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Architected metamaterials are a class of engineered materials with artificially designed structure 

at micro- or nano-scale that exhibit unusual properties by the interplay between the constitutive 

materials and the engineered architectures. Recent advancement in additive manufacturing has 

enabled the integration of functionalities with structural metamaterials via mixing multi-functional 

particles with 3D-printable materials. However, accurate design of functional performance of as-

fabricated metamaterial has not been demonstrated for the following reasons. Attributed to weak 

interfacial behaviors, physical mixture of functional particles with 3D-printable matrix 

demonstrates low functional performances, which is several orders of magnitude of homogeneous 

functional materials. Prior studies has employed surface functionalization to enhance the effective 
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performance of functional composites, while the effect of this process remains elusive. 

Additionally, despite that the structure properties of metamaterials have been thoroughly studied, 

it is still unclear how the concept of structural metamaterials can be translated to multi-functional 

coupling behaviors (i.e., electro-mechanical coupling, thermo-electric coupling, etc.). 

This work aimed to develop a theoretical design framework which will enable accurate creation of 

functional performance via guiding the formulation of constitutive material and architectural 

design of multi-functional metamaterial.  In specific, a theoretical model, effective interphase 

model, is established to characterize the interaction between functional particles and matrix 

materials, which enables the realization of desired functional properties of composite colloids for 

additive manufacturing via tuning the formulating parameters like particle loading, surface 

functionalization level, etc. Next, design of effective performance of functional metamaterial via 

manipulating its spatial arrangement is investigated and demonstrated. This design strategy is 

applied in tailoring the anisotropy of piezoelectric material constrained by the intrinsic crystal 

structure, decoupling the electro-mechanical responses in each orthogonal directions as load 

orientation and magnitude sensor, and creating all physically feasible actuation modes as actuators 

with simple electrode arrangements. Additionally, a machine learning based design framework is 

developed to inverse design the desired compressive response of metamaterials. This machine 

learning framework breaks the limitation on designing a few mechanical properties of existing 

methods and enables the re-creation of full temporal and spatial mechanical response of 

metamaterials. In general, this work provides a comprehensive design methodology of functional 

behaviors which characterizes the effect of both the constitutive material properties and 

architectures of multi-functional metamaterials.  



iv 

 

The dissertation of Desheng Yao is approved. 

Ertugrul Taciroglu 

Ximin He 

Jian Zhang, Committee Co-Chair 

Xiaoyu Zheng, Committee Co-Chair 

 

 

University of California, Los Angeles 

2023 

  



v 

 

Table of Contents 

ABSTRACT OF THE DISSERTATION ....................................................................................... ii 

Table of Contents ............................................................................................................................ v 

List of Figures ................................................................................................................................. x 

List of Tables .............................................................................................................................. xvii 

List of Acronyms ....................................................................................................................... xviii 

Acknowledgements ....................................................................................................................... xx 

Vita .............................................................................................................................................. xxii 

Chapter 1 Introduction .................................................................................................................... 1 

1.1 Functional materials ............................................................................................................................ 1 

1.1.1 Piezoelectric material: .................................................................................................................. 1 

1.1.2 Shape memory material: .............................................................................................................. 2 

1.1.3 Magnetostrictive material: ........................................................................................................... 2 

1.2 Architected metamaterial .................................................................................................................... 3 

1.3 Research goal and research framework .............................................................................................. 5 

1.4 Research questions .............................................................................................................................. 6 

1.5 Dissertation outline ............................................................................................................................. 7 



vi 

 

Chapter 2 Overview of functional responses of additively manufactured materials .................... 10 

2.1 Additive manufacturing of functional materials ............................................................................... 10 

2.2 Surface functionalization of piezoelectric particles .......................................................................... 12 

2.3 Architectural design of piezoelectric metamaterial........................................................................... 13 

2.4 Scientific challenges and research objectives ................................................................................... 14 

2.4.1 Designing the functional properties of 3D printable material feedstock ................................... 14 

2.4.2 Designing the micro-architecture of functional metamaterials .................................................. 14 

2.4.4 Research objective ..................................................................................................................... 15 

Chapter 3 Design functional properties of 3D-printable materials ............................................... 16 

3.1 Development of theoretical model – effective interphase model (EIM) ........................................... 16 

3.2 Theoretical derivation of the electro-mechanical properties of the piezoelectric composite ............ 20 

Governing equation of the piezoelectricity, effective stiffness matrix E ............................................ 20 

Mori-Tanaka model ............................................................................................................................ 21 

Effective interphase model.................................................................................................................. 23 

3.3 Effective interphase properties measurement ................................................................................... 24 

3.4 Validation of effective interphase model .......................................................................................... 27 

3.5 Multi-functional design map of functionalized piezoelectric nanocomposite .................................. 33 



vii 

 

3.6 Flexible, conformal self-sensing material for low air pressure detection ......................................... 37 

3.7 Wireless, self-sensing boxing glove .................................................................................................. 39 

3.8 Conclusion ........................................................................................................................................ 42 

Chapter 4 Design micro-architecture of piezoelectric metamaterials ........................................... 44 

4.1 Rational of designing functional responses via tailoring the micro-architecture of metamaterials .. 44 

4.2 Designing piezoelectric coefficient vector anisotropy ...................................................................... 46 

4.2.1 Theoretical design strategy of piezoelectric coefficient vector anisotropy ................................ 46 

4.2.2 Experimental validation of designed anisotropy of piezoelectric metamaterials ....................... 51 

4.2.3 Theoretical prediction of the dimensionless d constants ............................................................ 56 

4.2.4 Expanded architectures and their d3M distributions .................................................................... 62 

4.3 Designing decoupled strain responses of piezoelectric metamaterials ............................................. 68 

4.3.1 Theoretical design of the decoupled strain responses for multi-mode sensor ............................ 68 

4.3.2 Decoupled load measurement with multi-mode sensor ............................................................. 71 

4.3.3 Information encoding and storage with designed multi-mode sensor ........................................ 74 

4.4 Designing arbitrary actuation mode of piezoelectric metamaterials ................................................. 77 

4.4.1 Rational design of piezoelectric metamaterial with arbitrary strain mode ................................. 77 

4.4.2 Theoretical characterization of the actuation performance ........................................................ 84 



viii 

 

4.4.3 Experimental validation of metamaterial design with target strain mode .................................. 91 

4.4.4 Numerical validation of metamaterial design with target strain mode ...................................... 94 

4.5 Conclusion ........................................................................................................................................ 96 

Chapter 5 Intelligent design method of full mechanical responses of metamaterial .................... 98 

5.1 Development of the generative ML framework ................................................................................ 98 

5.1.1 Overview of the generative ML framework ............................................................................... 98 

5.1.2 Generative ML pipeline ........................................................................................................... 100 

5.1.3 Determination of optimal design parameters ........................................................................... 104 

5.1.4 Curve type classifier................................................................................................................. 105 

5.2 Stress-strain curve design space for ML ......................................................................................... 106 

5.2.1 Derivation of curve design space ............................................................................................. 106 

5.2.2 Plottable stress-strain curve with ML ...................................................................................... 110 

5.2.3 Stress-strain curve parameterization for ML input .................................................................. 113 

5.3 Training of the ML framework ....................................................................................................... 117 

5.3.1 Training data of the ML framework ........................................................................................ 117 

5.3.2 Training of the ML framework ................................................................................................ 126 

5.4 Inverse design based on various stress‒strain curves ..................................................................... 142 



ix 

 

5.5 Study of process variability ............................................................................................................ 145 

5.5.1 Training data with stochastic noise and variability .................................................................. 145 

5.5.2 Evaluation of process variability: Prediction accuracy ............................................................ 147 

5.5.3 Using ML prediction in disrupted AM processes with larger variability................................. 148 

5.6 Tailorability of stress-strain curve with ML ................................................................................... 151 

5.7 Enhanced tailorability via compound lattices ................................................................................. 154 

5.8 Simultaneous design of mechanical responses under multiple loading rates with ML................... 162 

5.8.1 Development of the ML framework for the design task .......................................................... 162 

5.8.2 Architectural cell design and material properties for the training dataset ................................ 163 

5.8.3 Training of the ML framework ................................................................................................ 167 

5.8.4 Inverse design of the architected structures with desired responses at different loading rates 170 

5.9 Conclusion ...................................................................................................................................... 172 

Chapter 6 Conclusion and future work ....................................................................................... 175 

6.1 Conclusion and answering the research questions .......................................................................... 175 

6.2 Future work ..................................................................................................................................... 180 

Reference .................................................................................................................................... 182 

 

  



x 

 

List of Figures 

Figure 1-1. Research framework……………………………………………………….…………6 

Figure 3-1. Effective interphase model for characterization of functional responses of 

piezoelectric composites. ……………………………………………………….………………..18 

Figure 3-2. Scratch test to obtain interphase stiffness and width used in the theoretical and 

numerical calculation. . ……………………………………………………….…………….……25 

Figure 3-3. Fabrication process of functionalized piezoelectric composites. ……………………30 

Figure 3-4. Schematic of poling setup. ………………………………………………………..…31 

Figure 3-5. Characterization of piezoelectric particles with different surface process 

conditions. . ……………………………………………………….…………….……………….32 

Figure 3-6. Measurement of piezoelectric coefficient of as-fabricated samples. (a) Schematic of 

the tested sample assembly. ……………………………………………………….……………..33 

Figure 3-7. Formulation of multi-functional design map of functionalized piezoelectric 

composites. ……………………………………………………….………………………….…..35 

Figure 3-8. Comparison of piezoelectric charge constant d33 and mechanical compliance between 

piezoelectric nanocomposite presented in this work with other 3D printed composite materials…38 

Figure 3-9. Flexible, conformal piezoelectric lattices for air-flow detection…………………… 40 



xi 

 

Figure 3-10. Wireless, self-sensing boxing glove………………………………………………..43 

Figure 3-11. Detected voltage signal transmitted from wireless boxing gloves………………….44 

Figure 4-1. Strain transformation enabled by architected metamaterial………………………….47 

Figure 4-2. Design of piezoelectric metamaterials for tailorable piezoelectric charge constants...49 

Figure 4-3. Measurement of 3D piezoelectric responses………………………………………...55 

Figure 4-4. Comparison of specific piezoelectric charge coefficients and tunable elastic 

compliance between the piezoelectric metamaterials presented in this study and typical 

piezoelectric materials……………………………………………………………………………57 

Figure 4-5. FOM of porous and bulk piezoelectric materials…………………………………….58 

Figure 4-6. The comparison between analytical results, experiment results and numerical results 

of the N=5 lattices………………………………………………………………………………...60 

Figure 4-7. Identification of two types of struts………………………………………………….60 

Figure 4-8. Piezoelectric cell design for N=12 case……………………………………………...64 

Figure 4-9. Design and fabrication of decouple strain response of multi-mode sensor…………..71 

Figure 4-10. Characterization of the multi-mode performance under various spatial load……….74 

Figure 4-11. Demonstration of information encoding and storage performance of piezo-active 

metamaterial……………………………………………………………………………………...77 



xii 

 

Figure 4-12. Rational designs of robotic metamaterials with arbitrary strain modes…………….80 

Figure 4-13. Schematic of the motion of characteristic planes, unit cells and tessellation methods 

for metamaterials with expansion, shear, twist and flexure strain modes…………………………82 

Figure 4-14. Comparison of the twist coefficients for unit cells tessellated with translational 

symmetry and rotational symmetry………………………………………………………………84 

Figure 4-15. Polarization and driving voltage of the amplified shear and twist architecture with 

compound and decoupled mode………………………………………………………………….85 

Figure 4-16. Experimental verification of robotic metamaterial designs………………………...94 

Figure 4-17. Experimental testing of piezoelectric metamaterials as beam steering elements…...95 

Figure 4-18. Optical image of the laser beam steering system and designed experimental laser spot 

trajectories for a star pattern executed at 20 Hz…………………………………………………...95 

Figure 4-19. FEA results for lattices with d34 (shear), d
_

33 (twist), d
_

35 (bend), amplified expansion, 

amplified shear and amplified twist modes…………………………………………………….....98 

Figure 5-1. Overview of the ML-based rapid inverse design methodology…………………….101 

Figure 5-2. Details of ML approach…………………………………………………………….103 

Figure 5-3. Stress-strain curve reconstruction based on curve features…………………………105 

Figure 5-4. Categories of stress-strain curves in the training dataset……………………………108 



xiii 

 

Figure 5-5. Design space, plottable stress–strain curve paths and architectural cells…………...109 

Figure 5-6. Plottable stress-strain curve paths………………………………………………….115 

Figure 5-7. Curve parameterization used in this work………………………………………….118 

Figure 5-8. Mechanical performance assessment of the architectural unit cells developed in this 

work…………………………………………………………………………………………….121 

Figure 5-9. FE results showing size effects of the periodic lattices made of the presented 

architectural cells as a function of the number of unit cells (Ncell)……………………………….122 

Figure 5-10. FE results showing size effects of the compound lattices as a function of the number 

of the smallest repeating geometry (N)………………………………………………………….122 

Figure 5-11. Experimentally measured stress-strain curves of the as-printed lattice samples using 

the architectural cells developed in this study…………………………………………………...124 

Figure 5-12. Training results of the curve type classifier……………………………………….130 

Figure 5-13. Training results of the forward validation module………………………………...132 

Figure 5-14. Prediction accuracy of the forward validation module……………………………135 

Figure 5-15. Examples of predicted (red) versus true (black) test curves offered by the forward 

validation module……………………………………………………………………………….136 

Figure 5-16. Training results of the inverse prediction module…………………………………138 



xiv 

 

Figure 5-17. Prediction accuracy of the inverse prediction module…………………………….141 

Figure 5-18. Examples of predicted (red) versus true (black) test curves offered by the inverse 

prediction module……………………………………………………………………………….142 

Figure 5-19. Training results of multiple models with different initialization…………………..144 

Figure 5-20. Inverse design based on representative target stress‒strain curves and experimental 

design validation………………………………………………………………………………..146 

Figure 5-21. Training datasets with stochastic noise and variability……………………………149 

Figure 5-22. Effects of the process variability on our ML approach……………………………150 

Figure 5-23. Gray-mask technique and measurement of geometric and process variability in the 

printed sample…………………………………………………………………………………..151 

Figure 5-24. Inversely designed, representative target stress-strain curve η = 35% (resembling the 

process variability of selective laser sintering process) and the gray-mask technique (light-blue 

shaded uncertainty region)……………………………………………………………………...153 

Figure 5-25. Tailorability of stress‒strain curves demonstrated by inverse design of an architected 

shoe midsole…………………………………………………………………………………….154 

Figure 5-26. Measurement of baseline curves from a commercial shoe midsole……………….155 

Figure 5-27. Inverse design of the architected shoe midsole with strain rate effect……………..156 

Figure 5-28. Capability of the compound lattices………………………………………………157 



xv 

 

Figure 5-29. Inverse design workflow of a compound lattice creation for enhanced stress-strain 

curve tailorability……………………………………………………………………………….158 

Figure 5-30. Enhanced stress‒strain curve tailorability through compound lattice creations using 

superposed design gradients…………………………………………………………………….160 

Figure 5-31. Experimentally measured stress-strain curves of ML-designed compound lattices 

shown in Figure 5-30d to 5-30f and progression of deformation at different strains of the printed 

samples………………………………………………………………………………………….162 

Figure 5-32. Energy absorption characteristics of the ML-designed compound lattice………...163 

Figure 5-33. Workflow of the integrated machine learning model……………………………..165 

Figure 5-34. Transformative architectural genes…………………………………………….....166 

Figure 5-35. Mechanical properties of the architectural genes………………………………….167 

Figure 5-36. Material properties of 5 available material in this task…………………………….168 

Figure 5-37. Prediction accuracy of forward models…………………………………………...170 

Figure 5-38. Prediction accuracy of inverse model……………………………………………..171 

Figure 5-39. Mechanical property maps for each loading rate cases……………………………172 

Figure 5-40. Comparison between predicted and target mechanical properties at different loading 

rate cases………………………………………………………………………………………..173 



xvi 

 

Figure 5-41. Comparison between mechanical properties of baseline and refined design at 

different loading rate cases……………………………………………………………………...174 

 

 

  



xvii 

 

List of Tables 

Table 4-1. Properties of the PZT particles used in the piezoelectric composite…………………..66 

Table 4-2. All designed actuation mode of piezoelectric metamaterials…………………………84 

Table 5-1. Feature variables parameterizing the stress-strain curve in case of max(Npv) = 6……116 

Table 5-2. Structure of training dataset…………………………………………………………125 

 

 

  



xviii 

 

List of Acronyms 

PZT Lead zirconate titanate 

PVDF Polyvinylidene fluoride 

AM Additive manufacturing 

FEA Finite element analysis 

ML Machine learning 

FDM Fused deposition modeling  

SLS Selective laser sintering 

CNT Carbon nanotube 

SLA Stereolithography 

UV Ultraviolet  

EIM Effective interphase model 

RVE Representative volume element 

PBC Periodic boundary condition 

PμSL Projection micro-stereolithography 



xix 

 

FTIR-ATR Fourier-transform Infrared Spectroscopy Attenuated Total Reflectance  

NRMSE Normalized root-mean-square error 

SGD Stochastic gradient descent 

CF Carbon Fiber 

ABS Acrylonitrile butadiene styrene 

TPU Thermo-Plastic Polyurethane 

GBR Gradient Boosting regressor  

RFR Random Forest regressor  

MLPC Multilayer Perceptron Classifier  

  



xx 

 

Acknowledgements 

I would like to express my sincere gratitude to Prof. Xiaoyu (Rayne) Zheng’s dedicated instruction 

and understanding during the process of pursuing my Ph.D. degree, especially during the time I 

suffered from family misfortune. I am grateful for the opportunity Dr. Zheng provided me to 

cultivate the ability and experience in scientific research. 

I am deeply grateful to all the members of my committee who provided constructive advices on 

my research and assisted me in completing my Ph.D. degree at UCLA. 

I wish to extend my heartfelt appreciation to my family members and friends for their unwavering 

support throughout my journey. They have always been my pillar of strength, motivating me to 

strive forward. 

I would like to acknowledge my group mates at the Advanced Manufacturing and Metamaterials 

Laboratory (AMML) for their invaluable advice and support.  

I would like to express my gratitude to my collaborators, with whom I had the opportunity to work 

on various projects. 

I would like to acknowledge ICTAS Junior Faculty Award, NSF CMMI 1727492, US Air Force 

Office of Scientific Research (FA9550-18-1-0299, N00014-20-1-2504, and FA9550-21-1-0241), 

US Office of Naval Research Young Investigator Award (N00014-18-1-2553), US Office of Naval 

Research (N00014-19-1-2723 and N00014-20-1-2504:P00001), US Defense Advanced Research 

Projects Agency (D20AP00001-02), National Science Foundation (2048200 and 2119643) and 



xxi 

 

Startup support from Virginia Tech, University of California, Los Angeles and University of 

California, Berkeley for funding support.  

Chapter 3 is reproduced from “D. Yao, H. Cui, R. Hensleigh, P. Smith, S. Alford, D. Bernero, S. 

Bush, K. Mann, H. F. Wu, M. Chin-Nieh, G. Youmans, X. Zheng, Achieving the upper bound of 

piezoelectric response in tunable, wearable 3D printed nanocomposites, Advanced Functional 

Materials, 1903866, 2019”. DOI: https://doi.org/10.1002/adfm.201903866 

Chapter 4.2 is reproduced from “H. Cui, R. Hensleigh, D. Yao, D. Maurya, P. Kumar, M. Kang, 

S. Priya, X. Zheng, Three-dimensional printing of piezoelectric materials with designed anisotropy 

and directional response”, Nature Materials, volume 18, pages234–241 2019”. DOI: 

https://doi.org/10.1038/s41563-018-0268-1 

Chapter 4.3 is a manuscript in preparation for publication. 

Chapter 4.4 is reproduced from “H. Cui, D. Yao, H. Lu, A Calderon, Z. Xu, S. Davaria, Z. Wang, 

P. Mercier, P. Tarazaga, X. Zheng, Design and printing of proprioceptive three-dimensional 

architected robotic metamaterials, Science, 2021, Vol 376, Issue 6599, page1287-1293”. DOI: 

10.1126/science.abn0090 

Chapter 5 is reproduced from “C. Ha, D. Yao(contribute equally), Z. Xu, C. Liu, H. Liu, D. Elkins, 

M. Kile, V. Deshpande, Z. Kong, M. Bauchy, and X. Zheng, Rapid inverse design of metamaterials 

based on prescribed mechanical behavior through machine learning, Nature Communications, 14, 

5765 (2023)”. DOI: https://doi.org/10.1038/s41467-023-40854-1 

  



xxii 

 

Vita 

Education                       
Doctor of Philosophy, Civil Engineering                                                   Expected: Dec. 2023 

UCLA, Los Angeles, CA 

Doctor of Philosophy, Mechanical Engineering                    Transferred to UCLA, Sep. 2019 

Virginia Tech, Blacksburg, VA 

Master of Science, Mechanical Engineering                                                              Jun. 2017 

Lehigh University, Bethlehem, PA 

Bachelor of Engineering, Mechanical Engineering                                                    Jun. 2015 

Beihang University, Beijing, China 

 

Publications                                            
 H. Cui, R. Hensleigh, D. Yao, D. Maurya, P. Kumar, M. Kang, S. Priya, X. Zheng, “Three-

dimensional printing of piezoelectric materials with designed anisotropy and directional 

response”, Nature Materials, volume 18, pages234–241 2019.  

 D. Yao, H. Cui, R. Hensleigh, P. Smith, S. Alford, D. Bernero, S. Bush, K. Mann, H. F. Wu, 

M. Chin-Nieh, G. Youmans, X. Zheng, “Achieving the upper bound of piezoelectric response 

in tunable, wearable 3D printed nanocomposites”, Advanced Functional Materials, 1903866, 

2019 (Featured on Front Cover).  

 H. Cui, D. Yao, et. al., "Design and printing of proprioceptive three-dimensional architected 

robotic metamaterials", Science, 2021, Vol 376, Issue 6599, page1287-1293 

 C. Ha, D. Yao(contributed equally), et. al., “Rapid inverse design of metamaterials based on 

prescribed mechanical behavior through machine learning”, Nature Communications, 14, 

5765 (2023). 

 R Hensleigh, H Cui, Z Xu, J Massman, D Yao, J Berrigan, X Zheng, “Charge-programmed 

three-dimensional printing for multi-material electronic devices”, Nature Electronics, volume 

3 page 216-224, 2020.  

 N JRK Gerard, M Oudich, Z Xu, D Yao, H Cui, C J Naify, A Ikei, C A Rohde, X Zheng, Y 

Jing, “Three-Dimensional Trampolinelike Behavior in an Ultralight Elastic Metamaterial”, 

Physical Review Applied, volume 16 Issue 2.  

Presentations                                                                 
 D. Yao, H. Cui, R. Hensleigh, X. Zheng, “Achieving the Upper Bound of Piezoelectric 

Response in Tunable, Wearable 3D Printed Nanocomposites”, International Solid Freeform 

Fabrication Symposium-Additive Manufacturing Conference, Austin, Texas, Aug. 2019  

 D. Yao, H. Cui, R. Hensleigh, X. Zheng “Achieving the Upper Bound of Piezoelectric 

Response in Tunable, Wearable 3D Printed Nanocomposites”, Materials Science & 

Technology, Portland, Oregon, Oct. 2019 (1st Place Prize in the Annual Material Advantage 

Graduate Student Poster Contest) 



xxiii 

 

 H. Cui, D. Yao, R. Hensleigh, X. Zheng “Rational design and printing of precision 

piezoelectric actuators”, American Society of Precision Engineering, Austin, Texas, Jan. 

2020 

 D. Yao, C. Ha, X. Zheng “Rapid creation of metamaterial with prescribed mechanical 

behaviors” TMS Annual Meeting, Anaheim, California, Mar. 2022 

 



1 

 

Chapter 1 Introduction 

In this chapter, a general introduction to functional materials and architected metamaterials is 

presented. The motivation and objective of the studies is displayed in the conclusion of this 

chapter. The primary goal of this chapter is to provide readers with a comprehensive understanding 

of the context and rationale behind the research work presented in this dissertation. 

1.1 Functional materials 

Functional materials are materials that process particular native behaviors and functionalities of 

their own. These materials are often found in ceramics, metals, polymers, and organic molecules. 

Different from structural materials, these functional materials demonstrate property changes (i.e., 

shape morphing, electric charge accumulation, etc.) in response to a determined stimuli (i.e., 

thermal, mechanical, electric loading). Attributed to their unique behaviors, functional materials 

have been wildly used in smart devices. Herein, several representative types of functional materials 

and their corresponding applications is presented below. 

1.1.1 Piezoelectric material: 

Piezoelectricity denotes the linear electro-mechanical coupling behaviors of crystalline 

material, which demonstrate electric charge accumulation on the surface when subject to 

mechanical loads, or vice versa, experience mechanical strain with external electric field 

applied. In additional to the linear behavior of electro-mechanical coupling, piezoelectric 

materials also display superior frequency responses. Attributed to these advantages, 

piezoelectric materials are commonly employed as stress/strain sensors and actuators. 
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There are two categories of piezoelectric materials: piezoelectric ceramic like lead 

zirconate titanate (PZT), and piezoelectric polymer like Polyvinylidene fluoride (PVDF).  

1.1.2 Shape memory material:  

Shape memory materials are a class of materials that is capable of reverting from one 

configuration to a different one when being heated or otherwise triggered. Shape memory 

materials can usually sustain large deformation strain, so they are mostly used as actuators 

in the field of aerospace, automotive, and medical devices. There are two categories of 

shape memory materials: shape memory alloys and shape memory polymers. 

1.1.3 Magnetostrictive material: 

Magnetostrictive materials are substance that undergo mechanical deformation (either 

change in shape or dimension) in response to an applied magnetic field.  Unlike 

piezoelectricity, magnetostriction is a nonlinear functional response, and magnetostrictive 

materials are usually used in diverse range of application scenarios, such as vibration 

absorbers, underwater sonar, and ultrasonic sensors. 

Attributed to their unique behaviors that correlate different physical quantities, researchers have 

performed extensive studies on the additive manufacturing (AM) of functional materials. Realizing 

3D printing of functional materials enables the freeform fabrication of multi-functional devices 

suitable for customization and personalization, which also reduces waste and environmental 

impact of the manufacturing process. Additionally, these research work further provides the 

opportunity of direct fabrication the next generation of smart system integrated with multiple 

functionalities.  
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In the current fabrication approaches, functional materials, processed as infill phase (i.e., nano-

particles), are mixed with 3D-printable matrix forming the composite feedstock for AM. However, 

the interaction between functional phase and matrix phase remains elusive, which present 

significant challenge of accurate design and characterization of functional behaviors of as-

fabricated materials. 

In this work, author developed a theoretical model to precisely describe the effective material 

performances, taking into account of all parameters of functional feedstock. The developed model 

enables the selection of optimal design formulation satisfying the requirement of functional and 

structural performances of the materials. 

1.2 Architected metamaterial 

Architected metamaterials are a class of engineered materials with artificially designed structure 

at micro- or nano-scale that exhibit unusual properties by the interplay between the constitutive 

materials and the engineered architectures. Additive manufacturing (AM) enables the structural 

properties to be tailored in ways that are impossible in bulk materials, via the microarchitecture 

design of three-dimensional (3D) metamaterials. In specific, these materials can exhibit exotic 

properties such as negative Poisson’s ratio1-3, negative compressibility4,5, ultralightness and 

ultrastiffness, shape recoverability6-8, and multiple stable states9-11.  

The architected metamaterials can be classified into two main categories: structural metamaterials 

and functional metamaterials. Structural metamaterials are exploited for their load-bearing 

capabilities and mechanical behaviors, and used primarily to define the shape or configuration of 

the object. In contrast, attributed to the unusual behavior of constitutive material, functional 
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metamaterials are employed to achieve specific functionalities, and realize the process and 

transmission of the physical signals.  

Mechanical properties and their designs strategies of structural metamaterials have been 

extensively studied. The exotic mechanical properties give rises to application of structural 

metamaterials in different fields across a wide range of scales. For instance, in automotive field, 

architected honeycomb structures are employed for the purpose of impact reduction and energy 

absorption12. Meanwhile, previous researchers have proposed various design methodology to 

achieve desired mechanical properties.  

 Theoretical approaches employ analytically derived equations to correlate the design 

parameters with the target structural behaviors13. This type of design methods is established 

on the basis of the deformation mechanics, and demonstrates satisfactory accuracy in 

certain quantities like elastic modulus of metamaterials.  

 Topology optimization is a numerical design approach that exploits finite element analysis 

(FEA) to approximate the target properties with iterative performance simulation and 

adjustment on the initial design14,15. Constitutive equations of material are invoked in these 

methods and they show negligible deviation in a wide range of designed quantities. 

 Machine learning (ML) based design methods utilize complex mathematical model to 

establish the relationship between design parameters with target properties on computer16-

18. With high-quality training data, ML based method can provide high design accuracy. 

Integration of functionalities with structural metamaterials endows the material with the capability 

to perform certain functions. However, it remains unknown that how to transfer the concept of 
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structural metamaterial to multi-physics coupling behaviors. In this work, author developed a 

systematic design framework that effectively correlate the functional response with architectural 

design of metamaterials, enabling accurate realization of arbitrary functionalities of interest. 

1.3 Research goal and research framework 

My research work aims to develop a comprehensive design framework which enables the precise 

creation of desired functional response via tuning the constitutive material formulation and 

arranging the micro-architecture of multi-functional metamaterials.  

To achieve the proposed research objective, I have developed my research framework, as presented 

in Figure 1-1, with a focus on two major aspects: base material formulation and micro-architecture 

design. 

First, I established a theoretical model capable of fully characterizing the effective properties of 

the composite feedstock, and further predicting optimal composition parameters 3D-printable 

functional materials. 

Next, I developed a systematic design strategy of micro-architecture for the realization of arbitrary 

anisotropy and decoupled functional responses of piezoelectric materials. 

Lastly, I employed ML based design framework for the creation of full temporal and spatial 

response of structural metamaterials.  

This comprehensive design framework enables us to systematically design the effective behaviors 

and complete temporal responses of functional metamaterial with tailored property orientations. 



6 

 

The outcome of this work set up the foundation of designing and creating the next generation of 

smart devices, integrated with multiple functionalities, for various application scenarios. 

 

Figure 1-1. Research framework 

 

1.4 Research questions 

The dissertation's primary research questions are presented below, and their corresponding 

responses are provided in the subsequent chapters. 

Research Question 1 How to design the formulation of functional composite feedstock to achieve 

desired properties? 



7 

 

Research Question 2 What is the rational of tailoring effective response of functional 

metamaterial with architecture design? 

Research Question 3 What is the purpose of designing full material response in temporal domain? 

Why ML based method is required? 

1.5 Dissertation outline 

Additive manufacturing of functional material with or without architected micro-architecture has 

been demonstrated in prior research. While, precisely designing and tailoring the effective 

properties is still not addressed, which presents significant challenges on the further application of 

functional metamaterials. This dissertation is structured in a way that each chapter, ranging from 

chapter 3 to 5, addresses each individual challenge. In specific, the author identifies the critical 

issues related to each challenge and demonstrates the corresponding solutions.   

Chapter 2 describes a comprehensive review of current status of additive manufactured 

functional materials. The existing AM techniques for the fabrication of functional composite 

feedstock is provided. The effect of surface process of active infill phase on the effective functional 

behaviors of as-fabricated composite parts is discussed. Additionally, a literature review of the 

architected functional metamaterial design is performed, with the emphasis on the limitation in the 

application of these design methods in specific tasks. Next, the scientific challenges and research 

objectives proposed to address corresponding challenges is presented in this chapter. To sum up, 

this chapter provides a detailed analysis on the two main contributing factors, namely the base 

material properties and the architectural design, of effective properties of additively manufactured 

functional metamaterials. 
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Chapter 3 demonstrated the development of theoretical model to instruct the design 

formulation of 3D-printable composite feedstock with desired functional and structural 

properties. In addition to the loading of active infill phase and material properties of both infill 

and matrix phases, the interfacial interaction between these two phases plays an important role in 

the resulting functional performances. The author developed a theoretical model to fully 

characterize the effective behaviors, taking into account the effect of all design parameters of the 

functional composite feedstock. The theoretical prediction is validated by numerical simulation 

and experimental testing results, demonstrating the potential of accurate design of functional 

performances. The developed theoretical model is capable of guiding optimal selection of 

feedstock composition, enabling the realization of high functional responses across a wide range 

of mechanical compliance range, which is suitable for different application scenarios. 

Chapter 4 describes the systematic design strategy of piezoelectric metamaterial to realize 

arbitrary functional responses. The author developed a comprehensive design framework to 

translate the concept of structural metamaterial to the multi-physics coupling behaviors, which 

enables the realization of arbitrary anisotropy of piezoelectric properties, decoupled directional 

strain responses, and all feasible actuation mode of piezoelectric metamaterials. The intrinsic 

mechanics of structural metamaterial and the coupling with functional responses is investigated. 

The developed design framework eliminates the requirement of complicated spatial and orientation 

arrangement of piezo-active components and sophisticated set up of electrodes. The author 

demonstrated the experimental validation of each design cases for the validation of the general 

application of the developed design strategy.  
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Chapter 5 presents the development of ML based design framework which enables the 

creation of full compressive response of the metamaterial with high accuracy. Leveraging the 

forward surrogate model and inverse generative model, the developed ML framework is capable 

of predicting the metamaterial design while bypassing the one-to-many issues commonly 

happened in the inverse design tasks. Additionally, via utilizing the experiment based training data, 

the ML takes account of the effect of fabrication errors on the tested response of as-fabricated 

metamaterials. Exploration of tailored mechanical responses is demonstrated via tuning the input 

features of ML framework, which proves the capabilities of creation the behaviors unseen in 

conventional materials. The developed ML framework represents progress toward a rapid inverse 

design and manufacturing methodology that allows for prescribing the full spatial and temporal 

behaviors of a product. 

Chapter 6 summarizes the main outcomes and contribution made in the study, along with 

the future research directions to address the remaining constraints and challenges in the 

design of multi-functional metamaterials.  
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Chapter 2 Overview of functional responses of additively 

manufactured materials 

This chapter describes a comprehensive review of current status of additive manufactured 

functional materials. It starts with displaying the existing AM techniques for the fabrication of 

functional composite feedstock. The effect of surface process of active infill phase on the effective 

functional behaviors of as-fabricated composite parts is discussed. Then, a literature review of the 

architected functional metamaterial design is performed, with the emphasis on the limitation in the 

application of these design methods in specific tasks. Next, the scientific challenges and research 

objectives proposed to address corresponding challenges is presented in this chapter. In general, 

this chapter provides a detailed analysis on the two main contributing factors, namely the base 

material properties and the architectural design, of effective properties of additively manufactured 

functional metamaterials. 

2.1 Additive manufacturing of functional materials 

Additive manufacturing (AM), also known as 3D printing, is a revolutionary manufacturing 

process which enables rapid creation of objects with complex geometries and desired dimensions. 

AM of structural materials with all types of fabrication techniques has been extensively 

investigated in the previous research. On the basis of these well-studied outcomes, researchers 

have studied the approach to integrate the functionalities into 3D printed objects. The commonly 

used solution is to mix the pre-processed functional infill phases (particles or fibers) with a matrix 

phase available for 3D printing. In this dissertation, the author picked piezoelectricity as a 

representative case of functionalities for its broad application in sensing and actuation.  
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Kim et al developed a fused deposition modeling (FDM) based piezoelectric composite printing 

technique with in-situ activation of piezoelectricity during fabrication process19. In this 

demonstrated technique, the piezo-active powders (BaTiO3) were mixed with dissolved polymer 

matrix (PVDF), forming the composite feedstock for 3D printing. The piezoelectric property d33 

of as-fabricated composite samples reaches 0.1 pC/N at the powder loading of 15 wt%, which is 

over two orders of magnitude lower than that of corresponding bulk piezoelectric ceramics (d33 > 

300pC/N). 

Qi et al demonstrated a selective laser sintering (SLS) based piezoelectric composite printing 

process with carbon nanotube (CNT) added in the composite20. The piezo-active particles (BaTiO3) 

were coated with CNT first via sonication and stirring, and the processed particles were then mixed 

with matrix powder forming the material for fabrication. The piezoelectric property d33 of as-

fabricated composite samples reaches 2.1 pC/N at the powder loading of 60 wt%, which is also 

much lower than that of bulk BaTiO3ceramics (d33 > 300pC/N). 

Mitkus et al presented a stereolithography (SLA) based piezoelectric composite printing process 

with conductive nanofillers added in the colloids21. The piezo-active particles (BaTiO3) were 

dispersed in ultraviolet (UV) sensitive photopolymer, and the mixed colloids were solidified with 

UV light. The piezoelectric property d33 of as-fabricated composite samples reaches 1 pC/N at the 

powder loading of 30 vol%, which is also much lower than that of bulk BaTiO3ceramics (d33 > 

300pC/N). 
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2.2 Surface functionalization of piezoelectric particles 

Attributed to functionality-processability tradeoff, the obtained piezoelectric coefficients d33 of as-

fabricated composite, printed by various AM techniques, demonstrate the fact that simple physical 

mixture of functional particles and matrix phase gives rise to effective properties over two orders 

of magnitude lower than that of pure ceramics. Increasing particle concentration leads to 

agglomeration22, high viscosity23, and significant light absorption24, making it difficult to 

manufacture fully complex micro-architectures or free form-factors. Additionally, the 

incompatibilities between high stiffness nanoparticle and low stiffness polymer, resulting in poor 

interfacial adhesion25, reduce stress transfer efficiency from the polymer matrix to the piezoelectric 

inclusions, and suppress the functional performance.  

Kim et al explored surface functionalization of a low concentration of BaTiO3 nanoparticles 

(below 2vol%, i.e., 10wt%) to covalently bind them to the polymer matrix26. They have 

demonstrated significant enhancement of the piezoelectric coefficient as compared to non-

functionalized dispersion, from ~5 pC/N to ~40 pC/N.  

This surface functionalization can enhance particle-polymer compatibility, and enables the 

production of complex, three-dimensional piezoelectric micro-architectures with high 

concentrations of piezoelectric nanoparticles while maintaining processability. However, the 

mechanism of the electro-mechanical property enhancement via the interface between the active 

nano-inclusion and the structural monomer matrix remains elusive. 
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2.3 Architectural design of piezoelectric metamaterial 

Structural properties of architected metamaterial have been thoroughly studied, and prior research 

have demonstrated various exotic material behaviors unseen in the constitutive counterpart. 

Following the similar approach, translating the concept of architectural design to multi-physics 

coupling behaviors should provide novel responses different from homogeneous functional 

materials.  

Yang et al presented a series of piezoelectric metamaterial designs, which enables the realization 

of nonzero term for all components in the piezoelectric coefficient tensor27. For bulk PZT, only 5 

out of 18 piezoelectric coefficients are nonzero values (d31=d32≠0, d33≠0, d15=d24≠0). The 

researchers assembled multiple piezo-active elements, where each element displays a unique 

material orientation (poling direction), with various pairs of driving electrodes to achieve target 

macroscopic deformation. 

While, the challenge in fabrication process, brought by sophisticated material orientation and 

complex driving voltage arrangement, constraints the general application of this piezoelectric 

metamaterial. Additionally, as the designed metamaterials is the assembly of multiple bulk pieces 

of piezoelectric elements, they are not capable a uniform deformation on the boundary, which 

further limits their application in actuation tasks. 
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2.4 Scientific challenges and research objectives 

2.4.1 Designing the functional properties of 3D printable material feedstock 

The physical mixture of active phase with 3D printable matrix phase yields low effective 

functional response of as-fabricated samples. Increasing the concentration of active phase is 

capable of enhancing the functional behaviors to a certain extent. However, attributed to the 

functionality-processibility tradeoff, the increased loading of functional particles yields serious 

issues in fabrication process, such as particle agglomeration, high viscosity, and severe light 

absorption.  

Surface functionalization process has been employed to improve interfacial adhesion between 

different phases and subsequently functional responses. But the mechanism of improvement in 

electro-mechanical coupling responses still remain elusive.  

Therefore, the resulting function responses obtained from existing AM techniques rely on 

experimental trials. And there is no theoretical design methodology to guide composite 

formulation to achieve desired functional response before fabrication process. 

2.4.2 Designing the micro-architecture of functional metamaterials 

Different from mechanical properties, functional behaviors is generally anisotropy material 

responses. Therefore, the design methodology of mechanical quantities cannot be directly 

translated to functional properties. Existing theoretical design formulas only consider the 

relationship between effective mechanical properties with the design parameters of the structural 

metamaterials. Additionally, the correlation between macroscopic and local strain/stress field, the 
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multi-physics coupling of constitutive materials, and the summation method of all effective 

contribution of individual units should be accounted in the design of functional metamaterials.  

2.4.4 Research objective 

Constitutive material properties and architectural design are two contributing factors that 

determine the effective responses of the functional metamaterials. This dissertation focuses on 

designing functional responses of additively manufactured metamaterials. In specific, the author 

developed a theoretical model to instruct the optimal composition formulation of material 

feedstock for achieving the desired functional and structural properties. Furthermore, the author 

established a general design methodology of micro-architecture, which enables the creation of 

arbitrary material anisotropy and decoupled strain responses of functional metamaterials. This 

dissertation emphasizes the design of effective functional responses as the instruction of the AM 

process of functional materials. 

The dissertation's main research objectives are as follows:  

1. To understand the effect of all contribution factors of functional responses, including 

functional phase concentration, material properties of both infill and matrix phases, 

interfacial interactions, etc.;  

2. To establish a comprehensive theoretical model to reveal the relationship between multi-

physics coupling behavior and micro-architecture of metamaterials; 

3. To investigate the design method to create the entire temporal responses of structural 

metamaterial.  
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Chapter 3 Design functional properties of 3D-printable materials 

This chapter described the theoretical model that fully characterizes the effective functional 

behaviors of a composite material and its application in guiding the formulation of 3D printable 

feedstock with target functional responses. The chapter starts with the establishment of the 

theoretical model, adopted from a classic micro-mechanics model. The parameters quantifying the 

interfacial interactions are obtained with experimental measurements. Next, the theoretical 

prediction is validated with experimental measurement and numerical simulation. The validated 

theoretical model is then used to formulate a design map of multi-functional response of 

functionalized piezoelectric composites. With this design map, two test cases with different 

requirements of functional and structural properties are demonstrated. 

3.1 Development of theoretical model – effective interphase model (EIM) 

Herein, to capture the physical foundation of the observed electromechanical properties at a variety 

of loading conditions and surface functionalization level, we establish the theoretical model and 

quantify the effective electromechanical properties that arise from the tunable structural 

parameters of the active and matrix phases. To predict the functional performance of the 

nanocomposite, we express the electromechanical properties of the piezoelectric materials as28: 

𝐸iJMn =

{
 

 
𝐶iJMn     for J,M = 1,2,3

𝑒nij     for J = 1,2,3,M = 4

𝑒imn     for J = 4,M = 1,2,3
−𝜅in     for J = M = 4

      (3.1) 

Where Cijmn, eimn and κin (i, j, m, n = 1,2,3) are the elastic moduli, the piezoelectric constant and 

the dielectric constant of the material, respectively. The effective property of the composite is 
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evaluated through the calculation of the electromechanical property matrix EiJMn. The piezoelectric 

charge constant d33, that quantifies the polarization per unit stress, is calculated as:  

𝑑33 = ∑𝑒3ii𝐶ii33
−1

3

i=1

      (3.2) 

where C
-1 

ii33 represents the corresponding term in the compliance matrix, the inverse of the elastic 

stiffness matrix Cijmn. 

While existing analytical models, including the law-of-mixture model29 and laminate models30, 

etc., have been used to calculate the effective properties of laminates, they are not suitable for 

characterizing the scenarios where the morphology and the distribution of the active inclusion 

affect the effective performance of the composite31. Mori-Tanaka model32-36, a classic 

micromechanical model, has been used to evaluate the effective property of nanocomposite. 

However, after surface functionalization, the covalent bonds between the surface linker and the 

monomer matrix generate an interphase region (Figure 3-1a), which inhibits the relative sliding 

between the piezo-active inclusion and the polymer matrix37. This enhanced interfacial behavior 

was not captured in the above-mentioned Mori-Tanaka model which assumes matrix and the 

inclusion are assumed perfectly bonded38.  
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Figure 3-1. Effective interphase model for characterization of functional responses of 

piezoelectric composites. (a) Schematics of our effective interphase model for calculating 

piezoelectric response of functionalized PZT colloids. The dashed lined region represents the 

effective interphase with electromechanical properties (EIII, νIII) formed by the covalent linkage 

from surface functionalization that connects the active and monomer phase. For non-

functionalized case the property of such effective interphase approaches zero and can be 

incorporated into the model. (b) Flow chart summarizing the effective interphase model for 

calculating the electromechanical performance of the 3D printable piezoelectric nanocomposite. 
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(c) Theoretical numerical and experimental results of piezoelectric charge constant d33 of 

functionalized and nonfunctionalized nanocomposite against a range of particle volume loadings. 

(d) FEA results of functionalized (Left) and nonfunctionalized (Right) RVE with different volume 

fractions. 

 

Here, to describe the effective electromechanical property of the functionalized piezoelectric 

nanocomposite, we introduced a generalized effective interphase model to capture the interfacial 

effect between inclusion and matrix phases. The theoretical prediction of the functional behavior 

of the nanocomposite takes account of the constituent material electromechanical property (matrix 

property EI and inclusion property EII), nano-inclusion morphology (dilute concentration tensor 

TII), and the interfacial interaction between phases (surface functionalization effect) as shown in 

Figure 3-1a and 3-1b. And the effective property of composite including the interfacial region is 

given as:   

𝐄 = 𝐄I + ((𝑣II + 𝑣III)(𝐄III − 𝐄I)𝐓III + 𝑣II(𝐄II − 𝐄III)𝐓II)(𝑣I𝐈 + (𝑣II + 𝑣III)𝐓III)
−1      (3.3) 

where E is the effective electromechanical stiffness matrix of the as-printed composite which is 

denoted as EiJMn from Eq. (3.1); Ei (i=I, II, III) is the electromechanical property matrix of the 

matrix phase (I), the active material phase (II) and the interphase region(III), respectively; I is the 

identity matrix; νi (i=I, II, III) is the volume fraction of the corresponding phase; TII and TIII is the 

dilute concentration tensor for the nanoparticle and the interphase, which is dependent on the 

morphology and volume fraction of the particle.  
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While Poisson’s ratio νIII, piezoelectric constant 𝑒 and dielectric constant κ of the interface CH2-

CH2 groups can be considered consistent with those of the polymer matrix39, their Young’s 

modulus CIII are enhanced by the functionalization level at the nanoparticle interface as the surface 

coverage of the linkers increases. This allows one to tune the effective stiffness EIII of the 

interphase region by tuning the degree of functionalization.  

3.2 Theoretical derivation of the electro-mechanical properties of the 

piezoelectric composite 

Governing equation of the piezoelectricity, effective stiffness matrix E 

To characterize the performance of piezoelectric polymer composite, we start from the governing 

equations of piezoelectricity given as28: 

𝜎ij = 𝐶ijmn𝜀mn − 𝑒nij𝐸n      (3.4) 

𝐷i = 𝑒imn𝜀mn + 𝜅in𝐸n      (3.5) 

where σij, Di, εmn and En (i, j, m, n=1, 2, 3) are stress, electric displacement, strain and electric field, 

respectively. Cijmn, eimn and κin are the elastic moduli, piezoelectric constant, and dielectric constant 

of the piezoelectric material, respectively. Rearranging equation yields the compact form of:  

ΣiJ = 𝐸iJMn𝑍Mn      (3.6) 

where i, n=1, 2, 3 and J, M=1, 2, 3, 4. The stress-electric displacement ΣiJ, the strain-electric field 

ZMn and the effective electromechanical stiffness EiJMn are in the form of: 
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ΣiJ = {
𝜎ij    for J = 1,2,3

𝐷i      for J = 4
      (3.7) 

𝑍Mn = {
𝜀Mn   for M = 1,2,3
−𝐸n      for M = 4

      (3.8) 

𝐸iJMn =

{
 

 
𝐸iJMn     for J,M = 1,2,3

𝑒nij     for J = 1,2,3,M = 4

𝑒imn     for J = 4,M = 1,2,3
−𝜅in     for J = M = 4

      (3.9) 

The piezoelectric behavior of the piezoelectric polymer composite is characterized by the stiffness 

matrix EiJMn. 

Mori-Tanaka model 

The overall property of the heterogeneous piezoelectric material is evaluated by taking the volume-

averaged piezoelectric field and displacement matrix as32: 

𝚺̅ = ∑𝑣𝑟𝚺̅𝑟

𝑁

𝑟=1

     (3.10) 

𝐙̅ = ∑𝑣𝑟𝐙̅𝑟

𝑁

𝑟=1

     (3.11) 

where r denotes the phase (r=1 represents the matrix phase), vr is the volume fraction of the r-th 

phase in the composite, and the overbar represent the volume averaged quantity. The constitutive 

equation Eq. 3.6 could be expressed as: 

𝚺̅ = 𝐄𝐙̅      (3.12) 
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And the volume-average strain-electric field in phase r is: 

𝚺̅r = 𝐀r𝚺̅     (3.13) 

where Ar is the concentration tensor of the r-th phase, and 

∑𝑣r𝐀r

N

r=1

= 𝐈      (3.14) 

where I is the identity matrix. Combining Eq. 3.10 to Eq. 3.14 yields the effective 

electromechanical matrix E in terms of effective stiffness of each phase as40: 

𝐄 = 𝐄I + ∑𝑣r(𝐄r − 𝐄1)𝐀r

N

r=1

             (3.15) 

The Mori-Tanaka model38,41, a classical micromechanical model assuming perfect bonding 

between the matrix and the composite, has been widely used to predict the effective property of 

piezoelectric nanocomposite. The concentration tensor Ar given by the Mori-Tanaka model is38,41: 

𝐀r = 𝐓r
dil(𝑐1𝐈 + ∑𝑣r𝐓r

dil

N

r=1

)−1            (3.16) 

𝐓r
dil = (𝐈 + 𝐒r𝐄I

−1(𝐄r − 𝐄I))
−1            (3.17) 

Where T
dil 

r  is the dilute tensor; Sr is the piezoelectric Eshelby tensor determined by the inclusion 

morphology. Rearranging Eq. 3.15 to Eq.3.17 yields the effective property of the composite as: 

𝐄 = (𝑣1𝐄I + 𝑣2𝐄II𝐓II
dil)(𝑣1𝐈 + 𝑣II𝐓II

dil)
−1

       (3.18) 
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where 𝐄 is the effective electromechanical stiffness of the composite, which was denoted as EiJMn 

previously, Ei (i=I, II) is the electromechanical property matrix of the corresponding phase (I and 

II represents matrix, nanoparticle respectively), and vi (i=I, II) is the volume fraction of the 

corresponding phase 

Effective interphase model 

Due to the incompatibility of hydrophilic nanoparticle and hydrophobic polymer25, the poor 

interfacial-interaction adhesion of the piezo-active inclusions reduces the stress transfer efficiency 

from the polymer matrix to the piezoelectric active material, suppressing the functional 

performance of the as-fabricated composite42. Through the functionalization process, strong 

covalent bonds between monomer matrix and surface agent grafted on the PZT particle are formed, 

which enhances the interfacial behavior and improves the stress transfer efficiency37. However, 

this elevated interfacial interaction performance is not characterized by the Mori-Tanaka model. 

Hence, a modified Mori-Tanaka model, the effective interphase model43, was invoked to 

theoretically predict the electromechanical property of the piezoelectric polymer composite 

incorporating the interfacial effect between inclusion and matrix phases as shown in Figure 3b. 

The effective interphase model was developed to evaluate the mechanical property of the 

composite previously. Here, to characterize the functional performance of the piezoelectric 

nanocomposite, we generalized this effective interphase model by utilizing the effective 

electromechanical stiffness 𝐸𝑖𝐽𝑀𝑛 of piezoelectric material in the theoretical expression. Then the 

effective piezoelectric property of the composite is given as: 

𝐄 = 𝐄I + ((𝑣II + 𝑣III)(𝐄III − 𝐄I)𝐓III
dil + 𝑣II(𝐄II − 𝐄III)𝐓II

dil)(𝑣I𝐈 + (𝑣II + 𝑣III)𝐓III
dil)

−1
(3.19) 
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The variables and the subscripts are the same as those in the Mori-Tanaka model. In the effective 

interphase model, a third phase (interphase) is considered and represented by III. EIII and vIII 

represent the effective property and the volume fraction of the interphase, respectively. The dilute 

matrix of the particle T
dil 

II  is different from it in the Mori-Tanaka model as: 

𝐓II
dil = 𝐈 − 𝐒[𝐒 + (𝐄II − 𝐄I)

−1𝐄I]
−1       (3.20) 

T
dil 

III  is the dilute matrix of the interphase as: 

𝐓III
dil = 𝐈 − 𝐒{

𝑣II

𝑣II + 𝑣III

[𝐒 + (𝐄II − 𝐄I)
−1𝐄I]

−1 +
𝑣III

𝑣II + 𝑣III

[𝐒 + (𝐄III − 𝐄I)
−1𝐄I]

−1}(3.21) 

 

3.3 Effective interphase properties measurement 

Here, to experimentally identify and evaluate the interphase mechanical properties for our model, 

nanomechanical characterizations44 were conducted on functionalized PZT-polymer films. The 

normal displacement and the lateral force profiles were extracted from a laterally-scratching 

indenter (90o conical indenter with radius 738nm) while holding the constant vertical force that 

probes into the scratched films (Figure 3-2a and 3-2b). The interphase region is characterized by 

the area where scratch depth increases or decreases gradually45 (see Figure 3-2). We can then 

extract the volume fraction 𝑣III and the effective modulus CIII of the interphase region from the 

scratch depth profile and the lateral force curve, respectively (detailed derivations see Method). 

Here the superscripts I, II and III in the modulus Ci (i=I, II, III) represent the polymer matrix, 

piezoelectric inclusion and interphase region, respectively. 
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Figure 3-2. Scratch test to obtain interphase stiffness and width used in the theoretical and 

numerical calculation. (a) Scratch depth profile obtained in the scratch test. (b) Lateral force curve 

obtained in the scratch test. (c) Four phases within the scratch process and corresponding scratch 

depth profile. 

 

Nanoindentation is a variety of indentation hardness tests applied to nanoscale measurement44. 

During the nanoindentation process, the indenter probes into the measured sample in the 
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perpendicular direction to the sample surface under a constant force applied by the transducer. A 

force-displacement curve is obtained by continuously measuring the vertical probe displacement. 

The stiffness of the measured sample equals the initial slope of the unloading portion in the force-

displacement curve. The modulus of the indented material C2 is obtained as46: 

Er =
S

2β
√

π

A
       (3.4) 

Er = (
1 − 𝑣1

2

C1
+

1 − 𝑣2
2

C2
)

−1

(3.5) 

where S is the slope of the force-displacement curve extracted from the nanoindentation test, β=1 

for the conical indenter used in the indentation test, and A is the contact area. Er is the reduced 

modulus for the indented test, Ci and vi (i=1,2) are the modulus and Poisson’s ratio of the 

corresponding phase, where 1 represents the indenter and 2 represents the indented material.  

Different from traditional nanoindentation tests where the indenter only vertically probes into the 

measured sample, the horizontal translation of the indenter is introduced in the scratch test47. The 

indenter continuously moves in the horizontal plane while holding constant vertical load probing 

into the measured sample, extracting scratch depth profile and a lateral force curve as shown in 

Figure 3-2a and 3-2b, correspondingly. As shown in Figure 3-2c, the scratch process could be 

separated into four periods corresponding to continuous regions in the scratch depth profile: I), the 

indenter has no contact with the particle; II), the leading edge of the indenter is in contact with the 

particle; III), the indenter is scratching over the particle region; IV), the indenter has passed the 

particle. The interphase region is characterized by the area that the scratch depth increases or 

decreases gradually as shown in Figure 3-2a45, and the thickness of the interphase region is 
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extracted from the width of the corresponding region. Here, the thickness of the interphase region 

is measured around 50nm for functionalized film.  

Then, we extracted the interphase region’s simplified stiffness from the slope of the lateral force 

curve. As shown in Figure 3-2b, the simplified stiffness of the functionalized (SF) and 

nonfunctionalized nanocomposite (SU) is extracted from the corresponding curve. The reduced 

modulus of the interphase region is obtained as: 

Er =
Si

2β
√

π

Ah
       (3.6) 

where i=U, F represent the nonfunctionalized and functionalized composite, respectively; Ah is the 

cross-section area of the indenter in the horizontal direction. Following Eq. 3.6, we obtained the 

effective modulus of the interphase region, which was used in the theoretical and numerical 

calculation along with the thickness of the interphase. For instance, the effective modulus of the 

interphase region of PZT-PEGDA composite is 1.38GPa and 178MPa for the functionalized and 

unfunctionalized case, respectively. 

3.4 Validation of effective interphase model 

To validate our theoretical prediction on the surface functionalization effect, we conducted 

numerical analysis in the COMSOL Multiphysics FEA software48. The material properties of the 

piezo-active inclusion, the interphase region, and the monomer matrix are consistent with those 

used in the theoretical model. We establish a cubic representative volume element (RVE)49 model 

to simulate the effective piezoelectric response of the functionalized nanoparticle matrix over a 

wide range of the particle loading and inclusion aspect ratios. The periodic boundary conditions 
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(PBC)49 are enforced to ensure the RVE effectively characterizes the deformation of the 

macroscopic piezoelectric nanocomposite. In addition, to prevent the rigid body motions and to 

provide a zero-potential surface for voltage output, the bottom surface of the RVE is fixed in 3-

direction and grounded. The piezoelectric voltage output of the RVE is induced by the input stress 

applied at the top surface (Figure 3-1d), where the color represents the magnitude of the induced 

voltage. An elevated voltage output trend can be readily visualized with increasing volume 

fractions in functionalized and unfunctionalized cases, all induced by the same external stress. The 

piezoelectric charge constant d33 of the RVE is evaluated by the ratio between the effective electric 

displacement D
eff 

3 (average of the electric displacement on the top surface) and the input mechanical 

stress σ
input 

3  as:  

𝑑33 =
𝐷eff

𝜎33
        (3.7) 

Moreover, we measured the piezoelectric coefficients of the 3D printed piezoelectric materials 

with preconfigured parameters (with and without functionalization, particle volume loading 𝑣II 

and matrix modulus CI). The fabrication of piezoelectric nanocomposite material starts with the 

functionalization of the piezoelectric particles. We use trialkoxysilane-methacrylate functionalized 

PZT, with reaction conditions optimized to provide maximum grafting50. After functionalization 

of the nanoparticles, the functionalization agent is covalently grafted to the piezoelectric 

nanoparticle surface, Figure 3-3a. The agent provides a sterically hindered surface in the liquid 

state51, and after curing by UV-light strong covalent chemical bonds (CH2-CH2 group), connect 

the modified piezoelectric particles with the photo-polymer matrix. This matrix-inclusion linkage 

enables effective stress transfer between different phases and facilitates composites dispersion 

uniformity despite high inclusion content. These modified PZT particles are then high-energy ball 
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milled into an ultraviolet-sensitive monomer with ultra-high concentrations50 (up to 50vol%, i.e., 

~87wt%). This UV-sensitive dispersion is printed with a custom-made large area projection micro-

stereolithography (PμSL) system50 where a tape-casting recoating process52 is designed to ensure 

accurate control of the colloidal paste thickness prior to UV pattern exposure (Figure 3-3b). A 

variety of as-printed piezo-active materials with complex 3D micro-architectures and flexibilities 

are shown in Figure 3-3c to 3-3f. To active the piezoelectric polarizations, a 5V/um uniform 

electric field was applied to pole these piezoelectric nanocomposites for one hour under room 

temperature53 (Figure 3-4).  
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Figure 3-3. Fabrication process of functionalized piezoelectric composites. (a) Chemical structure 

of the UV-sensitive monomer matrix and the functionalized PZT particles. (b) Custom PuSL 

fabrication system for piezoelectric nanocomposite. (c)-(f) Additive manufactured piezoelectric 

complex structures with fine surface finish.  

 

Figure 3-4. Schematic of poling setup. 

 

To evaluate the surface functionalization and ensure maximum grafting, we measured the response 

via the Fourier-transform Infrared Spectroscopy Attenuated Total Reflectance (FTIR-ATR) of 

thoroughly cleaned PZT particles with various surface agent loadings or functionalization reaction 

times as shown in Figure 3-5a and 3-5b. The spectrum focuses on the carbonyl and alkene of the 

methacrylate surface groups nominally at 1710 cm-1 and 1630 cm-1 respectively. The increasing 

intensity with higher loading and reaction time indicates increasing grafting of the 

functionalization agent to the PZT particles until a maximum is reached where no further gain in 

intensity is achieved. The free methacrylate groups on the fully modified particle surface provide 

steric interference and favorable interactions with the acrylic pre-polymer dispersion allowing 
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high-quality, agglomeration-free state. The piezoelectric voltage output of the as-printed 

nanocomposite is measured via cyclical loadings from a standard shaker and data acquisition 

system connected with a 40MΩ  resistor (see Figure 3-6a and 3-6b). Figure 3-5c shows 

significantly elevated voltage output via surface functionalization of 30vol% (~74wt%) loaded 

piezo-active feedstock, which exceeds the performance of commercial piezoelectric polymer 

material, polyvinylidene fluoride (PVDF), and previous 3D printed piezoelectric 

nanocomposites26 by over three times. Here, the overall dimension of all samples (functionalized 

PZT composite, unfunctionalized, commercial PVDF) and the force magnitude of the cyclical 

loading applied to these samples are the same. The piezoelectric charge constant d33, defined as 

the induced electric charge density per unit applied stress, was evaluated to quantify the 

piezoelectric behavior of the as-fabricated nanocomposite after calibrating the measurement 

system with standard piezoelectric films (Figure 3-6d). 

 

Figure 3-5. Characterization of piezoelectric particles with different surface process conditions. 

Fourier-transform Infrared Spectroscopy (FTIR) of PZT particles with (a) different loading of 

surface functionalization agent or (b) reaction time. (c) Comparison of voltage output of 

functionalized, 30vol% PZT nanocomposites with non-functionalized PZT composite and PVDF 

polymer (Sigma-Aldrich, MO, USA) induced by the same stress of 48kPa.  
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Figure 3-6. Measurement of piezoelectric coefficient of as-fabricated samples. (a) Schematic of 

the tested sample assembly. (b) The piezoelectric voltage output of the as-fabricated sample before 

and after polarization. (c) The circuit used to quantify the piezoelectric charge constant, d33. (d) 

The calibration curve of the measuring system with standard samples. The error of the 

measurement is within 5%.  

 

The as-fabricated piezoelectric nanocomposites were polarized and then assembled to remove the 

triboelectric effect (see Figure 3-6a). The stress induced voltage output was quantified through a 

measuring circuit as shown in Figure 3-6c, and the piezoelectric charge constant was calculated 

with this voltage. We observed over 10 times enhancement of piezoelectric charge constant (d33) 

through surface functionalization at 3vol% (~17wt%) PZT particle loading (Figure 3-1c), 

consistent with theoretical predictions and numerical simulations. Piezoelectric charge constant 
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was increased over 100% at higher PZT volume fraction (for example from 38pC/N to 110pC/N 

at 30vol% i.e., ~74wt% concentration). This consistency between theoretical prediction, numerical 

analysis and experimental measurement, as shown in Figure 3b, indicates that generalized effective 

interphase model could precisely evaluate the functional performance of nanocomposite.  

Here, we invoked the Hashin-Shtrikman as the theoretical upper bound of the piezoelectric 

property of nanocomposite as54: 

𝐏upper = 𝐏II + (1 − 𝑣II){(𝐏I − 𝐏II)
−1 + 𝑣II𝐒𝐏𝐼

−1}−1     (3.8) 

where Pi (i=I, II) is the effective compliance matrix of the monomer matrix (i=I) and the piezo-

active inclusion (i=II), respectively; vII is the particle volume fraction of the nanocomposite; S is 

the piezoelectric Eshelby matrix. As indicated in Figure 3-1b, the electromechanical property of 

the composite significantly is enhanced via particle surface functionalization, approaching the 

theoretical upper bound. 

3.5 Multi-functional design map of functionalized piezoelectric nanocomposite 

The effective interphase framework presented here allows us to access the effects of constituent 

parameters from the 3D printable raw material feedstock on the electromechanical properties of 

the bulk nanocomposites. Our methodology enables users to reverse design 3D printable feedstock 

parameters that can achieve target electro-mechanical and structural properties after printing. To 

optimize the piezoelectric performance, we investigated the piezoelectric property of the 

composites with a range of polymer matrix moduli, morphologies of the perovskite inclusion and 

the interfacial strength between the active and inactive phases via controlling functionalization. 

Increasing the molecular weight (Mn) of the uncured monomer feedstock decreases polymer 
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crosslink density during the UV curing process, and lowers the mechanical modulus, Figure 4a. 

This allows us to modulate the electromechanical property EI of the matrix phase, by tuning the 

molecular weight/mechanical modulus of the polymer CI. Additionally, we employed our model 

to tune the functional performance of the piezoelectric nanocomposite via varying the morphology 

of the piezo-active nanomaterials. An enhanced piezoelectric charge constant d33 is achieved via 

increasing the aspect ratio (h/r) of the active phase while maintaining particle concentration, Figure 

3-7b. Increasing the grafting density elevated the resulting effective electromechanical properties 

of the interphase (EIII) based on our effective interphase model, resulting in elevated piezoelectric 

constants (d33) at a given nano-inclusion loading (Figure 3-7c).  
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Figure 3-7. Formulation of multi-functional design map of functionalized piezoelectric 

composites. (a) The measured Young’s modulus of the UV cured monomer matrix with different 

molecular weight. (b) The effect of functionalized inclusion aspect ratio at a constant volume 

fraction predicted by the theoretical model. d33 increases with the aspect ratio of PZT particle. (c) 

The theoretically predicted piezoelectric charge constant of the 30vol% PZT composite with a 

range of functionalization level (matrix molecular weight, Mn=700). (d) Design map (d33, E) of 

the 3D printable multi-functional piezoelectric nanocomposites as a function of nanoparticle 

loading within the dispersion and monomer stiffness. Each surface represents functionalized 

nanocomposite with a constant aspect ratio of the nanoparticle. (e) The optimal combination of the 

design parameters with given piezoelectric charge constant.  

 

By tuning the aspect ratio of functionalized nanoparticle inclusion and the polymer matrix stiffness 

of the piezoelectric nanocomposite, a wide range of composite stiffness along with high functional 

response can be simultaneously attained. As shown in Figure 3-7d, we present the design map for 

obtaining multi-functional property pairs (piezoelectric charge constants and structural compliance) 

via configuring the monomer modulus and parameters of the functionalized PZT nanoparticle 

inclusions. The piezoelectric charge constant d33 of the printable nanocomposite is plotted against 

a range of volume loading of the PZT particles and the UV curable monomer stiffness. A series of 

surfaces are generated where each point on the surface corresponds to a set of design parameters 

(i.e., particle volume fraction vII, monomer matrix stiffness CI, and the aspect ratio of the piezo-

active inclusion h/r). The height of the surfaces represent the magnitude of d33, and the color 

indicates the effective mechanical modulus of the nanocomposite. For instance, with a target 

piezoelectric charge constant (i.e., d33=80pCN-1), the mechanical stiffness of the resulting 

composite is modulated via tuning the stiffness of the monomer and the PZT particle loading 

(Figure 3-7d) volume fractions. Within the design curve, where the color for each point represents 

the Young’s modulus of the resulting composite (from softer to stiffer), a combination of volume 

fraction of the PZT inclusion and the monomer stiffness can be configured to reach the target d33 

constant.  
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The requirement of high-stiffness for high-response makes achieving highly flexible piezoelectric 

sensors particularly challenging. Wearables and biomedical implants may particularly require low-

stiffness piezoelectric sensors due to the strains and soft tissues involved, but simultaneously 

require high-response due to their low sensor input forces. Our modeling directs nanocomposite 

development towards this area of highly-flexible and high-response nanocomposites. We 

compared the designed performance of the piezoelectric nanocomposite with that of existing 3D 

printed piezoelectrics19,26,55-59. As shown in Figure 3-8, the designed nanocomposite exceeds the 

functional property of other 3D printable piezoelectrics, while occupying a wide range of 

compliance range (i.e., from 5.5×10-11 Pa-1 to 3×10-8 Pa-1). Our design strategies imply that target 

structural flexibility while retaining high sensitivity and detection ranges can be simultaneously 

achieved via rational selections of constituent material parameters, as will be demonstrated below.   
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Figure 3-8. Comparison of piezoelectric charge constant d33 and mechanical compliance between 

piezoelectric nanocomposite presented in this work with other 3D printed composite materials. 

 

3.6 Flexible, conformal self-sensing material for low air pressure detection 

The possibility of achieving high sensitivity and flexibility of the bulk piezoelectric composites 

motivated us to explore its potential applications as conformal highly sensitive air flow sensor, 

where the pressure induced by air flow (lower than 50 Pa) could be detected. Here, we fabricated 

a 15cm2 micro-architected octet-truss lattice structure with the 3vol% (~17wt%) piezo-active 

colloidal and attached it on a curved surface, as shown in Figure 3-9a to 3-9c. The radius and the 

node-to-node length of each strut are 150um and 1.8mm, respectively. We used a UV light source 

with 14.8mWcm-2 light power intensity to solidify each layer of the piezoelectric colloidal. 

Stretchable, paintable silver electrodes (TED PELLA, Leitsilber 200 Silver Paint) are painted on 

both sides of the lattice and connected to two copper leads. The voltage outputs of the conformal 

piezoelectric lattice induced by air flow were collected with a data acquisition system (NI USB-

6356). The air flow with different flow direction (ϴ) was applied via squeezing a 3mL pipet with 

a constant distance between the sensor and pipet. The air pressure was calibrated using a highly 

sensitive precision force gauge (DBCR-20N APPLIED MEASUREMENTS LIMITED) prior to 

the experiment. The highest voltage (~3mV) is observed at inflow angle 90°, while the signals are 

reduced (~2mV) with other two angles (ϴ=45° and 135°), as shown in Figure 3-9d. Additionally, 

we compared the piezoelectric voltage output of a PVDF film and a non-functionalized lattice with 

the functionalized piezoelectric lattice. As shown in Figure 3-9e, the functionalized piezoelectric 

flexible sensor generates ~3mV and ~1mV voltages with 164Pa and 43Pa air pressure, respectively, 

while the PVDF can only detect high air flow pressure (164Pa) with ~0.8mV output and not 
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detectable at 43Pa. The nonfunctionalized lattice failed to detect air low. The high sensitivity at 

ultralow-stiffness highlights their potential as highly sensitive yet flexible and conformal 

wearables not achievable in current transducer materials.  

 

Figure 3-9. Flexible, conformal piezoelectric lattices for air-flow detection. (a-c) Optical image 

of the conformal flexible air flow sensor with air flow applied in ϴ =45°, 90° and 135° directions. 

The distance between the pipet and the lattice was kept as 2mm. (d) Voltage output of the flexible 

air flow sensor as a function of time with air flow applied in ϴ =45°, 90° and 135° direction. (e) 

Voltage output of the functionalized lattice, PVDF film and the nonfunctionalized lattice as a 

function of time. The air flow is generated by squeezing or releasing the pipet continuously. ϴ was 

kept as 90°. 
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3.7 Wireless, self-sensing boxing glove 

In addition to the low-pressure detection, we demonstrated the case where mechanical stiffness, 

energy absorbing, and high magnitude pressure sensing mapping capabilities were introduced into 

a sporting wearable device. Here, we 3D printed flexible piezoelectric lattice with stretch 

dominated micro-architectures with a designed thickness (5mm) and then inserted into a boxing 

glove (Figure 3-10a) to provide spatially resolved and time-resolved mapping of reaction punching 

forces exerted to knuckles of the hand during boxing activities. The overall dimension of the lattice 

is 50mm×80mm×5mm, while each impact probing area is 10mm×10mm. The radius and the 

node-to-node length of the strut are 300um and 3mm, respectively. After polarization, the entire 

3D printed piezoelectric lattice is active and can be probed from anywhere within the material, 

providing the new opportunity for sensing where user configures and defines arbitrary locations 

for sensing and data output where electrodes are applied. The lattice overall dimension, modulus 

and d33 are calibrated using force sensor to ensure that the highest punching force that an athlete 

could produce are within the linear elastic detection range of the lattice material within the boxing 

glove (Figure 3-11a). Here, 8 pairs of electrodes corresponding to the knuckles of a hand are 

attached onto the 3D printed lattice. We integrate our self-sensing, energy absorbing composite 

with a microcontroller (WEMOS D1 Mini) and multiplexer (BOB-09056, SparkFun Electronics), 

which allow the data from the 8 pairs of electrodes to be sent, received and hosted over a Wi-Fi 

connection. As shown in Figure 3-10a (cross section), we then attach the lattices conformally to 

the hand and embedded it into a sport boxing glove (Title Classic Boxing Gloves). The stress-

induced voltages from the lattice are then wirelessly transmitted to a data receiving device (cell 

phone) with a custom-made user interface to read the force data. With the calibrated d33 constants 

and force measurements of the lattices, force magnitude distributions are displayed onto the 
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custom user interface. Figure 3-10b shows the as-fabricated conformal lattice. Figure 3-10c plots 

the measured punch force magnitude of a series of applied, calibrated forces (from 50N to 400N) 

on the as-fabricated conformal lattice. The significant gap (green area) between the punch force 

and transmitted force reveals the structural impact absorbing capabilities of the smart piezoelectric 

lattices. This application highlights the multi-functional utility of the designed piezoelectric 

materials. Figure 3-10d and 3-10e show the optical images of the glove when it hits a wall by a 

direct strike and right hook, respectively. Spatial distribution of force magnitudes obtained from 

the prescribed electrodes attached on the lattice is then displayed onto the receiving device, as 

shown in Figure 3-10f and 3-10g. The red shaded area denotes the probing points while the dashed 

lines denote other locations where the electrodes can be attached to read data output. Additionally, 

the impact force distribution restored at grid pattern can be interpolated to cover the entire area. 

Testing of over 6000 times punching was conducted to confirm the repeatability and durability of 

these lattice materials (Figure 3-11b). 
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Figure 3-10. Wireless, self-sensing boxing glove. (a) Schematics of the wireless self-sensing 

boxing glove. A 3D printed flexible piezoelectric lattice with stretch dominated micro-

architectures is inserted into a boxing glove to provide spatially resolved and time resolved 

mapping of reaction punching forces exerted to knuckles of the hand during boxing activities. (b) 

Optical image of the flexible, self-sensing lattice. (c) Measured punch force and transmitted force 

versus the applied punch force. The green shaded area between the measured punch force and 

transmitted force reveals energy absorption of the flexible lattice. (d)-(e) Optical image of the 

glove when it hits a wall by direct strike and right hook, respectively. (f)-(g) Spatial distribution 

of force magnitudes obtained from the prescribed electrodes attached on the lattice. The red shaded 

area denotes the probing points while the dashed lines denote other locations where the electrodes 

can be attached to read data output. 
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Figure 3-11. Detected voltage signal transmitted from wireless boxing gloves. (a) Voltage output 

of the sensor as a function of punch force ranging from 0N to 550N. (b) Sensor voltage output as 

a function of time with over 6000 times 100N impact. 

 

3.8 Conclusion 

In this chapter, we demonstrated a class of piezoelectric materials with high piezoelectric 

responsiveness and compliance via exploiting the effects of the nanoparticle-matrix 

functionalization on the electromechanical performance of the piezoelectric nanocomposite. We 

proposed a generalized effective interphase model to quantify the electromechanical properties of 

the 3D printable nanocomposite. We show through theoretical, numerical calculations and 

experimental measurements that, increasing the surface functionalization level enables an effective 

interphase region which enhances the electromechanical performance of the piezoelectric 

nanocomposite. Maximizing the surface functionalization level approaches the upper bound of 

piezoelectric coefficient at a given particle loading and enables uniform 3D printable dispersion 

despite high piezoelectric particle loading over 30vol% (~74wt%), as compared to the 3vol% 
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(~17wt%). Our design and additive manufacturing routes allow for achieving target flexibilities 

while keeping high piezoelectric responses via rational designs of inclusion morphologies and 

monomer stiffness of the constituent materials. Our approach enables printing transducers and 

smart wearables with arbitrary, complex micro-scale architectures, and are compatible with 

commercially available light-based processes.  It introduces a new paradigm for smart materials, 

where wearables, cushions, and structures are themselves responsive and capable of providing 

three-dimensional stress sensing data without the needs for integrating sensor patches. The 

designed 3D printable piezoelectric nanocomposites that go beyond the existing compliance and 

functional property tradeoff highlight their potentials as the next generation of flexible self-sensing 

materials and wearables.  
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Chapter 4 Design micro-architecture of piezoelectric metamaterials 

This chapter displays the comprehensive design methodology of piezoelectric metamaterial, which 

enables the creation of arbitrary functional responses. This chapter starts with the analysis of the 

rational of designing the functional responses with architectural design of metamaterial. Next, the 

developed design method is applied to break the constraint of intrinsic crystalline structures and 

to achieve arbitrary orientation of piezoelectric coefficient vector. Subsequently, the decoupled 

strain response of piezoelectric metamaterial is investigated for full information detection of 

applied load. Additionally, all physically feasible actuation modes of piezoelectric metamaterial is 

studied and demonstrated.  

4.1 Rational of designing functional responses via tailoring the micro-

architecture of metamaterials 

When subject to an external loading, the macroscopic strain field is in consistent with the local 

strain field of an infinitesimal volume for homogeneous material, indicating there is no strain 

transformation from macroscopic to local scale (Figure 4-1a). Attribute to the consistency in strain 

fields at different dimension scale, the functional behaviors of a material are solely dependent on 

the intrinsic crystalline structure. Once the material is fabricated, it is almost impractical to tailor 

its functional responses.  

The beauty of structural metamaterials is the strain transformation mechanism enabled by the 

artificially designed micro-architecture. As presented in Figure 4-1b, the strain field on each 

individual ligaments is correlated with macroscopic strains field by a transformation matrix as: 
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𝛆k = 𝐍k𝛆M (k = i, j … )               (4.1) 

Where εk and εM denote the local strain field on k-th ligament and macroscopic strain field, 

respectively; Nk is the transformation matrix of strain field, which is dependent on the spatial 

orientation of k-th ligament. Therefore, we are able to manipulate the local strain field of 

metamaterials via tuning the spatial arrangement of constitutive ligaments.  

 

Figure 4-1. Strain transformation enabled by architected metamaterial.  

 

Coupled with piezoelectricity of the base material, we can tailor the effective contribution of each 

piezo-active ligament as: 

𝐃k = 𝐝𝐂k𝛆k = 𝐝𝐂k𝐍k𝛆M        (4.2) 
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Where d and Ck denote the piezoelectric coefficient and mechanical stiffness tensor, respectively; 

Dk is the effective displacement contribution of k-th ligaments. Hence, the effective functional 

responses of piezoelectric metamaterial are tailored via tuning the spatial orientation and 

corresponding electric displacement contribution of each constitutive ligaments. 

4.2 Designing piezoelectric coefficient vector anisotropy 

4.2.1 Theoretical design strategy of piezoelectric coefficient vector anisotropy 

We have developed a strategy to realize the full design space of piezoelectric coefficients through 

the spatial arrangement of piezoelectric ligaments. Our scheme involves analyzing configurations 

of projection patterns from a 3D node unit classified by connectivity. The evolutions of projection 

patterns give rise to diverse electric displacement maps (Figure 4-2a to 4-2h), from which the 

piezoelectric coefficient tensor space d3M (M=1~3) can be designed, going beyond the limitations 

of the monolithic piezoelectric ceramics, polymers and their composite feedstock whose 

piezoelectric coefficients are located in the {- - +} quadrants60-63 and {+ + -} quadrants64,65.  
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Figure 4-2. Design of piezoelectric metamaterials for tailorable piezoelectric charge constants. 

Designing 3D node units by configuring the projection patterns. (a)–(g), Node unit designs from 

3-, 4-, 5- and 8-strut identical projection patterns, respectively. A node unit with higher nodal 

connectivity can be constructed by superposition of projection patterns comprising a smaller 

number of projected struts. (h), Node unit with dissimilar projection patterns showing decoupled 

d31, d32. The white arrows in the projection patterns pointing towards the positive or negative 3-

direction indicate the positive or negative electric displacement contribution to poling direction 3. 

Red arrows in a–h indicate the compression loading along the 1-, 2- or 3-direction. (i), A 

dimensionless piezoelectric anisotropy design space accommodating different 3D node unit 

designs with distinct d3M distributions; each d3M is normalized by the length of the vector {d31, d32, 

d33} and thus d31, d32 and d33 form a right-handed 3D coordinate system. The dimensionless 

piezoelectric coefficients of their parent monolithic piezoelectric ceramics and their composites 

are labelled within the dashed region, {− − +} quadrant. 

 

The analytical model is established to characterize the relationship between the piezoelectric 

charge constant tensor and the projection pattern parameters. The effective piezoelectric charge 
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constant, dnKL, is defined to correlate the induced effective electric displacement, Dn, of a 3D unit 

cell with applied stress, σKL, as: 

𝐷n
 = 𝑑nKL

 𝜎KL
    (4.3) 

. Dn, dnKL and σKL represent the effective electric displacement field, the effective piezoelectric 

charge constant tensor, and externally applied stress field defined in the global 1-2-3 system 

(Figure 4-2a, n, K, L=1~3). We compute the 𝑑𝑛𝐾𝐿
  of a node unit under applied stress through 

collecting and volume-averaging the electric displacement contributions D
(i) 

n  and stress in 

equilibrium with σKL from all strut members, L
_

i,  

{
 
 

 
 

𝐷n
 =

1

𝑉
∑∫ 𝐷n

(i)
d𝑉i

𝑉i

N

i=1

𝜎KL
 =

1

𝑉
∑∫ 𝛿kK𝛿lL𝜎kl
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d𝑉i

𝑉i

N

i=1

   (4.4) 

, where Vi is the volume of the i-th strut; V is the effective volume of the node unit cell; σ
 (i) 

KL  is the 

stress-state of the i-th strut in the global 1-2-3 system, respectively, k, l=1~3; δkK and δlL represent 

the Kronecker delta to identify the stress components that are in equilibrium with the externally 

applied load. We introduce a local beam coordinate system x-y-z for struts, and relate the stress in 

the global 1-2-3 system (σ
 (i) 

KL ) and local x-y-z system (σ
 (i) 

pq ) by a linear transformation operator 

containing strut orientation information: 

𝜎kl
(i)

= 𝑁kp
(i)

𝜎pq
(i)

(𝑁lq
(i))T   (4.5) 
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, where p, q=x, y, z, N(i) represents the coordinate system transformation matrix containing 

components with respect to the projection pattern angle (θj, j=1~3)66 and has a form of: 

𝑁(𝑖) = [
cos 𝜃2 0 sin 𝜃2

0 1 0
sin 𝜃2 0 −cos 𝜃2

] [
1 0 0
0 cos 𝜃1 sin 𝜃1

0 sin 𝜃1 −cos 𝜃1

] [
cos 𝜃3 sin 𝜃3 0
sin 𝜃3 −cos 𝜃3 0

0 0 1

]   (4.6) 

Substituting Eq. (4.5) into Eq. (4.3) and (4.4) yields the expression of the effective charge constants 

dnKL: 

𝑑nKL
 =

𝐷n
 

𝜎KL
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   (4.7) 

where Ai and |Li| is the area of cross section and length of the i-th strut. These two variables are 

assumed to be the same for all struts in the node unit. 

This allows the design of dnKL, or equivalently in Voigt notation, dnM, according to the projection 

pattern configurations (by convention, KL→M: 11→1; 22→2; 33→3; 12→4; 13→5; 23→6). We 

demonstrate the application of the method by designing 𝑑𝑛𝑀
  according to the relative orientation 

θ between the projected struts. Here, to convert the tensor notation (KL→M), the coordinate 

system transformation matrix N(i) (3×3 dimensions) is expanded and rearranged to form the stress 

transformation matrix T(i) (6×6 dimensions). 

With the developed design methodology, the dimensionless piezoelectric tensor space, d
_

3M, is 

defined by normalizing d3M by the length of the vector, {d31, d32, d33}. To capture the broadest 

possible design space, we start with the minimum number of intersecting micro-struts at a node 

that can be tessellated into 3D periodic lattices. All intersecting struts are represented as vectors 
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originating from the node, i.e., L
_

i (i=1~N, N is the node unit connectivity). In building our 

projection patterns, we define l
_

i as the 2D projection of L
_

i onto three orthogonal planes through the 

global 1-2-3 coordinate system of the 3D piezoelectric cube (Figure 4-2a, 𝐿⃑ 𝑖 =
1

2
∑ 𝑙 𝑖

𝑗
,3

𝑗  𝑗 =1, 2, or 

3). As an example, we use piezoelectric ceramic and its composites having 𝑑̅3𝑀 distributed in the 

{- - +} quadrants60-63 as the base material to construct the electric displacement maps. The white 

arrows pointing upwards or downwards against the 3-direction indicate the positive or negative 

electric displacement response of the strut along the 3-direction (i.e., poling direction). 

Configuring the projection patterns in these planes results in diverse electric displacement maps, 

allowing access to different quadrants of the d3M property space. A basic 3D node unit containing 

3, 4, and 5 intersecting struts on the projection patterns are illustrated in Figure 4-2a to 4-2f. We 

start with 3D node units with identical 3-strut projection patterns on 1-3 and 2-3 planes, i.e.  d31= 

d32 (Figure 4-2a and 4-2b). Configuring the projection pattern via rotating the relative orientations 

of two of the projected struts (𝜃 = ∠𝑙 1
1𝑙 2

1) redistributes the electric displacement contributions as 

indicated by the white arrows reversing directions in the projection pattern (Figure 4-2a and 4-2b). 

This results in the d
_

3M tensor shifting from {+ + +} quadrant, to highly anisotropic distribution 

near the positive d
_

3M axis {0 0 +}, to {- - +} quadrant with negative 𝑑31 and 𝑑32 as well as positive 

d33 (Figure 4-2i). Further decrease of the relative orientation reverse all values of the d3M to occupy 

the {- - -} quadrant. Similarly, for a 4-strut or 5-strut projection pattern with two axis-symmetry, 

decreasing the relative orientation (𝜃 = ∠𝑙 1
1𝑙 2

1) of projected struts results in the change of 𝑑3𝑀
  

distribution from {+ + +} quadrant to {- - -} quadrant (Figure 4-2i) or {- - +} due to the competition 

of the opposite electric displacement contributions within the struts (Figure 4-2c to 4-2f). 
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Our designs can be broadened by increasing the 3D node unit connectivity through superposition 

(Figure 4-2g). Micro-architectures with high nodal connectivity are deformed predominantly by 

compression or tension13,67. The d33 increases with additional nodal connectivity as compared to 

lower connectivity cases in which strain energy from strut bending does not contribute to the 

electric displacement in the 3-direction.   

Moreover, our designs are not restricted to identical projection patterns where 𝑑31
  and 𝑑32

  are 

coupled. 3D node unit designs with dissimilar projection patterns allow independent tuning of 𝑑31
  

and 𝑑32
  (“out of 45º plane” distribution of 𝑑3𝑀

 , Figure 4-2i, 𝑑31
 ≠ 𝑑32

 ). We configure the 

dissimilar electric displacement maps via independently varying the relative orientations 𝜃1 and 

𝜃2 on 1-3 and 2-3 planes (Figure 4-2h). The compression along 1-direction and 2-direction on the 

3D node unit therefore generate different electric displacement maps and result in the decoupling 

of 𝑑31
  and 𝑑32

  (Figure 4-2h). 

Configuring the projection patterns generate various designs of architectures which occupy 

different quadrants of the 𝑑̅3𝑀
  distribution space as shown in Figure 4-2i, where 𝑀 = 1~3.  These 

families of 3D node units constitute a broad 3D piezoelectric constant selection where 𝑑3𝑀
   occupy 

desired quadrants of the property space, in contrast to the piezoelectric coefficients obtained by 

piezoelectric square foam models68. This rich design space creates an enormous palette of novel 

applications as demonstrated in later sections. 

4.2.2 Experimental validation of designed anisotropy of piezoelectric metamaterials 

To evaluate the piezoelectric responses of the designed piezoelectric metamaterials, we printed 

cubic lattices comprised of periodic unit cells stacked along three principle directions and poled 
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them under uniform electric fields. A shaker with an integrated force sensor exerts cyclical 

loadings on the samples. We measured the generated voltages (in 3-direction) induced by the 

applied stress with a resistor connected to a data acquisition system. We found excellent agreement 

of the measured {𝑑31, 𝑑32, 𝑑33} signatures with the designed response to force from different 

directions.  Here, N=5 designs (3-strut projection pattern, Figure 4-2a and 4-2b) are used to 

demonstrate the different voltage output patterns due to the distinct distributions of 𝑑3𝑀
 . As 

identical cyclic loadings (~0.5N, sawtooth loading profile) are applied along three orthogonal 

directions, significant differences in the voltage output patterns are observed for three distinct 

designs (Figure 4-3a to 4-3c). The N=5 piezoelectric metamaterial of 𝜃 = 75º (Figure 4-3a) 

outputs a positive voltage when loaded in 3-direction, while the sample generates a negative 

voltage as loaded in 1- or 2- direction. In contrast, Figure 4-3b shows the voltage outputs of our 

N=5, 𝜃 = 90º  lattice in 3-direction being positive while voltage output in 1- or 2- direction being 

supressed, exhibiting highly anisotropic response. By further increasing 𝜃 to 120º, the voltage 

outputs in all 1, 2, 3 directions are positive when loaded in any directions, as shown in Figure 4-

3c, due to its all positive 𝑑3𝑀
  distribution. 
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Figure 4-3. Measurement of 3D piezoelectric responses. (a)–(c), Optical images of representative 

piezoelectric metamaterials comprised of N = 5 node units and their corresponding real-time 

voltage outputs under impact coming from the 1-, 2- and 3-directions, respectively. (d), 

Experimental and finite element analysis (FEA) results of the effective piezoelectric voltage 

constant g33 eff versus the relative density of N = 8 and N = 12 lattice materials. (e), Comparison 

of specific piezoelectric charge coefficients and elastic compliance between the piezoelectric 

metamaterials presented in this study and typical piezoelectric materials. (f), Drop-weight impact 

test on the as-fabricated piezoelectric lattice (N = 12). (g), The real-time voltage output of the 

lattice corresponding to various drop weights. The transient impact stress activates the electric 

displacement of the metamaterial in the 3-direction, shown as the trace of the voltage output against 

the impact time. (h), Impulse pressure and transmitted pressure versus the mass of the drop weights. 

The significant gap (shaded area) between the detected impulse pressure and transmitted pressure 
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reveals simultaneous impact energy absorption and self-monitoring capability of the 3D 

piezoelectric metamaterial. 

 

To assess the mechanical-electrical conversion efficiency, the effective piezoelectric voltage 

constant 𝑔33
 defined as the induced electrical field per unit applied stress, was quantified by 

measuring the 𝑑33
  and permittivities of the as-fabricated metamaterials. The resistor used in the 

apparatus is replaced by a circuit to quantify the charge generated in response to applied stress. 

The 𝑑33
  and 𝑔33

   are then quantified by the ratio of the applied load and the generated charge. The 

𝑔33
  results of the metamaterial comprised of highly-connected structure (N=12 and N=8) are 

shown in Figure 4-3d. Remarkably, 𝑔33
  increases with decreasing relative density, indicating a 

potential application as a simultaneously light-weight and highly-responsive sensor. The measured 

𝑑33
  over their mass density (i.e., |𝑑33

 |/𝜌) and compliance are plotted against all piezoelectric 

materials (Figure 4-3e). We found that these low density and flexible piezoelectric metamaterials 

achieve over 2 times higher specific piezoelectric constant than piezoelectric polymer (PVDF) and 

a variety of flexible piezoelectric composites (Figure 4-3e, Figure 4-4). Additionally, enhancement 

of the hydrostatic figures of merits can be obtained via unit cell designs with all identical signs of 

the g3M{+ + +} and d3M{+ + + } coefficients (Figure 4-5). This enhanced piezoelectric constant 

along with the highly connected 3D micro-architecture makes the 3D piezoelectric metamaterial 

an excellent candidate for simultaneous impact absorption and self-monitoring. A series of 

standard weights ranging from 10g to 100g were sequentially dropped onto the as-fabricated 3D 

piezoelectric lattice (N =12) attached on a rigid substrate (Figure 4-3f) to impact the piezoelectric 

metamaterial. The transient impact stress activates the electric displacement of the metamaterial 

in the 3-direction, shown as the trace of the voltage output against the impact time (Figure 4-3g). 
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The impulse pressure on the piezoelectric metamaterial calculated via the measured 𝑑33
 , and the 

measured pressure transmitted to the rigid substrate against time are traced in Figure 4-3h. The 

significant gap (shaded area) between the impulse pressure and transmitted pressure reveals the 

impact energy absorption and protection capability of our piezoelectric 3D metamaterial as a 

potential smart infrastructure69,70. 

 

Figure 4-4. Comparison of specific piezoelectric charge coefficients and tunable elastic 

compliance between the piezoelectric metamaterials presented in this study and typical 

piezoelectric materials. 
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Figure 4-5. FOM of porous and bulk piezoelectric materials. 

 

4.2.3 Theoretical prediction of the dimensionless d constants 

We first calculated the analytical results of the N=5 structure with different relative orientations 

of projected struts denoted in manuscript. To determine the analytical results of 𝑑̅3𝑀
 , we followed 

the analytical model in the manuscript. The effective electric displacement and effective stress are: 

𝐷𝑛
𝑒𝑓𝑓

=
1

𝑉
∑∫ 𝐷𝑛

(𝑖)
𝑑𝑉𝑖

 

𝑉𝑖

𝑁

𝑖=1

    (4.8) 

𝜎𝐾𝐿
𝑒𝑓𝑓

=
1

𝑉
∑∫ 𝛿𝐾𝑘𝛿𝐿𝑙𝜎𝑘𝑙

(𝑖)
𝑑𝑉𝑖

 

𝑉𝑖

𝑁

𝑖=1

    (4.9) 



57 

 

where 𝜎𝑘𝑙
(𝑖)

  and 𝐷𝑛
(𝑖)

 (𝑛 𝑘 𝑙 = 1,2,3) are, respectively, the stress matrix and electric displacement 

vector of each strut in the global coordinate system, 𝑉 and 𝑉𝑖 are, respectively, the volume of the 

unit cell and of the i-th strut. According to Eq. 4.3, 𝑑3𝑀
𝑒𝑓𝑓

 in matrix becomes 

{

𝑑31
𝑒𝑓𝑓

𝑑32
𝑒𝑓𝑓

𝑑33
𝑒𝑓𝑓

} =

{
 
 
 

 
 
 𝐷3

𝑒𝑓𝑓

𝜎11

𝐷3
𝑒𝑓𝑓

𝜎22

𝐷3
𝑒𝑓𝑓

𝜎33 }
 
 
 

 
 
 

    (4.10) 

As shown in Figure 4-6, the architecture design with symmetric constraints (e.g., same projection 

pattern in 1-3 and 2-3 plane) significantly reduces the complexity of Eq. 4.8 and Eq. 4.9 by 

grouping identical struts (i.e., identical electric displacement contribution, identical strut length, 

diameter and cross-sectional shape). This allows the evaluation of the contribution of different 

type of struts to effective electric displacement field. As shown in Figure 4-7a, two groups of 

identical struts are identified: i). strut parallel to 3-axis (𝐿⃑ 5); ii) struts that are not parallel to the 3-

axis (𝐿⃑ 1, 𝐿⃑ 2, 𝐿⃑ 3, 𝐿⃑ 4). It is therefore sufficient to represent the group by one strut in each group.  
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Figure 4-6. The comparison between analytical results, experiment results and numerical results 

of the N=5 lattices. 
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Figure 4-7. Identification of two types of struts. a) Schematic of the N=5 design. b) Schematic of 

a single strut with two coordinate systems. 

 

Below we derive a closed-form expression of effective piezoelectric charge constant d as a function 

of spatial orientations of ligaments within a unit cell. We started from force equilibrium of a single 

strut and established a local coordinate system (x-y-z coordinate system) and the global coordinate 

system (1-2-3). The parameters of these two-coordinate systems are shown in Figure 4-7b. The x-

axis of the local coordinate system is parallel to strut space vector 𝐿⃑ 𝑖. The axial stress 𝜎𝑝𝑞
(𝑖)

 is firstly 

calculated in the local coordinate system (x-y-z), then will be transformed to the global coordinate 

system 𝜎𝑘𝑙
(𝑖)

 (𝑘, 𝑙 = 1,2,3). The correlation between stress matrix in local coordinate system and 

global coordinate system is achieved through the transformation matrix 𝑁𝑖 as: 

𝜎𝑘𝑙
(𝑖)

= 𝑁𝑖𝜎𝑝𝑞
(𝑖)

(𝑁𝑖)𝑇    (4.11) 

. Similarly, the electrical displacement contribution of each strut can be expressed as: 

𝐷𝑛
(𝑖)

= 𝑑𝑛𝑘𝑙𝜎𝑘𝑙
(𝑖)

= 𝑑𝑛𝑘𝑙𝑁
𝑖𝜎𝑝𝑞

(𝑖)
(𝑁𝑖)𝑇    (4.12) 

Hence, we derived the expression of the transformation matrix 𝑁𝑖 correlating the local coordinate 

system to the global coordinate system to calculate the effective electrical displacement 𝐷𝑛
𝑒𝑓𝑓

and 

effective stress 𝜎𝐾𝐿
𝑒𝑓𝑓

, and further calculate effective charge constants. 

According to Euler's rotation theorem, any coordinate system transformation may be described 

using three angles. In this situation, the force components that we considered is axial force (𝐹 𝑥), 

which is in alignment with strut space vector 𝐿⃑ 𝑖, and shear force (𝐹 𝑧), which is perpendicular to the 
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strut space vector 𝐿⃑ 𝑖. Here, we derive the transformation matrix via rotating the 1-axis of the global 

coordination system such that it overlaps with the x-axis of the local coordinate system of a single 

strut 𝐿⃑ 𝑖 and then define the rest of the coordinates. By doing this, the transformation matrix for 1st-

4th and 5th strut can be written as: 

[

𝑁11
𝑖 𝑁12

𝑖 𝑁13
𝑖

𝑁21
𝑖 𝑁22

𝑖 𝑁23
𝑖

𝑁31
𝑖 𝑁32

𝑖 𝑁33
𝑖

] = [

cos𝜃3cos𝜃4 −sin𝜃3 −cos𝜃3sin𝜃4

sin𝜃3cos𝜃4 cos𝜃3 −sin𝜃3sin𝜃4

sin𝜃4 0 cos𝜃4

]     (4.13) 

[

𝑁11
5 𝑁12

5 𝑁13
5

𝑁21
5 𝑁22

5 𝑁23
5

𝑁31
5 𝑁32

5 𝑁33
5

] = [
0 0 1
0 1 0

−1 0 0
]     (4.14) 

For 𝑑33
𝑒𝑓𝑓

, regrouping Eq. 4.8 and 4.9 by identical struts yields 

𝐷3
𝑒𝑓𝑓

=
1

𝑉
{𝑑31  𝑑32  𝑑33} (4𝐴1|𝐿1| {

𝜎11
1

𝜎22
1

𝜎33
1

} + 𝐴5|𝐿5| {

𝜎11
5

𝜎22
5

𝜎33
5

})  (4.15) 

𝜎33 =
1

𝑉
(4𝐴2|𝐿2|𝜎33

1 + 𝐴5|𝐿5|𝜎33
5 )   (4.16) 

Consider a remote compressive stress 𝜎 along z direction that is applied to the infinite lattice 

structure consists of the node unit. From force equilibrium, the total force applied on the node unit 

𝐹 can be given as: 

𝐹 = 4𝜎𝐿2sin2𝜃3cos
2𝜃4      (4.17) 
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Under this z-direction stress 𝜎, the vertical strut (𝐿⃑ 5) is subject to normal stress, while other strut 

(𝐿⃑ 1, 𝐿⃑ 2, 𝐿⃑ 3, 𝐿⃑ 4) are subject to a combination of normal and shear stresses. From equilibrium, the 

local stress matrix of strut group (𝐿⃑ 1, 𝐿⃑ 2, 𝐿⃑ 3, 𝐿⃑ 4) is: 

𝜎𝑝𝑞
(𝑖)

=
𝜎𝐿2

𝐴1
[
sin2𝜃3cos

2𝜃4𝑠𝑖𝑛𝜃4 0 sin2𝜃3cos
3𝜃4

0 0 0
sin2𝜃3cos

3𝜃4 0 0
]             (4.18) 

Similarly, the local stress matrix of vertical strut (𝐿⃑ 5) is: 

𝜎𝑝𝑞
(5)

=
4𝜎𝐿2

𝐴5
[
sin2𝜃3cos

2𝜃4 0 0
0 0 0
0 0 0

]               (4.19) 

By substituting Eq. 4.18 and 4.19 into Eq. 4.11, the global stress matrix is obtained. Then substitute 

Eq. 4.15 and 4.16 into Eq. 4.10, we obtain 𝑑33
𝑒𝑓𝑓

for the 𝑁 = 5 structure as: 

𝑑33
𝑒𝑓𝑓

=
−cos2𝜃3cos

2𝜃4sin𝜃4𝑑31 − sin2𝜃3cos
2𝜃4sin𝜃4𝑑32 + (sin𝜃4(1 + cos2𝜃4) + 1)𝑑33

2 + 2sin𝜃4
   (4.20) 

Similarly, 𝑑31
𝑒𝑓𝑓

 could be obtained as: 

𝑑31
𝑒𝑓𝑓

=
−cos3𝜃3cos

2𝜃4sin𝜃4𝑑31 − sin2𝜃3cos𝜃3cos
2𝜃4sin𝜃4𝑑32 + cos𝜃3sin𝜃4(1 + cos2𝜃4)𝑑33

2sin𝜃3cos𝜃4
(4.21) 

Due to symmetry, 𝑑31
𝑒𝑓𝑓

= 𝑑32
𝑒𝑓𝑓

. 
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It should be noted that since the bending stress is symmetric to the neutral surface of the strut 

(integration of bending stress over cross-section area is zero), it does not contribute to the effective 

electric displacement and charge constant.  

4.2.4 Expanded architectures and their d3M distributions 

We also demonstrate our design scheme and calculate the distribution of 𝑑3𝑀
𝑒𝑓𝑓

 of N=12 structure, 

as shown in Figure 4-8. We denoted the local and global stresses of each strut in vector form. The 

stretching-dominated deformation mechanism gives rise to negligible bending and shear stresses, 

it is easier to express the local and global stresses in vector form.  

 

Figure 4-8. Piezoelectric cell design for N=12 case. (a) N=12 designs with its corresponding 

projection patterns (b) on 2-3 plane for analytical calculation. 
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To determine 𝑑3𝑀
𝑒𝑓𝑓

, rewriting Eq. 4.4 in matrix form and in terms of strut stress for the convenience 

of analytical calculation, we obtain: 

𝐷3
𝑒𝑓𝑓

=
1

𝑉
∑𝐴𝑖|𝐿⃑ 𝑖| ∙ [𝑑31

𝑖 𝑑32
𝑖 𝑑33

𝑖 𝑑34
𝑖 𝑑35

𝑖 𝑑36
𝑖 ]

[
 
 
 
𝑇11

𝑖 𝑇12
𝑖

𝑇21
𝑖 𝑇22

𝑖

… 𝑇16
𝑖

… 𝑇26
𝑖

⋮ ⋮
𝑇61

𝑖 𝑇62
𝑖

⋱ ⋮
… 𝑇66

𝑖 ]
 
 
 

{
 
 
 

 
 
 
𝜎𝑥𝑥

𝑖

𝜎𝑦𝑦
𝑖

𝜎𝑧𝑧
𝑖

𝜎𝑥𝑦
𝑖

𝜎𝑥𝑧
𝑖

𝜎𝑦𝑧
𝑖 }

 
 
 

 
 
 

𝑁

𝑖=1

   (4.22) 

{
 
 

 
 
𝜎11

𝜎22

𝜎33
𝜎12

𝜎13

𝜎23}
 
 

 
 

=
1

𝑉
∑𝐴𝑖|𝐿⃑ 𝑖| ∙

[
 
 
 
𝑇11

𝑖 0

0 𝑇22
𝑖

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… 𝑇66

𝑖 ]
 
 
 

{
 
 
 

 
 
 
𝜎𝑥𝑥

𝑖

𝜎𝑦𝑦
𝑖

𝜎𝑧𝑧
𝑖

𝜎𝑥𝑦
𝑖

𝜎𝑥𝑧
𝑖

𝜎𝑦𝑧
𝑖 }

 
 
 

 
 
 

𝑁

𝑖=1

   (4.23) 

, where {𝜎𝑥𝑥
𝑖 𝜎𝑦𝑦

𝑖 𝜎𝑧𝑧
𝑖 𝜎𝑥𝑦

𝑖 𝜎𝑥𝑧
𝑖 𝜎𝑦𝑧

𝑖 }
𝑇
 is the vector form in terms of the local coordinate of 

𝜎𝑝𝑞
𝑖 , and 𝑇𝑖  is the stress transformation matrix from local coordinate system to the global 

coordinate system. The architecture design with symmetric constraints significantly reduces the 

complexity of Eq. 4.22and Eq. 4.23 by grouping identical struts (i.e. identical electric displacement 

contribution, identical strut length, diameter and cross-sectional shape). This allows the evaluation 

of contribution of different types of struts to effective electric displacement field. Finally, 

according to Eq. 4.3, 𝑑3𝑀
𝑒𝑓𝑓

 in matrix form becomes: 
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{

𝑑31
𝑒𝑓𝑓

𝑑32
𝑒𝑓𝑓

𝑑33
𝑒𝑓𝑓

} =

{
 
 
 

 
 
 𝐷3

𝑒𝑓𝑓

𝜎11

𝐷3
𝑒𝑓𝑓

𝜎22

𝐷3
𝑒𝑓𝑓

𝜎33 }
 
 
 

 
 
 

   (4.24) 

For N=12 structure, only axial stresses are considered due to its stretch-dominated nature. Eq. 4.22 

- 4.24 then lead to the results of 𝑑3𝑀
𝑒𝑓𝑓

 (only M=1, 2, 3 is of interest) of N=12 structure. For 𝑑31
𝑒𝑓𝑓

, 

the parent material piezoelectric charge constants are identical for each strut (Table. 4-1). Eq. 4.22 

and Eq. 4.23 then reduce to: 

𝐷3
𝑒𝑓𝑓

=
1

𝑉
∑𝐴𝑖|𝐿⃑ 𝑖| ∙ (𝑑31𝑇11

𝑖 + 𝑑32𝑇21
𝑖 + 𝑑33𝑇31

𝑖 )𝜎𝑥𝑥
𝑖

12

𝑖=1

   (4.25) 

𝜎11 =
1

𝑉
∑𝐴𝑖|𝐿⃑ 𝑖| ∙ 𝑇11

𝑖 𝜎𝑥𝑥
𝑖

𝑁

𝑖=1

   (4.26) 

.  

Table 4-1. Properties of the PZT particles used in the piezoelectric composite 

Relative dielectric constant 1900 

Dielectric dissipation factor (tand) <2.00 

kp 0.63 

k33 0.72 

k31 0.36 

k15 0.68 

d33 400 

-d31 175 

d15 590 

g33 24.8 

g31 12.4 
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g15 36.0 

Young’s modulus Y11 6.3 

Y33 5.4 

 

Three groups of identical struts are identified: i) struts parallel to 1-3 plane subjected to axial 

compression (𝐿⃑ 2, 𝐿⃑ 4, 𝐿⃑ 10, 𝐿⃑ 12); and ii) struts parallel to 1-2 plane subjected to axial compression 

(𝐿⃑ 5, 𝐿⃑ 6, 𝐿⃑ 7, 𝐿⃑ 8); and iii) struts parallel to 2-3 plane subjected to axial tension (𝐿⃑ 1, 𝐿⃑ 3, 𝐿⃑ 9, 𝐿⃑ 11). It is 

therefore sufficient to represent the group by one strut in each group. Therefore, regrouping Eq. 

4.25 and 4.26 by identical struts yields: 

𝐷3
𝑒𝑓𝑓

=
1

𝑉
{𝑑31 𝑑32 𝑑33} (4{

𝑇11
2

𝑇21
2

𝑇31
2

}𝐴2|𝐿⃑ 2|𝜎𝑥𝑥
2 + 4{

𝑇11
5

𝑇21
5

𝑇31
5

}𝐴5|𝐿⃑ 5|𝜎𝑥𝑥
5

+ 4{

𝑇11
1

𝑇21
1

𝑇31
1

}𝐴1|𝐿⃑ 1|𝜎𝑥𝑥
1 )   (4.27) 

𝜎1 =
1

𝑉
(4𝑇11

2 𝐴2|𝐿⃑ 2|𝜎𝑥𝑥
2 + 4𝑇11

5 𝐴5|𝐿⃑ 5|𝜎𝑥𝑥
5 + 4𝑇11

1 𝐴1|𝐿⃑ 1|𝜎𝑥𝑥
1 )   (4.28) 

, where, from geometric relationships, 
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   (4.29) 

, also, |𝐿⃑ 2| = |𝐿⃑ 1| =
√2

cos
1

2
𝜃
|𝐿⃑ 5|, 𝐴2 = 𝐴5 = 𝐴1. In this case, 𝜃 = ∠𝑙 3

1𝑙 11
1 = 𝜃′. Using nodal force 

equilibrium, we obtain the relationships between axial stresses of three types of struts: 𝜎𝑥𝑥
2 =

−𝜎𝑥𝑥
1 =

√2

2

1

cos
1

2
𝜃
𝜎𝑥𝑥

5 . Thus, substituting Eq. 4.27 and 4.28 into Eq. 4.24, we obtain 𝑑31
𝑒𝑓𝑓

 for N=12 

structure as: 

𝑑31
𝑒𝑓𝑓

=

(
√2
2 cos

1
2 𝜃 +

1
2 cos2 1

2𝜃 −
1
2) (𝑑32 + 𝑑31) + (sin

1
2 𝜃 cos

1
2 𝜃 −

1
2) 𝑑33

√2
2 cos

1
2 𝜃 +

1
2 cos2 1

2𝜃

   (4.30) 

. Due to the symmetry, 𝑑31
𝑒𝑓𝑓

= 𝑑32
𝑒𝑓𝑓

. Similarly, 𝑑33
𝑒𝑓𝑓

 can be obtained as: 

𝑑33
𝑒𝑓𝑓

=

(𝑐𝑜𝑠2 1
2𝜃 −

√2

12𝑠𝑖𝑛
1
2 𝜃 − 4𝑐𝑜𝑠

1
2 𝜃

) (𝑑31 + 𝑑32) + 2𝑠𝑖𝑛2 1
2𝜃𝑑33

√2𝑠𝑖𝑛
1
2 𝜃

   (4.31) 
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Eq. 4.30 and 4.31 show that the variation of 𝜃 changes the effective piezoelectric charge constants 

by varying the contribution of material properties 𝑑31, 𝑑32 and 𝑑33. 

A list of some other designed node units and their normalized effective piezoelectric charge 

constants are estimated. The 3D node unit with dissimilar projection patterns and its results are 

also shown. Despite that the projection patterns are 3-strut, with different skew angles between 

adjacent struts defined as 𝜃1 = ∠𝑙 1
1𝑙 2

1 and 𝜃2 = ∠𝑙 1
2𝑙 2

2, they yields a distribution of 𝑑3𝑀
  with 𝑑31

 ≠

𝑑32
  (3-strut dissimilar projection patterns, Table S1). Another node unit with 3-strut pattern on 1-

3 plane and 5-strut pattern on 2-3 plane is also illustrated (3-strut/5-strut dissimilar projection 

patterns, Table S1). This type of design further enhances the tunability of piezoelectric properties 

by utilizing the dissimilar projection patterns design. 

Another superposition structure by summing two 3-strut projection patterns is also generated. 𝑑32
  

and 𝑑31
  are nearly zero for 𝜃 = 60° due to the counteractive contributions of two groups of struts: 

i) struts paralleled to 1-3 plane; and ii) struts paralleled to 2-3 plane. 𝑑33
  is predicted as negative 

at 𝜃 = 30° while  𝑑31
 = 𝑑32

 > 0, reaching a quadrant different from other designs. The node units 

with 6-strut dissimilar projection patterns are also shown to verify its 𝑑3𝑀
  distribution in (- + -) 

and (+ - +) quadrants. 
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4.3 Designing decoupled strain responses of piezoelectric metamaterials 

4.3.1 Theoretical design of the decoupled strain responses for multi-mode sensor 

The design strategy of the multi-mode sensor is modulating the effective electric displacement 

output of individual cells via leveraging the spatial orientation as well as material anisotropy of 

inclined piezo-active struts, when the sensor is subject to various macroscopic mechanical loads. 

The architectural design of individual cells starts from identifying a pair of spatially inclined 

ligaments that demonstrates distinct deformation patterns given external loads applied in different 

directions (Figure 4-9a). Both identified struts experience axial contraction under global 

compressive load; while one of the inclined ligaments demonstrate extension with shear load 

applied. Coupled with tailored material anisotropy, we are capable of selectively suppressing the 

effective electric displacement output of the identified piezo-active ligaments induced by specific 

macroscopic mechanical loading respectively (Figure 4-9b). These identified ligaments are then 

taken as the basic unit, and tessellated into the architectural cell of the multi-mode sensor. The 

structural phase and conductive phase are added accordingly to connect separated inclined struts 

and accumulate the generated charge of piezo-active ligaments induced by external loads. Via 

tailoring the orientation of the activation electric field, these individual cells are solely responsive 

to the selected mode, normal compression or tangential shear, of external mechanical load. 

Applying an identical electric field in both the upper and lower sections yield a compression-only 

cell design, where the local z-direction aligned with the central axis of inclined struts pointing 

towards the top surface (Figure 4-9b). Under macroscopic shear load, the electric displacements 

of two inclined struts cancel out, leading to zero effective voltage output from the compressive-

only cell. Similarly, the shear-only cell is activated by applying opposite electric fields in the upper 
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and lower section. In specific, the separate detection of shear in two orthogonal directions is 

achieved via rotating the shear-only cell design by 90° with respect to the 3-axis.  

 

Figure 4-9. Design and fabrication of decouple strain response of multi-mode sensor. (a). Design 

concept of architectural cells of the multi-mode sensor. The identified pair of ligaments (opaque 

ligaments), that demonstrate distinct deformation mechanism under different external loads, are 

separated, tessellated, and activated with electric field forming the architectural design of 

individual sensing cell. (b). Voltage output pattern of architectural cells of the multi-mode sensor 

(compression-only and shear-only cell) under both compressive and shear load. (c). Fabrication 

process of multi-mode sensor, formed by architectural cells with 2x2 configuration, and as-

fabricated sample. 

 

The effective piezoelectric properties of individual sensing cells of multi-mode sensor are 

theoretically evaluated by collecting electric displacement contribution from each individual strut 
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under macroscopic strain. Following the homogenization method proposed in previous work, the 

theoretical derived piezoelectric properties of individual cells is given as: 

𝑑𝑛𝑀 =
∑ ∫ 𝑑𝑛𝑚

𝑖 𝑇𝑚𝑟
𝑖 𝜎𝑟

𝑖𝑑𝑉𝑖𝑉𝑖

6
𝑖=1

∑ ∫ 𝛿𝑚𝑀𝑇𝑚𝑟
𝑖 𝜎𝑟

𝑖𝑑𝑉𝑖𝑉𝑖

6
𝑖=1

        (4.8) 

where 𝑑𝑛𝑚
𝑖  is the piezoelectric coefficient matrix of the base material on each ligament (𝑛 =

1,2,3,𝑚,𝑀 = 1 − 6 ), 𝑇𝑚𝑟
𝑖  denotes the transformation matrix that correlates the local and 

macroscopic stress vector, 𝜎𝑟
𝑖 is the local stress vector on each piezo-active ligaments, 𝑉𝑖 is the 

volume of the i-th inclined strut in the sensing cell and 𝛿𝑚𝑀 is the Kronecker delta. With this 

theoretical derivation, we estimated the critical piezoelectric charge constants of individual sensing 

cells. These piezoelectric charge constants of interest, specifically 𝑑33, 𝑑34, and 𝑑35, corresponds 

to load cases of normal compression, tangential shear in 1- and 2-direction, respectively. For 

compression-only cell, the 𝑑33 coefficient has a value of 87 pc/N, while 𝑑34 and 𝑑35 are both zero. 

Similarly, the 𝑑34 coefficient is the only non-zero term among three charge constants of interest 

of shear-only cell in 1-direction. These theoretically predicted electromechanical performances 

validate that the designed individual sensing cells are capable of output voltage signal in response 

to selected external mechanical load only.  

These architectural cells are tessellated into multi-mode sensor with 2x2 configuration, consisting 

of 2 compression-only cells and 2 shear-only cells where each shear-only cells is responsive to 

tangential traction in one orthogonal direction, respectively. The designed multi-mode sensor is 

then passed to a custom multi-material 3D printing system for sample fabrication (Figure 4-9c), 

and the as-fabricated multi-mode sensor is activated by a strong electric field with prescribed 

configuration. 
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4.3.2 Decoupled load measurement with multi-mode sensor 

Next, we demonstrated the sensing capability of the multi-mode sensor by imposing a series of 

spatially oriented loads uniformly on the top plate attached to the sensor with the bottom surface 

fixed to a substrate (Figure 4-10a). These spatial loads are differentiated by two spatial angles 𝜃 

and 𝜑, where 𝜃 is the angle between the force orientation vector and 3-axis, and 𝜑 is the angle 

between the projection of force orientation vector in the 1-2 plane and 1-axis. Varying these two 

spatial angles enables us to manipulate the spatial orientation of applied force and achieve an 

arbitrary ratio between three components of load on the top surface. And three voltage output 

signals (𝑉𝑖, 𝑖 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼) are collected with a data acquisition system. Herein, we investigated the 

performance of the multi-mode sensor under four different cases by varying the spatial angles of 

applied loads (Figure 4-10b): I. 𝜃1 = 0 or pure compression; II. 𝜃2 = 90°, 𝜑2 = 0 or tangential 

shear in 1-direction (equivalent to the case of 𝜃2 = 90°, 𝜑2 = 90° or pure shear in 2-direction); 

III. compound load 𝜃3 = 45°, 𝜑3 = 30°; IV. compound load 𝜃4 = 60°, 𝜑4 = 75°.  For case I and 

II, we performed three tests with various input strain values using a commercial actuator. Figure 

4-10c and 4-7d present the voltage signal outputs (𝑉𝐼 & 𝑉𝐼𝐼) from the compression-only and shear-

only cells induced by various input strain values of compressive and shear loading, respectively. 

The compression-only cell generates ~0.15V voltage signal at a low compressive strain level 

(0.0076%), and the peak voltage magnitude increases along with the input strain value (Figure 4-

10c). The shear-only cell only outputs detectable a voltage signal at 0.0192% compressive strain, 

while the voltage magnitude is 10 times lower than that collected from the compressive-only cell 

(𝑉𝐼 = 0.438𝑉, 𝑉𝐼𝐼 = 0.0434𝑉). Similarly, we compared the voltage signals 𝑉𝐼 and 𝑉𝐼𝐼 given three 

input shear strains. The shear-only cell generates ~0.12V voltage signal at a low shear strain level 

(0.008%) (Figure 4-10d), while the compression-only cell only outputs detectable voltage signal 
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at a 0.0202% shear strain, which is ~12 times lower than that collected from the shear-only cell 

(𝑉𝐼 = 0.0328𝑉, 𝑉𝐼𝐼 = 0.3896𝑉). These results demonstrate that the individual cells with designed 

sensing modes are solely responsive to the selected stress component, either compressive or shear 

stress, with high sensitivity.  

 

Figure 4-10. Characterization of the multi-mode performance under various spatial load. (a). 

Multi-mode sensor assembly for performance characterization. The load is uniformly applied to 

the top surface of the sensor via a top plate, where the bottom surface of the sensor is attached to 

fixed substrate. Three voltage signals are extracted as the output of the multi-mode sensor. (b). 

Evolution of compressive and shear force with respect to spatial angle 𝜃  and 𝜑 , and four 

representative load cases studied in this work. (c). Voltage responses of compression-only and 

shear-only cells under various input compressive strains. (d). Voltage responses of compression-

only and shear-only cells under various input shear strains. (e). Cycling tests and durability of the 

voltage responses of the multi-mode sensor. (f)-(g). Voltage responses of the multi-mode sensor 

under spatial oriented loads and recreated force orientation with measured voltage signals.  
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We then investigated the linearity performance of the multi-mode sensor by evaluating the voltage 

outputs at various input strain values from both experimental measurements and numerical 

simulations. As shown in Figure 4-10c and 4-7d, the magnitudes of induced voltage extracted from 

both the compression-only and shear-only cells are proportional to the input strains, respectively. 

In specific, given the compressive load, the peak voltage magnitude of the compression-only cell 

(|𝑉𝐼|) increases linearly from ~0.158V to ~0.438V as the input strain increases from 0.0076% to 

0.0192%, while the peak voltage magnitude of the shear-only cell (|𝑉𝐼𝐼|) remains within a close-

to-zero level (Figure 4-10c). Similar linear responses were observed in the case when shear loads 

were applied (Figure 4-10d). The linear responses of the multi-mode sensor evaluated from 

experimental measures match the trend predicted by numerical analysis. These results effectively 

demonstrate the linearity performance of the designed multi-mode sensor, enabling the evaluation 

of input load over a wide stress range with consistent accuracy, minimum uncertainty, and high 

sensitivity.  

Additionally, we evaluated the durability performance of the multi-mode sensor by comparing the 

voltage signal in response to the applied load with the same magnitude in cycling tests. Figure 4-

10e demonstrate that the multi-mode sensor is capable of capturing the input load reproducibly 

over four thousand cycles with <5% deviation level, illustrating the robustness of the designed 

multi-mode sensor under long cyclic loading conditions.  

We further exploited the sensing capability of the multi-mode sensor in full characterization of 

three-dimensional (3D) force (both magnitude and orientation). To this end, we applied two 

spatially oriented loads as representative cases, and recreated the applied force magnitude and 

orientation with voltage signals from multi-mode sensor (𝑉𝑖, 𝑖 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼) (Figure 4-10f and 4-7g). 
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Figure 4-10f presents the voltage signals of the multi-mode sensor under oriented load with 

prescribed spatial angle 𝜃3 = 45°, 𝜑3 = 30° (case III in Figure 4-10b). The stress components in 

three orthogonal directions 𝜎𝑗(𝑗 = 1,2,3) are derived with equation:  

𝜎𝑗 =
𝜖𝑒𝑓𝑓𝑉𝑖𝐸𝑗

ℎ𝑑𝑖𝑗
 ( 𝑖 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼;  𝑗 = 1,2,3)          (4.9) 

where 𝑉𝑖 is the extracted voltage signals from three architectural cells; 𝜖𝑒𝑓𝑓 and ℎ are the effective 

permittivity and height of the multi-mode sensor, respectively; 𝐸𝑗 and 𝑑𝑖𝑗 are the elastic modulus 

and piezoelectric charge constants. Hence, we evaluated each stress component and reconstructed 

the force magnitude and orientation in Figure 4-10f. Similarly, for case IV (𝜃4 = 60°, 𝜑4 = 75°), 

the force magnitude and orientation was recreated from extracted voltage signal (Figure 4-10g). 

We observed an average 5% (estimated) deviation between the predicted force magnitude |𝐹𝑝| and 

the actual magnitude of applied force |𝐹𝑎|. Meanwhile, a less than 4° average deviation angle of 

predicted force orientation with respect to actual orientation is observed. These results demonstrate 

that the designed multi-mode sensor is capable of capturing full information of spatially oriented 

load with satisfactory accuracy, enables its broad application in field of robot tactile sensing, etc. 

4.3.3 Information encoding and storage with designed multi-mode sensor 

Recent studies have exploited information processing capabilities, for instance mechanical 

computing and memory formation, as the novel material behaviors for mechanical metamaterials. 

The architected metamaterials display prescribed deformation pattern, revealing the encoded 

information like letters of alphabet, under external stimuli. In this study, we investigated and 

demonstrated the information encoding and storage performance of piezo-active metamaterial, 
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which output distinct encoded patterns of voltage signals in response to mechanical loads in 

different orthogonal directions. We encoded three letters (“U”, “C” and “B”) corresponding to 

three load cases (normal compression and tangential shear) as a representative demonstration 

(Figure 4-11a). To this end, we set the design volume of the piezo-active metamaterial as a region 

consists of 5x4 individual sensing cells, and each sensing cell is generated accordingly on the basis 

of the prescribed patterns (Figure 4-11b). The overlap of multiple patterns indicates the sensing 

cell at corresponding position output voltage signals when subject to mechanical loads applied in 

different directions.  
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Figure 4-11. Demonstration of information encoding and storage performance of piezo-active 

metamaterial. (a). Target information to be encoded and stored in the piezo-active metamaterial. 

Three letters (U, C, and B) were set as target encoded information. (b). Assembling of piezo-active 

metamaterial. The design volume of the lattice consists of 20 (5x4) sensing cells, where each 

sensing cell is generated via superposition of basic sensing cell of multi-mode sensor. (c). Two 

categories of constitutive sensing cell of piezo-active metamaterial. Basic sensing cells where each 

sensing cell is solely responsive to a stress component in one principle axis (1-, 2-, or 3-direction). 

And compound sensing cells generated via superposition of basic sensing cells. Each compound 

sensing cell output voltage signal given stresses in multiple principle axes. (d). Information 

encoding process of the piezo-active metamaterial. The target information is transformed to binary 

voltage output maps, which is then combined as forming the voltage label map for lattice 

generation. (e). Testing setup of piezo-active metamaterial with information encoding and storage 

performance. Three loads, I – compression, II – shear in 1-direction, and III – shear in 2-direction, 

were applied, and the output patterns were formed with voltage signal from each individual sensing 

cell. (f). Voltage output patterns of piezo-active metamaterial under loadings in different directions. 

The patterns form letters “U”, “C”, and “B” when subject to compression, shear in x-direction, and 

shear in y-direction, respectively.  

 

Herein, we labeled all sensing cells with three-element vector where the elements of the vector 

denote the voltage response of the cell given mechanical loads, normal compression, and tangential 

shear in 1- and 2-directions, respectively. For instance, (0, 1, 0) denotes the cell that is solely 

responsive to tangential shear in 1-direction; and (1, 0, 1) represent the cell that output voltage 

signals given normal compression and tangential shear in y-direction, which is the combination of 

sensing cell (1, 0, 0) and (0, 0, 1). Following this approach, we generated the label for sensing cells 

at each location in the design volume and generated the corresponding design via direct 

superposition of selected sensing cells of multi-mode sensor, cell (1, 0, 0), (0, 1, 0), and (0, 0, 1) 

developed in the previous section (Figure 4-11b). In total, we developed a family of constitutive 

cells consists of two categories (Figure 4-11c): basic sensing cells that is solely responsive to load 

in a specific direction; and compound sensing cells that output voltage signals given various 

mechanical loads. These constitutive cells were then spatially arranged and tessellated into the 

piezo-active metamaterial with encoded information.  
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Next, we encoded target information into piezo-active metamaterial design via: I). transform the 

target information patterns to binary voltage output maps; II). combine three voltage output maps 

into the voltage label map at all locations of piezo-active metamaterial design volume; III). assign 

the constitutive sensing cells based on the voltage label at each location, giving rise to the design 

of piezo-active metamaterial with target information encoded and stored. The piezo-active lattices 

were fabricated and activated with prescribed material orientations. The piezo-active metamaterial 

was assembled for the demonstration of information storage, where the bottom surface is 

mechanically fixed and electrically grounded (Figure 4-11e). The voltage output of each cell was 

collected with a data acquisition system, which was processed to generate the signal pattern of 

piezo-active metamaterial under various loading. Figure 4-11f presents three voltage output 

patterns when the as-fabricated sample is subject to mechanical loading along each orthogonal 

direction, respectively. Voltage patterns with the shape of letters “U”, “C”, and “B” were observed 

when compression, shear in the 1-direction, and shear in the 2-direction was applied, which is the 

same as the encoded information of deigned piezo-active metamaterial. These results demonstrate 

that the information can be encoded and stored into developed piezo-active metamaterial, which 

can be extracted via the application of various mechanical loads.  

4.4 Designing arbitrary actuation mode of piezoelectric metamaterials 

4.4.1 Rational design of piezoelectric metamaterial with arbitrary strain mode 

The core concept of architected material is the free placement of materials in a 3D cellular topology 

that either bypass limitations in natural crystals or mimic them to achieve desired properties. We 

introduce a convenient and robust strategy to architect piezo-active, conductive and structural 

phase (Figure 4-12a) in 3D space.  Such multi-material metamaterials are capable of taking an 
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input electric field and outputting a desired mode of strain including new DoFs beyond the Cauchy 

strain components71,72 (e.g., normal and shear strain), including normal, shear, twisting, and flexure, 

as well as their combinations and amplifications.  
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Figure 4-12. Rational designs of robotic metamaterials with arbitrary strain modes (a) Schematic 

of the piezoelectric metamaterial consisting of piezo-active, conductive and structural phases. (b) 

Schematic of various strain modes and piezoelectric strain matrix with extended tensors (red), as 

enabled by metamaterial design in contrast to only 18 tensors in natural piezoelectric ceramics 

(blue). (c)-(i) Schematic of the design rationale of the piezoelectric metamaterials. The example 

shown here is for the 𝑑̅33 (twisting) mode. (j) Designs of piezoelectric robotic metamaterial with 

amplified expansion. (k) Schematic of the compound and decoupled expansion-shear mode with 

strain amplification. 

 

As the existing piezoelectric tensors are insufficient to describe the new DoFs, we define the 

generalized piezoelectric tensors 𝑑𝑛𝑚 and 𝑑̅𝑛𝑚 to describe the strain conversions of the architected 

piezoelectric materials (Figure 4-12b): 

𝜀𝑚 = 𝑑𝑛𝑚𝐸𝑛;  𝜑𝑚 = 𝑑̅𝑛𝑚𝐸𝑛                       (4.10) 

where 𝐸𝑛  is the electric field along n-direction in the Cartesian coordinates (n=1-3); 𝜀𝑚  and 

𝜑𝑚(m=1-6) are the directional strain and coupled strain tensors, respectively; 𝑑𝑛𝑚 is the existing 

piezoelectric tensor; and 𝑑̅𝑛𝑚 is the extended piezoelectric tensor.  

To design a piezoelectric micro-architecture that display a desired global strain mode 𝑑𝑛𝑚  (or 

𝑑̅𝑛𝑚 ) (Figure 4-12b), we start by identifying the motion of a stack of virtual characteristic planes 

within a unit cell of the micro-architecture (Figure 4-12c and 4-9d) and the local strain of the piezo-

active struts comprising the unit cell (Figure 4-12e). The virtual characteristic planes can be 

considered “pinned” by the piezo-active struts to allow unconstrained motion and will display a 

motion representing the desired global strain. As shown in Figure 4-13a to 4-10d, the characteristic 

planes undergo distance change, slip, rotation and tilt corresponding to strain modes including 

normal strain (𝜀𝑚 , m=1-3), shear (𝜀𝑚 , m=4-6), twist (𝜑𝑚 , m=1-3) and flexure (𝜑𝑚 , m=4-6), 

respectively. Figure 4-12d shows an example of a cube that twists upon application of electric field 
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in the 3-direction (𝑑̅33 mode), which is represented by the in-plane rotation of characteristic planes 

(Figure 4-12d). The local strain of a piezo-active strut, either expand or contract, within the unit 

cell is determined by the direction of the strut, the polarization and the electric field (see Methods 

about the details on the identification of the local strain). The electric field are generated by the 

conducting phase either covering the sides of the lattice topology (external electrodes, Figure 4-

12e①) or penetrating within the topology (localized electrodes, Figure 4-12e②), covering both 

sides of an active struts, leading to a shorter distance between electrodes and an elevated electric 

field.  
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Figure 4-13. Schematic of the motion of characteristic planes, unit cells and tessellation methods 

for metamaterials with expansion, shear, twist and flexure strain modes.  

 

The next design step is to place the piezo-active struts in a spatial layout such that their local strain 

will drive the virtual characteristic planes to display the motion path corresponding to the target 

global strain mode (𝑑𝑛𝑚  or 𝑑̅𝑛𝑚 ). Figure 4-13f presents the designed piezo-active struts that 

generate a clockwise rotation of the characteristic planes, resulting in a new twist strain mode and 

corresponds to a nonzero piezoelectric twist coefficient, 𝑑̅33. 3D micro-architectural layout of 

piezo-active struts for other strain modes including expansion, shear and flexure, are summarized 

in Figure 4-13e to 4-10h. The full unit cell design is then completed by adding structural phase 

and conductive phase (Figure 4-12g) in a layout that matches the symmetry of the piezo-active 

struts.  

In the last step, we tessellate the unit cells into a “metacrystal” that reflect effective response of 

the unit cell (see Figure 4-13i to 4-10l for choice of tessellation orientations). For example, to 

generate a twisting metamaterial, we tessellate the unit cell in cylindrical coordinates along the 

radial (r), angular (θ) and height (z) directions, as shown in Figure 4-12h and 4-12i. This novel 

aperiodic tessellation is scalable to an infinite number of unit cells and bypasses the effect of the 

number of unit cells when tessellated in Cartesian coordinates, where the twist strain would vanish 

when reduced to a Cauchy continuum as the unit cell number increases (Figure 4-14).  As such, 

these metamaterial concepts are scalable, where the coefficient is invariant of the number of unit 

cells in all directions. Designs with all strain modes shown in the extended matrix are summarized 

in Table 4-1. 
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Figure 4-14. Comparison of the twist coefficients for unit cells tessellated with translational 

symmetry and rotational symmetry. (a), Schematic of the unit cells tessellated with translational 

symmetry. The green arrows represent the constraints induced by the deformation of the unit cells, 

while the red arrows represent the deformation direction of the unit cells or lattices. 𝐸̅ shows the 

on (“1”) and off (“0”) of the electric field. 𝜃𝐶  is the twist angle of the lattice with periodic 

tessellation. 𝜃𝑃 is the twist angle of the lattice with aperiodic tessellation. (b), Schematic of the 

unit cells tessellated with rotational symmetry. (c), Twist coefficients of the unit cells tessellated 

with the two methods as a function of the cell number. The results are calculated with finite element 

analysis with the twist lattice design shown in Figure 4-12i. 

 

Table 4-2. All designed actuation mode of piezoelectric metamaterials 
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Additionally, the interpenetrated piezo-active, structural and conductive phase allow amplification, 

logic subtraction and addition of strains, leading to the coupling and suppression of selected strain 

modes. Figure 4-12j shows the unit cell design featuring amplified expansion via tessellating pairs 

of piezo-active and structural struts(28). Figure 4-12k demonstrates the design with localized 

electrodes. The localized electrode architecture that cover selected groups of struts allows for 

programming the polarization and electric field direction within the unit cell (Figure 4-12k, see 

Figure 4-15 for polarization and driving voltage programming), thereby achieving compound 

strain mode with both shear and expansion strain output or decoupled strain mode with added up 

shear and suppressed expansion. 

 

Figure 4-15. Polarization and driving voltage of the amplified shear and twist architecture with 

compound and decoupled mode. Va is the actuation voltage, Vp is the polarization voltage. During 

polarization, the struts within the unit cell are divided into two groups, and polarized via the 

localized electrodes. During decoupled actuation, the electric field direction of two groups of struts 

is inversed, resulting in expansion and contraction of two groups of struts, respectively. The 

expansion and contraction within the unit cell are canceled out while the shear deformation is 
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added up. During compound actuation, only one group of the struts are activated, allowing the unit 

cell to shear and expand simultaneously. 

 

4.4.2 Theoretical characterization of the actuation performance 

Identification of the local strain 

We identify the deformation mode of spatially oriented piezo-active strut within the building block 

based on the direction of polarization (3-direction), electric field (denoted by n) and the angle 

between the electric field and the strut (ø). Due to the large permittivity difference between the 

piezo-active material and the air (or polarization liquid), upon application of the driving (or 

polarization) voltage, the electric field within the building block is mainly distributed along the 

struts that are not perpendicular to the electric field. When ø=90°, the strain of the strut is negligible. 

When n=1 or 2, the strut expands if ø<90° and shrinks if ø>90°. When n=3, the strut expands if 

ø>90° and shrinks if ø<90°. 

Theoretical prediction of the piezoelectric strain constant 

The electromechanical coupling behaviors of piezoelectric materials is characterized by the 

constituent equations as: 

𝑆 = 𝑠𝐸𝑇 + 𝑑𝑡𝐸            (4.11) 

𝐷 = 𝑑𝐸𝑇 + 𝜀𝑡𝐸            (4.12) 
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Herein, S and D is the strain and the electric displacement field of the piezoelectric material, 

respectively; T and E is the external mechanical load and electric field; s, d and ε is the compliance, 

piezoelectric coefficient and dielectric constants.  

To quantify the four categories of electromechanical coupling, we invoked micropolar mechanics 

to capture the novel mechanical deformations and extend the conventional piezoelectric coefficient 

matrix. Herein, we introduced 18 additional terms in the conventional coefficient matrix and 

established the extended piezoelectric coefficient as shown in Figure 4-12b. The expanded 

piezoelectric coefficients dnm and d̅nm (n=1-3, m=1-6, where m is in hexadecimal notation), could 

effectively represent the extension (dnm, m=1-3), shearing (dnm, m=4-6), twisting (d̅nm, m=1-3), and 

bending (d̅nm, m=4-6) deformation. This is the first time to comprehensively characterize all 

physically feasible deformation mechanism of the piezo-active unit volume.  

The piezoelectric charge constants dnm and d̅nm can be evaluated through quantifying the effective 

force and torque induced by the electric field and effective stiffness of the piezoelectric 

architectures. Due to the large permittivity difference between the piezo-active material and the 

air (or polarization liquid), upon application of the driving (or polarization) voltage, the electric 

field within the building block is mainly distributed along the struts that are not perpendicular to 

the electric field. As shown in Figure 4-12e, the angle between the localized polarization and the 

electric field direction is ø. When ø=90°, the strain of the strut is negligible. When ø<90°, the strut 

expands. When ø>90°, the strut shrinks. When n=3, the strut expands if ø>90° and shrinks if ø<90°. 

Herein, we define the 𝐿𝑖 as the spatial orientation vector the i-th strut in the piezo-active structure, 

respectively. Configuring the spatial orientation vector 𝐿𝑖 alters the effective force on this strut 
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induced by the electric field. Under external electric field E, the effective force and moment of the 

piezoelectric metamaterial is given as: 

𝐅𝒑 = ∑𝐅𝒑
𝒕

𝑵

𝒕=𝟏

= ∑𝐴𝑡𝐶𝐄𝒊𝐝𝒊𝒋
𝒕 𝐍𝒊𝒑

𝒕

𝑵

𝒕=𝟏

            (4.13)

𝐇𝒌 = ∑𝐇𝒑
𝒕

𝑵

𝒕=𝟏

= ∑𝐴𝑡𝐶𝐄𝒊𝐝𝒊𝒋
𝒕 𝐍𝒊𝒑

𝒕 𝐫𝒒
𝒕𝑠𝑖𝑛 < 𝑒𝑝, 𝑒𝑞 >            (4.14)

𝑵

𝒕=𝟏

 

where 𝐴𝑖  is the cross-section area of the i-th strut, C and 𝐝𝒊𝒋
𝒊  are the elastic modulus and 

piezoelectric coefficient matrix of the constituent materials, 𝐄𝑖 is the electric field applied on the 

piezo-active ligaments, 𝐍𝒊𝒑
𝒊  is the stress-transformation matrix from the local coordinate system of 

i-th strut (x-axis is the center line of the strut) to the global coordinate system , which is determined 

by its orientation vector 𝐋𝑖 , 𝐫𝒒
𝒊  is the distance vector that connects the origin of the global 

coordinate system (center of the unit cell) and the starting point of i-th strut, 𝑒 is the unit vector in 

the corresponding direction (|𝑒𝑝| = 1), and 𝑒𝑝 × 𝑒𝑞 = 𝑒𝑘. 

Considering the total effective force and moment induced by the electric field, along with the 

effective stiffness, yields the explicit expression of the piezoelectric coefficients as: 

𝑑𝑛𝑚

∑ 𝑭𝒑
𝒕 𝐂𝐩𝐦

−𝟏𝑁
𝑡=1

𝐸𝑛
;  𝑑̅𝑛𝑚 =

∑ 𝑯𝒌
𝒕 𝐈𝐤𝐦

−𝟏𝑁
𝑡=1

𝐸𝑛
       (𝑛 = 1 − 3; 𝑝,𝑚 = 1 − 6)            (4.15) 

where 𝐹𝑖 is the force of i-th strut induced by the electric field 𝐸𝑛; 𝜀𝑚 and 𝜑𝑚 is the electric-field 

induced strain and couple strain of the piezoelectric architectures; and 𝐂𝐩𝐦 and 𝐈𝐤𝐦 is the effective 

stiffness and rigidity of the unit cell, which is estimated through homogenization method.  
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𝐂𝐩𝐦 = 𝐶 ∑[∬(𝑟𝑖)2𝑑𝐴]

𝑛

𝑖=1

𝐴𝑢𝑛𝑖𝑡⁄ ; 𝐈𝐤𝐦 = 𝐶 ∑∫ [∬(𝑟𝑖)2𝑑𝐴]
𝐋𝑖

𝑛

𝑖=1

𝑉𝑢𝑛𝑖𝑡⁄             (4.16) 

This theoretical approach allows us to precisely characterize the actuation performance of the 

micro-architected piezoelectric materials via extracting certain component of the electric field 

induced force or moment and evaluating the corresponding term of piezoelectric coefficient dnm 

and d̅nm. 

Next, we derive the explicit expression of the piezoelectric coefficient under different deformation 

mode. To this end, we invoked the Euler beam theory to evaluate the deformation of the cubic 

representative volume element (unit cell). For axial extension, the strain is given as: 

𝜀 =
𝐹

𝐶𝐴
            (4.17) 

where A is the cross section of the beam, and F is the external force. Therefore, for micro-

architected piezoelectric lattice experience axial extension (m=1-3) in z-direction, the overall 

external force under electric field in z-direction is given as: 

∑𝐹𝑧
𝑖 = ∑𝜋𝑟𝑖2𝐸𝑑33𝑠𝑖𝑛𝜃4

𝑖             (4.18) 

And the effective stiffness could be obtained via: 

𝐂𝐩𝐦 =
𝐶 ∑ [∬(𝑟𝑖)2𝑑𝐴]𝑛

𝑖=1

𝑎2
            (4.19) 

Where a is the length of the unit cell. Therefore, the corresponding piezoelectric dnm (m=1-3) is 

given as: 
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𝑑𝑛𝑚 =
∑𝐹𝑧

𝑖 𝐂𝐩𝐦
−𝟏

𝐸
=

𝑎2 ∑ [𝜋𝑟𝑖2𝐸𝑑33𝑠𝑖𝑛𝜃4
𝑖(𝑠𝑖𝑛𝜃4

𝑖𝛿𝑚3 + 𝑐𝑜𝑠𝜃4
𝑖𝑐𝑜𝑠𝜃3𝛿𝑚1 + 𝑐𝑜𝑠𝜃4

𝑖𝑠𝑖𝑛𝜃3𝛿𝑚2)]

𝐶 ∑ [∬(𝑟𝑖)2𝑑𝐴]𝑛
𝑖=1

  

(𝑚 = 1 − 3)            (4.20) 

where 𝛿𝑥𝑦 is the Kronecker delta: 𝛿𝑥𝑦 = 1 when x=y, and 𝛿𝑥𝑦 = 0 when x≠y. 

Next, we derive the piezoelectric coefficient under shear deformation mode. The deformation of 

the continuum volume shear is characterized as: 

∆𝑦 =
𝐹𝑠ℎ

3

12𝐶𝐼𝑦
            (4.21) 

where 𝐹𝑠 is the shear force, and 𝐼𝑦 is the second moment of area. Therefore, we can derive the 

shear force in y-direction as: 

𝐹𝑦 = ∑{𝜋𝑟𝑖2𝐸𝑑33𝑠𝑖𝑛𝜃4
𝑖𝑐𝑜𝑠𝜃4

𝑖𝑠𝑖𝑛𝜃3
𝑖}

𝑛

𝑖=1

            (4.22) 

And the effective second moment of area is calculated as: 

𝐼𝑦
𝑒𝑓𝑓

= ∑𝐼𝑧
𝑖

𝑛

𝑖=1

= 

∑

{
 
 

 
 √1 + 𝑡𝑎𝑛2𝜃2

𝑖 + 𝑡𝑎𝑛2𝜃3
𝑖

ℎ
{
𝜋𝑐𝑜𝑠2𝛽

4
𝑟4(1 + 𝑐𝑠𝑐2𝛾𝑖𝑡𝑎𝑛2𝛽) (𝑥2

𝑖 − 𝑥1
𝑖) +

𝜋𝑟3

3
𝑐𝑠𝑐𝛾𝑖(𝑥2

𝑖 − 𝑥1
𝑖)

3
}

}
 
 

 
 𝑛

𝑖=1

            (4.23) 
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where 𝑥𝑗
𝑖  (𝑗 = 1,2) is the x-direction coordinate staring (j=1) and ending (j=2) point of the i-th 

strut. Hence, by substituting in the expression above, the piezoelectric coefficient dnm (m=4-6) 

for shear mode is given as: 

𝑑𝑛𝑚 =
𝐹𝑦𝑎

2

12𝐸𝐶𝐼𝑦

=
∑ {𝜋𝑟𝑖2𝐸𝑑33𝑠𝑖𝑛𝜃4

𝑖(𝑠𝑖𝑛𝜃4
𝑖𝛿𝑚6 + 𝑐𝑜𝑠𝜃4

𝑖𝑐𝑜𝑠𝜃3𝛿𝑚4 + 𝑐𝑜𝑠𝜃4
𝑖𝑠𝑖𝑛𝜃3𝛿𝑚5}

𝑛
𝑖=1

12𝐶 ∑

{
 
 

 
 √1 + 𝑡𝑎𝑛2𝜃2

𝑖 + 𝑡𝑎𝑛2𝜃3
𝑖

ℎ
{
𝜋𝑐𝑜𝑠2𝛽

4 𝑟4(1 + 𝑐𝑠𝑐2𝛾𝑖𝑡𝑎𝑛2𝛽) (𝑥2
𝑖 − 𝑥1

𝑖) +
𝜋𝑟3

3 𝑐𝑠𝑐𝛾𝑖(𝑥2
𝑖 − 𝑥1

𝑖)
3
}

}
 
 

 
 

𝑛
𝑖=1

    

(𝑚 = 4 − 6)            (4.24) 

 

Regarding the twisting mode, the deformation of the continuum volume twisting is characterized 

by the polar moment of inertia Iz as: 

𝜃 =
𝑀

𝐶𝐼𝑧
            (4.25) 

Where M is the external moment. Therefore, we derive the effective moment applied on the 

piezoelectric lattice as: 

∑𝑀𝑚
𝑗

= ∑𝐹𝑖
𝑗
𝑥𝑖+1

𝑗
+ 𝐹𝑖+1

𝑗
𝑥𝑖

𝑗
 (𝑚 = 1,2,3; 𝑖 ≠ 𝑚)            (4.26) 

And the effective polar moment of inertia is given as: 
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𝐼𝑧
𝑒𝑓𝑓

= ∑𝐼𝑧
𝑖

𝑛

𝑖=1

= 

∑

{
 
 

 
 √1 + 𝑡𝑎𝑛2𝜃2

𝑖 + 𝑡𝑎𝑛2𝜃3
𝑖

ℎ
{
𝜋𝑟4

4
(1 + 𝑐𝑠𝑐2𝛾𝑖)(𝑥2

𝑖 − 𝑥1
𝑖)

𝑛

𝑖=1

+
𝜋𝑟3

3
𝑐𝑠𝑐𝛾𝑖 [(𝑥2

𝑖 3
− 𝑥1

𝑖 3) + (𝑥2
𝑖 − 𝑥1

𝑖)𝑦1
𝑖2 + 𝑡𝑎𝑛𝜃2

𝑖(𝑥2
𝑖 − 𝑥1

𝑖)
2
𝑦1

𝑖

+
𝑡𝑎𝑛2𝜃2

𝑖

3
(𝑥2

𝑖 − 𝑥1
𝑖)

3
]}

}
 
 

 
 

            (4.27) 

Therefore, the piezoelectric twisting coefficient dnm (m=7-9) for shear mode is given as: 

𝑑𝑛𝑚 =
𝑀

𝑎𝐸𝐶𝐼𝑧
=

∑𝐹𝑖
𝑗
𝑥𝑖+1

𝑗
+ 𝐹𝑖+1

𝑗
𝑥𝑖

𝑗

𝑎𝐸𝐶 ∑ 𝐼𝑧
𝑖𝑛

𝑖=1

              (4.28)  

Similarly, we can obtain the piezoelectric bending coefficient dnm (m=A-C) as: 

𝑑𝑛𝑚 =
∑𝐹𝑚

𝑗
𝑥𝑚

𝑗

𝑎𝐸𝐶 ∑ 𝐼𝑦
𝑖𝑛

𝑖=1

   (𝑚 = 𝐴 − 𝐶)            (4.29) 

Here, 𝐼𝑦
𝑖  is given as: 

𝐼𝑦
𝑖 =

√1 + 𝑡𝑎𝑛2𝜃2
𝑖 + 𝑡𝑎𝑛2𝜃3

𝑖

ℎ
{
𝜋𝑐𝑜𝑠2𝛽

4
𝑟4(1 + 𝑐𝑠𝑐2𝛾𝑖𝑡𝑎𝑛2𝛽) (𝑥2

𝑖 − 𝑥1
𝑖)

+
𝜋𝑟3

3
𝑐𝑠𝑐𝛾𝑖(𝑥2

𝑖 − 𝑥1
𝑖)

3
}            (4.30) 
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4.4.3 Experimental validation of metamaterial design with target strain mode 

To verify the arbitrary strain modes of the robotic metamaterial, we measured the electric field 

activated deformation of as-fabricated and poled samples via a high-precision full-field laser 

vibrometer (Polytec, PSV-500) (Figure 4-16a). Quasi-static driving voltage with 50V amplitude 

was applied through the layered external electrodes, while the activated deformation is measured 

by tracing the side surface of the metamaterial (as shown in Figure 4-16a) and reconstructed as a 

surface plot for visualization. Figure 4-16b and 4-13c show an optical image of a twist (𝑑̅33) mode 

lattice with external electrodes and its side surface deformation, showing a wrapped shape 

corresponding to a twisted solid (Figure 4-12c). Deformation measurement for shear (𝑑34) and 

flexure (𝑑̅35) mode lattices are summarized in Figure 4-16d and 4-13e and Figure 4-16f and 4-13g, 

respectively. Different strain modes can also be combined into a single element piezoelectric 

lattice to achieve a selection of multiple strain modes and multi-DoF metamaterial actuator with 

six individually actuatable architecture designs full-filling 6-DoF, including the 𝑑33, 𝑑35, 𝑑̅33, 𝑑̅34, 

𝑑̅35 and 𝑑36 modes (Figure 4-16h and 4-16i). This multi-DoF actuator has a density of 0.88/cm3, 

making it among the most compact 6-DoF actuators with high-speed and precision motions, with 

a density an order of magnitude lower than existing piezo-actuators with dense PZT73 (Figure 4-

17). The multi-DoF actuator is capable of high-speed high-precision motions. As an example, we 

demonstrate a high-speed galvanometer actuated by two multi-DoF actuators assembled with two 

reflective mirrors.  Figure 4-18 shows a star pattern drawn by the steered laser beam (10 cycles at 

20 Hz, with an RMS precision of 50±13 µm) by programming the input voltage that controls the 

tilt angle of the metamaterial. 
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Figure 4-16. Experimental verification of robotic metamaterial designs (a) Schematic of the test 

set up with laser vibrometer to capture the deformation of the side surface of the lattice. (b)-(g) 

Optical image of the twist, shear and flexure mode lattice and their side surface deformation. (h) 

Optical image of a modularized 6-DoF piezoelectric actuator. (i) Deformation of the side surface 

of the 6-DoF piezoelectric actuator working in three representative working modes (d̅35, d̅33 and 

d36  modes). (j) Optical image of a piezoelectric metamaterial with amplified expansion. (k) 

Displacement of the metamaterial with localized electrodes and solid PZT material with external 

electrodes as a function of the input voltage. (l) Optical image of the piezoelectric metamaterial 

with amplified twist and suppressed expansion. (m) Twist angle of the metamaterial with external 

and localized electrodes as a function of input voltage. (n) Optical image of the piezoelectric 

metamaterial with amplified shear. (o) Shear displacement of the metamaterial with external 

electrodes and localized electrodes as a function of input voltage. (p)-(q) Displacement with 

compound and decoupled expansion-shear modes with sinusoidal voltage input.  
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Figure 4-17. Experimental testing of piezoelectric metamaterials as beam steering elements. (a), 

Schematic of the designed pattern and programmed voltage input to the beam steering elements. 

(b), Optical image of the beam steering device. (c), Optical image of the laser sensor. (d), 

Schematic of the signal processing circuit of the laser sensor. (e), Laser spot trajectory captured 

by the laser sensor. (f), Benchmark the 3D printed 6-DOF element with the state-of-art multi-

degrees-of-freedom manipulators. 

 

Figure 4-18. Optical image of the laser beam steering system and designed experimental laser spot 

trajectories for a star pattern executed at 20 Hz. 
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Next, we fabricated micro-architectures with embedded electrodes and demonstrate the strain 

amplification, strain compounding, strain addition and subtraction enabled by the localized 

electrodes and the micro-architecture design. Figure 4-16j, 4-16l and 4-16n presents as-fabricated 

lattice lattices with localized electrodes, featuring amplified expansion ( 𝑑33 , Figure 4-12j), 

amplified twist (𝑑̅33, Figure 4-15) and amplified shear (𝑑34, Figure 4-12k), respectively. The 

displacement versus the driving voltage of lattices is captured with the laser vibrometer and plotted 

in Figure 4-16k, 4-16m and 4-16o, which were used to derive the corresponding strain coefficients. 

Compared to the strain coefficients of lattices with layered external electrodes, the localized 

electrodes achieve giant piezoelectric coefficients (i.e. 𝑑33=10050pm/V), which is two orders of 

magnitude higher than that of their native material (583pm/V). Figure 4-16p and 4-16q 

demonstrate the compound expansion-shear strain and the decoupled pure shear strain using 

designs from Figure 4-12k, via programming the local polarization and driving electric field within 

the embedded electrode architectures. 

4.4.4 Numerical validation of metamaterial design with target strain mode 

We implemented a computational framework that predicts and verifies the piezoelectric electric 

coefficients 𝑑𝑛𝑚  and 𝑑̅𝑛𝑚  of the metacrystal designs. This is achieved by calculating the total 

induced-load contribution of the connected piezo-active struts within the cubic volume under an 

electric field. Figure 4-19 shows the finite element analysis results that verify the actuation modes. 

Herein, commercially available finite element analysis (FEA) software COMSOL is invoked for 

all the numerically studied cases. We applied periodic boundary conditions (PBCs) on the unit 

cells to effectively characterize the overall electromechanical performance of the piezoelectric 
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metamaterials. Material properties used in the simulation process were experimentally measured 

as: 

Density: 𝜌 = 6.9 × 103𝑘𝑔/𝑚3 

Elastic property :𝐸1 = 𝐸2 = 36G𝑃𝑎, 𝐸3 = 43𝐺𝑃𝑎, 𝜈12 = 0.31, 𝜈23 = 0.33, 𝜈13 = 0.27 

Dielectric permittivity: 𝜖11 = 𝜖22 = 1.201 × 10−9𝐹/𝑚, 𝜖33 = 1.3 × 10−19𝐹/𝑚 

Piezoelectric charge constant: 𝑑15 = 𝑑24 = 597𝑝𝐶/𝑁 , 𝑑31 = 𝑑32 = −229𝑝𝐶/𝑁 , 𝑑33 =

523𝑝𝐶/𝑁, the other 𝑑𝑖𝑗 = 0. 

The tetrahedron elements is used to mesh the unit cells for all the representative actuation cases. 

The bottom surface of the unit cells is fixed in all three translational degree-of-freedom. Electric 

field was applied on the unit cells to activate the deformation of the unit cells. As shown in Figure 

4-19, all the representative designs of the piezoelectric unit cell demonstrate target actuation 

performances. 
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Figure 4-19. FEA results for lattices with 𝐝𝟑𝟒  (shear), 𝐝𝟑̅𝟑  (twist), 𝐝𝟑̅𝟓  (bend), amplified 

expansion, amplified shear and amplified twist modes. 

 

4.5 Conclusion 

In this chapter, we presents a methodology to design electrical-mechanical coupling anisotropy 

and orientation effects and recreate them via additive manufacturing of highly responsive 

piezoelectric materials. This creates the freedom to inversely design an arbitrary piezoelectric 

tensor, including symmetry conforming and breaking properties, transcending the common 

coupling modes observed in piezoelectric monolithic and foams. We see this work as a step toward 

rationally designed 3D transducer materials for which users can design, amplify or suppress any 
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operational modes (𝑑𝑛𝑀) for target applications. Design and tessellation of the piezo-active units 

can lead to a variety of smart-material functionalities including vector and tactile sensing, source 

detection, acoustic sensing and strain amplifications from a fraction of the solid. 

Additionally, we introduced a strategy to design and additive manufacture a class of robotic 

metamaterials that incorporate electronic, structural and conducting micro-scale strut elements in 

a 3D architecture. These multi-functional metamaterials uncovered a myriad of new strain modes 

including twisting, flexure, compound, decoupled and amplified strain without combing any 

leveraging or transmission system at a fraction of the weight. This bypasses the limitations of 

natural piezoelectric crystals where the piezoelectric strain relies on the available natural 

crystalline structures, of which only a fraction of the tensor has been discovered and measured 

thereby limited to only normal and shear directions with low amplitude. The design strategy can 

be further combined with a topology optimization algorithm to generate arbitrary piezoelectric 

tensors. 
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Chapter 5 Intelligent design method of full mechanical responses of 

metamaterial 

This chapter demonstrate a ML based design framework to create the complete desired mechanical 

response, and its application in inversely design arbitrary types of compressive behaviors of the 

metamaterial. The chapter starts with the construction of the ML framework. The training data 

structure is described. Next, the application of the trained ML framework in designing various 

types of responses is presented. The advanced tailorability of mechanical behaviors is 

demonstrated with the developed ML model. The application of modified ML model for 

simultaneous inverse design of mechanical responses at different loading rates are demonstrated 

for an architected bumper. 

5.1 Development of the generative ML framework 

5.1.1 Overview of the generative ML framework 

We implemented a generative ML pipeline composed of an inverse prediction and forward 

validation modules where each module is composed of five distinct NN models (Figure 5-1a). 

Each NN model in the inverse prediction module predicts a set of design parameters {Y} for a 

given target curve feature {XT}, whereas the forward validation module outputs the predicted 

curve features {XP} for each set of the predicted design parameters and determines the optimal set 

via evaluating the differences between predicted and target curve features. This embedded 

approach solves the non-unique response-to-design mapping challenge in inverse design27,28 (e.g., 

several micro-architectural features may give same output curves). During this process, the curve 

type classifier in the forward validation module estimates the type of predicted stress-strain curves 
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using the design parameters predicted from the inverse design module. This curve type along with 

such predicted design parameters are fed into each NN model of the forward module for the 

prediction of stress-strain curve features {XP}. Thereby, as the optimal design are chosen via a 

direct comparison of curve features, our approach ensures the uniqueness of the solution and hence 

bypasses the potential one-to-many mapping issue that can occur in the typical inverse design 

approach. 

 

Figure 5-1. Overview of the ML-based rapid inverse design methodology. (a) Schematic of the 

generative ML pipeline presented in this work. By taking the target uniaxial compressive behavior 

in the form of curve features {XT} as the input data, the inverse prediction module of our ML 

approach predicts five sets of design candidates 65 (described by the cell type (Tcell), characteristic 

angle (𝜙) and radius-to-length ratio (r1/L1)), where k ranges from 1 to 5. These design candidates 

are then passed to forward validation module to estimate the response {XPk} of the design 

candidates. Each of these responses {XPk} is compared to the target curve feature {XT} for 

selection of the optimal design. (b) CAD model generated based on the optimal design selected in 

a. (c) A schematic of 3D printing system with specific fabrication parameters (minimal feature size 

smin and maximum printing volume L3). (d) Printed sample based on the optimal design predicted 

by the generative ML pipeline under compressive loading. (e) A comparison between the target 
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(black) and measured (red) compressive stress‒strain curves. The uncertainty region (blue shaded 

area) represents the process variability obtained through the testing of multiple samples. 

 

5.1.2 Generative ML pipeline 

By inputting the target stress-strain curve feature {XT}, we aimed to build an inverse (backward) 

model that predicts the design parameters {Y} of a lattice architecture, which is capable replicating 

the targeted curve after fabricating and compression testing. In general, the inverse prediction from 

{XT} to {Y} can theoretically be affected by the “one-to-many” issue, that is, although a given 

lattice architecture presents a unique stress-strain curve, several lattice architectures can potentially 

provide similar or same stress-strain curve. Therefore, the conventional inverse model’s loss 

function fL=(Ypred-Ytrue)
2 (where Y is the design parameters of the designed lattice architecture) is 

ill-defined since several ground-truth values of Ytrue are correct—that is, several lattice 

architectures {Y} can exhibit the same feature {X} of the stress-strain curve. The ill-defined nature 

of the cost function is an issue as it serves as the basis (i.e., cost function) for the training of the 

model.  

Here, we implemented a generative machine learning model to address the “one-to-many” issue. 

Figure 5-2a illustrates the overall architecture of the machine learning (ML) generative pipeline. 

The ML model is composed of (i) a forward validation module (consists of a curve type classifier 

and five individual surrogate neural networks) that predicts curve feature {XP} given the design 

candidate {Y} and (ii) an inverse prediction module (consists of five individual generative neural 

networks) that predicts the design candidate {Y} based on the target curve feature {XT}. Each 

generative neural network is linked to its corresponding surrogate neural network, forming a pair 
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of generative-surrogate model. In total, we have five pairs of generative-surrogate model in our 

ML pipeline (Figure 5-2b).  

 

Figure 5-2. Details of ML approach. (a), The generative ML pipeline consists of two modules: 

inverse prediction module and forward validation module. Taken the target stress-strain curve 

feature as the input, the inverse prediction module predicts five design candidates, which are then 

passed to the forward validation module to evaluate the mechanical responses and select the 

optimal design. (b), Five pairs of generative neural networks and surrogate neural networks in the 

ML pipeline. (c), Multiple design candidates obtained from the inverse prediction module for the 

target curve shown in a. (d), Example of estimated curves from the surrogate model 5. These curves 

were averaged and compared with the target curve in terms of the normalized root-mean-square 

error (NRMSE). After repeating this process for all models, the optimal design paired with a curve 

exhibiting the minimum NRMSE was chosen. When the minimum NRMSE values are identical 

across multiple designs, the design candidate from a ML model with the highest prediction 

accuracy is chosen as the optimal design. 
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Although this model adopts generative neural networks that aim to predict an accurate lattice 

architecture {Y} for a given input target curve feature {XT}, our ML pipeline does not rely on any 

ill-defined cost function. Indeed, instead of defining the cost function based on a comparison 

between the predicted and true lattice architecture, the predicted lattice architecture {Y} is now 

converted back to a predicted stress-strain curve via the pretrained forward validation module. This 

modification allowed us to directly evaluate the difference between the predicted curve feature 

{XP} and the target curve feature {XT} via a new cost function fc=(Xpred-Xtrue)
2. As the stress-strain 

curve is unique to a lattice architecture, this approach effectively ensures the uniqueness of the 

solution and eliminates the “one-to-many” issue without compromising the properly defined nature 

of the cost function. 

After predicting the curve features {XP} by the surrogate neural network model, the associated 

curve can be reconstructed based on the curve features. Each curve is uniquely described by a 

series of control points, which can be classified into five categories: origin, linear elastic limit, 

local maximum points, local minimum points, and end point (Figure 5-3a). In turn, a linear 

connection of these control points can approximately represent the true stress-strain curve, as 

illustrated in Figure 5-3b. The linear connection is called feature-to-curve reconstruction, and this 

linearly connected curve is herein referred as a reconstructed curve for the curve features {X}. We 

found that, when compared to the ground-truth stress-strain curves, the reconstructed curves 

exhibit very small discrepancy, with an average normalized root-mean-square error (NRMSE) of 

~0.01; that is, the reconstructed curves largely overlap with the ground-truth curves. Figure 5-3c 

presents two representative cases of true curve and reconstructed curve. Herein, NRMSE is defined 

as: 
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NRMSE = √
∑ (𝑥𝑖⃑⃑  ⃑

pred/𝑥𝑖⃑⃑  ⃑
target − 1)

246
𝑖

𝑁features
                         (5.1) 

where 𝑥𝑖⃑⃑  ⃑
pred  and 𝑥𝑖⃑⃑  ⃑

target  are i-th curve feature of {XP} and {XT}, respectively, and 𝑁features 

denotes the number of the curve features. This expression leads to the computed NRMSE bounded 

between 0 and 1, where 0 implies the two vectors are identical with 1 implying that they are 

completely dissimilar. 

 

Figure 5-3. Stress-strain curve reconstruction based on curve features. (a), The original stress-

strain curve with five types of control points. (b), Reconstructed stress-strain curve via linear 

connection of all the control points. (c), Two representative cases of comparison between true 

curve and reconstructed curve. 
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Note that not every curve contains all the five categories of control points. Along with the 

prediction of the curve features {XP}, we also used the curve type classifier to predict the curve 

type. Based on the curve type, we were able to filter out the nonzero predictions of some curve 

features that are expected to be zero. 

5.1.3 Determination of optimal design parameters 

We now discuss the strategy that was used herein to determine the optimal design from several 

candidate structures offered by multiple generative models (i.e., a series of independent generative 

models that are trained on the same dataset, but with different random initial weights and distinct 

hyperparameters). In detail, by inputting the same target stress-strain curve feature, each generative 

model independently predicts a design candidate, which might be different from each other. 

Although all the generative models may exhibit satisfactory accuracy, some predicted structure 

can provide a stress-train curve closer to the target curve than the other design candidates, which 

is the optimal design that should be picked out.  

Figure 5-2a illustrates the model evaluation strategy to determine the optimal design. The inverse 

prediction module comprises five independent generative neural network models, wherein each 

one predicts its own design candidate {Y} for the given target curve feature {XT}. These design 

candidates are then passed to the corresponding surrogate forward model to evaluate its response 

{XP} (Figure 5-2b). Each surrogate model predicts five sets of stress-strain curve feature for the 

input design candidate, and these five predicted curve features are then averaged to obtain the 

averaged stress-strain curve feature. In total, five surrogate forward model predicts five individual 

averaged stress-strain curve features, which are then compared with the input curve feature {XT} 

for the selection of optimal design {Y}. The optimal design is then determined as the one that 
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yields the smallest NRSME value compared with the input curve feature {XT}. Figure 5-2c and 5-

2d present a representative case of optimal design selection. For a case where the minimum 

NRMSE values are identical between multiple predicted curves, the design candidate from a neural 

network model with the minimal training loss value is selected as the optimal design.  

5.1.4 Curve type classifier 

Given one set of design parameters {Y} and load type Tload, we first aimed to build a forward 

model that can predict the corresponding stress-strain curve {XP}. In practice, there exists a 

discrepancy between the true curve {XT} and the predicted curve {XP}. For example, in the case 

of a buckling response, {XP} generally exhibits a nonzero value (rather than a value of zero) for 

the local minimum stress and strain, which makes it difficult to differentiate with multiple peak-

and-valley response. 

To differentiate the curve type for each {XP}, we herein constructed a curve type classifier using 

a neural network model implemented in the Python TensorFlow platform. The classifier contains 

2 hidden dense layers with 64 and 128 neurons, respectively (Fig. 1a). We used the rectified linear 

unit (ReLu) activation function for the hidden layers and softmax activation for the output layer. 

Each hidden layer is followed by a batch normalization layer to improve the training efficiency. 

By inputting the design parameter {Y} and load type Tload, the classifier outputs the probability of 

each curve type, i.e., linear, plastic yielding, buckling, and multiple peak-and-valley response 

(Figure 5-4).  
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Figure 5-4. Categories of stress-strain curves in the training dataset. (a), Linear response. (b), 

plastid yielding response. (c), Buckling response. (d), Multiple peak-and-valley response. 

 

5.2 Stress-strain curve design space for ML 

5.2.1 Derivation of curve design space 

The design region of our generative ML approach was formulated as a dimensionless design space 

enclosing the arbitrary mechanical behavior of cellular materials under both monotonic and cyclic 

uniaxial compression, where the x-axis specifies the strain ε and the y-axis specifies the relative 

compressive strength normalized to the yield strength of a given polymeric base material σ/σys (the 

full curve design space is highlighted by a black dotted region in Figure 5-5a). This dimensionless 

design space comprises a series of subdesign spaces classified by the elastic limit (εys or σys/Es) of 

each available polymeric base material (gray envelopes in Figure 5-5a). This representation allows 

for the inclusion and visualization of nearly all possible stress‒strain curve shapes depending on 

the choice of polymeric base materials. Envelopes of the subdesign space were specified by the 

theoretical upper bounds of the elastic stiffness29 and the yield strength30 of isotropic cellular 
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materials (Ⓐ and Ⓑ) and an approximated failure bound (Ⓒ), assuming that available polymeric 

base materials are isotropic and their post-yield behavior are negligible (inset of Fig. 5-5a). 

 

Figure 5-5. Design space, plottable stress–strain curve paths and architectural cells. (a) Full stress‒

strain curve design space composed of a series of subdesign spaces in a dimensionless plot, where 

the x-axis specifies the strain and the y-axis specifies the relative compressive strength σ/σys (σys 

denotes the yield strength of the base material). Each subdesign space is associated with a unique 

base material described by its elastic limit εys and constructed with three boundaries (Ⓐ, Ⓑ, and 

Ⓒ in inset). A representative subdesign space is shown as a blue envelop. Example stress‒strain 

curves are also shown in the inset figure. (b) Design rules for plotting target stress‒strain curves. 

A target curve, described by control points (σi, εi), starts with a straight line, followed by peaks 

and valleys. Error bars represent bounds of the peaks and valleys determined by the tangent 

modulus which is lower or equal to the linear-elastic slope (i.e., |(dσpv
i)/(dεi )|≤(dσy

1)/(dε1), where i 

= 2,…, max(Npv) and max(Npv) denotes the maximum number of the peaks and valleys). (c) 

Architectural cells with cubic symmetry. A variation in the characteristic angle (ϕ) from -45 to 90 

degrees results in an architectural transformation from a compound truss comprising simple and 
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body-centered cubic trusses (Tcell = 1), to an auxetic truss (Tcell = 2), to a reinforced face-centered 

truss (Tcell = 3), to a simple cubic truss combined with convex square pyramids truss (Tcell = 4), 

and to a simple cubic truss (Tcell = 5). Each cell occupies an identical representative (black-dotted) 

volume and comprises two types of struts: inclined (red) and support (gray) struts. These struts are 

related via a constant C, defined as the ratio of the radius of the inclined strut to the radius of the 

support strut (i.e., C = r1/r2). 

 

In a dimensionless plot where the x-axis specifies the strain, and the y-axis specifies the relative 

compressive strength σ/σys (σys denotes the yield strength of the base material), each subdesign 

space, as illustrated in the inset of Fig. 2a, is constructed with three boundaries:  

i.  A lower boundary for the strain axis or x-axis (Ⓐ): described by the ratio of the maximum 

attainable strength to the highest attainable stiffness; 

ii.  An upper boundary for the relative compressive strength axis or y-axis (Ⓑ): represented 

by the maximum attainable strength; 

iii.  An upper boundary for the strain axis or x-axis (Ⓒ): characterized by failure strains and 

the corresponding maximum strengths.  

The lower boundary for the strain axis Ⓐ can be determined by the maximum achievable stiffness 

and yield strength of an isotropic cellular material. These mechanical properties scale with the 

relative densities (ρ
_
) of the cellular materials74. Therefore, we estimate the maximum designable 

relative density (ρ
_

max) as: 
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𝜌̅max ≈ √
23

12

𝜎target

max(𝜎ys)
                                                           (5.2) 

where σtarget is defined as the maximum strength of the target stress-strain curve and max(σys) 

denotes the maximum yield strength of available base materials. Based on the maximum relative 

density (ρ
_

max), the maximum achievable stiffness and yield strength are obtained using the Hashin-

Shtrikman75 and Suquet76 bounds as:  

𝐸HSU

𝐸s
=

2𝜌̅max(5𝜈 − 7)

13𝜌̅max + 12𝜈 − 2𝜌̅max𝜈 − 15𝜌̅max𝜈2 + 15𝜈2 − 27
                    (5.3) 

𝜎y,SU

𝜎ys
= (

23

12
−

11

12
𝜌̅max)

−1/2

                                                   (5.4) 

where the subscript s denotes the material properties of the base material. The lower boundary for 

the strain axis is marked as Ⓐ in the inset of Figure 5-5a. 

The upper boundary for the relative compressive strength axis Ⓑ is approximated as the theoretical 

upper bound of the yield strength Eq. 5.4 with ρ
_

max (inset of Figure 5-5a). This treatment describes 

that failure occurs when local maximum stress within the lattice attains the yield strength of the 

solid constituent material. 

The upper boundary for the strain axis Ⓒ is characterized by the maximum failure strain (𝜀f) and 

the corresponding maximum strength (σy,SU/σys) evaluated at designable relative densities ranging 

from 0 to ρ
_

max (inset of Figure 5-5a). The estimated failure strain is given as: 
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𝜀f = (
𝜎ys

𝐸s
)

1

𝜌̅1/2
                                              (5.5) 

and the corresponding maximum strength is given in Eq. 5.4. The failure strain (εf) follows a power 

function of base material properties (σys and Es) and reaches the elastic limit (εys) of the base 

material when ρ
_
 = 1. This function reflects a general deformation trend of architected materials—

low-density materials fail at a higher strain than high-density materials while the maximum 

strength at failure decreases gradually. 

A representative subdesign space, constructed by the boundaries described above, is illustrated in 

the inset of Figure 5-5a. The full stress-strain curve design space is formulated by superimposing 

a series of subdesign spaces based on all available base materials, truncated by densification (the 

black dotted region in Figure 5-5a). Densification74 is estimated as εd=1-1.4ρ
_
, where ρ

_
 varies from 

0 to ρ
_

max. This representation not only account for base material dependency on the stress-strain 

curves but also realize the broadest possible design space, owing to the subdesign space boundaries 

evolving with the base material properties (the gray curves in Figure 5-5a). 

5.2.2 Plottable stress-strain curve with ML 

Within the full design space formulated above, our generative ML approach takes an arbitrary 

compressive stress‒strain curve, either monotonic or cyclic, as the input. This target curve is 

constructed via sequentially connecting control points assigned by the user, starting from the origin 

to linear elastic limit, followed by local maxima and/or minima, and terminating at the end point 

(the design rules are shown in Figure 5-5b, see Figure 5-6 for an example of the stress‒strain curve 
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input process). The first segment of the target curve is a straight line described by two control 

points at the origin and the linear elastic limit (i.e., (ε0, σ0) and (ε1, σ1)), representing linear-elastic 

behavior, and the slope of this straight segment (E0) denotes the elastic modulus of the material 

under compression. After the linear elastic segment, the subsequent segments between successive 

control points (εi, σi) denote the nonlinear behavior of the material, where the maximum number 

of control point index i is dictated by the initial slope (E0) and given print parameters. These control 

points of the stress-strain curve, along with load type (Tload) (either monotonic or cyclic), strain 

energy (ΔU) (area enclosed by the curve), and slope (Ei) between two adjacent control points, 

forms a total of 46 curve features {X} and used as the input to the ML pipeline.  

Linear segment: The first segment (linear-elastic segment) of the target stress-strain curve starts 

with a straight-line (Figure 5-6a). This line is defined by two control points—the first control point 

(ε0,σ0) is located at the origin, and the second control point (ε1,σ1) can be anywhere within the 

design space. Two representative straight lines are shown in this figure. The upper limit of the 

slope for this line is given by the theoretical upper limit of the elastic stiffness (Eq. 5.3), whereas 

the maximum value of σ1 is defined by the theoretical upper limit of the yield strength (Eq. 5.4), 

as described in the previous section. 

Nonlinear segment: The following segment of the target curve accompanies with peaks and valleys 

(Figure 5-6b and 5-6c). The maximum number of peaks and valleys (max(Npv)) of the curve 

depends on which subdesign space of the first linear-elastic segment is contained within. Within 

the subdesign space, multiple peaks and valleys may exist when the slope of the first linear-elastic 

segment is low enough to trigger elastic instability (i.e., satisfying σ1/ε1<A(εys)
α, where A and α are 

lattice topology (strut orientation) dependent coefficients). The maximum number of achievable 
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peaks and valleys (max(Npv)) is determined by print volume (L3) and minimal printable feature 

size (smin) that could experience elastic instability compared to the overall volume of the sample 

to be designed (i.e., max(Npv)=B(L/smin)(σ1/ε1)
β, where B and β are lattice topology dependent 

coefficients).  

The possible ranges and bounds of the peaks and valleys (yellow shaded region) are specified as 

shown in Figure 5-5b. The location of the peaks and valleys are determined by the tangent modulus 

and displacement of the sample from the previous peak. The tangent slope between the subsequent 

peaks and valleys is lower or equal to the linear-elastic slope before first yielding is reached (i.e., 

|(dσpv
i)/(dεi )|≤(dσy

1)/(dε1), where i = 2,…, max(Npv)). The x-coordinate (the strain axis) of the 

peaks and valleys corresponds to the already collapsed unit cell sections (i.e., ∆ε=(smin/L)Cγ (σ1/ε1)
τ, 

where C, γ, and τ are lattice topology dependent coefficients). Then, the y-coordinate is determined 

by the tangent slope and the x-coordinate of the peaks and valleys.  

Other curve features include: the y-coordinate of the last control point (σN) is larger than the 

previous value (i.e., σN> σN-1), and that no discontinuity shall be presented in the curve that should 

be differentiable at any control points (i.e., lim
𝑥→𝑥−

𝑑𝑦

𝑑𝑥
= lim

𝑥→𝑥+

𝑑𝑦

𝑑𝑥
 ). 
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Figure 5-6. Plottable stress-strain curve paths. (a), Linear segments of two representative target 

curves in the full design space from user input. (b), Contour map showing the achievable number 

of peaks and valleys of the curves based on the subdesign space. (c), Nonlinear segments of the 

representative target curves within the corresponding subdesign space, which completes a sketch 

of the curves. (d), Example of compressive stress-strain curve paths described by several curve 

features for a special case of max(Npv) equal to unity. 

 

5.2.3 Stress-strain curve parameterization for ML input 

Stress-strain curves were parameterized by curve features (Xi), where i ranges from 1 to 6×

max(Npv)+10 and max(Npv) describes the maximum number of achievable peaks and valleys. 

These curve features were specified by identifying control points (εj, σj) from the curve where j 

varies from 0 to 2×max(Npv)+2. A complete relationship between the curve features and control 

points are provided in Table 5-1. The stress-strain curve parameterization process was 
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implemented in Python with numpy77, SciPy78, and pandas79 packages. The following sections 

describe the parameterization process in case of max(Npv) equal to 6 in details.  

Table 5-1. Feature variables parameterizing the stress-strain curve in case of max(Npv) = 6. 

Curve feature {X} Description Method of determination 

X1 Loading type (Tload) 

0 (i.e., monotonic response) if σ(ε0) ≠ 

σ(εend) 

1 (i.e., cyclic response) if σ(ε0) = σ(εend) 

X2 
Stored energy per unit 

volume (Uloading) 
𝑈loading = ∫ 𝜎loading𝑑𝜖

𝜖end

𝜖0
  

X3 
Released energy per unit 

volume (Uunloading) 
𝑈unloading = ∫ 𝜎unloading𝑑𝜖

𝜖end

𝜖0
  

X4 
Dissipated energy per unit 

volume (∆U) 
∆𝑈 = 𝑈loading − 𝑈unloading  

X5 , X7, … X29 Stress (𝜎𝑖) 
Note: 0.2% offset method used for 𝑖 = 1 

X6, X8, … X30 Strain (𝜖𝑖) 

X31 End stress (𝜎end) End of the curve if Tload = 0 

Maximum strain and the corresponding 

stress if Tload = 1 X32 End strain (𝜖end) 

X33 ~ X46 Stiffness (𝐸𝑖) 

𝐸𝑖 =
𝜎𝑖+1−𝜎𝑖

𝜖𝑖+1−𝜖𝑖
 where 𝑗  = 1 … 2 ×

max(Npv)+2 

Note: elastic stiffness when 𝑖 = 0 

 

In case of the training curve, the first step of the parameterization process was an identification of 

their control points (Figure 5-7a). The identified control points were then assigned to the curve 

features according to the descriptions listed in Table 5-1. In detail, the identification process begins 

with filtering noisy data presented in the curve to minimize any data fluctuations and 

inconsistency80 by using the Savitzky-Golay definition81. Upon the completion of the filtering 
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process, the beginning of the curve was set to (ε0, σ0), and a load type (Tload) was determined by 

recognizing whether the initial and terminating stress values of the curve were identical. A non-

linear segment at the beginning of the curve (also called as the toe-in region) was also detected 

and temporarily deactivated to minimize inaccuracy in the following elastic modulus (E0) 

measurement (i.e., the slope of the linear segment of the curve). The elastic modulus was computed 

by using a linear least-squares regression78 with the coefficient of determination set to 0.999. 

According to a typical 0.02% strain offset method, a straight line with a slope described by the 

computed E0 was determined, from which an intersecting point of this line and the curve was set 

to (ε1, σ1), representing the termination of linearity. When this point was not detectable, the end 

point of the curve was set to (εend, σend) which represents failure without appreciable yielding as 

illustrated in the upper left sub-figure in Figure 5-7b. Subsequent stresses and strains after the 

linear segment—control points denoted by (εj, σj) where j = 2…13—were identified by locating 

local maxima and minima of the curve (using signal.find_peaks and signal.argrelmin of the SciPy 

package78). Finally, (εend, σend) were set by recognizing terminating stress and strain values of the 

curve. Once all control points were identified, they were assigned to the corresponding curve 

features (Xi where i = 5…32) according to the control point-curve feature relationship provided in 

Table 5-1.  
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Figure 5-7. Curve parameterization used in this work. (a), Stress-strain curve parameterized in 

terms of curve features to fully describe its important mechanical properties. For clarity, a case of 

max(Npv) = 6 is illustrated, and the variables describing the loading type and energy terms (i.e., 

Tload, U
loading, Uunloading, ΔU) are not shown. (b), Examples of the curve parameterization for several 

curve paths. 
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The remaining curve features (Xi where i = 1…4 and 33…46) were recognized from the previously 

determined Tload and E0 as well as additional variables such as strain energies and tangent moduli 

in the nonlinear segment of the curve. Tangent moduli (E1 ~ E13) were determined by computing 

a slope between two adjacent stress and strain values (i.e., Ei = (σj+1 - σj)/(εj+1 - εj)). In addition, 

stored and released strain energy per unit volume (denoted by Uloading and Uunloading, respectively) 

were computed by a trapezoidal integration method (e.g., Uloading = ∫ 𝜎𝑑𝜀
𝜀end

𝜀0
) using numpy.trapz 

of the numpy package77, and a dissipated strain energy (ΔU) was obtained by subtracting Uunloading 

from Uloading (i.e., ΔU = Uloading - Uunloading). As before, these variables were assigned to the 

corresponding curve features as listed in Table 5-1, and this completed the stress-strain curve 

parameterization in case of the training curve. 

In case of the target curve, the aforementioned identification process of the control points was not 

necessary as these points were to be specified by the user. Hence, with the user-specified control 

points, the curve parameterization process was simply done by determining the additional variables 

discussed above and assigning them to the corresponding curve features, as listed in Table 5-1.  

5.3 Training of the ML framework 

5.3.1 Training data of the ML framework 

We developed a family of cubic symmetric, strut-based architectural unit cells to generate training 

datasets of our ML approach (Figure 5-5c). The cells are represented by design parameters {Y} 

that describe a lattice architecture, namely, the cell type (Y1 or Tcell), the characteristic angle (Y2 or 

ϕ), and the radius-to-length ratio of the inclined strut (Y3 or r1/L1) (Figure 5-5c). The evolution of 

ϕ, together with r1/L1 tuning, not only changes the relationships among tensile and compressive 
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load-bearing strut members, nodal connectivity, and strut slenderness ratio but also controls the 

deformation mechanism of the cells, thereby giving rise to distinct stress-strain curves. In addition, 

due to the inherent cubic symmetry of the reported architectural cells, their mechanical behaviors 

are invariant in three orthogonal directions. This characteristic enables an effective, direct 

tessellation across different architectures for the creation of compound lattices (i.e., a lattice made 

of different unit cells) offering enhanced stress-strain curve tunability. Hence, the developed unit 

cells allow our ML approach to capture diverse stress‒strain curve paths while occupying nearly 

the full range of the design space. 

We conducted FE simulations to compare plate-based (BCC, FCC, and SC-FCC) and open-cellular 

lattices (the five cell types used in this study) at the relative density (ρ
_
) ranging from 5 to 25% in 

representative subdesign spaces (Figure 5-8). The stress-strain curve results show that plate-base 

lattices (i.e., BCC, FCC, and SC-FCC) cover narrow (green-shaded) regions indicated in these 

figures and are limited to a linear-elastic response followed by failure due to yielding. The curve 

shapes are owing to their highly connected edges between plate members (rather than node 

connectivity)—their limited stress-strain curves were revealed in recent studies82,83. The open 

cellular lattices, when modeled with the same range of the relative densities, exhibit more diverse 

stress-strain curves and broader coverage in both subdesign spaces than those of the plate-lattices 

(light-blue shaded regions in Figure 5-8b and 5-8c; representative curves in Figure 5-8b). While 

the plate-based lattice covers the upper left corner on the design space (approaching the theoretical 

upper bound), such a region can be achieved by open cellular lattices made with higher relative 

densities (highlighted by blue-shaded regions in Figure 5-8b and 5-8c). We note that these findings 
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are also valid for other base materials, given that the two subdesign spaces represent relatively 

extreme cases of available base materials.  

 

Figure 5-8. Mechanical performance assessment of the architectural unit cells developed in this 

work. (a), Results of FE simulations showing representative stress-strain curves of typical plate-

lattices in a subdesign space for εys of 0.02 (relatively brittle base material). In this figure, responses 

of SC-FCC, BCC, and FCC are colored as blue, light blue, and green, respectively. (b), The results 

of FE simulations showing representative stress-strain curves of the strut-based architectural unit 

cells (Tcell of 1 through 5) and their coverages in the same subdesign space for a comparison. (c), 

The results of FE simulations illustrating coverages of the strut-lattices and plate-lattices in another 

representative subdesign space for εys of 0.36 (relatively flexible base material). 

 

FE simulations were performed on lattices made of the proposed architectural cells to study their 

size effect. Periodic lattices for each cell were modeled with identical overall dimensions with the 

number of unit cells per side (Ncell) from 2 to 10. In compound lattices, a 3×3×3 compound lattice 

configuration was treated as the smallest repeating geometry (N) and was tessellated in three 

orthogonal directions. We started from a compound lattice having one design gradient (G1: cell 

type), and other design gradients (G2: strut radius ratio, G3: inclined strut radius, and G4: cell size) 

were consecutively added to the previous configuration one-by-one.  
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FE results show that both the elastic stiffness and peak strength have minimal size effects 

regardless of the cell type and lattice uniformity (Figure 5-9 and Figure 5-10). These findings align 

well with the previous study84-86. 

 

 

Figure 5-9. FE results showing size effects of the periodic lattices made of the presented 

architectural cells as a function of the number of unit cells (Ncell). (a), Relative compressive 

stiffness. (b), Relative compressive strength. 

 



121 

 

Figure 5-10. FE results showing size effects of the compound lattices as a function of the number 

of the smallest repeating geometry (N). (a), Relative compressive stiffness. (b), Relative 

compressive strength. Each design gradient (G1: cell type, G2: strut radius ratio, G3: inclined strut 

radius, and G4: cell size) were consecutively added to the previous configuration one-by-one. 

 

Next, using the developed architectural cells, we generated a training dataset containing design 

parameters {Y} and their corresponding stress‒strain curve features {X} (i.e., {X}-{Y} pairs). We 

first discretized ϕ (or Y2) and r1/L1 (or Y3) into a number of intervals to create hundreds of basic 

architectural configurations. Each configuration was tessellated in three principal directions to 

create a 3D lattice digital model with the overall dimension of 20 x 20 x 20 mm3 (two unit cells in 

each orthogonal direction). Three samples were fabricated for each digital model using digital light 

3D printing with a brittle polymer (see Methods for its chemical formulation). Stress‒strain curves 

of the as-printed lattice samples were measured by monotonic compression and cyclic compression 

experiments (measured stress‒strain curves illustrated in Figure 5-11). The measured stress‒strain 

curve of each architectural configuration was then parameterized into 46 curve feature variables 

{Xi, i = 1 … 46} and paired with the corresponding design parameters27, leading to 1212 {X}-{Y} 

pairs in the pristine dataset. As these pairs provide links between the curve features of the 

experimentally measured curves and the corresponding lattice designs, the training dataset 

inherently accounts for process variability (e.g., uncertainty and imperfections) stemming from 

fabrication and experimental measurements. Additionally, as the forward module performs “many-

to-one” mapping, we carried out data augmentation on these pairs to account for prediction 

fluctuation, resulting in 9360 {X}-{Y} pairs in the augmented dataset.  
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Figure 5-11. Experimentally measured stress-strain curves of the as-printed lattice samples using 

the architectural cells developed in this study. For clarity, the curves under monotonic compression 

loading are shown. An architectural transformation from varying the characteristic angle (ϕ) 

facilitates a stress-strain curve evolution. Together with controlling the radius-to-length ratio of 

the inclined strut (r1/L1), each configuration exhibits a family of its own respective stress-strain 

curves. 

 

To generate training instances on the basis of the developed architectural cells (Figure 5-5c), we 

discretized the characteristic angle (ϕ) (i.e., the projected inclined strut onto the 13- or 23-plane) 

into 18 discrete values ranging from -45 to 90°. More specifically, the angle for the architectural 

cell 2 was uniformly distributed between -30 and -6° with an interval of 4° to fill the gap in the ϕ 

domain between the architecture cells 1 and 3. Similarly, the angle for the architectural cell 4 was 

evenly spaced by 8 intervals from 6 to 34° to fill the gap in the ϕ domain between the architectural 

cells 3 and 5. The angles for the architectural cells 1, 3, and 5 were naturally prefixed to -45, 0, 

and 90° by design, respectively. We intentionally excluded some ϕ near cell boundaries (i.e., ϕ 

ranging between -30 and -45° for the architecture cell 2 and between 34 and 90° for the architecture 
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cell 4) to distinctly differentiate stress-strain curves of neighboring architectural cells while 

avoiding possible overlaps.  

Next, for each discretized characteristic angle ϕ, we discretized the radius-to-length ratio of the 

inclined strut (r1/L1) into approximately 17 intervals. This discretization resulted in hundreds of 

architectural configurations with a range of the relative density (𝜌̅) spanning from ~3 to ~25% 

(Table 5-2). The rationale of this relative density range is that, at higher relative densities, tuning 

stress-strain curves is limited as the curves become self-similar regardless of architectural cell 

types—they converge to those of a solid. This is attributed to an increased nodal volume which 

triggers failure at the node by plastic yielding and stress concentration rather than exploiting 

deformation mechanisms such as stretching, bending, and buckling of struts.  

Table 5-2. Structure of training dataset. 

Cell type 

Tcell (Y1) 

(-) 

Characteristic angle 

ϕ (Y2) 

(deg) 

Radius-to-length 

ratio of inclined 

strut r1/L1 (Y3) 

(-) 

Relative 

density (𝜌̅) 

(%) 

Number of samples per 

loading condition 

Monotonic  

compression 

Cyclic  

compression 

1 -45 0.027 ~ 0.069 2 ~ 15 19 57 

2 

-30 0.047 ~ 0.117 3.0 ~ 15 18 54 

-26 0.044 ~ 0.111 2.9 ~ 16 18 54 

-22 0.040 ~ 0.106 2.9 ~ 17 18 54 

-18 0.039 ~ 0.101 2.9 ~ 17 18 54 

-14 0.036 ~ 0.095 2.9 ~ 18 18 54 

-10 0.033 ~ 0.086 2.8 ~ 17 17 51 

-6 0.031 ~ 0.081 2.9 ~ 18 17 51 

3 0 0.025 ~ 0.068 1.9 ~ 13 16 48 

4 

6 0.022 ~ 0.057 3.0 ~ 17 16 48 

10 0.027 ~ 0.084 2.9 ~ 26 16 48 

14 0.031 ~ 0.093 2.9 ~ 24 16 48 

18 0.035 ~ 0.103 3.0 ~ 23 16 48 

22 0.039 ~ 0.113 3.0 ~ 22 16 48 

26 0.044 ~ 0.123 3.0 ~ 20 16 48 
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30 0.047 ~ 0.132 2.8 ~ 19 16 48 

34 0.052 ~ 0.172 2.8 ~ 25 16 48 

5 90 0.112 ~ 0.292 2.8 ~ 17 16 48 

Number of stress-strain curves per loading type 303 909 

Total number of stress-strain curves 1212 

 

Following this, each architectural configuration was tessellated in three orthogonal directions to 

create a 3D digital model and was fabricated through additive manufacturing (see Methods – 

Sample fabrication). The printed samples were tested with two different loading conditions: 

uniaxial monotonic compression prior to failure and cyclic compression with three different 

maximum strains (measured stress-strain curves in Figure 5-11). Each measured stress-strain curve 

was then parameterized into 46 curve features {X} and paired with its corresponding design 

parameters {Y} (Tcell, ϕ and r1/L1) forming the pristine training dataset, containing around a 

thousand {X}-{Y} pairs.  

Here, in the pristine training dataset, we adopted the one-hot representation of Tcell and normalized 

ϕ and r1/L1 to improve the training efficiency. The cell type is represented using a 1x5 vector as: 

cell 1 – [1,0,0,0,0] and cell 4 – [0,0,0,1,0]. While cells 1, 3 and 5 have a fixed value of ϕ, cells 2 

and 4 have a fixed range of ϕ, we normalized the characteristic angle ϕ a fixed range of (0,1), 

where 0 and 1 represent the lower and upper limit of the angle respectively. The radius-to-length 

ratio r1/L1 is standardized to a normal distribution with a zero mean and a variance equal to 1.  

Next, we performed data augmentation based on the pristine dataset to account for prediction 

fluctuation and achieve satisfactory prediction accuracy in the training of surrogate neural network 

models, which is “many-to one” mapping. This was achieved by adopting a standard SMOTE 

oversampling approach87. For cell types 1, 3 and 5, which characteristic angle ϕ is fixed, any 
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predicted ϕ value between 0 to 1 shall represent the same ϕ value as the original fixed angle. Thus, 

for cell types 1, 3, and 5, we augmented the dataset by generating new datasets with new varying 

normalized ϕ values between 0 and 1 (here, we select 0, 0.25, 0.5, 0.75, and 1). Moreover, since 

the inverse prediction of the one-hot-encoded Tcell is performed by using a “softmax” activation 

function, the predicted one-hot element would be close to, but less than 1, e.g., 0.95. To account 

for the prediction fluctuation in the one-hot-encoded Tcell feature, we further augmented the dataset 

by generating new data points with various new one-hot Tcell values—herein, we generate four new 

one-hot-encoded Tcell values for each datapoint, i.e., each {X}-{Y} pair. In detail, the one-hot-

encoded element was randomly selected from a uniform distribution between 0.9 and 1.0, and the 

remaining non-hot-encoded elements were also randomly selected from a uniform distribution 

between 0.0 and 1.0, with a prerequisite that the sum of all elements in each one-hot representation 

is equal to 1, e.g., [0.95, 0.01, 0.02, 0.005, 0.015] for cell type 1. After the data augmentation, the 

dataset contains approximate ten thousand {X}-{Y} pairs.  

Each stress-strain curve is uniquely then described by 46 curve features {X}. During training, we 

standardized these 46 curve features to improve the training efficiency. Considering the fact that 

the strain and stress values range over several orders of magnitude, we transformed each curve 

feature into a logarithmic representation prior to standardization so as to reduce their standard 

deviation. Note that some of the curve features does not exist in the curve for partial training dataset. 

For instance, some curves may not exhibit any local minimum or maximum. In such cases, we 

simply set the relevant feature values to zero.  

However, we found that the zero representation of nonexistent curve features herein turns out to 

be very challenging to be accurately predicted and, in addition, negatively affectively affect the 
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prediction of existent features in the training process. This situation is likely to arise from the giant 

gap of magnitude between the zero value and the existent curve features. To address the “zero-

type” issue, the zero value for each nonexistent feature was replaced by a relevant curve feature 

with nonzero representation. Specifically, in case of a monotonic curve, ∆U was set as the area 

under the curve. Similarly, we reset the nonexistent strain and stress features to the values of their 

end strain εend and stress σend values, respectively. By doing so, the nonexistent features exhibit a 

magnitude that is similar to that of the existent features, and the nonexistent points are able to 

overlap with the end point to yield an identical stress-strain curve.  

Based on the updated dataset, the load type Tcurve is required to be added into {X} to identify the 

curve type associated with {X}. Herein, we classified the stress-strain curves into 4 categories: 

linear response, plastic yielding response, buckling response and multiple peak-and-valley 

response.  The curve type Tcurve is encoded by one-hot representation, that is, [1,0,0,0], [0,1,0,0], 

[0,0,1,0], and [0,0,0,1] represent linear, plastic yielding, buckling, and multiple peak-and-valley 

response, respectively. 

5.3.2 Training of the ML framework 

For training of our generative ML approach, we first trained the forward module with the 

augmented dataset. The forward validation module predicts the curve type (via a curve type 

classifier) and curve features {XP} (via a curve feature regressor) of given lattice design. This 

forward module effectively acts as a surrogate model that replaces conventional simulations used 

to evaluate the responses of a design. As compared to the conventional simulation typically 

requiring hours to compute the mechanical behavior of a 3D lattice design, this forward module 
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takes a few seconds to evaluate the mechanical behavior, which greatly shortens the time span of 

the entire design process.  

Once the forward module was trained, this module was kept frozen (i.e., the weight and bias 

parameters of all surrogate models were fixed) and was then used to train the inverse prediction 

module with the pristine training dataset. In the entire training process of the inverse module, the 

cost function fc = (XP – XT)2, which evaluates the difference between the predicted stress‒strain 

curve features {XP} and the target curve features {XT} for a given architecture {Y}, was used to 

optimize the hyperparameters of all the NN models. This strategy prevents any instability during 

training, which could otherwise cause {Y} to become a meaningless latent space variable. Our ML 

approach with the optimized hyperparameters showed satisfactory overall prediction accuracy via 

a typical cross-validation technique (i.e., random 70/30 train/test split). Specifically, each NN 

model reaches a plateauing loss and eventually features prediction accuracy (~90%) when the 

training size exceeds about 50% of the dataset with minimal signature of over- and under-fitting, 

indicating that the training data size is adequate to reasonably satisfy the design goal. 

Training of the curve type classifier 

We trained the classifier based on the augmented training dataset. Following a random train-test 

split 30% of the dataset was kept hidden to the model and used as test set later. We then adopted 

10-fold cross-validation on the remaining 70% to adjust the hyperparameters (so as to minimize 

the cross-validation error). In detail, each batch contains 32 curves. The loss function L is defined 

as the mean square error between the predicted and targeted curve types. We adopted a stochastic 

gradient descent (SGD) optimizer to minimize the loss function with an initial learning rate of 0.01 

and a Nesterov momentum of 0.9. The learning rate was set to decay one order of magnitude after 
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a patience of 10 training epochs. Figure 5-12a shows the test set loss as a function of training 

epochs. After 100 training epochs, the test set loss converges to a miniscule level (~0.01). 

 

Figure 5-12. Training results of the curve type classifier. (a), Classifier loss L as a function of the 

number of training epochs for the test set. The test set contains 2808 curves and accounts for 30% 

of the dataset. (b), Confusion matrix of the test set predicted by the curve type classifier. The label 

index ranging from 0 to 3 represents linear, plastic yielding, buckling, multiple peak-and-valley 

response, respectively. (c), Misclassification fraction of the test set as a function of the number of 

neurons in the first hidden layer. Note that the number of neurons in the second hidden layer is set 

to be 2 times that of the first hidden layer. (d), Misclassification fraction (for both the training and 

test sets) as a function of the size of the training set. 

 

We now investigate the classification accuracy of the curve type classifier. Figure 5-12b shows the 

confusion matrix of the classifier’s predictions for the test set, where the test set contains 2808 

curves in the augmented dataset. It is notable that the classifier can accurately predict the categories 
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of all curve types, with the accuracy reaching ~98% for each curve type. Due to its high 

classification accuracy, the classifier can be used to filter nonzero predictions of curve features 

that are expected to be zero, thus facilitating the feature-to-curve reconstruction. 

It should be pointed out that, we have optimized the classifier performance by tuning all relevant 

training hyperparameters (so as to maximize the cross-validation accuracy). For instance, Figure 

5-12c shows the misclassification fraction of the test set as a function of the number of neurons in 

the first hidden layer. The number of neurons in the second hidden layer was herein set to be 2 

times that of the first hidden layer, while other hyperparameters remain unchanged. We find that 

the classifier with a first hidden layer of ≥ 32 neurons can offer very accurate predictions of curve 

type, with a misclassification fraction lower than 1%. Hence, we selected 64 neurons in the first 

hidden layer to achieve an optimal balance between model accuracy and simplicity. 

Moreover, we investigate the influence of the size of the training set on the classifier’s accuracy, 

i.e., by constructing a learning curve. In that regard, Figure 5-12d shows the misclassification 

fraction (both the training and test sets) as a function of the size of training set, wherein five 

training sizes (i.e., 10%, 30%, 50%, 70%, 90% of the augmented dataset) were selected, and the 

dataset is randomly split into training and test sets. We found that, as expected, with more and 

more learning examples in the training set, the classifier exhibited an enhanced classification 

accuracy for the test set and then eventually reaches a plateau when the training size exceeds 50% 

of the dataset, with a classification accuracy of ~99% for both the training and test sets. These 

results confirmed that the model is not notably over- or under-fitted. We selected herein 70% of 

the dataset as training set to avoid the issue of sample deficiency that impairs the classifier 

performance. 
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Training of forward validation module 

The forward validation module contains both a curve feature regressor (consists of five surrogate 

neural network models) and a pretrained curve type classifier. During training, the curve type 

classifier was kept frozen with fixed hyperparameters. Similar to the training process of curve type 

classifier, we utilized the augmented dataset for the training of the forward validation module and 

first defined the test set comprising 30% of the data points by a random train-test split. We then 

trained the forward surrogate model (i.e., the curve feature regressor herein) using 10-fold cross-

validation on the remaining 70% of the data points. In detail, each batch contains 32 curves. The 

loss function fc is defined as the mean square error between predicted and targeted curve features, 

with the curve type being included. We adopted the stochastic gradient descent (SGD) optimizer 

to minimize the loss function with an initial learning rate of 0.01 and a Nesterov momentum of 

0.9. The learning rate was set to decay 1 order of magnitude after a patience of 10 training epochs. 

Figure 5-13a shows the test set loss as a function of the number of training epochs. After 200 

training epochs, the test set loss converges to a miniscule level (~0.05). 

 

Figure 5-13. Training results of the forward validation module. (a), Forward prediction loss L as 

a function of the number of training epochs for the test set. The test set contains 2808 curves and 

accounts for 30% of the dataset. (b), Final test loss as L as a function of the number of neurons in 
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the first hidden layer. Note that the number of neurons in the second hidden layer is set to be 2 

times that of the first hidden layer. (c), Final loss L (for the training and test sets) as a function of 

the size of training set.  

 

Note that, here, we have optimized the forward model performance by tuning all relevant training 

hyperparameters (to maximize the cross-validation accuracy). Figure 5-13b shows the final test 

loss as a function of the number of neurons in the first hidden layer in the curve feature regressor, 

wherein the number of neurons in the second hidden layer is twice as large as in the first hidden 

layer, while the other hyperparameters remain unchanged. As expected, larger number of neurons 

leads to smaller test loss, and we find that the test loss converges to a miniscule level when the 

first hidden layer contains ≥ 128 neurons. We selected herein 128 neurons in the first hidden layer, 

which offers an optimal balance between model accuracy and simplicity. 

Next, we investigated the influence of the training size on the forward model performance by 

constructing a learning curve. Figure 5-13c shows the final loss as a function of the size of training 

set for both the training and test sets, wherein five training sizes (i.e., 10%, 30%, 50%, 70%, 90% 

of the dataset) are selected, and the dataset was randomly split into training and test sets. As 

expected, at small training size, the model exhibits a high test-loss due to the deficiency of training 

samples. Notably, with more and more learning examples in the training set, the forward model 

exhibits an enhanced prediction accuracy for the test set and then eventually reaches a plateau 

when the training size exceeds 50% of the dataset, with a miniscule final loss of ~0.06 for both the 

training and test sets. These results confirm that the model does not exhibit any notable level of 

over- or under-fitting. We selected herein 70% of the dataset as training set to avoid the issue of 

sample deficiency that impairs the forward model performance. 
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Once trained, the forward neural network model acts as a surrogate model (that effectively replaces 

the simulations) that predicts the stress-strain curve of an input lattice design. To ensure that this 

model acts as an accurate surrogate simulator, we further investigated the prediction accuracy of 

the surrogate forward model. Figure 5-14 provides the predicted versus true values of come 

representative curve features offered by the forward surrogate model for the test set, where the test 

set contains 2808 curves. Note that the output curve features are standardized. For each feature, it 

is notable that all the datapoints are located at the vicinity of the y = x identity line. These results 

demonstrate that the forward surrogate model can accurately predict all the curve features used to 

describe a stress-strain curve. 

Based on the predicted curve features, we can reconstruct the stress-strain curves associated with 

these features, to conduct a visual comparison between the predicted and true stress-strain curve. 

Figure 5-15 provides some examples of predicted versus true test curves offered by the forward 

validation module, where the predicted curves are reconstructed from their predicted curve features, 

and the predictions range over all types of stress-train curves, including linear, plastic yielding 

response, buckling response, and multiple peak-and-valley response. It is notable that, for all the 

curves in the test set, the predicted and true curves largely overlap with each other, with a NRMSE 

that is smaller than 0.1. Once again, these results illustrate that the surrogate forward model can 

offer an accurate prediction of stress-strain curve for a given design of the lattice. This confirms 

that the forward model can be used as an accurate surrogate simulator and, hence, can be used to 

train the generative forward model. Note that the ground-truth simulation engine itself cannot be 

used to train the generative model as it is not differentiable and, hence, does not enable back-

propagation training—so that it is here necessary to replace the ground-truth simulator by a 

differentiable deep learning surrogate forward model. 
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Figure 5-14. Prediction accuracy of the forward validation module. Predicted versus true curve 

features offered by the forward surrogate model for the test set. Note that the output curve features 

are standardized.  
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Figure 5-15. Examples of predicted (red) versus true (black) test curves offered by the forward 

validation module. (a), Linear response. (b), Plastic yielding response. (c), Buckling response. (d), 

Multiple peak-and-valley response. The predicted curves are reconstructed from their predicted 

curve features. 

 

Training of the inverse prediction module 

Next, utilizing the pristine training dataset, we train the backward generative neural networks by 

connecting it to the surrogate forward model. In detail, by inputting the target stress-strain curve 

feature {XT}, the backward generative model predicts a design candidate of the lattice {Y}, which 

is then fed into the surrogate forward model to evaluate its corresponding curve feature {XP} for 

validation. As described in the previous section, we defined the loss function as the mean squared 
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error between {XT} and {XP} (fc=(Xpred-Xtrue)
2) and minimize the loss via gradient 

backpropagation, where the surrogate forward model is kept frozen (i.e., with fixed 

hyperparameters). Note that the dataset adopted in this training process is the pristine dataset 

(~1000 data points) without any data augmentation, where both the input and output the curve 

features {X} along with the information of curve type Tcurve. The dataset was randomly split into 

training and test sets, where the test set contains 280 curves and accounts for 30% of the dataset. 

We conducted a 10-fold cross validation on the remaining training set to optimize the 

hyperparameters in the backward generative model. A SGD optimizer was adopted to minimize 

the loss function, with an initial learning rate of 0.01, a Nesterov momentum of 0.9, and a batch 

size of 32 curves. The learning rate was set to decay 1 order of magnitude after a patience of 10 

training epochs. Figure 5-16a shows the test set loss as a function of the number of training epochs. 

After 200 training epochs, the test set loss converges to a miniscule level (~0.1). 
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Figure 5-16. Training results of the inverse prediction module. (a), Inverse prediction loss L as a 

function of the number of training epochs for the test set. The test set contains 280 curves and 

accounts for 30% of the dataset. (b), Distribution histogram of the one-hot-encoded Tcell output for 

the test set. Note that the backward generative model adopts a softmax activation for the Tcell output. 

(c), Final test loss as L as a function of the number of neurons in the second hidden layer. Note 

that the number of neurons in the first hidden layer is set to be 2 times that of the second hidden 

layer. (d), Final loss L (for both the training and test sets) as a function of the size of training set. 

 

Note that, since the Tcell output of the generative model is based on a softmax activation function, 

the predicted Tcell values are not a standard one-hot representation (i.e., not an array composed of 

zero and one), which is likely to be outside the estimation range of the forward surrogate model. 
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In order to make the predicted Tcell close to the standard one-hot representation, we designed a 

regularization term as the sum of (1 – max(Tcell)) to restrict the Tcell output toward a one-hot 

representation. Figure 5-16b shows the distribution histogram of the one-hot-encoded Tcell output 

for the test set. As expected, the one-hot-encoded values of Tcell are mostly located in the range of 

[0.95, 1.0), with only 6 out of the 280 test curves being slightly smaller than 0.95. Thus, the 

predicted Tcell remains an approximation of a one-hot representation, and the small deviations of 

Tcell output are within the estimation range of forward surrogate model, given the fact that the 

forward model was trained by an augmented dataset with one-hot-encoded Tcell values ranging 

from 0.9 to 1. 

It is worth mentioning that we have optimized the inverse model performance by tuning all relevant 

training hyperparameters (to maximize the cross-validation accuracy). Figure 5-16c shows the 

final test loss as a function of the number of neurons in the second hidden layer, wherein the 

number of neurons in the first hidden layer is twice as large as in the second hidden layer, while 

other hyperparameters remain unchanged. We found that the test loss exhibits a minimum loss at 

128 neurons, and that more neurons are not necessary to reduce the final test loss. Therefore, we 

selected herein 128 neurons in the second hidden layer to achieve an optimal balance between 

model accuracy and simplicity. 

Finally, we investigated the influence of training size on the inverse model performance by 

constructing a learning curve. Figure 5-16d shows the final loss as a function of the size of training 

set for both the training and test sets. We selected five training sizes, i.e., 10%, 30%, 50%, 70%, 

90% of the dataset, and randomly split the dataset into training and test sets. Due to the sample 

deficiency issue, the model initially exhibited a high test-loss at small training size. As the training 
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size increases, the test loss decreased and finally reached a plateau when the training size exceeds 

50% of the dataset, with a miniscule final loss of ~0.1 for both the training and test sets. This shows 

that the backward model does not exhibit any notable level of over- or under-fitting. We selected 

herein 70% of the dataset as training set to avoid the issue of sample deficiency that impairs the 

inverse model performance. 

Once trained, the backward generative model aims to predict a lattice structure for a target stress-

strain curve. To ensure the reliability of the inverse prediction module on prediction of 

architectures with tailored mechanical behaviors, we further investigated the prediction accuracy 

of the backward generative model. Figure 5-17 shows some representative stress-strain curve 

features of the structures generated by the backward model for the test set (predicted) as a function 

of the true stress-strain curve features used as target (where the test set contains 280 curves). Note 

the output curve features are standardized. For each feature, it is notable that the datapoints are 

largely located around the y = x identity line. These results demonstrate that the backward 

generative model can indeed generate some structures that exhibit curve features that show a good 

match with the targeted input curve features. This confirms that the inverse prediction module is 

able to properly generalize, that is, it is able to generate structures exhibiting tailored stress-strain 

curves—despite the fact that the model was never exposed to this stress-strain curve during its 

training. 
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Figure 5-17. Prediction accuracy of the inverse prediction module. Representative stress-strain 

curve features of the structures generated by the backward model for the test set (predicted) as a 

function of the true stress-strain curve features used as target. Note that the output curve features 

are standardized. 

 

Based on the predicted curve features, we can reconstruct the stress-strain curves associated with 

these features, to conduct a visual comparison between the stress-strain curve of the generated 

structure and the target curve. Figure 5-18 provides some examples of stress-strain curves offered 

by the backward generative model, where the backward generative model generates a predicted 

structure that is fed into the forward surrogate model for validation, and the predicted curves are 
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reconstructed from their predicted curve features offered by the forward surrogate model. The 

predictions range over all types of stress-train curves, including linear, plastic yielding response, 

buckling response, and multiple peak-and-valley response. It is notable that, for most curves in the 

test set, the generated and true curves largely overlap with each other, with a NRMSE smaller than 

0.2. Again, these results illustrate that the backward generative model can accurately generate 

lattice design featuring tailored target stress-strain curves. 

 

Figure 5-18. Examples of predicted (red) versus true (black) test curves offered by the inverse 

prediction module. (a), linear response. (b), plastic yielding response. (c), buckling response. (d), 

multiple peak-and-valley response. By inputting a targeted curve, the inverse prediction module 

generates a predicted structure that is fed into the forward surrogate model for validation. The 

predicted curves are reconstructed from the predicted curve features offered by the forward 

surrogate model. 
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Training of multiple models with different initialization 

In the previous sections, we described the training process of each individual neural network model, 

which is the foundation of optimal design selection. Here, we prepared five pairs of the forward 

surrogate neural network models and generative neural network models in our ML pipeline. All 

the surrogate neural networks in the forward validation module and generative neural networks in 

the inverse prediction module are differentiated from other models in the same module with 

training hyperparameters, e.g., number of neurons, initialization, etc. Figure 5-19a shows a 

schematic of five generative training pipelines under different initialization, where each generative 

model is linked to its pairing surrogate models during the training and prediction process. The five 

individual surrogate forward models are obtained by different training initialization, which are 

kept frozen once trained and used to subsequently train their corresponding generative models, 

respectively.  

In detail, we first conducted trainings of five surrogate neural network models with different 

initialization, while the augmented dataset is used. Figure 5-19b shows the test set loss as a function 

of the number of training epochs for five surrogate models, where the test set is randomly selected 

from the augmented dataset and contains 2808 curves (accounting for 30% of the augmented 

dataset). We found that the five trainings resulted in different final losses for the surrogate forward 

models, indicating they resulted in different surrogate neural network models. Nevertheless, all the 

losses eventually converge to a miniscule level between 0.05 and 0.1. We then used the five 

pretrained surrogate models to train their corresponding generative neural network models, 

respectively. Figure 5-19c shows the test set loss as a function of the number of training epochs 

for the generative models under the five trainings, where the test set is randomly selected from the 
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pristine dataset and contains 280 curves (accounting for 30% of the pristine dataset). Similar to the 

training results of forward models, we found that each training resulted in a different generative 

model, with a distinguishable, convergent final loss between 0.1 and 0.2. Overall, relying on 

different training initialization, we obtain five different surrogate models and five different 

generative models. 

 

Figure 5-19. Training results of multiple models with different initialization. (a), Schematic 

illustrating five generative pipelines, wherein the five different surrogate forward models are 

obtained by different training initialization, which are used to train the five backward generative 

models, respectively. (b), Test set loss as a function of the number of training epochs for the 

surrogate forward model under five different training initializations. The test set is randomly 

selected from the augmented dataset and contains 2808 curves, which accounts for 30% of the 

dataset. (c), Test set loss as a function of the number of training epochs for the backward generative 

model under five different training initializations. The test set is randomly selected from the 

pristine dataset and contains 280 curves, which accounts for 30% of the dataset. 

 

5.4 Inverse design based on various stress‒strain curves 

Next, using our ML approach, we demonstrated the inverse design of representative stress-strain 

curve paths of a cellular solid subjected to monotonic and cyclic compression. As illustrated in 

Figure 5-20a, these target curve paths include (i) a linear-elastic section followed by an negative 
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stiffness section, depicting buckling (cases I and V); (ii) a linear-elastic section followed by 

positive and nearly zero stiffness sections, illustrating strain hardening and plateau regions, 

respectively (cases II and VI); (iii) a linear-elastic section followed by immediate fracture, 

characterizing brittle behavior (cases III and VII); and (iv) a linear-elastic section followed by 

controlled post-buckling, showing a snap-through response (cases IV and VII). These target curve 

paths (gray solid curves) were significantly different from any curves in the training dataset, which 

guarantees that our ML approach does not have explicit prior knowledge of these curves. We fed 

the curve paths into our ML pipeline to obtain the optimal design parameters, from which ten 

samples for each curve path were additively manufactured via the same 3D printing apparatus used 

for our training database generation. Representative printed samples and the predicted optimal 

design parameters are shown in Figure 5-20b. 

Results of the inverse design of the representative stress-train curve paths are shown in Figure 5-

20a. In this figure, the best matching curve (black dotted curve) from ten measured stress-strain 

curves for each case is compared against the corresponding target curve (gray solid curves), and a 

blue-shaded uncertainty zone, describing the distribution of the test curves from ten printed 

samples, represents manufacturing variability. We found excellent similarity between the target 

curve and best matching curve for all cases (highlighted by the computed normalized root-mean-

square error close to zero), revealing that our method can automatically take into account various 

manufacturing defects in stereolithography, which vary sample by sample and even strut by strut. 

This scope is very challenging or impractical to capture with other approaches, such as topology 

optimization24.  
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Figure 5-20. Inverse design based on representative target stress‒strain curves and experimental 

design validation. (a) Inverse design based on representative target stress‒strain curves describing 

various compressive responses, spanning linear elastic behavior followed by either a negative, 

nearly zero, or positive tangent modulus to a multislope tangent modulus, in response to monotonic 

(I ~ IV) and cyclic (V ~ VIII) uniaxial compression loadings. The gray curves denote the target 

curves, whereas the black dotted curves represent selected measured curves (from ten measured 

curves) of the printed samples. The uncertainty region, highlighted by blue shading, covers the 

distribution of ten experimentally measured curves, illustrating process variability. The normalized 

root-mean-square error (NRMSE) quantifies the curve similarity between the target and all the 

measured curves (0: identical curve pair; 1: completely dissimilar curve pair). (b) Photographs of 
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the printed samples inversely designed by the presented ML pipeline in response to each target 

curve shown in a. The ML-predicted design parameters are listed. The scale bar is 10 mm.  

 

Our ML approach is also applicable to other polymer-based AM platforms exhibiting larger 

process variabilities with minimal decreases in reliability. When the process variability (η), defined 

as the ratio of the deviation to averaged value of mechanical properties of printed samples, 

increased by a factor of ~2.6, which makes the printing process used in this study comparable to 

that of the selective laser sintering process31-34, the overall prediction accuracy of our ML approach 

was reduced by ~7%, resulting in an acceptable uncertainty region for the inverse design. While 

accuracies for recreating materials in response to larger processing errors could be compensated 

by incorporating larger training data sets, other manufacturing defects, such as anisotropy, porosity, 

shrinkage and micro-structural evolution that are unique to metal additive manufacturing is not 

accounted for in the present method.    

5.5 Study of process variability 

5.5.1 Training data with stochastic noise and variability 

We introduced noise to our training dataset to match variability in mechanical properties to that of 

other AM techniques. Herein, the variability was described by the variation in the elastic stiffness 

(i.e., 𝜂 =
1

𝑛
∑

𝐸measured−𝐸fitted

𝐸fitted
, where Efitted denotes a scaling relation between the elastic stiffness 

and the radius-to-length ratio of the inclined strut and n is the total number of data in our training 

dataset). Compared to the process variability of stereolithography printing approach used in this 

work (denoted by ηSLA = 13%), η of selective laser sintering (SLS) process is significantly higher 
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(35%)88-91. Thus, we considered a range of η (25, 35, and 45%) to represent larger process 

variabilities than ηSLA. 

These η were used to amplify variability in mechanical properties in our training dataset. This 

process started with generating a set of random numbers following a normal distribution with zero 

mean and standard deviation equal to a given η (Figure 5-21a). Then, a randomly selected value 

(𝑥) from this set was used to amplify a distance between each curve feature and the corresponding 

fitted value in our training dataset (dini) so that a collection of increased distances (dnew) follows 

the normal distribution described by the given η (Figure 5-21b)—that is, 
𝑑new

𝑑ini
= (1 +

𝑥−𝜂SLA

𝜂SLA
). 

This process was repeated for each η and led to three training datasets, of which each one represents 

different, larger process variability than that in our training dataset (ηSLA = 13%). Figure 5-21c and 

5-21d show representative probability distributions of before and after manipulation of the original 

training dataset using the process described above. 
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Figure 5-21. Training datasets with stochastic noise and variability. (a), A set of random values 

following a normal distribution with zero mean and standard deviation equal to a given η. (b), 

Manipulation of curve features in our training dataset to match process variability described by a 

given ηP. A randomly selected value (𝑥) from the set in a was used to amplify a distance between 

each curve feature and the corresponding fitted value (dini) so that increased distances (dnew) follow 

the normal distribution in a. (c), Percentage deviation in the elastic stiffness in our training dataset, 

representing ηSLA of 13% (before manipulation). (d), Percentage deviation in the elastic stiffness 

in a manipulated training dataset with η of 35% (after manipulation). 

 

5.5.2 Evaluation of process variability: Prediction accuracy 

Here the effects of disparate process variabilities on the overall prediction accuracy of our ML 

approach are presented. As done previously, we employed the 10-fold cross-validation technique 
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to evaluate the overall prediction accuracy for each training dataset with larger process variabilities 

(η) as a function of data size.  

The results show that the overall prediction accuracy scales with the data size and tends to converge 

to a plateau regardless of the level of process variability (Figure 5-22a). This implies that the model 

is capable of learning the underlying patterns even with the presence of considerable process 

variability. Furthermore, a degradation in the overall prediction accuracy was found to be marginal 

(~7%) when the process variability (η) increased from 13 to 35% (Figure 5-22b). 

 

Figure 5-22. Effects of the process variability on our ML approach. (a), Overall prediction 

accuracy as a function of data size with various process variabilities (η) of 13, 25, 35, and 45 %. 

Monotonically increasing trends indicate applicability of our ML approach to disparate process 

variability. (b), Overall prediction accuracy as a function of process variability when all training 

instances are utilized. Error bars represent one standard deviation of uncertainty. 

 

5.5.3 Using ML prediction in disrupted AM processes with larger variability 

To experimentally mimic larger process variabilities, we integrated a gray-mask technique (Figure 

5-23a) into the projection stereolithography system. The grayscale distribution for each digital 
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mask was modulated to introduce non-uniformity in each layer and therefore realize larger 

geometric variations and defect levels. The gray-mask was formed by modulating the grayscale of 

each pixel with a random value in percentage. The range of these random percentages was 

determined by the target process variability. For instance, to replicate the property variability η of 

35% (resembling SLS process), the range of the percentage is bounded between 20 and 90% (two 

representative gray masks shown in Figure 5-23b). Once the gray-masks were applied to all slices, 

the manipulated slices were utilized for printing.  

 

Figure 5-23. Gray-mask technique and measurement of geometric and process variability in the 

printed sample. (a), Schematic of gray-mask technique process allowing tuning of process 

variability. Intensity of white pixels in each slice from a digital model was stochastically varied to 

replicate geometric variation. (b), Two representative gray masks applied to 2D sliced images 
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shown in a. (c), A representative X-ray image of the printed sample used to analyze a variation in 

strut diameter. A magnified view of a representative strut in the printed sample is shown to 

highlight the effects of process variability. (d), Comparison of probability distributions of the 

normalized deviation of strut diameter between samples printed with the gray mask technique and 

data from the previous study88-91. (e), Percentage deviation of the measured elastic moduli with 

respect to the nominal value, confirming the measured process variability (η) of ~32 % in line with 

that found in literature88-91.  

 

The results from X-ray tomographic measurements on printed samples using the varied gray-mask 

technique are shown in Figure 5-23c. Both distributions of deviation in the strut diameter and the 

measured process variability in terms of the elastic stiffness agree well with those reported in prior 

studies88-91 (the measured variability of ~32% vs. the reported variability of 35%) (Figure 5-23c 

and 5-23d). 

The effect of a representative larger process variability (η = 35%) on the curve recreating is 

examined here. A representative target stress-strain curve displaying linear-elastic response 

followed by elastic instability was fed into the ML pipeline. A total of ten samples representing 

the output design was fabricated using the developed gray-mask technique, and their cyclic 

compressive responses were measured and recorded as shown in Figure 5-24. The light-blue 

shaded region is an envelope covered by all tested stress-strain curves from the same printed design 

with the 35% process variability (i.e., η = 35%). For a comparison, the same target curve was 

inversely designed based on the process variability of the stereolithography process (ηSLA = 13%) 

used in this study (dark-blue colored uncertainty region in Figure 5-24). The results show that 

larger process variability introduces higher deviation from the tested stress strain curves and that 

our ML approach is sensitive to the process variability but still capable of re-creating the target 

curve with reasonable accuracy.  
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Figure 5-24. Inversely designed, representative target stress-strain curve η = 35% (resembling the 

process variability of selective laser sintering process) and the gray-mask technique (light-blue 

shaded uncertainty region). For a comparison, the same target curve inversely designed based on 

the process variability of the stereolithography process (ηSLA = 13%) used in this study (dark-blue 

shaded uncertainty region). 

 

5.6 Tailorability of stress-strain curve with ML 

Architected materials that meet multiple target properties could be inversely designed via 

graphically tailoring curve features of a target stress‒strain curve, for example by adjusting 

stiffness, peak stress, compressibility, and/or nonlinear response (Figure 5-25a). To demonstrate 

tailorability of our design process, we inversely designed an architected shoe midsole by 

graphically tailoring stress‒strain curves measured from a commercial midsole (i.e., baseline 

curves) for enhanced running performance. The midsole was partitioned into four sections upon 

different levels of loads during heel-toe running35, and the target stress-strain curve for each section 

was created by tailoring a baseline curve for the purpose of maximizing running propulsion and 

cushioning (Figure 5-25b and 5-25c; the measured baseline curves shown in Figure 5-26). The 
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tailored midsole consists of a stiff but comfortable toe section, firmer and higher propulsion 

forefoot section, and stiffer yet energy dissipative heel section. Moreover, the target curves were 

scaled according to the scaling relationship of the base material (TMPTA) between strain rate and 

its mechanical properties so that dynamic responses in running scenario can be inversely designed 

using quasistatic training data (the detailed inverse design of non-quasistatic strain rates illustrated 

in Figure 5-27a to 5-27d). The as-fabricated midsole sample with optimal design parameters for 

each section is shown in Fig. 4c (the predicted design parameters in Figure 5-27e). The results 

revealed excellent agreement (>90% average prediction accuracy) between the experimentally 

tested curves and target curves of each tailored section (Figure 5-25d; their cyclic responses shown 

in Figure5-27f), indicating that the ML pipeline is capable of creating materials satisfying multiple 

tailored mechanical responses under different loading conditions. 
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Figure 5-25. Tailorability of stress‒strain curves demonstrated by inverse design of an architected 

shoe midsole. (a), A schematic of the tailoring process to improve the energy absorption behavior. 

(b), Relative load distribution of the midsole during running32. (c), A photograph of the ML-

designed architected midsole sample, where each section was designed to exhibit disparate target 

behaviors. The scale bar is 10 mm. (d), Target and measured stress‒strain curves of the architected 

shoe midsole sample. The baseline response of the commercial midsole (gray curves) for each 

section was tailored to achieve a specific design target aiming at an improved running performance 

(blue curves). The tailored curves were then fed into our ML pipeline to obtain optimal designs 

for each design target, from which the predicted designs were verified via experiments (black 

dotted curves). 

 

 

Figure 5-26. Measurement of baseline curves from a commercial shoe midsole. (a), Trimmed 

sample from the commercial shoe midsole. (b)-(d), Measured responses of the trimmed sample for 

a range of strain rates. 
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Figure 5-27. Inverse design of the architected shoe midsole with strain rate effect. (a)-(b), Rate 

dependency of bulk TMPTA on its material properties (i.e., E/Equasistatic versus 𝜀̇ and εfracture versus 

𝜀̇). Error bars represent one standard deviation of uncertainty. (c), A representative target curve 

(i.e., toe section) adjusted for a higher strain rate (i.e., 𝜀̇ = 0.3s-1) using scaling relations in rate 

dependency of TMPTA in a and b. (d), Measured curve of an inversely designed toe section at 𝜀̇ 
= 0.3s-1 (black curve) compared to the (green dotted) original target curve. (e), Spatially tailored 

sections of the inversely designed architected shoe midsole. The predicted design parameters for 

each section are also listed. A scale bar is 10 mm. (f), Measured cyclic response of the inversely 

designed midsole with many cycles (Ncycle = 20) at strain rate of 0.3s-1. 

 

5.7 Enhanced tailorability via compound lattices 

The inverse design of architected materials can be further expanded to include advanced curve 

features that do not exist in natural materials, such as variable tangent modulus, controllable 
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softening/hardening effects, and multiple peaks and valleys. These curve features offer improved 

crushing behavior and energy absorption performance and could be realized by inversely designing 

compound lattices (non-uniform lattice comprised of design parameters varying by location) with 

tailorable mechanical behaviors that go beyond mechanical responses from uniform lattices (lattice 

materials comprised of identical unit cells throughout the lattice) (see Figure 5-28). Hence, we 

created a training dataset containing compound lattices made of a flexible polymeric base material 

via FE simulations. Instead of being represented by uniform design parameters, these compound 

lattices were described by variation of design parameters (topology gradients) within a confined 

lattice volume, such as the unit cell type (G1), strut aspect ratio (G2), inclined strut diameter (G3), 

and cell size (G4) gradients. Additionally, to adopt the structure of the gradient labels, we employed 

a sequential integrated strategy for the inverse design process (Figure 5-29). 

 

Figure 5-28. Capability of the compound lattices. Comparison of stress-strain curve tailorability 

between the compound lattices created with superposed design gradients and the uniform lattices 

is shown. 
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Figure 5-29. Inverse design workflow of a compound lattice creation for enhanced stress-strain 

curve tailorability. (a), Target stress-strain curve digitized with 46 feature points. (b), Four design 

gradients: namely, the unit cell topology-, the strut radius ratio-, the inclined strut radius-, and the 

unit cell size-design gradients (G1, G2, G3, G4). (c), Inversely designed compound lattice with 

superposed design gradients. (d), Modified sequential integrated ML strategy for inverse design of 

compound lattices. (e), The predicted design gradients represented in 1×82 compressed vector. 

 

To showcase inverse design of advanced curve features discussed earlier, we fed three sets of 

stress-strain curves into our revised ML pipeline separately, where each case focuses on separately 

tailoring tangent modulus, first peak stress, and second peak stress (Figure 5-30a to 5-30c). The 

corresponding inversely designed 3D digital models describing compound lattices and the spreads 

of their gradient labels describing the variation of the gradient labels within the lattice in terms of 

the coefficient of variance are also presented in this figure. The ML-predicted results revealed that 
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manipulating pairs of gradient labels independently modulate advanced curve features, including 

multiple peak stresses and signs of the tangent modulus. This enables fine control of a variety of 

sectioned stress‒strain curves (Figure 5-30a to 5-30c) not seen with uniform lattices. For example, 

in the case of tuning tangent modulus (Figure 5-30a), we noticed negligible variation in unit cell 

and strut radius ratio gradients (G1 and G2), indicating the sign of the tangent modulus is mainly 

controlled by a combination of the inclined strut radius and unit cell size gradients (G3 and G4). 

Similarly, G1 and G2 together modulated the first peak stress (Figure 5-30b). Additionally, in the 

case of tuning second peak stress (Fig. 5c), significant variation in G2 was observed while the other 

three gradients almost remained the same, indicating G2 were mainly responsible for the second 

peak stress manipulation.   
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Figure 5-30. Enhanced stress‒strain curve tailorability through compound lattice creations using 

superposed design gradients. (a)-(c) Three sets of target stress‒strain curves, in which the set of 

curves 1-3 represents the tailorability of the tangent modulus (ET), the set of curves 4-6 represents 

the tailorability of the first peak stress σ1 pk and subsequent negative stiffness, and the set of curves 

7-9 represents the tailorability of the second peak stress (σ2 pk). Insets show 3D digital models 

representing compound lattices inversely designed by the ML-predicted design gradients (G1: unit 

cell gradient, G2: strut radius ratio gradient, G3: inclined strut radius gradient, G4: unit cell size 

gradient) for the target curves, and their coefficients of variance characterizing the spread of the 

corresponding design gradients are also shown. (d)-(f) Experimental demonstration of tailored 

stress‒strain hysteresis loops displaying deformations at different strains. The stress‒strain 

hysteresis loop in (d) was tailored to exhibit negative stiffness in (e) and further tailored to exhibit 

multiple stress peaks in (f). The target curves and photographs of the as-fabricated, ML-designed 

compound lattices are shown in the insets.  
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Next, we experimentally validated the efficacy of our approach via inversely designing three 

stress-strain curves which feature different numbers of stress peak and valley events as well as a 

controlled tangent modulus. These target curves can be found in the insets of Figure 5-30d to 5-

30f, and the primary graphs show the recreated stress‒strain curves of the predicted designs (Figure 

5-31). For the target curve with a nearly zero tangent modulus (the inset of Figure 5-30d), the 

predicted gradient labels indicated minimal variation, and homogeneous deformation of a designed 

compound lattice was observed. The target curve in the inset of Figure 5-30d was then tailored to 

exhibit a negative tangent modulus after the first peak (the inset of Figure 5-30e). The measured 

mechanical behavior shown in Fig. 5e revealed the localized nonaffine deformation (see Figure 5-

31) and corroborated the role of the gradient labels discussed earlier; the first peak stress was 

dominated by G1 and G2, followed by a subsequent shifting/snapping event with a negative tangent 

modulus controlled by G3 and G4 The target curve shown in the inset of Fig. 5e was further tailored 

to contain a second peak stress (the inset of Figure 5-30f), while keeping all preceding curve 

features. The predicted gradient labels included a change in G2 (~50%) substantially different from 

that of the former lattice shown in Figure 5-30e, confirming the role of this gradient in peak stress 

manipulation (nonaffine deformation shown in Figure 5-31). 
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Figure 5-31. Experimentally measured stress-strain curves of ML-designed compound lattices 

shown in Figure 5-30d to 5-30f and progression of deformation at different strains of the printed 

samples. (a)-(d), Sample 1 shown in Figure 5-30d. (e)-(h), Sample 2 shown in Figure 5-30e. (i)-
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(l), Sample 3 shown in Fig. 5f. FE simulations for each lattice were performed and showed good 

agreements in deformation observed in experiment. 

 

These advanced, inversely designed stress‒strain curves featuring successive peak stresses and 

coordinated collapse mechanisms together with tailored softening effects make the inversely 

designed compound lattice shown in Figure 5-30f an excellent candidate for ML-designed custom 

padding materials for energy absorption. To test its energy absorption performance, drop tests were 

conducted on the sample (Figure 5-32a), showcasing that the measured acceleration and potential 

energy due to impact were reduced by ~30% and ~25%, respectively, as a result of the compound 

lattice (Figure 5-32b and 5-32c). In the normalized energy absorption vs. transmitted strength 

property map ((U/Es)/ ρ
_

 vs. (σtr/σys)/ ρ
_

), this compound lattice shows energy absorbing 

performance outperforming that of previously reported lattice materials36-42 (Figure 5-32d). 

 

Figure 5-32. Energy absorption characteristics of the ML-designed compound lattice. (a), Drop 

test setup with different heights on the as-fabricated compound lattice shown in Figure 5-30f. (b), 

Acceleration-vs-time curve of the compound lattice with the dead weight dropped from h = 150 

mm, revealing a reduced peak acceleration (~2.5g). An inset displays acceleration-vs-time curves 

of the compound lattice with different drop heights of h = 50, 100, 150 mm. (c), Potential energy 
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recorded from the force transducer for the compound lattice with different drop heights. The error 

bars indicate standard deviations from multiple (N > 3) measurements. A significant gap (shaded 

area) indicates energy absorption capability of the ML-designed compound lattice as a potential 

padding material. (d), A normalized energy absorption-transmitted strength pair (i.e., (U/Es)/ ρ
_
 vs. 

(σtr/σys)/ ρ
_

) of the ML-designed compound lattices compared with the state-of-the-art energy 

absorbing materials37-43 as well as uniform lattices. 

 

5.8 Simultaneous design of mechanical responses under multiple loading rates 

with ML 

5.8.1 Development of the ML framework for the design task 

In this design task, we developed the integrated machine learning model with sequential prediction 

strategy as shown in Figure 5-33. Given the target mechanical properties, the inverse model 

outputs design parameters of the lattice via two-stage prediction process. These predicted 

parameters are then passed to a set of forward models for the evaluation of corresponding 

mechanical properties of inversely designed lattice structure  

The input data {X} for inverse model consists of 16 critical mechanical properties for both loading 

cases (i.e., peak stress & strain energy density in Figure 5-33a). The output data {Y} consists of 

lattice cell type {Y1} and material index {Y2} in upper and low section of the bumper, respectively. 

The inverse model first takes the mechanical properties {X} as the input to predict the cell types 

of the lattice {Y1}. The predicted cell type {Y1}, along with the input mechanical properties {X}, 

forms the new input for the evaluation of material combination {Y2} in the lattice structure (Figure 

5-33a).  
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Figure 5-33. Workflow of the integrated machine learning model. (a) The inverse model takes 16 

mechanical properties as the input and predict the design parameters of the lattice in a sequential 

manner. (b) The forward models evaluate the mechanical properties of the designed lattice. 

 

The design parameters {Y} ({Y1, Y2}) are then passed to 6 forward models (Figure 5-33b). Each 

model estimates a single mechanical property of the design lattice (1st peak stresses, 2nd peak stress, 

and strain energy density for each loading-rate case). These predicted mechanical properties are 

the compared with the target properties to evaluate the prediction accuracy of the inversely 

designed lattice structure. 

5.8.2 Architectural cell design and material properties for the training dataset 

Herein, we proposed the architectural genes for the machine learning design framework, which 

consist of 7 different unit cells (Figure 5-34b). These unit cells are generated via evolution of the 

incline angle 𝜃 in a quarter of representative area volume, as shown in Figure 5-34a. Tuning the 

angle 𝜃 not only manipulates competitions between tensile and compressive load-bearing strut 

members, nodal connectivity, but also enables each architectural configuration to be registered 

with its own respective stress-strain curve paths, describing linear elasticity, yielding, nonlinearity, 
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tangent modulus, hardening/softening. Then we performed the numerical simulation to investigate 

the mechanical properties of architectural genes. 

 

Figure 5-34. Transformative architectural genes. (a) Evolution of incline angle 𝜃  in the 

representative area element. (b) 7 architectural genes in the training data set. 

 

Figure 5-35 presents the FEA model (3x2 lattice) used to evaluate the mechanical response of the 

genes and Figure 5-35b show the corresponding stress-strain curves under low loading-rate case. 

Here, we summarized the evolution of elastic modulus and peak stress against the incline angle 𝜃 

(Figure 5-35c). The elastic modulus 𝐸 and peak stress 𝜎𝑝 increase along with the incline angle 𝜃 

with the range of 0° < 𝜃 < 90° and reach the maximum value simultaneously at 𝜃 = 90° (gene 

4). This result matches with previous literature: 
𝐸
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wall thickness 𝑡 = 3.8𝑚𝑚 and 𝐸𝑆  is the elastic modulus of the constituent material. Then we 

formulated the design map (Figure 5-35d) of the uniform lattices using the peak stress and 

volumetric energy absorption (strain energy density) as critical properties, where strain energy 

density is the area enclosed by the stress-strain curve. As shown in the design map, gene 4 

demonstrates highest peak stress among all the architectural genes, and gene 7 shows best 

volumetric energy absorption. The design map helps us to analyze the mechanical properties of 

when different architectural genes are mixed in the lattice structure. 

 

Figure 5-35. Mechanical properties of the architectural genes. (a) FEA model for the preliminary 

numerical analysis. (b) Representative stress-strain curve and critical mechanical properties under 

low loading-rate case. (c) Evolution of elastic modulus and peak stress along with incline angle 𝜃. 

(d) Design map of architectural genes. 
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The materials used to develop the training dataset are the blends of CFABS with TPU, a sets of 

filament can be readily extruded 3D printer facilities. We introduced various materials in the 

design via changing the blending ratio between two constituent materials: CFABS & TPU. In total, 

we had five blending ratios available: (0 CFABS – 100% TPU, 25% CFABS – 75% TPU, 50% 

CFABS – 50% TPU, 75% CFABS – 25% TPU, 100% CFABS – 0 TPU). The elastic modulus and 

yield strength of these five materials is plotted in Figure 5-36.  

 

Figure 5-36. Material properties of 5 available material in this task. The base materials are the 

blend of CF-ABS and TPU filament with different volume fraction ratios.  

 

Herein, we developed the training dataset by numerical simulation on the mechanical responses of 

lattice structure, which consists of different architectural cells and constitutive materials. In 

specific, a representative volume element (RVE) is used with periodic boundary conditions 

enforced in the numerical analysis to simulate the mechanical responses of large-scale lattice with 

low cost of computational resources. Two cell types (one for region 1 and the other one for region 

2&3) and two materials (one for region 1&2 and the other for region 3) were picked to form the 

RVE in the numerical model. The stress-strain curves of the RVE under two loading-rate cases 

were simulated and combined with the design parameters (architectural cell type and material 
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index) of the metamaterial as the pristine training dataset. The pristine training dataset was formed 

via combining the design parameters of compound lattices {Y} ({Y1, Y2}) with their simulated 

mechanical properties of both loading rates {X}, leading to 123 {X}-{Y} pairs in the dataset. 

Herein, as the forward models performs “many-to-one” mapping, we carried out data 

augmentation on these pairs to account for prediction fluctuation and achieved satisfactory 

prediction accuracy (i.e., >90% accuracy), resulting in 1230 {X}-{Y} pairs in the augmented 

dataset.  

 

5.8.3 Training of the ML framework 

For training of the machine learning framework, we first trained 6 individual forward models with 

the augmented dataset. The forward models were implemented using Gradient Boosting regressor 

(GBR) and Random Forest regressor (RFR) in open-source package (scikit-learn). Each forward 

model is trained with 70% of the augmented dataset and then tested with the other 30% of the 

dataset (not used in training process). The hyperparameters of the forward models were optimized 

Scikit-learn’s GridSearchCV function for maximum testing score. We observed over 90% 

prediction accuracy for all forward models as shown in Figure 5-37. These results validate that the 

forward models effectively act as a surrogate model that replaces the conventional simulations 

used to evaluate the responses of a lattice design.  
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Figure 5-37. Prediction accuracy of forward models.  (a)-(c) Testing accuracy of 1st peak, 2nd peak, 

and strain energy density for low loading-rate case. (d)-(f) Testing accuracy of 1st peak, 2nd peak, 

and strain energy density for high loading-rate case. 

 

Once the forward models were trained, these models were kept frozen (i.e., the hyperparameters 

of all forward models were fixed) and were then used to train the inverse model with the pristine 

training dataset. The inverse model was implemented using Multilayer Perceptron Classifier 

(MLPC)  in open-source package (scikit-learn). Due to the low number of data points in the pristine 

dataset, we used 10% of the pristine dataset as the testing set (not used in training) for the 

evaluation of the prediction accuracy. In this training process, the prediction accuracy of all 

mechanical properties, outputted from the forward models, was used to optimize the 

hyperparameters of the inverse model. This training strategy of the inverse model prevents any 

instability during training, which could otherwise cause {Y} to become a meaningless latent space 

variable. The testing accuracy of the inverse model is shown in Figure 5-38. As shown in the 
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Figure 5-38, we have achieved over 80% prediction accuracy for most mechanical properties of 

the lattice design from inverse model. In the next phase of the project, we will expand the training 

dataset, via introducing additional cells in the compound lattice design, to further improve the 

prediction performance of the machine learning framework. As more data is generated and 

included in the training set, the prediction accuracy of the inverse model will be further increased 

and reach satisfactory level (i.e., >90% for all mechanical properties). The integrated machine 

learning framework, along with the expanded training dataset, will achieve the lattice design 

satisfying the design requirements of the bumper.  

 

Figure 5-38. Prediction accuracy of inverse model.  (a)-(c) Testing accuracy of 1st peak, 2nd peak, 

and strain energy density for low loading-rate case. (d)-(f) Testing accuracy of 1st peak, 2nd peak, 

and strain energy density for high loading-rate case. 
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5.8.4 Inverse design of the architected structures with desired responses at different loading 

rates 

The inverse design of architected structures with desired responses at different loading rates starts 

with the formulation of the property design spaces of each rate case (Figure 5-39). Each design 

map present the property pair, peak stress and strain energy density, of each designed structure in 

the training dataset. The property pairs of all structures in the training dataset forms the design 

map of each loading rate case. 

 

Figure 5-39. Mechanical property maps for each loading rate cases. (a) Design map for property 

pair: peak stress and strain energy density of low loading rate case. (b) Design map for property 

pair: peak stress and strain energy density of high loading rate case. 

 

Once the property design map is obtained, the critical value of corresponding properties is labeled. 

Next step of the inverse design is to select target property pairs in the design map. The cross-

section point of two critical property value denotes the baseline structure design that just satisfies 
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the design requirement. By shifting the property pair point towards the allowable area, property 

value corresponding to refined design is picked. The picked property pairs are used to tailor the 

baseline stress-strain curve of each loading rate case, and the tailored curve is parameterized to 

extract full set of input feature of the ML ({X}). With the input of processed stress-strain curve 

features, the ML predicts the corresponding design parameters of architected structure ({Y}). The 

mechanical responses of re-constructed structure design under both loading rate cases are 

simulated and compared with input curve features for the evaluation of the prediction accuracy. 

Figure 5-40 presents the comparison between predicted and target mechanical properties at 

different loading rate cases. The comparison results shows that the trained ML framework is 

capable of creating the design satisfying the target mechanical properties in both loading rate cases 

simultaneously. 

 

Figure 5-40. Comparison between predicted and target mechanical properties at different loading 

rate cases. 

 

Next, we evaluated the prediction performance of ML framework in exploration of tailored 

mechanical responses. Herein, we picked another set of property pairs, denoting higher energy 
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absorption performance, in both design maps. Following the same prediction process, the refined 

design is predicted and the corresponding responses is evaluated with simulation. Figure 5-41 

demonstrates the comparison between the mechanical responses of baseline and refined design 

under both low and high loading rate cases. The simulation results indicate that a higher energy 

absorption performance is obtained from refined design for both rate cases. These results validates 

the prediction capabilities of developed ML in creating the mechanical responses at different 

loading rate simultaneously. 

 

Figure 5-41. Comparison between mechanical properties of baseline and refined design at 

different loading rate cases. 

 

5.9 Conclusion 

This chapter presents a ML-based rapid inverse design methodology to recreate and tailor 

mechanical behavior based on stress‒strain curves. Our generative ML strategy is capable of 

mimicking nearly all possible uniaxial compressive stress‒strain curves of architected materials, 

including linear elasticity, strain softening/hardening, tunable tangent modulus, yielding, fracture, 

tailorable stress peaks and valleys, and energy absorption, while accounting for existing 3D 
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process defects, resolutions and uncertainty. We demonstrated the inverse design of the architected 

shoe midsole with tunable dynamic performance with spatially tailored sections described by 

specific stress‒strain responses, and also showed enhanced stress-strain curve tailorability by 

incorporating gradient labels in the ML pipeline, enabling advanced curve features with 

programmed stepwise energy absorption. Moreover, our ML approach permits optimized 

structures to be produced with less experimental testing and fast evaluation time. Indeed, a 

nonlinear stress‒strain curve can be analyzed and inversely designed into a 3D digital model from 

a typical consumer desktop computer within a few seconds with the reported approach, compared 

to simulations and optimization approaches that would otherwise take days without even taking 

full account of manufacturing variabilities. Furthermore, while the current work is limited to 

design compressive behaviors, our ML pipeline could be adapted to inverse-design other 

mechanical responses separately or simultaneously, when accompanied with a family of training 

data of which each describes a specific loading case (e.g., tensile, compressive, bending, shear, 

and so on). This is attributed to the fact that the stress-strain curve was adopted as the input, which 

can describe mechanical behaviors under other types of loading. We also envision that our ML 

strategy is not limited to mechanical behaviors and can be extended to other complex behavior 

such as acoustic, magnetic, and electromechanical responses when such responses are expressed 

in form of a curve similar to the stress-strain curve (e.g., absorbance-frequency, magnetization-

magnetic field, polarization-voltage and so on). This work represents progress toward a rapid 

inverse design and manufacturing methodology that allows for prescribing the full spatial and 

temporal behaviors of a product that can be printed via a simple desktop computer. It has direct 

implications for future development of protective wears, automobile and aircraft parts, energy 

absorbers and smart materials via simplified design-manufacturing cycle. 



174 

 

  



175 

 

Chapter 6 Conclusion and future work  

6.1 Conclusion and answering the research questions 

This dissertation present the design of effective behaviors via optimizing the formulation of base 

material feedstock and manipulating the micro-architecture of the functional metamaterials. The 

developed design methodologies addressed the challenges that constraints the accurate creation of 

functional responses with AM.  

One critical constraints of designing functional responses is precisely characterizing the 

constitutive composite material properties. The functionality-processibility tradeoff hinders the 

feedstock formulation with high concentration of functional phases. Surface functionalization has 

been employed to improve interfacial adhesion and resulting functional responses, but the 

mechanics of this enhancement remains elusive, which further constraints the accurate design of 

composite properties. The author developed a theoretical model which enables the creation of 

highly responsive piezoelectric materials going beyond the existing compliance and functional 

property tradeoff highlight their potentials as the next generation of flexible self-sensing materials 

and wearables. 

Structural metamaterials provided a series of exotic material properties that unseen in their 

constitutive counterpart. However, the approach of translating the multi-physics coupling response 

to the concept of architectural design for the realization of new functional behaviors has not been 

demonstrated yet. To address this limitation, the author developed a comprehensive design 

framework that allows the design of functional responses via tailoring the architectural 

arrangement of metamaterials. With this design framework, the author demonstrated the design of 
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arbitrary anisotropy of piezoelectric metamaterial that exceeds the constraints of crystalline 

structures. Decoupled strain responses of piezoelectric metamaterial for detection of full load 

components was presented. Additionally, the author developed a family of robotic piezoelectric 

metamaterials that display all physically feasible actuation mode in any directions.  

A critical constraints of existing structural metamaterial design methods is that only a few number 

of mechanical properties can be designed each time. This presents significant challenges in 

accessing advanced material behaviors like energy absorption performance. Hence, the author 

developed a ML based inverse design framework which enables the creation of full temporal and 

spatial response of structural metamaterials. The generative ML framework is also capable of 

realizing enhanced stress-strain curve tailorability by incorporating gradient labels in the ML 

pipeline, enabling advanced curve features with programmed stepwise energy absorption. This 

work represents progress toward a rapid inverse design and manufacturing methodology that 

allows for prescribing the full spatial and temporal behaviors of a product that can be printed via 

a simple desktop computer. It has direct implications for future development of protective wears, 

automobile and aircraft parts, energy absorbers and smart materials via simplified design-

manufacturing cycle. 
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Research Question 1 How to design the formulation of functional composite feedstock to achieve 

desired properties? 

This is achieved by selecting optimal design parameters in the property map of composite 

feedstock. The developed theoretical model, effective interphase model, enables the accurate 

characterization of functional response of composite feedstock, considering all composition 

parameters like concentration and morphology of the functional infill phase, interfacial interaction 

between infill and matrix phases, etc. Therefore, a series of property surfaces, where each surface 

corresponds to a specific aspect ratio of functional particles, can be generated accordingly. Given 

the desired properties, multiple sets of composite formulation is provided, and the optimal design 

parameters can be picked per requirement of structural performance in the application case. 

In this dissertation, the author sketched the property design surfaces of the functionalized 

piezoelectric composite. With these property surfaces, the author demonstrated the highly sensitive 

airflow sensor and wireless self-sensing boxing gloves. The design and additive manufacturing 

routes allow for achieving target flexibilities while keeping high piezoelectric responses via 

rational designs of inclusion morphologies and monomer stiffness of the constituent materials. 

 

Research Question 2 What is the rational of tailoring effective response of functional 

metamaterial with architecture design? 

The key difference between homogeneous material and architected metamaterial is the strain 

transformation from macroscopic to local scale. Attributed to compact tessellation of the crystal 

units, the strain field is consistent in both macroscopic and local level. Therefore, it is impractical 
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to tune the functional responses of the homogeneous material. The only possible approach is to 

tune the crystal structure of the material. For instance, doping process enables tailoring of 

piezoelectric coupling behaviors via replacing the replaces the original center atom with a new 

element.  

As the local strain field of constitutive ligaments is dependent on their spatial orientation. 

Therefore, structural metamaterial allows the strain transformation via manipulating the spatial 

arrangement of each ligaments. Coupling with the functional response of constitutive material, the 

effective functional response contribution of individual struts can be tuned accordingly. Therefore, 

designing the micro-architecture of metamaterials enables the tailoring the effective functional 

responses.  

In this dissertation, the author demonstrated the design of anisotropy, decoupled strain response , 

and arbitrary actuation mode of piezoelectric metamaterial with this comprehensive design 

methodology. 

 

Research Question 3 What is the purpose of designing full material response in temporal domain? 

Why ML based method is required? 

The full material response under external loading, denoted by a stress-strain curve, encodes all 

mechanical behaviors of a material. Therefore, engineering the stress-strain curve enables the 

manipulation of the entire deformation path of the material and corresponding mechanical 

behaviors in both linear and nonlinear regime. While, existing design methods is capable of 

capturing a few mechanical responses of metamaterials. 
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The theoretical design approaches, established on the basis of force equilibrium, only provide valid 

prediction of mechanical properties of a material within linear deformation regime (i.e., elastic 

modulus and yield strength). These approach can’t capture the nonlinear behavior of a material, 

due to the complexity of the deformation process, like energy absorption performance which is a 

critical index in certain application scenarios.  

Topology optimization, a numerical design approaches built on iterative process of FEA and 

design adjustment, might be able to design certain nonlinear behavior of the material. While, 

extensive preparation to adjust simulation setup for reliable results, and an effective design 

adjustment algorithm is required. Additionally, achieving the design satisfying requirements of 

multiple behaviors is not guaranteed, as multi-objective optimization does not provide a unique 

solution for every case. 

Machine learning design methods, which employ complex mathematical model and data 

propagation algorithm, are capable of learning the intrinsic correlation between the architecture 

and the deformation of the material. Therefore, with property manipulation and good training data, 

the ML model can create arbitrary mechanical responses of interest. The complexity of design task 

scales up with the number of target behaviors.  

In this dissertation, the author presented a generative ML design framework capable of creating 

the full temporal and spatial mechanical responses of a material. With proper encoding strategy, 

the ML learns the relationship between the stress-strain curves with the design parameters of the 

metamaterial. The developed ML framework also enables the access of designing advanced 

mechanical behaviors, like energy absorption, with enhanced tailorability. 
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6.2 Future work 

1. Integration of multiple functionalities into 3D printable materials will enable the fabrication 

smart devices working as a complex system with various functions. To this end, further 

research is needed to characterize the interaction between functionalities and to design the 

formulation for optimal effective performances. One critical challenge of integrating multiple 

functionalities is the interference between different physical quantities. For instance, 

piezoelectric material induces electric charge accumulation when subject to mechanical loads. 

The accumulated charge will generate electro-magnetic field, which might affect the 

performance of magnetic particles in the composite. Therefore, the interactions between 

different functionalities should be considered for additively manufactured materials with 

multiple functionalities.  

2. Consider a multi-functional metamaterial as a smart devices that can process the input 

information with prescribed functions. When subject to external stimuli, or information input, 

the effective information processing procedure happens in a timed manner. In other words, the 

functions should be carried out in a desired sequence, a combination of sequential and parallel 

process. Current functional metamaterial respond to the external stimuli at the moment of 

loaded. The potential direction of future research is to program the working sequence of 

different functionalities in the metamaterial with architectural design. Realization of 

programmable working sequence will open up the new application of functional metamaterial. 

The additively manufactured multi-functional metamaterials will replace the existing 

integrated system like MEMS. 

3. In this dissertation, the design of base material properties and architecture of functional 
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metamaterial is demonstrated in sequence. The architectural design is achieved on the basis of 

obtained base material properties. The future research could focus on the integrated design of 

constitutive material behaviors and architectural structure. To achieve a desired function 

responses, the composite feedstock and architecture is designed simultaneously. The 

interaction between these two contributing factors might provide novel material responses. 

Attributed to the complex physics of this interaction, machine learning design framework will 

be employed to achieve this task. One potential challenge of this task is the uniqueness of the 

design. Similar to the inverse design task in this dissertation, a forward module can be attached 

to validate the deviation of the designs.  
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