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Spectral Analysis of Vibratory Gyro Noise
Dennis Kim and Robert M’Closkey, Member, IEEE

Abstract—This paper presents analysis of the noise spectra
of closed-loop mode-matched vibratory gyros. Closed-form ex-
pressions for the noise-equivalent angular rate spectrum as well
as the integrated angular rate (angle) variance are derived to
explore the effects of modal frequency mismatch, closed-loop
bandwidth, and the spectra of noise sources appearing at the
sensor’s input and output. It is shown that noise sources located
at the output of the sensor’s electromechanical transfer function
create angle white noise in the closed-loop sensor. The angle white
noise dominates the integrated rate behavior until it crosses the
angle random walk asymptote at integration times exceeding the
sensor’s open-loop time constant. Even though the closed-loop
sensor asymptotically recovers the angle random walk figure
associated with the mode-matched open-loop sensor, the results
can be used to quantify the larger integrated rate variance that is
produced as a consequence of extending the sensor’s bandwidth
via feedback. A parameter, called the effective bandwidth, is
introduced to capture the relative importance of the input noise
versus output noise in determining the noise-equivalent rate
spectrum. It is shown that the rate noise spectrum is robust
to frequency mismatch as long as it does not exceed the effective
bandwidth parameter. Empirical data obtained with a high
performance MEMS vibratory gyro shows excellent agreement
with the model predictions for a variety of sensor configurations
including frequency-matched, frequency-mismatched, modified
bandwidth, and manipulated input noise intensity cases.

Index Terms—Gyroscopes, inertial navigation, microsensors,
sensor phenomena and characterization, spectral analysis

NOMENCLATURE

α = coriolis coupling strength, unitless

∆ = modal frequency mismatch, rad/s

γc = closed-loop scale factor, V/(deg/s)

γ0 = closed-loop scale factor when ∆ = 0, V/(deg/s)

γOL = open-loop scale factor when ∆ = 0, V/(deg/s)

ω = frequency, rad/s

ωΩ = frequency variable associated with Ω, rad/s

ωc = closed-loop bandwidth, rad/s

ωm = mechanical bandwidth of resonator, rad/s

ωe = effective bandwidth, rad/s

ωn = modal frequency of dominant sense channel mode, rad/s

ω0 = drive mode frequency, rad/s

Ωe = estimated angular rate, rad/s

νo = noise spectral density at sensor output, deg/hr/
√

Hz

νi = noise spectral density at sensor input, deg/hr/
√

Hz
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Ω = sensor angular rate of rotation, rad/s

σ2

τ = variance of θ(t; τ ), deg
2

σ2

AV = Allan variance of Ωe, (deg/hr)2

θ(t; τ ) = angle change estimate over [t− τ, t] window, degree

τ = integration interval, second

a = drive mode response amplitude, m

c = modal damping, N/(m/s)

d = rebalance signal, V

d̃ = scaled rebalance signal, deg/s

Hg = sense channel transfer function

j =
√
−1

k = modal stiffness, N/m

Kf , forcer gain of sense channel, N/V

Kr, rebalance gain, N/V

Kx, excitation channel forcer gain, N/V

Ky = pick-off gain of sense channel, V/(m/s)

m = modal mass of dominant sense channel mode, kg

ni = sensor input noise, V

no = sensor output noise, V

p = peak gain of sense mode, V/V

Q = quality factor, unit less

Sd = spectral density of d, V
2/Hz

Sni
= spectral density of ni, V

2/Hz

Sno = spectral density of n0, V
2/Hz

SNER = spectral density of Ωe due to noise sources, (deg/hr)2/Hz

| · | = magnitude

I. INTRODUCTION

V IBRATORY rate gyros measure the angular rate of rota-

tion experienced by the sensor by exploiting two lightly

damped Coriolis–coupled modes of a mechanical resonator

when the equations of motion are written in a sensor–fixed

coordinate system. High mechanical quality factors (Q) in

vibratory rate gyros are essential to improving sensor perfor-

mance with respect to various noise sources that corrupt the

angular rate measurement. Although frequency-matched, or

“tuned”, open–loop vibratory gyros may achieve the sensor’s

optimum noise performance, the measurement bandwidth is

limited to the resonator’s intrinsic mechanical bandwidth and

is practically too low for high Q devices. Consequently, this

paper focuses on vibratory gyros operating in a force-to-

rebalance [1], or closed-loop, mode in which noise sources

are present at the input and output of the electro-mechanical

transfer function which represents the open-loop dynamics

of the resonator that forms the heart of the sensor. In fact,

expressions will be derived for the sensor transfer function

and the spectrum of a single noise source located at the sensor
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Fig. 1. Block diagram showing the relation between the sensor transfer
function Hsensor, the noise equivalent rate signal n, and the integrated rate
signal θ. The input angular rate Ω is filtered by the transfer function and
then corrupted by the additive noise n to produce the estimated rate (denoted
Ωe). The corrupted angular rate is integrated over the interval of duration τ to
produce an estimate of the change in sensor orientation. The transfer function,
spectral density of n and the variance of θ as a function of the integration
interval τ (when Ω(t) = 0) are derived.

output that reflects contributions of various noise sources

(see Fig. 1). Input noise sources include mechanical-thermal

noise [2], sensor case vibration that couples into the modes [3],

and digital-to-analog converter quantization noise. On the

other hand, a common output noise source is electrical-thermal

noise from analog signal conditioning [4]. In high-Q sensors

these noise sources conspire to produce interesting trends

in the noise-equivalent rate (NER) spectrum with respect

to sensor parameter perturbations. The effective bandwidth

parameter is introduced to capture the relative importance of

input noise sources versus output noise sources and it is shown

that although tuned closed–loop vibratory rate gyros achieve

the angle random walk (ARW) associated with tuned open–

loop operation, frequency mismatch larger than the effective

bandwidth raises the ARW figure for the sensor. The ARW

figure is especially sensitive to output noise and when output

noise is the dominant source, frequency mismatch larger than

the mechanical bandwidth leads to an increase in ARW.

A closed-form expression for the mean square angle un-

certainty as a function of integration time is also derived. It

is shown that output noise sources create angle white noise

(AWN), however, as the integration time increases, the angle

variance asymptotically converges to the ARW asymptote

associated with the open-loop sensor. Thus, if the physical

mechanism that implements the feedback in the force-to-

rebalance mode contributes negligible noise compared to the

other sources, then there is no long-term noise performance

penalty in operating a closed-loop sensor. Although the closed-

loop and open-loop sensor (frequency-matched cases) share

the same low frequency asymptote in the NER spectrum,

and hence have the same ARW, there is a price to be paid

for extending the sensor’s bandwidth and the analysis herein

precisely quantifies when, and to what degree, the closed-

loop angle variance exceeds the open-loop angle variance

for integration times that are longer than the open-loop time

constant (this represents the interval of integration times for

which open- and closed-loop variances can be compared

despite the fact that these sensor configurations have very

different signal bandwidths).

The motivation for this paper was prompted by the authors’

testing of the Disk Resonator Gyro, or DRG [5]. The DRG

provided a flexible testing platform to investigate the effects of

detuning, changes in quality factor, case vibration, and buffer

noise on sensor performance. Commercial signal processing

boards were used in the studies in order to measure the

intrinsic performance of the sensor without potential limits

being introduced by more size- and energy-efficient on-chip

implementations (results in Sec. VI show a low frequency

noise floor less than 0.3 deg/hr/
√

Hz in the frequency range

extending from 0.01Hz to 0.5Hz). In the course of testing

the DRG it became apparent that mechanical-thermal noise,

the noise source traditionally considered dominant in MEM

resonators, was not the only source contributing to the NER

spectrum and more thorough analysis was necessary to reveal

the interplay between noise sources and resonator parameters.

This paper is closest in spirit and objectives to Leland’s

theoretical treatment of mechanical-thermal noise in closed-

loop vibratory gyros [6]. For closed-loop analysis, though, a

force-to-rebalance control architecture must be assumed and

we adopt a fixed gain element which is an idealization of the

wide-band linear filters that have been successfully applied

by the authors to the DRG and other micro-scale gyros [7],

[8]. This feedback scheme, however, does not discriminate

between in-phase and quadrature components of the sensing

channel signal. Thus, both components are nulled and the

synchronous demodulation to estimate the angular rate is

performed outside of the loop which is in contrast to the force-

to-rebalance loop in [6] which leaves the quadrature “channel”

open. These different feedback schemes do yield differences

in the NER spectrum with regard to frequency mismatch

and, specifically, our approach does not see degradation in

ARW when only input noise is present, which is the case

considered in [6]. Our analysis approach also uses results

pertaining to the spectra of modulated narrowband signals to

compute the NER spectrum which departs from the slowly

varying amplitude coordinates and averaging in [6]. Further

comparison of force-to-rebalance architectures will not be

pursued, however, some recent contributions to compact on-

chip hardware implementation of vibratory gyro control and

signal processing filters are given in [9], [10], [11]. Error

sources, especially potential contributors to bias drift, are

analyzed in [12] for several commercially available non-mode-

matched MEMS gyroscopes.

The paper is organized as follows: Sec. II introduces the

notation for the sensor model and the block diagram for force-

to-rebalance operation; Sec. III derives the closed-loop scale

factor (which is necessary in light of the assumed feedback

scheme) and the expression for the closed-loop NER spectrum;

Sec. IV derives an expression for the variance of the integrated

rate as a function of integration time; Sec. V analyzes the

noise models by considering separate cases in which the input

noise is dominant, the output noise is dominant, and neither

noise source is dominant; Sec. VI presents experimental results

with the DRG and compares the noise model predictions to

measured NER spectra and angle variance; Sec VII concludes

the paper.

II. CLOSED-LOOP SENSOR MODEL

The fundamental model of a vibratory gyro consists of a two

degree-of-freedom (DOF) resonator with Coriolis coupling

terms modulated by the sensor’s angular velocity. The 2-DOF
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perspective is necessary when modeling such sensors since

multi-channel test data is required in order to clearly identify

nearly identical modal frequencies and damping that prevents

the formation of classical normal modes. The sensor designer,

however, goes to great lengths to decouple the two degrees of

freedom so that only the Coriolis coupling terms remain. The

decoupling is necessary in order to minimize the magnitude

of the quadrature signal associated with the sensing pick-off

which, if not minimized, can saturate the high-gain buffers.

Furthermore, coupling produces offsets in the in-phase and

quadrature signals which can slowly drift if the resonator

dynamics are perturbed. The drift contributes to low frequency

“noise” in the angular rate measurement that is independent

of the noise sources considered in this paper. As in references

that have preceded this work, the following idealized, time-

invariant, single DOF model is useful starting point in the

derivation of the NER spectrum,

mÿ + cẏ + αΩẋ + ky = f. (1)

In this model, y represents the generalized coordinate of sense

mode and f represents the corresponding generalized forces

that act on this degree of freedom. The degree of freedom that

represents the excited mode is parameterized by the coordinate

x. The modal mass, damping, and stiffness parameters are m,

c, and k, respectively. The angular velocity of the resonator is

denoted Ω and the Coriolis coupling strength α is a function

of the resonator geometry. In order to provide a carrier signal

onto which Ω is modulated, the vibratory rate gyro employs

a feedback loop to establish a stable harmonic oscillation of

x (or ẋ) with oscillation frequency typically coinciding with

the modal frequency of the dominant mode in this channel.

Commonly implemented excitation loops include a phase–

locked–loop (PLL) or feedback of the resonator velocity at

the pick-off point in conjunction with automatic gain control.

Both approaches are effective in maintaining a stable excitation

amplitude as well as tracking shifts in the modal frequency due

to changes in the resonator temperature, for example.

Open–loop vibratory rate gyros estimate Ω by demodulating

the rate-induced response of y (or ẏ). Closed–loop vibratory

rate gyros employ a second feedback loop, commonly called

the “force–to–rebalance” loop, to increase the sensor band-

width by nulling y using a feedback force through f to reject

the disturbance induced by the Coriolis coupling. The feedback

signal is then proportional to αΩẋ and an estimate of Ω is ex-

tracted by demodulating this signal with respect to ẋ. There are

several force-to-rebalance filter choices whose details depend

on whether the sensing pick-off measurement is proportional

to y or ẏ. From the perspective of control systems design,

though, the optimal damping of the mode is achieved with

velocity-to-force feedback so the present analysis assumes that

the pick-off measures a signal proportional to ẏ. If this is

not the case for a particular sensor, though, additional filters

in the feedback loop must be employed to phase shift the

measurement so that it in fact looks like the oscillator velocity

is fed back to the forcer. This choice is optimal in the sense that

the classical feedback loop sensitivity function never exceeds

unity so that the feedback mechanism does not exacerbate

or amplify disturbances and noise [13]. This is the objective

of the rebalance loop controller irrespective of the choice of

architecture (PLL, linear wide-band, and so forth). Thus, in

order to focus on the closed-loop noise properties of the sensor

without dwelling on the control architecture, it is assumed

that a simple linear gain multiplies the measurement of ẏ to

specify the feedback signal. This configuration regulates both

in-phase and quadrature components of ẏ. Readers interested

in the details of the control filter design for emulating velocity-

to-force feedback even in the presence of significant phase lag

are directed to [8] which describes a novel gyro ASIC.

The closed–loop sense channel is shown in Fig. 2. The block

H represents the transfer function of the sensor dynamics from

f to ẏ. A complete sensor model would include details of

the input and output signal conditioning dynamics, however,

since they are designed to have very little gain or phase

change in a neighborhood of sensor modes the present analysis

assumes the input and output buffers to be simple noiseless

elements Kf and Ky that converts forcer input voltage d
to the generalized force f or, at the sensor output, converts

the generalized velocity ẏ to the buffered voltage signal ỹ.

The fixed gain Kr represents the force-to-rebalance control

element. The electromechanical gyro transfer function Hg

combines the fundamental sensor dynamics as well as the input

and output gains and is given by

Hg (s) =
KyKf

m

s

s2 + 2ωms+ ω2
n

, s ∈ C (2)

where ωn =
√

k/m is the undamped natural frequency for the

resonance and where the resonator’s mechanical bandwidth is

defined as ωm := ωn/(2Q) with the modal quality factor Q =√
mk/c. From the perspective of analysis, it is not necessary to

individually determine the parameters Ky, Kf , and m because

a composite parameter representing KyKf/m along with ωn

and Q can be determined by fitting (2) to empirical frequency

response data. The peak gain of (2), denoted p, occurs at s =
jωn, and is a useful parameter in the subsequent analysis

p = |Hg (jωn)| =
KyKf

2mωm

. (3)

III. SPECTRUM OF ANGULAR RATE NOISE

Two noise sources, one located at the sensor input, denoted

ni, and the other located at the sensor output, denoted no,

are considered (see Fig. 2). The noise sources are assumed to

produce stationary, zero-mean, uncorrelated signals with asso-

ciated mean-square spectral densities given by Sni
and Sno

.

All spectral densities discussed in this paper are double-sided

spectral densities and, furthermore, the mean-square analysis

does not require that the noise sources posses Gaussian proba-

bility density functions but in the vast majority of cases these

noise sources are Gaussian. It is natural to express the pick-off

noise spectrum in terms of volts squared per hertz (V2/Hz),

however, the input noise sources are often physically located

after the Kf gain element because they represent forces acting

on the resonator. From a measurement perspective, though, it

is convenient to refer these noise sources to the input of the Kf

gain element and thus express them in V2/Hz units as well.

The analysis assumes that all noise and disturbance sources

are aggregated into ni and no.
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X

Low pass
(unit DC gain)

break loop here for

open-loop analysis

phase

shift

Fig. 2. Block diagram for analysis of the noise spectrum associated with the angular rate estimate, Ωe. The excitation loop is assumed to produce a stable
carrier signal ẋ by driving and tracking the companion mode. The force–to–rebalance loop shown here is designed to emulate velocity–to–force feedback so
that the feedback signal d regulates the noisy pick-off measurement ỹ to zero. The block H is given by (1). The effect on Ωe of two noise sources, denoted
ni and no, are to be determined. The transfer function from Ω to Ωe is denoted as Hsensor in Fig. 1.

It is necessary to establish the scale factor of the sensor and

the closed–loop transfer function from the rate-induced signal

(Ω · ẋ) to the feedback signal d is used for this purpose

α

Kf

KrHg

1 +KrHg

=
αKrKy

m

s

s2 + 2ωcs+ ω2
n

(4)

where the closed–loop bandwidth ωc is defined as

ωc = ωm +
KyKfKr

2m
= ωm(1 + pKr). (5)

It is assumed that the feedback increases the sensor bandwidth

significantly beyond ωm, which requires pKr >> 1 so that

ωc >> ωm. The sensor’s excitation loop regulates the x-

DOF to a constant amplitude sinusoidal response at frequency

ω0 (which may be different from the sense channel modal

frequency ωn). This neglects noise that is present in the

excitation loop. The input angular rate is assumed to be

sinusoidal as well with amplitude aΩ and the frequency ωΩ

ẋ (t) = −aω0 sin (ω0t)

Ω (t) = aΩ cos (ωΩt).

The steady–state response of the control effort d to the input

Ω · ẋ is

d (t) = −αaaΩω0KrKy

2m

[

λD̂r(jλ) cos (λt)

− λD̂i(jλ) sin (λt) + λ̃D̂r(jλ̃) cos (λ̃t)

−λ̃D̂i(jλ̃) sin (λ̃t)
]

(6)

where λ := ω0+ωΩ, λ̃ := ω0−ωΩ, and D̂r (s) and D̂i (s) are

the real and imaginary parts of D̂ (s) := 1/
(

s2 + 2ωcs+ ω2
n

)

,

respectively. The rate estimate Ωe is obtained by demodulating

d with respect to x̃φ, where x̃φ(t) := −Kxaω0 sin (ω0t+ φ) is

a phase-shifted copy of the measurement of ẋ, and normalizing

by the closed-loop scale factor γc,

Ωe(t) = LP
[

1

γc
x̃φ(t)d(t)

]

=
Kxaω0

γc
LP [− sin(ω0t+ φ)d(t)] .

(7)

The “LP [·]” operator denotes unity DC gain low pass filtering

of its argument with bandwidth ωlp. The scale factor is

determined when a constant angular rotation rate is applied, in

other words if ωΩ = 0 then the following constant is produced

for the angular rate,

Ωe(t) =
1

γc

αa2ω3
0

2m
KrKxKy

∣

∣

∣
D̂ (jω0)

∣

∣

∣
aΩ sin

(

φ− ∠D̂ (jω0)
)

(8)

where |D̂ (jω0) | and ∠D̂ (jω0) are the magnitude and phase

of D̂ (jω0). The optimal demodulation phase, given by φd :=
π/2 + ∠D̂ (jω0), maximizes (8) and rejects any components

that are in quadrature with the rate-induced signal. Note

∠D̂(jω0) ≈ −π/2 radians when ω0 is in a neighborhood

of ωn so φd ≈ 0 radians. The optimal demodulation phase

can deviate significantly from this value if the pick-off signal

conditioning contributes phase lag to the measurements of

ẋ and ẏ, however, these effects are not included in the

present analysis. The closed-loop scale factor is defined so

that Ωe = aΩ when φ = φd,

1/γc =
4m

αa2ω2
0KxKyKr

√

(

ω2
n − ω2

0

2ω0

)2

+ ω2
c

=
2Kf

αa2ω2
0Kx

1 + pKr

pKr

√

1 +

(

ω2
n − ω2

0

2ωcω0

)2

.

(9)

The detuning frequency is defined as ∆ := ω0 − ωn and

quantifies the difference between the resonant frequency of

the sensing channel and the operating frequency of the drive
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channel. Since (ω2
n − ω2

0)/(2ωcω0) is well-approximated by

−∆/ωc, (9) shows that the closed-loop scale factor is insensi-

tive to detuning so long as the detuning is small compared to

the closed-loop bandwidth. Furthermore, it is also evident that

γc is insensitive to changes in the rebalance gain Kr and to

changes in the quality factor so long as the maximum loop gain

magnitude satisfies pKr >> 1. Additional details given in [7]

shows that optimal demodulation phase θd also shares these

insensitivities to ∆, quality factor and rebalance gain under

the same assumptions. The nominal scale factor, denoted γ0,

is obtained when ∆ = 0,

1/γ0 =
2Kf

αa2ω2
0Kx

1 + pKr

pKr

. (10)

The nominal scale factor will be used in the subsequent

analysis.

The sensor transfer function can be derived from (7) as well.

Only the case ω0 = ωn, that is, ∆ = 0, is considered since

the calculations are lengthy and tedious when ∆ 6= 0. When

∆ = 0, (7) reduces to

Ωe(t) = −aΩωc

(

(

ωn(D̂r(jλ) − D̂r(jλ̃))

+ωΩ(D̂r(jλ) + D̂r(jλ̃))
)

sinωΩt

+
(

ωn(D̂i(jλ) + D̂i(jλ̃))

+ωΩ(D̂i(jλ) − D̂i(jλ̃))
)

cosωΩt

)

,

(11)

where the low pass operation has been used to discard com-

ponents with frequencies in a neighborhood of 2ωn. Further

simplification is possible when |ωΩ| << ωn. This is a reason-

able assumption since the resonant frequency of the oscillator

is intended to act as high frequency carrier onto which the

angular rate signal is modulated. With this assumption

D̂(jλ) ≈ 1

−2ωnωΩ + j2ωcωn

,

D̂(jλ̃) ≈ 1

2ωnωΩ + j2ωcωn

and (11) reduces to

Ωe(t) = −aΩωc

(

2ωnD̂r(jλ) sinωΩt+ 2ωnD̂i(jλ) cosωΩt
)

= aΩωc

(

ωΩ

ω2
Ω + ω2

c

sinωΩt+
ωc

ω2
Ω + ω2

c

cosωΩt

)

= aΩ
1

√

(ωΩ/ωc)2 + 1
cos
(

ωΩt− tan−1(ωΩ/ωc)
)

Since Ω(t) = aΩ cosωΩt, the transfer function from Ω to Ωe

in Fig. 2 is

Hsensor =
1

s/ωc + 1
. (12)

This transfer function is also inserted into the block diagram

in Fig. 1. Although not derived here, Hsensor is insensitive to

∆ so long as |∆| << ωc.

In order to complete the description of the signals in Fig. 1

the interpretation of d is now changed from a signal induced

by angular motion of the sensor to a stochastic signal due to

noise sources no and ni shown in Fig. 2. The analysis in [6]

essentially considers the same model (with no = 0) expressed

in a slowly varying amplitude coordinates system. Our analysis

approach determines the NER spectrum as the spectrum of a

modulated random process. This perspective gives quite a bit

of insight into the role of the noise sources, effects of detuning

and so forth. The spectral density of d due solely to the noise

sources is

Sd (ω) =

∣

∣

∣

∣

Kr

1 +KrHg (jω)

∣

∣

∣

∣

2
(

Sno
+ |Hg (jω) |2Sni

)

(13)

where Sd is expressed in V2/Hz. The signal d̃ is defined as

d̃ := (Kxaω0/γ0)d, in other words, d scaled by the amplitude

of ẋ and divided by γ0. This yields a signal whose units are

those of angular rate. The spectral density of d̃ is

Sd̃(ω) =

(

Kxaω0

γ0

)2

Sd(ω)

=

∣

∣

∣

∣

Kr

1 +KrHg (jω)

∣

∣

∣

∣

2
(

(

Kxaω0

γ0

)2

Sno

+|Hg (jω) |2
(

Kxaω0

γ0

)2

Sni

)

.

At this point some simplifying, though reasonable, assump-

tions are made. It is assumed that the densities Sno
and Sni

are

constant in a neighborhood of ω0 that encompasses the closed-

loop bandwidth so that the scaled densities can be assigned

the constants νo, νi > 0,

ν2o := (Kxaω0/γ0)
2Sno

, ν2i := (Kxaω0/γ0)
2Sni

, (14)

and, thus, after some manipulation, Sd̃ can be written

Sd̃(ω) = K2
rν

2
o

(ω2
n − ω2)2 + (2ωeω)

2

(ω2
n − ω2)2 + (2ωcω)2

, (15)

where the parameter ωe is the effective bandwidth

ωe = ωm

√

1 +

(

pνi
νo

)2

. (16)

The effective bandwidth describes the effect of the relative

power in d due to the noise sources at the sensor’s input

and output and is especially useful in determining if detuning

increases the noise equivalent rate spectrum –more details

are provided in Sec. V. As the output noise becomes less

significant (νo → 0 for fixed νi), then ωe → ∞. Conversely,

if νi → 0 for fixed νo, then ωe → ωm.

The NER spectral density is obtained by demodulating Sd̃

with respect to sin(ω0t+φ) (the phase φ has no impact on the

resulting spectrum). In practice, the bandwidth of the rebalance

controller filter limits the support of Sd̃ and, furthermore,

the low-pass filtering operation after demodulation by ẋ is

equivalent to bandpass filtering d with passband 2ωlp centered

at ω0 prior to demodulation by ẋ. The demodulation frequency

ω0, however, is typically several orders of magnitude larger

than the filter bandwidth, that is ω0 >> ωlp, thus, the bandpass

filtered noise is a narrowband process and the NER spectral

density (denoted SNER) assumes a simple form [14],

SNER (ω) =
1

4

(

Sd̃ (ω0 + ω) + Sd̃ (ω0 − ω)
)

, (17)
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where ω is constrained to the interval [−ωlp, ωlp] and Sd̃

is given by (15). Although the exact expression for SNER is

lengthy the following is derived

SNER (ω) =
1

2

(

Kr

ωc

)2

ν2o
(

∆2 + ω2
c

)

·
(

∆2 + ω2
c + ω2

) (

∆2 + ω2
e + ω2

)

− (2∆ω)
2

(

(∆− ω)2 + ω2
c

)(

(∆ + ω)2 + ω2
c

) ,

(18)

under the following assumptions

1) the noise sources can be treated as narrowband pro-

cesses, i.e. ωlp << ω0,

2) the closed-loop bandwidth is more than an order of

magnitude smaller than the demodulation frequency, i.e.

ωc << ω0,

3) the modal frequency detuning is an order of magnitude

smaller than the closed-loop bandwidth, i.e. ∆ << ωc.

This expression is taken to be the noise-equivalent rate spectral

density in remainder of the paper.

IV. ANGLE UNCERTAINTY

A. Integrated rate uncertainty

Integrating Ωe over a τ second window gives an estimate of

the change in orientation experienced by the sensor over that

interval with respect to an inertial reference frame. In other

words

θ(t; τ) =

∫ t

t−τ

Ωe(t)dt. (19)

where θ(t; τ) denotes the change in orientation at time t
obtained by integrating the angular rate estimate over the pre-

ceding τ seconds. The noise associated with the angular rate

estimate contributes to uncertainty in the derived orientation

change. The impulse response of the integration operation is

hτ (t) =

{

1 t ∈ [0, τ ]

0 t 6∈ [0, τ ]
. (20)

The Fourier transform of hτ is

Hτ (ω) =
1

jω

(

1− e−jτω
)

.

For fixed τ , the mean square value of θ(t; τ) due to the rate

noise with spectral density SNER is denoted σ2
τ and can be

computed from

σ2
τ : =

1

2π

∫ ∞

−∞

SNER(ω)|Hτ (ω)|2dω

=
1

2π

∫ ∞

−∞

SNER(ω)

∣

∣

∣

∣

1

jω

(

1− e−jτω
)

∣

∣

∣

∣

2

dω.

(21)

Substituting (18) into (21) yields,

σ2
τ =

1

4π

(

Krνo
ωc

)2
(

∆2 + ω2
c

)

I, (22)

where

I =

∫ ∞

−∞

(

∆2 + ω2
c + ω2

) (

∆2 + ω2
e + ω2

)

− (2∆ω)
2

(

(∆− ω)2 + ω2
c

)(

(∆ + ω)2 + ω2
c

)

·
∣

∣

∣

∣

1

jω

(

1− e−jτω
)

∣

∣

∣

∣

2

dω.

(23)

Contour integration is used to evaluate (23) (see the Appendix

for details) and produces the following expression for the mean

square value of the angle uncertainty as a function of the

integration interval

σ2
τ =

1

2

(

Kr

ωc

)2

ν2o

[

(

∆2 + ω2
e

)

τ

+
ω2
c − ω2

e

ωc(∆2 + ω2
c )

(

(ω2
c −∆2)

(

1− cos(∆τ)e−ωcτ
)

+2∆ωc sin(∆τ)e−ωcτ
)

]

.

(24)

The DC value of SNER is

SNER(0) =
1

2

(

Kr

ωc

)2

ν2o
(

∆2 + ω2
e

)

so σ2
τ can be written

σ2
τ = SNER(0)τ + terms bounded in τ.

Thus, the angle random walk (ARW) associated with the

sensor is determined by SNER(0), however, the terms bounded

in τ contribute interesting trends to στ that will be discussed

in Section V.

B. Allan variance representation

The Allan variance [15], denoted σ2
AV
(τ), can be computed

from the rate noise power spectrum according to

σ2
AV
(τ) =

1

π

∫ ∞

−∞

SNER(ω)
sin4

(

1

2
ωτ
)

(

1

2
ωτ
)2

dω.

This expression can be rewritten as

σ2
AV
(τ) =

1

4π

∫ ∞

−∞

SNER(ω)
1

(τω)2

∣

∣1− e−jτω
∣

∣

4
dω, (25)

and the similarities with (21) are evident. The 1/τ2 factor

in (25) coverts the “moving” integration operation into a

moving average. Furthermore, the additional |1 − e−jτω|2
factor in (25) derives from the differencing operation between

the current and τ -delayed signals. The same contour for

evaluating (21) is used to compute (25) and this yields the

closed-form Allan variance expression

σ2
AV
(τ) = SNER(0)

1

τ
+

1

τ2
β

[

(ω2
c −∆2)

(

3

2
− 2e−τω cos τ∆

+
1

2
e−2τωc cos 2τ∆

)

+ 2ωc∆

(

2e−τωc sin τ∆

−1

2
e−2τωc sin 2τ∆

)]

,

(26)

where β is the constant

β =
1

2

(

Kr

ωc

)2

ν2o
ω2
c − ω2

e

ωc(ω2
c +∆2)

.
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V. DISCUSSION

The expression for SNER is a complicated function of ∆, ωe

and ωc but its features can be studied by considering SNER(ω)
when ∆ = 0, and the value of SNER(0) when ∆ 6= 0. Although

the sensor’s ARW is determined by SNER(0), there are other

trends in SNER that impact στ which need to be elucidated.

Furthermore, it will be demonstrated that depending on the

relative importance of the noise sources, SNER(0) may be more

or less susceptible to detuning, changes in quality factor and

so forth. Three closed-loop scenarios are studied: Input noise

dominates addresses the situation when the output noise can

be neglected (ωe → ∞ as νo → 0); No dominant noise source

addresses the situation when both input and output noise

sources are important in determining properties of the noise

equivalent rate spectrum; Output noise dominates addresses

the situation when ωe = ωm because νi = 0, that is, the input

noise can be ignored. This section also discusses the response

of SNER to changes in the resonance quality factor and a brief

comparison between the tuned open- and closed-loop NER

spectra is made as well.

A. SNER(ω) when ∆ = 0

First consider SNER under the assumption ∆ = 0, in other

words, the sense mode frequency ωn and excitation loop

operating frequency ω0 are equal,

SNER(ω) =
1

2
K2

rν
2
o

ω2 + ω2
e

ω2 + ω2
c

. (27)

Input noise dominates. Since (νoωe)
2 = ω2

m(ν2o + (pνi)
2) →

(ωmpνi)
2, as νo → 0, (27) reduces to

SNER(ω) =
1

2
ν2i

ω2
c

ω2 + ω2
c

. (28)

The NER spectrum when input noise is dominant has a low-

pass characteristic that rolls off at frequencies outside of the

band [−ωc, ωc]. The pass band value of SNER is approximately

ν2i /2. An example of S
1

2

NER in this case is shown in Fig. 3.

No dominant noise source. There is no simplification of (27).

The high frequency asymptote of SNER is

lim
|ω|→∞

SNER =
1

2
(Krνo)

2 (29)

which does not depend on the input noise and is seen to be

proportional to the square of the force-to-rebalance feedback

gain and output noise. The value of SNER at ω = 0 reduces to

SNER(0) =
1

2

(

(

νo
p

)2

+ ν2i

)

, (30)

however, if ωe > ωc then the input noise essentially dictates

SNER because (27) has the shape of a lag filter that closely

approximates (28) when ω ∈ [−ω0, ω0] and SNER(0) ≈ ν2i /2.

On the other hand, when ωe < ωc, (27) has a lead filter shape

–see Fig. 3. The role of the effective bandwidth ωe is evident

in this figure.

Frequency

both sources present

output noise only

input noise only

Fig. 3. NER spectrum for the three cases discussed in Sec. V-A. The double-
sided spectra are shown for ω > 0 and both axes have logarithmic scaling.
For these plots νi ≈ 10νo/p, so ωe ≈ 10ωm. Furthermore, ωc ≈ 10ωe.

Output noise dominates. When νi → 0, ωe → ωm, the NER

spectrum is

SNER(ω) =
1

2

(

Kr

ωc

)2

ν2oω
2
c

ω2 + ω2
m

ω2 + ω2
c

.

Since ωc >> ωm by assumption, SNER has a phase-lead shape.

The low frequency value is

SNER(0) =
1

2

(

νo
p

)2

, (31)

and the high frequency asymptote is equal to (29). The

spectrum is shown in Fig. 3 when the input noise is assumed

to be zero.

B. SNER(0) when ∆ 6= 0

The DC values of SNER are computed for the three cases

introduced in Section V-A. In general,

SNER(0) =
1

2

(

Kr

ωc

)2

ν2o
(

∆2 + ω2
e

)

.

Despite the fact that Kr and ωc appear in SNER(0), under

the assumption of large loop gain (pKr >> 1), SNER(0) is

independent of Kr and ωc and, hence, perturbations to these

parameters have no impact on ARW.

Input noise dominates. In this case, SNER(0) =
1

2
ν2i and because

this expression is independent of ∆, detuning does not increase

the low frequency noise and (28) closely approximates the

spectrum even if |∆| 6= 0. This conclusion differs from the

result in [6] because it uses a different feedback scheme.

No dominant noise source. Both input and output noise sources

are important and SNER(0) reduces to

SNER(0) =
1

2

(

(

νo
p

)2

+ ν2i

)(

1 +

(

∆

ωe

)2
)

(32)
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which is the value of SNER(0) when ∆ = 0 (refer to (30))

multiplied by the factor 1 + (∆/ωe)
2. Note, however, if

|∆| < ωe then SNER(0) is not overly degraded. In other words,

detuning up to the effective bandwidth can be tolerated without

changing the spectrum of SNER.

Output noise dominates. When the input noise can be ignored

SNER(0) =
1

2

(

νo
p

)2
(

1 +

(

∆

ωm

)2
)

which is the value of SNER(0) when ∆ = 0 (refer to (31))

multiplied by the factor 1 + (∆/ωm)
2
. This case exhibits

the most sensitivity to detuning because if |∆| > ωm (a

situation that is inadvertently, though easily, achieved in high

Q sensors) then the ARW increases in proportion to the degree

of detuning. Fig. 3 shows why the present case cannot tolerate

as much detuning as the situation when neither noise source

is dominant: when neither source is dominant ωe > ωm and

ARW does not appreciably change unless |∆| > ωe.

C. Effect of changes in quality factor

The sense channel resonance quality factor (Q) and mechan-

ical bandwidth, ωm, are inversely proportional. If all param-

eters in the resonator are held constant with the exception of

ωm, the impact of quality factor on SNER can be determined for

the previously discussed cases. This enables study of the “what

if” scenario of changing the quality factor for a given sensor

design. Note that the peak amplitude of Hg, p, is proportional

to quality factor when all other parameters remain unchanged.

Input noise dominates. Recall SNER(0) =
1

2
ν2i . The source of

the input noise ni may, or may not, depend on Q. If Sni

does not depend on Q because it is due, for example, to

external vibration that couples to the mode, then changes in

Q have no effect on SNER. On the other hand, if Sni
is due to

mechanical thermal noise, which is the case that has received

the most attention in the MEM gyro literature, then Sni
has

Q−1 dependency so SNER(0) exhibits Q−1 dependency.

No dominant noise source. Assume ωm < ωe < ωc since this

situation yields different results from the case when input noise

dominates. Also assume ∆ = 0. Under these assumptions SNER

has a phase-lead characteristic with SNER(0) = 1

2
((νo/p)

2 +
ν2i ). The high frequency asymptote is equal to 1

2
(Krνo)

2.

Since Sno
models electrical buffer noise, it can be safely

assumed that νo is independent of Q. Thus, the high frequency

“knee” in SNER in Fig. 3 is unaffected by changes in Q because

ωc and the high frequency asymptotic value are independent

of the quality factor. The low frequency properties are affected

by changes in Q, though. If Sni
is independent of Q, then,

as Q → ∞: 1) SNER(0) converges to the constant 1

2
ν2i because

the higher Q suppresses the output noise relative to the fixed

input noise, and 2) the effective bandwidth ωe decreases

but converges to the non-zero constant KyKfνi/(2mν0). If

SNER(0) and ωe are already close to these asymptotic values,

further increase in Q yields little reduction in ARW. On the

other hand, if we assume Sni
is due to mechanical thermal

noise, then increasing Q will preferentially reduce the effect

of νo compared to νi, and SNER(0) converges to 1

2
ν2i , which

has Q−1 dependency.

Output noise dominates. This is an interesting case because

SNER has the greatest sensitivity to Q. Recall SNER(0) =
1

2
(νo/p)

2, where p is the peak gain of the open-loop frequency

response. Because p is proportional to Q, SNER(0) has Q−2

dependency and the value of low frequency corner in the

spectrum at ωm has Q−1 dependency. Although this greater

sensitivity is desirable it does come with a price, namely, to

reap the benefits of high Q, the degree of permissible detuning

must satisfy |∆| < ωm, which can be difficult to achieve in

practice. As in case when neither noise source is dominant,

the high frequency corner and asymptotic value of SNER do not

depend on Q.

D. Comparison with open-loop sensor

It will be shown that SNER(0) is the same in both the open-

and closed-loop sensor assuming that the physical mechanism

which implements the feedback does not contribute any noise.

A meaningful comparison can only be made when ∆ = 0
(ω0 = ωn) because the open-loop sensor scale factor exhibits

first order dependence on ∆ whereas the closed-loop scale

factor is essentially independent of ∆. It’s useful to retain

the notation introduced for the closed-loop analysis so the

open-loop sensor is analyzed by breaking the loop at the point

indicated in Fig. 2. The signal d is still demodulated to recover

the rate estimate and so its spectral properties due to the input

and output noises will govern the NER for the open-loop case.

The spectrum of d in the open-loop case is

Sd,OL(ω) = K2
r

(

Sno
+ |Hg(ω)|2Sni

)

.

To follow the closed-loop analysis d should be multiplied

by the amplitude of the demodulating drive signal (which

is assumed to be the same as the closed-loop sensor) and

normalized by the open-loop scale factor γOL. In other words,

the scaled signal is defined d̃ := (Kxaωn/γOL)d so

Sd̃,OL
(ω) =

(

Kxaωn

γOL

)2

K2
r

(

Sno
+ |Hg(ω)|2Sni

)

.

The open-loop scale factor differs from the closed-loop scale

factor, however, the following relation can be derived

1

γOL

=
1

1 + pKr

1

γ0
,

where γOL is the open-loop scale factor, and γ0 is the nominal

scale factor of the closed-loop sensor when ∆ = 0 (see (10)).

Substituting this expression into Sd̃ yields

Sd̃,OL
(ω) =

(

Kxaωn

γ0

)2(

Kr

1 + pKr

)2
(

Sno
+ |Hg(ω)|2Sni

)

=

(

Kr

1 + pKr

)2
(

ν2o + |Hg(ω)|2ν2i
)

,

where νo and νi retain the same definitions from the closed-

loop analysis (see (14)). The open-loop NER spectrum at ω =
0 is

SNER,OL(0) =
1

2
Sd̃,OL

(ωn) =
1

2

(

Kr

1 + pKr

)2
(

ν2o + p2ν2i
)

,
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where we have used the fact that |Hg(ωn)| = p. Since the

open-loop sensor is compared to the closed-loop case under the

large loop gain assumption pKr >> 1, then Kr/(1+pKr) ≈
1/p so the spectral density reduces to

SNER,OL(0) =
1

2

1

p2
(

ν2o + p2ν2i
)

.

which is equal to the closed-loop NER spectrum given by (30).

Thus, the ARW associated with closed-loop sensor is equal to

the ARW associated with the open-loop sensor. This result

comes as no surprise because feedback does not change the

signal-to-noise ratio of the pick-off signal ỹ in Fig. 2.

E. Asymptotes for σ2
τ

Asymptotes for σ2
τ are developed for the three scenarios and

although it was demonstrated in Sec. V-D that SNER(0), which

defines the sensor’s ARW, is the same for the open- and closed-

loop sensor, the fact that σ2
τ is a weighted integral of SNER

means that σ2
τ has additional features that can be attributed

to the presence of output noise. The asymptotes are derived

under the condition ∆ = 0.

Input noise dominates. The variance expression (24) reduces

to

σ2
τ =

1

2
ν2i

(

τ − 1

ωc

(

1− e−ωcτ
)

)

(33)

when νo → 0. The situation τ < 1/ωc has little practical

relevance because the integration time is shorter than the

closed-loop time constant. The relevant situation is τ > 1/ωc

and (33) is approximated by

σ2
τ =

1

2
ν2i τ, (τ > 1/ωc),

This is the classical ARW trend in which the variance grows

proportionally with the integration time for integration times

exceeding the closed-loop time constant. It will be shown that

this trend does not hold for all τ > 1/ωc when output noise

must be included in the analysis.

No dominant noise source. It is assumed ωe < ωc because, if

not, the present case is well-approximated by the case when

input noise dominates. The variance

σ2
τ =

1

2

(

Kr

ωc

)2

ν2o

(

ω2
eτ +

ω2
c − ω2

e

ωc

(

1− e−ωcτ
)

)

.

has three distinct trends

σ2
τ ≈











1

2
K2

rν
2
oτ, τ < 1/ωc

1

2
K2

rν
2
o/ωc, 1/ωc < τ < ωc/ω

2
e

1

2

(

(νo/p)
2 + ν2i

)

τ, τ > ωc/ω
2
e .

The relevant integration times are those greater than 1/ωc and

it is observed that two asymptotes define σ2
τ . In particular,

if τ ∈ [1/ωc, ωc/ω
2
e ], then the variance is independent of

τ , in other words, angle white noise (AWN) dominates this

integration range and σ2
τ is proportional to ν2o and to Kr. On

the other hand, if τ > ωc/ω
2
e , then the ARW asymptote defined

by SNER(0) in (30) determines σ2
τ . The price of increasing the

sensor’s bandwidth becomes evident: if ωc/ω
2
e > 1/ωm, the

Integration time,

V
a

ri
a

n
c
e

,

larger bandwidth

nominal case (closed-loop)

nominal case

(open-loop)
ARW asymptote

AWN asymptote

detuned case

Fig. 4. Angle variance versus τ when neither noise source is dominant.
Logarithmic axes are used. ARW and AWN asymptotes of the nominal tuned
closed–loop case are plotted with dashed lines. The tuned closed–loop plots
converge to the tuned open–loop variance as τ → ∞. When |∆| > ωe,
though, the ARW asymptote increases. If the closed–loop bandwidth is
increased when ∆ = 0, στ ’s AWN asymptote increases in proportion to
the square root of the closed–loop bandwidth, however, the ARW asymptote
is unchanged. The cross-hatch region denotes the integration times for which
the closed-loop sensor produces larger variance than the open loop sensor (the
comparison is made for τ > 1/ωm, which is the time constant of the open-
loop sensor). When output noise dominates, ωe is replaced with ωm. The
closed-loop angle variance when input noise dominates is simply the dashed
line denoted “ARW asymptote.”

closed-loop sensor, while having superior bandwidth compared

to the open-loop sensor, has larger variance for those integra-

tion times relevant to both open- and closed-loop modes of

operation, namely when τ > 1/ωm. This is shown as the

cross-hatched region in Fig. 4. Note, however, that στ does

converge to the open-loop value as τ increases beyond ωc/ω
2
e .

Output noise dominates. The asymptotes in previous case

apply with ωe replaced by ωm,

σ2
τ ≈











1

2
K2

rν
2
oτ, τ < 1/ωc

1

2
K2

rν
2
o/ωc, 1/ωc < τ < ωc/ω

2
m

1

2
(νo/p)

2τ, τ > ωc/ω
2
m

.

The closed-loop sensor exhibits larger variance than the open-

loop sensor when τ ∈ [1/ωm, ωc/ω
2
m], but, as τ increases

beyond ωc/ω
2
m, σ2

τ converges to the open-loop ARW.

VI. EXPERIMENTAL RESULTS

This section compares predictions of the SNER and στ models

to experimental data from a Disk Resonator Gyro (DRG).

Details of the DRG can be found in [5] with the control loop

design discussed at length in [7]. The basic sensor has two

forcers and two pick-offs, denoted (d1, d2) and (s1, s2), from

which four scalar-valued frequency response functions can be

measured as shown in Fig. 5. The sensor can be configured for
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Fig. 5. Empirical frequency response of all channels of the open-loop DRG.
The four transfer function magnitudes are represented in these plots. The
s1/d1 channel modal frequency determines ω0 while the s2/d2 channel
frequency determines ωn. The tuned state, i.e. ∆ ≈ 0, is represented with
the thick line. Experiments are also performed with the sensor in a detuned
state in which ∆ ≈ 1Hz –this case is represented by the thin line where it
is observed ω0 − ωn ≈ 1Hz. The off-diagonal channels represent coupling
between the two degrees of freedom. The coupling is the source of angular
rate and quadrature bias, and instability in the angular rate bias can contribute
to SNER, however, coupling effects are neglected in the present analysis.

tuned or detuned operation, also shown in Fig. 5. The s1/d1
transfer function is used for designing the excitation loop so

the frequency of the resonance in this channel establishes

ω0. The s2/d2 channel represents Hg in the analysis and

the frequency of the resonance in this channel defines ωn.

Although the formulae in Sec. III and IV require all frequency

parameters to be expressed in units of radians/second for

computation, the frequency parameters in this section are given

in units of hertz. The following sense channel parameters

are noted for the tuned sensor: ω0 = ωn = 13879Hz,

ωm = 0.104Hz (Q = 66.7K), and p = 41.6. The sense loop

is closed with rebalance gain Kr = 2.5, which yields closed-

loop bandwidth ωc ≈ 10Hz. The low-pass filters used after

signal demodulation have corner frequency ωlp = 62.5Hz.

Note that the assumptions made for the derivation of (18)

are satisfied with these sensor parameters. The (open-loop)

noise spectrum of the sense pick-off is shown in Fig. 6.

After measurement of the closed-loop scale factor and the

demodulating signal amplitude, the voltage noise spectrum

is scaled to angular rate units and the parameters selected

νi = 0.33 deg/hr/
√

Hz, νo = 3.9 deg/hr/
√

Hz in the open-

loop noise model ν20 + |Hg|2ν2i . The effective bandwidth

associated with this noise model is ωe = 0.38 Hz. Note that

ωm < ωe < ωc so neither noise source dominates, i.e. the

analysis must include both input and output noise for accurate

prediction of SNER.

Prior to comparing measured NER spectrum to those pre-

dicted by the model, the sensor frequency response when

ωc = 10 Hz and ∆ ≈ 0 and ∆ ≈ 1 Hz are measured –

see Fig. 7. The frequency response is generated by correlating

13.869 13.874 13.879 13.884 13.889
10

−2

10
−1

10
0

10
1

10

100

1000

Frequency (kHz)

Fig. 6. Open–loop noise spectrum of d̃. The model fit (black, thin line)
to the measured data (gray, thick line) estimates the input and output noise

intensities as νi = 0.33deg/hr/
√

Hz and νo = 3.9deg/hr/
√

Hz, respectively.
The effective bandwidthh is ωe = 0.38 Hz.

the sensor output with the measured angular rate from the rate

table controller. The nominal scale factor γ0 was computed

for the case ∆ ≈ 0 so it is expected that DC gain associated

with its frequency response is 0dB as is evident in the figure.

This scale factor, however, is also used in the measurement

of the frequency response when ∆ ≈ 1 Hz so that fact that

the frequency response for this case also has DC gain of 0dB

demonstrates the insensitivity of γ to detuning. Furthermore,

the transfer function corner frequency is also robust to detun-

ing.

Estimates of SNER are obtained by acquiring twenty four

hours of contiguous angular rate data at a sample rate of

156.25Hz and under the condition Ω = 0. A separate

experiment was conducted for every estimate of SNER shown

in the subsequent figures. Long term changes in the Ωe

bias value are due to slowly changing sensor dynamics over

the twenty four hour acquisition period so a 2-pole high-

pass filter with 0.0003Hz corner frequency detrends the raw

angular rate measurement. The NER spectra are calculated

by applying Welch’s method to the detrended data with a

subrecord length of 215 points (corresponding to averaging the

spectra obtained from subrecords of 210 second duration) [16].

When computing στ , the detrended time domain data are

directly analyzed. In other words, the recorded angular rate

data is split into non-overlapping τ -second subrecords, the

subrecords are integrated, then, the variance of the integrated

values is determined.

It is of interest to see how the model (18) compares

to the NER spectrum computed from the measured angu-

lar rate data. For this exercise the basic sensor parameters

{ω0, ωm, ωn, p} along with the desired closed-loop bandwidth

ωc are used to compute {∆,Kr}. The only required closed-

loop measurement is the scale factor, γ0. It is also necessary

to measure the open-loop noise spectrum at the pick-off

to estimate {νo, νi}, then, ωe can be computed. Thus, the
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Fig. 7. Closed-loop frequency response magnitude when ωc = 10 Hz and
ωc = 30 Hz. For the 10 Hz case, ∆ ≈ 0 Hz (black) and ∆ ≈ 1 Hz
(grey). The thin black line is the magnitude of 1/(s/(10 · 2π) + 1). For
the 30 Hz case, only measurements when ∆ = 0 are shown, and the
thin black line is the magnitude of the model 1/(s/(30 · 2π) + 1). The
transfer functions are identified by correlating the rate table angular rate
with the sensor output using the same nominal scale factor γ0 for all cases
(corresponding to a measurement made on the 30 Hz bandwidth sensor). Note
that when ωc = 10 Hz and ∆ = 0, the DC gain is equal to the ωc = 30 Hz
case. Furthermore, the DC gain remains unchanged even when ∆ ≈ 1 Hz.
These tests demonstrate that γc is independent of Kr and ∆ which justifies
the use of γ0 in all measurements.

parameters {νo, ωe,∆,Kr, ωc} are substituted into (18) to

yield predictions of the closed-loop NER spectra. The model

predictions are compared to the measurements in Fig. 8 when

∆ ≈ 0 and ∆ ≈ 1Hz (the double sided spectral densities

are graphed only for ω > 0). Note that ωm < ωe < ωc so

neither noise source is dominant and, hence, the analysis of

Sec. V-B can be applied. When ∆ ≈ 1Hz, S
1

2

NER(0) is expected

to increase by the factor
√

(∆/ωe)2 + 1 = 2.8 and this is

seen to be the case in Fig. 8. The model predicts SNER quite

accurately, however, the anti-alias filter that rolls off at ωlp is

not included in the analysis.

The effect of the changes in the rebalance gain Kr are

shown in Fig. 9. In this comparison Kr increases by a factor

of three –from 2.5 to 7.3. The analysis shows that the corner

frequency ωc and the asymptotic value of S
1

2

NER are proportional

to Kr so they also experience an increase by a factor of

three. In fact, ωc increases from about 10Hz to 30Hz and the

high frequency asymptotic value of S
1

2

NER increases from about

6 deg/hr/
√

Hz to 18 deg/hr/
√

Hz. The low frequency noise

floor is insensitive to the change in Kr. Although ∆ ≈ 0 in this

comparison, ∆ does not effect the high frequency asymptotic

value or its corner frequency (see Fig. 8).

Two experiments are also performed by manipulating ωe.

The sensor was exposed to narrow band random vibration via

a modal shaker such that the disturbance had a flat passband

extending from 13.829 kHz to 13.929 kHz. The case vibration

couples to the sensor modes and can be modeled as an increase
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Fig. 8. Comparison of SNER for the ∆ ≈ 0 and ∆ ≈ 1Hz, 10 Hz bandwidth
cases. The model predictions are shown in the solid black and dashed black
traces. The detuning is larger than the effective bandwidth so the low fre-

quency noise floor increases by the factor
√

(∆/ωe)2 + 1 = 2.8 as derived
in (32). The high frequency corner at ωc and the high frequency asymptotic
value of SNER are unaffected by detuning. The anti-alias filter constrains the
bandwidth of SNER to the interval [−ωlp, ωlp] where ωlp = 62.5Hz. The
SNER model does not include the anti-alias filter.
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Fig. 9. Comparison of SNER when ∆ ≈ 0 but with ωc = 10 Hz and
ωc = 30 Hz (see Fig. 7). The model predictions are shown in the solid
black and dashed black traces. Different bandwidths are achieved by changing
the rebalance gain Kr . It is evident that SNER(0) is independent of Kr ,
however, since Kr is increased by about a factor of three, the closed-loop
corner frequency ωc also increases by the same factor (as indicated by (5))

and so does the high frequency asymptotic value of S
1

2

NER (as implied by (29)).
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Fig. 10. Open–loop noise spectrum when an input disturbance (sensor case
vibration) is applied. The thin black trace is the open-loop noise model with

νo = 3.9 deg/hr/
√

Hz and νi = 2.3 deg/hr/
√

Hz. Note that νi has increased
compared to the spectrum in Fig. 6. The new effective bandwidth is ωe =
2.5Hz.
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Fig. 11. SNER when ∆ ≈ 0 Hz and ∆ ≈ 1 Hz for the open-loop spectrum
in Fig. 10. The effective bandwidth is larger than |∆| in both cases, though,
so no change is observed in the spectra (compare with Fig. 8). The model
with ∆ = 0 is shown as the solid black line, the experiment with ∆ ≈ 0 is
shown as the thick gray line, and the experiment with ∆ ≈ 1Hz is shown as
the dashed line.

in the value of νi –note that νo remains fixed because the

signal conditioning electronics are unmodified. The new open-

loop spectrum is shown in Fig. 10. The effective bandwidth

has increased from 0.38Hz to 2.5Hz. The same detuning

experiments are conducted with ∆ ≈ 0Hz and ∆ ≈ 1Hz

but in both cases |∆| < ωe so no impact is observed in SNER

as shown in Fig. 11.

Lastly, Figs. 12 and 13 display στ calculated from the same

detrended angular rate data that was used to compute the
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Fig. 12. The angular rate data used to produce the spectra in Fig. 8 is also used
to compute στ , shown here along with the model predictions (the thin solid
and dashed lines). Note that ωc remains fixed at 10 Hz for each case. When
∆ ≈ 0, the ARW trend at longer integration times does not match the model
prediction because drift in the angular rate bias contributes low frequency
power to SNER. When the sensor is detuned, though, the increase in low
frequency power due to the noise sources dominates the power contributed by
the bias drift, so the model prediction and data are almost indistinguishable in
this case. Note that the AWN asymptote is not effected by detuning, although
the τ interval over which AWN dominates will change.

spectra in Figs. 8 and 9. The predictions of στ using (24) are

also shown. As the modes detune, the increase in the value

of the angle random walk asymptote is evident in Fig. 12. On

the other hand, if ∆ ≈ 0 but the closed–loop bandwidth is

increased, then the AWN increases as shown in Fig. 13. The

factor of three increase in closed-loop bandwidth produces

a
√
3 increase in στ ’s AWN. The long-term trend in στ in

Figs. 12 and 13 do not precisely follow the ARW asymptotes

calculated from the model for the ∆ ≈ 0 experiments. This

is caused by drift in the zero-rate bias over the 24 hour test

period. The bias drift is due not to changes in the noise sources

but rather subtle changes in the sensor dynamics. The bias

drift adds low frequency power to SNER that is not completely

removed by the detrending filter. In fact, the empirical SNER

plots in Figs. 8 and 9 associated with the ∆ ≈ 0 cases show

slightly higher power at lower frequencies compared to the

asymptote predicted by the model based on the open-loop

noise spectra. In the detuned case, though, the value of SNER(0)
is increased to such an extent that the added power from the

bias drift is masked so in this case the ARW asymptote and

data are coincident.

The bias drift is also evident in the Allan deviation plot for

the ∆ ≈ 0 and ∆ ≈ 1 Hz, 10 Hz bandwidth cases shown in

Fig. 14. The Allan variance model (26) predicts the data quite

well except at longer integration times where instability in the

zero rate bias (which is not modeled) becomes the dominant

trend.
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Fig. 13. The data used to create the spectra in Fig. 9 is analyzed to compute
στ . Note ∆ ≈ 0 Hz for each case, however, the sensor bandwidth is changed.
Increasing the bandwidth produces larger AWN. The model (shown as the
solid and dashed black traces) over-predicts the measured AWN because
the anti-alias filter attenuates SNER above ωlp (this can be corrected by
constraining the integral in (21) to the range [−ωlp, ωlp]).
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Fig. 14. The square root of the Allan variance computed from the time domain
data and its comparison to prediction of the model in (26) for the ∆ ≈ 0
and ∆ ≈ 1 Hz, 10 Hz bandwidth cases are shown in this figure. The model
predictions are shown in the solid black and dashed black traces. At longer
integration times ramping in the zero rate bias causes the Allan variance to
increase and depart from the model prediction.

VII. CONCLUSION

Comprehensive noise analysis of a closed–loop vibratory

rate gyro has been developed with regard to input and output

noise sources. The effective bandwidth parameter was intro-

duced to capture the relative power of the input noise versus

output noise. In all scenarios, the low frequency asymptote of

SNER determines the ARW, thus, it is important to minimize

the value of this asymptote and it was shown that if the

sensor modes are detuned beyond the effective bandwidth an

increase in the low frequency asymptote of SNER will occur.

The analysis also shows that if output noise can be neglected,

detuning has no impact on ARW, however, if output noise

is the dominant source, then the effective bandwidth is close

to the mechanical bandwidth and the ARW figure is very

sensitive to detuning. It was also demonstrated that the closed-

loop sensor retains the same value of SNER(0) as the open-loop

sensor (∆ = 0 in both cases), so feedback does not change

the ARW figure but despite this fact, analysis of the variance

of the integrated rate shows for the closed-loop sensor, that

output noise creates angle white noise which produces larger

variance of the integrated signal compared to what would be

obtained with the open loop sensor. This result can be used to

precisely quantify both the benefits and potential drawbacks of

operating the sensor in closed-loop. The experimental results

with a Disk Resonator Gyro showed very close agreement with

the model predictions, however, drift in the zero rate bias adds

power to the low frequency spectrum and causes deviation of

the long-term measured angle variance from the ARW figure

predicted by the model. This underscores a real challenge,

namely, pushing the quality factors to ever higher values does

not necessarily translate into improved performance unless a

means can be found to stabilize the sensor dynamics so that

the noise power created by bias drift does not dominate the

low frequency behavior of SNER.

APPENDIX

The integral I is evaluated using the contour shown in

Fig. 15. The contour orientation is counterclockwise. The

integrand of I is extended to the complex-valued function f
of the complex variable z

f(z) : =

(

∆2 + ω2
c + z2

) (

∆2 + ω2
e + z2

)

− (2∆z)
2

(

(∆− z)
2
+ ω2

c

)(

(∆ + z)
2
+ ω2

c

)

· 2

z2
(

1− ejτz
)

, z ∈ C.

Note that f is analytic at all points with the exception of its

poles. The poles of f inside the contour are {∆+ jωc,−∆+
jωc} so

∫ R

ρ

f(z)dz +

∫

CR

f(z)dz +

∫ −ρ

−R

f(z)dz +

∫

Cρ

f(z)dz

= 2πj (Res(f,∆+ jωc) + Res(f,−∆+ jωc))
(34)
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Fig. 15. Contour for evaluating (23).

where Res(f, z0) denotes the residue of f at z0 ∈ C. The

restriction of f to z ∈ R+, i.e. z = ω > 0, is equal to

f(ω) =

(

∆2 + ω2
c + ω2

) (

∆2 + ω2
e + ω2

)

− (2∆ω)2
(

(∆− ω)
2
+ ω2

c

)(

(∆ + ω)
2
+ ω2

c

)

· 2

ω2
(1− cos(τω)− j sin(τω)) ,

so the real part of f in this case is equal to the integrand of I .

Furthermore, since f(−ω) is the complex conjugate of f(ω),
then I can be computed as a Cauchy principal value,

I = lim
ρ → 0
R → ∞

∫ R

ρ

f(z)dz +

∫ −ρ

−R

f(z)dz.

Since

lim
|z|→∞

|f(z)| = 0, (uniformly)

then by Jordan’s Lemma

lim
R→∞

∫

CR

f(z)dz = 0

so (34) reduces to

I + lim
ρ→0

∫

Cρ

f(z)dz

= 2πj (Res(f,∆+ jωc) + Res(f,∆− jωc)) .

The evaluation of the integral on Cρ yields

lim
ρ→0

∫

Cρ

f(z)dz = −∆2 + ω2
e

∆2 + ω2
c

2πτ.

The residues are

Res(f,∆+ jωc) =
ω2
e − ω2

c

j2ωc (∆ + jωc)
2

(

1− e−τωc+jτ∆
)

Res(f,−∆+ jωc) =
ω2
e − ω2

c

j2ωc (∆− jωc)
2

(

1− e−τωc−jτ∆
)

.

Gathering these results yields

I = 2π
∆2 + ω2

e

∆2 + ω2
c

τ + 2π
ω2
c − ω2

e

ωc(∆2 + ω2
c )

2

·
(

(ω2
c −∆2)

(

1− cos(∆τ)e−ωcτ
)

+ 2∆ωc sin(∆τ)e−ωcτ
)

.

Substituting I into (22) yields the closed-form expression for

σ2
τ .
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