
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Application of automatic differentiation for the simulation of
nonisothermal, multiphase flow in geothermal reservoirs

Permalink
https://escholarship.org/uc/item/9n14t9ck

Authors
Kim, Jong G.
Finsterle, Stefan

Publication Date
2002-01-08

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9n14t9ck
https://escholarship.org
http://www.cdlib.org/

 LBNL-49367

APPLICATION OF AUTOMATIC DIFFERENTIATION
FOR THE SIMULATION OF NONISOTHERMAL, MULTIPHASE FLOW

IN GEOTHERMAL RESERVOIRS

Jong G. Kim1 and Stefan Finsterle2

1Argonne National Laboratory

9700 S. Cass Avenue
Argonne, IL 60439, U.S.A
e-mail: jkim@mcs.anl.gov

2Lawrence Berkeley National Laboratory
One Cyclotron Road, Mail Stop 90-1116

Berkeley, CA 94720
e-mail: SAFinsterle@lbl.gov

paper presented at the

Twenty-Seventh Workshop on Geothermal Reservoir Engineering
Stanford University, Stanford, California, January 28–30, 2002

This work was supported, in part, by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of
Wind and Geothermal Technologies, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

ii

DISCLAIMER

This document was prepared as an account of work sponsored by the United
States Government. While this document is believed to contain correct
information, neither the United States Government nor any agency thereof, nor
The Regents of the University of California, nor any of their employees, makes
any warranty, express or implied, or assumes any legal responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency
thereof, or The Regents of the University of California.

PROCEEDINGS, Twenty-Seventh Workshop on Geothermal Reservoir Engineering
Stanford University, Stanford, California, January 28-30, 2002
SGP-TR-171

APPLICATION OF AUTOMATIC DIFFERENTIATION FOR THE SIMULATION OF
NONISOTHERMAL, MULTIPHASE FLOW IN GEOTHERMAL RESERVOIRS

Jong G. Kim1 and Stefan Finsterle2

1Argonne National Laboratory

9700 S. Cass Avenue
Argonne, IL 60439, U.S.A
e-mail: jkim@mcs.anl.gov

2Lawrence Berkeley National Laboratory
One Cyclotron Road, Mail Stop 90-1116

Berkeley, CA 94720
e-mail: SAFinsterle@lbl.gov

ABSTRACT

Simulation of nonisothermal, multiphase flow
through fractured geothermal reservoirs involves the
solution of a system of strongly nonlinear algebraic
equations. The Newton-Raphson method used to
solve such a nonlinear system of equations requires
the evaluation of a Jacobian matrix. In this paper we
discuss automatic differentiation (AD) as a method
for analytically computing the Jacobian matrix of
derivatives. Robustness and efficiency of the AD-
generated derivative codes are compared with a
conventional derivative computation approach based
on first-order finite differences.

INTRODUCTION

Numerical modeling techniques play an important
role in engineering geothermal field operations.
Mass, momentum, and energy balance considerations
result in a set of partial differential equations (PDEs)
describing fluid and heat transport in fractured porous
media. Analytical solutions to these PDEs are
available only for very specific and limited cases.
Therefore, numerical approaches (such as finite-
difference, finite-element, and finite-volume
methods) are often used to obtain an approximate
solution at discrete points in space and time. In these
numerical approaches, the differential equations are
reduced to a set of linear and nonlinear algebraic
equations relating all the involved primary
thermodynamic variables (such as pressure,
temperature, and phase saturation) to each discretized
grid point. Thus, the efficiency of a numerical
simulator is determined to a large extent by the
efficiency and robustness of the solvers for these
algebraic equations.
To solve nonlinear algebraic equations, reservoir
engineers often use some variation of Newton’s

method. In Newton’s iteration scheme, for a given set
of nonlinear algebraic equations R(x) = 0 and a given
initial guess x0, a sequence of solution increments
xp+1 - xp is computed until a predefined convergence
tolerance is met:

)()(1 ppp
p

xRxx
x
R −=−

∂
∂

+ (1)

Here, ∂R/∂x is the Jacobian matrix of the partial
derivative of the given nonlinear function R with
respect to the independent primary variable x. Here,
the function R represents the residuals of the
discretized mass-balance equation for each
component in each gridblock at the new time level.
Conventionally, the Jacobian matrix is computed by
the first-order finite difference (FD) method:

x

xRxxR
x
R

∆
−∆+≅

∂
∂)()((2)

It is not straightforward to select an appropriate step
size x∆ or increment factor δ , where xx ⋅=∆ δ .
Values for δ that are either too small or too large
can introduce serious round-off or truncation errors.
Furthermore, if highly nonlinear functions are
involved, these errors can lead to a breakdown of the
Newton iteration. In addition to the numerical
accuracy problem, the computational cost of this
method can be high for a large-sized problem, since it
requires n+1 functional computations for a Jacobian
matrix with n columns.
As an alternative to the FD method, automatic
differentiation (AD) provides accurate and fast
calculations of partial derivatives. In this paper, we
describe how the AD technique can be used within
the structure of an existing geothermal flow simulator

2

to provide an analytically computed Jacobian matrix.
The selected simulator is the TOUGH2 code (Pruess,
1991), developed at the Lawrence Berkeley National
Laboratory. TOUGH2 is one of the most widely used
nonisothermal, multiphase flow simulators with
applications in geothermal, oil, and gas reservoir
engineering, nuclear waste isolation, environmental
assessment and remediation, and unsaturated zone
hydrology. Benchmark data comparing the
performance of AD and FD methods in TOUGH2 are
presented.
After a brief description of the AD technique
(Section 2) and the TOUGH2 model (Section 3), we
discuss the implementation scheme of TOUGH2-AD
in Section 4. The numerical experiments are
described in Section 5 where we evaluate each
differentiation method with typical geothermal test
cases. We conclude with a brief description of future
work.

AUTOMATIC DIFFERENTIATION

AD is an efficient approach relying on the fact that
the derivatives of a function, no matter how
complicated, can be computed by repeatedly applying
the chain rule of derivative calculus to the sequential
elementary operations of a coded function. For
example, if a function R is computed through the
elementary functional operations of y(x) and z(x), the
chain rule can be applied to compute the partial
derivative of function R to the independent variable x
as follows:

 { }
x
z

z
R

x
y

y
R

x
xzxyR

∂
∂

∂
∂+

∂
∂

∂
∂=

∂
∂)(),((3)

In this equation, truncation or round-off errors are of
the derivative calculation are eliminated, because all
the involved partial derivatives of elementary
functional operations can be computed analytically
by an AD-generated code. By applying the chain rule
repeatedly, we can compute analytical derivatives of
any computational function, because the computer
code representing the function is the composition of
elementary operations. Note that AD allows
augmenting any computer program written in
Fortran, C, or C++ for derivative computations.
Various implementation techniques for AD
processing have been developed. Juedes (1991)
provided an extensive survey for available AD tools.
Two basic implementation approaches are applied in
AD tools, referred to as the forward and reverse
modes. In forward mode, derivatives of intermediate
functional values are computed with respect to the
input primary parameters. It is known from the
linearity of differentiation that the computational
effort required in this mode is approximately the
number of input parameters multiplied by the runtime
and memory of the original program.

In reverse mode, AD propagates derivatives of the
final result with respect to intermediate variables (or
quantities), known as adjoints. The program flow is
reversed to be able to keep all of the adjoints that
impact the final result. Because all of the involved
intermediate values must be stored or recomputed, it
is difficult to estimate the storage requirement using
the reverse mode of AD. Recent activities of AD
research have been centered on hybrid modes to
combine the best features of the forward and reverse
mode.
In this study, we use the ADIFOR tool (Bischof et al.,
1998) developed by Argonne National Laboratory
and Rice University, which employs a hybrid
forward/reverse mode approach to generating
derivatives. Given a Fortran routine of function
computation and a control description, of which
variables correspond to independent and dependent
parameters, ADIFOR produces portable Fortran code
that allows the computation of the partial derivatives
of the dependent variables with respect to the
independent variables, as shown in Figure 1.

Fortran 77
code

Fortran 77Fortran 77
codecode ADIFOR ADIFOR ADIFOR Code to compute

derivatives
Code to computeCode to compute

derivativesderivatives

Control
Script

ControlControl
ScriptScript Compile

& Link
CompileCompile
& Link& Link

Figure. 1. Schematic diagram of the use of an

automatic differentiation tool to generate
a new code for derivative computations.

TOUGH2 SIMULATOR

TOUGH2 is a numerical simulator that solves the
coupled equations of fluid and heat flow in a
geothermal reservoir. For a given arbitrary
subdomain Vn bounded by the surface Γn, the mass-
and energy-balance equations solved in TOUGH2
model can be written in the general form (Pruess,
1991):

 ∫∫∫ +Γ⋅=
Γ nnn V

kk

V

k dvqndFdvM
dt
d (4)

where each mass component is labeled by k = 1,…,
NK. The quantity M in the accumulation term of this
equation represents mass (m) or internal energy (h)
per unit reservoir volume:

)(k

ggg
k
lll

k
m xSxSM ρρφ += (5)

 TCuSuSM RRggglllh ρφρρφ)1()(−++= (6)

where φ is porosity, S is phase saturation, ρ is
density, u is internal energy, C is specific heat, T is
temperature, and kxβ is the mass fraction of
component k existing in each phase β. The subscripts
l, g, and R indicate the phases of liquid, gas, and

3

rock, respectively. The total mass flux in Equation 4
is a sum of the fluxes over each phase:

 β

β
β FxF

vl

kk
m ∑

=
=

,
 (7)

Individual phase fluxes are derived by Darcy’s law:

)(gP
k

F r
βββ

β

β
β ρρ

µ
−∇−= k (8)

where k is the absolute permeability, kβr is relative
permeability, µβ is viscosity, Pβ is the pressure in the
corresponding phase β, and g is the gravitational
acceleration. The total heat flux is given by:

 β

β
βλ FhTF

vl
h ∑

=
+∇−=

,
 (9)

where λ is saturation-dependent thermal conductivity,
hβ is the specific enthalpy, and Fβ is the mass flux of
phase β. After substituting Equations 5 through 9 into
Equation 1, appropriate surface and volume
integration procedures are applied to obtain the
discretized form

 k
n

k
nmnm

n

k
n qFA

Vdt
dM

+= ∑1 (10)

where Mn is the average value of M over gridblock
volume Vn, Anm is the interface area between
gridblock n and m, and Fnm is the average value of the
normal component of F over the surface segment Anm.
The detailed integration procedure of each term in
this equation is given in Appendix B of the TOUGH2
user’s manual (Pruess, 1991).
The residual equation is derived by applying the time
discretization as a first-order finite difference to the
left-hand-side term of Equation 10. The residual
equation is written as follows:

+∆−−= ++++ ∑ 1,1,k,1k,1 ik
nn

m

ik
nmnm

n

i
n

i
n

k, i
n qVFA

V
tMM R

 0= (11)

This system of equations is solved by the Newton-
Raphson method, as described in the introductory
section above.

IMPLEMENTATION OF TOUGH2-AD

The governing equations for multiphase fluid and
heat flow have the same mathematical form,
regardless of the nature and number of fluid phases
and components present. TOUGH2 is set up with a
modular architecture, in which the main flow and
transport module interfaces with an equation-of-state
(EOS) module describing the thermophysical
parameters of the fluids. The thermodynamic state in
each gridblock is defined through a set of

appropriately chosen primary variables; all other
thermophysical properties needed to assemble
Equation 11 are referred to as secondary parameters.
The original TOUGH2 code released in 1991
provides five different EOS modules (Pruess, 1991)
that can be used for different multiphase and heat
transport systems. In our work for the
implementation of the TOUGH2-AD model, the EOS
module labeled “EOS1” was selected. The EOS1
module has been used as the most basic EOS module
for geothermal applications. Two water components
(water and traced water) can be handled in liquid and
vapor phase under isothermal or nonisothermal
conditions. The details of the formulation to describe
the thermodynamic properties of water can be found
in the Pruess (1991). Choice of the primary variables
depends on the phase composition. Pressure and
temperature are for single-phase conditions, whereas
pressure and saturation are used under two-phase
conditions. Primary and secondary thermodynamic
variables computed in the EOS1 module are listed in
Figure 2.

P r i m a r y v a r i a b le s
P r e s s u r e P
T e m p e r a t u r e T
S a tu r a t io n S

S e c o n d a r y v a r ia b le s
P h a s e s a t u r a tio n S
R e la t i v e p e r m e a b i l i ty k r
V is c o s i t y µ
D e n s i t y ρ
S p e c if ic e n th a lp y h
C a p i l la r y p r e s s u r e P c
D if f u s io n fa c to r 1 a
D if f u s io n fa c to r 2 b
M a s s f r a c t io n 1 x 1

M a s s f r a c t io n N K x N K

Figure. 2. Thermodynamic properties of TOUGH2

module EOS1 for nonisothermal two-
phase flow of water and traced water.

Once all the thermodynamic variables are computed,
the flow module calculates the accumulation and
flow terms and constructs a set of linear equations
(see Equation 11) for the Newton-Raphson iterations.
The resulting matrix is inverted by means of either
direct or iterative linear equation solvers.
To implement the AD-generated derivative codes for
the TOUGH2 simulator, both the EOS and main flow
module are differentiated using ADIFOR. The
simplest approach for calculating derivatives of the
two key modules is to combine the EOS1 and flow
modules into one code and then generate one
derivative code in a single AD processing step.
However, mixing the two modules will result in a
loss of flexibility, by breaking up the modular
structure of TOUGH2. To maintain the modular
structure in the AD processing, we differentiated
each module separately and then combined the two
AD-generated derivative codes by the chain rule to
construct the Jacobian matrix comprising the linear
system of residual equations. A schematic diagram
describing ADIFOR processing of the two key
TOUGH2 modules is shown in Figure 3.

4

Ja c o b ia n m a trix c o m p u te d
by n ew A D ge n e ra te d c od e

N e w F lo w m o du le
to c o m p u te d e riva tiv es

N e w E O S m o d u le
to c o m p u te d e riva tiv es

E O S m od u le

F lo w m o d u le

A D IF O R
w ith c o n tro l s c rip t

L in e a r s o lve r
an d N e w to n ite ra tio ns

Figure. 3. Automatic differentiation of TOUGH2

equation-of-state and flow modules using
ADIFOR.

Given the residual equation 11, the chain rule used to
combine the two derivative codes for computing the
Jacobian matrix at the p-th Newton iteration is
written in the following form:

 ∑
+=

++

∂
∂

⋅
∂

∂=
∂

∂

NK,j i

j

j

k,i
n

pi

k,i
n

 x
 y

 y
 R

 x
 R

81

11
 (12)

Here, xi indicates each primary thermodynamic
variable; the secondary thermodynamic variables are
denoted by yj (see Figure 2). The term ∂yj/∂xi is
computed in a new ADIFOR-processed EOS1 code
and the term ∂R/∂yj in a new flow module generated
by ADIFOR. Using this approach, the modular
structure of TOUGH2 is maintained.

NUMERICAL EXPERIMENTS

We tested the AD-processed codes with typical
geothermal reservoir problems. First, we compared
the AD- and FD-computed derivatives to check the
correct implementation of the AD method in the
TOUGH2 modeling structure. A simple one-
dimensional test problem consisting of 13 gridblocks
was used for the comparison. Fluid was extracted
from the first element of a one-dimensional, initially
fully liquid saturated system. Table 1 shows some
elements of the Jacobian matrix at the first Newton
iteration.

Table. 1. Diagonal elements of Jacobian matrix

calculated with AD and FD using
different increment factors for calculating
derivatives.

i,j

location
AD FD, ∆=1.E-6 FD, ∆=1.E-8 FD, ∆=1.E-10

1,1 0.482692E-06 0.482690E-06 0.482697E-06 0.477482E-06
2,2 0.373454E+07 0.373454E+07 0.373407E+07 0.371710E+07
3,3 0.482692E-06 0.482690E-06 0.482697E-06 0.477482E-06
4,4 0.373454E+07 0.373454E+07 0.373407E+07 0.371710E+07
5,5 0.144135E-06 0.144134E-06 0.144140E-06 0.143529E-06
6,6 0.235361E+07 0.235361E+07 0.235356E+07 0.235186E+07
7,7 0.144135E-06 0.144134E-06 0.144140E-06 0.143529E-06
8,8 0.235361E+07 0.235361E+07 0.235356E+07 0.235186E+07

The FD derivatives were computed using increment
factors of 10-6, 10-8, and 10-10. The AD-computed
derivatives match well with the FD-computed
derivatives, especially with an increment factor of
10-6. However, it was observed that the FD methods
with the smaller increment factor of 10-8 or 10-10
resulted in derivatives that exhibit minor, albeit
inconsequential round-off errors.
We continued a similar test with a two-dimensional,
five-spot, production-injection problem, which is
typically encountered in deeper-zone geothermal
reservoir systems (Pruess, 1991 and Pruess and Wu,
1993). This problem consisted of 180 gridblocks,
with the grid pattern and the location of two wells as
shown in Figure 4. Water is injected at the rate of 30
kg/s with an enthalpy of 500 kJ/kg. The same amount
is produced at the upper-left corner of the domain.

Injection

Production

Figure. 4. The locations of injection and production

wells and grid pattern (1/8 symmetric
domain of a five-spot well pattern) used
for test problem No. 2.

The test simulation with this problem was run for a
one-week period. The derivatives calculated with AD
and FD were again consistent. Minor differences
between the AD- and FD-calculated derivatives are
visualized in Figure 5, which shows 36×36 Jacobian
sub-matrices at the first Newton iteration.
As indicated in the figure, the AD-computed and FD-
computed derivatives are consistent, especially with
the increment factor of 10-6 and 10-8. With the smaller
increment factor of 10-10, FD results are corrupted by
truncation errors, caused mainly by the inappropriate
sensitivity computation of the accumulation term to
the primary variables. Note that the current default
increment factor in TOUGH2 is 10-8. Table 2
summarizes information about the linear and
nonlinear iterations observed in this test simulation.
In addition, the computational running time of each
derivative code is indicated.

5

Table. 2. Performance comparison of AD- and FD-
based codes for calculating derivatives.

CPU time for computing Jacobian (sec)Methods Linear
iterations

Newton
iterations Total EOS module FLOW module

AD 109 28 3.06 7.71E-3 3.052
FD ∆=1.E-4 111 28 4.22 6.93E-3 4.213
FD ∆=1.E-6 110 28 4.23 6.98E-3 4.223
FD ∆=1.E-8 110 28 4.23 6.96E-3 4.223
FD ∆=1.E-10 101 27 4.09 6.74E-3 4.083

Figure 5. Derivative difference of the Jacobian

matrix elements computed by the AD and
FD methods.

As Table 2 indicates, the AD-processed modules
perform well compared to the FD-based modules.
The major computational time-saving of the AD
codes is from the differentiation of the flow module,
with speed-ups on the order of 30%. The AD-

processed EOS module is somewhat slower than the
FD code for this test case. We observed that the
linear and nonlinear solution steps take almost
identical iterations for the selected solver,
preconditioning options, and convergence criteria.
Note that fewer Newtonian iterations were needed for
the FD scheme with a increment factor of 10-10,
which has shown less accurate derivatives. This
unexpected result could indicate that the test problem
is likely to exhibit a wide (or smooth) convergence
radius in the solution search space of the Newton
scheme. The Newton convergence behavior of each
differentiation method computed at the first time step
is shown in Figure 6.

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

1 2 3 4 5

Iterations

M
ax

. r
es

id
ua

l

FD with step
size= 1.0E-6

AD

Figure. 6. Convergence behavior of AD and FD

derivative codes during Newton iteration.

CONCLUSIONS AND FUTURE WORK

We described a methodology for implementing
automatic differentiation techniques in the TOUGH2
multiphase flow simulator. Automatic differentiation
provides accurate analytical derivatives for the
Jacobian matrix, which is required to numerically
capture the nonlinear behavior inherent in
nonisothermal multiphase flow problems. In the
numerical experiments with typical geothermal
problems tractable with TOUGH2, we determined
that the more accurate AD technique provides faster
derivative computations compared with the
conventional finite difference method. For the test
cases described here, the reduction in computational
running time of the AD derivative code over the FD-
based derivative code was about 28%. The AD
approach to calculating derivatives further enhances
the efficiency and robustness of the TOUGH2 family
of codes.
For future work, we plan to measure the
computational performance of the AD derivative
codes using large-size problems with stronger non-
linearities. We expect even better performance than
reported here, since the AD technique requires
significantly less storage for derivative computation
than the FD scheme. In addition, we will examine
how the analytical derivatives relate to the

6

convergence behavior of the nonlinear (Newton-
Raphson) iterations as well as the solution of the
iterative linear equation solvers currently
implemented in TOUGH2. Finally, AD techniques
will be considered for the calculation of the
sensitivity matrix used in the various minimization
algorithms of the iTOUGH2 inverse modeling code
(Finsterle, 1999).

ACKNOWLEDGMENT

We would like to thank Dmitriy Silin and Jeongkon
Kim for their reviews of the manuscript. This work
was supported, in part, by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Office of
Wind and Geothermal Technologies, of the U.S.
Department of Energy under Contract No. DE-AC03-
76SF00098.

REFERENCES

Bischof, C., A. Carle. P. Hovland, P. Khaderi, and A.
Mauer, ADIFOR 2.0 User's Guide (Revision D),
Report ANL/MCS-TM-192, Argonne National
Laboratory, Argonne, Illinois, 1998 (see also
http://www.mcs.anl.gov/adifor).

Finsterle, S., iTOUGH2 User’s Guide, Report LBNL-
40040 (revised), Lawrence Berkeley National
Laboratory, Berkeley, Calif., 1999 (see also
http://www-esd.lbl.gov/iTOUGH2).

Juedes, D., A taxonomy of Automatic Differentiation
tools, In: A. Griewank and G. Corliss (eds),
Proceedings of the Workshop on Automatic
Differentiation of Algorithms: Theory,
Implementation, and Application, 315–330, Society
for Industrial and Applied Mathematics (SIAM),
Philadelphia, 1991.

Pruess, K., TOUGH2—A General-Purpose
Numerical Simulator for Multiphase Fluid and Heat
Flow, Report LBL-29400, Lawrence Berkeley
Laboratory, Berkeley, Calif., 1991 (see also
http://www-esd.lbl.gov/TOUGH2).

Pruess, K., and Y.-S. Wu, A new semi-analytical
method for numerical simulation of fluid and heat
flow in fractured reservoirs, SPE Advanced
Technology Series, Vol. 1, No. 2, 63–72, 1993.

http://www.mcs.anl.gov/adifor
http://www-esd.lbl.gov/iTOUGH2
http://www-esd.lbl.gov/TOUGH2

