a “bi-affine” model, which is linear in source powers,

and affine in the perturbation variable. We show that it is possible to recover the DOAs even

in presence of the nuisance perturbation variables, via a clever elimination of variables. By

exploiting the pattern of repeating elements, it is possible to reduce the said bi-affine problem to a

linear underdetermined (sparse) problem in source powers, which can be efficiently solved using

`1 minimization. We establish precise conditions under which such reduction is possible, for both

ULA and a robust version of coprime arrays.

Notation: Throughout this Section, matrices are represented by upper case bold letters,

and vectors by lower case bold letters. The symbol xi represents the ith entry of a vector x. The

symbol j denotes the imaginary unit
√
−1. The symbols (.)∗,(.)T ,(.)H stand for the conjugate,

transpose, and hermitian, respectively. The symbols ◦, �, ⊗ represent the Hadamard product,

Khatri-Rao product, and Kronecker product, respectively. The symbol ‖.‖F denotes the matrix

Frobenius norm and vec(.) represents the vectorized form of a matrix.
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2.4.1 Signal Model for Gain/Phase Error vs Location Errors

Consider a linear array of M antennas impinged by K narrow-band sources with unknown

directions of arrival (DOA) θ ∈ RK,θ = [θ1,θ2, · · · ,θK]
T . Let y[l] ∈ CM be the vector of signals

received by the M antennas, x[l] ∈ CK represent the emitted signals from K sources, and w[l] be

the additive noise (all corresponding to the lth time snapshot). The source signals are assumed to

be zero mean, and pairwise uncorrelated, and the noise vector is zero mean, i.i.d. with variance

σ2
w, and uncorrelated from the signal. We do not make any specific assumptions on the distribution

of the signal or noise.

The sensors are designed to be at the nominal locations d̃1, d̃2, · · · , d̃M, where d̃m ∈ R for

1≤ m≤M, and d̃m = Ddm. Here, dm ∈ Z, and D is the minimum inter-element spacing of the

array, which is typically chosen to be D = λ/2, λ being the carrier wavelength of the narrowband

sources. Note that dm are the normalized sensor locations (and d̃m are the actual sensor locations).

In the sequel, we will use the normalized locations as we introduce the perturbed array model.

In this Section, we consider two different array geometries: uniform linear array (ULA), and

coprime array. In a ULA, we have dm = m−1, for m = 1, · · · ,M. A coprime array, however, is

comprised of two different ULAs with spacings N1 and N2, where N1 and N2 are coprime numbers.

We will review the coprime arrays in more detail in Sec. 2.4.1. To simplify the notations, we

designate a spatial frequency ωi =
2πD

λ
sinθi corresponding to each direction of arrival θi for

1≤ i≤ K. Choosing D = λ/2, we have ωi = πsinθi. Also, let ω = [ω1, · · · ,ωK]
T be the vector

of spatial frequencies associated with the K sources.

Let ζ ∈ CM be a vector of unknown parameters associated with array imperfections, such

as gain/phase, or sensor location errors. The received samples at the time instant l can be written

as

y[l] = A(ω,ζ)x[l]+w[l] (2.52)

in which A(ω,ζ) = [a(ω1,ζ), . . . ,a(ωK,ζ)] denotes the array manifold, and a(ωi,ζ) ∈ CM is the
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steering vector for the ith source. In the absence of array imperfections (ζ = 0), the mth element of

the steering vector corresponding to direction θi is given by am(ωi,0) = e jdmωi . In the following

subsections, we will first review the concept of a virtual array by considering the covariance

matrix for the unperturbed problem [PV10]. Subsequently, we will discuss and distinguish the

signal models corresponding to two different kinds of array imperfections: (i) gain/phase error,

and (ii) sensor location error.

Virtual array in the absence of array imperfections

In the absence of array imperfections (ζ = 0), we can write the covariance matrix of the

received signals as

Ry = E(yyH) = A0(ω)Rx (A0(ω))
H +σ

2
wI (2.53)

where Rx = E(xxH) is the covariance matrix of the sources, and A0(ω) = A(ω,0). Assuming

that the sources are uncorrelated, i.e., Rx is diagonal, following [PV10] the vectorized form of

the covariance matrix can be written as

z = AKR,0(ω)p̃+σ
2
w vec(I), (2.54)

where AKR,0(ω) = A0(ω)
∗�A0(ω) is the difference co-array, p̃ = [p1, p2, · · · , pK] is the diagonal

of Rx, and z = vec(Ry). The (m+(m′−1)M, i)-th element of AKR,0(θ) is given by e jωi(dm−dm′).

Therefore, each column of AKR,0(ω) is characterized by the difference co-array:

Sca = {dm−dm′,1≤ m,m′ ≤M}

Define Mca = |Sca| to be the number of distinct elements in the unperturbed virtual coarray, and

also let M′ca =
Mca−1

2 be the size of the positive half of the coarray.
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Weight Function: Let w(k) be the number of repetitions of the lag k in the difference coarray,

i.e., number of pairs of indices (i, j) such that di− d j = k. The function w(k) is known as the

weight function of the coarray [PV10]. In later sections, we will make extensive use of w(k) to

eliminate the unwanted perturbation variable in our proposed biaffine model. We will consider

array geometries such that w(k) > 1 for an adequate number of lags k contained in Sca. The

weight functions corresponding to ULA and robust coprime array (defined later) are illustrated in

Figure 2.12, in which N1 = 4,N2 = 9,M = 32.

ULA and its Coarray For a ULA, we have dm = m− 1, with 1 ≤ m ≤ M. The coarray

corresponding to a ULA is given by

SULA
ca = {m

∣∣m =−(M−1), . . . ,M−1}

Therefore, for a ULA we have Mca = 2M−1, and M′ca = M−1.

Coprime Array and its Coarray In a coprime array, we choose two coprime numbers N1,

N2 (N1 < N2), and place the sensors on two ULAs with inter-element spacings N1, and N2.

In the original coprime array introduced in [PV11], the first ULA is comprised of N2 sensors

located at the locations d(1)
n = nN1, and the second ULA has 2N1 sensors which are located at the

d(2)
m = mN2, where 0≤ n≤ N2−1,1≤ m≤ 2N1−1, and we have di = d(1)

i for 1≤ i≤ N2, and

d j = d(2)
j−N2

for N2 +1≤ j ≤ 2N1 +N2−1. This choice leads to a virtual array such that

SCoprime
ca ⊃ {n

∣∣n =−N1N2, . . . ,N1N2}

Hence, M′ca > N1N2, and Mca > 2N1N2− 1. In other words, the virtual coarray has O(N1N2)

elements, although the physical array has only M = 2N1 +N2−1 sensors. This increased degrees

of freedom makes it possible to resolve more sources than the available number of sensors. In the
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following sections, we will see what happens to the coarray when we have imperfections in the

coprime array.

Perturbed Sensor Array and its Virtual Array

Assume that the sensors are not located at their nominal positions, and their perturbed

locations are given by d1+δ1,d2+δ2, · · · ,dM +δM, in which δ ∈RM,δ = [δ1,δ2, · · · ,δM]T is an

unknown perturbation vector. In this case, we have am(ωi,δ) = e j(dm+δm)ωi , from which we can

rewrite the array manifold A(ω,δ) ∈ CM×K as

A(ω,δ) = A0(ω)◦P(ω,δ), (2.55)

where A0(ω) = A(ω,0) is the unperturbed array manifold, and P(ω,δ) ∈ CM×K is a perturbation

matrix whose (m, i)th element is given by e jωiδm . The covariance matrix of the received signals

can therefore be written as

Ry = E(yyH) = A(ω,δ)Rx (A(ω,δ))H +σ
2
wI, (2.56)

and similar to Sec. 2.4.1, we can write the vectorized form of the covariance matrix to get

z = AKR(ω,δ)p̃+σ
2
w vec(I), (2.57)

The (m+(m′−1)M,k)-th element of AKR(ω,δ) is given by e jωk(dm+δm−dm′−δm′). The difference

coarray corresponding to the perturbed array is then

Sδ
ca = {dm +δm−dm′−δm′,1≤ m,m′ ≤M}

Grid based model: In this Section, we consider a grid-based model for the DOAs [PV12a, KP15],
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where the range of possible directions [−π/2,π/2], is quantized into Nθ grid points. We can then

construct a grid based array manifold Agrid(δ) ∈ CM×Nθ , where each column of this matrix is

a steering vector corresponding to a particular direction on the grid. The grid-based co-array

manifold is given by Aca(δ) = Agrid(δ)
∗�Agrid(δ). Clearly, this co-array manifold only depends

on δ, and the structure of the array. We can now rewrite (2.57) as

z = Aca(δ)p+σ
2
w vec(I), (2.58)

where the non-zero elements of p ∈ CNθ are equal to the corresponding elements of p̃. The

locations of the non zero elements of p can be used to recover the DOAs.

The model derived in this subsection for sensor location errors is distinctly different from

the model based on gain/phase error, which we discuss next.

Covariance matrix with unknown sensor gain & phase

The problem of co-array based DOA estimation with phase and gain errors has been

thoroughly studied in [HYN15] for ULA and nested arrays. In this Section, we will repeat some

of the results from [HYN15] to distinguish it from the problem considered in this Section. The

received signal at an array with gain and phase errors is given by

y[l] = ΦΨA(ω)x[l]+w[l]

where Φ = diag(e jφ1 , · · · ,e jφM), Ψ = diag(ψ1, · · · ,ψM) are the respective phase and gain errors,

in which ψm > 0 for 1≤ m≤M. We can stack the vectors y[l] for l = 1, · · · ,L into the columns

of Y ∈ CM×L (and similarly for X and W) to get

Y = ΛA(ω)X+W, (2.59)
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in which Λ = ΦΨ. This problem is known as the Blind Gain and Phase Calibration (BGPC),

which has been studied recently in [LLB15, LS15b]. However, these results do not cast the

problem in coarray domain, and hence do not address the possibility of resolving more sources

than the number of sensors.

The authors in [HYN15], on the other hand, cast the BGPC problem in the co-array

domain by using properties of the covariance matrix Ry for nested arrays and ULA. Let us first

write the covariance matrix of the received signal

Ry = ΦΨA(ω)Rx (A(ω))H
Ψ

H
Φ

H +σ
2
wI (2.60)

The (m,n)th element of Ry is then given by

Rm,n = ψmψne j(φm−φn)

(
K

∑
k=1

pke j(dm−dn)ωk +δm,nσ
2
w

)

with δm,n = 1 if m = n, and δm,n = 0 otherwise.

Remark 11. Comparing the covariance matrices corresponding to sensor location errors, and

gain/phase errors, which are respectively given by (2.56) and (2.60), we notice some important

differences. In (2.56), the array imperfections appear in the form of the matrix P(ω,δ) which

forms a Hadamard product with the array-manifold. However, in (2.60), the gain and phase errors

are captured in the matrix Λ which gets multiplied to the array manifold matrix. Due to this, the

phase error in BGPC problems is independent of the directions of arrival of sources, whereas,

in presence of location errors, the phase error in each entry of the array manifold is a function

of the DOAs. Therefore, the approach in [HYN15] cannot be directly used to resolve the sensor

location errors in our case.
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2.4.2 Formulation as a Bi-Affine problem

The Bi-Affine Model

In this Section, we derive a bi-affine model from the covariance matrix (2.56) correspond-

ing to a sensor array with perturbed locations. Our main assumption is that δ is small enough so

that we can approximate the coarray manifold Aca(δ) using the first order Taylor series expansion

as follows:

(Aca(δ))(m′−1)M+m,i ' e j(dm−d′m)ωi(1+(δm−δm′) jωi),

which can be also written in the matrix form as

Aca(δ)' Aca,0 +∆Aca,0ϒ (2.61)

where Aca,0 denotes the unperturbed co-array manifold, ϒ = j diag(ω1, · · · ,ωNθ
), and ∆ ∈ RM2

is

given as



diag(δ)−δ1I 0 · · · 0

0 diag(δ)−δ2I · · ·0
...

... . . . ...

0 0 · · · diag(δ)−δMI


(2.62)

Therefore, (2.58) can be approximated as

z = (Aca,0 +∆Aca,0ϒ)p+σ
2
w vec(I), (2.63)
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To suppress the effect of noise, we discard the 0th lag of the co-array, and only keep the elements

of z corresponding to the positive half of the co-array to obtain 1:

zu = (Au
ca,0 +∆

uAu
ca,0ϒ)p (2.64)

where Au
ca,0 is the unperturbed co-array manifold with rows corresponding to the positive lags,

where we retain repeated rows (that correspond to the same lag in the virtual array). The matrix

∆
u is constructed from ∆ by retaining only the rows corresponding to those of Au

ca,0. Notice

that unlike the approach in [PV11, PV10], we also keep the repeated rows of Au
ca,0, since their

corresponding rows in zu may not be repeated due to the presence of perturbations. Hence, this

redundancy in the rows of Au
ca,0 can help us to get more information on the perturbations.

Inspired by the so-called bilinear model in the literature, which arises in various problems

such as the blind gain and phase calibration (BGPC) problem [LLB15], we call the model given

in (2.64) a “bi-affine” model, since zu is a linear function of p and affine function of δ. Given

the covariance matrix Ry (or equivalently zu), the goal is to recover the sparse vector p from the

bi-affine model defined in (2.63).

2.4.3 Source Localization: Bi-Affine to Linear Transformation

Under the grid-based model, the DOAs can be estimated from the support of the sparse

vector p that is a solution to the bi-affine system of equations (2.64). In general, (2.64) can admit

multiple solutions in the variables (δ,p). While the column rank of a matrix describing a linear

system of equations determines if it admits a unique solution, to the best of our knowledge, no

such general condition exists for a bi-affine (or even bi-linear) system which can be used as a test

for existence of unique solution.

1For ease of exposition, we only consider the positive half of the co-array and demonstrate how to eliminate the
spurious variable δ. However, with straightforward modifications to the proposed technique, it is also possible to
incorporate the negative half to generate more augmented equations and use them for eliminating δ.
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In this Section, we will derive a transformation such that we can extract a linear system of

equations in the variable p, from (2.64) by eliminating the variable δ. In particular (2.64) can be

reduced to an underdetermined linear system of equations of the form

h = Gp (2.65)

where G is a fat matrix, whose size and structure depends on the array geometry. Hence, the

bi-affine system of equations will indeed admit a unique solution in p (although, not necessarily

in δ) if (2.65) yields a unique K−sparse solution. This transformation of the bi-affine problem

into a linear problem will be shown to be possible under appropriate conditions on the array

geometry, M (number of sensors), and K (number of sources).

Elimination of Variables Using Co-Array Redundancies

We derive the aforementioned transformation for two different array geometries: uniform

linear array (ULA), and a robust version of coprime array (introduced later). The basic idea is to

use the pattern of repeated elements in the unperturbed co-array manifold which is specified by

the weight function w(k) to equate certain elements of Ry, thereby eliminating δ.

Let Rmn denote the (m,n)th element of Ry. Given an integer k ∈ Sca, we define the

following notations:

fk :=
Nθ

∑
i=1

e jkωi pi (2.66)

λk :=
Nθ

∑
i=1

e jkωi jωi pi (2.67)

Using these notations, we can rewrite (2.64) as

Rmn = fk +λk(δm−δn) (2.68)
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where 1≤ m,n≤M, and k = dm−dn, k > 0.

Notice that fk and λk are themselves linear functions of the unknown sparse vector p. If

the lag k in the co-array Sca repeats at least twice, (i.e. w(k)≥ 2), then this redundancy can be

exploited to eliminate variables as follows. If w(k)≥ 2, we must have di−d j = dm−dn = k, for

some 1≤ i, j,m,n≤M. In this case, we have

Ri j = fk +λk(δi−δ j)

Rmn = fk +λk(δm−δn),

The variable fk can be easily eliminated by subtracting these equations, leading to

Ri j−Rmn = λk(δi−δ j−δm +δn).

A very similar idea can be used (with some additional computations) to eliminate δ from the

M2 equations of the form (2.68) for both ULA and a robust version of the co-array. Recall

that co-array redundancies are also used to calibrate sensors with unknown gain and phase

errors [HYN15]. However, since we are concerned with sensor position errors, our signal model

fundamentally differs from that considered in [HYN15]. Consequently, as discussed in Sec. 2.4.1,

we cannot exploit the co-array redundancies in the same way as done in [HYN15]. We need to

adopt a slightly more involved approach to eliminate the undesirable variable δ, the details of

which depend on the geometry of the physical array.

Uniform Linear Array

In a ULA, we have dm−dn = m−n. Hence, we can rewrite the equation (2.68) as

Rmn = fm−n +λm−n(δm−δn) (2.69)
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Figure 2.12: The weight function corresponding to ULA and robust-coprime array for M = 32,
N1 = 4,N2 = 9.

For a given 1≤ k ≤M−2, define

r̄k =
k+1

∑
j=2

R j, j−1 (2.70)

βk =
Rk+2,2−Rk+1,1

Rk+2,k+1−R2,1
(2.71)

The following theorem summarizes our main result for the ULA:

Theorem 13. For a Uniform Linear Array (ULA) containing M antennas with perturbed locations,

the bi-affine model (2.64) derived from the signal covariance matrix can be reduced to the form

Cf = h (2.72)

where f∈CM−2 = [ f1, f2, · · · , fM−2]
T and for every 1≤ k≤M−2, the elements of C∈C(M−3)×(M−2)
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and h ∈ CM−2 are given by

Ck−1,1 =−kβk (2.73)

Ck−1,k = 1 (2.74)

hk−1 = Rk+1,1−βkr̄k (2.75)

for every 2≤ k ≤M−2. The remaining elements of C are zero. This transformation holds for

almost all δ ∈ RM.

Proof. The proof can be found in 2.6.4.

Remark 12. Notice that the elements of f are linear functions of the sparse vector p. In particular,

from (2.66), we have

f = BU p

where the elements of BU ∈ CM−2,Nθ are given by [BU ]m,i = e jmωi . Therefore (2.72) can be

written as the following system of underdetermined equations (since Nθ�M)

h = CBU p (2.76)

This system can admit a unique sparse solution, representing the true source powers, if the

Kruskal Rank of CBU is at least 2K. Since kruskal-rank (CBU) ≤M−3, this implies ‖p‖0 =

K < (M− 3)/2 is a sufficient condition for the true sparse p to be the unique solution. In

practice, by exploiting the fact that p is non negative, a larger number of sources may be uniquely

recovered. We will study the phase-transition behavior of `1 minimization algorithms to solve

(2.76) to determine such an empirical relation between K and M.

Remark 13. The matrix C and the vector h, are only functions of the elements of covariance
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matrix Ry, and are not explicit functions of the unknown parameter δ. The constructive proofs in

Appendices A,B demonstrate the details of eliminating the variable δ from our bi-affine equations.

Robust Coprime Array

In order to eliminate δ from the equations (2.64), we need to have w(k)> 1. As evident

from Fig. 2.12b, that in the original coprime array, w(k) = 1 for some values of k, due to which

we cannot apply our simplifications. Hence, we will consider an extended version of coprime

array, defined as follows.

Definition 3 (Robust Coprime Array). A robust coprime array contains M = 4N1 + 2N2− 2

sensors, whose normalized locations are given by

{(i−1)N1,1≤ i≤ 2N2 +1}∪{( j−1)N2,1≤ j ≤ 4N1}

In other words, we extend the usual coprime array by doubling the number of sensors in

each ULA. Therefore, we have M = 4N1+2N2−2 sensors in the robust coprime array. By adding

these additional sensors, we are ensured that every lag between −N1N2, ...,N1N2 is repeated at

least twice. We will use these repetitions to resolve the unknown perturbations. Moreover, we

will discard the lags beyond the aforementioned range. In the sequel, we will denote M′ca = N1N2,

representing the number of positive integers in this range.

Notations and Definitions: For the ease of notation, assume every variable with superscript (.)(1)

to be associated with the first sub-array (with spacing N1), and every variable with superscript

(.)(2) to be associated with the second sub-array (with spacing N2). Therefore, we have d(1)
i =

(i−1)N1,d
(2)
j = ( j−1)N2, where 1≤ i≤ 2N2 +1, and 1≤ j ≤ 4N1. Moreover, let R(12)

i j denote

the covariance between the received signal on the ith sensor of first ULA and jth sensor of the

second ULA, and R(21)
i j = (R(12)

i j )∗. Similarly, R(1)
ii′ (resp. R(2)

j j′ ) denotes the covariance between

the received signal on the first (resp. second) sub-array on its ith and i′th (resp. jth and j′th)
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sensors. This indexing also holds for δ
(1)
i ,δ

(2)
j . We also define several quantities which will be

later used to state our main theorem on robust coprime array. Firstly, define the quantities

r̄(1)i :=
i

∑
i′=2

Ri′,i′−1 (2.77)

r̄(2)j :=
j

∑
j′=2

R j′, j′−1. (2.78)

α :=
2r̄(2)N1+1− r̄(2)2N1+1

2r̄(1)N2+1− r̄(1)2N2+1

(2.79)

We also define the vectors βcp ∈ CM′ca and hcp ∈ CM′ca as follows. From the properties of the

difference set of a coprime array, each index k in the range 1≤ k ≤M′ca is necessarily of one of

the following four forms:

k =



d(1)
i −d(2)

j , 1≤ i≤ N2,1≤ j ≤ 2N1

d(2)
j −d(1)

i , 1≤ i≤ N2,1≤ j ≤ 2N1

d(1)
i −d(1)

i′ , 1≤ i, i′ ≤ N2

d(2)
j −d(2)

j′ , 1≤ j, j′ ≤ 2N1

In other words, k can either be a self-difference of sensors belonging to the same sub-array,

or a cross-difference of sensors belonging to different sub-arrays. If k happens to be both a

self-difference and a cross-difference, we consider k as a self-difference within its corresponding

sub-array. Moreover, if k happens to be a cross-difference of type k = d(1)
i −d(2)

j for some i, j,

and also we have k = d(2)
ĵ
−d(1)

î
for some other î and ĵ, we consider it as a cross-difference of

the former type.

The elements of βcp and hcp are then given as follows. Here, the indices i, i′, j, and j′ vary
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over the ranges 1≤ i, i′ ≤ N2,1≤ j, j′ ≤ 2N1, and ī = i+N2, j̄ = j+N1.

[βcp]k =



α(R(12)
ī j̄ −R(12)

i j )

α(r̄(1)ī −r̄(1)i −r̄(1)N2+1)−(r̄
(2)
j̄ −r̄(2)j −r̄(2)N1+1)

, k = d(1)
i −d(2)

j

−
α(R(12)

ī j̄ −R(12)
i j )∗

α(r̄(1)ī −r̄(1)i −r̄(1)N2+1)−(r̄
(2)
j̄ −r̄(2)j −r̄(2)N1+1)

k = d(2)
j −d(1)

i

R(1)
k+2,2−R(1)

k+1,1

R(1)
k+2,k+1−R(1)

2,1

k 6= N2, k = d(1)
i −d(1)

i′

R(2)
k+2,2−R(2)

k+1,1

R(2)
k+2,k+1−R(2)

2,1

k 6= N1, k = d(2)
j −d(2)

j′

(2.80)

[hcp]k =



R(12)
i j −βkr̄(1)i +α−1βkr̄(2)j , k = d(1)

i −d(2)
j

(R(12)
i j )∗+βkr̄(1)i −α−1βkr̄(2)j k = d(2)

j −d(1)
i

R(1)
i+1,1−βkr̄(1)i k 6= N2, k = d(1)

i −d(1)
i′

R(2)
j+1,1−βkr̄(2)j k 6= N1, k = d(2)

j −d(2)
j′

(2.81)

Furthermore, [hcp]N1 = [hcp]N2 = 0. Based upon the above definitions, let us also define a matrix

Ccp ∈ CM′ca×M′ca such that [Ccp]k,k = 1,1≤ k ≤M′ca,k 6= N1,N2, and [Ccp]N1,N1 = [Ccp]N2,N2 = 0.

Its remaining entries satisfy:

[Ccp]k,N1 =


−(i−1)βk, k = d(1)

i −d(2)
j

(i−1)βk, k = d(2)
j −d(1)

i

−(i−1)βk, k = d(1)
i −d(1)

i′ ,k 6= N1

(2.82)
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[Ccp]k,N2 =


α−1( j−1)βk, k = d(1)

i −d(2)
j

−α−1( j−1)βk, k = d(2)
j −d(1)

i

−( j−1)βk, k = d(2)
j −d(2)

j′ ,k 6= N2

(2.83)

Equipped with the above definitions, we state our main result on robust coprime arrays as the

following theorem:

Theorem 14. For a robust coprime array, the bi-affine formulation (2.64) can be reduced to

Ccpfcp = hcp, where fcp = [ f1, f2, · · · , fM′ca
]T and Ccp ∈ CM′ca×M′ca,hcp ∈ CM′ca are previously

defined. This transformation holds for almost all δ ∈ RM.

Proof. The proof can be found in the 2.6.5.

Remark 14. Recall that fcp = Bcpp, where the elements of Bcp ∈CM′ca,Nθ are given by [Bcp]m,i =

e jmωi . Hence, from Theorem 2, we obtain CcpBcpp = hcp, which can admit a unique sparse

solution in p if CcpBcp has kruskal rank of O(M′ca). In future, we will characterize the exact

kruskal rank of CcpBcp. However, in Sec. 2.4.5, we experimentally show that `1 minimization can

resolve larger number of sources for coprime arrays, compared to ULA.

2.4.4 Iterative Algorithm for finite snapshots and noise

While our main results show that it is fundamentally possible to eliminate the nuisance

variable δ and solve for DOAs, they are derived under the assumption that the ideal covariance

matrix RY is available. In practice however, we can only estimate RY using a finite number

of snapshots. For the estimated covariance matrix, the technique for variable elimination in

the proofs of Theorems 1 and 2 may not be robust (although it works perfectly for the ideal

covariance matrix). This prompts us to use an iterative algorithm (derived earlier in [KP15] to

jointly estimate p and δ in presence of finite snapshots. In order to recover δ, we need to assume

that one of sensors locations is exactly known. This is because of the fact that the perturbed
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1: δ
(0)← 0, i← 0

2: repeat
3: p(i)← argmin

p

{
‖Aca(δ

(i))p− z‖2
F

}
s.t. ‖p‖0 ≤ K

4: δ
(i+1)← argmin

δ

{
‖Aca(δ)p(i)− z‖2

F

}
5: i← i+1
6: until Convergence
7: δ̂← δ

(i), p̂← p(i)

Figure 2.13: Algorithm for jointly estimating the perturbations and the source directions

coarray manifold only depends on the pairwise differences of the sensor locations, i.e., adding a

fixed bias to all the sensor locations would not change the A(δ) and z. Hence, without loss of

generality, we assume δ1 = 0.

In [KP15], we proposed an iterative approach based on alternating minimization which is

summarized in Fig. 2.13. The minimization with respect to p is performed by solving a sparse

recovery problem which could be done using LASSO or OMP. In order to update the vector δ, in

the second stage of the iterative algorithm, an error function defined as E(δ) = ‖Aca(δ)p−z‖2
F is

minimized through running T iterations of gradient descent

δ← δ−µ
∂E(δ)

∂δ
, (2.84)

in which µ > 0 is the step size parameter and the mth component of ∂E(δ)
∂δ

for m≥ 2 is obtained by

∂E(δ)
∂δm

= tr
((
−2zpT +2Aca(0)ppT) ∂Pca(δ)

∂δm

)
, (2.85)

and ∂E(δ)
∂δ1

= 0, where Pca(δ) is given by P∗(ω,δ)�P(ω,δ) for ω evaluated on the grid points.

Remark 15. In our earlier paper [KP15], we have shown that the algorithm summarized in Fig.

2.13 is guaranteed to converge to a local minimum. We showed that the convergence is subject to

success of both the LASSO and the gradient descent stages. For the LASSO stage to succeed, the
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sparsity of p should be high enough so that the recovering a unique sparse solution be guaranteed.

For the gradient descent stage to succeed, we need to have µ < 2
C where

C = 2πM
√

2M‖− zpT +Aca(0)ppT‖.

2.4.5 Simulations

In this section, we conduct three different sets of numerical experiments to validate our

theoretical claims. In all the simulations, we assume Nθ = 200 points on the grid. The DOAs

are chosen uniformly between −60◦ and 60◦, and assigned to the closest point on the grid. The

perturbations are assumed to be δ = αδ0 (Notice that, following the model given in Section 2.4.1,

the sensor locations and the perturbations are normalized with respect to half of the wavelength

λ/2). In the first and second sets of simulations, δ0 is a fixed vector with |δ|∞ ≤ 0.5, and is drawn

from a uniform distribution. However, for the third set of simulations, we choose δ0 randomly in

each trial.

In the first set of simulations, we assume that we know the covariance matrix Ry, and that

the model defined in Sec. 2.4.2 holds exactly. In this case, we use the approach proposed in the

proofs of Theorems 13, and 14 to eliminate the perturbations and recover the source powers. We

compare our method against running `1 minimization on the covariance matrix, assuming that

the coarray manifold is unperturbed (which will lead to a basis mismatch). In other words, we

compare our approach with the solution of the following problem:

min
p
‖p‖1 s.t. Au

ca,0p = zu

As demonstrated in Fig. 2.14 and 2.15, our approach as described in the proofs of Theorems 1 and

2, exactly recovers the true supports for both ULA and coprime arrays when K = 10 < M = 32

(The blue line corresponding to the true solution and green line corresponding to our method,
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Figure 2.14: Recovered powers using the approach proposed in Theorems 13, 14. In each plot,
X-axis shows the directions on the grid in degrees, and Y -axis shows the power corresponding

to each direction on the grid.

match exactly). When K = 35 > M, ULA cannot recover the true DOAs, while the robust coprime

array perfectly identifies the support (compare Fig. 2.15b and Fig. 2.15d, where α = 0.5). In the

third experiment, we will empirically study the relationship between K and M (for both ULA and

coprime) that ensures perfect recovery of DOAs in the form of a phase transition diagram.

In the second set of simulations, we use an estimated covariance matrix using a finite

number of snapshots. In our simulations, we consider both ULA and robust coprime array

geometries. For the robust coprime array with M = 16, we pick N1 = 2,N2 = 5, and for M = 32

we choose N1 = 4,N2 = 9, which correspond to Fig. 2.16a, and Fig. 2.16b, respectively. We use

the algorithm described in Sec. 2.4.4, which is labeled as “Calibration” in the figure. “LASSO”

refers to naively running LASSO on the vectorized covariance matrix assuming an unperturbed
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Figure 2.15: Recovered powers using the approach proposed in Theorems 13, 14. In each plot,
X-axis shows the directions on the grid in degrees, and Y -axis shows the power corresponding

to each direction on the grid.

84



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α

-50

-40

-30

-20

-10

0

10

R
M
S
E

(d
B
)

Calibration ,ula, K=5
LASSO ,ula, K=5
Calibration ,coprime-robust, K=10
LASSO ,coprime-robust, K=10

(a) M = 16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α

-35

-30

-25

-20

-15

-10

-5

0

5

10

R
M
S
E

(d
B
)

Calibration ,ula, K=10
LASSO ,ula, K=10
Calibration ,coprime-robust, K=35
LASSO ,coprime-robust, K=35

(b) M = 32

Figure 2.16: RMSE of the recovered sources vs perturbations for different arrays and different
number of sensors and sources.

dictionary, i.e., solving the following problem:

min
p
‖p‖1 +λ‖Au

ca,0p− zu‖2
2

in which λ is a regularization parameter. For each value of α, we show the average value of root-

mean-square error (RMSE) over Ntests = 100 Monte-Carlo runs, where RMSE ,
√

∑
Ntests
i=1

‖p̂−p‖2

Ntests
,

and p̂ is the recovered vector of source powers. We observe that proposed iterative algorithm can

recover source powers and is able to resolve the perturbations. We noticed in our simulations that

the proposed approach (calibration) may sometimes perform worse than the simple LASSO (for

instance, when α > 0.7 in Fig. 2.16b). We observed this happens because the iterative algorithm

finds a local optimum instead of the global optimum, thereby failing to recover the true source

powers. A theoretical analysis of this phenomenon will be a topic of future research.

In the third set of experiments, we study the phase transition diagram of `1 minimization

algorithm applied on the linear underdetermined system of equations obtained from Theorems

13, 14. In these simulations, we assume that the covariance matrix is known exactly, i.e., we

have infinite number of snapshots. We consider a trial successful if ‖p− p̂‖F ≤ ε, where p̂ is

the recovered vector of powers, and ε = 10−3. The white pixels in the plots of Fig. 2.17 show

the problem settings under which performing `1 minimization on the linear system derived in
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Figure 2.17: Phase transition plots

Theorems 13, and 14 can always recover the true solution. We simulate each case 100 times and

show the probability of success with a gray-scale pixel. In these plots, we only show the cases

where M is an even number (because the robust-coprime array can only have even number of

sensors). Moreover, for each M, we find N1,N2 such that M = 4N1 + 2N2− 2 and N1N2 is the

maximum possible number. For coprime arrays, we find that even in presence of perturbation,

white pixels exist in the region where number of sources is greater than number of sensors. This

shows that robust coprime array is capable of resolving more sources than the number of sensors,

even in the presence of perturbations.

2.4.6 Conclusion

In this Section, we investigated the robustness of coprime arrays to unknown perturbations

on the locations of sensors. We assumed that the perturbations are small and developed a bi-affine

model in terms of the unknown perturbations and the source powers. We used the redundancies

of the difference coarray to eliminate the nuisance variables, and reduce the bi-affine problem

to a linear underdetermined (sparse) problem in source powers, which can be solved using `1

minimization. We derived this reduction for both ULA and a robust version of coprime arrays.

Our simulations showed that if the ideal covariance matrix of the received signals is available,
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the source powers can be accurately recovered using our proposed approach, thereby validating

the theoretical claims in Theorems 13 and 14. We also showed the region (in terms of K and M)

under which the bi-affine problem has a unique solution, in the form of a phase transition diagram.

When only a finite number of snapshots are available, we proposed an iterative algorithm to

jointly recover perturbations and source powers, which shows satisfactory performance in our

simulations.
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2.5 Compressed Arrays and Hybrid Channel Sensing:

A Cramér-Rao Bound Based Analysis

So far in this chapter, we have shown that sparse array geometries such as nested

[PV10] and coprime arrays [PV11] can offer significant benefits over the conventional and

widely-used Uniform Linear Arrays (ULA), such as the ability to resolve O(M2) sources

with M sensors [PV10], smaller Cramér-Rao bounds [KP16a], higher Direction-of-Arrival

(DOA) estimation accuracy [PV10], higher resolution [PV10, KQP18, QP19], and resilience

to sensor location errors [KP16b, KP17]. As we will also see in Chapter 4, in mmWave

communication, the problem of channel estimation turns out to be related to the problem of

DOA estimation since mmWave channels exhibit spatial sparsity with only a small number of

scattering paths whose angles of departure/arrival and gains parameterize the channel model

[HC16, GWH17, AEALH13, EARAS+14, PH18]. Deploying a large number of antennas lead to

higher data rates and improved channel estimation accuracy, but at the cost of increased hardware

complexity (due to a proportionately larger number of front-end Radio frequency chains), power

consumption and cost. Since sparse arrays can provide high DOA estimation accuracy with much

fewer antenna elements compared to a ULA, they offer a promising way to reduce (or compress)

the number of physical antennas and thereby the overall system complexity and cost. With this

point of view, the authors in [HC16] have shown that by subselecting a sparse coprime array

(with O(
√

M) antennas) from a much larger ULA with M antennas using a coprime selection

matrix (which can be implemented using analog switches), it is possible to preserve the statistical

information about the channel encoded in the received signals, and yet drastically reduce the

number of spatial measurements.

Antenna subselection is a special case of deploying a more general compression matrix

W ∈ CN×M,N < M (sometimes also called a beamforming matrix, in the context of mmWave

communication) at the output of the antenna array in order to reduce the overall system complexity
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[WLP09, GZC18, SCL17]. In this case, for a given number of antennas, the array geometry

plays a very important role in determining the achievable compression. The authors in [GZC18]

studied the combined benefits gained by using a sparse receiving array and a complex valued

compression matrix, which is referred to as a Compressed Sparse Array (CSA). They derived

necessary conditions in terms of N and M for the existence of the Cramér-Rao Bound for DOA

estimation with CSA, which offers insights into the degree of compression that may be achieved

by sparse arrays. However, these necessary conditions do not guarantee that the CRB will indeed

exist in these compressive regimes, and hence there is a need for tight sufficient conditions for the

existence of CRB. From a practical point of view, sufficient conditions are also important to guide

system design, by suitably choosing M, N and array geometry. In [KP16a], we had derived the

first necessary and sufficient conditions for the existence of the CRB for sparse arrays when the

number of sources exceeds the number of sensors. However, the presence of a complex valued

compression matrix W poses significant technical challenge in translating the proof techniques

for sparse arrays to a compressed sparse array.

Contributions: In this section, we derive the first sufficient conditions for the existence of

CRB using properties of zero sets of multivariate polynomials (Lemma 1) which help us deal

with the compression matrix in an ingenious way [SS94, GR09, JStB01, PV14b]. For almost all

complex W, we show that the CRB is guaranteed to exist in different regimes of compression,

that depend on the array geometry. Our sufficient conditions are tight, since they agree with the

necessary conditions from [GZC18] and provably show the benefit of sparse compressed arrays

over compressed ULAs.

Notations: The symbols (.)T ,(.)H ,(.)∗ stand for transpose, Hermitian, and complex conjugate,

respectively. The symbols ⊗, � denote Kronecker, and (column-wise) Khatri-Rao product,

respectively. Vectors, matrices, and sets are shown with letters such as A,a, and A , respectively.

|A | denotes cardinality of a set A , and A\B stands for set subtraction.
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2.5.1 Signal Model and Review of Compressed Arrays

Consider a linear (possibly non-uniform) array with M antennas located at λ

2{d1,d2, · · · ,dM},

where λ is the carrier wavelength of narrowband signals received by the array and dm are typically

selected as integers or rational numbers. The tth temporal snapshot of the signal vector z(t) ∈CM

at the output of the array, corrupted by additive noise n(t) ∈ CM, is given by

z(t) = A(θ)x(t)+n(t) (2.86)

The model (2.86) arises in various applications. In Direction-of-Arrival (DOA) estimation with

narrowband radars, θ = [θ1,θ2, · · · ,θK] represent the DOAs of K narrowband far-field sources

with waveforms given by the vector x(t) = [x1(t), · · · ,xK(t)]T ∈CK . In mmWave communication,

the channel exhibits sparse scattering that consists of a few (or clusters of) multipath components,

where θi,1 ≤ i ≤ K represents the angle of arrival of the ith multipath component, and xi(t)

is the corresponding time-varying path gain 2 [PPYH17, AMGPH14]. In either case, A(θ) =

[a(θ1), · · · ,a(θK)] ∈ CM×K where a(θi) ∈ CM is the array steering vector corresponding to the

angle θi, with elements given by [a(θi)]m = e j 2π

λ
dm sinθi , j =

√
−1.

In mmWave hybrid communication systems [ALH15, AEALH13, PH18], the signals at

the M antennas are linearly combined through a network of analog circuitry (denoted by a matrix

W ∈ CN×M) to produce a lower dimensional/compressed measurement vector y(t) ∈ CN with

N < M

y(t) = Wz(t) = WA(θ)x(t)+Wn(t) (2.87)

It is well-known that for an uncompressed array (W = I), non-uniform array geometries

(such as nested array) can resolve K = O(M2) sources by utilizing the structure of the covariance

2This prototype mmWave channel model can be extended to consider angular spread, and clusters with correlated
multipath [HC16, AGPHJ18].
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matrix of the data y(t), while uniform arrays (such as ULAs) can only resolve K = O(M) sources

[PV10]. However, for a compressed array with N < M, the number of identifiable sources is

dependent on the choice of both W and array geometry.

Necessary Conditions for Existence of Cramér Rao Bounds when N < M

Suppose x(t)∼ CN (0,P), where P is a diagonal matrix with p ∈ RK being its diagonal

elements (assuming that the multipath gains are statistically uncorrelated [PH16, GZC18, PH18,

AGPHJ18]) and n(t)∼ CN (0,σ2I). The analytic form of the Fisher Information Matrix (FIM)

corresponding to the parameters θ,p,σ2 was recently studied in [GZC18] using derivations similar

to [KP16a]:

Theorem 15. Assume that we collect T independent snapshots of the compressive measurements

y(t), t = 1,2, · · · ,T , y(t)∼ CN (0,Ry), where Ry = W
(
A(θ)PA(θ)H +σ2I

)
WH is the covari-

ance matrix of y(t). The Fisher Information Matrix (FIM) corresponding to the parameters

ψ = [θT ,pT ,σ2]T ∈ R2K+1 is given by 3

J(ψ) = T GHHG (2.88)

where H = R−T
y ⊗R−1

y , G ∈ CN2
RF×(2K+1) is given as G = (W∗⊗W)[A∗�A B ẽM], such that

ẽM = vec(IM) and B,A∗�A ∈ CM2×K are given as

[B]m̃,k = jπ(di−d j)e jπ(di−d j)sinθk cosθk pk

[A∗�A]m̃,k = e jπ(di−d j)sinθk

where m̃ = ( j−1)M+ i, and 1≤ i, j ≤M.

Let D denote the difference set of sensor locations, defined as D = λ

2{dm− dn,1 ≤
3We suppress the dependence of matrices G,H,B,A to the parameters ψ for notational simplification.
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m,n ≤M}. Suppose the physical array is such that D is a ULA with Md elements, satisfying

D = {pλ

2 ,−Md ≤ p≤Md}. If W = I (i.e., the measurements are directly collected at the output

of the antenna array, without the mixing matrix W), it is shown in [LV17, KP16a] that

rank(J(ψ)) = rank(G) = 2K +1, if K ≤Md (2.89)

Invertibility of the FIM is an important consideration for parameter estimation. It is well-known

that if the FIM is not invertible, there will not exist an unbiased estimator for the parameters

p,θ,σ2 with finite variance [SM01b, KP16a]. The authors in [GZC18] derived the following

necessary conditions for the FIM to be invertible (or equivalently, sufficient conditions for the

FIM to be non-invertible) 4:

Corollary 3. [GZC18] If N2 > |D|, for any choice of distinct K DOAs, the FIM in (2.88) is

singular if K > |D|/2. If N2 ≤ |D|, then FIM is singular if K > b(N2−1)/2c.

However, Corollary 3 does not provide sufficient conditions in terms of K, M and N,

under which the FIM will be guaranteed to be invertible. Obtaining such a sufficient condition

is important, since it will enable us to operate in the correct parametric regime (in terms of N

and M) for localizing K DOAs. We bridge this important gap by highlighting the roles of two

well-known array geometries: ULA and nested arrays.

2.5.2 Sufficient Conditions for Existence of CRB for Compressed Arrays

In this section, we develop sufficient conditions (in terms of K,N and M) for the existence

of CRB for compressed arrays. Let us first state the following preliminary lemma:

Lemma 1. [SS94, GR09, JStB01] Let f : RN → R be an analytic function. If there exists an

element x0 ∈ RN such that f (x) 6= 0, then the set {x : f (x) = 0} has Lebesgue measure zero.

4With slight adjustments to account for having 2K +1 parameters instead of 2K +2 parameters in [GZC18]
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Equipped with Lemma 1, we are ready to state the following important lemma, which tests

invertibility of the FIM using properties of the zero-set of a real-valued multivariate polynomial.

Lemma 2. Given an antenna array whose antennas are located on d1,d2, · · · ,dM, if there exists

a matrix W0 ∈ CN×M for which the FIM defined in (2.88) with W = W0 is nonsingular, then for

almost all W ∈ CN×M (except possibly for a set of measure zero), the FIM will continue to be

invertible (i.e., the CRB exists). Moreover, if 2K +1 > N2, the FIM is necessarily singular.

Proof. When 2K +1 > N2, the matrix G becomes a fat matrix (more columns than the number

of rows), hence J will necessarily be a singular matrix. The sufficient condition for invertibility of

J can be proved as follows: we can write the matrix G in terms of its real and imaginary parts as

G = Gr + jGi. If v ∈N (G), and v = vr + jvi then 5 it is straightforward to show that v ∈N (G)

is equivalent to G̃ṽ = 0, where

G̃ =

Gr −Gi

Gi Gr

 , and ṽ =

vr

vi


Therefore, G is full column rank if and only if det(G̃T G̃) 6= 0. It is easy to see that det(G̃T G̃) is a

polynomial in terms of the elements of Wr,Wi, i.e, the real part and imaginary parts of W. Hence,

f (Wr,Wi) = det(G̃T G̃) is an analytic function with 2MN real-valued variables. Hence, if we are

able to show that f (Wr,Wi) is a nontrivial polynomial, then based on the result from Lemma

1 the set {[Wr,Wi]| f (Wr,Wi) = 0} has measure zero. To show that f (Wr,Wi) is a nontrivial

polynomial, it suffices to find one example W0,r, W0,i which guarantees f (W0,r,W0,i) 6= 0. We

let W0,r (resp. W0,i) to be the real (resp. imaginary) part of W0.

Hence, if we can construct a specific W0 ∈ CN×M such that the FIM J(ψ)|W=W0 is non-

singular, then the FIM is also guaranteed to be non-singular for almost all choices of W ∈ CN×M.

The construction of W0 is highly dependent on the array geometry and reveal different dependence

5Here N (.) denotes the null-space of a matrix.
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of K on N and M. In the following, we explicitly construct such a W0 separately for ULA and

nested array.

Existence of CRB for Standard Uniform Linear Arrays

For a ULA, the sensor locations satisfy dm = m,1 ≤ m ≤ M. The following theorem

shows that as long as K ≤min(M,O(N2)), the CRB exists for almost all compression matrices

W ∈ CN×M.

Theorem 16. Consider a ULA with dm = m, 1≤ m≤M. Let N0 = b2
√

M+1−1c. For such an

array, the FIM J(ψ) given by (2.88) is non-singular for almost all W ∈ CN×M (except possibly

for a set of measure zero), if K ≤ N2(N1 +1)−1 where N1,N2 are integers given by

(N1,N2) =

(
bmin(N,N0)

2
c,dmin(N,N0)

2
e
)

(2.90)

Proof. The theorem follows from Lemma 2 provided we can construct a W(N)
0 ∈ CN×M in the

regimes specified by (2.90) so that J(ψ)|
W=W(N)

0
is invertible. We construct W(N)

0 by considering

the following two cases:

• Case 1: N ≤ N0: Notice that in this case N = N1 +N2. We construct W(N)
0 as follows:

[W(N)
0 ]n,m =


1,m = n,1≤ n≤ N1

1,m = (N1 +1)(n−N1),N1 +1≤ n≤ N1 +N2

0,otherwise.

(2.91)

Notice that W(N)
0 acts as a selection matrix that selects a subset SNA ⊆ {1, · · · ,M} of size

|SNA|= N, such that

SNA =
λ

2
{1,2, · · · ,N1}∪{m(N1 +1)

λ

2
,1≤ m≤ N2} (2.92)
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SNA can be identified as a nested array with N1 +N2 sensors [PV10]. The difference set of

such an array is given by

DNA =
λ

2
{−Md, · · · ,Md : Md = (N1 +1)N2−1} (2.93)

Define A0(θ) = W(N)
0 A(θ). Then, it is easy to verify that

[A0(θ)]m,k = e jπzm sin(θk),1≤ k ≤ K,zm ∈ SNA.

Hence, A0(θ) represents the array manifold of a nested array with N sensors (N1 sensors

in inner and N2 sensors in outer ULAs). Given W0, the compressed measurement vectors

y0(t), y(t)|
W=W(N)

0
are given by (2.86):

y0(t) = W(N)
0 A(θ)x(t)+W(N)

0 n(t) = A0(θ)x(t)+n0(t) (2.94)

where n0(t) is a subvector of n(t) and therefore it continues to be i.i.d. Gaussian white

noise, distributed as n0(t) ∼ CN (0,σ2
nIN). Therefore, (2.94) represents the measurement

model of the signal received at a nested array with N1 +N2 = N sensors, contaminated with

additive white Gaussian noise, and J0(ψ) , J(ψ)|
W=W(N)

0
represent the Fisher Information

Matrix (FIM) corresponding to the measurements y0(t), t = 1,2, · · · ,T . Since DNA is a ULA

with 2Md +1 elements, we can use (2.89) to conclude that J0(ψ) is non singular as long as

K ≤Md = (N1 +1)N2−1.

• Case 2, N > N0: In this case, N1 +N2 = N0. Let ∆N = N−N0 and let SNA be an ordered set

6 defined as SNA = λ

2{1,2, · · · ,M}\SNA, where SNA is given by (2.92). We construct W(N)
0

as W(aug)
0 = [(W(N0)

0 )T CT
0 ]

T where W(N0)
0 ∈ RN0×M is constructed according to (2.91), and

6Elements of SNA are indexed in ascending order.
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C0 ∈ R∆N×M is constructed as

[C0]n,m =


1, m = [SNA]n

0, otherwise.

Here, the notation [SNA]n indicates the nth element (in ascending order) of the set SNA. As

before, let A(aug)
0 , W(aug)

0 A(θ). Then, A(aug)
0 (θ) can be identified as the manifold of an

“augmented” nested array, with [A(aug)
0 ]m,k = e jzm sin(θk), zm ∈ Saug-NA where Saug-NA is the

set of sensor locations of this augmented nested array given by Saug-NA = SNA ∪ C with

C = {[SNA]n : 1≤ n≤ ∆n}. It can be verified that the difference set of Saug-NA is a ULA given

by Daug-NA = λ

2{−Md, · · · ,Md : Md = N2(N1 +1)−1}. As before, y(aug)
0 (t) , y(t)|

W=W(aug)
0

represents the measurement model of an augmented nested array with sensors at Saug-NA,

contaminated with white Gaussian noise, and J0(ψ) = J(ψ)|
W=W(aug)

0
is the corresponding

FIM. Since Daug-NA is again a ULA with 2Md +1 elements, we can use (2.89) to conclude that

J0(ψ) is non singular as long as K ≤Md = N2(N1 +1)−1.

Remark 16. It is possible to improve the upper-bound provided in Theorem 16 (up to constant

scaling factors), if we use enhanced versions of the nested array, such as [YSYC16, ZWKZ19,

RDL+20] to construct W(N)
0 . We plot such a bound derived using the array structure proposed in

[RDL+20] in our simulations.

Existence of CRB for Modified Nested Arrays

We consider a specific class of nested arrays with M antennas (henceforth referred to as

modified nested array, or mod-NA), where we adjust the number of elements and inter-element
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spacings as a function of N and M. Let n1 = bN
2 c. We choose the sensor locations as

Smod-NA =
λ

4
{1,2, · · · ,2n1}∪

λ

2
{n1m,2≤ m≤ (M−2n1 +1)}

Notice that the spacing in the inner ULA is λ/4, which is half the standard spacing of λ/2. For

this nested array, the following theorem shows a construction of W0 such that J(ψ)|W=W0 is

non-singular.

Theorem 17. Consider an antenna array whose sensor locations are given by the set Smod-NA.

For such an array, the FIM J(ψ) given by (2.88) is non-singular for almost all W∈CN×M (except

possibly for a set of measure zero) whenever N ≤ 2M
3 , and K ≤ n1(N−n1 +1)−1.

Proof. Similar to the proof of Theorem 16, it is sufficient to find a matrix W0 ∈ CN×M such that

the FIM in (2.88) is non-singular. Lemma 2 will then imply that J(ψ) will be non-singular for

almost all W ∈ CN×M. We construct W0 as follows:

[W0]n,m =


1,m = 2n, 1≤ n≤ n1

1,m = n1 +n, n1 +1≤ n≤ N

0, otherwise.

(2.95)

Noice that N ≤ 2M
3 ⇒ N + n1 ≤M. Hence, the Nth (or last) row of W0 contains a single 1 in

the (N +n1)th column, while ensuring that N +n1 ≤M. Let A0 , W0A(θ). Then, A0(θ) can be

identified as the manifold of a nested array with N antennas whose locations are given by the set

S (N)
NA =

λ

4
{2,4, · · · ,2n1}∪

λ

2
{2n1,3n1, · · · ,(N−n1 +1)n1}

It is easy to see that the difference set of S (N)
NA is a standard ULA given by D(N)

NA = λ

2{−Md, · · · ,Md :

Md = n1(N−n1+1)−1}. Hence, y0(t), y(t)|W=W0 represents the measurement model of an N-

element nested array with sensors at S (N)
NA , contaminated with white Gaussian noise, and J0(ψ) =
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J(ψ)|W=W0 is the corresponding FIM. Since DNA is again a standard ULA with 2Md +1 elements,

we can use (2.89) to conclude that J0(ψ) is non singular as long as K ≤Md = n1(N−n1+1)−1.

Remark 17. Compressed Nested Array versus ULA: Notice that n1(N−n1+1)−1 scales as

Θ(N2). Hence, Theorem 17 dictates that for a compressed nested array with N < 2M/3, the FIM

is invertible for almost all W as long as K = O(N2). In particular, if N scales linearly with M

(i.e. N = αM for some constant α < 2/3), then the FIM is nonsingular even when K = O(M2).

On the other hand, for a compressed ULA, Theorem 16 dictates that the FIM is nonsingular as

long as K = min
(
O(N2),M

)
. In particular, if N scales linearly with M, the FIM is non singular

only if K < M. Hence our results show that for almost all choices of W, even after compression,

nested arrays potentially allow localization of K = O(M2) sources as long as N scales linearly

with M.

2.5.3 Simulations

We consider a ULA and a modified nested array with M = 22 antennas. For each value

of K the sources are located uniformly on the range [− (K−1)π
2K , (K−1)π

2K ], with equal power pk = 1,

k = 1, · · · ,K and noise power σ2 = 0.1, with SNR defined as SNR= 10log10(
∑

K
k=1 pk

K
σ2 ). We assume

that Wn,m = e jφnm where φnm are i.i.d random variables distributed uniformly on [0,2π]. In Figure

(2.18a) and (2.18b), for each pair of (N,K), we plot the empirical probability with which the FIM

in (2.88) is invertible, with white indicating probability 1 and black indicating 0. In each run, the

necessary and sufficient bounds derived in Theorems 16, 17 are also overlaid, which agree with

the empirical plots. In Figure 2.18a, we show the sufficient bound derived from nested array, as

suggested by Theorem 16 (denoted as W(N)
0 : NA). We also overlay a sufficient bound that is

derived by choosing W(N)
0 in the proof of Theorem 16 to generate a two-sided extended nested

array (TS-ENA) [RDL+20] (denoted as W(N)
0 : TS-ENA). This has the same order-wise scaling

but better constants than the nested array.

98



5 10 15

N

5

10

15

20

25

K

(a) ULA

5 10 15

N

5

10

15

20

25

K

(b) Modified nested array

Figure 2.18: Phase-transition for nonsingularity of FIM in (2.88) for different array geometries.
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Figure 2.19: CRB of compressed ULA and compressed modified nested array, as a function of
(a) SNR and (b) K values.

In Figure 2.19, we plot the CRB as a function of SNR and K. We assume N = 6,M ∈

{12,16,20}, and fix the compression matrix W. In Figure 2.19a, we assume that K = 4 and the

CRB is evaluated for both ULA and modified nested arrays. As the SNR increases, the CRB

decreases, and is always smaller for the compressed nested array configuration. In Figure 2.19b,

where we assume SNR = 40dB, we see that as the number of sources increases, the CRB also

increases. Moreover, we can observe a jump in the CRB in the overcomplete regime where

K > N. A more detailed study of the CRB versus SNR and K can be an interesting topic of future

research.
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2.5.4 Conclusion

We developed the first results that derive sufficient conditions for the existence of the CRB

for compressed arrays, by explicitly highlighting the role of array geometry. We studied the role

of compression in both uniform and sparse antenna arrays, and established sufficient conditions

under which the Cramér Rao bound is guaranteed to exist for a generic N×M compression matrix

W. For a uniform linear array, the FIM will be invertible if K = min(O(N2),O(M)). When

suitably designed sparse arrays (such as nested arrays) are used, one is able to further improve

this to K = min(O(N2),O(M2)).
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2.6 Appendix

2.6.1 Proof of Theorem 4

First, let us define some notations which will be used in the proof.

Definition 4. Let Āca,0 ∈CMca×Nθ be the matrix constructed from Aca,0 by removing the repeated

rows and sorting them in order such that first row coresponds to difference of −Mca−1
2 and last

row corresponds to difference of Mca−1
2 .

Notice that the difference between Au
ca,0 and Āca,0 is that for Āca,0 we also keep the zero

and negative lags of the co-array.

Recall from Theorem 3 that non singularity of J is equivalent to B = [Aca,0 H] being full

column rank. Our proof technique involves deriving sufficient conditions under which B has

full column rank. Denote H̃δ = [vec(Rδ1)) vec(Rδ2)) · · · vec(RδM))]. Recall that H = (H̃δ):,2:M,

i.e., the matrix comprised by the last M−1 columns of H̃δ. After establishing that both H and

Aca,0 have full column rank, we establish that there exists no intersection between the column

spaces of H̃δ and Aca,0. Then it directly follows that the column spaces of H and Acaz do not

intersect as well, thereby proving that B is full column-rank.

Notice that every column of H̃δ is a vectorized form of the matrices Rδi where Rδi ,

∂Ry
∂δi

= ARxDH
δi
+DδiRxAH , and Dδi =

∂A
∂δi

.

However, the matrix Rδi is only supported on its ith column and its ith row. Hence,

vec(Rδi) is supported only on very specific rows as follows

(
H̃δ

)
q,r =


λr,s q = (s−1)M+ r,1≤ s≤M,s 6= r

−λs,r q = (r−1)M+ s,1≤ s≤M,s 6= r

0 else

(2.96)
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Accordingly, H̃δ ∈ CM2×M can be written as



0 0 0 · · · 0 0

λ2,1 −λ2,1 0 · · · 0 0

λ3,1 0 −λ3,1 · · · 0 0
...

... · · · . . . ...
...

λM−1,1 0 0 · · · −λM−1,1 0

λM,1 0 0 · · · 0 −λM,1

−λ1,2 λ1,2 0 · · · 0 0

0 0 0 · · · 0 0

0 λ3,2 −λ3,2 · · · 0 0

0
... · · · . . . ...

...

0 λM−1,2 0 · · · −λM−1,2 0

0 λM,2 0 · · · 0 −λM,2

...
...

...
...

...
...

...
...

...
...

...
...

−λ1,M 0 0 · · · 0 λ1,M

0 −λ2,M 0 · · · 0 λ2,M

0 0 −λ3,M · · · 0 λ3,M

0
... · · · . . . ...

...

0 0 0 · · · −λM−1,M λM−1,M

0 0 0 · · · 0 0



where λr,s = ∑
Nθ

k=1 jγk
2πk
Nθ

e j 2πk
Nθ

(dr−ds), for all 1 ≤ r,s ≤ M, s 6= r. Moreover, let λ(m) = λr,s, for

dr−ds = m. It can be verified that, λ(m) =−λ∗(−m).

Lemma 3. For almost all γ ∈ RNθ , H has full column rank.
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Proof. For almost all γ∈RNθ we have λr,s 6= 0 for 1≤ r,s≤M. This is because λr,s = 0 describes

a linear relation between the elements of γ, which holds only for a set of measure zero in RNθ .

Thus, looking at the rows 2 through M of H (or equivalently, at (H̃δ)2:M,2:M), we have a diagonal

matrix with nonzero numbers on the diagonal, for almost all γ. Therefore, H has rank M−1, i.e.,

H is full column rank for almost all γ.

Observe that

λ(m+Nθ) =
Nθ

∑
k=1

jγk
2πk
Nθ

e j 2πk
Nθ

(m+Nθ)

=
Nθ

∑
k=1

jγk
2πk
Nθ

e j 2πk
Nθ

m
= λ(m).

Similarly, the (m+Nθ)th row of Āca,0 is equal to its mth row. We will use this fact throughout

the proof.

Since Aca,0 is full column rank as long as Nθ ≤Mca, and H is full column rank for almost

all γ (Lemma 3), the only way for B to be column rank deficient is when there exist non zero

α ∈ CNθ , β̃ ∈ CM−1 such that

Aca,0α = Hβ̃. (2.97)

We first show that there exist no α 6= 0 and β 6= 0 such that Aca,0α = H̃δβ. This will, in

particular imply non existence of non zero α and β̃ such that ((2.97)) holds. We prove this by

contradiction, i.e. let us assume there exist nonzero α ∈ CNθ , β ∈ CM satisfying Aca,0α = H̃δβ.

This means that for every 1≤ r,s≤M we have

βr−βs =
∑

Nθ

k=1 αke j 2πk
Nθ

m

λ(m)
:= fα(m), (2.98)
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for dr−ds = m.

In a ULA, we have di−di−1 = 1. Thus, βi−βi−1 = fα(1) for 2≤ i≤M. This implies

that

βi = β1 +(i−1) fα(1)

Upon substitution in (2.97) and using the definition of fα(m) from (2.98), we obtain

Āca,0α = fα(1)×



−(M−1)λ(−M+1)
...

−λ(−1)

0

λ(1)
...

(M−1)λ(M−1)



:= c (2.99)

We notice that fα(1) 6= 0. Otherwise, we would have had Āca,0α = 0, implying α = 0, which

contradicts the fact that α 6= 0.

For simplicity, we index the rows of (2.99) from −(M−1) to M−1. Let p =−(M−1).

From (2.98)

fα(p) =
∑

Nθ

k=1 αke j2πpk/Nθ

λ(p)
= p, (2.100)

Notice that fα(p+Nθ) = fα(p). Also, since Nθ ≤ 2M−2, p+Nθ ≤M−1 and we can consider
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the (p+Nθ) th row to obtain

fα(p+Nθ) =
∑

Nθ

k=1 αke j2π(p+Nθ)k/Nθ

λ(p+Nθ)
= p+Nθ

⇒ fα(p) =
∑

Nθ

k=1 αke j2πpk/Nθ

λ(p)
= p+Nθ (2.101)

However, (2.100) and (2.101) cannot hold at the same time since p+Nθ 6= p. Therefore, the

range spaces of Aca,0 and H do not coincide except for the zero vector. Using the facts that H is

full column rank for almost all γ, Aca,0 is full column rank for Nθ ≤ 2M−1, and the range spaces

of Aca,0 and H do not intersect as long as Nθ ≤ 2M−2, we conclude that B has full column rank

for almost all γ and δ as long as Nθ ≤ 2M−2.

2.6.2 Proof of Theorem 5

Proof. We prove for a slightly modified version of the nested array which is defined in (2.32).

We follow the same lines of proof of Theorem 4 up to (2.98) since the argument upto this

point applies to any array geometry. For a nested array, the explicit structure of the vector Hβ

will be quite different and we now examine it more closely. We use the same definition for fα(m)

as in (2.98).

Let fα(m) be defined as in (2.98). Assuming M to be an even number, for a modified

nested array which is defined in (2.32), we have

βi−βi−1 = fα(1),

for 2≤ i≤ M
2 +1, therefore

βi = β1 +(i−1) fα(1). (2.102)
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Moreover, we have

β M
2 +1−β1 = fα(

M
2
) (2.103)

β M
2 +i−β M

2 +i−1 = β M
2 +1−β1 = fα(

M
2
), (2.104)

for i = 2, · · · , M
2 . Hence, we get

β M
2 +i = β1 + fα(

M
2
)i.

From (2.102) and (2.103), we get M
2 fα(1) = fα(

M
2 ).

Therefore, we have

c := Āca,0α = fα(1)×



−M2

4 λ(−M2/4)
...

−2λ(−2)

−λ(−1)

0

λ(1)

2λ(2)
...

M2

4 λ(M2/4)


Similar to the proof of Theorem 4, index the rows as −M2/4 to M2/4 and consider the

pth row and the (p+Nθ)th row to conclude that (2.100) and (2.101) cannot hold simultaneously,

unless fα(1) = 0. Choosing p = −M2/4 is sufficient for our argument, since we only need to

ensure that the (p+Nθ)th row falls within range, i.e. p+Nθ = −M2/4+Nθ ≤ M2/4, which

obviously holds since we assumed Nθ ≤M2/2.
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2.6.3 Proof of Theorem 7

Proof. Due to Theorem 3, in order to ensure that the FIM is invertible, we only need to show that

B = [AcaH] is full column rank. A sparse γ only changes the explicit form of H since the entries

λ(m) of H are now given by:

λ(m) =
K

∑
k=1

jγ jkω jke jmω jk ,

where jk indicates the index of the kth nonzero element of γ, and w jk denotes its corresponding

spatial frequency on the grid. As in the proofs of Theorems 4, 5, B is of full column rank if Aca

and H are full column rank and there exist no non zero α, β̃ such that Acaα = Hβ̃. The proof for

non existence of non zero α and β follow the same lines as earlier. However, we only need to

establish conditions for full column rank of H. As argued in the proof of Theorem 4, the structure

of H in (2.96) dictates that it has full column rank M−1 for almost all sparse γ with ‖γ‖0 = K, if

λ(m) is nonzero for every 0≤m≤Mca. Let γ̃ = [γ j1, · · · ,γ jK ]. We see that λ(m) = 0 for a particular

m describes a linear relation between the elements of γ̃:

0 =
K

∑
k=1

jγ̃kω jke jmω jk

Hence, γ̃ has a measure zero in RK . Hence, for almost all K-sparse γ, λ(m) 6= 0. This implies that

H has full column rank, and we can repeat the rest of the proofs of Theorems 4, 5 to establish that

J is non singular for almost all K− sparse γ ∈ RNθ,‖γ‖0 ≤ K.
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2.6.4 Proof of Theorem 13

Proof. Let k, ik be integers such that 1≤ k ≤M−2 and 1≤ ik ≤M− k−1. We have

Rik+k+1,ik+k = f1 +λ1(δik+k+1−δik+k) (2.105)

Rik+1,ik = f1 +λ1(δik+1−δik) (2.106)

Similarly,

Rik+k+1,ik+1 = fk +λk(δik+k+1−δik+1) (2.107)

Rik+k,ik = fk +λk(δik+k−δik) (2.108)

Subtracting (2.105) from (2.106), and also (2.107) from (2.108) we obtain

βk =
Rik+k+1,ik+1−Rik+k,ik
Rik+k+1,ik+k−Rik+1,ik

=
λk

λ1
(2.109)

Here, we assumed that δ ∈ RM is such that

δik+k+1−δik+k−δik+1 +δik 6= 0, (2.110)

This can be violated only on a set of measure zero in RM. Hence, the following results will hold

for almost all δ.

Notice that for a fixed k, different instances of equation (2.109) corresponding to different

values of ik in the range 1 ≤ ik ≤ M− k− 1 are actually identical, as long as the observed

covariance matrix is exact, and the assumption (2.110) holds for all ik. Hence, in the sequel, we

will assume ik = 1.
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From and (2.69) and (2.70), we can verify that

r̄k = k f1 +λ1(δk+1−δ1) (2.111)

From (2.108), (2.111) we get, for 2≤ k ≤M−2,

βk (k f1− r̄k) = fk−Rk+1,1

which can be expressed as

Ck−1,1 f1 +Ck−1,k fk = hk−1, 2≤ k ≤M−2 (2.112)

where Ck−1,1,Ck−1,k, and hk−1 are given in (2.73), (2.74), and (2.75). We can express (2.112) in

a more compact and explicit form as

Cf = h (2.113)

in which

C =



C1,1 C1,2 0 · · · 0

C2,1 0 C2,3 · · · 0
...

... · · · . . . ...

CM−3,1 0 0 · · · CM−3,M−2


h = [h1 h2 · · · hM−3]

T
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2.6.5 Proof of Theorem 14

Proof. It can be easily verified that

r̄(1)i = (i−1) fN1 +(δ
(1)
i −δ

(1)
1 )λN1 (2.114)

r̄(2)j = ( j−1) fN2 +(δ
(2)
j −δ

(2)
1 )λN2 (2.115)

For each lag k, one of the following four possibilities can happen: 1) k = d(1)
i −d(2)

j , 2)

k = d(2)
j −d(1)

i , 3) k = d(1)
i −d(1)

i′ , 4) k = d(2)
j −d(2)

j′ .

1. k = d(1)
i − d(2)

j : We consider the case where the lag k is generated taking the difference

between the ith sensor from the first sub-array and the jth sensor from the second sub-array.

Since, we have doubled the number of sensors of each ULA, for each 1 ≤ i ≤ N2, and

1≤ j≤ 2N1 so that d(1)
i −d(2)

j =N1i−N2 j = k, the sensors indexed by ī= i+N2, j̄ = j+N1

also create the same lag k. Therefore, we can rewrite the equations (2.114) and (2.115) for

ī, j̄. Subtracting those equations from (2.114) and (2.115), we get

r̄(1)ī − r̄(1)i = N2 fN1 +(δ
(1)
ī −δ

(1)
i )λN1 (2.116)

r̄(2)j̄ − r̄(2)j = N1 fN2 +(δ
(2)
j̄ −δ

(2)
j )λN2 (2.117)

We also know that

R(12)
i j = fk +(δ

(1)
i −δ

(2)
j )λk (2.118)

R(12)
ī j̄ = fk +(δ

(1)
ī −δ

(2)
j̄ )λk (2.119)

We know that the (N2 +1)th element of the first ULA, and the (N1 +1)th element of the

second ULA happen to be the same sensor on the coprime array (both at the normalized

location N1N2). For this particular sensor, we can write equations (2.114) and (2.115).
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r̄(1)N2+1 = N2 fN1 +(δ
(1)
N2+1−δ

(1)
1 )λN1 (2.120)

r̄(2)N1+1 = N1 fN2 +(δ
(2)
N1+1−δ

(2)
1 )λN2 (2.121)

where δ
(1)
N2+1 = δ

(2)
N1+1 since they are the same sensor, and also δ

(1)
1 = δ

(2)
1 for the same

reason.

We can write similar equations for (2N2 +1)th sensor of first ULA, and (2N1 +1)th sensor

of second ULA, which again happen to be the same sensor.

r̄(1)2N2+1 = 2N2 fN1 +(δ
(1)
2N2+1−δ

(1)
1 )λN1 (2.122)

r̄(2)2N1+1 = 2N1 fN2 +(δ
(2)
2N1+1−δ

(2)
1 )λN2, (2.123)

in which δ
(1)
2N2+1 = δ

(2)
2N1+1.

From (2.120), (2.121), (2.122), (2.123), we get

2r̄(2)N1+1− r̄(2)2N1+1

λN2

=
2r̄(1)N2+1− r̄(1)2N2+1

λN1

(2.124)

and from equation, we obtain (2.79)

α =
λN2

λN1

=
2r̄(2)N1+1− r̄(2)2N1+1

2r̄(1)N2+1− r̄(1)2N2+1
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From equations (2.118), (2.119) from (2.116), (2.117), we get

δ
(1)
ī −δ

(2)
j̄ −δ

(1)
i +δ

(2)
j =

r̄(1)ī − r̄(1)i −N2 fN1

λN1

−
r̄(2)j̄ − r̄(2)j −N1 fN2

λN2

=
R(12)

ī j̄ −R(12)
i j

λk
,

whereby (2.80) follows, where [βcp]k := λk
λN1

.

Now, using (2.114), (2.115), we can write

δ
(1)
i −δ

(2)
j =

r̄(1)i − (i−1) fN1

λN1

−
r̄(2)j − ( j−1) fN2

αλN1

and

R(12)
i j = fk +βk(r̄

(1)
i − (i−1) fN1− (r̄(2)j − ( j−1) fN2)α

−1) (2.125)

which is linear in terms of elements of f, and hence it is linear in terms of p. By varying

the indices i and j in the range 1 ≤ i ≤ N2 and 1 ≤ j ≤ 2N1 in (2.125), we obtain the

corresponding rows of the system of equations Ccpf = hcp.

2. k = d(2)
j −d(1)

i :

In this case, (2.118), (2.119) should be rewritten as

(R(12)
i j )∗ = R(21)

ji = fk +(δ
(2)
j −δ

(1)
i )λk (2.126)

(R(12)
ī j̄ )∗ = R(21)

j̄ī = fk +(δ
(2)
j̄ −δ

(1)
ī )λk (2.127)
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We can repeat the math accordingly to get

(R(12)
i j )∗ = fk +βk((r̄

(2)
j − ( j−1) fN2)α

−1

− (r̄(1)i − (i−1) fN1))

3. k = d(1)
i −d(1)

i′ and k = d(2)
j −d(2)

j′ : These cases can be handled similar to ULA, following

the same lines of math as in the proof of Theorem 1.
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Chapter 3

Sparse Support Recovery for

Underdetermined Linear Problems

In chapter 2, we considered the problem of source localization, in the setting that the

source locations were not assumed to be on a predefined grid. This Section, however, considers a

different viewpoint. Here, we consider a more general problem setting that can have applications

beyond source localization. In order to connect the contents of this chapter to source localization

however, it is enough to assume the measurement matrix A in this chapter, is a discrete version of

a(θ) in Chapter 2, i.e., A = [a(θ1), · · · ,a(θN)] for a predefined grid θ1, · · · ,θN . In the following,

we define the problem setting considered in this chapter:

Consider a set of L jointly sparse vectors1 x[l] ∈ FN , l = 0, · · · ,L−1, which share a

common support S of size K < N,

Supp(x[l]) = S , ∀ 0≤ i≤ L−1, |S |= K.

1Depending on the context, F denotes the real or complex field, i.e., F= R or F= C.
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We obtain linear measurements of x[l] (contaminated with additive noise w[l]) given by

y[l] = Ax[l]+w[l], l = 1, · · · ,L. (3.1)

Here A ∈ FM×N is the measurement matrix with M < N and therefore, y[l] represent a set of

compressed measurements of x[l], l = 1,2, · · ·L. This observation model lies at the heart of

compressive sensing and sparse signal recovery [C+06, CT05, Don06, TG07b, WR04, GR97,

CRT06, CW08] where the goal is to reconstruct the sparse signal x[l] given the noisy compressed

data y[l]. Over the past decade this problem has received immense attention, and a large number

of computationally efficient algorithms have been developed to provably recover the sparse signals

x[l] from M =O(K log(N/K)) compressive measurements [GR97, CRT06, CT07, TG07b, DM09,

NT09].

In its most basic form, the measurement model (3.1) only consists of L = 1 measurement

vector, which is also known as the Single Measurement Vector (SMV) problem. The SMV

problem is known to have a unique K-sparse solution, with minimum `0 norm, if and only if

K ≤ k-rank(A)/2, where k-rank(.) denotes the Kruskal rank [FR13]. When L > 1, (3.1) is known

as the Multiple Measurement Vector (MMV) problem. It has been shown that by collecting L > 1

measurement vectors, one can recover signals with larger sparsity, compared to that for the SMV

problem. In particular, the MMV problem is known to have a unique jointly sparse solution with

sparsity K, if K ≤ (k-rank(A)+ rank(Y))/2 [DE12]. Several algorithms have been developed

for the MMV model that tries to exploit the benefit offered by the rank of the measurements Y

and recover larger sparse supports [CREKD05, CH05, CH06, TGS06, BCHJ14, REC04, LBJ12,

ME08]. However, theoretical guarantees for these algorithms are limited to the regime K < M.

Of particular interest in many different applications is to detect the location/indices of

the common nonzero elements of x[l], (i.e., the set S ), as they contain physically meaningful

information. For instance, in a grid based model for Directions-of-Arrival (DOA) estimation
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problem [MCW05, XHYB12, PV13], the location of nonzero elements determines the directions

of the impinging narrow-band waves from point sources. In compressive spectrum sensing

for cognitive radio, the sparse support represents the occupied frequency bands on which the

communication needs to be avoided by the cognitive radio agents [TG07a]. In sparse linear

regression [LS07, LW11, NW08], the support indicates the set of parameters that contribute

to the data. In these cases, it is imperative to analyze the performance of algorithms that

directly aim at recovering the support without first estimating the sparse signal vectors. This

problem of sparse support recovery (or model selection in statistics community), has received a

great deal of attention over the past few years and several computationally tractable algorithms

have been proposed [Wai09b, FRG09, CP09]. Concurrently, a significant body of work is

dedicated towards characterizing fundamental performance limits of sparse support recovery

[Wai09a, JKR11, AAS17, SC17], often using information-theoretic tools. In the following

subsection, we will review the key results on sparse support recovery.

The performance of sparse support recovery has been extensively analyzed by several

researchers. These results mostly provide necessary and sufficient conditions under which support

recovery will succeed. In the following, we will review some of these results:

Algorithm-Specific Guarantees and Upper Bounds on Probability of Error The techniques

to derive upper bounds on the probability of error in support recovery are usually construc-

tive, i.e., a specific support recovery algorithm is first proposed (sometimes computationally

intractable), and then its performance is analyzed. For L = 1, (i.e., SMV model), Fletcher

et al. [FRG09] considered a “maximum correlation” detector, which despite its simplicity,

shows that Ω(K log(N −K)) measurements indeed suffice to ensure perfect support recov-

ery. Exhaustive-search decoders, which are computationally intractable, are considered in

[Wai09a, Rad11, ASZ10, TN10] which also indicate a similar sample complexity of M =

Ω(K log N
K ). A body of work also uses various tools from information theory such as joint
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typicality decoder [AT10], rate-distortion theory [RG13, FRG07], belief propagation and list

decoding [PDM09], capacity of multiple access communication channels [JKR11] to provide

achievability and/or converse results on successful sparse support recovery. Recently, the authors

in [AAS17, SC17] unify sparse support recovery problems by considering linear, nonlinear and

probabilistic models, and provide optimal sample complexity in terms of necessary and sufficient

number of measurements. However, a common feature of most of these results is that the sparse

signal x[l] is modeled as a (unknown) deterministic quantity and statistical priors on x[l] (such as

its correlation structure) are not fully exploited.

In contrast, Tang et al [TN10] considered an MMV model and assumed that the signals

are generated by uncorrelated Gaussian sources with equal powers. They proposed an exhaustive

search Maximum Likelihood (ML) decoder, which searches for all possible support sets and finds

the one that maximizes the likelihood function. They derived upper bounds on the probability of

error of such a detector, in terms of M,L,N and K. Although the (non zero) signals are assumed

to be uncorrelated, the derivation of the upper bound does not fully exploit this structure. Hence,

their results do not guarantee successful support detection when K > M. Recently, [PYL17]

considered a similar problem setting, and using a typical set decoder, they ensured reliable support

recovery as long as K = O(M).

Necessary Conditions on Support Recovery In order to find lower bounds on probability of

error, (or fundamental performance limits of sparse support recovery algorithms), a body of

work [Wai09a, TN10, AAS17, SC17, JKR11, ASZ10, AT10] has used various versions of Fano’s

inequality, which provide information theoretic lower bounds for any support detection algorithm.

These results indicate that for deterministic signal models (and for the SMV model with statistical

priors on x[l]), it is necessary to have M = Ω(K logN) to ensure vanishing probability of error

of any support recovery algorithm. Although Fano’s inequality has proved to be useful in SMV

model to derive tight bounds for necessary number of measurements for reliable support recovery,
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these bounds may not be tight for MMV model with specific correlation structures. Specifically,

the authors in [TN10] use Fano’s inequality to derive lower bounds for the problem of support

recovery in an MMV model where the non zero signals are statistically uncorrelated. However,

as the authors point out, their lower bound on the probability of error is loose and can become

negative for large L. In this chapter, we address this issue by considering a more fundamental

condition called covariance identifiability, to establish performance limits for sparse support

recovery in such MMV models.

Recovering Supports of Size K > M All of the algorithms discussed so far guarantee success-

ful recovery of supports of size K =O(M). However, in MMV models, under certain deterministic

and statistical assumptions on x[l], one can recover signals with sparsity K larger than M. This

has been so far demonstrated in two distinct lines of work. The authors in [BKDM14] show

that Sparse Bayesian Learning is in fact capable of recovering more sources than the number of

measurements (K > M), in a scenario where the measurements are assumed to be noiseless, and

the non zero rows of X = [x[0],x[1], · · · ,x[L−1]] are orthogonal. They also provide empirical

results that show the possibility of recovering supports of size K > M, when the measurements

are contaminated with noise.

On the other hand, our prior work [PV15] has shown that when the non zero elements of

x[l] are assumed to be statistically uncorrelated, one can recover supports of size K = O(M2), for

cleverly designed measurement matrices. In an ideal setting, where the exact covariance matrix

of the measurements y[l] is available (by allowing L→ ∞), we guaranteed that it is possible to

recover supports of size K = O(M2) by solving a suitable l1 minimization problem. For finite

L, we proposed a new algorithm, known as Correlation-Aware LASSO (or Co-LASSO) which

uses the correlation structure of the data to recover the supports of size K > M. However, no

theoretical guarantees currently exist that can characterize the probability with which support

recovery succeeds for finite L when K > M, and ensure that this probability goes to 1 as L→ ∞.
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In this chapter, we bridge this gap and make the following contributions.
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3.1 Correlation Aware Support Recovery

In this section, we provide new probabilistic guarantees for recovering the common

support of jointly sparse vectors in Multiple Measurement Vector (MMV) models. In recent

times, Bayesian approaches for sparse signal recovery (such as Sparse Bayesian Learning,

Correlation-Aware LASSO) have shown preliminary evidence that under appropriate conditions

(such as access to ideal covariance matrix of the measurements, or certain restrictive orthogonality

condition on the signals), it is possible to recover supports of size (K) larger than the dimension

(M) of each measurement vector. However, no results exist that characterize the probability with

which this can be achieved for finite number of measurement vectors (L). this Section bridges

this gap by formulating the support recovery problem in terms of a multiple hypothesis testing

framework. Chernoff-type upper bounds on the probability of error are established, and new

sufficient conditions are derived that guarantee its exponential decay with respect to L even when

K = O(M2). Our sufficient conditions are based on the properties of the so-called Khatri-Rao

product of the measurement matrix, and reveal the importance of sampler design. Negative results

are also established indicating that when K exceeds a certain threshold (in terms of M), there

will exist a class of measurement matrices for which any support recovery algorithm will fail.

Using results from geometric probability, we characterize the probability with which a randomly

generated measurement matrix will belong to this class and show that this probability tends to 1

asymptotically in the size (N) of the sparse vectors.

Contributions

1. Using the same signal model from [PV15, TN10] that assumes the non-zero elements of

x[l] to be statistically uncorrelated, we consider a Maximum Likelihood based support

detector. We show that when N, M, K are kept fixed, the probability of error of this detector

goes to zero exponentially fast in L, as long as a fundamental condition called covariance

identifiability is satisfied. Conversely, when covariance identifiability fails, the error of any
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support detection algorithm will not converge to 0 even when L→ ∞.

2. We show that the condition K < k-rank(A∗�A)/2, is sufficient for the covariance identifia-

bility condition to be satisfied. Since k-rank(A∗�A) can be as large as O(M2) for suitably

designed measurement matrices, our results suggest that one can recover supports of size

K = O(M2) for such matrices.

3. Using results from geometric probability, we also show that when K ≥M2 +M+2, with

high probability, there exists measurement matrices (referred to as ambiguous measurement

matrices in this Section) for which the covariance identifiability condition will be violated.

We exactly characterize this probability, and also provide simplified lower bounds, which

tend to 1 as N→ ∞.

Notations

Throughout this section, matrices are represented by bold uppercase letters, vectors by

bold lowercase letters. The italic letters like S denote index sets containing integers in increasing

order. The symbol xi denotes the ith entry of a vector x. The notation AS (resp. xS ) represents

the submatrix (resp. subvector) of A (resp. x) whose columns (elements) are indexed by S . The

symbols � and ⊗ represent the Khatri-Rao and Kronecker products, respectively. Moreover, (.)H

and (.)∗ denote the Hermitian and complex conjugate operators. Other notations should be clear

from the context. The notations R+ (resp. R++) denote the set of nonnegative (resp. positive)

real numbers.

Some Basic Definitions:

In this section, we will review some basic definitions which will be useful throughout the

paper:
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Definition 5. Kruskal Rank of a matrix X, denoted by k-rank(X), is the maximum integer k, such

that any set of k columns of X is linearly independent [Kru77].

Definition 6. Khatri-Rao product of two matrices A ∈ FM1×N , and B ∈ FM2×N (with the same

number of columns) is defined as

A�B = [a1⊗b1,a2⊗b2, · · · ,aN⊗bN ]

where ai (resp. bi) indicate the ith column of the matrix A (resp. B), and ⊗ indicates the

Kronecker product.

Example 1. Let A = [a1,a2], where a1 = [1,2]T , and a2 = [3,4]T . Moreover, let B = [b1,b2],

where b1 = [5,6]T , and a2 = [7,8]T . Then, we have

A�B =



5 21

6 24

10 28

12 32



3.1.1 Problem Formulation

We adopt the signal model defined earlier in (3.1). We further make the following

assumptions:

• (A1) The vectors xS [l] ∈ FK , consisting of the nonzero elements of x[l], 0≤ l ≤ L−1, are

i.i.d. Gaussian random vectors distributed as

xS [l]∼ FN (0,P)
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where P = diag(p) is a diagonal matrix, and p ∈ RK×1
++ is the vector of source powers

comprised of positive entries. A diagonal covariance matrix implies that the nonzero

elements of xS [l] are uncorrelated.

• (A2) The additive noise w[l] ∈ FM is white, and independent of x[l], distributed as

w[l]∼ FN (0,σ2I).

Here, σ2 is the power of the noise, and assumed to be known apriori.

• (A3) We assume that A ∈ FM×N is a fixed and known measurement matrix.

In assumptions (A1) (resp. (A2)), when F= C, we further assume that xS [l] (resp. w[l]) follow

circularly symmetric complex Gaussian distribution, with the specified mean and covariance

matrices.

The assumption (A1) is widely used in Bayesian compressed sensing [JXC08], especially

in sparse Bayesian learning (SBL)[WR04, PV14a], and correlation aware sparse estimation

[PV13]. Stacking the columns of y[l] (resp. x[l],w[l]) into the matrix Y (resp. X, W), one can

equivalently write (3.1) as

Y = AX+W.

where Y ∈ FM×L,X ∈ FN×L,W ∈ FM×L. Under the assumptions (A1) and (A2), Y follows a

matrix variate Gaussian distribution as

Y|S ∼ FN (0,RS ⊗ IL)
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where RS = AS PAH
S +σ2I, with the probability density function (pdf) given by

f (Y|S) = 1
((π/ηF)M|RS |)ηFL exp[−ηF tr(YHR−1

S Y)] (3.2)

where ηF = 1 for F= C, and ηF = 1/2 for F= R.

The goal of this Section is to study the problem of recovering S given Y, under assumptions

(A1), (A2), and (A3). Let ψ(Y) be any detector which knows K, and chooses one of Q :=
(N

K

)
possible support sets. For such a support detector the average probability of error in detecting the

correct support can be written as

pe =
Q

∑
i=1

P(Si)P(ψ(Y) 6= Si|Si),

where Si, i = 1, · · · ,Q, denotes the ith candidate support. For simplicity of notations, we denote

ASi by Ai, where i = 1, · · · ,Q. Moreover, let

Ri = AiPAH
i +σ

2I.

denote the covariance matrix correpsonding to the support Si.

Unlike previous works, [TN10, Wai09a, AAS17], which assume K ≤ M, we consider

the problem of support recovery in the regime K > M, and characterize pe for this regime. Our

goal is not to derive the tightest bounds on pe, but to derive fundamental conditions under which

pe→ 0, exponentially fast with respect to L, and characterize the corresponding error exponent.

Our results are based on a fundamental notion of covariance identifiability, and role of certain

Khatri-Rao products of A, as discussed in the next section.
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3.1.2 Identifiability of Covariance Matrices & Role of Khatri-Rao Product

In this Section, we are interested in knowing if it is possible to identify supports of size

K = O(M2) using the data model defined in Section 3.1.1. Given A and p, the distribution

f (Y|S) of the measurements is parameterized by the support S . We are interested in the notion

of covariance identifiability defined as follows:

Definition 7. Covariance Identifiability: For a given P = diag(p), and a measurement matrix

A, we have covariance identifiability if the covariance matrices Ri = AiPAH
i +σ2I, and R j =

A jPAH
j +σ2I satisfy

Ri = R j⇔ Si = S j, ∀i, j ∈ {1, · · · ,Q}. (3.3)

Remark 18. If (3.3) fails to hold for some (î, ĵ), then the two densities f (Y|Sî) = f (Y|S ĵ)

become identical, and as a simple argument will later show, any detector will fail to distinguish

between Sî and S ĵ.

It can be seen that covariance identifiablity is determined by properties of the measurement

matrix A. In this Section, we are interested in characterizing the set of measurement matrices A,

for which covariance identifiability is violated. To this end, we define the notion of ambiguous A

as follows:

Definition 8. A matrix A is said to be ambiguous (in the context of support recovery), if there

exists a vector p ∈ RK
++, and supports Si, S j, Si 6= S j, such that the covariance matrix Ri =

Ai diag(p)AH
i +σ2I is identical to R j = A j diag(p)AH

j +σ2I. We denote the set of all ambiguous

A by

IA = {A : ∃p ∈ RK
++, i, j

∣∣ Si 6= S j, s.t. Ri = R j} (3.4)

It is clear that if the measurement matrix A ∈ IA, there will exist a p ∈RK
++, such that the
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covariance identifiability will fail, for this (A,p) pair. We now derive a necessary condition for a

measurement matrix A to be ambiguous.

Lemma 4. If K < k-rank(A∗�A)
2 , then A /∈ IA.

Proof. We prove by contradiction. Suppose that A ∈ IA. Then, there must exist p, Si, and S j,

with Si 6= S j such that

Ai diag(p)AH
i = A j diag(p)AH

j . (3.5)

This can be rewritten in vectorized form as

Bip = B jp. (3.6)

where B := A∗�A∈ FM2×N , and Bi (resp. B j) indicate the submatrices of B whose columns

are indexed by the set Si (resp. S j), i.e., Bi = A∗i �Ai ∈ FM2×K , and B j = A∗j �A j ∈ FM2×K .

Moreover, let Bi∩ j, Bi\ j, B j\i, be the submatrices of B whose columns are indexed by the sets

Si∩S j,Si\S j,S j\Si. Similarly, define pi∩ j, pi\ j, p j\i. One can rewrite (3.6) as

[Bi\ j|Bi∩ j]

 pi\ j

pi∩ j

= [B j\i|Bi∩ j]

 p′j\i

p′i∩ j

 (3.7)

where p′j\i

p′i∩ j

= Π

pi\ j

pi∩ j


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for some permutation matrix Π ∈ RK×K . From (3.7), we get

[Bi∩ j|Bi\ j|B j\i]︸ ︷︷ ︸
Bi∪ j


pi∩ j−p′i∩ j

pi\ j

−p′j\i


︸ ︷︷ ︸

p̃

= 0 (3.8)

Since Si 6= S j, p̃ cannot be a zero vector. This implies that Bi∪ j is column rank deficient. Since

the number of columns of Bi∪ j is given by |Si∪S j|, and |Si∪S j| ≤ 2K, we have

rank(Bi∪ j)≤min(M2,2K)=2K (3.9)

The last inequality in (3.9) is true because we have already assumed that K < k-rank(A∗�A)
2 ,

and since k-rank(A∗�A) ≤ rank(A∗�A) ≤ M2, it follows that K < M2/2. Inequality (3.9)

contradicts the assumption that K < k-rank(B)
2 , hence A /∈ IA.

3.1.3 Recovering Support of Size K = O(M2) Using Multiple Hypothesis

Testing Framework

In this section, we will consider the same maximum likelihood decoder as [TN10], and

analyze its probability of error. Although [TN10] uses the same assumption (A1), it ensures

pe→ 0 (as L→ ∞), only in the regime K ≤M. To the best of our knowledge, no existing result

ensures exponentially vanishing probability of error (w.r.t. L), when K > M. We now bridge this

gap by explicitly showing the role of the Khatri-Rao product of A. We prove that it is possible to

detect supports of size K = O(M2) with a probability of error that decays to zero exponentially

fast w.r.t. L. Similar to [TN10], for the remainder of this section, we will assume that all signals

have equal powers, i.e., p = p1K , where 1K ∈ RK is the all-ones vector. Furthermore, we assume

that the detector knows the ratio of source power to noise power (SNR) p/σ2.
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Support Detection via Multiple Hypothesis Testing

In this section, we cast the joint support recovery problem under the multiple hypothesis

testing framework. We first review the binary hypothesis testing framework to illustrate how

supports of size K =O(M2) can be identified, and then extend this result to the multiple hypothesis

testing framework.

Binary Hypothesis Tesing In a binary hypothesis testing problem, one aims to decide which

of two candidate distributions generated the data Y. In a binary support recovery problem, these

candidate distributions are characterized by two possible supports S0 and S1. In this case, we can

write the two hypotheses as


H0 : Y∼ f (Y|S0)

H1 : Y∼ f (Y|S1)

where Y|Si has a matrix variate Gaussian distribution (from assumption (A1)):

Y|Si ∼ FN (0,Ri⊗ IL),

where i = 0,1. Let ψ(Y) be the output of a detector, which either returns S0 or S1. The

corresponding probability of error is given by

pe = P(S0)P10 +P(S1)P01 (3.10)

where P10 = P(ψ(Y) = S1|S0), and P01 = P(ψ(Y) = S0|S1). We further assume that P(S0) =

P(S1) =
1
2 .
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Multiple Hypothesis Testing In this case, the detector chooses one out of Q =
(N

K

)
possible

supports, which can be written as the following multiple hypothesis testing problem:



H1 : Y∼ FN (0,R1⊗ IL)

H2 : Y∼ FN (0,R2⊗ IL)

...

HQ : Y∼ FN (0,RQ⊗ IL)

(3.11)

Here Rq = pAqAH
q +σ2I, for q = 1, · · · ,Q. Assuming equal probabilities on all the hypotheses,

i.e., P(Si) =
1
Q for all i = 1, · · · ,Q, we consider the following maximum likelihood detector

ψ̂(Y) = arg max
1≤i≤Q

P(Y|Si) (3.12)

The conditional probability of error for such a detector can be written as

pe|Hi = P(ψ̂(Y) 6= Si|Si) (3.13)

and the average probability of error equals

pe =
1
Q

Q

∑
i=1

pe|Si (3.14)

Review of Tang’s Results [TN10]

In [TN10], Tang et al. analyzed the above multiple hypothesis testing framework and

produced the following upper bound

Theorem 18. [TN10, Theorem 1] If M ≥ 2K, and λ̄ > 4[K(N−K)]
1

ηFL , then the probability of
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error pe, for the detector given by (3.12), is bounded by

pe ≤
1
2

K(N−K)

(λ̄/4)ηFL

1− K(N−K)

(λ̄/4)ηFL

(3.15)

where λ̄ = mini6= j λ̄i j, λ̄i j is the geometric mean of the eigenvalues of R1/2
i R−1

j R1/2
i which are

greater than one, ηC = 1, and ηR = 1/2.

Since, for large L, the upper bound (3.15) is proportional to e−L log(λ̄/4), this result shows

that the probability of error decays exponentially fast as L goes to infinity, provided K ≤ M
2 and λ̄

is larger than a given threshold [TN10].

Although this result guarantees exponential decay for pe, it is limited only to the regime

K ≤ M, and does not consider the case K > M. Moreover, according to this result, in order

to ensure exponential decay for pe, one requires λ̄ to be greater than some threshold which

depends on L. However, as we will show in Section 3.1.3, it is possible to have exponentially

decaying pe even for K = O(M2), and our sufficient conditions only depend on the structure of

the measurement matrix.

New Upper Bounds on Probability of Error (valid for K > M)

We now derive new upper bounds for probability of error, which are valid even if K > M.

Binary Hypothesis Testing for Support Recovery Let us first consider the binary hypothesis

testing framework, introduced in Section 3.1.3. Similar to [TN10], we consider the following

detector ψ̂(Y):

ψ̂(Y) =


S0, `(Y)< 0

S1, `(Y)≥ 0
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where `(Y) = log f (Y|S1)
f (Y|S0)

. One way to find an upper bound on the probability of error for ψ̂(Y)

is to use Chernoff bound on the test statistic `(Y). Let µ(s) be the logarithm of the moment

generating function of `(Y) given by

µ(s) = log
∫

∞

−∞

es`(Y) f (Y|S0)dY

= log
∫

∞

−∞

[ f (Y|S1)]
s[ f (Y|S0)]

1−sdY (3.16)

Then, one can write the Chernoff bound for pe as

pe ≤
1
2

eµ(ŝ) ≤ 1
2

eµ(s) (3.17)

where ŝ = argmin0≤s≤1 µ(s), and 0≤ s≤ 1. Plugging the distribution functions of f (Y|H0), and

f (Y|H1) into (3.16), one can get [TN10]

µ(s) =−ηFL log |sH1−s +(1− s)H−s|

where H = R1/2
0 R−1

1 R1/2
0 .

Although finding the tightest bound (i.e., optimum ŝ) leads to an intractable expression,

one can still get an upper bound on the probability of error by letting s = 1
2 [TN10]. We define:

γ01 :=−µ(1/2)
ηFL

= log |1
2

H
1
2 +

1
2

H−
1
2 |. (3.18)

We can further simplify (3.18) as

γ01 =
M

∑
i=1

log(
√

λi +1/
√

λi

2
) (3.19)
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where λi is the ith eigenvalue of H. Therefore, it follows that

pe ≤
1
2

e−ηFγ01L (3.20)

From (3.18) it can be seen that γ01 is independent of L. Therefore, if γ01 > 0, then (3.20) implies

that pe decays to zero exponentially fast in L. We now state two important lemmas which specify

conditions under which γ01 > 0.

Lemma 5. γ01 > 0 if and only if there exists some i ∈ {1, · · · ,M} for which λi 6= 1.

Proof. For every positive x, we have

x+
1
x
≥ 2,

and equality holds if and only if x= 1. Hence, in equation (3.19) we observe that log(
√

λi+1/
√

λi
2 )≥

0 for every i ∈ {1, · · · ,M}. Moreover, γ01 = 0 if and only if log(
√

λi+1/
√

λi
2 ) = 0 for every i. This

is true if and only if λi = 1 for every i ∈ {1, · · · ,M}. Equivalently, γ01 > 0 if and only if there is

at least one i ∈ {1, · · · ,M} for which λi 6= 1.

Lemma 6. γ01 = 0 if and only if R0 = R1.

Proof. If R0 = R1, H = I, implying γ01 = 0 from (3.18). Conversely, if γ01 = 0, from Lemma 5

we must have λi = 1 for all i ∈ {1, · · · ,M}. This implies

R1/2
0 R−1

1 R1/2
0 = I

which is true if and only if R0 = R1.
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Multiple Hypothesis Testing In this case, the conditional probability of error is given by (3.13).

Using the Chernoff bound and the union bound, we get

pe|H j ≤
1
2

Q

∑
i=1
i 6= j

eµ(s;Si,S j) (3.21)

where µ(s;Si,S j) is the moment generating function of the log-likelihood function `i j(Y) =

log f (Y|Si)
f (Y|S j)

under the hypothesis that S j is the true support. Let

γi j =
M

∑
k=1

log(

√
λ
(i, j)
k + 1√

λ
(i, j)
k

2
)

where λ
(i, j)
k is the kth eigenvalue of R1/2

i R−1
j R1/2

i . Comparing with equations (3.18) and (3.19),

it can be seen that µ(1
2 ;Si,S j) =−ηFLγi j. Therefore, we can rewrite (3.21) as

pe|H j ≤
1
2

Q

∑
i=1
j 6=i

e−ηFγi jL ≤ Q
2

e−ηFγ jL

where γ j = mini 6= j γi j. Hence, the average probability of error, defined in (3.14), can be bounded

as

pe ≤
Q
2

e−ηFγL

where

γ = min
j

γ j. (3.22)
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Using Stirling’s approximation [Cor09]

(
N
K

)
≤
(

eN
K

)K

,

we have

pe|H j ≤
1
2

eK log eN
K −γ jηFL, (3.23)

and pe ≤
1
2

eK log eN
K −γηFL. (3.24)

Therefore, when K and N are held constant, pe converges to zero as L→ ∞, provided γ > 0. The

following lemma connects the condition γ > 0 to covariance identifiability, defined in Section

3.1.2.

Lemma 7. For given A and p, the covariance identifiability condition, given by (3.3), is equivalent

to the condition γ > 0.

Proof. Having γ > 0 is equivalent to

γi j > 0 ∀i 6= j, i, j ∈ {1, · · · ,Q}

By the application of Lemma 6, it can be readily seen that γi j > 0 for all i 6= j, only if Ri 6= R j.

Therefore, the condition γ > 0 implies the covariance identifiability condition (3.3). Conversely,

if covariance identifiability holds, there does not exist any i 6= j, such that Ri = R j. Using Lemma

6, we conclude that γi j > 0 for all i 6= j, implying γ j > 0, and hence γ > 0.

Remark 19. The decay rate γ given in (3.24) depends on the measurement matrix A (in particular,

on M and N), the sparsity K, as well as the signal to noise ratio p/σ2. In Theorem 19, we will

derive explicit conditions on A which ensure γ > 0, thereby leading to a vanishing probability of

error with respect to L. In general, it is non-trivial to obtain a simplified and tighter lower bound

134



on γ which depends on more relatable properties of A such as its Restricted Isometry Property

(RIP). The authors in [TN10] partially simplified the expression for γ only in the regime K < M,

and for K = 1, they were able to relate the decay rate γ to the RIP of A. In the regime K > M

(which is of interest in this Section), establishing such a result is an open problem for future

research.

Sufficient Conditions for Successful Support Recovery

In this section, we show that the covariance identifiability condition can be related to

the Kruskal rank of the Khatri-Rao product (A∗�A∈ FM2×N) of the measurement matrix, using

which we establish sufficient conditions that guarantee exponential decay of pe with respect to L

even when K > M. Our main result is given by the following theorem:

Theorem 19. Consider the maximum likelihood detector (3.12) for the joint support recovery

problem (3.11). For any δ > 0, the probability of error (pe) of this detector satisfies pe ≤ δ

provided

K <
k-rank(A∗�A)

2

and

L≥ 1
ηFγ

(log
1
2δ

+K log
eN
K

). (3.25)

Proof. The result follows from the application of Lemma 4, Lemma 7, and the upper bound

(3.24).

Remark 20. An immediate consequence of Theorem 19 is that if K, N and M are held constant,

while maintaining K < k-rank(A∗�A)
2 , the probability of error decays to zero exponentially fast in

L.
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Remark 21. Notice that the parameter γ depends on the dimensions M, N and the sparsity K. If

we also allow M, N and K to scale, the scaling of L should be such that it satisfies the inequality

(3.25). Obtaining an explicit expression for how L should scale as a function of M,N and K is non

trivial, since it is not easy to analytically characterize γ as a function of M,N, and K. However, in

Section 3.1.5, we will study the behavior of γ with respect to M,N, and K by conducting numerical

simulations.

It is shown in [PV12a, PV13] that the Kruskal rank of B=A∗�A∈FM2×N can be as large

as O(M2) for some cleverly designed measurement matrices A (such as nested [PV10], coprime

[PV11] and minimum redundancy array manifolds). For such matrices Theorem 19 ensures that

supports of size K = O(M2) can be recovered with exponentially vanishing probability of error.

3.1.4 Characterization of Ambiguous Measurement Matrices and Failure

of Support Recovery

In this section, we will characterize the class IA of ambiguous measurement matrices

(defined in (3.4)), and understand their implications on support recovery. We will first show that

if covariance identifiability is violated, then the probability of error (of any detector) is bounded

below by a positive quantity that does not go to zero as L→ ∞. From our discussion in Section

3.1.2 we know that covariance identifiability is violated if A ∈ IA. We will characterize the set IA

by determining the probability with which a randomly generated A belongs to IA, and show that

this probability goes to one, as N→ ∞, in the regime 2N ≥ K ≥M2 +M+2.

Covariance Nonidentifiability and Failure of Support Recovery

The following lemma shows that if the identifiability condition (3.3) is violated, the

average probability of error will never go to zero, even when L→ ∞. We state this result as the

following lemma.
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Lemma 8. Given A ∈ FM×N and p ∈ RK , suppose there exist two supports Sî,S ĵ (î 6= ĵ) such

that the covariance matrices Rî = Aî diag(p)AH
î
+σ2I and R ĵ = A ĵ diag(p)AH

ĵ
+σ2I become

identical. Then the average probability of error of any support detector is lower bounded as

pe ≥
1
Q
.

Proof. We will prove this result for a genie-aided support detector Ŝ g which has the extra

knowledge of the true source powers p. The detector Ŝ g clearly cannot perform worse than any

other detector Ŝ that does not know p (since, Ŝ g can choose to ignore this extra information about

p). Hence, the probability of error pe of any detector Ŝ satisfies

pe ≥ pg
e ,

where pg
e denotes the probability of error for the genie-aided detector. Now, if there exists

a pair (Sî,S ĵ) for which Rî = R ĵ, then we have

f (Y|Sî) = f (Y|S ĵ) ∀Y ∈ FM×L. (3.26)

For the genie-aided detector Ŝ g, the probability of error is given by

pg
e =

Q

∑
i=1

P(Ŝ g 6= Si|Si)P(Si)

=
1
Q

Q

∑
i=1

P(Ŝ g 6= Si|Si)

=
1
Q

Q

∑
i=1

i6=î, ĵ

P(Ŝ g 6= Si|Si)+
1
Q

p(î, ĵ)e
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where

p(î, ĵ)e = P(Ŝ g 6= Sî|Sî)+P(Ŝ g 6= S ĵ|S ĵ). (3.27)

Any genie-aided detector is typically a function of the measurements Y with the extra provision

that in case of a tie between two candidate supports, it breaks ties randomly. The most general

form of such a detector can be written as a function of Y and another random variable θ (possibly

dependent on Y) 2 as Ŝ g = ψg(Y;θ). Accounting for the error incurred by such random tie-breaks,

the probability P(Ŝ g 6= S ĵ|S ĵ) can be written as

P(Ŝ g 6= S ĵ|S ĵ) = Eθ,Y|S ĵ

[
1(ψg(Y;θ) 6= S ĵ)

]
(a)
= EY|S ĵ

{
Eθ|Y,S ĵ

[
1(ψg(Y;θ) 6= S ĵ)

]}
(b)
= EY|S ĵ

{
Eθ|Y

[
1(ψg(Y;θ) 6= S ĵ)

]}
(c)
= EY|Sî

{
Eθ|Y

[
1(ψg(Y;θ) 6= S ĵ)

]}
= P(Ŝ g 6= S ĵ|Sî) (3.28)

where 1[.] is the indicator function, (a) follows from law of iterated expectations, (b) follows

from the fact that given Y, θ is independent of Sî, i.e the choice of randomization for breaking

ties solely depends on the data Y, and (c) follows from the fact that the conditional distributions

2As a concrete example, if Ŝ g is a genie-aided maximum-likelihood detector, then depending on Y, the log-
likelihood function l(Y;S) can have one or multiple global optima (say, q optima, where 1 < q≤ Q =

(N
K

)
). When

the latter happens and the detector is such that it breaks ties evenly, θ will be a discrete uniform random variable
taking up values 1, · · · ,q, each with equal probability of 1/q, and its probability density function (for such a Y) will
be given by g(θ|Y) = 1

q ∑
q
i=1 δ(θ− i), where δ(.) is the Dirac-delta function. When there is a unique global optimum,

there are no ties to be broken, and θ will be a deterministic quantity (i.e., its density will consist of a single Dirac
delta centered around the unique optimum).
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of Y, given Sî and S ĵ, are identical (according to (3.26)). Therefore, from (3.27) we have

p(î, ĵ)e = P(Ŝ g 6= Sî|Sî)+P(Ŝ g 6= S ĵ|S ĵ)

(d)
= P(Ŝ g 6= Sî|Sî)+P(Ŝ g 6= S ĵ|Sî)

≥ P({Ŝ g 6= Sî}∪{Ŝ
g 6= S ĵ}|Sî)

= 1−P({Ŝ g = Sî}∩{Ŝ
g = S ĵ}|Sî)

Here, (d) follows from (3.28). However, after incorporating random tie-breaks, the output of the

detector Ŝ g cannot be simultaneously equal to two different supports Sî and S ĵ, implying P({Ŝ g =

Sî}∩{Ŝ g = S ĵ}|Sî) = 0. Therefore, we conclude that that p(î, ĵ)e ≥ 1. Hence, pe ≥ pg
e ≥ 1

Q .

Hence, if covariance identifiability is violated, no detector (even genie-aided) can success-

fully recover the true support even when L→ ∞.

Characterization of Ambiguous Measurement Matrices

From Section 3.1.2, we know that if A ∈ IA, then there exists p for which the covariance

identifiability is violated, for that A and p. In this subsection, we will focus on characterizing the

set IA.

Lemma 9. A ∈ IA if and only if there exists Si,S j such that the null space N(A∗i �Ai−A∗j�A j)

contains a positive vector p.

Proof. The proof follows from the definition of IA in (3.4) and the fact that vec(Ri) = (A∗i �

Ai)p+σ2vec(I).

Lemma 9 dictates that in order to characterize IA, we need to understand when does the

null space of A∗i �Ai−A∗j �A j∈ FM2×N contain a positive vector. This question has a direct

connection to the following elegant result in geometric probability originally proved by Wendel

in 1962 [Wen62].
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Theorem 20. [Wen62] Suppose x1, · · · ,xn are i.i.d random points in Rd such that their distri-

bution is symmetric about origin, and with probability one all subsets of d points are linearly

independent. Then

P(0 /∈ conv{x1, · · · ,xn}) =
1

2n−1

d−1

∑
k=0

(
n−1

k

)
,

where conv{x1, · · · ,xn} denotes the convex hull generated by the points x1, · · · ,xn.

Lemma 10. The condition 0 ∈ conv{x1, · · · ,xn} is equivalent to the following:

∃p ∈ Rn
+,p 6= 0, such that p ∈ N([x1|x2| · · · |xn]).

Proof. If 0 ∈ conv{x1, · · · ,xn}, then

∃p̃ ∈ Rn
+ :

n

∑
i=1

p̃ixi = 0,
n

∑
i=1

p̃i = 1.

We clearly have [x1|x2| · · · |xn]p̃ = 0. Conversely, let p ∈ N([x1|x2| · · · |xn]), such that p ∈ Rn
+,

p 6= 0. Then, one can construct p̃ as p̃ = p/(∑n
i=1 pi), such that ∑

n
i=1 p̃ixi = 0, and ∑

n
i=1 p̃i = 1,

implying that 0 ∈ conv{x1, · · · ,xn}.

Wendel’s theorem (Theorem 20) together with Lemma 10, provides the probability with

which the null space of certain i.i.d. random matrices contains nonnegative vectors p ∈ Rn
+. We

now provide a slightly stronger version of this result, by computing the probability with which

the null space of such matrices contains a strictly positive vector p ∈ Rn
++. This probability turns

out to be identical to that in Theorem 20.

Corollary 4. (Corollary to Wendel’s Theorem) Let X ∈ Rd×n be a matrix with i.i.d. columns,

such that their distribution is symmetric about origin, and with probability one all subsets of d
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columns are linearly independent (i.e., k-rank(X) = d w.p. 1). Then

P(∃p ∈ Rn
++,Xp = 0) = 1− 1

2n−1

d−1

∑
k=0

(
n−1

k

)
. (3.29)

Proof. Proof can be found in Appendix 3.5.1.

Using Lemma 10 and Corollary 4, we now show that if the entries of A are i.i.d. random

variables, then we can obtain a lower bound on the probability that A is ambiguous.

Theorem 21. Let A ∈ RM×N be a real valued matrix whose entries are chosen independently

from a continuous distribution over R. If K ≥M2 +M +2, and N ≥ 2K, then P(A ∈ IA) is at

least

1− e−b
N
2K c(

2K−M2−M
2 )( K−1

2K−M2−M
−log( K−1

2K−M2−M
)−1)

. (3.30)

Proof. See appendix 3.5.2.

Remark 22. One implication of Theorem 21 is that as N goes to infinity (with K ≥M2 +M+2,

N ≥ 2K), with probability approaching one, it is possible to find pathological cases such that the

identifiability condition (3.3) is violated. As N→ ∞, for almost all matrices A there will exist a

pair (î, ĵ) with 1≤ î < ĵ ≤
(N

K

)
, such that N(Aî�Aî−A ĵ�A ĵ) contains a positive vector p̂A. If

the distribution of the data is characterized by such A, p̂A,Sî, i.e.,

Y|Sî ∼N
(
0,(Aî diag(p̂A)AH

î +σ
2I)⊗ IL

)
,

then by the result of Theorem 21 and Lemma 8, the probability of error of any support detector

ψ(Y) will not go to zero, even if the number of snapshots L tends to infinity.

141



3.1.5 Numerical Experiments

In this section, we will validate our theoretical results through numerical simulations. We

will study our upper bounds on the probability of error, and our probabilistic results on existence

of ambiguous measurement matrices A ∈ IA that lead to non-identifiable covariance matrices.

Upper Bound on Probability of Error

In this experiment, we compare the performance of the exhaustive search based maximum

likelihood (ML) detector (defined in (3.12)), Sparse Bayesian Learning (SBL) algorithm [WR04],

and the upper bound on the performance of the multiple hypothesis testing framework, given by

(3.23). We choose M = 4,5 and N = 20, 3 and consider two cases for K: in the first case (Figures

3.1a, 3.1c) K < M and in the second case (Figures 3.1b, 3.1d), K > M. For each value of K, we fix

the true support that generates the data Y, compute the empirical conditional probability of error

for the two algorithms (given this support), and compare them with the conditional upper bound

in (3.23). For the SBL algorithm, the detected support is chosen as the indices corresponding to

the K largest elements of the estimated hyperparameter γ containing the signal powers. For all the

experiments, we use the same measurement matrix A ∈ RM×N , (which is randomly generated

from an i.i.d standard normal distribution and then held fixed for all the simulations). Moreover,

we assume that all sources have powers equal to 1 (i.e. p = 1), and the noise power is σ2 = 10−2.

The empirical probability of error for the detectors are computed by running 2000 Monte-Carlo

simulations.

In Figure 3.1, we compare the performance of the detectors against the aforementioned

upper bound, as a function of L, for different values of M and K. Here, “ML Detector” refers

to the maximum likelihood detector introduced in equation (3.12), “Upper Bound” stands for

the upper bound derived for the conditional probability of error for the maximum likelihood

3Since we use exhaustive search ML detector in our simulations, we restrict ourselves to smaller values of M and
N.
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detector, derived in (3.23), and “SBL” indicates the probability of error for the SBL-based support

detector. As we can observe, for both K < M and K > M, the optimal detector as well as the

SBL-based detector can reliably recover the support as L increases. We also observe that the

multiple hypothesis testing framework shows a better performance, compared to the SBL-based

detector since the former performs an exhaustive search over all possible supports of size K.

We also notice that increasing the number of measurements M (even from M = 4 to M = 5)

has a significant effect on the probability of error in the regime K > M, whereas the effect is

not so pronounced for K < M. Finally, the “Upper Bound” shown in Figure 3.1 is only a valid

upper bound for the ML detector, and does not necessarily provide an upper bound for the SBL

algorithm. This is clear from Figure 3.1a where the error probability of SBL actually exceeds

this upper bound in a small interval around 10 < L < 100 (also Figure 3.1d, around L = 103).

Analyzing the performance of the SBL algorithm requires more careful investigation, and is

beyond the scope of this Section.

Failure of Support Recovery

In this experiment, we choose M = 3, N = 17 and compare the performance of the

exhaustive search ML and SBL detectors as in Section 3.1.5. However, we now let K = 8 >

(M2 +M)/2. In this case, with probability given in (3.61), there exists a positive vector p > 0

such that the identifiability condition (3.3) is violated, for two given supports S1,S2. We find such

a p, by first generating a random measurement matrix A with i.i.d standard Gaussian entries, and
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(a) K = 3 < M = 4
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(b) K = 11 > M = 4
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(c) K = 4 < M = 5
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(d) K = 11 > M = 5

Figure 3.1: Probability of error for exhaustive search based Maximum Likelihood (ML)
detector and SBL algorithm, as a function of L. Here, N = 20. The upper bound (3.23) on the

probability of error for the ML detector is also plotted for reference.
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Figure 3.2: Probability of error for the ML detector and SBL algorithm as a function of L. Here,
M = 3,N = 17,K = 8 > M2+M

2 . The probability of error does not go to zero as L increases.

then solving the following feasibility problem

find p (3.31)

subject to

p > 0

(A1�A1−A2�A2)p = 0

where S1 = {1, · · · ,K} and S2 = {K+1, · · · ,2K}. If (3.31) turns out to be infeasible, we generate

another random measurement matrix A, and repeat solving the feasibility problem (3.31), until

we find an A ∈ IA and its corresponding p. We observe that in this regime, the probability of

error for both the detectors remain bounded away from zero. As depicted in Figure 3.2, “SBL”

always fails to detect the true support. Even the probability of error for “Genie”-aided detector 4

(that knows the true value of power of the K sources p), does not go to zero for large L.

4For definition of genie refer to the proof of Lemma 8 in Section 3.1.4
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Figure 3.3: Empirical and theoretical probability of the event N++
12 , for M = 5,N ≥ 2K.

Existence of Ambiguous Measurement Matrix

In this experiment, we conduct Monte-Carlo simulations to empirically compute the

probability of the event N++
12

N++
12 = {∃p > 0 : (A1�A1−A2�A2)p = 0}

The goal is to verify that this empirical probability matches the theoretical value given by the

RHS of (3.58), which will validate our corollary to Wendel’s theorem. We choose two disjoint

supports S1 and S2 (S1∩S2 = /0) and generate A1 and A2 with i.i.d standard Gaussian entries. In

order to determine if the event N++
12 occurs, we solve the feasibility problem (3.31).

We compute the probability with which N++
12 occurs by counting the number of times

(3.31) returns a solution (feasibility test) out of 2000 Monte-Carlo runs. The corresponding

probability is plotted in Figure 3.3, as a function of K. In this simulation, M = 5, and N ≥ 2K

(notice that the probability of the event N++
12 is not a function of N.). We observe that the plots

corresponding to the empirical probability of the event N++
12 , and the theoretical probability from

(3.61) match perfectly.

Scaling of γ with respect to dimensions and SNR

In this experiment, we numerically study the behavior of the error exponent γ, defined

146



in (3.22), as functions of M, N, K and signal-to-noise ratio (SNR) p/σ2. In all experiments, we

assume the elements of A to be i.i.d. according to RN (0,1/M), and for each realization of A,

we compute γ following (3.22), and plot the average value of γ over 200 runs for each problem

setting. Figures 3.4a, 3.4b, 3.4c, and 3.4d show the behavior of γ as functions of M, K, N, and

SNR, respectively. In Figures 3.4a, 3.4b, and 3.4d, we have N = 10, in Figure 3.4c, we have

K = 3, in Figure 3.4d, we have M = 5, and in Figures 3.4a, 3.4c, 3.4b, SNR = 20dB. We observe

that γ exhibits an increasing trend with respect to M and SNR, which means that for larger M

or SNR, the probability of error in (3.24) will have a faster decay rate with respect to L. This

is consistent with the intuition that for larger spatial samples (M) or SNR, one can attain same

probability of error with fewer temporal samples (L). Moreover, we also observe that γ is a

decreasing function of K and N. With respect to N, from the log-log plot in 3.4c, it seems that γ

decays approximately as 1/Nε, for some ε > 0. Analytically characterizing the behavior of γ with

respect to M, N, K, and SNR can be an interesting topic for future research.

3.1.6 Conclusion

We provided new probabilistic guarantees for recovering the common support of jointly

sparse vectors. We formulated the support recovery problem in terms of a multiple hypothesis

testing framework, and derived Chernoff-type upper bounds on the probability of detecting a

wrong support. We established sufficient conditions under which the probability of error is

guaranteed to have an exponential decay with respect to the number of measurements L, even

when K = O(M2) (where K denotes the sparsity, and M is the size of each measurement vector).

Our sufficient conditions are based on properties of the Khatri-Rao product of the measurement

matrix, and also indicates the role of sampler design. We also established that when K is larger

than a certain threshold (in terms of M), there will exist a class of measurement matrices for

which the probability of error of any support recovery algorithm will be bounded away from

zero, even when L→ ∞. We characterized the probability with which a randomly generated

147



5 10 15 20
10

-4

10
-2

10
0

10
2

K=3

K=4

K=5

(a) γ vs M

2 4 6 8
10

-2

10
-1

10
0

10
1

M=5

M=6

M=7

(b) γ vs K

5 10 15 20 25 30
10

-4

10
-2

10
0

10
2

M=4

M=5

M=6

(c) γ vs N

0 5 10 15 20
10

-3

10
-2

10
-1

10
0

K=4

K=5

K=6

(d) γ vs SNR

Figure 3.4: Characterization of the behavior of γ as functions of M, N, K, and SNR.

measurement matrix will belong to this class, by leveraging results from geometric probability,

and showed that this probability tends to 1 asymptotically in the size (N) of the sparse vectors.
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3.2 Non-Asymptotic Guarantees for Correlation-Aware Sup-

port Detection

In Section 3.2, using the same signal model as [TN10], we showed that it is possible

to recover supports of size K = O(M2) for appropriate measurement matrices, as long as the

non-zero signals have equal power and the detector knows K. In this section, we relax both

conditions and show that is possible to recover supports of size K = O(M2) even for sources

with unequal power, and without the knowledge of K. Unlike [TN10, KQP18], we do not impose

specific distribution on the measurements and only assume them to be bounded real-valued

random variables. Using a simple least squares estimate of the source powers, followed by

hard-thresholding, we are able to recover sparse supports of size K > M, with overwhelming

probability (with respect to L).

3.2.1 Signal Model

In this Section, we consider the MMV model introduced in (3.1) with L measurement

vectors. We make the following statistical assumptions on the signal and noise:

(A1) Non-zero elements of the signal x[l] are uncorrelated, i.e. E(x[l]x[l]H) = P, where

P = diag(p1, · · · , pN) is a diagonal matrix, and {x[l]}L−1
l=0 are independent and identically

distributed (i.i.d.) random vectors. Moreover pi = 0, i 6= S , consistent with the fact that the

L vectors x[l],0≤ l ≤ L−1 share a common support S .

(A2) Signal x[l] and noise w[l] are uncorrelated, i.e, E(x[l]w[l]H) = 0.

(A3) The noise w is white, i.e. E(w[l]w[l]H) = σ2I, and {w[l]}L−1
l=0 are i.i.d. random

variables. We assume σ2 is known.

(A4) The signal and noise are bounded random variables, i.e., ‖x[l]‖2 ≤Cx, ‖w[l]‖2 ≤Cw,

where Cx,Cw > 0 are positive constants.
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(A5) The measurement matrix A satisfies rank(A∗�A) = N.

Assumptions (A1-A3) are typical in the context of Sparse Bayesian Learning (SBL) [WR04],

line spectrum estimation and so forth. However, unlike SBL, (A4) further enforces the signal

and noise to be bounded random variables. This assumption simplifies the error analysis of our

proposed detector in the regime K > M, and ensures that the error decays exponentially fast in L.

Unlike SBL, we do not consider any particular distribution for the measurements. The following

remark immediately follows from the assumption (A4):

Remark 23. Under assumption (A4), we have ‖y‖ ≤Cy

Cy = σmax(A)Cx +Cw (3.32)

where σmax(A) denotes the maximum singular value of the measurement matrix A.

Remark 24. Based on assumptions (A1-A3), one can write the covariance matrix of the mea-

surement vectors as

R := E(y[l]y[l]H) = APAH +σ
2I.

The vectorized form of the covariance matrix can be written as

vec(R) = (A∗�A)p+σ
2 vec(I)

where p = [p1, · · · , pN ]
T is a sparse vector with support S . The goal of support recovery in MMV

models is to detect the common support S from the measurements Y = [y[0], · · · ,y[L−1]]. Let

ψ(Y) denote a detector that returns a candidate support. The probability of detecting a wrong
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support, given S is the true support, can be expressed as

pe|S = P(ψ(Y) 6= S |S)

It has been empirically demonstrated that SBL is capable of detecting supports of size larger than

M, but no theoretical guarantees exist. In this Section, we propose a simple detector ψLS(Y) (that

does not know the support size K), and compute upper bounds on the probability of error pe|S

of this detector. Before presenting our results, we review existing results that consider support

recovery in the regime K > M but only provide partial guarantees.

3.2.2 Review of Correlation-Aware Techniques for Recovering Supports

of Size K = O(M2)

In compressed sensing, existing guarantees for sparse support recovery are mostly rele-

vant in the regime K < M. The only algorithms, which, under certain restrictive assumptions,

theoretically or experimentally show possibility of recovering supports of size K > M, are Sparse

Bayesian Learning [WR04, BKDM14], and Correlation-Aware LASSO (Co-LASSO) [PV15].

We now briefly review these results and elaborate more on the role of correlation awareness in

recovering supports of size K = O(M2).

1. Sparse Bayesian Learning: The authors in [BKDM14] show that the MSBL algorithm is

capable of recovering supports of size K > M under the following assumptions: 1) The

measurements are assumed to be noiseless. 2) Non-zero rows of X = [x[0],x[1], · · · ,x[L−

1]] are orthogonal. Although these conditions may not be satisfied in practice, their

numerical results show that even under a noisy setting MSBL is able to recover supports of

size K > M.

2. Correlation-Aware Support Recovery: In our earlier work in [PV15], we showed that if we
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have access to the exact covariance matrix R (which happens when L→ ∞), then, under

assumptions (A1-A3) and (A5), it is possible to recover sparse supports of size K = O(M2),

by solving the following `1 minimization problem:

min
p≥0
‖p‖1 subject to (A∗�A)p = vec(R)

For finite L, we can only compute an estimate of R. In this case, we proposed a variation of

LASSO [PV15] namely (Co-LASSO) for joint support recovery, and showed that it can

recover S as long as K < 1
2(1+

1
µ2 ). Here µ≤ 1 is the mutual coherence of A defined as

µ = max
i 6= j

|aH
i a j|

‖ai‖2‖a j‖2

This result showed that by merely exploiting the lack of correlation between sparse signals,

one can recover larger supports compared to traditional coherence-based guarantees in

compressed sensing (which require K < 1
2(1+

1
µ)) [Tib96]. However, in presence of finite

L, these guarantees are rather weak and only apply in the regime K < M.

3. Existence of Cramér Rao Bound, when N = O(M2): In past work [PV14a], we showed

that the Cramér Rao Bound (CRB) for estimating source powers in a MMV model (3.1)

exist, even when K = O(M2), as long as rank(A�A) = N. This condition is obeyed by

almost all choices of A if N ≤ M2+M
2 . In this setting, as L→ ∞, the CRB goes to zero at

the rate 1/L. Since Maximum Likelihood (ML) Estimates asymptotically attain the CRB,

this automatically shows that MSBL can recover the vector p as L→ ∞ since it solves a

maximum likelihood problem.

Most of aforementioned results provide asymptotic guarantees (i.e. when L→ ∞). No non-

asymptotic guarantees currently exist for support recovery in the regime K = O(M2) that can

ensure pe|S decays exponentially fast in L. In the next section, we will address this issue by
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proposing a detector which is based on solving a simple least squares problem followed by a

thresholding step.

3.2.3 A Least Squares Thresholding Based Support Detector

We propose the following simple detector based on least-squares method:

ψ(Y;τ,A,σ2) = {i|p̂i ≥ τ, p̂ = φ(Y;A,σ2)} (3.33)

where τ is a predefined threshold, and

φ(Y;A,σ2) = (A∗�A)† vec(R̂−σ
2I) (3.34)

is the least square estimator of the vector of source powers p, where R̂ denotes the sample

covariance matrix, defined as

R̂ =
1
L

L

∑
l=1

y[l]y[l]H (3.35)

Inspite of its simplicity, we will now show that this detector can recover supports of size K =

O(M2) with overwhelming probability. 5 We first state some preliminary lemmas:

Lemma 11. The estimator (3.34) is unbiased, i.e E(p̂) = p.
5Although the MMV model is underdetermined (N > M), under assumption (A5), A∗�A is tall and has full

column-rank. Hence it is reasonable to estimate p using least squares method. Assumption (A5) continues to hold in
the regime M < N < (M2 +M)/2 for almost all A ∈ RM×N , and it serves as a necessary condition for existence of
CRB [PV15, PV14a].
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Proof. Let p̂ = φ(Y;A,σ2). We have

E(p̂) = E((A∗�A)† vec(R̂−σ
2I))

= (A∗�A)† vec(E(R̂)−σ
2I))

= (A∗�A)† vec(R−σ
2I)) (3.36)

= (A∗�A)† vec(APAH)

= (A∗�A)†(A∗�A)p

= p (3.37)

where (3.36) follows from the fact that E(R̂) = 1
L ∑

L
l=1E(y[l]y[l]H) = R, and (3.37) holds due to

assumption (A5).

Lemma 12. The estimator (3.34) can be also be written as

p̂i =
1
L

L−1

∑
l=0

N

∑
j=1

bi j(|aH
j y[l]|2−σ

2‖a j‖2) (3.38)

where B := [bi j] =
(
(A∗�A)H(A∗�A)

)−1.

Proof. Following the definition of matrix B, one can write the estimator (3.33) as

p̂ = B(A∗�A)H vec(R̂−σ
2I)

= BJH(A∗⊗A)H vec(R̂−σ
2I)

= BJH vec(AH(R̂−σ
2I)A)

= Bdiag(AH(R̂−σ
2I)A) (3.39)

=
1
L

L−1

∑
l=0

Bdiag(AH(y[l]y[l]H−σ
2I)A) (3.40)

where J ∈ RN2×N is an appropriate column selection matrix, diag(X) (with matrix argument X)
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returns a column vector containing the diagonal entries of the matrix X. The equation (3.39)

follows by exploiting the structure of the matrix J, and (3.40) follows from the definition of R̂ in

(3.35) and changing the order of summations.

To facilitate our analysis, for the rest of this Section, we will further assume that F= R,

i.e., all random variables and the measurement matrix A are real valued.

Lemma 13. Given any i ∈ {1, · · · ,N} and η > 0, it holds that

P(|p̂i− pi|> η)≤ 2e−βiLη2

where βi is a constant (specified in the proof).

Proof. Using the result of Lemma 12, we can write

p̂i =
1
L

L−1

∑
l=0

(z(i)l − êi)

where êi = ∑
N
j=1 bi jσ

2‖a j‖2, and

z(i)l =
N

∑
j=1

bi j|aH
j y[l]|2.

Next, we show that each |z(i)l | is bounded. We have

|z(i)l | ≤
N

∑
j=1
|bi j||aH

j y[l]|2 (3.41)

≤
N

∑
j=1
|bi j|‖a j‖2‖y[l]‖2 (3.42)

≤C2
y

N

∑
j=1
|bi j|‖a j‖2 :=C(i)

z (3.43)

From Lemma 11 we know that E(p̂i) = pi. Therefore, using Hoeffding Inequality [Hoe63], we
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obtain

P(|p̂i− pi|> η)≤ 2e
− Lη2

2(C(i)
z )2

which concludes the proof by choosing βi =
1

2(C(i)
z )2

.

Equipped with the above lemmas, we are now ready to state our main result:

Theorem 22. Under assumptions (A1-A5), the probability of error pe|S of the detector (3.33)

with τ = pmin
2 is upper bounded as

pe|S ≤ e−βp2
minL/4+log(2N))

where pmin := min
i∈S

pi, and β = min
i

1
2(C(i)

z )2
, with C(i)

z given by (3.43).

Proof. For the detector specified by (3.33), consider any threshold τ such that τ < pmin. In this

case, the probability of detecting a wrong support (given S is the true support) can be written as

pe|S = P(ψ(Y;τ,A,σ2) 6= S |S)

= P

(⋃
i∈S
{ p̂i < τ}∪

⋃
i/∈S
{p̂i > τ}

)
(3.44)

≤∑
i∈S

P(p̂i < τ)+∑
i/∈S

P(p̂i > τ) (3.45)

≤∑
i∈S

P(|p̂i− pi|> pi− τ)+∑
i/∈S

P(|p̂i|> τ) (3.46)

where (3.45) follows from the union bound, and (3.46) follows from the fact that p̂i ≤ τ is
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equivalent to p̂i− pi ≤ τ− pi, which implies |p̂i− pi| ≥ pi− τ 6 Using Lemma 13, we have

pe|S ≤∑
i∈S

2e−βiL(pi−τ)2
+∑

i/∈S
2e−βiLτ2

≤ 2Ke−βL(pmin−τ)2
+2(N−K)e−βLτ2

where β = mini βi. Substituting τ = pmin
2 concludes the proof.

3.2.4 Simulations

We now numerically validate that it is possible to obtain exponentially decaying probability

of error for support recovery in the regime K > M. To this end, we consider two algorithms: i)

MSBL [BKDM14], and ii) the proposed detector in (3.33). We consider a fixed measurement

matrix A ∈ RM×N , M = 7,N = 21. The ith nonzero element of x[l] is chosen from the uniform

distribution over [−
√

3pi,
√

3pi] (which will ensure that E(x2
i [l]) = pi). The elements of the noise

vector wi[l] are i.i.d. and uniformly distributed in the range [−
√

3σ,
√

3σ]. We let pi = 1, for

i ∈ S , and σ = 0.1. For the proposed least square detector, we set the threshold τ = 1
2 . We use

the same threshold τ to detect the support using MSBL. Fig. 3.5 shows the probability of error

of both detectors as a function of L (log scale), for both K > M and K < M. It is clear that the

slope for both detectors is linear in L, indicating an exponential decay of pe|S with respect to L. It

can also be seen that MSBL has a better error exponent compared to the least squares detector,

in both the regimes. It will be of interest in future to analyze the performance of MSBL, and

characterize this error exponent.

6Since τ < pmin, we have τ− pi < 0 for all i ∈ S
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Figure 3.5: Probability of error of both detectors (“LS” denotes the proposed least squares
detector, and “SBL” denotes the detector based on Sparse Bayesian Learning algorithm.)

3.2.5 Conclusion

In this Section, we considered the problem of joint support recovery of sparse signals in

multiple measurement vector (MMV) models. For the first time, we provided non-asymptotic

guarantees for recovering supports of size K = O(M2), where M is the size of each measurement

vector. Our detector is based on a simple least square estimator of source powers, followed by a

hard thresholding operation. Assuming the sparse signals to be statistically uncorrelated bounded

random variables, we can ensure that the probability of detecting a wrong support approaches

zero exponentially fast in L even when K > M. This result holds for appropriately designed

measurement matrices whose Khatri-Rao products satisfy certain rank constraints.
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3.3 A Greedy Approach for Correlation-Aware Sparse Sup-

port Recovery

In Section 3.1, we showed that under same assumptions as [TN10], it is possible to have

exponentially decaying probability of error as L→ ∞, even when K > M, as long as K = O(M2).

Moreover, we also showed negative results indicating that when K = Ω(M2), there exist problem

instances for which, the probability of error is bounded away from zero, even for L→ ∞. In

Section 3.2, we showed that if the signal and noise are assumed to be bounded random variables,

then recovering K = O(M2) with exponentially decaying pe (in terms of L) is possible, using a

support detector which performs a least squares inversion followed by a hard-thresholding step.

In this section, we show the possibility of K > M under the setting that the sources are

Gaussian (unbounded), and may have unequal powers. We show that for certain measurement

matrices (such as equiangular tight frames), recovering supports of size K > M, is possible.

Furthermore, if equiangular tight frames of size N = O(M2) exist, we can also provide guarantees

for the support recovery problem when K = O(M2). However, the existence of such equiangular

tight frames turns out to be an open problem for general M [Zau11].

3.3.1 Problem Formulation

We consider the measurement model (3.1) and make the following statistical assumptions

on signals x[l], w[l], and the measurement matrix A:

• (A1) The signals x[l] are identically and independently distributed (i.i.d.) according to

normal distribution FN (0,P)7, where P = diag(p) is a diagonal matrix, and p is a sparse

vector with support S .

• (A2) We assume the noise to be i.i.d. Gaussian with FN (0,σ2I), with known σ2.

7In the case, F= C, the notation CN (., .) refers to circularly symmetric complex Gaussian distribution
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• (A3) We further assume that the signal and noise are uncorrelated, i.e., E(x[l]w[l]H) = 0.

• (A4) The columns of A have equal norms, i.e., ‖ai‖2 = c, for some constant c, and all

1≤ i≤ N.

Under (A1)-(A3), y[l] (l = 0,1, · · · ,L−1) are i.i.d. vectors according to FN (0,R), where

R = APAH +σ
2I.

The goal of support recovery from MMV models is to recover S from Y = [y[1], · · · ,y[L]].

Let Ŝ = ψ(Y), for a support detector ψ(.). Corresponding to a support detector ψ(.), one can

define the probability of error as pe = P(Ŝ 6= S). In the following Section, we will propose a

greedy support detection algorithm, and derive an upper bound for the corresponding probability

of error. We will develop conditions under which the probability of error can go to zero (even for

K > M), exponentially fast in L.

3.3.2 Proposed Support Detector

Let R̂ = YYH/L be the sample covariance matrix of the received signals. We consider

the following greedy support detector, assuming knowledge of σ2:

1. Compute ρi as

ρi := aH
i (R̂−σ

2I)ai, i = 1, · · · ,N.

2. Let j1, j2, · · · , jN be such that ρ j1 ≥ ρ j2 ≥ ·· · ≥ ρ jN . Choose Ŝ to be

Ŝ = { j1, j2, · · · , jK}.
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One can think of ρi as the “correlation” of a∗i ⊗ai with the vectorized form of R̂−σ2I.

This support detector simply computes all these “correlation” values, and reports the detected

support Ŝ as the indices corresponding to the K largest values. This can be thought of performing

a simple matching pursuit on the vectorized form of the sample covariance matrix.

Analyzing the Probability of Error

The probability of detecting a wrong support using the proposed detector is given by

pe = P(∃i ∈ S , j /∈ S : ρi < ρ j) = P(
⋃

i∈S , j/∈S
{ρi < ρ j})

By the application of union bound, we get

pe ≤∑
i∈S

∑
j/∈S

P(ρi < ρ j)

Hence, we only need to find an upper bound on P(ρi < ρ j). In order to do so, let us first take a

closer look at the quantity ρi−ρ j. Since (A4) holds, we have

ρi−ρ j =
1
L

tr(aH
i YYHai)−

1
L

tr(aH
j YYHa j)−σ

2(aH
i ai−aH

j a j)

=
1
L

tr(YHaiaH
i Y)− 1

L
tr(YHa jaH

j Y)

=
1
L

L

∑
`=1

yH
` (aiaH

i −a jaH
j )y`

Let z` be i.i.d random variables distribued as FN (0,IM). Then, we have

P(ρi < ρ j) = P(
1
L

L

∑
`=1

yH
` (aiaH

i −a jaH
j )y` < 0)

= P(
L

∑
`=1

zH
` R1/2(aiaH

i −a jaH
j )R

1/2z` < 0)
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Therefore, we have

P(ρi < ρ j) = P(zH(IM⊗Qi j)z < 0)

where z∼N (0,IML), and

Qi j = R1/2(aiaH
i −a jaH

j )R
1/2.

Notice that the matrices Qi j have rank at most 2. We let λ
(i, j)
1 ≥ λ

(i, j)
2 be the nonzero eigenvalues

of Qi j. The following Lemma provides an upper bound for the probability P(ρi < ρ j), computed

based on Chernoff bound.

Lemma 14. As long as

λ
(i, j)
1 > 0 > λ

(i, j)
2 and λ

(i, j)
1 > |λ(i, j)

2 |, (3.47)

it holds that

P(ρi < ρ j)≤ e−γi jL

where γi j = κF log λ
(i, j)
1 +|λ(i, j)

2 |

2
√

λ
(i, j)
1 |λ(i, j)

2 |
, where κC = 2, and κR = 1.

By applying union bound on all pairs of i ∈ S and j /∈ S , we get the following Corollary:

Corollary 5. If the condition (3.47) holds for every i ∈ S , and j /∈ S , it follows that

pe ≤∑
i∈S

∑
j/∈S

e−γi jL

In order to obtain a sufficient condition for exponential decay of pe with respect to L, we

need to characterize the condition (3.47). In the following subsection, we will establish sufficient
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conditions on the measurement matrix A, which will guarantee that the condition (3.47) holds for

every i ∈ S , j /∈ S .

Conditions for Exponential Decay

In this section, we will study the condition (3.47) more closely, and derive sufficient

conditions under which (3.47) holds, implying that pe will have exponentially decaying probability

of error. The following Lemma establishes an equivalent condition for (3.47):

Lemma 15. For every i ∈ S , j /∈ S , the condition

λ
(i, j)
1 > 0 > λ

(i, j)
2 ,λ

(i, j)
1 > |λ(i, j)

2 |

holds if and only if aH
i Rai > aH

j Ra j

Proof. In order to simplify our notations, we use auxiliary notations u := R1/2ai, v := R1/2a j,

and the notations λ1 := λ
(i, j)
1 ,λ2 := λ

(i, j)
2 .

We can write Qi j = uuH−vvH . We have tr(Qi j) = ‖u‖2−‖v‖2 = λ1+λ2, and tr(Q2
i j) =

‖u‖4 +‖v‖4−2|uHv|2 = λ2
1 +λ2

2. It follows that λ1λ2 = |uHv|2−‖u‖2‖v‖2. Hence, the eigen-

values should satisfy the following equation:

λ
2− (‖u‖2 +‖v‖2)λ+ |uHv|2−‖u‖2‖v‖2 = 0

Therefore, we have

λ
(i, j)
1 =

1
2
(
‖u‖2−‖v‖2 +∆

)
λ
(i, j)
2 =

1
2
(
‖u‖2−‖v‖2−∆

)
∆ =

√
(‖u‖2−‖v‖2)2 +4(‖u‖2‖v‖2−|uHv|2)
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Consequently, we have λ
(i, j)
1 ≥ |λ(i, j)

2 |, if and only if ‖u‖ ≥ ‖v‖, which concludes the

proof.

The following Lemma, gives an even simpler equivalent condition, under the setting

where the columns of A are unit-norm:

Lemma 16. If the columns of A have unit-norm, the condition (3.47) is equivalent to

pi +
K

∑
k=1
k 6=i

|µik|2 pk >
K

∑
k=1
|µ jk|2 pk (3.48)

where µi j = aH
i a j.

Proof. The proof follows from simple algebraic manipulation of the condition aH
i Rai > aH

j Ra j.

One can observe that if all the coherence values µi j are equal to some constant µ, then the

inequality (3.48) will automatically hold. However, the property µi j = µ for i 6= j coincides with

the definition of equiangular frames:

Definition 9. If for a matrix A ∈ FM×N , it holds that

• ‖ai‖= 1, for all 1≤ i≤ N.

• |aH
i a j|= µ, for all 1≤ i < j ≤ N.

A is called an equiangular frame.

Therefore, we can state the following Lemma:

Lemma 17. If A is an equiangular frame, then the condition (3.47) holds.

Subsequently, we can state the following theorem:
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Theorem 23. If A is an equiangular frame, it holds that

pe ≤ e−γL+log(K(N−K))

where

γ = min
i∈S , j/∈S

γi j

Remark 25. We can observe that theorem 23 can hold even if K > M, and sources have unequal

powers. In particular, the theorem only relies on A being an equiangular frame, and does not

directly require any other conditions on K, N, and M.

Remark 26. Theorem 23 states that as long as an equiangular frame of size M×N exists, it is

possible to do support recovery for any K ≤ N. Therefore, possibility of recovering supports of

size K = O(M2) is subject to existence of equiangular frames with dimensions N = O(M2). This

turns out to be an open problem, and the definite answer for a general M is not known [FM15].

3.3.3 Simulations

In this section, we provide numerical simulations showing the performance of the proposed

greedy support detector. In our simulations, we let A to be an equiangular tight frame, for certain

M,N. We let the source powers corresponding to the nonzero elements of p to be chosen i.i.d.

from uniform distribution in range [pmin, pmax]. Figure 3.6 shows the empirical probability of

error (averaged over 10000 runs) as well as the theoretical upper bound derived in Theorem 23,

with respect to L, for different signal-to-noise ratios (SNR).
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(a) M = 63,N = 126,K = 100 (b) M = 122,N = 244,K = 150

Figure 3.6: Empirical probability of error for the proposed support detector (labeled as “pe”),
and the upperbound given in Theorem 23 (labeled as “u”). The plots are shown for different

values of SNR. We have pmin = 0.1, pmax = 1.1. In both cases, the matrix A is an equiangular
tight frame constructed by Paley’s conference matrix [Ren07].

3.3.4 Conclusion

In this section, we considered the problem of sparse support recovery and proposed a

simple greedy support detection approach. We provided upper bounds for the probability of error

of this detection approach and showed that when the measurement matrix is an equiangular frame,

support recovery with exponentially decaying probability of error in L is possible. Moreover, our

guarantees can potentially hold even if K > M, or even when the sources have unequal powers.

We also concluded that if equiangular frames of size N = O(M2) exist (which is an open problem)

then support recovery for K = O(M2) is also possible.
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3.4 A Sequential Approach for Sparse Support Recovery

using Correlation Priors

In Sections 3.1, 3.2, and 3.3 we considered batch support recovery setting where the

measurement matrix is assumed to be fixed. In this section, we consider an adaptive setting

where the goal is to improve the signal-to-noise (SNR) ratio of the measurements by adaptively

designing the measurement matrix (similar to [MN14, HBCN12, ST06]), as more and more

measurements are collected. Adaptive algorithms also have a lower computational cost in most

cases, as these algorithms are able to identify the support of the sparse vector as soon as enough

number of measurements are collected [MN14], while the batch algorithms may require solving

a convex optimization problem which can be computationally costly [Bar07, MN14].

However, it has been shown that in both batch and adaptive support recovery algorithms,

which use only a single measurement vector (SMV), having M = O(k logN) measurements is

necessary and sufficient [AAS17, Wai09a] to successfully identify the support, where M is the

size of the measurement vector, and k,N are the sparsity and the size of the unknown sparse vector,

respectively. This means that when only a single measurement vector is available, identifying

supports of size k > M is not possible. However, in presence of multiple measurement vectors

(MMV), where the sparse signals are assumed to have a common support, under certain additional

statistical priors on the measurement vectors, namely the nonzero elements of sparse vectors

being generated by uncorrelated sources, in Sections 3.1, 3.2, and 3.3 we showed that in the batch

setting, it is possible to recover supports of size k > M, and even k = O(M2) provided that the

measurement matrix satisfies certain algebraic properties [KQP18, KP18d, KP18b].

In this Section, we will consider the problem of sparse support recovery in presence of

multiple measurements where we also have ability to adaptively design the measurement matrix

as groups of multiple measurement vectors are collected. This problem can have applications in

channel identification for mmWave communication systems. By providing an adaptive algorithm,
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we will show that using certain statistical priors on the sparse signals, namely assuming they

are spatially and temporally uncorrelated, it is possible to recover the sparsity pattern using

M = O(
√

k logN) measurements. This implies that recovering supports of size k = O(M2) is

practical in the adaptive setting which matches with the already known result for the batch

setting, provided in Section 3.1. We will also establish non-asymptotic guarantees for our

proposed algorithm indicating that the probability of detecting a wrong support decays to zero,

exponentially fast, as the number of measurement vectors collected in each block increases.

3.4.1 Problem Formulation

We slightly modify the batch problem setting considered in Sections 3.1, 3.2, and 3.3, and

instead assume an adaptive setting. Let us assume that at the t-th iteration of the adaptive sensing

scheme, we are able to observe L independent measurement vectors, where each vector has size

Mt and is obtained via the following model

Yt = AtXt +Zt

where Yt ∈RMt×L, Xt = [x(t)1 , · · · ,x(t)L ] ∈RN×L, and Zt = [z(t)1 , · · · ,z(t)L ] is the additive noise. The

vectors {x(t)l }
T,L
t=1,l=1 are assumed to have the a shared support S , i.e.,

i /∈ S ⇒ [x(t)l ]i = 0

The measurement matrix At ∈ RMt×N can be designed based on the previously collected

measurements Y1,Y2, · · · ,Yt−1. Our goal is to reliably identify the support set S given all

the measurements Y1,Y2, · · · ,YT , where T is a stopping time where the algorithm decides the

collected measurements are sufficient to make a reliable decision. Notice that over the course of

the adaptive sensing scheme, we will collect M = ∑
T
t=1 Mt row vector measurements of size 1×L.
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We want to use as few measurements as possible to be able to identify the support set S . In order

to do so, we make fairly moderate statistical assumptions on the signals Xt and noise Wt which

are practical in many settings, and will later use these assumptions to design our algorithm:

(A1) Non-zero elements of the signal x(t)l are uncorrelated, i.e. E(x(t)(x(t))T ) = P, where P =

diag(p1, · · · , pN) is a diagonal matrix, and {x(t)l }
L,T
l=1,t=1 are independent and identically distributed

(i.i.d.) zero mean random vectors. Moreover pi = 0, i 6= S , consistent with the fact that the L

vectors {x(t)l }
L,T
l=1,t=1 share a common support S .

(A2) Signal x(t)l and noise x(t)l are uncorrelated, i.e, E(x(t)l (w(t)
l )T ) = 0.

(A3) The noise w is white, i.e. E(w(t)
l (w(t)

l )T ) = σ2I, and {w(t)
l }

L,T
l=1,t=1 are i.i.d. random zero

mean random variables. We assume σ2 is known.

(A4) The signal and noise are real-valued zero mean Gaussian random variables, i.e., for every

t = 1, · · · ,T , l = 1, · · · ,L we have

x(t)l ∼N (0,P)

w(t)
l ∼N (0,σ2IMt )

where IMt is an identity matrix of size Mt×Mt .

3.4.2 Proposed Algorithm

Let y(i) ∈ R1×L be the ith row of the matrix of measurements Yt (where we suppressed

the dependence on t in the notation to avoid notational overhead). We have

y(i) = a(i)Xt +w(i)
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where a(i) ∈ R1×N is the ith row of the measurement matrix, and w(i) is the ith row of Wt . Now,

let y( j) to be another row of Yt , where i 6= j. Using the assumptions (A1), (A2), (A3) it holds that

ρi j := E(y(i)yT
( j)) = a(i)PaT

( j) (3.49)

= (a(i) ◦a( j))p ∈ R

where ◦ represents elements-wise Hadamard product.

For simplicity, we assume that the adaptive sensing scheme designs the measurement

matrix At using only ones and zeros. More general cases can be considered in future. Let r ∈NNr

be a vector of integers whose elements belong to the set {1,2, · · · ,N}. Let the rth row of At be

such that a(r) = 1r ∈ {0,1}1×N where the n-th element of 1r equals

[1r]n =


1 n ∈ r

0 n /∈ r

where for notational simplicity we have treated r as a set composed of the elements of r. Similarly,

define c ∈NNc and correspondingly the cth row of At to be a(c) = 1c. Based on these assumptions,

we have

a(r) ◦a(c) = 1r∩c

where the operator ∩ treats the vectors r,c as sets and finds their intersection. Using the fact that

the nonzero elements of p are all positive, we can easily verify that

ρrc = 0⇔ pk = 0 ∀k ∈ r∩ c.

This property can help us to design an adaptive algorithm to identify the support set S using

the statistical assumptions (A1)-(A4), and carefully designing the measurement matrices At . In
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practice, given the finite block length L, it is not possible to compute ρi j accurately. Instead, we

can estimate them using sample covariance formulation:

ρ̂
(t)
i j =

1
L

L

∑
l=1

[Yt ]il[Yt ] jl (3.50)

where we denoted the dependence on t for clarity of notation.

We are now equipped to propose our adaptive support recovery algorithm. Let Wt ⊆

{1,2, · · · ,N} be the set of indices for which the adaptive algorithm, up to iteration t, has not made

a decision whether they belong to the support S or not, and Ŝ be the set of of support detected

by the algorithm. Clearly, W1 = {1,2, · · · ,N}, and we have Ŝ = {} initially. In order to design

the measurement matrix At , we use two different schemes to divide the sets Wt into at most

2i mutually exclusive collectively exhaustive sets, where i indicates the bisection level of our

bisection schemes, and initially we set i = 1. The bisection schemes are as follows:

1. For r ∈ NNr define the operator:

r(1),r(2)← bisect(range)(r)

such that if r = [r1,r2, · · · ,rNr ]
T , then

r(1) = r(1 : bNr

2
c) (3.51)

r(2) = r(bNr

2
c+1 : Nr) (3.52)

2. For c ∈ NNc define the operator:

c(1),c(2)← bisect(even-odd)(c)
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such that if c = [c1,c2, · · · ,cNc ]
T , then

c(1) = c(1 : 2 : end) (3.53)

c(2) = c(2 : 2 : end) (3.54)

where we have used the MATLAB indexing in equations (3.51), (3.52), (3.53), and (3.54).

Now for each vector r, we define the rows of the rth row of the measurement matrix to be

a(r) = 1Wt(r). Here, the notation Wt(r) stands for a subset of Wt indexed by the elements of r,

i.e., Wt(r) = {wr1,wr2, · · · ,wrNr
}, where Wt = {w1, · · · ,w|Wt |} is assumed to be an ordered set.

We make similar definitions for Wt(c), a(c) for any vector c ∈ NNc .

To clarify these notations and definitions, we provide the following example:

Example 2. Let N = 8, and consider the set W1 = {1,2,3,4,5,6,7,8}. After performing

the two bisection schemes, we have R = {r1,r2} = {[1,2,3,4], [5,6,7,8]}, C = {c1,c2} =

{[1,3,5,7], [2,4,6,7]} such that

a(r1) = 1W1(r1)
= [1,1,1,1,0,0,0,0]

a(r2) = 1W1(r2)
= [0,0,0,0,1,1,1,1]

a(c1) = 1W1(c1)
= [1,0,1,0,1,0,1,0]

a(c2) = 1W1(c2)
= [0,1,0,1,0,1,0,1]

where a(r1),a(r2),a(c1),a(c2) are rows of the measurement matrix A1 ∈ R4×8. We can assign row

indices r1 = 1,r2 = 2,c1 = 3,c2 = 4. We can also observe that

a(r1) ◦a(c1) = 1r1∩c1 = [1,0,1,0,0,0,0,0]

a(r2) ◦a(c1) = 1r2∩c1 = [0,0,0,0,1,0,1,0]
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If we have p = [1,0,0,0,0,1,0,0]T , it follows that (a(r1) ◦a(c1))p = 1, while (a(r2) ◦a(c1))p = 0.

From the latter equation we can directly infer that p5 = p7 = 0, only using the fact that the

elements of p are nonnegative. We will see how these intuitions can help us to develop our

adaptive support recovery algorithm. Notice that if we were to use the original rows of A1, i.e.,

a(x)p, where x = 1,2,3,4, instead of their pair-wise Hadamard products, none of them would

help us make a decision about any of the elements of p, since all a(x)p are nonzero.

As we observed in the above example, simply computing the Hadamard product terms

(such as a(r1) ◦a(c1)), which arises naturally from the cross-correlation terms in (3.49), we can

infer more accurate information about support of p, than what we would have obtained by

linear measurements from the original rows of A1. However, if in the above example we had

p = [1,1,0,0,1,1,0,0]T even any of the terms a(r) ◦a(c) with r ∈ {1,2}, c ∈ {3,4} would not be

enough to help us to infer any information about the support of p as (a(r) ◦ a(c))p would have

been nonzero for all combinations of r,c.

In this case, we would need to increase the level of bisection of the original measurement

matrix A1. This can be done by performing the bisection operations recursively, and obtaining

the sets R = {[1,2], [3,4], [5,6], [7,8]}, and C = {[1,5], [3,7], [2,6], [4,8]}. Using these new sets,

we can design a new measurement matrix A2 ∈ R8×8 which can accurately infer the support of p

by considering the terms a(r) ◦a(c).

Our adaptive support recovery algorithm is presented in Algorithm 1. We start with i = 1,

which means the number of levels of bisection equals one. At each iteration, we compute the

sets R ,C based on the levels of bisections needed at that particular iteration. Using these sets,

we can design the rows of the measurement matrix At , and take the measurements. Once the

measurements are obtained, we estimate the cross-correlation terms ρ̂
(t)
rc using (3.50). If the

estimated ρ̂
(t)
rc is close to zero, we can infer that pi = 0 for all i ∈ r∩c. Otherwise, some elements

of r∩ c can belong to the support S . We can only be sure that which element belongs to S if

|r∩ c|= 1. Once we make decisions on the elements of Wt , we can remove those elements from
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Wt . This is done by the operation Wt(r∩c)←{} in Algorithm 1, which removes all the elements

of Wt indexed by the elements in the set r∩ c. If at iteration t, we have made enough number of

decisions so that |Wt+1| ≤ |Wt |/2, we do not need to increase the level of bisection i. However,

if the observations that we made were not informative enough, we need to increase i and so that

we can obtain more informative measurements in the next iterations. The algorithm stops when

all the elements of the support are discovered, or the set Wt becomes empty.

The following theorem establishes the maximum number of iterations needed to detect

the support:

Theorem 24. The total number of measurements required by Algorithm 1 is at most C
√

k(log2 N),

where C is a universal constant.

Proof. The proof is provided in Section 3.5.4.

In practice, due to the finite block length L, the support detection algorithm may make

erroneous decisions. The following theorem establishes a non-asymptotic bound on the probability

with which the proposed support recovery algorithm detects a wrong support. Our bound shows

that as L→ ∞, this probability of error goes to zero exponentially fast.

Theorem 25. Under assumptions (A1)-(A5), probability with which Algorithm 1 detects a wrong

support, i.e., P(Ŝ 6= S), is upper bounded by

1−C1k logNexp
(
−min

{
9Lε2

256C2
2(2p2

maxk2 +σ4)

,
3Lε

16C2
√

2(2p2
maxk2 +σ4)

})

where C1,C2 > 0 are universal constants, and pmax is the maximum element of the p vector.

Proof. The proof is provided in Section 3.5.5.
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Algorithm 1 Correlation-aware Adaptive Support Recovery

W1←{1, · · · ,N}
Ŝ ←{}
i← 1, t← 1
while |Ŝ |< k and Wt 6= /0 do

R ←{[1,2, · · · , |Wt |]}
C ←{[1,2, · · · , |Wt |]}
for j ∈ {1,2, · · · , i} do

for r ∈ R do
Replace r in R with r(1),r(2)← bisect(range)(r)

end for
for c ∈ C do

Replace c in C with c(1),c(2)← bisect(even-odd)(c)
end for

end for
Remove empty vectors from sets R ,C .
for r ∈ R : Let a(r) = 1Wt(r).
for c ∈ R : Let a(c) = 1Wt(c).
Take measurements Yt = AtXt +Zt .
Wt+1←Wt
for r ∈ R do

for c ∈ C do
Compute ρ̂

(t)
rc using (3.50).

if |ρ̂(t)
rc |< ε then

Wt+1(r∩ c)←{}
else if |r∩ c|= 1 then

Ŝ← Ŝ∪Wt(r∩ c)
Wt+1(r∩ c)←{}

end if
end for

end for
if |Wt+1|> |Wt |/2 then

i← i+1
end if
t← t +1

end while
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3.4.3 Simulations

In this section, we provide our numerical simulations to examine the performance of our

proposed adaptive support recovery algorithm.

In the first experiment, we demonstrate the iterations of our algorithm and show how the

sets R ,C ,Wt , Ŝ evolve as the algorithm goes through its iterations. In Figure 3.7 we show the

iterations of our adaptive algorithm in a noiseless setting, for the cases k = 1,k = 100. The sets in

R ,C are showed in a color-coded format, i.e., the points corresponding to the same color belong

to the same set. For example, the first row of Figure 3.7a shows how the two bisection schemes

bisect(range)(r), bisect(even-odd)(c) divide the index sets in W1 into two sets. Further levels of

bisections are also shown in later iterations as more colors are used, indicating more sets in R ,C .

The row Wt\Wt+1 shows that which elements of Wt will be removed for the next iteration of the

algorithm.

In Figure 3.7a, where k = 1, at each iteration the adaptive algorithm removes roughly

3/4th of the elements of Wt , i.e., Wt+1 ≤Wt/4. Hence, i remains to be equal to one. In the

second example, depicted in Figure 3.7b, we have k = 100. The algorithm initially is not able to

make any decisions on the elements of W1. Therefore, the size of |Wt | remains the same upto

iteration 3, while at each iteration the algorithm increases the level of bisection to increase the

granularity of the measurement matrix. At iteration t = 5, the algorithm is able to make some

decisions on the elements of Wt . Finally, at 7th iteration, the algorithm is able to detect all the

elements of the support. It is worth noting that the overall number of measurements collected in

Figure 3.7b is M = 60 which is less than the sparsity k = 100.

In the second set of experiments, we perform Monte-Carlo simulations to study the

probability of error with respect to the number of measurements L in each block. We perform

20000 simulations for each case, and compute the empirical probability of detecting a wrong

support. Figure 3.8 shows this probability. We let N = 640, the sources to have equal power

p = 1, the noise variance to be σ2 = 0.01, and we choose ε = 0.45L for all the simulations. As
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(a) k = 1

(b) k = 100

Figure 3.7: The sets R ,C , Ŝ as Algorithm 1 goes through its iterations.
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Figure 3.8: Probability of detecting a wrong support pe with respect to the number of
measurement vectors in each block L.

we can observe, the plots show a linear behavior in logarithmic scale which indicates exponential

decay with respect to L.

Moreover, the probability of error decays faster for smaller k. Studying the behavior of

the error exponent, i.e., the slope of lines in Figure 3.8 with respect to k,M,N can be a topic of

future research.

3.4.4 Conclusion

In this section, we considered the problem of adaptive support recovery of jointly sparse

signals in presence of certain statistical priors on the sparse signals. We proposed an adaptive

algorithm, with low computational complexity, which is able to recover supports of size k with

at most O(
√

k logN) measurements, where N is the size of the sparse signals, under certain

practical statistical assumptions. We also established that the probability of detecting a wrong

support using the proposed adaptive algorithm goes to zero exponentially fast as more and more

measurement vectors are collected.
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3.5 Appendix

3.5.1 Proof of Corollary 4

Preliminary Lemma

Before proving Corollary 4, we state the following lemma:

Lemma 18. Suppose X ∈ Rd×n (n > d) has full Kruskal rank, i.e., k-rank(X) = d. If there exists

a vector p ∈Rn
+ satisfying Xp = 0, then there exists a vector p̂ ∈Rn

++ (i.e., p̂ has strictly positive

entries) such that Xp̂ = 0.

Proof. We prove that p̂ exists via induction. In particular, we show that if there exists a vector

p(m) ∈ Rn
+ satisfying Xp(m) = 0, one can find p(m+1) ∈ Rn

+ such that ‖p(m+1)‖0 = ‖p(m)‖0 +1,

and Xp(m+1) = 0. By induction, this concludes that p̂ exists such that ‖p̂‖0 = n, and Xp̂ = 0.

We know that there exists a p ∈ Rn
+, with Xp = 0, and we make this p our basis for

induction, i.e, p(0) = p.

Now let us assume that there exists p(m) ∈Rn
+ with s(m) nonzeros, i.e., ‖p(m)‖0 = s(m), and

Xp(m) = 0. Let i1, · · · , is(m) denote the indices nonzero entries of p(m). Since k-rank(X) = d, we

have s(m) ≥ d +1 (otherwise one can find d linearly dependent columns in X, which contradicts

the fact that k-rank(X) = d). Moreover, X being full Kruskal rank also implies that xi1, · · · ,xi
s(m)

contains d linearly independent vectors. Hence, any column xq (q /∈ {i1, · · · , is(m)}) is linearly

dependent on xi1 , · · · ,xi
s(m)

. This implies that there exists c ∈ Rs(m)
such that

s(m)

∑
k=1

ckxik = xq (3.55)

Moreover, since Xp(m) = 0, we have

s(m)

∑
k=1

p(m)
ik xik = 0 (3.56)
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Combining (3.55) and (3.56), for any α ∈ R, we get

s(m)

∑
k=1

(p(m)
ik −αck)xik +αxq = 0. (3.57)

We define a new vector p(m+1) ∈ Rn with entries


p(m+1)

ik = p(m)
ik −αck, 1≤ k ≤ s(m),

p(m+1)
q = α,

p(m+1)
i = 0, i /∈ {i1, · · · , is(m),q}.

From (3.57), we have that Xp(m+1) = 0. Let p(m)
min := min1≤k≤s(m) p(m)

ik and ‖c‖1 := ∑
s(m)

i=1 |ci|.

One can easily check that choosing α = p(m)
min/‖c‖1 > 0 will ensure that p(m+1)

ik > 0 for all

k = 1,2, · · · ,s(m). Therefore, p(m+1) has positive entries at the indices i1, · · · , is(m),q and hence

‖p(m+1)‖0 = s(m)+1, which concludes the proof.

Proof of Corollary 4

We are now ready to state the proof of Corollary 4:

Proof. Define the following sets

G = {X ∈ Rd×n : k-rank(X) = d}

N++ = {X ∈ Rd×n : ∃p ∈ Rn
++,Xp = 0}

N+ = {X ∈ Rd×n : ∃p ∈ Rn
+,Xp = 0}

By definition of the sets G, N+ and N++, it can be readily seen that

P(X ∈ G∩N++) = P(∃p ∈ Rn
++,Xp = 0),
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and

P(X ∈ G∩N+) = P(∃p ∈ Rn
+,Xp = 0).

From Wendel’s theorem, we have

P(∃p ∈ Rn
+,Xp = 0) = 1− 1

2n−1

d−1

∑
k=0

(
n−1

k

)
.

We will now show that the sets G∩N+, and G∩N++ are equal, thereby concluding the proof.

From definitions, it is clear that N++ ⊆ N+. Hence, N++∩G⊆ N+∩G. Conversely, consider

any X ∈ G∩N+. For such matrix X, there exists p ∈ Rn
+ such that Xp = 0, and k-rank(X) = d.

By Lemma 18, we know that for this particular matrix X, there also exists a p̂ ∈ Rn
++ such that

Xp̂ = 0. Therefore, X∈G∩N++. Hence, G∩N+ ⊆G∩N++, implying G∩N+ = G∩N++.

3.5.2 Proof of Theorem 21

Preliminary Lemmas and Definitions

Before presenting the proof of theorem 21, we state some preliminary definitions and

lemmas.

Definition 10. For any a ∈ RM, define a⊗2 := a⊗a. Also, let a⊗a (or equivalently a⊗2) be a

M := M2+M
2 dimensional vector which contains the upper triangular elements (including the

diagonal) of the matrix aaT . Moreover, for any A ∈ RM×N , define the M×N dimensional matrix

A�A = [a⊗2
1 |a

⊗2
2 | · · · |a

⊗2
N ].

We now state two lemmas which will be useful in our proof.
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Lemma 19. Suppose A,B ∈ RM×n, n ≥M := M2+M
2 be random matrices whose elements are

drawn independently from continuous distributions over R. Let C = A�A−B�B. With

probability one, it holds that k-rank(C) = M.

Proof. We follow a proof technique similar to that of Theorem 4 in [PV15]. In order to show

that C has full Kruskal rank with probability one, we show that every collection of M columns

of C has full column rank with probability one over RMM. By the application of union bound

over all possible
( n

M2+M
2

)
sets, we conclude that k-rank(C) = M, with probability one over RMn.

Consider a set S ⊆ {1, · · · ,n} with |S | = M, and let CS ∈ RM×M denote the submatrix of C,

whose columns are indexed by the set S (similarly define AS ,BS ). Consider the function

f (AS ,BS ) = det(AS �AS −BS �BS︸ ︷︷ ︸
CS

)

Because the elements in AS ,BS are drawn independently from continuous distributions, the

function f (AS ,BS ) is a multivariate polynomial in 2MM variables, and therefore is analytic

in R2MM. Using the properties of analytic functions, if f (AS ,BS ) is not an identically zero

polynomial, its zero set will have measure zero on R2MM. Therefore, it remains to show that

f (AS ,BS ) is not a trivial polynomial. One way to do that is to find a specific point (A0,B0) such

that f (A0,B0) 6= 0. We follow the same construction for A0 as the one proposed in the proof of

Theorem 4 in [PV15]. We repeat this construction here for completeness: Divide the M columns

of A0 into M unequal groups {Jm}M
m=1 such that |Jm|= M−m+1. Relabel the columns of A0 as

{ jk
m,1≤ k ≤M−m+1}, and construct the elements of A0 in the columns indexed by Jm (for all

m = 1, · · · ,M) as

[A0]i, jkm =


1 if i = m,and k = 1

1 if (i = m or i = m+ k−1),and k > 1

0 otherwise
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As shown in [PV15], the matrix A0�A0, through permuting rows and columns, can be trans-

formed into an upper triangular matrix, with diagonal entries equal to 1. We also let B0 = 0.

Therefore, f (A0,B0) = det(A0�A0−B0�B0) = 1. This implies that f (AS ,BS ) is a nontrivial

polynomial in R2MM̄, and hence with probability one f (AS ,BS ) 6= 0. This implies CS is full-rank,

thereby concluding the proof.

Remark 27. Lemma 19 implies that the columns of A�A−B�B are i.i.d. points in RM2+M
2

such that with probability one, every set of M2+M
2 points are linearly independent.

Lemma 20. [Wor94] (Chernoff bound) When k > n/2, it holds that

1
2n

n

∑
i=k

(
n
i

)
≤ e−k( n

2k−1−log( n
2k ))

Proof of Theorem 21

Equipped with above lemmas and definitions, we now proceed to the proof of Theorem

21:

Proof. Let Si,S j be index sets such that Si∩S j = /0, 1≤ i < j ≤
(N

K

)
. Define the event N++

i j as

N++
i j = {∃p ∈ RK

++ : (Ai�Ai−A j�A j)p = 0}.

Notice that the condition (Ai�Ai−A j�A j)p= 0 is equivalent to (Ai�Ai−A j�A j)p=

0, since Ai�Ai, following the definition given in Definition 10, only removes the identical rows

from Ai�Ai. Since the columns of A are i.i.d., we can conclude that the columns of A�A are

also i.i.d. Since, Si∩S j = /0, this implies that the columns of Ai�Ai−A j�A j are i.i.d. as well.

Moreover, the distribution of the columns of Ai�Ai−A j�A j is symmetric about zero.

Since Ai and A j have i.i.d. columns, we can use Lemma 19 (with n := K,A := Ai,B :=

A j), to conclude that all subsets of M columns of Ai�Ai−A j�A j are linearly independent,

with probability one. Hence, the K columns of Ai�Ai−A j�A j are i.i.d. points in RM2+M
2
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such that their distribution is symmetric about zero, and every subset of M points are linearly

independent, with probability one. Therefore, they satisfy the conditions for our corollary to

Wendel’s theorem. We can directly use Lemma 10 and Corollary 4 (with d := M, n := K) to

compute the probability of the event N++
i j as

P(N++
i j ) = 1− 1

2K−1

M−1

∑
i=0

(
K−1

i

)
(3.58)

≥ 1− e
−(K−M)( K−1

2(K−M)
−log( K−1

2(K−M)
)−1)

(3.59)

where the inequality (3.59) follows from Lemma 20, assuming that K > 2M+1.

We are now ready to characterize the probability that A ∈ IA. Define the set

I A = {A :∃p ∈ RK
++, i, j

∣∣Si∩S j = /0,

(Ai�Ai−A j�A j)p = 0}

The difference between IA and I A is that in I A we restrict ourselves to disjoint supports. It is

clear that

P(A ∈ IA)≥ P(A ∈ I A) (3.60)

and hence, any lower bound on P(A ∈ I A) serves as a lower bound on P(A ∈ IA). We first derive

a loose lower bound on P (A ∈ I A), by only considering two disjoint supports S1 = {1, · · · ,K}

and S2 = {K +1, · · · ,2K}. Then we have

P(A ∈ I A) = P(
⋃

Si∩S j= /0

N++
i j )≥ P(N++

12 )

= 1− 1
2K−1

M−1

∑
i=0

(
K−1

i

)
. (3.61)
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Hence, (3.61) serves as a (loose) lower bound on P (A ∈ I A). A tighter lower bound can be found

as follows. Let N′ = b N
2K c2K. Consider partitioning the indices {1, · · · ,N′+2K} as

N[1,K],N[K+1,2K], · · · ,N[N′+K+1,N′+2K)]

where N[a,b] = {a,a+1, · · · ,b}, for a,b ∈N, a≤ b. Now consider the following set consisting of

tuples of the form (Na,a+K,Na+K+1,a+2K):

IK,N =

{(
N[1,K],N[K+1,2K]

)
,

(
N[2K+1,3K],N[3K+1,4K]

)
, · · · ,(

N[N′+1,N′+K],N[N′+K+1,N′+2K]

)}

Each tuple in IK,N represents a pair of disjoint supports of size K. The probability P(A ∈ I A) can

be bounded as

P(A ∈ I A) = P(
⋃

Si∩S j= /0

N++
i j )

≥ P(
⋃

(Si,S j)∈IK,N

N++
i j )

= 1−P(
⋂

(Si,S j)∈IK,N

N̄++
i j )

= 1− ∏
(Si,S j)∈IK,N

P(N̄++
i j ) (3.62)

= 1−

 1
2K−1

1
2 M(M+1)−1

∑
i=0

(
K−1

i

)b N
2K c

(3.63)

where N̄++
i j denotes the complement of the event N++

i j , the equality (3.62) follows from the fact

that the events N++
i j are independent, since all the supports (Si,S j) ∈ IK,N are disjoint, and (3.63)
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follows from (3.58). By using the lower bound in (3.59), we can derive the bound given in (3.30),

and conclude the proof.

3.5.3 A preliminary lemma

Lemma 21. [Zaj18] Let g∈Rd , be a vector of random Gaussian variables distributed as N (0,I),

and A ∈ Rd×d then

P(|gT Ag−E(gT Ag)|> t)≤

2exp
(
−min

{
9t2

512C2
1‖A‖2

F
,

3t
32C1‖A‖

})

where C1 > 0 is a universal constant.

Lemma 22. Let x1, · · · ,xL, y1, · · · ,yL be random Gaussian variables such that each pair (xi,yi)

is distributed as N (0,Σ), where Σ ∈ R2×2, then

P(|gT Ag|> t)≤2exp
(
−min

{
9Lt2

128C2
1‖Σ‖2

F
,

3Lt
16C1‖Σ‖F

})

Proof. We can write

xiyi = zT
i Jzi

where

J =

 0 1/2

1/2 0

 ,zi =

xi

yi


Moreover, zi can be expressed as zi =Σ

1/2gi, where gi∼N (0,I2). Therefore, xiyi = gT
i Σ

1/2JΣ
1/2gi,
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and

1
L

xiyi =
1
L

gT (IL⊗ (Σ1/2JΣ
1/2))g

where g∼N (0,I2L). Therefore, we can use A := (IL⊗ (Σ1/2JΣ
1/2)) in Lemma 21. We have

‖A‖2
F =

1
L
‖Σ1/2JΣ

1/2‖2
F

=
1
L

tr(Σ1/2JΣJΣ
1/2)

=
1
L

tr(ΣJΣJ) =
1

4L
‖Σ‖2

F

and

‖A‖= 1
L
‖IL‖‖Σ1/2JΣ

1/2‖

≤ 1
L
‖Σ1/2JΣ

1/2‖F ≤
1

2L
‖Σ‖F

P(|gT Ag|> t)≤2exp
(
−min

{
9Lt2

128C2
1‖Σ‖2

F
,

3Lt
16C1‖Σ‖F

})

3.5.4 Proof of Theorem 24

Proof. Let wn be the size of the set W at the nth iteration of the algorithm, and in be the counter

i in Algorithm 1 at nth iteration, where it holds that 0≤ in ≤ n. Of all the pairs r∩ c for r ∈ R

and c ∈ C at most K of them can be nonempty. The number of elements in each set r is at most
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dwn
2in e, and the number of elements in each set r∩ c is at most d wn

22in e. Therefore,

wn+1 ≤min(wn,Kd
wn

22in
e),

and we have w1 = N. At the nth iteration, we make at most 2n+1 measurements. The algorithm

stops when the number of elements in the sets r∩ c is at most one, which means d wn
22in e= 1. We

denote the stopping iteration as n = nt .

We show that after some iteration n̂, for all n̂≤ n≤ nt we necessarily have

wn+1 <
wn

2
(3.64)

A sufficient condition for (3.64) is that

Kd wn

22in
e ≤ wn

2

Since n < nt , we necessarily have wn
22in > 1, hence we can use the fact that dxe ≤ 2x, for x ≥ 1.

Therefore, we can derive a more relaxed sufficient condition as

2K
wn

22in
≤ wn

2
(3.65)

Notice that (3.65) implies (3.64) for n < nt . From (3.65) we get in ≥ 1
2 log2(4K). Since we always

have in ≤ n, we conclude that for n≥ n̂ = d1
2 log2(4K)e, (3.64) necessarily holds. The number of

measurements upto the iteration n̂ = is

2
n̂

∑
i=1

2in ≤ 2
n̂

∑
i=1

2n = 4
n̂−1

∑
n=0

2n = 4(2n̂−1)≤ 4(2
1
2 log2(2K)+1)≤ 8

√
4K

Since for all iterations n≥ n̂, (3.64) holds, based on the Algorithm 1, we have in = n̂ for n≥ n̂.

Using (3.64), and the fact that wn̂ ≤ N, we get wn ≤ dN2−(n−n̂)e, for all n ≥ n̂. The algorithm
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stops at iteration nt which satisfies wnt
22int
≤ 1. A sufficient condition is that

2N2−(nt−n̂)

22n̂ ≤ 1

which means in = d1
2 log2 Ne, i.e.,

2−nt+1+log4 N

2n̂ ≤ 1

where nt = d1+ log2 N− n̂e.

The number of measurements from iteration n̂ to the final iteration nt is

2n̂(nt− n̂+1)≤ (d1+ log2 N− n̂e− n̂+1)2d
1
2 log2(4K)e

≤ 4
√

4K log2 N

Hence, the overall number of measurements is at most 4
√

4K(log2 N +2).

3.5.5 Proof of Theorem 25

Proof. A sufficient condition for the adaptive scheme provided in Algorithm 1 to fail is that at

any stage of the algorithm we mistakenly remove indices corresponding to the set W (ci∩ r j).

This can happen if we have |ρi j|< ε while pW (ci∩r j) has nonzero elements. We use the tail bound

provided in Lemma 22, with

P(|ρi j|> ε)≤ 2exp
(
−min

{
9Lε2

256C2
1(2p2

maxK2 +σ4)
,

3Lε

16C1
√

2(2p2
maxK2 +σ4)

})
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By employing the union bound and the fact that the total number of making a decision is

n̂

∑
n=1

22n +(n1− n̂)22n̂ =
4
3
(22n̂−1)+(d1+ log2 N− n̂e− n̂)22n̂

≤ (
8
3
+4(2+ log2 N))

√
4K = (4(

8
3
+ log2 N))

√
4K

the probability of success is at least

1− (8(
8
3
+ log2 N))

√
4Kexp

(
−min

{
9Lε2

256C2
1(2p2

maxK2 +σ4)

,
3Lε

16C1
√

2(2p2
maxK2 +σ4)

})
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Chapter 4

Tensor Decompositions and Non-Convex

Algorithms with Applications in mmWave

Communication Systems

In this chapter, we present tensor decomposition algorithms, as well as non-convex

algorithms with applications in mmWave communication systems. In the following, we will

give a brief introduction on a specific type of tensor decomposition, namely Canonical Polyadic

decomposition, as well as a review on channel estimation for mmWave communication systems.

Canonical Polyadic Decomposition Decomposition of tensors (d-dimensional arrays, d > 2)

into minimal number of rank-1 tensors, referred to as Canonical Polyadic decomposition (also

CANDECOMP/PARAFAC), is an important problem that arises accross diciplines such as signal

processing, machine learning, psychometrics, chemometrics, etc [KB09, SDLF+17]. It has been

established that unlike matrices, tensors can have CP ranks (the number of rank-1 tensors in CP

decomposition) that can far exceed the individual dimensions of the tensor, and in most cases

decomposition of such tensors are known to be NP-hard [HL13]. Nevertheless, it has been shown
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that under some mild conditions, CP decomposition can be unique, even without assuming any

structure on the tensor factors.

Although most of the literature on tensor decomposition is focused on unstructured

tensors [Bro97, SDLF+17], there is also a significant body of literature which focuses on tensors

that have extra structure [SDL13, SDL17a, GBB+16]. For example, tensors whose factors

are Vandermonde matrices arise in applications such as array signal processing [SBG00], and

multidimensional harmonic retrieval [SDL13, SDL17a, SDL17b]. Taking advantage of these

structures can lead to easily implementable algorithms which are capable of recovering tensors of

rank higher than the dimensions. For example, [SDL17a] has shown that for a dth order tensor

consisting of d− 1 Vandermonde factors of dimensions N1,N2, · · · ,Nd−1, upto N1N2 · · ·Nd−1

factors can be recovered using only linear algebraic operations.

Recent results in Direction-of-Arrival (DOA) estimation [PV10, PV11] show that certain

non-uniform array geometries such as nested [PV10], coprime [PV11], [QP14], and minimum

redundancy arrays [Mof68] can be useful to detect more sources than the number of sensors. In

particular, these geometries are capable of recovering O(M2) sources using only M antennas.

In such array geometries, because of non-uniformity of the array, the array manifold matrix is

no longer Vandermonde, but a sub-selected rows of a Vandermonde matrix, henceforth called

Vandermonde-like. However, the arrays are designed in such a way that the self-Khatri-Rao

product of these matrices have a Vandermonde submatrix. The Khatri-Rao structure arises

naturally under the assumption that the sources are uncorrelated. The idea is also generalized

into 2qth order moments of a 2qth order nested array in [PV12c], where recovery of O(M2q)

uncorrelated non-Gaussian sources is guaranteed using only M antennas.

In section 4.2, we present an algorithm for decomposition of structured overcomplete

tensors. In Sec. 4.4 we will show how we can use this algorithm in order to perform channel

estimation for mmWave communication systems.
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Channel Estimation for mmWave Communication Systems Communication over millimeter-

wave (mmWave) frequencies (30GHz-300GHz), which is a key enabler of 5th generation of

wireless communication systems, is a challenging task due to several physical limitations such as

high propagation loss, directivity, and sensitivity to blockage [NLJ+15, PK11, RSP+14]. One of

the well-known solutions to overcome some of these challenges is to increase spatial diversity by

deploying a massive number of antennas (e.g., 100s), at the base-station (BS), and possibly multi-

ple antennas at the mobile-station (MS) [RSP+14]. However, deployment of such a huge number

of antennas can dramatically complicate the radio-frequency (RF) circuitry of these systems,

leading to an increased power consumption, and manufacturing cost. To mitigate these problems,

a well-known solution is to use a hybrid analog/digital beamforming strategy, which helps us

reduce the number of required RF-chains. In such architectures, N RF-chains are connected to

M antennas (N�M) through a network of simpler RF circuitry such as analog phase-shifters

and/or switches [MRH+17].

In order to ensure a reliable communication, it is crucial to obtain an accurate estimate

of the channel. A key property of mmWave channels is that they can be characterized by a

few number of channel paths [NLJ+15, XGJ16, AH16, PAGH19], even though the channel

matrix itself can be very large. Each channel path is characterized by a few parameters such

as gain, angle-of-arrival (AoA), angle-of-departure (AoD), delay, and doppler-shift1. Hence,

in order to estimate the channel, it suffices to estimate these parameters [PAGH19, XGJ16].

Many papers have already addressed the problem of channel estimation in different scenarios

[PH16, PAGH19, RTC15, ZH17, QFSY18, QFS19, ALH15, LGL14, AMGPH14, EARAS+14],

including single-carrier [PH16, QFS19, AEALH14] versus multi-carrier cases [PAGH19, ZH17,

ZFY+17, AdA17], or high-mobility [RTC15] versus low-mobility environments [ZH17]. In this

chapter, we consider the case where the communication system operates on multiple carriers in a

low-mobility environment.

1Depending on the assumptions made in the problem model, the effect of some of these parameters can be
negligible.
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In Sections 4.3 and 4.4, we will show how we can design tensor decomposition algorithms

which can help us estimate the mmWave communication channels.
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4.1 Beam-Pattern Design for Hybrid Beamforming using

Wirtinger Flow

In a wireless mmWave communication system, in order to maximize the signal-to-noise

ratio (SNR) at the receiver, beamforming vectors at the transmitter and receiver are designed

carefully using the Channel State Information (CSI). However, in mmW systems, a large number

of antennas at both transmitter and receiver makes it impractical to accurately estimate the

large channel matrix, as it requires a large communication overhead. On the other hand, due to

high directivity of mmW channels, and availability of a sufficiently large number of antennas,

it is possible to efficiently implement beamforming using feedback assisted beam alignment

[HKL+13, SCL+15a]. In such scenarios, a common codebook is available at both transmitter and

receiver. The codebook contains a set of codewords, each corresponding to a particular predefined

beampattern [SCL15b, SCL17].

A major challenge in mmW communication systems is that owing to the large number

of antennas, dedicating a separate radio frequency (RF) chain (consisting of analog-to-digital

converters, modulators, etc) to individual antenna is extremely costly and power-hungry [PK11].

Therefore, unlike conventional MIMO systems, it is not practical to implement an all-digitial

beamformer. In order to mitigate this problem, alternative architectures have been proposed.

A common practice is to use a hybrid digital/analog beamforming strategy [MRH+17, SY16,

HIR+14, AMGPH14, BBS13, SB10, EARAS+14, RMRGPH16, NLLNH17, LWY+17], where

instead of purely digital processing, a combination of digital and analog beamforming is employed.

Since the analog circuitry in a hybrid beamforming system is implemented using only phase-

shifters [MRH+17], it poses certain non-convex constraints on the design of a hybrid beamformer,

making it a challenging optimization problem.

A body of past work on hybrid beamforming is dedicated to maximizing data transmission

rate, and computationally efficient algorithms have been proposed [RMRGPH16, NLLNH17,
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Figure 4.1: Hybrid beamforming

MRH+17]. In contrast, in this Section, we focus on a different optimization problem where the

goal is to approximate a given beam-pattern, for which we develop a new non-convex algorithm.

Our algorithm performs a greedy initialization followed by a gradient descent procedure. Since the

optimization variables, i.e., the baseband weights, and the phase-shifter coefficients are complex

quantities, we use Wirtinger calculus to compute the derivatives. Wirtinger calculus has shown

to be successful in other applications such as solving quadratic equations and phase-retrieval

[CLS15]. The proposed algorithm can be used in codebook design, and channel sounding stages

of a mmW communication system, and works for arbitrary array geometries (including non

uniform arrays such as nested and coprime arrays [PV10, PV11]). Our simulations show that

compared to previous optimization techniques for beam-pattern design in hybrid beamforming

[SCL15b, SCL17], our algorithm has lower computational complexity.

Notations: Throughout this Section, matrices and vectors are represented by bold uppercase and

bold lowercase letters, respectively. The symbol (.)T ,(.)H ,(.)∗,(.)† represent the matrix transpose,

matrix Hermitian, complex conjugate, and Moore-Penrose psuedo-inverse, respectively. The

symbols ⊗, �, ◦ stand for Kronecker, and (column-wise) Khatri-Rao product, and elementwise

Hadamard product, respectively. The rest of the notations are clear from the context.
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4.1.1 System Model

Consider a millimeter wave (mmW) antenna array, consisting of M antennas, which

can act as transmitter and/or receiver in a massive MIMO wireless communication system.

As depicted in 4.1, we assume that the antenna array is equipped with a hybrid-beamforming

hardware, consisting of a digital baseband beamformer, and an analog beamforming circuitry.

The analog circuit consists of NRF < M RF chains, which are connected to the physical antennas

through a network of analog phase-shifters, where each RF-chain is connected to an antenna

through a phase-shifter and an adder. The analog phase shifters connected to each RF chain are

controlled by the unit-norm beamsteering vectors f1, · · · , fNRF ∈ BM, where

BM = {w ∈ CM : |wi|2 = 1/M,1≤ i≤M}.

Moreover, the digital baseband beamformer is controlled by the digital beamsteering vector v ∈

CNRF . Hence, the overall hybrid beamsteering vector is given by c := Fv, where F = [f1, · · · , fNRF].

We also assume that the hybrid beamformer should satisfy the unit norm constraint ‖c‖= 1, i.e.,

‖Fv‖= 1, due to the transmit power constraint of the beamformer.

In this Section, we consider a one dimensional linear antenna array of arbitrary geometry.

Assume that the antenna array is designed for a carrier wavelength of λ, and the antennas are

located at d1, · · · ,dM. In this case, the array steering vector a(θ) ∈ CM can be written as

a(θ) = [e j 2π

λ
d1 sinθ,e j 2π

λ
d2 sinθ, · · · ,e j 2π

λ
dM sinθ]T ,

In a uniform linear array (ULA), the locations are chosen to be d1 = 0,d2 =
λ

2 , · · · ,dM = λ

2 (M−1).

In this Section, the antennas need not be located uniformly, and our algorithm can be applied to

nonuniform arrays (such as nested and coprime arrays) as well.
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The beampattern generated by the hybrid antenna array is of the following form

t(θ;F,v) = |a(θ)HFv|2.

In this Section, our goal is to design the hybrid beamformer (i.e., the analog phase shifters F, and

the digital beamformer v), such that the resulting beam-pattern t(θ;F,v) is as close as possible to

a desired beampattern p(θ). Towards this end, we consider the same optimization problem as in

[SCL15b, SCL17]:

minimize
F∈CM×NRF ,v∈CNRF ,α∈R

∫
π

−π

|αt(θ;F,v)− p(θ)|2dθ (4.1)

subject to f1, · · · , fNRF ∈ BM,

‖Fv‖= 1

where α is a scaling factor. We consider a more tractable version of (4.1), by quantizing the

directions θ into a finite grid of N points: {θ1, · · · ,θN}. Define the vectors t,p whose elements

are given by ti = t(θi;F,v), and pi = p(θi). In this case, one can write

t = |AHFv|◦2,

where the notation |.|◦2 indicates taking element-wise squared absolute value of a vector, and

A = [a(θ1), · · · ,a(θN)]. In order to incorporate the constraint ‖Fv‖ = 1, one can define the

auxiliary variable u, and solve the following optimization problem:

(F̂, û) = argmin
F∈CM×NRF

u∈CNRF ,α∈R++

‖α |A
HFu|◦2

‖Fu‖2
2
−p‖2 (4.2)

subject to f1, · · · , fNRF ∈ BM,
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The optimal v is then given as v̂ = û/‖F̂û‖. Both the constraints and the objective function

of (4.2) are nonconvex, rendering the problem (4.2) a nonconvex optimization problem. In

the following section, we will propose a non-convex algorithm based on the Wirtinger Flow

framework [CLS15, CC15]. The method consists of suitable initialization followed by a series

of gradient descent iterations, where the complex gradients are derived using Wirtinger calculus

[KD09, HG07].

4.1.2 Proposed Algorithm: Lifting Aided Wirtinger Flow

In order to solve the optimization problem (4.2), we propose a greedy approach to first

find initial estimates for the variables F,u. Once the initial estimates are found, we then proceed

by performing gradient descent iterations to arrive at a local minimum. Since the optimization is

performed with respect to complex variables, we use Wirtinger calculus in matrix variables to

find the derivatives [HG07].

Initialization Based on Lifting

In this subsection, our goal is to find a suitable initialization point for the variables F,u.

To this end, we first ignore the fact that the overall beamsteering vector is decomposable as a

product of F and v, and instead, consider a relaxed version of (4.2) as follows:

minimize
c∈CM ,α∈R++

‖α|AHc|◦2−p‖2
2 subject to ‖c‖= 1 (4.3)

where c can be any unit-norm vector in CM, and need not follow the hybrid beamforming

constraints. Notice that (4.3) is still a nonconvex problem in c, and hard to solve. Using properties

of Kronecker and Hadamard product, one can verify that |AHc|◦2 = (A∗�A)H(c∗⊗c). Using the

“lifting” trick (which has been popularized for phase-retrieval [CLS15] and blind deconvolution
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[ARR14a]), one can define a new variable D = αccH and rewrite (4.3) as

minimize
D∈CM×M

‖(A∗�A)H vec(D)−p‖2
2 (4.4)

subject to rank(D) = 1, D� 0

Problem (4.4) is still nonconvex due to the constraint rank(D) = 1. We can further relax this rank

constraint and use the nuclear norm of D as a convex surrogate to obtain a relaxed version of (4.4)

as follows

minimize
D∈CM×M

‖(A∗�A)H vec(D)−p‖2
2 +λ tr(D) (4.5)

D� 0

where λ > 0 is a regularization parameter. Since (4.5) is a semi-definite program (SDP), it can

be efficiently solved by off-the-shelf solvers such as SDPT3 [TTT99]. Let D̂ denote the optimal

solution to (4.5). We can find the closest rank-1 approximation of D̂ by performing its singular

value decomposition, and retaining the dominant singular vector [EY36]. Hence, an approximate

solution for (4.3) is given as ĉ0 = η1, and α0 = σ1, where σ1 is the largest singular value of D̂

and η1 is the corresponding singular vector.

The vector ĉ0 can serve as an initial guess for the unconstrained beamforming vector c,

wheres α0 is used as an initialization for α. In order to find initial estimates of F, and v from

ĉ0, we proceed by performing the greedy iterations given in Algorithm 2 (lines 6–11). Here, the

notation Pφ(x) is defined as follows

[Pφ(x)]i =
1√
M

e j]xi

where ](.) returns the phase of a complex number. Moreover, the notation ΠX = XX† indicates
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the projection matrix onto the range space of the matrix X, while mat(.) rearranges the elements

of an M2×1 vector into an M×M matrix, and svd(.) denotes the singular value decomposition

of a matrix.

Algorithm 2 Lifting Aided Greedy Initialization Algorithm

1: Given p ∈ RN , solve (4.5).

2: [Ud̂,Σd̂,Vd̂] = svd(mat(d̂))

3: η1 := [Ud̂]:,1,σ1 = [Σd̂]1,1

4: ĉ0 = η1,α0 = σ1

5: F̃(1)← Pφ(ĉ0)

6: for i=2 to NRF do

7: f̃(i)← ĉ0−ΠF̃(i−1) ĉ0

8: F̃(i)← [F̃(i),Pφ(f̃(i))]

9: end for

10: ũ← (F̃(NRF))†ĉ0

11: return (F̃(NRF), ũ)

Parameterized Wirtinger Flow Based Iterations

After we find an initial guess for F,u, and α using Algorithm 2, we use a gradient descent

based approach to find a local optimum for (4.2). However, since the objective function in (4.2)

is a function of complex valued variables, we need to use Wirtinger calculus to compute the

derivatives.

In order to enforce the constraints f1, · · · , fNRF ∈ BM, we introduce an equivalent parame-

terization of F as follows. Let Φ be an auxiliary variable which parameterizes F as

F(Φ) =
1√
M

e◦( jΦ)
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Here e◦(.) represents applying the exponential function element-wise on a matrix. We also define

the following functions:

q(Φ) = AHF(Φ)u

t(Φ,u,u∗) = |q(Φ)|◦2

g(Φ,u,u∗) = ‖F(Φ)u‖2

h(Φ,u,u∗) =
t(Φ,u,u∗)
g(Φ,u,u∗)

r(Φ,u,u∗,α) = ‖αh(Φ,u,u∗)−p‖2

where r(Φ,u,u∗,α) can be easily verified to be the objective function of the optimization problem

(4.2). The goal is to calculate the complex derivatives of the functions r(Φ,u,u∗,α) with respect

to its parameters, denoted as DΦr,Dur,Du∗r,Dαr. According to the theory of optimization of

functions with complex valued matrix parameters, the directions where the function r(Φ,u,u∗,α)

has the maximum rate of decay with respect to vec(Φ), and u are given by (DΦ
∗r)T , and (Du∗r)T ,

respectively. Hence, we obtain the following update rules for gradient descent:

vec(Φ)← vec(Φ)−µ(DΦr)T

vec(u)← vec(u)−µ(Du∗r)T

α← α−µDαr

A careful reader can refer to [HG07] to find the exact definition of complex derivatives. The

following Lemma gives closed forms for the derivatives DΦr,Du∗r,Dαr:
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Lemma 23. The derivatives DΦr,Du∗r, can be computed by the following expressions:

DΦr =−4(αh−p)T Im
{(

diag(q∗)(uT ⊗AH)

‖Fu‖2

− |q|◦2

‖Fu‖4 vec(F∗u∗uT )T
)

diag(vec(F))
}

Du∗r = 2(αh−p)T
(

diag(q∗)AHF
‖Fu‖2 − |q|

◦2

‖Fu‖4 vec(FT F∗u∗)T
)∗

Dαr =−hHp+α‖h‖2

Proof. The proof follows from application of chain rule, and derivatives of linear and quadratic

functions of complex matrices from [HG07]. The detailed derivation of the given expressions is

omitted due to lack of space.

4.1.3 Simulations

In the first set of simulations, we consider a codebook design problem similar to [SCL15b,

SCL17]. Following [SCL15b], we consider two cases: B = 2 and B = 3, where 2B denotes

the number of codewords. The qth codeword (Fq,vq) is designed such that the corresponding

beam-pattern is equal to

p =
2B

M
(eq⊗1L) (4.6)

where L = 50, N = L2B, and eq ∈ R2B
denotes the qth standard basis vector, and 1L ∈ RL

represents the vector of all ones. Such a beampattern could be useful during the channel sounding

stage in a massive MIMO communication system [SCL15b]. In all plots, we assume we have

NRF = 8 available RF-chains. Fig. 4.2 (resp. Fig. 4.3) compares the codebook of size 2B = 4

(resp. 2B = 8) generated by our algorithm with that of [SCL15b] (we search over the set GN
M,

defined in [SCL15b], with M = 8,N = 3). We see that in all cases, our proposed codebook shows

a sharper roll-off compared to [SCL15b]. Also, for cases that the beampatterns need to be more
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flat over the passband (i.e, Fig. 4.2 (c), (d)), our algorithm generates a cleaner beampattern with

less ripple.

Remark 28. In terms of computational complexity, a key distinction between the algorithm in

[SCL15b, SCL17], and our proposed algorithm is that in [SCL15b, SCL17], the authors perform

an exhaustive search over all possible ways that one can assign phases to the elements of the

vector γ, such that p = γ◦ γ∗, by quantizing the phases into Nq levels for all possible L nonzero

elements in p, which has the complexity at least NL−1
q (although they use a more tractable set GN

M,

the complexity is still exponential). This exhaustive search can have prohibitive complexity as the

number of nonzero elements of p increases, making it intractable to solve for beampatterns with

large number of nonzero elements. However, in this Section, we do not require any exhaustive

search, making it possible to solve for beampatterns with arbitrarily large number of nonzero

elements. One of the computational bottlenecks of our proposed algorithm is the initialization

step, which requires solving an SDP, which has the complexity at least Ω(M3) [NJS13]. In

future, we will investigate how we can reduce the complexity of our algorithm, and also provide

convergence analysis for the proposed Wirtinger Flow iterations.

Remark 29. Another distinction of our proposed method from that in [SCL15b, SCL17] is that

the beam pattern p can be defined by any arbitrary vector, as long as it satisfies certain power

constraints. However, the beampattern in [SCL15b, SCL17] can only be of the form given in

(4.6).

4.1.4 Conclusion

In this Section, we proposed a beam-pattern design algorithm for hybrid beamforming.

We followed the same problem formulation as in [SCL15b], but proposed a novel non-convex

algorithm based on Wirtinger flow framework. Our optimization procedure is based on carefully

finding an initialization point by solving a suitable convex optimization problem (using ideas
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(d) Codebook in [SCL15b] (M = 32)

Figure 4.2: Codebook Designed by Proposed Algorithm versus those designed by [SCL15b],
for a codebook of size 2B = 4.

from lifting), followed by gradient descent. The gradients are calculated using Wirtinger calculus,

since the objective function is in terms of complex valued matrices. Unlike the algorithm in

[SCL15b], our algorithm does not have exponential computational complexity in terms of the

size of the beamwidth and can be used for arbitrary beampattern synthesis with arrays of any

geometry.
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Figure 4.3: Codebook Designed by Proposed Algorithm versus those designed by [SCL15b],
for a codebook of size 2B = 8.
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4.2 Canonical Polyadic (CP) Decomposition of Structured

Semi-Symmetric Fourth-Order Tensors

In this section, we consider decomposition of tensors which have Vandermonde-like

(corresponding to sub-selected rows of Vandermonde matrices, according to geometries such

as nested sampling [PV10]) factors as well as unstructured factors. We explain the model in

detail in Section 4.2.1. Such tensors can arise in certain DOA estimation applications using

non-uniform arrays where the sources are assumed to transmit uncorrelated symbols with a

CDMA (code-division multiple access) encoding. We show that using purely linear algebraic

algorithms, it is possible to recover O(M2N) factors, from a M×N×M×N tensor, where M

is the dimension of the structured factors, and N is the dimension of the unstructured factors.

Our proposed method uses the properties of difference co-arrays to lift the given tensor into a

higher dimensional tensor, and then employs an ESPRIT-type algorithm (inspired by [SDL17a]),

which uses shift-invariance property of the Vandermonde matrices in order to decompose the

tensor factors. Our result differs from [SDL17a] due to the following reasons: (i) we consider

semi-symmetric tensors where two of the Vandermonde-like factors are complex conjugate of

one another, whereas guarantees of [SDL17a] hold for distinct factors, (ii) our factors are not

Vandermonde but consist of sub-selected rows of Vandermonde matrices, (iii) two of our factors

are unstructured, compared to one unstructured factor of [SDL17a].

4.2.1 Problem Definition

We consider a semi-symmetric fourth order tensor of dimensions M×N×M×N, whose

factors are assumed to be constrained in the first two dimensions and unconstrained in the other

two dimensions. The tensor is semi-symmetric in the sense that the two structured (as well

as unstructured) factors are complex conjugate of one another. In particular, we assume that
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T ∈ CM×N×M×N has a decomposition as

T =
r

∑
k=1

pkak⊗bk⊗a∗k⊗b∗k , (4.7)

where pk ∈R, ‖bk‖2 = 1, ‖ak‖2 =
√

M. We assume that the factors bk ∈CN can be any (generic)

unit-norm unconstrained vector. However, the factors ak ∈ CM are assumed to be sub-selected

rows of Vandermonde vectors, such that the ith element of ak is given as

[ak]i = e jziωk (4.8)

where zi ∈ Z are integers, and j =
√
−1. Correspondingly, define A ∈ CM×r,B ∈ CN×r, as

A = [a1, · · · ,ar]

B = [b1, · · · ,br]

Such a Vandermonde-like structure for matrix A can arise in applications such as array signal

processing with non-uniform arrays [PV10, PV11].

4.2.2 Khatri-Rao Product and Role of Difference Sets

In this subsection, we will review the concept of difference sets which will be later used

in Section 4.2.3 in order to construct a higher dimensional tensor T̃ by rearranging and repeating

the entries of T in a certain way.

For integer numbers z1,z2, · · · ,zM, define the indexed-difference set as [PV12c]

DI = {(i, j,zi− z j),1≤ i, j ≤M}

Moreover, define M̃ to be the largest integer such that the differences zi− z j span the range of
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consecutive integers −(M̃−1), · · · ,M̃−1.

The difference sets arise naturally in the exponents of the matrix A∗�A (interested reader

can refer to [PV10]). We define the matrix Ã ∈ CM̃×r to be a Vandermonde submatrix of A∗�A

corresponding to the largest consecutive nonnegative differences in DI . In particular, we let the

columns of Ã to be

[ãk]m = e j(m−1)ωk , 1≤ m≤ M̃−1 (4.9)

and Ã = [ã1, ã2, · · · , ãr] ∈ CM̃×r.

In the context of array signal processing, this corresponds to the largest (nonnegative)

ULA in the virtual co-array, which is used to perform co-array MUSIC [PV10]. Compared to

the difference set introduced in [PV12c, PV10], DI also keeps track of the pairs of indices (i, j)

which give rise to each particular difference (zi− z j). In Section 4.2.3, we will use these indices

in order to lift the tensor T to a higher dimensional tensor.

For particular array geometries, it has been shown that one can achieve M̃ = O(M2). The

well-known designs which can achieve M̃ = O(M2) include nested arrays [PV10], coprime arrays

[PV11], minimum redundancy arrays [Mof68], etc. For example, a two-level nested array with

an even number of antennas (even M) has the following structure [PV10]:

zi =


i, 1≤ i≤ M

2

(
M
2
+1)i,

M
2
+1≤ i≤M

It turns out that for such an array geometry, we have M̃ = M2

4 + M
2 −1.

4.2.3 Proposed Algorithm

In this section, we will show that although the factor A is not exactly a Vandermonde
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matrix, it is possible to lift the tensor T to a higher dimensional tensor T̃ , whose decomposition

contains Vandermonde factors. We then employ an ESPRIT-type algorithm (similar to [SDL17a])

on the lifted tensor T̃ to find the CP decomposition.

Lifting the tensor to a higher dimension

As we observed in Section 4.2.2, if the locations z1, · · · ,zM are carefully designed, the

size of the difference set DI can be as large as O(M2). We will see how this can help us in

decomposing O(M2N) factors from the tensor T . We define this lifting operation as follows:

Definition 11. Given a tensor T ∈ CM×N×M×N , the 4th order tensor TENSORTOEP(DI )(T ) ∈

CM̃×N×M̃×N is constructed as

[TENSORTOEP(DI )(T )]p,n1,q,n2 = Tm1,n1,m2,n2

where (m1,m2, p− q) ∈ DI , 1 ≤ n1,n2 ≤ N, 1 ≤ m1,m2 ≤ M. In presence of noise, we may

average over the redundancies in DI .

Since depending on the design of z1, · · · ,zM, we can have M̃�M, the tensor

TENSORTOEP(DI )(T ) can potentially have much larger dimensions than T . This will enable us

to decompose tensors of much higher ranks. The following Lemma shows the decomposition

corresponding to this lifted tensor:

Lemma 24. It holds that for T defined in (4.7)

TENSORTOEP(DI )(T ) =
r

∑
k=1

pkãk⊗bk⊗ ã∗k⊗b∗k

where ãk ∈ CM̃ is the kth column of Ã defined in (4.9).

Proof. Proof follows from applying definition 11 to the entries of T defined in (4.7).
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If we did not use the structure of the difference set, it would still be possible to recover r =

O(MN) factors using a variant of the algorithm proposed in [DLCC07] (given certain genericity

assumptions hold). However, as we will see in Section 4.2.3, using the shift-invariance property

of the Vandermonde matrices, it is possible to decompose tensors of rank r = O(M2N).

We finish this section by providing one more definition, which will be used to rearrange

the elements of the tensor TENSORTOEP(DI )(T ) into a square matrix:

Definition 12. Given T̃ , let FLATTEN(T̃ ) ∈CM̃N×M̃N be such that its (i, j)th element is given as

[FLATTEN(T̃ )]i, j = [T̃ ]m,n1,t,n2

such that i = m+(n1−1)M̃, j = t +(n2−1)M̃, 1≤ m, t ≤ M̃,1≤ n1,n2 ≤ N.

ESPRIT-type Algorithm for Tensor Decomposition

In this Section, we will employ an ESPRIT-type algorithm (similar to [SDL17a]) which

uses the shift-invariance property of Vandermonde matrices in order to find the tensor decomposi-

tion for TENSORTOEP(DI )(T ).

Using the definitions given in Section 4.2.1, define T̃ ∈ CM̃N×M̃N to be such that T̃ =

FLATTEN(TENSORTOEP(DI )(T )). Following the definitions of the operations FLATTEN(.), and

TENSORTOEP(DI )(.), and Lemma 24, we have that

T̃ = (B� Ã)P(B� Ã)H

where P = diag(p1, · · · , pr). Let UΣVH be the singular value decomposition of T̃. If the matrix

B� Ã has full column rank, there exists a nonsingular matrix F ∈ Cr×r such that

UF = B� Ã (4.10)
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The following Corollary shows the conditions under which B� Ã has full column rank:

Corollary 6. (Corollary to [SDL13, Lemma III.1]) Let A be sub-selected rows of a Vandermonde

matrix, Ã be defined as in (4.9), and B ∈ CN×r. The matrix B� Ã has rank min(M̃N,r) for

almost all A, B.

Our goal is to find F such the columns of UF are vectorized form of rank-1 matrices of

the form ã(ω)bT (as in RHS of (4.10)), where [ã(ω)]m = e j(m−1)ω. It turns out that such rank-1

matrices satisfy the following row-shift-invariance property:

Definition 13. [SDL17a] For a matrix X ∈CN1×N2 , we say it has row-shift-invariance property if

X = αX (4.11)

for some α ∈ C, X,X ∈ C(N1−1)×N2 are the matrices obtained by removing the first, and last row

of X, respectively.

One can verify that if X = ã(ω)bT , then we have α = e− jω in (4.11). We will use this

property of the columns of UF in order to identify the matrix F.

We follow a procedure similar to ESPRIT algorithm [RK89, SDL17a, SDL17b]. Let

U(1),U(M̃) ∈ C(M̃−1)N×r be such that their ith column are given as

u(1)
i = VEC(UNVEC(ui)),

u(M̃)
i = VEC(UNVEC(ui))

where ui denotes the ith column of U, UNVEC(.) rearranges the elements of ui into a M̃×N

matrix, and VEC(.) rearranges the elements of a (M̃− 1)×N matrix into a vector. Here, the

notations X and X denote the removal of first and last rows of matrix X.

Using the row-shift-invariance property of the columns of B�Ã (as discussed in Definition

212



13), we have Ã = ÃD, where D = diag(e− jω1, · · · ,e− jωr). Therefore, it holds that

B� Ã = (B� Ã)D

However, from definition of F and U(1),U(M̃) we have

B� Ã = U(1)F

B� Ã = U(M̃)F

which means that U(1)F = U(M̃)FD. Assuming that B� Ã is full-column rank (which holds for

almost all A,B if r ≤ (M̃−1)N, due to Corollary 6), we can find F from the following eigenvalue

decomposition

(U(M̃))†U(1) = FDF−1

Once the matrix F is computed, we can find the vectors ãi (resp. bi upto global phase ambiguity)

by considering the largest left (resp. right) singular vectors of the matrices UNVEC(Ũfi), 1≤ i≤ r,

with fi denoting the ith column of F). Using the fact that the first entry of ãk is always equal

to one, ‖ãk‖=
√

M̃, ‖bk‖= 1, pk can be computed. We summarize our result as the following

theorem:

Theorem 26. Let A,B be such that B� Ã ∈ C(M̃−1)N×r is full column rank (which holds for

almost all A,B if r ≤ (M̃−1)N). Then, the decomposition (4.7) can uniquely be found using a

linear algebraic algorithm (upto global phase ambiguity for all entries of each bk).

Remark: Compared to our result proposed in [KP18c], which considers a more general case

of (2q+ 2d)th order tensors (with 2q structured and 2d unstructured factors), the algorithm

proposed in this Section is much simpler and is tailored to the specific case of d = q = 1. We

defer proposing a more unifying framework to the future.
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4.2.4 Simulations

In this section, we will provide numerical simulations to examine the performance of

our proposed algorithm. We consider 4th order tensors with CP-decomposition given as in

(4.7). In the first set of simulations, we consider two different sparse array geometries, namely

nested and coprime arrays. We assume that the frequencies corresponding to structured factors

ai are given as ωi = πsin(θi), such that θi, 1 ≤ i ≤ r lies on a predefined uniform grid. The

elements of the non-structured factors bi are chosen i.i.d from circularly symmetric complex

Gaussian distribution with zero mean and unit variance. We define the recovery error as ε2 :=

‖A− ÂΠ̂‖2
F/M+‖B− B̂Π̂Λ̂‖2

2/N, where Â, B̂ are the recovered matrices containing the factors

of the tensor, and Π̂ is an appropriate permutation matrix which minimizes ε, and Λ̂ is an

appropriate diagonal matrix which resolves global phase ambiguity. If for given dimensions

M,N and rank r, we obtain ε ≤ 10−4 over 10 different runs, we denote that as a “successful”

tensor decomposition for those M,N,r. The plots in Figure 4.4 show the maximum rank r for

which “successful” recovery can be attained for a given M, and N. In Figure 4.4a, the structured

factors are chosen such that zm lie on nested array, while in Figure 4.4b, zm follow a coprime

geometry with coprime numbers N1 = M/3,N2 = M/3+1 (only evaluated for M such that M/3

is an integer).

In our second experiment, we consider tensor decomposition in presence of additive noise.

We define signal-to-noise ratio (SNR) to be 10log10(∑
r
i=1 pi/σ2), where σ2 denotes the variance

of the additive circularly symmetric complex Gaussian noise to the original tensor T . The factors

ai,bi are generated similar to the first experiment, and only the nested array geometry is used. In

this case, the operation TENSORTOEP(DI )(.) is slightly modified so that the the tensor elements

are avaraged over redundancies in the difference set DI (an interested reader can refer to the

concept of weight functions in [PV10]). The plots in Figure 4.5, show the average recovery error

ε (denoted as RMSE) in log-scale, with respect to the SNR. As we can see, increasing the SNR

leads to more accuracy of the recovered factors, and the overall trend of the RMSE with respect
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Figure 4.4: Maximum tensor rank that our proposed algorithm can successfully decompose, in
a noiseless setting, for 4th order tensors whose structured factors have nested or coprime

geometry.
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Figure 4.5: The average RMSE of the proposed algorithm in presence of additive noise, with
respect to SNR.

to SNR shows the stability of our tensor decomposition algorithm with respect to the noise. We

defer theoretical analysis of the stability of our algorithm to future. In all simulations, r = 14 is

fixed. As we can see, larger M, and N can lead to more accurate recovery.

4.2.5 Conclusion

We considered Canonical Polyadic (CP) decomposition of fourth order tensors which are

assumed to have both structured and unstructured factors. Motivated by applications in array

signal processing for nonuniform arrays, the structured factors were assumed to be sub-selected
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rows of Vandermonde matrices. We showed that by employing linear algebraic techniques and the

properties of difference co-array in nonuniform arrays, it is possible to recover O(M2N) tensor

factors from a M×N×M×N tensor, with M being the dimension of the structured factors and

N corresponding to unstructured ones. Numerical simulations were provided to examine the

performance of our proposed method.
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4.3 Channel Estimation for Hybrid MIMO Communication

with (Non-)Uniform Linear Arrays via Tensor Decompo-

sition

In this Section, we develop a novel gridless channel estimation algorithm which converts

the channel estimation problem into a Canonical Polyadic tensor Decomposition (CPD) problem,

for which a long-established literature with powerful theoretical as well as experimental results

exists [DL06, SPF14]. Unlike the other existing tensor based approaches for mmWave channel

estimation which use multi-carrier measurements [ZFY+17, AdA17, AdAH19, PAGH19], spe-

cific designs for the pilot signals [QFS19], or dual-polarized antenna arrays [QFSY18], we only

use measurements from a single carrier and take advantage of statistical properties of the channel

to reframe the channel estimation problem as an instance of a CPD problem. We also show that it

is possible to estimate mmWave channels for communication systems whose antenna arrays have

a non-uniform geometry. Non-uniform arrays can result from either non-uniform placement of

the antennas, or due to switching-off subsets of transmit and receive antennas of a large uniform

linear array (through a process of antenna selection) in order to to save power. In the context of

array signal processing, it has been established that non-uniform arrays with specific designs can

have huge benefits over uniform arrays that employ the same number of antennas [PV10, PV11].

In this Section, we utilize the difference co-array structure of non-uniform antennas and show

that even if both the transmitter and the receiver use non-uniform arrays, it is possible to estimate

channels comprising of a maximum of L = O(NT NR) channel paths, where NT ,NR are the number

of RF-chains in the transmitter and the receiver, respectively. Through our numerical simulations,

we further show that non-uniform arrays achieve a smaller error for channel estimation compared

to linear arrays, mainly due to the enlarged size of their difference co-arrays.
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4.3.1 Signal Model

We consider a single user mmWave massive MIMO communication system, where

the transmitter is equipped with MT antennas and NT RF-chains, and the receiver has MR

antennas and NR RF-chains, where NT � MT ,NR � MR. The RF-chains are connected to

the antennas through a network of phase-shifters. We define F ∈ CNT×MT to be the matrix

of phase-shifters for the transmitter, whose elements are unimodular whose elements satisfy

‖Fi, j‖ = 1/
√

MT ,∀i, j. Also, let W ∈ CNR×MR to be matrices of analog phase-shifters for the

receiver, such that ‖Wi, j‖= 1/
√

MR,∀i, j.

The channel sensing is performed over several blocks of time, known as fading blocks.

Within each block, the channel is assumed to remain constant. During the qth fading block we

assume that the mmWave channel is characterized as [XGJ16]

H(q) = AR(θ)Λ(q)AT
T (Φ)

where AR(θ) ∈ CMR×L,AT (Φ) ∈ CMT×L are the array manifold matrices corresponding to the

receiver and the transmitter respectively, which are assumed to remain constant during all the sens-

ing blocks. The array manifold matrix for the receiver is defined as AR(θ) = [aR(θ1), · · · ,aR(θL)],

where the mth element of the steering vector aR(θi) equals e jπsin(θi)d
(R)
m ( j =

√
−1). Here,

d(R)
m ,1 ≤ m ≤MR denote the sensor locations for the receiver antenna array, normalized with

respect to λ̄/2, where λ̄ is the carrier wavelength. We make similar definitions for the transmitter

antenna array, with [aT (φi)]m = e jπsin(φi)d
(T )
m . The matrix of channel gains Λ(q) = diag(λ(q)) ∈

CL×L is assumed to be a diagonal matrix comprising of channel path gains λ(q) at the qth fading

block. Moreover, we assume that λ(q) follow a circularly symmetric Gaussian distribution

λ(q) ∼ N (0,P), where P ∈ RL×L is the covariance matrix of the channel gains. The channel

gains are also assumed to be statistically uncorrelated, i.e. P= diag(p) is a diagonal matrix, which

is a common assumption for mmWave channels in many scenarios [PH16, PH18, AGPHJ18].
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Pilot-Aided Channel Sensing: Preliminaries

We assume a similar methodology for pilot-aided channel sensing as [GWH17]. For com-

pleteness, we briefly review this procedure from [GWH17] before describing our proposed algo-

rithm in Sec. 4.3.2. Let φ(t) be a pulse-shaping function of duration T , such that
∫ T

0 |φ(t)|2dt = 1,

and sn(t) =
√

E
NT

φ(t− (n−1)T ) be the pilot signal used by the nth RF chain at the transmitter at

time t, with the property that

∫ NT T

0
sn1(t)sn2(t)dt =

E
NT

δn1,n2

with δn1,n2 = 1 if n1 = n2 and δn1,n2 = 0 otherwise. Here E is the transmit power equally

allocated for each pilot. During each fading block, the transmitter transmits NT pilot waveforms

s1(t), · · · ,sNT (t). The receiver properly applies matched filters on the signals received on its

RF-chains. The output of the matched filter corresponding to nth pilot waveform, and qth fading

block will be [GWH17]:

yn(q) =
E

NT
WH(q)(F[n,:])

T + zn(q)

where zn(q) ∈ CNT is the additive noise with circularly symmetric Gaussian distribution

N (0,σ2WWH), and F[n,:] denotes the nth row of the matrix F. Stacking all the vectors yn(q)

into a longer vector y(q) = [y1(q)T ,y2(q)T , · · · ,yNT (q)
T ]T ∈ CNT NR , the covariance matrix Ry =

E(y(q)y(q)H) is given by

Ry = BPBH +σ
2INT×NT ⊗

(
WWH) (4.12)

219



where B := (FAT )� (WAR). The covariance matrix Ry can be estimated using the sample

covariance matrix:

Ry '
1
T

T

∑
q=1

y(q)y(q)H , (4.13)

where T is the number of channel fading blocks used for training. The goal is to identify the

channel parameters θi,φi, for i = 1,2, · · · ,L by utilizing the structure of the covariance matrix. It

is to be noted that owing to the presence of the compressive (fat) matrices W,F, standard DoA

estimation algorithms such as MUSIC, ESPRIT cannot be directly applied.

4.3.2 Channel Estimation with Co-Array via CP Decomposition

In this section we propose a novel channel estimation technique inspired by CPD algo-

rithms, that proceeds in two stages: (i) Identify the factors WAR and FAT using fourth-order CPD

methods, and (ii) Identify the AoAs θ and AoDs Φ by utilizing the co-array structure of the trans-

mit and receive antenna arrays. Assuming that the noise variance σ2 is known, we can rearrange2

the elements of Ry−σ2INT×NT ⊗ (WWH) into a fourth order tensor R ∈ CNR×NT×NR×NT , given

by

R =
L

∑
i=1

piαi ◦βi ◦α
∗
i ◦β

∗
i (4.14)

where αi = WaR(θi),βi = FaT (φi), and ◦ indicates outer product. Evidently (4.14) represents a

Canonical Polyadic (CP) decomposition of the tensor R where αi and βi are the CP factors. In the

next subsection, we first propose an algorithm that can recover these factors αi,βi, i = 1,2, · · ·L

of the tensor R by performing Canonical Polyadic Decomposition (CPD). In Sec 4.3.2, we will

show how θ and Φ can be recovered from αi and βi by utilizing the difference co-array geometry.

By using a combination of these algebraic methods, we can potentially recover L = O(NT NR)

channel paths, without the need to consider multi-carrier signals (as suggested by [ZH17]), or a

2We let Rr1,t1,r2,t2 = [Ry−σ2INT×NT ⊗ (WWH)]ĩ, j̃, where ĩ = (t1−1)NR + r1, j̃ = (t2−1)NT + r2, 1≤ r1,r2 ≤
NR,1≤ t1, t2 ≤ NT .
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time-consuming search over a 2D grid [GWH17].

Recovery of CP Factors by Rank-1 Test

Let UΓUH = Ry be the singular value decomposition of the covariance matrix Ry. If the

CP decomposition (4.14) is unique (we will address the issue of uniqueness later in Theorem

27), there exists a unitary matrix Q ∈ CL×L such that ŨQ = B where QQH = I, and Ũ = UΓ
1/2.

One of the key properties of the columns of B is that each column is a vectorized form of a rank

one matrix, namely the ith column can be written as the vectorized form of the rank one matrix

αiβ
T
i = (WaR(θi))(FaT (φi))

T , for i = 1, · · · ,L. Hence, one way to find the CP decomposition

of (4.14) is to find a matrix Q such that this property is satisfied. This can be done by using an

algebraic rank-one test [DL06, DL14, KSP18, KP19b]:

C2(unvec(Ũqi) = 0

where unvec(Ũqi) ∈ CNR×NT rearranges the elements of Ũqi into a matrix, and the notation

C2(X) ∈ C(
NR
2 )×(

NT
2 ) represents a matrix comprised of all 2×2 minors of a matrix X ∈ CNR×NT .

Using the bilinearity of the map C2(.), and performing algebraic manipulations similar to [DL06,

DLCC07, KSP18], it is possible to show that Q can be found by the procedure explained in

Algorithm 3 (Steps 3-5). Finally αi and βi can be recognized as the top left and top right singular

vectors respectively of unvec(Ũqi).

The following theorem states a sufficient condition under which the tensor decomposition

presented in Algorithm 3 is able to uniquely identify the tensor factors αi,βi.

Theorem 27. If for a choice of W,F,θ,Φ, the matrices (FAT (Φ))�(WAR(θ)) and C2(FAT (Φ))�

C2(WAR(θ)) are both full-column rank, then the linear algebraic algorithm in 3 can uniquely

find the factors αi = WAR(θi), and βi = FaT (φi), i = 1,2, · · · ,L.

Proof. The proof can be derived using the uniqueness condition provided in Section 2.1 of
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Algorithm 3 Tensor Based Channel Estimation
1: Estimate the tensor R , using (4.13).
2: Compute eigenvalue decomposition R = UΛUH , and let Ũ = UΛ

1/2. Also, let U(i) =
unvec(ũi), with ũi being the ith column of Ũ.

3: Let the columns of matrix G ∈ C(
NR
2 )(

NT
2 )×L2

be indexed by (i− 1)L+ j with 1 ≤ i, j ≤ L,
and assign

[G]((m,n,p,q)),(i−1)L+ j = Ũ(i)
m,nŨ( j)

p,q− Ũ(i)
p,nŨ( j)

m,q

where the notation ((m,n, p,q)) represents a unique integer in the range 1≤ ((m,n, p,q))≤(NR
2

)(NT
2

)
which is assigned to every tuple m,n, p,q, where 1 ≤ m < n ≤ NR, and 1 ≤ p <

q≤ NT .
4: Compute L right singular vectors v1, · · · ,vL of G corresponding to L smallest singular values.

Form the matrices Vi = unvec(vi) ∈ CL×L, i = 1, · · · ,L.
5: Form the tensor V ∈CL×L×L whose frontal slices are V1, · · · ,VL. Find the CP decomposition

of V through Generalized Eigenvalue Decomposition [DL14, DL06], and store the CP factors
in matrices D,Q,QT ∈ CL×L.

6: Find top left and right singular vector of unvec(Ũqi), and denote them as α̂i, β̂i, which serve
as estimates of αi and βi respectively.

7: Compute θi,φi using the procedure explained in Section 4.3.2.
8: Find the source powers by solving the least squares problem (4.18).
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[DL06].

Remark 30. A necessary condition for C2(FAT )�C2(WAR) to be full column rank is
(L

2

)
≤(NT

2

)(NR
2

)
and L ≤ NT NR. Hence, Algorithm 3 is potentially able to recover a maximum of

L = O(NT NR) channel paths.

Recovering Channel Parameters from Tensor Factors Utilizing Difference Co-Array

In this section, we present a novel algorithm inspired from ESPRIT that can recover θ and

Φ from αi,βi, i = 1,2, · · ·L by exploiting the rich geometry of the difference co-array of sparse

transmit and receive arrays. In particular, we cast the angle estimation problem in terms of the

difference co-array of these arrays, and utilize the shift-invariance property of the Uniform Linear

Array (ULA) segment of the difference co-array. Utilizing the difference co-arrays of cleverly

designed non-uniform arrays are known to offer significant benefits over the traditional uniform

linear array based direction-of-arrival estimation, including the ability to resolve O(M2) sources

using M antennas [PV10, PV11].

Definition 14. Given an antenna array with elements located at d1, · · · ,dM (normalized w.r.t.

λ̄/2), the difference co-array is defined as D = {di−d j|1≤ i, j ≤M}.

Let the sparse receive array be such that its difference co-array D(R) is a continuous

set of integers in the range −M(R)
ca , · · · ,M(R)

ca . For ULA, M(R)
ca = MR− 1 and for nested array,

M(R)
ca = M2

R/4+MR/2−1. In the following, we explain our approach for estimating θi from αi.

A similar technique can be used to recover φi from βi. Assuming that Algorithm 1 identified

αi and βi correctly (upto an inherent scaling ambiguity of α̃i and β̃i respectively), we have

α̂i = α̃iWaR(θi). Therefore,

α
∗
i ⊗αi = |α̃i|2(W∗⊗W)(a∗R(θi)⊗aR(θi))

223



We can identify a∗R(θi)⊗aR(θi) as the steering vector of a virtual array whose elements are located

at the difference co-array D(R). Since we assumed that the set D(R) is comprised of consecutive

integers, there exists a selection matrix Π
(R) ∈ RM2

R×(2M(R)
ca +1) consisting of ones and zeros such

that α̂
∗
i ⊗ α̂i = |α̃i|2(W∗⊗W)Π(R)ãR(θi) where ãR(θi) corresponds to the largest consecutive

part of a∗R(θi)⊗aR(θi), i.e., the steering vector corresponding to an antenna array whose elements

are located on −Mca, · · · ,Mca. Let V be basis for the nullspace N((W∗⊗W)Π(R)), and let

v0 = ((W∗⊗W)Π(R))†(α̂∗⊗ α̂). Then it holds that

|α̃i|2ãR(θi) = Vc+v0 (4.15)

for some unknown c. Since ãR(θi) is a Vandermonde vector, it has the following shift invariance

property:

ãR(θi) = e jπsin(θi)(ãR(θi)) (4.16)

where the notations (.),(.) indicate removal of first and last rows, respectively. Define V1 = [v0,V]

and c1 = [1,cT ]. Combining (4.15), (4.16), we get

V1c1 = e jπsin(θi)V1c1 (4.17)

which means that c1 is a generalized eigenvector of the matrices V1,V1 and e jπsin(θi) is the

corresponding generalized eigenvalue. We can therefore perform generalized eigenvalue decom-

position of V1,V1 and estimate θi as the phase of the generalized eigenvalue closest to unit circle.

Similar procedure can be performed on tensor factors βi = FaT (φi) to obtain the AoDs φi. Once

the AoAs and AoDs are estimated we can find the powers corresponding to the channel paths by
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Figure 4.6: The mean square error (MSE) w.r.t SNR and number of fading blocks, for different
number of channel paths and array geometries. The notation (x,y) in the legends of the plots

indicate the array type (x ∈ {u,n}, ‘u’ stands for ULA and ‘n’ indicates nested array) and
algorithm (y ∈ {c,m}, ‘c’ denotes CPD (our algorithm), ‘m’ stands for beamspace MUSIC

[GWH17].

solving the least squares problem:

min
p
‖vec(R )− (B∗�B)p‖ (4.18)

which has the closed form p = (B∗�B)†vec(R ), with (.)† indicating pseudo-inverse of a matrix.

4.3.3 Numerical Experiments

In this section, we present our numerical experiments to examine the performance of

the proposed algorithm. We consider a mmWave MIMO channel with L ∈ {4,9} Angle-of-

Departures Φ and Angle-of-Arrivals θ located uniformly in the ranges [−5π

12 , 4π

12 ], and [−4π

12 , 5π

12 ]

respectively. We assume all powers are equal to 1. The SNR is defined to be SNR = E
NT σ2 , and we

choose E = 0.5. The transmitter and receiver are both equipped with NT = NR = 5 RF-chains and

MT = MR = 10 antennas. We consider both ULA and nested array geometries in the simulations.

In our experiments, we study the effect of SNR and number of channel fading blocks
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T on the accuracy of the recovered AoAs and AoDs, using our algorithm and the beamspace

MUSIC algorithm presented in [GWH17]. The total error shown in plot 4.6 is defined as

‖[θ̂T
,Φ̂

T
]− [θT ,ΦT ]‖2/(2K) and is averaged over 1000 runs. The phase-shifters matrices W,F

have unimodular elements whose phases are drawn from uniform distribution in [0,2π] and

kept fixed for every 20 runs. The number of grid-points used for the beamspace MUSIC is

chosen to be 1000. We used the library TensorLab3.0 [VDS+16] to implement the proposed

CPD, and use Simultaneous Generalized Schur Decomposition (SGSD) for simultaneous matrix

diagonalization3. In order to estimate the AoAs and AoDs from the tensor factors, we use the

procedure explained in Sec 4.3.2 for moderate and high values of SNR and T . Owing to noise

sensitivity of the generalized eigenvalue decomposition at low SNR (or small T ), we determine

the angles by solving the following optimization problem

min
θi
‖ WaR(θi)

‖WaR(θi)‖
− α̂i‖ (4.19)

We solve (4.19) by performing a simple 1-d search (similar to [ZFY+17]) over 1000 grid points,

which is still much faster than the 2-d search required by beamspace MUSIC [GWH17].

As we can observe in Figure 4.6, as the SNR increases the average error for our algorithm

as well as beamspace MUSIC [GWH17] decreases. Although for smaller SNRs, our algorithm

has a worse performance than beamspace MUSIC, which is caused by sensitivity of CPD

and simultaneous matrix diagonalization to noise, this effect is greatly reduced as the SNR

increases, and our algorithm achieves a higher performance than that of [GWH17]. The low

SNR performance can be potentially improved using adaptive sensing based ideas for transmit

beamforming from [KSP19, CRJ19] . We can also see that the beamspace MUSIC cannot achieve

a higher accuracy beyond a certain point due to the finite number of grid-points. Increasing the

size of grid can be extremely costly as the beamspace MUSIC algorithm relies on a 2D search

3This algorithm is capable of finding CPD for tensors whose ranks exceeds two of its dimensions, which is the
case in our simulations.
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We can also observe that using a nested array geometry can achieve a lower error compared to

ULA with the same number of antennas. Studying the effect of array geometry on the estimation

error of the channel parameters will be a topic of future research.

4.3.4 Conclusion

We proposed a tensor based approach for estimation of channel parameters for a mmWave

MIMO communication system. Unlike many existing algorithms, our approach does not require

assumption of a pre-defined grid for the angles-of-arrival and angles-of-departure which can

cause grid-mismatch errors. Utilizing the rich co-array geometry of sparse arrays employed at the

transmitter and receiver, we proposed an algebraic technique to perform tensor decomposition,

and derived sufficient conditions under which we are able to recover all the channel paths.

In particular, we showed that a maximum of L = O(NT NR) channel paths can be identifiable

where NR and NT are the number of RF chains on the receiver and the transmitter, respectively.

Compared to algorithms such as Beamspace MUSIC our approach has a lower computational

complexity as it avoids two-dimensional grid search.
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4.4 Tensor Decomposition for Multi-Carrier mmWave Chan-

nel Estimation with Correlation Priors

Due to high dimensionality of the data acquired for estimation of mmWave channels, as

we also observed in Section 4.3, it is natural to convert the problem into a tensor decomposition

problem, by carefully rearranging the received signals from the antennas into a higher order

tensor. In the multiple-carrier case, many results already exist which use the Canonical-Polyadic

(CP) decomposition of higher order tensors in order to estimate the channel parameters [QFS19,

ZH17, ZGZ+17, ZFY+17, PAGH19]. It is well-known that CP decomposition can be unique

even if the tensor rank is much larger than the smallest dimension [DL06, DLCC07, DDL13,

BCMT10, RSH12]. Hence, these algorithms are able to estimates channels which have a larger

number of channel paths [ZH17]. A key benefit of these results is that unlike the approaches in

[ALH15, AMGPH14, EARAS+14], they do not need the assumption of a pre-defined grid for

the AoAs and AoDs.

However, most of these results do not fully exploit statistical properties of the channel.

Specifically, when the gains associated with channel paths are uncorrelated, which can often be

the case [PH16, GZC18, PH18, AGPHJ18], few results currently exist [KP20, PH18, HC16], for

either single-carrier or multi-carrier channel estimation. The authors in [HC16], for example, uti-

lize the correlation structure of a single-carrier mmWave channel, to come up with judicious ways

of designing compression matrices in a hybrid beamforming communication system equipped

with M uniformly located antennas, which can reduce the number of RF-chains to O(
√

M), while

preserving the statistical information about the channel encoded in the received signals. Their

design of the compression matrix is based on certain non-uniform array geometries such as

coprime arrays [PV11] (and similar array geometries such as [PV10, LV16, QZA15, Mof68]),

which are known to enjoy much higher degrees of freedom than their classical counterparts such

as uniform linear arrays.
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Though the results in [HC16] shed light on the benefits provided by utilizing correlation

priors on the channel gains in a single carrier communication system, existing algorithms for

channel estimation of multi-carrier systems, such as [ZH17, PAGH19] do not fully exploit the role

of correlation priors. The authors in [PAGH19] consider a SIMO multi-carrier system, and show

how the received samples on the RF-chains of the BS can be rearranged into a third order tensor

whose CP decomposition determines the channel parameters. Although they derive upper bounds

on the number of channel paths to guarantee that the CP decomposition is unique, their algorithm

which is based on alternating minimization is not always guaranteed to identify the CP factors

[PAGH19]. The authors in [ZH17], on the other hand, consider a MIMO multi-carrier mmWave

system, and show once particular design (DFT beamforming) for the analog beamformer are

assumed, one can provably recover L = min(NNT ,K) channel paths (where NT is the number of

RF chains of the MS), when K frequency bins are dedicated for pilot signals.

In this Section, we develop new tensor decomposition algorithms with theoretical guar-

antees that can identify significantly larger number of channel paths compared to existing

techniques reviewed earlier. In particular, we show that in an OFDM system, if the fre-

quency bins are carefully located in a non-uniform fashion, we can provably recover up to

L = min(O(N2),O(M),O(K2)) channel paths by considering certain tensor flattenings that cap-

ture the geometry of the difference-set of the non-uniformly placed pilots. At the expense of

a higher computational complexity, we also show that the identiability results can be further

improved to L = O(NK2) by lifting the tensor to a higher dimension. Note that these guarantees

do not require a non-uniform array and continue to hold even when we deploy a ULA.

The contributions of this section are threefold: 1) Similar to [GZC18, AGPHJ18, PH16],

we use correlation priors on the channel parameters, but unlike previous methods, we show

that these priors combined with judiciously chosen frequency bins for pilots, can guarantee the

recovery of up to L = O(NK2) paths, by developing linear algebraic based CCP decomposition

algorithms. Moreover, this non-uniform selection of frequency bins for pilots enables us to
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dedicate the other unused frequency bins for communication purposes, thereby reduce the

communication overhead for channel training (See Sec. 4.4.2, and 4.4.3 for details).

2) Even though our proposed algorithms can provably find the CCP decomposition, due to

existence of the beamforming matrix W, recovering certain channel parameters, namely Angle-

of-Arrivals (AoA) can be still nontrivial and the solution can be ambiguous. To the best of our

knowledge, for the first time we propose easy to check conditions (in terms of W and the true

AoAs) under which such ambiguities will not arise for a given W (See Sec. 4.4.4 for details).

3) We further provide a first order perturbation analysis which sheds light on the sensitivity of our

proposed algorithms to small perturbations caused by an inaccurate estimate of the covariance

matrix of the received signals (See Sec. 4.4.2 for details).

Notations: The symbols (.)T ,(.)H ,(.)∗,(.)† stand for matrix transpose, matrix Hermitian, com-

plex conjugate, pseudo-inverse, respectively, and j =
√
−1. The symbols ⊗, � represent Kro-

necker, and (column-wise) Khatri-Rao product, respectively. Matrices (resp. vectors) are shown

with boldface uppercase (resp. lowercase) characters such as A (resp. b). Tensors are shown

using italic uppercase characters such as T . The remaining notations are clear from the context.

4.4.1 Problem Model

Consider a SIMO communication system where each MS has a single antenna and the

BS is equipped with M antennas and N �M RF-chains. We assume that the communication

system uses a multi-carrier CP-OFDM modulation with FFT length of Nfft, Cyclic Prefix (CP)

length of Ncp, and sampling period Ts = 1/(Nfft∆ f ), where ∆ f denotes the subcarrier spacing. For

each OFDM symbol, only K frequency bins are used for channel training (K ≤ Nfft), and the

remaining bins could be used for communication. We assume that the pilots are located on i1th,

i2th, · · · , iKth frequency bins, and unlike conventional methods such as [ZPHN16], we do not

assume i1, · · · , iK to be equally spaced.

The frequency domain representation of a frequency selective mmWave channel is given
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as [ABB+07, HGPR+16]

h( f ) =
L

∑
`=1

g`a(θ`)e− j2πτ` f ,

where τ` represents channel path delay, θ` is angle-of-arrival, g` is the channel gain corresponding

the `th path, and a(θ) is the array steering vector corresponding to the antenna array. For the rest of

this Section, we assume that the antennas are located uniformly, with inter-element spacing of λ/2,

with λ being the carrier wave-length4. Hence, we have a(θ) = [1,e jπsin(θ), . . . ,e j(M−1)πsin(θ)]T .

We assume that θ`, `= 1, · · · ,L remain constant during the channel estimation process,

while g` can vary from symbol to symbol, but remains constant over each symbol. Moreover,

we assume that Ncp > (max{τ`}L
`=1−min{τ`}L

`=1)/Ts, and Ncp < Nfft. Equipped with these

assumptions, the sampled channel transfer function at k-th pilot subcarrier and t-th symbol is

given by [ZH17, GHDW16]

hk[t] =
L

∑
`=1

g`[t]a(θ`)e− j2π∆ f τ`ik .

Assuming that the MS transmits the pilot signals sk[t] ∈ C at the kth frequency bin, and

tth symbol, the signal received at the output of the RF-chains at the BS can be written as

yk[t] = Whk[t]sk[t]+Wnk[t]

where nk[t] is the additive noise on the antennas, and W ∈ CN×M is a hybrid beamforming

matrix, with N < M. Assuming that pilots are unimodular [PH16, PH18] (i.e., |sk[t]| = 1), we

can compute

ȳk[t] = s∗k [t]yk[t] = Whk[t]+Wn̄k[t],

4Non-uniform arrays can potentially provide further benefits in terms of improving the number of identifiable
channel paths L, which can be a topic of future research.
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where n̄k[t] = s∗k [t]nk[t]. Define z[t] = [ȳT
1 [t], · · · , ȳT

K[t]]
T ∈ CNK×1. Then it holds that

z[t] = (W⊗ IK)

(
L

∑
`=1

g`[t]a(θ`)⊗ f(τ`)

)
+(W⊗ IK)ñ[t]

with f(τ`) = [e−2 jπ∆ f τ`i1, · · · ,e−2 jπ∆ f τ`iK ]T , and ñ[t] = [n̄T
1 [t], · · · , n̄T

K[t]]
T ∈ CMK×1.

Now let us define g[t] = [g1[t], · · · ,g`[t]]T ∈CL be the vector containing gains correspond-

ing to the channel paths at tth symbol. We assume that these gains are uncorrelated across

different channel paths, i.e., E(g[t]gH [t]) = P where P is a diagonal matrix with P = diag(p),

which is a practical assumption in many settings [PH16, PH18, AGPHJ18, GZC18]. Moreover,

we make the assumption that E(g[t]nH [t]) = 0, and E(n[t]nH [t]) = σ2I. Hence, the covariance

matrix R = E(z[t]zH [t]) is given as R = R̃+σ2(WWH⊗ IK) where

R̃ = (W⊗ IK)(A�F)P(A�F)H(W⊗ IK)
H (4.20)

Here, F = [f(τ1), . . . , f(τL)] ∈ CK×L, and A = [a(θ1), . . . ,a(θL)] ∈ CM×L. We further make the

assumption that σ2 is known. Hence, if the covariance matrix R is available, we can directly find

R̃ by subtracting σ2(WWH ⊗ IK) from R. In practice, we only have access to a finite (say T )

number of received symbols z[1],z[2], . . . ,z[T ]. Hence, we can only obtain an estimate of R. One

way to estimate R is through computing the sample covariance matrix

R̂ =
1
T

T

∑
t=1

z[t]z[t]H , (4.21)

using which we can estimate R̃ as ˆ̃R = R̂−σ2(WWH⊗ IK). In this Section, we will show how

the matrix R̃ can be rearranged into a fourth order tensor, and by computing its Constrained

Canonical Polyadic (CCP) decomposition, one is able to recover the channel parameters. Before

presenting our algorithms, first let us review some of the key concepts in tensor decomposition,

as well as difference co-arrays.
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Preliminary Definitions on Tensors

A p-th order tensor is a multi-dimensional array T ∈ CN1×N2×···×Np indexed by i1, · · · , ip,

such that 1≤ i1 ≤ N1, · · · ,1≤ ip ≤ Np. In general, tensors can be represented by lower dimen-

sional factors, and many different approaches have been developed for tensor decomposition

[SDLF+17]. In this Section, we consider a specific form of tensor decomposition, namely

Constrained Canonical Polyadic (CCP) decomposition [SDL16a], where the tensor factors are

restricted to certain predefined sets G(q), for q = 1,2, · · · , p:

Definition 15. Let the sets G(1),G(2), . . . ,G(q) be such that G(q) ⊆ CNq , for q = 1,2, · · · , p.

Constrained CP-Rank of T ∈CN1×N2×···×Np , herein denoted as crank{G(q)}p
q=1

(T ), is the smallest

integer L for which there exist a(1)` ∈G(1), · · · ,a(p)
` ∈G(p), `= 1,2, · · · ,L such that

T =
L

∑
i=1

a(1)` ⊗a(2)` ⊗·· ·⊗a(p)
`

For example, if some of the sets G(q) restrict the tensor factors to be only of the form

of Vandermonde vectors, then the constrained CP-decomposition can be related to a multi-

dimensional harmonic retrieval problem [SDL16a]. In this Section, we assume that some5 of the

sets G(q) have the following form

Vi = {[e ji1ω,e ji2ω, · · · ,e jiKω]T : ∀ω ∈ [−π,π)} (4.22)

where i = [i1, · · · , iK] and ik are integers, k = 1, · · · ,K. The set Vi can be thought of as a set

containing steering vectors for all possible directions in [−π,π) corresponding to a non-uniform

antenna array. In the next section, we highlight properties of Vi with regards to certain non-

uniform choices of i1, · · · , iK .

5As we will see later in Sec. 4.4.1, the other factors are constrained using the set BW defined in (4.25).
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Khatri-Rao Product and Role of Difference Sets

In this section, we will review the concept of difference sets which will be later used

in our proposed algorithms in Sec. 4.4.2 and 4.4.3. Let us begin by defining the difference set

corresponding to a set of integers:

Definition 16. For integer numbers i1, i2, · · · , iK , define the difference set as [PV10]

Di = {ik1− ik2 ,1≤ k1,k2 ≤ K}

Moreover, define K′ to be the largest integer such that the differences ik1− ik2 span the range of

consecutive integers −K′, · · · ,K′, i.e.,

K′ = max K1 s.t. {−K1, · · · ,K1} ∈ Di

Finally, denote Ui = {−K′, · · · ,K′}.

Based on our definition of matrix the F ∈ CK×L, in Sec. 4.4.1, one can see that difference

sets would arise naturally in the exponents of the matrix F∗�F (interested reader can refer to

[PV10] to get more familiar with the concept of co-arrays). In Sec. 4.4.2 and 4.4.3 we will show

how difference co-arrays can be used in order to perform channel estimation when L > max(N,F).

Let K̃ = 2K′+1 = |Ui|. We define the matrix F̃ ∈ CK̃×L to be a Vandermonde submatrix

of F∗�F corresponding to the largest consecutive differences −K′, · · · ,K′ in Di. In particular,

we let the columns of F̃ to be

[f̃`]k+K′+1 = e− j2π∆ f kτ`, −K′ ≤ k ≤ K′ (4.23)

and F̃ = [f̃1, f̃2, · · · , f̃`] ∈ CK̃×L.

Since F̃ is obtained by subselecting certain rows from F, one can always find a row-

234



selection matrix ΠUi ∈ {0,1}K̃×K2
such that F̃ = ΠUi(F

∗�F).

For particular choices of i1, · · · , iK , such as nested arrays [PV10], coprime arrays [PV11],

and minimum redundancy arrays [Mof68], it has been shown that one can achieve K̃ = O(K2).

As an example, a two-level nested array with an even K has the following geometry [PV10]:

ik =


k, 1≤ k ≤ K

2

(
K
2
+1)k,

K
2
+1≤ i≤ K

It turns out that for such choices of i1, · · · , iK , we have K̃ = K2

2 +K−1.

Formulating Channel Estimation as a 4-th order Constrained Tensor Decomposition Prob-

lem

The elements of the matrix R̃, defined in (4.20) can be rearranged into a fourth order

tensor of the form6

R =
L

∑
`=1

p`f(τ`)⊗ (Wa(θ`))⊗ f∗(τ`)⊗ (Wa(θ`))∗. (4.24)

Therefore, R has a constrained CP decomposition of crank{G(q)}4
q=1

(R ) ≤ L, with G(1) =

Vi,G(3) = V∗i , and G(2) = BW, G(4) = B∗W, where Vi is defined in (4.22), and

BW = {Wa(θ) : ∀θ ∈ [
−π

2
,
π

2
)}. (4.25)

and the notation (.)∗ takes conjugate from all elements in a set. In Sec. 4.4.2, and 4.4.3, we

propose two different algorithms for decomposition of tensor R , which will lead to sufficient

conditions under which crank{G(q)}4
q=1

(R ) = L, and the CCP decomposition is unique. In each of

these algorithms we consider a different form of flattening of the tensor R into matrices, leading

6This rearrangement can be done by R j1, j3, j2, j4 = R( j3−1)K+ j1,( j4−1)K+ j2 , where 1≤ j1, j2 ≤ K,1≤ j3, j4 ≤ N.
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to different guarantees in terms of number of channel paths L that can be recovered.

4.4.2 Algorithm 1: Correlation Aware Channel Estimation using ESPRIT

(COACH-ESPRIT-I )

Let us consider the following flattening7 of the tensor R :

R(1) = (F∗�F)P((WA)∗� (WA))T (4.26)

Based on the discussion in Sec. 4.4.1, the matrix F∗�F contains a ULA section F̃ which is

obtained by F̃ = ΠUiF, where ΠUi is a selection matrix that only depends on the structure of the

difference set {ik1− ik2 : 1≤ k1,k2 ≤ K}. Hence, from (4.26) we get

ΠUiR
(1) = F̃BT (4.27)

where B = ((WA)∗� (WA))P. Equation (4.27) is closely connected to the one-dimensional

harmonic retrieval problem, which has been widely studied in the literature [SDL16a, SDL16b,

JStB01]. One of the well-known approaches to solve (4.27) is the ESPRIT algorithm [RK89]. In

the following, we show how we can find the channel parameters θ`,τ`, p` by using the idea of

ESPRIT algorithm.

Let UΣVH be the truncated singular value decomposition8 (t-SVD) of the matrix R(1).

We assume that both the matrices F∗�F and (WA)∗� (WA) have full column rank (we will

later in Sec. 4.4.2 show under what conditions these assumptions hold). Therefore, there exists a

7This flattening can be obtain by letting R(1)
j1+( j2−1)K, j3+( j4−1)K =R j1, j3, j2, j4 , where 1≤ j1, j2 ≤K,1≤ j3, j4 ≤N.

8Here, U ∈ CK2×L, V ∈ CN2×L are left and right singular vectors corresponding to nonzero singular values of
R(1), and Σ ∈ RL×L is the diagonal matrix containing nonzero singular values.
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nonsingular matrix E such that

UE = F∗�F

In order to find E, we use the property that the ULA section corresponding to the co-array F∗�F

satisfies the shift invariance property. In other words, it holds that

ΠUi(F
∗�F) = ΠUi(F

∗�F)Λ

where Λ = diag(e− j2π∆ f τ1, · · · ,e− j2π∆ f τL), and the notations (.),(.) stand for removal of the first

and last row of a matrix. Therefore, E must satisfy the following equation:

ΠUiUE = ΠUiUEΛ.

Assuming that ΠUi(F
∗�F) is full column rank (sufficient conditions established in Sec. 4.4.2),

we can find E from the following eigenvalue decomposition (EVD):

(ΠUiU)†
ΠUiU = EΛE−1 (4.28)

Using the eigenvalues Λ= diag(λ1, . . . ,λL), we can immediately find the channel path delays τ̂` =

−Im(log(λ`)/(2π∆ f )), using which we can form the matrix F̂, with elements [F̂]k,` = e− j2π∆ f τ̂`ik .

The matrix B can be estimated by solving the following least squares problem:

B̂ = argmin
B
‖(F̂∗� F̂)BT −R(2)‖F

which has the closed form B̂T = (F̂∗� F̂)†R(2).

So far, we have been able to estimate the matrix B = ((WA)∗� (WA))P. In order to find
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the parameters θ`, we propose to solve the following optimization problem:

θ̂` = argmax
θ

|b̂H
` ((Wa(θ))∗⊗ (Wa(θ)))|
‖(Wa(θ))∗⊗ (Wa(θ))‖

(4.29)

Once θ̂` are recovered, we can easily find the parameters p̂`, by evaluating the function in (4.29)

at θ̂`, for `= 1, · · · ,L. The steps of this algorithm are summarized in Algo. 4.

Algorithm 4 COACH-ESPRIT-I

1: Compute t-SVD: UΣVH = R(1).
2: Compute EVD: (ΠUiU)†ΠUiU = EΛE−1

3: τ̂` =−Im(log(λ`)/(2π))
4: Let [F̂]k,` = e− j2π∆ f τ̂`ik , 1≤ k ≤ K,1≤ `≤ L.
5: Compute B̂T = (F̂∗� F̂)†R(2)

6: Solve (4.29) to find θ̂` for 1≤ `≤ L.
7: p̂` =

|b̂H
` ((Wa(θ̂`))∗�(Wa(θ̂`)))|
‖(Wa(θ̂`))∗�(Wa(θ̂`))‖

Identifiability Results

It can be verified from the derivation of algorithm COACH-ESPRIT-I that whenever the

matrices ΠUi(F
∗�F) and (WA)∗�(WA) have full column rank it is possible to uniquely identify

the factors F and WA. The following theorem states this result:

Theorem 28. If the matrices ΠUi(F
∗�F) and (WA)∗� (WA) are both full column rank, then

the tensor R given in (4.24) has a unique Constrained CP decomposition with constraints

{Vi,CN ,V∗i ,C
N}, and Steps 1-5 of the algorithm COACH-ESPRIT-I can recover it.

Proof. Since ΠUi(F
∗�F) has full column rank, a nonsingular matrix E satisfying (4.28) exists

and hence Λ can be identified by the eigenvalues of (ΠUi(F
∗�F))†ΠUi(F

∗�F). Once Λ is

recovered, we can identify F. Since F∗�F has full column rank, B can be uniquely found

by solving (F∗�F)BT = R(2). This shows that Wa(θ`) for ` = 1,2, · · · ,L can be uniquely

identified.
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In the following Theorem, we provide conditions in terms of the dimensions L,N,M such

that the matrix (WA)∗� (WA) is full column rank for almost all choices of W ∈ CN×M:

Theorem 29. The matrix (WA)∗� (WA) is full column rank for almost all W ∈ CN×M (except

for possibly a set of measure zero), as long as L ≤ 2N2(N1 + 1)+ 1 where N1,N2 are integers

given by

(N1,N2) =

(
bmin(N,N0)

2
c,dmin(N,N0)

2
e
)

(4.30)

and N0 = b2
√

M+1−1c.

Proof. In [KP] we have provided a proof for a more general case: nonsingularity of Fisher

Information Matrix for direction of arrival estimation in presence of a compression matrix, we

showed that G = (WA)∗� (WA) is full column rank, for almost all W ∈ CN×M. Hence, the

premise of theorem 29 is a simpler case of what we proved in [KP]. An interested reader might

refer to [KP] for a more detailed proof. Here, we present a brief sketch of the proof.

Through a similar argument to [KP, Lemma 1], it can be shown that if there exists a matrix

W0 ∈ CN×M such that (W0A)∗� (W0A) is full column rank, then for almost all W ∈ CN×M,

(WA)∗� (WA) is full column rank. Therefore, it remains to construct a matrix W0 for which

(W0A)∗� (W0A) is full column rank. In [KP], we showed that this is possible by considering a

nested array [PV10] structure, with N1 elements in the inner ULA, and N2 elements in the outer

ULA, where N1,N2 are determined in the statement of the theorem.

Combining the results of Theorems 28, and 29 we get the following Corollary, regarding

maximum number of CCP factors identified by COACH-ESPRIT-I.

Corollary 7. If the generators e− j2π∆ f τ1, · · · ,e− j2π∆ f τL are distinct, as long as

L≤min(2N2(N1 +1)+1, K̃−1),

with N1, and N2 given in (4.30), the tensor R given in (4.24) has a unique Constrained CP
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decomposition with constraints {Vi,CN ,V∗i ,C
N}, for almost all W ∈ CN×M and the algorithm

COACH-ESPRIT-I can recover the factors f(τ`), and Wa(θ`), for `= 1,2, · · · ,L.

Remark 31. If i is chosen such that K̃ = O(K2), the result of Corollary 7 indicates that the

algorithm COACH-ESPRIT-I can work as long as L = min(O(K2),O(N2),O(M)). In Sec. 4.4.3,

we show how we can achieve L = O(K2N), by using a different rearrangement of the tensor.

Remark 32. In [PAGH19], the authors considered the estimation of channel parameters by

decomposition of a tensor of dimensions K×N×T . While the tensor can potentially have a

unique decomposition as long as K = O(K +N +T ) (due to Kruskal’s theorem [Kru76]), their

proposed approach, which is based on Alternating Least Squares [KB09] is not necessarily

guaranteed to find the exact tensor decomposition even in the noiseless case. In [ZH17], the

authors considered a MIMO communication system equipped with MT > 1 antennas in the

transmitter and NT < MT RF-chains, and showed how channel parameters can be identified

by decomposing a NT ×N×K tensor. While their proposed tensor decomposition algorithm is

guaranteed to work when specific cases for the beamforming matrix W are considered (such as

DFT beamforming), they can only recover L = min(K,NNT ) channel paths.

In contrast, the algorithms presented in this Section can potentially recovery up to

L = O(K2N) channel paths. Extension of the results in this Section to the MIMO case can be a

topic of future research.

First Order Perturbations

In practice, the covariance matrix R can only be approximated using finite number of

samples, using estimates such as sample covariance matrix ˆ̃R given in (4.21). Therefore, the

algorithm COACH-ESPRIT-I has access only to a perturbed version R̂(1) of the matrix R(1). In

this section, we provide a first order perturbation analysis of the algorithm, and will show how
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the estimated θ̂`, τ̂` will behave with respect to small perturbations in R(1). Let9

R̂(1) = R(1)+∆R(1)

Theorem 30. Let [U Un] ∈ CK2×K2
(resp. [V Vn] ∈ CN2×N2

) be the left (resp. right) singular

vectors of R(1) with U ∈ CK2×L (resp. V ∈ CN2×L) being the left (resp. right) singular vectors

corresponding to the nonzero singular values of R(1), and Σ ∈ RL×L be the diagonal matrix

containing nonzero singular values. Then, up to the first order of approximation in O(‖∆R(1)‖)

we have

δτ` = Im
(

ẽT
` (ΠUiU)†(ΠUi/λ`−ΠUi)∆Ue`)/(2π∆ f )

)
(4.31)

where ẽ` is the `th row of E−1, e` is the `th column of E, λ` is the `th diagonal element of Λ, with

E, Λ defined in Sec. 4.4.2, and

∆U = UnUH
n ∆R(1)VΣ

−1 (4.32)

Moreover, it holds that

δθ`
=−

δu̇(θ`)
u(θ`)

− δu(θ`)u̇(θ`)
u2(θ`)

u(θ`)ü(θ`)−(u̇(θ`))2

u2(θ`)
− v(θ`)v̈(θ`)−(v̇(θ`))2

v2(θ`)

(4.33)

9Throughout this section, for all other matrices we also use a similar notation (i.e., for a matrix X, X̂ = X+∆X
shows the perturbed version of matrix X). Similarly, for a vector x, we show the perturbed version as x̂ = x+δx, and
finally the notation x̂ = x+δx shows perturbed version of a scalar x. Herein, all perturbations are computed up to the
first order O(‖∆(1)

R ‖)
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where

δu(θ`) = 2Re(δH
b`

b`)‖b`‖2
2

δu̇(θ`) = 2Re((δH
b`

b`)
∗(bH

` ḃ`)+(δH
b`

ḃ`)‖b`‖2
2)

u(θ`) = ‖b`‖4
2, u̇(θ`) = 2Re(bH

` ḃ`)‖b`‖2

ü(θ`) = 2‖bH
` ḃ`‖2 +2Re(bH

` b̈`)‖b`‖2
2

v(θ`) = ‖b`‖2
2, v̇(θ`) = 2Re(ḃH

` b`)

v̈(θ`) = 2‖b̈`‖2 +2Re(bH
` b̈`)

Here, b` = (W∗⊗W)akr(θ`), akr(θ`) = a∗(θ`)⊗ a(θ`), ḃ` = (W∗⊗W)ȧkr(θ`), b̈` = (W∗⊗

W)äkr(θ`), ȧkr(θ) =
dakr(θ)

dθ
, and äkr(θ) =

d2akr(θ)
dθ2 .

Proof. The proof is provided in Appendix 4.5.1.

4.4.3 Algorithm 2: COACH-ESPRIT-II

The algorithm COACH-ESPRIT-I is capable of recovering min(O(K2),O(N2),O(M))

CCP factors (or equivalent number of channel paths). However, if N� K, the number of RF-

chains can become a bottle-neck on the number of channel paths L that we are able to recover. In

this section, we present another algorithm which is based on a different way of rearranging the

elements of the tensor R into a matrix, and is potentially able to recover L=O(K2N). This type of

rearrangement uses the difference set corresponding to the pilots Di = {ik1− ik2 : 1≤ k1,k2 ≤ K}.

Lifting the tensor to a higher dimension

As we observed in Sec. 4.4.1, if the locations i1, · · · , iK are judiciously designed, the size

of the difference set Di can be as large as O(K2). We will show how we can use the difference set

Di in order to rearrange the tensor R into a higher dimensional tensor. Before doing that, let us
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first define the following indexed version of difference set:

Definition 17. Indexed difference set: For integer numbers i1, i2, · · · , iK , define the indexed

difference set as

DI
i = {(k1,k2, ik1− ik2),1≤ k1,k2 ≤ K}

Using this definition, we are now able to define the following lifting operator, which can

help us decompose upto O(K2N) channel paths:

Definition 18. Given a tensor R ∈ CK×N×K×N , the 4th order tensor TENSORTOEP(D
I
i )(R ) ∈

CK̃×N×K̃×N is constructed as

[TENSORTOEP(D
I
i )(R )]p,n1,q,n2 = Rk1,n1,k2,n2

where (k1,k2, p−q) ∈DI
i , 1≤ n1,n2 ≤ N, 1≤m1,m2 ≤ K. In presence of noise, we may average

over the redundancies in DI
i , i.e.,

[TENSORTOEP(D
I
i )(R )]p,n1,q,n2 =

∑
(k1,k2)∈D

(p,q)
i

Rk1,n1,k2,n2

|D(p,q)
i |

where D(p,q)
i = {(k1,k2) : (k1,k2, p−q) ∈ DI

i}.

As we showed in Sec. 4.4.1, depending on the choice of i1, · · · , iK , we can have K̃� K,

the tensor TENSORTOEP(D
I
i )(R ) can potentially have much larger dimensions than R . This

will enable us to decompose tensors of much higher ranks. The following Lemma shows the

decomposition corresponding to this lifted tensor:

Lemma 25. [KP19a] It holds that for R defined in (4.24)

TENSORTOEP(D
I
i )(R ) =

L

∑
`=1

p`f̃`⊗ (Wa`)⊗ f̃∗` ⊗ (Wa`)∗
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where f̃` ∈ CK̃ is the `th column of F̃ defined in (4.23), and a` is a shorthand for a(θ`).

Proof. Proof follows from applying definition 18 to the entries of R defined in (4.24).

In Sec. 4.2, we proposed an algorithm for decomposition of tensors of the form

TENSORTOEP(D
I
i )(R ). Here, we briefly review this algorithm. Let us first make the following

definition:

Definition 19. Given R̃ ∈ CK̃×N×K̃×N , let FLATTEN(R̃ ) ∈ CK̃N×K̃N be such that its (i, j)th

element is given as

[FLATTEN(T̃ )]i, j = [T̃ ]k1,n1,k2,n2

such that i = k1 +(n1−1)K̃, j = k2 +(n2−1)K̃, 1≤ k1,k2 ≤ K̃,1≤ n1,n2 ≤ N.

Now define R(2) ∈ CM̃N×M̃N to be such that R(2) = FLATTEN(TENSORTOEP(D
I
i )(R )).

Following the definitions of the operations FLATTEN(.), and TENSORTOEP(D
I
i )(.), and Lemma

25, we have that

R(2) = (WA� F̃)P(WA� F̃)H

Let UΣVH be the truncated singular value decomposition (t-SVD) of R(2). Upon assuming that

the matrix (WA)� F̃ has full column rank10, there exists a nonsingular matrix E ∈ CL×L such

that

UE = (WA)� F̃ (4.34)

One of the key properties of the columns of (WA)� F̃ is that they are vectorized form of rank-1

matrices of the form f̃(τ)cT
` , where [f̃(τ)]k+K′+1 = e− j2π∆ f kτ, and c` = Wa(θ`). Such rank-1

10Conditions under which such an assumption is valid are provided in Sec. 4.4.3
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matrices satisfy the following row-shift-invariance property:

Definition 20. [KP19a, SDL16a] For a matrix X ∈ CK̃×N , we say it has row-shift-invariance

property if

X = αX (4.35)

for some α ∈ C, X,X ∈ C(K̃−1)×N are the matrices obtained by removing the first, and last row

of X, respectively.

It can be easily verified that for X = f̃(ω)cT
` , we have α = e− j2π∆ f τ in (4.35). We define

U1,U2 ∈ C(K̃−1)N×L to be such that their `th column are given as

[U1]` = VEC(UNVEC(u`)), (4.36)

[U2]` = VEC(UNVEC(u`)) (4.37)

where u` denotes the `th column of U, UNVEC(.) rearranges the elements of u` into a K̃×N

matrix, and VEC(.) rearranges the elements of a (K̃−1)×N matrix into a vector.

Using the row-shift-invariance property of the columns of WA� F̃ (as discussed in

Definition 20), we have F̃ = F̃Λ, where Λ = diag(e− j2π∆ f τ1, · · · ,e− j2π∆ f τ`). Therefore, it holds

that

WA� F̃ = (WA� F̃)Λ

Hence, upon making the assumption that (WA)� F̃ is full-column rank11 we can follow a

ESPRIT-based approach similar to Sec. 4.4.2, and [RK89, SDL16a, SDL16b, KP19a] to obtain

the parameters τ`. Estimation of the parameters θ`, p` is very straightforward, and along with

other steps of this algorithm are summarized in Algo. 5.
11Exact conditions are presented in Sec. 4.4.3.
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Algorithm 5 COACH-ESPRIT-II

1: Compute R(2) = FLATTEN(TENSORTOEP(D
I
i )(R )).

2: Compute t-SVD: UΣVH = R(2).
3: Compute U1,U2 using (4.36), (4.37).
4: Compute EVD: U†

1U2 = EΛE−1

5: τ̂` =−Im(log(λ`)/(2π∆ f ))
6: Let Ũ`Σ̃`ṼH

` = UNVEC(Ue`).
7: Estimate θ̂` from

θ̂` = argmax
θ

|ũH
`,1Wa(θ)|
‖Wa(θ)‖

where ũ`,1 is first column of Ũ`.
8: Form the matrix [ ˆ̃F]k+K′+1,` = e− j2πk∆ f τ̂` , −K′ ≤ k ≤ K′,1≤ `≤ L.
9: Form the matrix [Â]m,` = e jπmsin(θ̂`), 1≤ m≤M,1≤ `≤ L.

10: Compute p̂ = diag
(
(WÂ� ˆ̃F)†R(2)((WÂ� ˆ̃F)H)†

)
, where diag(.) puts the diagonal ele-

ments of a matrix into a vector.

Remark 33. As we will show in the following, the algorithm COACH-ESPRIT-II is capable of

recovering O(NK2) channel paths. However, compared to Algorithm 4, this algorithm has a

higher computational complexity, due to the fact that R(2) can potentially have a much higher

dimensions than R(1). If L ≤ min(O(M),O(K2),O(N2), one can still use algorithm COACH-

ESPRIT-I, with a lower computational complexity.

Identifiability Results

In this subsection, we show conditions under which the tensor decomposition algorithm

proposed in Sec. 4.4.3 is able to recover the constrained CP decomposition.

Theorem 31. If the matrix (WA)� (ΠUi(F
∗�F)) has full column rank then the tensor R has

a unique Constrained CP decomposition with constraints {Vi,CN ,V∗i ,C
N}, and the algorithm

COACH-ESPRIT-II can recover it.

Proof. Since (WA)� F̃ has full column rank, a nonsingular matrix E satisfying Line 4 of Algo. 5

exists and hence E and Λ can be identified by the computing EVD of U†
1U2. Once Λ is recovered,
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we can identify F. Since WA� F̃ = UE, we can also identify WA. In particular, the `th column

of WA, i.e., Wa(θ`) can be recovered by considering the top left singular vector of UNVEC(Ue`),

as described in Line 6, and 7 of Algo. 5.

Remark 34. A necessary condition for F̃� (WA) to be full column rank is that L≤ (K̃−1)N.

We conjecture that this is also a sufficient condition for almost all W, τ, θ, however, the proof is

beyond the scope of this Section.

4.4.4 On identifying θ from Wa(θ) = αb

Under suitable conditions, Theorems 28 and 31 ensure that COACH-ESPRIT-I (Algo. 4)

and COACH-ESPRIT-II (Algo. 5) can identify the tensor factors f(τ`), and Wa(θ`) (`= 1, · · · ,L)

correctly. Given b` = Wa(θ`), Line 6 of COACH-ESPRIT-I and Line 7 of COACH-ESPRIT-II can

estimate θ` as

θ̂` = argmax
θ

|(b`⊗b`)
H((Wa(θ))∗⊗ (Wa(θ)))|

‖(Wa(θ))∗⊗ (Wa(θ))‖
, (4.38)

and

θ̂` = argmax
θ

|bH
` Wa(θ)|
‖Wa(θ)‖

, (4.39)

respectively. We are interested in knowing when θ̂` matches the true θ`. To understand this, first

notice that, in absence of noise, the solution to both (4.38) and (4.39) satisfy Wa(θ̂`) = αb`, for

some α ∈ C. Given W and b`, define the set

SW,b`
= {θ ∈ [−π,π)|Wa(θ) = αb`, for some α ∈ C}.
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It follows that

θ̂` = θ` if and only if SW,b`
= {θ`}

where θ` is the true AoA of the `th channel path. In other words, if b` is recovered successfully

(which is guaranteed by Theorems 28 and 31), then COACH-ESPRIT-I and COACH-ESPRIT-II will

also successfully recover θ` from b` if and only if SW,b`
is a singleton. It is however, nontrivial

to ascertain when this happens, primarily because W is a fat matrix with a nontrivial null-space,

and a(θ) has a specific geometry imparted by the array. The condition under which SW,b`
is a

singleton is obviously dependent on W and has been characterized only for specific designs of W

[AG05, QFS19]. We review the results in [AG05] in the following subsection.

Existing results on identifiability of θ`

The authors in [AG05] consider the identifiability issues associated with beamspace

processing algorithms (such as beamspace MUSIC [AG05], or beamspace ESPRIT [XSRK94]).

Here, we review some of the interesting results from [AG05] which also guarantees SW,b`
= {θ`}.

Proposition 2. [AG05] Suppose

N (W) = span{a(φ1), · · · ,a(φM−N)},

Then, if θ0 /∈ {φ1, · · · ,φM−N}, we have Wa(θ) = αWa(θ0) if and only if θ = θ0.

Although this result exactly characterizes the ambiguous set for which the problem

Wa(θ) = αb does not have a unique solution in θ, the result holds only for very specific W

matrices whose null-space is span of vectors of the form a(φ). This in general might not

be the case, and in many scenarios a more general beamforming matrices W could be used

[NZL17, KP18a].
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A verifiable condition to test identifiability of θ` given W and b`

In this section, we will provide a more general condition which could be checked for

any given matrix W. Our approach is based on testing for the existence of a rank-1 matrix in a

given subspace, and is inspired by the ideas in [BVD+18], and the shift-invariance property of

Vandermonde matrices. Let us first make a few definitions:

Definition 21. For a vector x ∈ CM, define the following (M−1)×2 Hankel matrix as

H2(x) =



x1 x2

x2 x3

...
...

xM−1 xM


.

Definition 22. For a matrix X ∈ CM×N , define the compound matrix C2(X) ∈ C(
M
2)×(

N
2) to be a

matrix comprised of all 2×2 minors of X. In particular, the ( (m2−1)(m2−2)
2 +m1,

(n2−1)(n2−2)
2 +

n1)th element of C2(X) equals

Xm1,n1Xm2,n2−Xm1,n2Xm2,n1,

where 1 ≤ m1 < m2 ≤ M,1 ≤ n1 < n2 ≤ N. It is well known that rank(X) ≤ 1 if and only if

C2(X) = 0.

Given the vector b`, we define v` = W†b` and Ṽ` = [v`,V], where V∈CM×r (r≥M−N)

is a basis for N (W) (i.e., the nullspace of W).

Define ψ̃(W,b`) ∈C(
M−1

2×(r+1)2) to be such that its ( (n−1)(n−2)
2 +m, q2(q2−1)

2 +q1)th element

249



equals

βq1,q2

(
Ṽ (`)

m,q1Ṽ
(`)
n+1,q2

−Ṽ (`)
m+1,q1

Ṽ (`)
n,q2 (4.40)

+ Ṽ (`)
m,q2Ṽ

(`)
n+1,q1

−Ṽ (`)
m+1,q2

Ṽ (`)
n,q1

)
,

where 1≤ q1≤ q2≤ r+1,1≤m < n≤M−1, Ṽ (`)
s1,s2 is the (s1, s2)th element of Ṽ`, and βq1,q2 = 1

if q1 6= q2, and βq1,q2 =
1
2 if q1 = q2.

Equipped with these notations and definitions, in the following Theorem we state a

verifiable sufficient condition in terms of W and b` under which the set SW,b`
is a singleton:

Theorem 32. Given b`, and W, the set SW,b`
is a singleton if dim(N (ψ̃(W,b`))) = 1, where

ψ̃(W,b`) is defined in (4.40).

Proof. We prove by contradiction. Suppose ∃θ̄` 6= θ` such that θ̄` ∈ SW,b`
. This implies

Wa(θ`) = αb`,and Wa(θ̄`) = ᾱb`

for some α, ᾱ ∈ C. Therefore, we have a(θ`) = Ṽ`c, and Ṽ`c̄ for some c, c̄ ∈ Cr+1, where the

first element of c (resp. c̄) equals α (resp. ᾱ).

Notice that since a(θ) is the array steering vector of a uniform linear array, it is easy

to verify that the Hankel matrix H2(a(θ)) ∈ C(M−1)×2 is rank one, where H2(.) is defined in

Definition 21. Hence, solving the following problem

find c ∈ Cr+1 s.t. rank(H2(V`c)) = 1, [V`]
T
1,:c = 1

is equivalent to finding the vector c ∈ Cr+1 that satisfies a(θ) = Ṽ`c, where [V`]
T
1,: denotes the

first row of V`, and the condition [V`]
T
1,:c = 1 ensures that c is scaled correctly. Using Definition
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22, the condition rank(H2(V`c)) = 1 is equivalent to having

C2(H2(V`c)) = 0 (4.41)

Equation (4.41) implies

[H2(Ṽ`c)]m,1[H2(Ṽ`c)]n,2− [H2(Ṽ`c)]m,2[H2(Ṽ`c)]n,1 = 0

Using the fact that H2(V`c) = ∑
r+1
q=1 cqH2(ṽ

(`)
q ) (where ṽ(`)q is the `th column of Ṽ`, and cq is the

qth element of c) we get

r+1

∑
q1=1

r+1

∑
q2=1

cq1cq2ψ
(m,n)(ṽ(`)q1 , ṽ

(`)
q2 ) = 0

where

ψ
(m,n)(ṽ(`)q1 , ṽ

(`)
q2 ) = [H2(ṽ

(`)
q1 )]m,1[H2(ṽ

(`)
q2 )]n,2

− [H2(ṽ
(`)
q1 )]m,2[H2(ṽ

(`)
q2 )]n,1

Or equivalently,

ψ(W,b`)(c⊗ c) = 0 (4.42)

where the ( (n−1)(n−2)
2 +m,q1 +(r+1)(q2−1))th element of ψ(W,b`) ∈ C(

M−1
2 )×(r+1)2

is equal

to ψ(m,n)(ṽ(`)q1 , ṽ
(`)
q2 ), for 1≤ m < n≤M−1, 1≤ q1,q2 ≤ r+1.

We also know that c⊗ c is the vectorized form of the symmetric matrix ccT . Therefore,

c ∈ Sr+1, where Sr+1 denotes the subspace corresponding to vectorized form of (r+1)× (r+1)
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symmetric matrices. Hence, c⊗ c ∈N (ψ(W,b`))∩Sr+1. This is equivalent to having

ψ̃(W,b`)uptri(c⊗ c) = 0 (4.43)

where the matrix ψ̃(W,b`) is defined in (4.40), and uptri(c⊗ c) ∈ C(
r+2

2 ) is a vector containing

the upper-triangular (including the diagonal) elements of ccT . Notice that if equation (4.43) holds

for c, it also holds for any βc, where β ∈ C. In order to resolve this scaling ambiguity, we can use

the fact that [V`]
T
1,:c = 1. Hence, solving a(θ) = Ṽ`c is equivalent to finding c that satisfies (4.43)

and is scaled such that [V`]
T
1,:c = 1.

Following a similar procedure for θ̄, it holds that

ψ̃(W,b`)uptri(c̄⊗ c̄) = 0. (4.44)

for some c̄ ∈ Cr+1, such that a(θ̄) = Ṽc̄. However, since dimN (ψ̃(W,b`)) = 1, from (4.43) and

(4.44), we must have

uptri(c⊗ c) = γuptri(c̄⊗ c̄)

for some nonzero scalar γ ∈ C. Therefore, it holds that c2
q = γc̄2

q, i.e.,12 c = ±√γc̄. Using the

fact that [V`]
T
1,:c = [V`]

T
1,:c̄ = 1, we conclude c = c̄. Hence, a(θ`) = a(θ̄`), which implies θ` = θ̄`.

Therefore, SW,b`
= {θ`}.

Remark 35. The algorithm presented in this section can also be extended to non-uniform linear

arrays, whose difference co-array contains a uniform linear array (such as nested [PV10], and

coprime [PV11] arrays), although the details can be nontrivial. However, we leave this derivation

for future.
12Square root of a complex number γ = rγe jφγ is defined as

√
γ =
√rγe jφγ/2, where γr ∈R, γr > 0 and γc ∈ [0,2π).

252



4.4.5 Numerical Experiments

In this section, we present our numerical experiments to evaluate the performance of

the proposed algorithms. We consider a SIMO mm-Wave communication system with N = 8

RF-chains and M = 16 uniformly located antennas with inter-element spacing of λ/2. We use

K = 8 frequency bins allocated to the pilots, located in a non-uniform fashion based on the nested

array geometry. In particular, we use the frequency bins i = [1,2,3,4,9,14,19], which yields a

difference co-array of size K̃ = 37.

For the first set of experiments, the AoAs θ` corresponding to the channel paths are

located uniformly in the range [−π

3 ,
π

3 ], for `= 1, · · · ,L. The channel path delays (τ`/∆ f modulo

2π) are chosen uniformly in the range [−2π

5 , 2π

5 ], and the powers are set to p` = 1, for `= 1, · · · ,L.

For all simulations in this experiment, we use a randomly generated W matrix with unimodular

elements, and W is kept fixed for all simulations. We examine the performance of the algorithms

COACH-ESPRIT-I and COACH-ESPRIT-II (denoted as “I”, and “II” in Fig. 4.7), as well as the

algorithm presented in [PAGH19] (denoted as “3-CPD” in Fig. 4.7), where the time snapshots

of the measurements from the RF-chains are directly used and CP decomposition (CPD) is

performed to estimate the AoAs corresponding to the channel paths. The CPD is implemented

using ALS algorithm in TensorLab3.0 package [VDDL16]. Figures 4.7a, 4.7c, and 4.7e show

the recovered p̂ (normalized w.r.t max` p̂` for better visibility) and θ̂ using Algorithms COACH-

ESPRIT-I and COACH-ESPRIT-II, where T = 500 and σ = 2
√

L. We observe that the algorithm

COACH-ESPRIT-II can find the correct AoAs for all cases L = 4,9,12. The algorithm COACH-

ESPRIT-I fails when L = 12, and the Algorithm in [PAGH19] can only recover the true AoAs

when K = 4.

Figures 4.7b, 4.7d, and 4.7f show the Root Mean Squared Error (RMSE), defined as

RMSE (dB) = 10log10
∑

Nruns
g=1 ‖θ̂

(g)−θ‖
Nruns

, corresponding to the algorithms COACH-ESPRIT-I and

COACH-ESPRIT-II, with θ̂
(g)

denoting the output of the algorithms at gth run, for Nruns = 100

Monte-Carlo runs. The RMSE is calculated with respect to the number of snapshots T . We also
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plot the RMSE corresponding to the first order perturbations of the estimated parameters δθi , using

the formulation derived in Sec. 4.4.2 (and similar calculations for Algorithm COACH-ESPRIT-

II are also derived, however, we skipped those derivations in the paper for brevity). We observe

that for the cases where the number of channel paths are small (L = 4 < N), the Algorithm in

[PAGH19] is able to find the AoAs with a relatively good accuracy. However, its performance

does not improve with increasing T . On the other hand, when the number of channel paths is

larger than N, i.e., L = 9,L = 12 both of our proposed algorithms perform much better than

[PAGH19], and the algorithm COACH-ESPRIT-II shows the best performance, while requiring

fewer number of snapshots than that of COACH-ESPRIT-I in order to achieve the performance

predicted by the RMSE of δθ. In the second set of experiments, we show the phase transition plots

corresponding to the algorithms COACH-ESPRIT-I, and COACH-ESPRIT-II. The white pixels

indicate the regions where the algorithm is able to exactly recover the channel parameters in a

noiseless setting. We can see that the plots also match with theoretical bounds derived in Sec.

4.4.2 and 4.4.3. In Figures 4.8a, 4.8b, 4.8c and 4.8d we keep N = 3, N = 10, K = 3, K = 10 fixed,

respectively. In all figures, we have M = 20. In all plots of Fig. 4.8, we use the algorithm used in

the constructive proof of Theorem 32 to identify the channel paths θ.

4.4.6 Conclusion

We considered the problem of channel estimation for SIMO multi-carrier communication

systems, in presence of correlation priors on the channel paths. We showed that once the

pilots used for channel training are judiciously placed on certain non-uniform locations, through

proposing two linear algebraic based tensor decomposition algorithms, we are able to recover L

channel paths that can be as large as min(O(N2),O(M),O(K2)), and can further improve it to

L = O(NK2), with N,M, and K being the number of RF-chains, number of antennas, and number

of pilot frequency bins used, respectively. Hence, unlike many of the existing algorithms that

can only work when L = O(N), our proposed approach can handle cases where L� N. We
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Figure 4.7: Comparison between performance of algorithms COACH-ESPRIT-I,
COACH-ESPRIT-II, and [PAGH19]. Figures (a), (c), (e): recovered θ̂`, p̂`. Figures (b), (d), (f)

RMSE as a function T for different number of channel paths L.
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Figure 4.8: Phase transition corresponding to the algorithms COACH-ESPRIT-I, and
COACH-ESPRIT-II.

256



also analyzed the performance of the proposed algorithms in the case that we have access to a

perturbed version of the covariance matrix, due to finite number of snapshots, and show how the

estimates of the channel parameters will change, when we have small perturbations. Finally, we

numerically established the superior performance of our proposed algorithms.
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4.5 Appendix

4.5.1 Proof of Theorem 30

Proof. Similar to the analysis in [LLV93, LLM08] the perturbed left singular vectors of R̂(1) are

given as Û = U+∆U, where ∆U is given in (4.32).

Upon computing the perturbations of eigenvalues of (ΠUiU)†ΠUiU = EΛE−1, and apply-

ing the results from [LLV93] we derive equation (4.31).

We now proceed into finding the perturbations in the recovered AoAs θ̂` up to the first

order. For brevity, let us define F�2 = F∗�F. It is straightforward to show that

∆F�2 = jπdiag(i⊗1K−1K⊗ i)F�2 diag(δτ)

where i = [i1, i2, · · · , iK]T . Using first order perturbations of pseudo-inverses [Wed73], we have

∆(F�2)† = ((F�2)HF�2)−1
∆

H
F�2Π

⊥
F�2− (F�2)†

∆F�2(F�2)†

where Π
⊥
F�2 = IK2 −F�2((F�2)HF�2)−1(F�2)H . Define B�2 := (WA)∗� (WA), then it holds

that

∆B�2 = (∆(F�2)†R(1)+(F�2)†
∆R(1))

T

Now, given the perturbations in ∆B�2 = [δb1, · · · ,δbL ], our goal is to find the perturbations

corresponding to the recovered θ̂` = θ`+δθ`
, up to the first order. For notational brevity, we first

make a few definitions: Let akr(θ) = a∗(θ)⊗a(θ), ȧkr(θ) =
dakr(θ)

dθ
, and äkr(θ) =

d2akr(θ)
dθ2 . Define
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b̂` to be the ith column of B�2 +∆B�2 . Let W⊗2 = W∗⊗W, and

û(θ) = |b̂H
` W⊗2akr(θ)|2

v(θ) = ‖W⊗2akr(θ)‖2

Define ĝ(θ) = log(û(θ)/v(θ)), where û(θ)/v(θ) is the objective function in (4.29), when

b` is perturbed to b̂`. Our goal is to approximate θ̂` = argmaxθ ĝ(θ). Let θ` = argmaxθ g(θ). We

have dĝ(θ)
dθ
|
θ=θ̂`

= 0. Assuming that θ̂`−θ` = δθ`
is small enough, we can approximate dĝ(θ)

dθ
|
θ=θ̂`

as

0 =
dĝ(θ)

dθ
|
θ=θ̂`

=
dĝ(θ)

dθ
|θ=θ`

+(θ̂`−θ`)
d2ĝ(θ)

dθ2 |θ=θ`

Hence, δθ`
= θ̂`−θ` =−

˙̂g(θ`)
¨̂g(θ`)

, where the notation ˙̂g(θ`) stands for dĝ(θ)
dθ
|θ=θ`

, and ¨̂g(θ`) denotes
d2ĝ(θ)

dθ2 |θ=θ`
. Using the notations ĝ(θ`) = g(θ`)+ δg(θ`), ˙̂g(θ`) = ġ(θ`)+ δġ(θ`), and ¨̂g(θ`) =

g̈(θ`)+δg̈(θ`), we can write

δθ`
=−

ġ(θ`)+δġ(θ`)

g̈(θ`)+δg̈(θ`)
≈−

δġ(θ`)

g̈(θ`)

where we used the fact that ġ(θ`)= 0, as θ` is the optimum value for g(θ). Therefore, we only need

to compute the quantities δġ(θ`) and g̈(θ`). Defining the notations u̇, ˙̂u, v̇, ü, ¨̂u, v̈ corresponding to

û,u,v, we can write the expansion of û upto the first order in δb`
as

û(θ)≈ |bH
` W⊗2akr(θ)|2 +δu(θ)

where δu(θ) = 2Re((δH
b`

W⊗2akr(θ))
∗(bH

` W⊗2akr(θ))). Moreover, the first order derivatives of
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û,v with respect to θ can be computed as

˙̂u(θ)≈

u̇(θ)︷ ︸︸ ︷
2Re((bH

` W⊗2akr(θ))
∗bH

` W⊗2ȧkr(θ))+δu̇(θ)

v̇(θ) = 2Re((W⊗2ȧkr(θ))
H(W⊗2akr(θ)))

where upto the first order in δb`
we have

δu̇(θ) = 2Re((δH
b`

W⊗2akr(θ))
∗(bH

` W⊗2ȧkr(θ)))

+2Re((bH
` W⊗2akr(θ))

∗(δH
b`

W⊗2ȧkr(θ)))

Finally, the second derivatives of u(θ),v(θ) can be computed as

ü(θ) = 2‖bH
` W⊗2ȧkr(θ)‖2

+2Re((bH
` W⊗2äkr(θ))

∗bH
` W⊗2akr(θ))

v̈(θ) = 2‖W⊗2äkr(θ)‖2 +2Re((W⊗2äkr(θ`))
HW⊗2akr(θ)).

From the definition of ĝ, we have

˙̂g(θ) =
˙̂u(θ)
û(θ)

− v̇(θ)
v(θ)

=
u̇(θ)+δu̇(θ)

u(θ)+δu(θ)
− v̇(θ)

v(θ)

which up to first order of approximation in δθ`
we have ˙̂g(θ)≈ ġ(θ)+δġ(θ), where

δġ(θ) =
δu̇(θ)

u(θ)
− δu(θ)u̇(θ)

u2(θ)

It can also be verified that

g̈(θ) =
u(θ)ü(θ)− (u̇(θ))2

u2(θ)
− v(θ)v̈(θ)− (v̇(θ))2

v2(θ)
.
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which leads to (4.33).
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[AdA17] Daniel C Araújo and André LF de Almeida. Tensor-based compressed estimation
of frequency-selective mmwave mimo channels. In 2017 IEEE 7th International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), pages 1–5. IEEE, 2017.

[AdAH19] Khaled Ardah, Andre LF de Almeida, and Martin Haardt. Low-complexity
millimeter wave csi estimation in mimo-ofdm hybrid beamforming systems. In
WSA 2019; 23rd International ITG Workshop on Smart Antennas, pages 1–5.
VDE, 2019.

[AEALH13] Ahmed Alkhateeb, Omar El Ayach, Geert Leus, and Robert W Heath. Hybrid
precoding for millimeter wave cellular systems with partial channel knowledge.
In 2013 Information Theory and Applications Workshop (ITA), pages 1–5. IEEE,
2013.

[AEALH14] Ahmed Alkhateeb, Omar El Ayach, Geert Leus, and Robert W Heath. Channel
estimation and hybrid precoding for millimeter wave cellular systems. IEEE
Journal of Selected Topics in Signal Processing, 8(5):831–846, 2014.

[AG05] Ali Nasiri Amini and Tryphon T Georgiou. Avoiding ambiguity in beamspace
processing. IEEE Signal Processing Letters, 12(5):372–375, 2005.
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[FRG07] A. K. Fletcher, S. Rangan, and V. K. Goyal. On the rate-distortion performance
of compressed sensing. In 2007 IEEE International Conference on Acoustics,
Speech and Signal Processing - ICASSP ’07, volume 3, pages III–885–III–888,
April 2007.

[FRG09] A. K. Fletcher, S. Rangan, and V. K. Goyal. Necessary and sufficient condi-
tions for sparsity pattern recovery. IEEE Transactions on Information Theory,
55(12):5758–5772, Dec 2009.

266
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