
UCLA
UCLA Electronic Theses and Dissertations

Title
Recognition and Classification of the Wolf Motor Function Test Items using Multimode
Sensor Fusion

Permalink
https://escholarship.org/uc/item/9n21974t

Author
Wang, Yan

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9n21974t
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Recognition and Classification of the Wolf Motor Function Test Items

using Multimode Sensor Fusion

A thesis submitted in partial satisfaction

of the requirements for the degree Master of Science

in Electrical Engineering

by

Yan Wang

2012

ii

ABSTRACT OF THE THESIS

Recognition and Classification of the Wolf Motor Function Test Items

using Multimode Sensor Fusion

by

Yan Wang

Master of Science in Electrical Engineering

University of California, Los Angeles, 2012

Professor William J. Kaiser, Chair

Human motion monitoring and activity classification, specifically in the free-living environment,

are becoming increasingly important as preventative, diagnostic and rehabilitative measures in

health and wellness applications. Besides vision-based movement tracking, wearable sensors are

leading a more and more important role in this area due to their miniature size, easy deployment,

portability and capacity.

In contrast to gait analysis, wearable sensor-based evaluation of upper body activities is not well

studied. The work in this thesis tends to explore a novel system for upper limb activity

monitoring and classification. The system focuses specifically on the application of motion

classification to a complex task of automating rehabilitation evaluation, such as the Wolf Motor

Function Test. The presented system consists of a novel wearable motion sensor platform that

iii

integrates accelerometers, gyroscopes and flex-sensors, and classification algorithms that convert

motion data into an alphabet representation and form a string of primitives. String expressions

are then derived for each test item and a regular expression based searching method is developed.

We present results from the successful application of the proposed system to upper limb activity

characterization in the context of the Wolf Motor Function Test.

iv

The thesis of Yan Wang is approved.

Gregory J. Pottie

Lieven Vandenberghe

William J. Kaiser, Committee Chair

University of California, Los Angeles

2012

v

This thesis is dedicated to my parents, Weiming Wang and Chunya Wei, and my boyfriend, Qian

Wang, for their understanding and spiritual support.

I would like to thank Professor William J. Kaiser, for his inspiration, guidance, encouragement

and financial support.

I would like to thank Professor Gregory J. Pottie, and Professor Lieven Vandenberghe for their

instructions.

I would like to thank Maxim A. Batalin and Xiaoyu Xu, for their help.

vi

Table of Contents

1 Introduction .. 1	

1.1 Background ... 1	

1.2 Aim, Objectives and Contributions ... 2	

1.3 Related Work .. 3	

2	
 System Design ... 5	

2.1 System Overview .. 5	

2.2 Hardware Architecture .. 7	

2.3 Algorithm Description .. 11	

2.4 Algorithm Implementation .. 12	

2.4.1 Outlier filtering .. 13	

2.4.2 Primitive Segmentation .. 14	

2.4.3 Primitive Classification .. 14	

2.4.4 Sequence Analysis ... 18	

2.4.4 Activity Inference .. 19	

3	
 Activity Modeling .. 21	

3.1 Primitive Construction .. 21	

3.2 Primitive Classification ... 22	

vii

3.3 Template Generation ... 26	

3.4 Template Adjustment .. 31	

4	
 System Evaluation ... 33	

4.1 Experiment Setup .. 33	

4.2 Classification Result ... 38	

5 Conclusion ... 40	

5.1 Conclusion .. 40	

5.2 Future Work .. 41	

Appendix I .. 42	

Appendix II ... 46	

Appendix III .. 49	

Reference .. 57	

viii

List of Figures

Figure 2.1: Schematic of accelerometer breakout peripheral 9

Figure 2.2: Schematic of gyroscope breakout peripheral 9

Figure 2.3: Peripheral circuits of flex sensor 10

Figure 2.4: System hardware and mounting for an upper arm 11

Figure 2.5: Block diagram of signal processing 13

Figure 3.1: Information flow in the training phase 27

Figure 4.1: Raw data stream 35

Figure 4.2: Primitive segmentation output 35

Figure 4.3: Activity recognition 37

Figure 4.4: Improved accuracy with template adjustment 37

ix

List of Tables

Table 2.1: Example Configuration File 8

Table 2.2: Features for primitive classification 15

Table 2.3: Regular expression operation 20

Table 3.1: Primitive segmentation of targeted activities 25

Table 4.1: Overall testing result 38

1

Chapter 1

Introduction

1.1 Background

On a worldwide scale, stroke is the second leading cause of death and it accounts for 9% of the

50.5 million deaths each year. Up to 2010, stroke is the No.4 cause in death and the leading

cause of disabilities among adults in the United States [1]. Nationwide, more than 7 million

individuals are affected by stroke every year, which is approximate to one person every 40

seconds [2]. According to the statistics provided by the University of Medicine & Dentistry of

New Jersey, currently more than 4 million stroke survivors are still suffering from its after-

effects [3].

The total cost of treatment and care for a stroke patient in the United States is estimated at $43

billion per year, among which the medical care and therapy account for $28 billion. Zoomed into

an individual scale, the average cost of care for a patient up to 90 days after stroke is $15

thousand and 10% of patients spend even more. A breakdown analysis of the cost indicates that

16% of the amount is used for rehabilitation [3]. Considering the huge number related to the total

cost, automated rehabilitation with application of novel technology has a high potential impact

not only for expedient patient recovery, but also significant reduction in healthcare costs.

2

The Wolf Motor Function Test (WMFT), a time-based method to assess upper extremity motor

function in adults with hemiplegia through a series of functional tasks is widely adopted in

rehabilitation program [4]. The most common way to conduct the test is under the supervision of

a therapist, who will manually time each test item. The estimated time of the whole process takes

approximately 30 minutes [5]. Therefore, automation of the test process will largely reduce the

demands of human resources in hospitals and rehab centers. At the same time, patients can also

benefit from it in terms of reduced costs and more flexible testing schedules.

1.2 Aim, Objectives and Contributions

The ultimate goal of our research is to characterize human upper limb motions in free-living

environments, which includes extracting meaningful activity segments from the infinity of daily

motions, providing insight into joint-specific as well as total limb movements and evaluating

upper extremity motor functions. The above problem is extremely complex due to the following

complications: (1) Terminologies describing upper extremity activities are not concretely defined.

For example, people hold various understanding of the activity named as ‘grasping’; (2)

Increased degree of freedom of upper limb joints loosens the constraint of activity performance

where within-subject motions can present numerous variations of a single activity under the

same definition; (3) Performance evaluation is almost impossible as the difference between

performance deficiency or inability and personal habits can hardly be recognized by a

classification system without ground truth provided by subjects such that the system performance

largely relies on subjects’ honesty.

To make the problem manageable, the presented system is targeted at recognizing and

classifying a set of upper extremity activities extracted from the WMFT. The system will process

3

the data through two steps: (1) The data sequence is segmented into several smaller sessions,

each of which represents a test item, an activity; (2) Each session is classified into a specific

activity class where the overall activity set is predefined based on the fixed set of test items. To

note that sensor data is usually streamed based on a certain sampling rate, time cost to

accomplish each test item is recorded. Therefore, classification output will be sufficient for upper

extremity performance evaluation, recalling the traditional timing method of conducting the

WMFT.

This thesis includes the following contributions: (1) classification of a set of upper limb activities

extracted from the WMFT; (2) architecture design for a wearable sensor platform with both

inertial and flex sensors; (3) novel and intuitive method of activity decomposition into primitives;

(4) application of regular expressions in the area of upper extremity activity recognition and

classification.

1.3 Related Work

Advances in embedded technology have led to the proliferation of the wearable sensor platforms.

The application of wearable motion sensing platforms to human activity classification promotes

the wellness and healthcare objectives in assisted living, disease diagnosis and rehabilitation care.

[6] proposed a novel machine learning and statistical technique to extract parameters from EMG

sensors placed on the tibialis anterior and gastrocnemius muscles for human postural control

system assessment. In [7], a novel hierarchical subject state classification and walking parameter

computation system showed its prospect in the application of stroke patient rehab care.

Among all the data collection methods, employment of inertial sensors has been one of the most

4

popular approaches to record human motion details. [8] used a waist-mounted tri-axial

accelerometer to detect falls and classify transitional movements. [9] proposed a primitive-based

activity classification method using the output of a tri-axial accelerometer and a bi-axial

gyroscope. Recently, flex sensor has attracted more attentions on its application of measuring

physiological bending angles. [10] proposed a motion-based game control system where players’

motion is detected from the flex sensor band worn on the elbow and the knee, and the flex sensor

belt on the waist. [11] presented a novel flex sensor glove for measuring hand kinematics of a

rhesus macaque performing a grasping task with 25 different objects.

Researchers have studied the upper limb motion estimation extensively. [12] proposed a Kalman

filter based algorithm to estimate forearm movements. [13] estimated subjects’ upper-limb

orientation when the person is performing reaching tasks. However, classification method of

clustering different upper extremity activities is still in demand. Otherwise, performance

evaluation can be hardly applied.

The above investigation of the related work has proven the ability of inertial sensors in the

application of human motion characterization. The addition of flex sensor supplies the

information structure with one more dimension. The thesis is exploring a novel way to solve the

recognition and classification problem encountered in the upper limb activity characterization

community by proposing a new sensor fusion method.

5

Chapter 2

System Design

This chapter starts with an introduction of the system capacity and specifies several

terminologies. Then it presents the hardware architecture followed by a description of the

recognition and classification algorithm.

2.1 System Overview

The challenges of upper limb activity recognition and classification have been roughly described

in Section 1.2. The key of characterizing upper extremity movements is to handle the diversity of

hidden meanings behind activity descriptions and the infinity of activities that can be performed

in the free-living environment. Constraints on the activity set and the range of performance

variations are very necessary not only to simplify the system design but also highlight its

application value as not all the motion segments are worthy of deep analysis. The presented

system is focused on classifying a set of meaningful activities that can provide insight into the

upper extremity motor functions of stroke patients. A good reference for the activity set selection

is the WMFT. The application scenario of our system is set as a testing environment, which

implies that subjects will perform each test item/activity once based on the testing rules

explained in the WMFT.

6

The widely used version of the WMFT consists of 17 test items and some of them have very

similar motion paths involving the same joint movements. For example, ‘forearm to table’

(subjects attempt to place forearm on a table by abducting at the shoulder) and ‘forearm to box’

(subjects attempt to place forearm on a box, 25.4cm tall by abducting at the shoulder) will make

only very slight difference in the view of both inertial sensors and flex sensors. Also ‘flip 3 cards’

(subjects attempt to flip each card over using the pincer grasp), ‘turning the key in the lock’

(subjects attempt to turn a key 180 degrees to the left and right using pincer grasp while

maintaining contact) and ‘fold towel’ (subjects grasp towels, fold its lengthwise and then use the

tested hand to fold the towel in half again) can all be grouped into the same category of ‘wrist

rotation’.

By merging the similar testing items and abstracting the common key motion components, 6 test

items/activities are selected: (1) forearm to the table: subjects attempt to place forearm on a table

by abducting at the shoulder; (2) extend elbow: subjects attempt to reach across a table by

extending the elbow; (3) hand to table: subjects attempt to place involved hand on a table; (4)

reach and retrieve: subjects attempt to reach across a table by using elbow extension and flexion;

(5) lift: subjects attempt to lift a bottle and bring it close to his/her lips with a cylindrical grasp (6)

flip: subjects attempt to flip a card over using the pincer grasp. Videos of demonstrating each

testing item can be found in [14, 15]. When subjects are taking the compact ‘WMFT’ which

consists of the six activities listed above, the system can delimit each activity segment from the

whole motion sequence and classify them into the predefined 6 categories while retaining all the

timing information. The order of the activities performed will not affect the system performance.

Through the thesis, there are several terminologies we will use and their definitions are specified

7

at the context of our application. (1) Activity: it refers to a test item included in the compact

‘WMFT’ and there are 6 activity classes that the system is capable to classify; (2) Primitive: it is

the basic motion component to form an activity. We decompose activities into a sequence of

primitives according to certain signal signatures; (3) Activity instance: an instance describes a

certain activity performed by a subject.

Also we will use the terminologies like ‘overall activity’ and ‘specific activity’ defined based on

the above explanations. ‘Overall activity’ is used to differentiate activities defined in (1) from

other upper extremity movements which are not targeted by our system. ‘Specific activity’ refers

to an activity class. In our system design, we have 6 specific activities.

2.2 Hardware Architecture

The main part of the system hardware is a sensing platform. It is integrated with functions of

sensor manipulation, data collection and data storage. The data collection part consists of three

sensor breakouts, a tri-axial accelerometer, a bi-axial gyroscope and a flex sensor, which are

connected to the platform via ADC ports. All of the hardware components are off-the-shelf

electronic devices.

The platform is the SparkFun Logomatic v2 Serial SD Datalogger [16]. It has an ARM

processor, 8 ADC ports, an on-board USB mass storage stack, and a micro SD card slot. The

hardware configuration is quite convenient by simply adjusting the variable assignments in the

configuration file. A sample file is shown in Table 2.1 with the line-by-line explanations aside.

During the data collection phase, the platform periodically polls readings from the enabled ADC

ports and stores the data in an inserted micro SD card. When connected to a computer via a USB

8

cable, the platform serves as a normal USB device so that users can copy the desired data file to

the computer even without a SD card reader.

The tri-axial accelerometer breakout is the SparkFun MMA7361L chip [17], whose output can

be directly sampled without any amplifier circuits. The chip supports two dynamic measurement

ranges of ±1.5! and ±6! respectively. Though the smaller range corresponds to a higher

resolution, the ±6! mode is chose in our application considering the range of general human

motion acceleration as well as the constant 1! gravity. Figure 2.1 shows the schematic of the

peripheral of the accelerometer breakout. Note that the ±6! mode is selected by pulling the

! − !"#"$% pin to !"" through a 10! resistance.

Table 2.1: Example Configuration File

Variable Assignment Explanation

MODE 2 ADC logging

ASCII Y Log in ASCII format

Baud 4 Not applied in ADC mode

Frequency 100 Sampling rate is 100Hz

Trigger Character $ Not applied in ADC mode

Text Frame 100 Not applied in ADC mode

AD1.3 8 Disable Output 8

AD0.3 1 Enable Output 1

AD0.2 2 Enable Output 2

AD0.1 3 Enable Output 3

AD1.2 7 Disable Output 7

9

AD0.4 4 Enable Output 4

AD1.7 5 Enable Output 5

AD1.6 6 Enable Output 6

Safety On Y Enable Output 1

The bi-axial gyroscope breakout is the SparkFun LPY5150AL chip [18], which also requires few

peripheral circuit designs. The gyroscope chip has two sets of output of 1×!"# and 4×!"#

respectively. The 4×!"# pin is connected to the sensing platform for an amplified output with

the pay of decreased sensing range bounded by 1500!"#/!. Figure 2.2 shows the schematic of

the peripheral circuit of the gyroscope chip.

Figure 2.1: Schematic of accelerometer breakout peripheral

Figure 2.2: Schematic of gyroscope breakout peripheral

The flex sensor is basically a variable resistor whose resistance is determined by its deformation

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

2

4

6

8

1

3

5

7

9

AccelBoard

VDD
GND

ST
GSEL
0GD
SLP

XOUT
YOUT
ZOUT

R1

R2

10K

10K

VCC

ADC1
ADC2
ADC3
GND

Accelerometer Breakout to Data Logger

Celia XU

Figure 1: Schematic for Accelerometer Breakout Peripheral Circuit

UCLATR-2011-0002 3

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE Gyroscrope Breakout to Data Logger

Celia XU

2

4

1

3

5

JP1

2

4

1

3

5

JP2
VREF

Z (X4)
X (X4)
GND
3.3V

HP
PD
ST
Z (X1)
X (X1)

GND

GND
VCC

ADC6
ADC5

Figure 2: Schematic for Gyroscope Breakout Peripheral Circuit

UCLATR-2011-0002 4

10

[19]. The sensor is only sensitive in one side and when this side is curved, the resistance will

increase correspondingly. Resistance can be converted to a voltage output when applied an

operational amplifier circuit. In order to increase the sensing range, we provide the amplifier

with dual power supplies. The peripheral circuit of the flex sensor is shown in Figure 2.3. The

operational amplifier chip is TLC25M4CN [20] and the ADM8829 chip [21] is used to invert the

voltage for negative power supply. The input and output relationship of the flex sensor circuit is

shown in equation,

!!"# = !""×
!!
!!
,

where !2 is changing responding to the sensor deformation.

Figure 2.3: Peripheral circuits of flex sensor

All the sensors are connected to the main platform via the ADC ports. The sensing platform is

configured to sample at the frequency of 100!". During the data collection phase, the sensor

reading is temporarily stored in the inserted micro SD card. Afterwards, all the data would be

transferred to a computer for offline process. Figure 2.4(a) shows the complete hardware and

Figure 2.4(b) shows the mounting option for the upper limb activity monitoring. Inertial sensors

(accelerometer and gyroscope) are used for measuring movement amplitude and orientation,

while flex sensor is used for accurately and directly measuring elbow angle changes.

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE Flex Sensor Circuit

Celia XU

CAP+
6

GND
4

OUT
1

IN2

CAP
3

NC 5

ADM8829

P N

C2

P N

C1

VCC

VCC

value=1uF

value=1uF

1

2

5

3

4

TLC25M4CN

VCC

VCC

GND

R1 8.1k

R2

Flex sensor

VCC

ADC6

Figure 3: Schematic for Flex Sensor Circuit Design

dual voltage supply for op amp. Besides, -VCC is the input signal. Eqn 1 becomes Eqn 2

Vout = V CC × R1

R2
(2)

The operational amplifier is TLC25M4CN [7]. It is a quad operational amplifier. Fig .4 shows the circuit design
for flex sensor.

4.2 Sensor Calibration
From the readings of ADC port voltage value (that is, the generated data profiles), resistance of the flex sensor can
be inferred. Further, angle information can be inferred. Fig.4 shows the direction to bend sensor and the method to
measure angle theta.

Fig.5 shows an calibration example of flex sensors. It can be observed that different flex sensor is usually different
given same angle values and even the same flex sensor behaves slightly differently with the same angle setting, if we
don’t consider human artifact in measuring angles.

References
[1] S. Electronics, http://www.sparkfun.com/.

[2] L. v2 Serial SD Datalogger, http://www.sparkfun.com/products/10216.

[3] A. B. Triple Axis Accelerometer Breakout MMA7361, http://www.sparkfun.com/products/9652.

[4] G. B. Gyro Breakout Board LPY5150AL Dual, http://www.sparkfun.com/products/9425.

UCLATR-2011-0002 5

11

a. System hardware b. Hardware mounting

Figure 2.4: System hardware and mounting for an upper arm

2.3 Algorithm Description

The system algorithm employs a primitive-based template searching method to accomplish the

task of activity segmentation, recognition and classification. The thesis draws inspiration and

implements the primitive concept in the context of motions and activities described in [9] where

the authors claimed that a physical movement could be divided into a sequence of several

smaller motions defined as primitives. A transcript of this movement (a sequence of motion

primitives assigned to a specific activity) would record order and timing of the basic motions.

For example, a transcript for foot during walking could consist of (1) lifting the foot; (2) moving

the foot forward; (3) placing the foot on the ground and (4) bearing weight on the foot, with

certain periods of time associated with each primitive. In their approach, primitives are

constructed by a moving window centered at each point of the signal stream and features are

extracted within each window. The primitive classification is accomplished by a Gaussian

12

Mixture Model (GMM) whose outputs are converted into alphabetical symbols so that an activity

is abstracted into a string expression. They use the edit distance to compare the activity template

(a transcript which best represents a specific activity) with the symbolized data stream and

recognize the targeted activity by thresholding the distance.

The presented system in the thesis inherits the concept of primitive based activity

characterization. However, the definition of primitive is different considering its specific

application in upper limb activity characterization. Activities are segmented into a sequence of

primitives according to the flex sensor measurements. The decomposed signal is a compact

version of the original data stream with each small data segment merged into a single primitive.

Features are extracted from each primitive and processed by a similar GMM mentioned in [9].

GMM labels each primitive with a cluster symbol and coverts an activity into a symbolic string.

In the training phase, given a defined WMFT item, the presented system generates specific

templates utilizing the regular expression. For a new set of motion data, the regular expression

based searching method is employed to compare each activity template with the symbolized data

stream. After a turn of template rotation, all the targeted activities will be recognized. Thus, there

is no obvious boundary among the steps of activity segmentation, recognition and classification.

The string matching method perfectly combines the above tasks.

2.4 Algorithm Implementation

Figure 2.5 shows the block diagram of the signal processing procedure. The raw sensor data will

go through the outlier filter, the primitive segmentation module, the primitive classifier, the

sequence analyzer and the activity inference module.

13

Figure 2.5: Block diagram of signal processing

2.4.1 Outlier filtering

The raw data will be first fed into an outlier filter. Mean filter, median filter and low pass filter

are all widely adopted techniques to remove ‘ripples’ and ‘spikes’ in human motion signals. In

the presented algorithm, a median filter is implemented because of its advantage of edge

preservation under certain conditions [22]. This property is extremely important in our

application where the flex sensor signal will be used for primitive segmentation.

The performance of a median filter is determined by two key factors: (1) the size of the filter

window and (2) the method to handle the boundary issue. In our model, the value of each data

point is replaced with a median value of 20 neighboring points. This window size is determined

by experiments. The boundary data processing is avoided by shortening the stream length where

the first median output is calculated after the system has collected 20 data points. Experiments

have proven that the smoothing method would retain sufficient information for human motion

characterization. After the filtering step, the profile of the flex sensor signal is extracted.

Outlier	

Filtering	

Primi.ve	

Segmenta.on	

Primi.ve	

Classifica.on	

Sequence	

Analysis	

Ac.vity	

Inference	

14

2.4.2 Primitive Segmentation

Primitive segmentation can be categorized into one of the windowing techniques listed in [23].

Compared to the definition of all the techniques, it is closest to the event-based windowing

method. In the primitive segmentation module, the data is segmented into primitives at the points

where the flex sensor signal profile achieves a local maximum or minimum.

Instead of employing the traditional peak detection algorithm by looking for the maximum or

minimum value in a sliding window with a fixed size, the module takes a novel approach by

evaluating the change in the sign of the derivative. We first calculate the derivative between each

two neighboring data points and then determine the sign of the individual derivative through a

voting mechanism. When a sign flip is detected between two neighboring derivatives, either

jumping from negative to positive or vice verse, a sequence of the following 30 samples is

evaluated. If the majority of the derivatives are positive, the sign is enforced to be positive and

vice versa. The size of the voting window is determined by experiments where 30 is the optimal

to recognize all the boundary points of segments as well as avoiding too trivial segmentations.

2.4.3 Primitive Classification

A primitive remains as an unknown data segment until it is labeled through the primitive

classification module. The labeling task is accomplished by a GMM classifier.

A Gaussian Mixture Model is a parametric probability density function represented as a

weighted sum of a group of Gaussian component densities [24]. For example, a GMM consisting

of ! weighted component Gaussian densities can be expressed in the equation,

15

! ! ! = !!
!

!!!

! ! !! , Σ! ,

where ! is a ! -dimension continuous-valued data vector, !! , ! = 1,… ,!, are the mixture

weights and ! ! !! , Σ! , ! = 1,… ,!, are the component Gaussian densities. Each component

density is a Gaussian function of the form,

! ! !! , Σ! =
1

2! !/! Σ! ! ! exp {−
1
2 ! − !! !Σ!!! ! − !! },

with mean vector !! and covariance matrix Σ!. The mixture weights satisfy the constraint that

!!!
!!! =1 so that the overall cumulative density function is valued in the interval of 0, 1 . In our

application, the ! -dimension data vector, ! is the feature vector we extract from individual

primitives. Table 2.2 lists the features we use and the corresponding size they hold in the feature

vector. There are 6 channels of data, 3 inputs of the accelerometer, 2 inputs of the gyroscope and

1 input of the flex sensor and each channel has 9 features. The final feature vector turns out to be

a 54-tuple. To manually handle the large dimensioned vector is almost impossible.

Table 2.2: Features for primitive classification

Category Description Size

Start to end amplitude
value of subtracting the ending point from the

starting point
1×6

Peak to peak amplitude
value of subtracting the minimum value from the

maximum value
1×6

Maximum derivative
value of maximum derivative

1×6

16

Data vector at the maximum point
6 element data vector logged when one channel get

its maximum
6×6

A complete GMM is parameterized by the mean vectors, covariance matrices and mixture

weights of all component densities. By far the most popular and well-established method to

estimate the above parameters is the maximum likelihood (ML) estimation [25]. The way ML

estimation works is to find the model parameters which maximize the likelihood of the GMM

give the training data. A compact way to express all the parameters is using a vector ! where

!= !! , !! ,!! ! = 1,… ,!.

For a set of training vectors ! = {!!,… , !!}, the GMM likelihood can be expressed as

! ! ! = !
!

!!!

!!|! .

It is based on the assumption that the training data are independent on each other. To avoid the

non-linearity of the maximization problem, a special case of the expectation-maximization (EM)

algorithm [26] is employed iteratively. First, an initial guess of ! is given. Then, in each iteration,

a new !, such that ! ! ! ≥ ! ! ! is calculated and replaces the previous !. The following

formulas are used in our approach to guarantee a monotonic increase in the likelihood value,

Mixture Weights:

!! =
1
! Pr (!|!! , !)

!

!!!

.

17

Means:

!! =
Pr (!|!! , !)!

!!! !!
Pr (!|!! , !)!

!!!
.

Variances:

!!! =
Pr (!|!! , !)!

!!! !!!

Pr (!|!! , !)!
!!!

− !!!.

However, the EM algorithm can only be applied when the cluster number, or equivalently the

number of component densities is given. By decomposing activities into primitives, it is

extremely hard to decide how many primitives would be sufficient to characterize all the motion

segments. So we rely on the Bayesian information criterion (BIC) to get a reasonable guess [27].

BIC is a likelihood criterion penalized by the model complexity or the number of parameters in

the model. In our application, the number of clusters directly affects the number of parameters

needed for model construction. Following the notions in the above two paragraphs, when

! = {!!,… , !!} is the data set and ! = {!!: ! = 1,… ,!} are the candidates of parametric models

and !! is the number of parameters in the model !!. The BIC is defined as,

!"#! = !"#P ! !! − !
1
2!!!!"#,

where ! is a penalty weight and a larger BIC value implies a better model. Note that the

! = {!!: ! = 1,… ,!} here indicates the optimal parameter set for different models, which is

different from the != !! , !! ,!! ! = 1,… ,!, in the previous paragraph where it represents

different parameter set for a fixed model in each iteration.

The primitive classifier is embedded with a GMM where all the parameters have been estimated

18

through the training phase and configured properly to receive unclassified inputs. For an

unknown primitive, the a posteriori probability for component ! is give by

Pr ! !! , ! =
!!!(!!|!! , Σ!)
!!!(!!|!! , Σ!)!

!!!

where !! is the feature vector extracted from the primitive. The value of !, which results in the

largest a posteriori probability is assigned to the primitive as its classification result. Because we

use alphabets to represent each cluster, the classifier assigns individual primitive a unique

alphabet as a class symbol.

2.4.4 Sequence Analysis

We decompose an activity into a sequence of primitives according to the flex sensor signal

profile. Various combinations and permutations of primitives build up the activities. The way to

assemble the primitives makes an activity distinguishable. This property enables the generation

of a unique, regular expression based template for each specific activity class, which is referred

to as a specific template. Based on the specific templates, a general template is abstracted for the

overall activity classes, which can detect activity instances but doesn’t give any classification.

The sequence analyzer stores the regular expression based templates for both specific activities

and the overall activity classes. A regular expression is a special pattern that specifies a set of

strings in an extremely compact way [28]. Instead of numerating all the strings one by one, it

uses special operations to construct string expressions. Table 2.3 lists the operations we use in

our system design with their grammars aside. The sequence analyzer examines an unknown

primitive sequence by interpreting it through a regular expression processor. The processor

compares the predefined templates with the current input and finds out all the matching cases.

19

2.4.4 Activity Inference

The activity inference module continues the processing of the sequence analyzer and assigns a

more concrete result of the system output. After an unknown primitive sequence is processed

through the sequence analyzer, the activity inference module returns a starting point, an ending

point and a matched data segment when a match is detected and associates it back to the current

template. To put it in a more user-friendly way, this module presents the activity recognition and

classification result: (1) Whether there are predefined activities included in the data stream; (2) If

there are activities of interest detected, what activities they are or what class they should be

assigned to; (3) For each classified activity, what the starting time is and how long it takes.

20

Table 2.3: Regular expression operation

Category Symbol Grammar

Boolean ‘or’ vertical bar: ‘|’
Separates alternatives. For example, gray|grey can

match ‘gray’ or ‘grey’.

Grouping parentheses: ‘()’

Define the scope and precedence of the operators.

For example, gray|grey and gr(a|e)y are equivalent

patterns which both describe the set of ‘gray’ and

‘grey’.

Quantification

question mark: ‘?’

Indicate there is zero or one of the preceding

element. For example, colou?r matches both

‘color ’ and ‘colour’.

asterisk: ‘*’

Indicate there is zero or more of the preceding

element. For example, colou*r matches ‘color ’,

‘colour’, ‘colouur’, ‘colouuur’, and so on.

plus sign: ‘+’

Indicate there is one or more of the preceding

element. For example, colou+r matches ‘colour’,

‘colouur’, ‘colouuur’, and so on, but not ‘color’.

21

Chapter 3

Activity Modeling

In the presented system, an activity is defined as a sequence of primitives. To model an activity,

we need to construct the fundamental primitives and arrange them in a proper way. We use

alphabetical symbols to represent each primitive class so that an activity is characterized by a

sequence of alphabets, a string.

In this section, we focus on the rationale behind the activity modeling approach presented in the

thesis. The following terminologies will be introduced: (1) Template: a template is a sequence of

alphabets/a string to characterize a specific upper extremity activity; (2) Specific template: a

specific template is an abstracted pattern to describe one of the 6 test items/activities specified in

our system; (3) General template: a general template incorporates the characteristics of all the 6

specific templates and is used to recognize activity instances from a series of upper limb motions.

3.1 Primitive Construction

The idea of decomposing activities into primitives is an extension of the concept of windowing

techniques. A traditional way to delimit data into smaller sessions is to use a sliding window

through the data sequence and each window generates a ‘primitive’. This method has been

adopted in a lot of cases of lower body activity classification [9]. In our early work, we proposed

a similar time-based windowing techniques but it turns out to be not effective in the application

of upper limb activity characterization. The reason can be traced to the special nature of upper

22

limb activities. Unlike the walking signals, they are not periodical and don’t hold detectable

signatures.

Therefore, we use the profile of flex sensor signal to delimit primitives. Whenever the trend of

the signal evolution changes, a new primitive is registered. Note the intuition behind this

representation in the physical world. For example, the activity ’lift’ can be accomplished by the

following four steps: (1) put arm on the table; (2) arm ascent; (3) arm descent and (4) arm

retrieval. Primitive transition typically involves the elbow angle change. Flex sensor, which is

mounted around the elbow, measures the angle changes and thus is used for primitive

segmentation. However, angle changes sometimes occur within a primitive defined in the

physical world. Thus, in our application, the definition of a primitive is yielded to the

segmentation capability of a flex sensor. Even though, we try to avoid very trivial primitives.

3.2 Primitive Classification

We define primitive as a data segment where the flex sensor signal is monotonic. For any two

neighboring primitives, the difference of each other can be easily identified as one of them is

monotonically increasing while the other is monotonically decreasing. However, the disparity

between any two arbitrary primitives is very abstract. Table 3.1 lists activities, targeted in this

paper, with detailed description of primitive decomposition by the flex sensor. In the view of the

flex sensor, ‘lift’ gets two more primitives compared to the intuitive primitive decomposition in

the physical world. When subjects sitting on a chair with his/her hands freely putting on the laps,

tend to lift a can on the table, they will first retract the forearm a little bit to elevate the hand to

the same level of the tabletop, which results in a decreasing of elbow joint angle. Then he/she

will extend the whole arm to reach the can, during which, the elbow joint angle changes in an

23

opposite direction. The lifting process demands an arm retraction so that another primitive is

registered. To put the can back to the table is another extension motion. Finally, to retrieve the

arm back to the body and put the hand back on the lap are another two primitives delimited by

the different elbow joint angle changes. The above description implies that 6 is the minimum set

of primitives required to characterize the targeted 6 activities.

However, identifying individual primitive classes solely referring to the intuitive description is

still insufficient. The amplitude and orientation of motions, which can hardly be accurately

expressed using linguistic descriptions, will also contribute to primitive properties and they are

not negligible in primitive classification. For example, all the activities in Table 3.1 contain the

primitive of ‘retrieve’. In ‘forearm to table’, the ‘retrieve’ means retracting the forearm apart

from the table so that the hand can be put back on the lap. But in ‘extend elbow’, subjects should

first retrieve the forearm across the table and then apart from the tabletop and these two motions

cannot be delimited by observing the elbow joint angle changes.

Thus, the key priority is to find a criterion to characterize primitives from different classes and

classify an unknown primitive by quantifying its degree of matching to each class. As mentioned

in the section of algorithm implementation, we extract features from primitives and build the

GMM classifier to distinguish them. The benefit of GMM is that it is an unsupervised learning

model, which means given a set of training data without any manual labels, the EM algorithm

can automatically estimate the model parameters. Therefore, property analysis of individual

primitive class is saved.

The BIC value is used to select the optimal cluster number, which further saves the endeavors of

primitive property estimation and evaluation. However, BIC is not a strictly convex function of

24

the cluster number. Therefore, another criterion to evaluate the optimal cluster number is set in

our application. The system should generate a unique and consistent template for each targeted

activity class. It is based on the observation that when the cluster number is increased, the

primitive disparity between each two activity classes is strengthened. However, the same activity

performed by one subject also presents increased variations in different instances. In this case we

leverage the uniqueness and consistence requirement with the consideration of a BIC value and

set the cluster number to be 18.

25

Table 3.1: Primitive segmentation of targeted activities

Activity Class Primitive Decomposition Sample Template

Forearm to table (side) Lift -> lay -> retrieve -> relax ! ! ! ! + ! ∗ ! ∗! + !

Extend elbow Lift -> extend -> retrieve -> relax ! ! ! + ! ! + !

Hand to table (front) Lift -> lay -> retrieve -> relax ! ! ! + ! ! + !

Reach and retrieve Lift -> reach -> retrieve -> relax -> retrieve -> relax ! ! ! ! + ! + ! + (!|!) + !

Lift Lift -> reach -> feed -> return -> retrieve -> relax ! ! ! ! + ! + ! + ! + !

Flip Lift -> reach -> lift -> rotate -> retrieve -> relax ! ! ! + ! + ! + ! ∗ ! + !

26

3.3 Template Generation

Templates are used to characterize activities so that activity recognition and classification can be

easily carried out by thresholding the disparity between a motion sequence and a templated

activity. Specific templates to characterize a specific activity among the 6 targeted activities are

generated during the training phase. During the phase, subjects are requested to repeat individual

test items/activities at least five times. A large training set is required not only for the GMM

parameter estimation through the EM algorithm, but also necessary to incorporate instance

variations considering the large freedom of human upper limb movements.

Figure 3.1 illustrates the information flow of the template generation procedure. The training

data are firstly smoothed by the same outlier filter as shown in Figure 2.5. Then the motion

sequence is delimited into a group of primitives through the primitive segmentation block by

only feeding the flex sensor output.

In the first stage, all the segmented primitives are mixed together to create the GMM. Note that

this group of primitives also includes the decomposed motion segments not related to any of the

targeted activities. They may be transition motions between two consecutive activities or fake

motions added intentionally to simulate upper limb movements in the free-living environment.

So the necessity of the automatic selection of a cluster number and the unsupervised training

process is further emphasized.

27

a. Training in the first stage

b. Training in second stage

Figure 3.1: Information flow in the training phase

28

During the second stage, primitives from the same activity instance are assembled back together

as a data block. By assigning different alphabets to individual primitive classes, an activity

instance is converted into a string after primitive-wise classification and labeling.

Based on the ground truth recorded during the training phase, activity labeling of individual data

blocks or equivalently strings is carried out by manual intervention. Compared to the intractable

primitive labeling task, activity labeling is much easier and more practical following the activity

definition and description formulated in the section of system overview. Assembling strings with

the same label together, we want to generate a template for each activity class.

Template generation should take into account both the underfitting and overfitting issues. If we

randomly choose one string from the string set of the same activity label, the overfitting problem

is inevitable. On the contrary, if we extract the common part among the strings under the same

activity class and only put constraints at these parts, sometimes underfiitting problem would be

brought up as we cannot guarantee these parts are sufficient to differentiate a specific activity

from the overall activity set. Thus, we want to incorporate all the instance variations of a specific

activity into the specific template. To store multiple strings as a single activity template is an

option. But the activity recognition and classification process would be very cumbersome. For

example, if we have 5 strings for each activity class, we should run a string matching algorithm

30 times to get a complete result. Therefore, we take the regular expression approach usually

embedded in text editors for fast and efficient pattern recognition. Strings representing instances

of the same activity class are grouped together to abstract a regular expression based template.

Table 3.1 lists samples of the specific template for each activity class. The template of ‘forearm

to table (side)’ is

29

! ! ! ! + ! ∗ ! ∗! + !.

The interpretation of the template is as the following: (1) The activity can at least be decomposed

into 4 primitives with the ending primitive is fixed as !; (2) The starting primitive can be either

! or !. The same situation applies to the second primitive switching between the options

between ! and !; (3) The activity can also be performed by including the motion of ! and !.

But their occurrence is quite independent and their repetition is also uncontrollable; (4) The

primitive, ! is indispensable to complete the whole activity but the time of repetition is not

constrained.

Currently, we still don’t have very strict formulations of how to abstract templates from a set of

activity related strings and at the same time avoiding both the underfitting and overfitting

problem. The basic rules are described as the following: (1) If a common part is detected among

the strings of the same activity class and this part is unique for this specific activity class, we

usually emphasize its contribution to activity classification in the regular expression template and

loose the constraints of the rest of the expression; (2) If no common parts are detected or the

common part makes no difference among the overall activity set, we will numerate the instance

patterns and combine them using the regular expression operations; (3) If all the strings under the

same activity class hold the same length, we are more inclined to using the operator, | to

incorporate the alphabet variations in the individual string position; (4) If any two strings have

different lengths, we put + in the position where the alphabet ahead appears in every instance

and ∗ where the alphabet ahead appears occasionally.

Specific templates are used for individual activity classification. To make the system more robust,

the concept of general template is proposed. Different from the specific template, a general

30

template can recognize targeted activities from a series of motions but not give any classification

result. Associating specific templates with specific activities, the general template is

corresponded to the overall activity set. So each subject has only one general template but 6

specific templates.

The general template is abstracted based on the patterns from individual specific templates.

Basically, we truncate the starting primitive and the ending primitive from all the templates.

Referring to Table 3.1, the general template for this subject is

! + !.

It is generated based on four interesting discoveries on the specific activity templates: (1)

Activities are always started from a fixed set of primitives. When patients taking the WMFT, we

assume they usually start with their hands freely rest on the laps and end with the hands back to

the initial place. So the starting and ending primitive represent the motions of lifting the hands

from the laps to the tabletop and putting hands back to the initial position respectively. (2)

Activities can be decomposed at least into four primitives. The simplest activity in our activity

set is ‘hand to table’. To perform this activity, patients should first retract the arm a little bit to

lift the hand to the same level with the tabletop. When putting hands on the table, it is actually an

elbow joint extension process. To get ready for the next test item, patients will put their hands

back on the laps, which is pretty the same as reversing the above two motion segments. ‘Lift’

and ‘flip’ are much more complex activities and the increased primitive number is expected. (3)

The set of starting primitives and ending primitive are very unique patterns which only appear in

this two specific string positions. Through all the activity instances collected during the training

phase, these two primitives have never been detected in a different position.

31

3.4 Template Adjustment

The system is aimed at classifying a set of test items/activities extracted from the WMFT. The

test is used to evaluate the rehabilitation of stroke patients. So performance improvement is

expected. A set of immutable activity templates would not be applicable considering the

performance variations. In order to handle this kind of situation which can be usually

encountered in rehab care, the templates are kept editable such that the template adjustment is

maintained to be flexible.

It is a normal case that in the first couple of weeks after the stroke attack, patients would feel

extremely difficult to freely extend his/her arms to reach something. He/she will have to reply on

the whole upper body movements to control the approaching path of the upper limbs. During the

process of recovery, patients will gradually be more capable of arm flexion and extension. So

cases like that specific templates generated during the first couple of weeks cannot recognize

activity instances performed by the same subject in a later time are inevitable because primitive

motions may have changed tremendously. Therefore, we want to adjust specific templates from

time to time. However, the above example is just an extreme case in order to describe the

necessity of template adjustments.

In the thesis, we want to propose a way to update specific templates. Details about the condition

to trigger the template updates and how to combine manual interventions for ground truth would

not be covered. The method is based on the observation through our experiments that the general

template is robust to identify activity instances though without any classification result. When we

use the general template to search for pattern matches, the algorithm will return a string segment

for each matching. Note that the general template only puts constraints on the starting and ending

32

primitives. The returned string segments would be activity instances with various patterns in the

middle session. For the same data stream, we then rotate the stored specific templates and use

them to search for pattern matches. We assume that each test item was performed once and the

specific templates are designed to be extremely immune to false positives at the pay of slight

vulnerability to false negatives. So the sum of the detected activity instances by individual

specific template would be equal to or less than the number of instances identified by the general

template. The later case indicates that some of the specific templates trained at an earlier time are

no longer compatible to the current activity variations. By comparing the pattern of the matched

data segments returned by the general template and the specific templates under the help of

human labeling of ground truth, adjustment of specific templates is applicable. A special case

with one missing segment return after a complete rotation of every specific template, enables the

system to precede template adjustment without any human interventions.

Template adjustments are simply incorporating new instance variations to the previous generated

templates where the new variations are identified by the general template. The ground truth

guides the system in terms of which activity class, the variation should be added to. Two

principles need to follow through adjustment operation: (1) The updated templates should persist

to the patterns inherited from its ancestor. The addition of new patterns should not degrade the

old patterns. This rule is used to avoid the overfitting problem brought by the special situation

where the unrecognized activity instance may be a temporary performance variation; (2) The

updated templates should remain unique, which implies that the new incorporated pattern should

be new to all the other specific templates and any changes should be distinguishable from

template to template. If either of above is violated, the system will reject the updating request or

proceed the updates selectively.

33

Chapter 4

System Evaluation

The goal of the presented system is to recognize from a serials of motions, activity instances

belonging to the 6 test items/activities listed in Table 3.1 and classify them into correct category.

The evaluation metrics include whether the system is capable of properly delimiting the data

stream into primitive segments according to the flex sensor signal profile, whether the system is

capable of completely recognizing all the activity instances in the data stream and whether the

system is capable of correctly classifying each activity instance into its corresponding activity

category. For the first metric, we give an example output of the primitive segmentation module

by feeding a typical data stream into the system. For the rest two metrics, we will show the result

by providing precisions and recalls.

4.1 Experiment Setup

The system is a personalized activity recognition and classification system such that the personal

information, including the GMM parameters and activity templates, is archived beforehand

during the training phase. Subjects are instructed to perform the 6 test items/activities listed in

Table 3.1 without any outside interference. Each activity is repeated for five times in order to

collect the possible instance variations. Different activities are separated by a shaking signal and

the complete experiment is videotaped and post analyzed for accurate ground truth information.

34

Using the procedure introduced in the section of activity modeling, individualized primitive

classifier, and templates of specific activity and overall activity set are established.

System evaluation is based on the testing data collected when subjects are instructed to perform

the 6 activities in a random order. Figure 4.1 shows an example data stream collected during the

testing phase. The data is supplied to the signal processing pipeline shown in Figure 2.1. We put

a probe at the output of the primitive segmentation module. Figure 4.2 shows the segmentation

result. The amplitude of the solid line in the figure is a binary function of the flex sensor

derivative. When the sign of the derivative is positive, the value is set to 350. Otherwise it

remains as 0. The value of 350 is chosen for better illustration. The sign of the derivative is

determined by the voting mechanism. In the figure, the upward and downward steps illustrate the

primitive boundary. Note that there are no trivial primitives inside the motion sequence. This is a

very typical case through all the data sets, which indicates the primitive segmentation output is

quite reliable and all the delimited data segments can be trusted as a primitive in our definition.

35

Figure 4.1: Raw data stream

Figure 4.2: Primitive segmentation output

0 500 1000 1500 2000 2500 3000 3500 4000 4500

300

400

500

Sample Index

Se
ns

or
 R

ea
di

ng

AccX
AccY
AccZ
GyroX
GyroZ
Flex

0 500 1000 1500 2000 2500 3000 3500 4000 4500
250
300
350
400

Sample Index

Sm
oo

the
d R

ea
din

g

 Primitive Segment Flex Sensor Signal

36

After primitive-wise classification and labeling, the primitive sequence is converted into a string

expression. Activity recognition and classification are based on the well-developed regular

expression matching method. The system picks one of the specific templates generated during

the training phase and searches for matches through the primitive sequence. If matches are

detected, activity recognition and classification for a specific activity class is accomplished. By

rotating individual specific templates, Figure 4.3 illustrates the activity recognition and

classification result of the same data stream shown in Figure 4.1, where the solid line shows the

ground truth and the dotted line shows the system output.

To test the necessity and effectiveness of template adjustment, subjects were asked to

intentionally perform the same set of activities slightly differently by slowing down the speed,

increasing the motion range and etc. Within our expectation, the original specific templates

introduce several false negatives as shown in Figure 4.4. In the same figure, we can see that the

general template works pretty well by recognizing all the activity instances. Without violation of

the principles presented earlier in the section of template adjustment, specific templates are

edited according to the general template matching output. By employing the updated specific

templates, decreased false negatives can be observed in Figure 4.4. Note that using the updated

templates will not affect the system performance in processing the history data

37

Figure 4.3: Activity recognition

Figure 4.4: Improved accuracy with template adjustment

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Forearm to Table

Extend Elbow
Hand to Table

Reach and Retrieve
Lift
Flip

Sample Index

Recognition Result
(Original Template)

Flex Sensor Signal
Ground Truth

Recognition Result
(Updated Template)

Recognition Result
(General Template)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Activity

Forearm to Table
Extend Elbow
Hand to Table

Reach and Retrieve
Lift
Flip

Sample Index

38

4.2 Classification Result

The experiments described above were conducted among 5 subjects whose heights varying from

160cm to 185cm. The rationale behind choosing height as a variable is based on the assumption

that the lengths of human limbs are proportional to human heights. Table 4.1 shows the overall

testing results. We use precisions and recalls as the system has both false positives and false

negatives. Precision calculates the fraction of recognized activity instances that are actually

belonging to the category represented by the current template among all the recognized instances

while recall calculates the fraction of relevant activity instances recognized by the current

template among all the relevant instances. We use three sets of templates, specific templates,

general templates and updated specific templates to test the algorithm on two sets of data, data of

normal activity performance and data of varied activity performance for individual subjects.

Table 4.1: Overall testing result

Template Set

Normal Instance Varied Instance

Precision Recall Precision Recall

Specific Template 100% 96.67% 90.48% 63.33%

General Template 100% 100% 100% 100%

Updated Template 100% 100% 92.86% 86.67%

In the table, we can see that the intra-subject templates are quite effective to detect the normal

activity instances. The high precision is due to the principle we employ during the template

generation. The template extracted for each activity class should be unique. Any pattern that

brings false positives among the training data set will not be incorporated into the general or

39

specific templates. Even though the principle for template generation is more inclined to give

high precision, the rate of recall is still acceptable, which indicates that the primitive based upper

limb activity recognition and classification is applicable. For intentionally varied activity

instances, the pre-generated specific templates result in a tremendous decrease in both precision

and recall. By integrating the returned string segments of the general template matching

algorithm, the updated specific templates achieve a much higher accuracy especially in terms of

recall.

40

Chapter 5

Conclusion

5.1 Conclusion

In this paper we presented a novel system combining inertial sensors and a flex sensor to monitor

and evaluate complex upper limb activity performance, under the scenario of WMFT, of

neurological patients going through rehabilitation. We presented a flex sensor based primitive

segmentation method. This method uses the permutation of primitives to generate templates for

activity recognition and classification. To incorporate the instance variation, the regular

expression based pattern matching method is employed in the recognition and classification

procedure.

The effectiveness of the algorithm is proven via an initial experimental campaign involving 5

healthy subjects. The results show its special success when incorporating the procedure of

template adjustment.

However, The current system is still suffering from several shortcomings: (1) Trials among a

large scale community with participations of stroke patients have not been proceeded to evaluate

the system robustness; (2) The system capacity is still limited by the scenario of the WMFT; (3)

The complete protocol of template adjustment has not been proposed

41

5.2 Future Work

We plan to extend the application of the presented system to the classification of the upper limb

activities during the free-living conditions among a larger group of subjects. As such activities

will become increasingly complex, we plan to extend the presented system with wearable system

attached to the forearm so that we can monitor simultaneously the movements of both shoulder

joint and elbow joint [29].

The extended system will enhance the types of features and primitives that can be extracted to

most precisely characterize activities in the community. Besides, 3D motion tracking techniques

will be incorporated to break through the restriction of targeted activity set.

42

Appendix I

Code for Primitive Segmentation

function primitive_segmentation

data = load('../data/training.mat');

field = fieldnames(data);

window1 = 19;

window2 =29;

for i = 1:length(field)

 raw_data = data.(char(field(i)));

 len1 = length(raw_data(:,6))-window1;

 median_data.(char(field(i))) = zeros(len1,6);

 for j = 1:len1

 median_data.(char(field(i)))(j,:) = median(raw_data(j:j+window1,:));

 end

 len2 = len1-1;

 derivative.(char(field(i))) = diff(median_data.(char(field(i)))(:,6));

43

 pattern.(char(field(i))) = zeros(len2,7);

 flag = 0;

 for k = 1:len2

 if ((derivative.(char(field(i)))(k) ~= 0) && ((derivative.(char(field(i)))(k) > 0) ~= flag) &&

(k ~= len2))

 if (k+window2 > len2)

 tendancy1 = sum((derivative.(char(field(i)))(k:len2) > 0));

 tendancy2 = sum((derivative.(char(field(i)))(k:len2) < 0));

 else

 tendancy1 = sum((derivative.(char(field(i)))(k:k+window2) > 0));

 tendancy2 = sum((derivative.(char(field(i)))(k:k+window2) < 0));

 end

 if (tendancy1 < tendancy2)

 flag = 0;

 disp(k);

 disp(flag);

 elseif (tendancy1 > tendancy2)

 flag = 1;

44

 disp(k);

 disp(flag);

 end

 end

 pattern.(char(field(i)))(k,1) = flag * 600;

 end

 pattern.(char(field(i)))(1:len2,2:7) = raw_data(1:len2,:);

 figure(i);

 plot(pattern.(char(field(i))));

 title(char(field(i)));

 saveas(gcf,strcat('../figure/',char(field(i)),'.fig'));

end

for i = 1:length(field)

 activity = pattern.(char(field(i)));

 flag = -1;

 index = 0;

 for j = 1:length(activity(:,1))

45

 if (activity(j,1) ~= flag)

 flag = activity(j,1);

 index = index + 1;

 name = strcat(char(field(i)),'_',num2str(index));

 k = 1;

 else

 k = k + 1;

 end

 primitive.(name)(k,:) = activity(j,2:7);

 end

end

save('../data/primitive.mat','-struct','primitive');

end

46

Appendix II

Code for Primitive Classification

function primitive_classification

data = load('../data/primitive.mat');

field = fieldnames(data);

file = strcat('../data/parameter','.mat');

para = load(file);

obj = gmdistribution(para.mean, para.covariance, para.component);

for i = 1:length(field)

 label = char(field(i));

 loc = findstr(label,'_');

 label1 = label(1:loc(2)-1);

 index = str2double(label(loc(2)+1:end));

 primitive = data.(label);

 if (length(primitive(:,1)) >= 2)

 feature.(label1)(index,:) = feature_extraction(primitive);

47

 class = cluster(obj,feature.(label1)(index,:));

 script.(label1){index} = char('A'-1+class);

 else

 script.(label1){index} = 'Z';

 end

end

file = strcat('../data/script','.mat');

save(file,'-struct','script');

disp(script);

end

function feature = feature_extraction(data)

dimension = 9;

feature = zeros(1,length(data(1,:))*dimension);

for i=1:length(data(1,:))

 index = (i-1)*dimension;

 feature(index+1) = max(data(:,i))-min(data(:,i));

48

 feature(index+2) = data(end,i)-data(1,i);

 feature(index+3) = max(diff(data(:,i)));

 [Y I] = max(data(:,i));

 feature(index+4:index+dimension) = data(I,1:6);

end

end

49

Appendix III

Code for Test Item Classification

function sequence_test(index)

testing = load('../data/testing.mat');

sequence = testing.(strcat('testing', '_',num2str(index)));

record = load(strcat('../data/record_',num2str(index),'.mat'));

plot(record.(char(label(i)))(1):record.(char(label(i)))(2),(record.(char(label(i)))(1):record.(char(la

bel(i)))(2))*0+350,'r');

window1 = 19;

window2 = 29;

len1 = length(sequence(:,6))-window1;

median_sequence = zeros(len1,6);

for i = 1:len1

 median_sequence(i,:) = median(sequence(i:i+window1,:));

end

len2 = len1-1;

50

derivative = diff(median_sequence(:,6));

pattern = zeros(len2,7);

flag = 0;

for k = 1:len2

 if ((derivative(k) ~= 0) && ((derivative(k) > 0) ~= flag))

 if (k+window2 > len2)

 tendancy = sum(derivative(k:len2));

 else

 tendancy = sum(derivative(k:k+window2));

 end

 if (tendancy < 0)

 flag = 0;

 elseif (tendancy > 0)

 flag = 1;

 end

 end

pattern(k,1) = flag * 350;

51

end

pattern(1:len2,2:7) = median_sequence(1:len2,:);

flag = pattern(1,1);

dimension = 9;

k = 1;

period(k,1) = 1;

for i = 1:length(pattern(:,1))

 if (pattern(i,1) ~= flag)

 period(k,2) = i-1;

 primitive = pattern(period(k,1):period(k,2),2:7);

 for j=1:length(primitive(1,:))

 index = (j-1)*dimension;

 feature(k,index+1) = max(primitive(:,j))-min(primitive(:,j));

 feature(k,index+2) = primitive(end,j)-primitive(1,j);

 feature(k,index+3) = max(diff(primitive(:,j)));

 [Y I] = max(primitive(:,j));

 feature(k,index+4:index+dimension) = primitive(I,1:6);

52

 end

 flag = pattern(i,1);

 k = k+1;

 period(k,1) = i;

 end

end

period(k,2) = length(pattern(:,1));

primitive = pattern(period(k,1):period(k,2),2:7);

if (length(primitive(:,1)) >= 2)

 for j=1:length(primitive(1,:))

 index = (j-1)*dimension;

 feature(k,index+1) = max(primitive(:,j))-min(primitive(:,j));

 feature(k,index+2) = primitive(end,j)-primitive(1,j);

 feature(k,index+3) = max(diff(primitive(:,j)));

 [Y I] = max(primitive(:,j));

 feature(k,index+4:index+dimension) = primitive(I,1:6);

 end

53

end

para = load('../data/parameter.mat');

obj = gmdistribution(para.mean, para.covariance, para.component);

script = cell(1,length(feature(:,1)));

for i = 1:length(feature(:,1))

 class = cluster(obj,feature(i,:));

 script{i} = char('A'-1+class);

end

string = char(script)';

disp(string);

template.('forearm') = '(G|B)(O|A)+P*E*M+Q';

template.('extend') = '(B|G)L+(D|I)+Q';

template.('hand') = 'C(L|F)+(D|I)+Q';

template.('reach') = '(C|R)(L|F)+K+P+(M|E)+Q';

template.('lift') = '(R|C)(L|I)+H+H+D+Q';

template.('flip') = 'C(I|O)+N+I+J*D+Q';

template.('general')

='(B|G|C|R)(A|D|E|F|H|I|J|K|L|M|N|O|P)(A|D|E|F|H|I|J|K|L|M|N|O|P)(A|D|E|F|H|I|J|K|L|M|N|O|P)

54

*Q';

disp(template);

color = [0 0 1; 0 1 0; 0 1 1; 1 0 0; 1 0 1; 1 1 0];

figure(2);

plot(sequence(:,6));

hold on;

label = fieldnames(record);

for i = 1:length(label)

plot(record.(char(label(i)))(1):record.(char(label(i)))(2),(record.(char(label(i)))(1):record.(char(la

bel(i)))(2))*0+230+i*25,'r');

end

label = fieldnames(template);

for i = 1:6

 disp(char(label(i)));

 expressn = template.(char(label(i)));

 [matchstart,matchend,matchstring] = regexp(string,expressn,'start','end','match');

 disp(matchstring);

 for j = 1:length(matchstart)

55

plot(period(matchstart(j),1):period(matchend(j),2),(period(matchstart(j),1):period(matchend(j),2)

)*0+230+i*25+5,'b');

 end

end

expressn = template.('general');

[matchstart,matchend,matchstring] = regexp(string,expressn,'start','end','match');

disp(matchstring);

for j = 1:length(matchstart)

plot(period(matchstart(j),1):period(matchend(j),2),(period(matchstart(j),1):period(matchend(j),2)

)*0+230);

end

template.('forearm') = '(G|B|R)(O|A)+P*E*M+Q';

template.('extend') = '(B|G)(L|I)+(D|I)+Q';

template.('hand') = 'C(L|F)+(D|I)+Q';

template.('reach') = '(C|R)(L|F|I)+K+P*(M|E)*Q';

template.('lift') = '(R|C)(A|D|E|F|H|I|J|K|L|M|N|O|P)+H+H+D+Q';

template.('flip') = 'C(I|O)+N+I+J*D+Q';

label = fieldnames(template);

56

for i = 1:6

 disp(char(label(i)));

 expressn = template.(char(label(i)));

 [matchstart,matchend,matchstring] = regexp(string,expressn,'start','end','match');

 disp(matchstring);

 for j = 1:length(matchstart)

plot(period(matchstart(j),1):period(matchend(j),2),(period(matchstart(j),1):period(matchend(j),2)

)*0+230+i*25+10,'b');

 end

end

hold off;

end

57

Reference

[1] Lloyd-Jones D, Adams RJ, Brown TM, et al, “Heart Disease and Stroke Statistics – 2010
update. A Report from the American Heart Association Statistics Committee and Stroke
Statistics Subcommittee,” Circulation, 2010, 121:e1-e170.

[2] Manjila S, Masri T, Shams T, et al, “Evidence-based Review of Primary and Secondary
Ischemic Stroke Prevention In Adults: A Neurosurgical Perspective,” Neurosurg Focus,
2011 Jun, 30(6):E1.

[3] The University Hospital, University of Medicine & Dentistry of New Jersey, Newark, New
Jersey, “Stroke Statistics,” http://www.theuniversityhospital.com/stroke/stats.htm.

[4] David M. Morris, Gitendra Uswatte, Jean E. Crago, et al, “The reliability of the Wolf
Motor Function Test for assessing upper extremity function after stroke,” Archives of
Physical Medicine and Rehabilitation, Volume 82, Issue 6, June 2001, Pages 750-755.

[5] Stroke Engine, “In Depth Review of the Wolf Motor Function Test (WMFT),”
http://www.medicine.mcgill.ca/strokengine-assess/module_wmft_indepth-en.html.

[6] Ghasemzadeh, H, Jafari, R, Prabhakaran, B, “A Body Sensor Network With
Electromyogram and Inertial Sensors: Multimodal Interpretation of Muscular Activities,”
Information Technology in Biomedicine, IEEE Transactions on, vol. 14, no. 2, pp. 198-
206, March 2010.

[7] Xiaoyu Xu, Maxim A. Batalin, William J. Kaiser, et al, “Robust Hierarchical System for
Classification of Complex Human Mobility Characteristics in the Presence of Neurological
Disorders,” BSN, pp.65-70, 2011 International Conference on Body Sensor Networks,
2011.

[8] Roozbeh Jafari R., Li W., Bajcsy R., et al, 2007, “Physical Activity Monitoring for
Assisted Living at Home,” In IFMBE Proceedings, 4th International Workshops on
Wearable and Implantable Body Sensor Networks, pp. 213-219.

[9] Hassan Ghasemzadeh, Vitali Loseu, Roozbeh Jafari, “Collaborative Signal Processing for
Action Recognition in Body Sensor Networks: A Distributed Classification Algorithm
Using Motion Transcripts,” IPSN 2010: 244-255.

[10] Soon Mook Jeong, Tae Houn Song, Hyun Uk Jeong, et al, 2009, “Game Control Using
Multiple Sensors,” In Proceedings of the 7th International Conference on Advances in
Mobile Computing and Multimedia. ACM, New York, NY, USA, 632-636.

58

[11] Overduin, S. A., Zaheer, F., Bizzi, E., et al, 2011, “An instrumented glove for small
primates,” Journal of Neuroscience Methods 187, 100-104.

[12] Luinge, H.J. and Veltink, P. H., 2005, “Measuring Orientation of Human Body Segments
Using Miniature Gyroscopes and Accelerometers,” Medical and Biological Engineering
and Computing, 43 (2), pp. 273-282.

[13] Hyde RA, Ketteringham LP, Neild SA, et al, “Estimation of Upper-limb Orientation Based
on Accelerometer and Gyroscope Measurements,” IEEE Trans Biomed Eng. 2008 Feb,
55(2 Pt 7): 746-54.

[14] Demonstration of the Wolf Motor Function Test by Occupational Therapist Veronica Rowe
and stroke survivor volunteer, “WMFT with Descriptions part 1 Items 1-9,”
http://www.youtube.com/watch?v=tHsRfx3MbEM.

[15] Demonstration of the Wolf Motor Function Test by Occupational Therapist Veronica Rowe
and stroke survivor volunteer, “WMFT with Descriptions part 2 Items 10-17,”
http://www.youtube.com/watch?v=kb-q3VRynv4.

[16] “Logomatic v2 Serial SD Datalogger datasheet,” http://www.sparkfun.com/products/8627.

[17] “Three Axis Low-g Micromachined Accelerometer datasheet,”
http://www.freescale.com/files/sensors/doc/data_sheet/MMA7361L.pdf.

[18] “Dual axis pitch and yaw analog output gyroscope datasheet,”
http://www.sparkfun.com/datasheets/Sensors/IMU/lpy5150al.pdf.

[19] “Flex sensor 4.5” datasheet,” http://www.sparkfun.com/products/8606.

[20] “TLC25M4CN datasheet,”
http://www.alldatasheet.com/view.jsp?Searchword=TLC25M4CN.

[21] “ADM8829 datasheet,” http://www.analog.com/static/imported-
files/data_sheets/ADM8828_8829.pdf.

[22] Salem Saleh Al-amri, N. V. Kalyankar, S.D. Khamitkar, “A Comparative Study of
Removal Noise from Remote Sensing Image,” International Journal of Computing Science
Issues, IJCSI, Vol. 7, Issue 1, No. 1, January 2010.

[23] Stephen J Preece, John Y Goulermas, Laurence P J Kenney et al, “Activity identification
using body-mounted sensors – a review of classification techniques,” 2009 Physiological
Measurement, vol 30, number 4.

59

[24] Douglas Reynolds, “Gaussian mixture models,” MIT Lincoln Laboratory, 244 Wood St.,
Lexington, MA 02140, USA.

[25] In Jae Myung, 2003, “Tutorial on Maximum Likelihood Estimation,” Journal of
Mathematical Psychology, Volume 47, Issue 1.

[26] ChengXiang Zhai. 2007, “A Note on the Expectation-Maximization (EM) Algorithm,”
Department of Computer Science, University of Illinois at Urbana-Champaign.

[27] Nishida, M., Kawahara, T., “Unsupervised Speaker Indexing Using Speaker Model
Selection Based on Bayesian Information Criterion,” Acoustics, Speech, and Signal
Processing, 2003 IEEE International Conference on, pages I -172 – 175 vol.1.

[28] Ken Thompson, “Regular Expression Search Algorithm,” Communications of the ACM,
vol. 11, no. 6, pp 419-422.

[29] Zhiqiang Zhang, Lawrence W C. Wong, Jian-Kang Wu, “3D Upper Limb Motion
Modeling and Estimation Using Wearable Micro-sensors,” BSN ’10 Proceedings of the
2010 International Conference on Body Sensor Networks.

