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ABSTRACT 

Simulation of nonisothermal, multiphase flow 
through fractured geothermal reservoirs involves the 
solution of a system of strongly nonlinear algebraic 
equations. The Newton-Raphson method used to 
solve such a nonlinear system of equations requires 
the evaluation of a Jacobian matrix. In this paper we 
discuss automatic differentiation (AD) as a method 
for analytically computing the Jacobian matrix of 
derivatives. Robustness and efficiency of the AD-
generated derivative codes are compared with a 
conventional derivative computation approach based 
on first-order finite differences. 

INTRODUCTION 

Numerical modeling techniques play an important 
role in engineering geothermal field operations. 
Mass, momentum, and energy balance considerations 
result in a set of partial differential equations (PDEs) 
describing fluid and heat transport in fractured porous 
media. Analytical solutions to these PDEs are 
available only for very specific and limited cases. 
Therefore, numerical approaches (such as finite-
difference, finite-element, and finite-volume 
methods) are often used to obtain an approximate 
solution at discrete points in space and time.  In these 
numerical approaches, the differential equations are 
reduced to a set of linear and nonlinear algebraic 
equations relating all the involved primary 
thermodynamic variables (such as pressure, 
temperature, and phase saturation) to each discretized 
grid point. Thus, the efficiency of a numerical 
simulator is determined to a large extent by the 
efficiency and robustness of the solvers for these 
algebraic equations.  
To solve nonlinear algebraic equations, reservoir 
engineers often use some variation of Newton’s 

method. In Newton’s iteration scheme, for a given set 
of nonlinear algebraic equations R(x) = 0 and a given 
initial guess x0, a sequence of solution increments 
xp+1 - xp is computed until a predefined convergence 
tolerance is met: 
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Here, ∂R/∂x is the Jacobian matrix of the partial 
derivative of the given nonlinear function R with 
respect to the independent primary variable x. Here, 
the function R represents the residuals of the  
discretized mass-balance equation for each 
component in each gridblock at the new time level. 
Conventionally, the Jacobian matrix is computed by 
the first-order finite difference (FD) method: 
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It is not straightforward to select an appropriate step 
size x∆  or increment factor δ , where xx ⋅=∆ δ . 
Values for δ  that are either too small or too large 
can introduce serious round-off or truncation errors. 
Furthermore, if highly nonlinear functions are 
involved, these errors can lead to a breakdown of the 
Newton iteration. In addition to the numerical 
accuracy problem, the computational cost of this 
method can be high for a large-sized problem, since it 
requires n+1 functional computations for a Jacobian 
matrix with n columns.  
As an alternative to the FD method, automatic 
differentiation (AD) provides accurate and fast 
calculations of partial derivatives. In this paper, we 
describe how the AD technique can be used within 
the structure of an existing geothermal flow simulator 



 

 

2 

to provide an analytically computed Jacobian matrix. 
The selected simulator is the TOUGH2 code (Pruess, 
1991), developed at the Lawrence Berkeley National 
Laboratory. TOUGH2 is one of the most widely used 
nonisothermal, multiphase flow simulators with 
applications in geothermal, oil, and gas reservoir 
engineering, nuclear waste isolation, environmental 
assessment and remediation, and unsaturated zone 
hydrology. Benchmark data comparing the 
performance of AD and FD methods in TOUGH2 are 
presented.  
After a brief description of the AD technique 
(Section 2) and the TOUGH2 model (Section 3), we 
discuss the implementation scheme of TOUGH2-AD 
in Section 4. The numerical experiments are 
described in Section 5 where we evaluate each 
differentiation method with typical geothermal test 
cases. We conclude with a brief description of future 
work. 

AUTOMATIC DIFFERENTIATION 

AD is an efficient approach relying on the fact that 
the derivatives of a function, no matter how 
complicated, can be computed by repeatedly applying 
the chain rule of derivative calculus to the sequential 
elementary operations of a coded function. For 
example, if a function R is computed through the 
elementary functional operations of y(x) and z(x), the 
chain rule can be applied to compute the partial 
derivative of function R to the independent variable x 
as follows: 
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In this equation, truncation or round-off errors are of 
the derivative calculation are eliminated, because all 
the involved partial derivatives of elementary 
functional operations can be computed analytically 
by an AD-generated code. By applying the chain rule 
repeatedly, we can compute analytical derivatives of 
any computational function, because the computer 
code representing the function is the composition of 
elementary operations. Note that AD allows 
augmenting any computer program written in 
Fortran, C, or C++ for derivative computations.  
Various implementation techniques for AD 
processing have been developed. Juedes (1991) 
provided an extensive survey for available AD tools. 
Two basic implementation approaches are applied in 
AD tools, referred to as the forward and reverse 
modes. In forward mode, derivatives of intermediate 
functional values are computed with respect to the 
input primary parameters. It is known from the 
linearity of differentiation that the computational 
effort required in this mode is approximately the 
number of input parameters multiplied by the runtime 
and memory of the original program.  

In reverse mode, AD propagates derivatives of the 
final result with respect to intermediate variables (or 
quantities), known as adjoints. The program flow is 
reversed to be able to keep all of the adjoints that 
impact the final result. Because all of the involved 
intermediate values must be stored or recomputed, it 
is difficult to estimate the storage requirement using 
the reverse mode of AD. Recent activities of AD 
research have been centered on hybrid modes to 
combine the best features of the forward and reverse 
mode.  
In this study, we use the ADIFOR tool (Bischof et al., 
1998) developed by Argonne National Laboratory 
and Rice University, which employs a hybrid 
forward/reverse mode approach to generating 
derivatives. Given a Fortran routine of function 
computation and a control description, of which 
variables correspond to independent and dependent 
parameters, ADIFOR produces portable Fortran code 
that allows the computation of the partial derivatives 
of the dependent variables with respect to the 
independent variables, as shown in Figure 1. 
 

Fortran 77
code

Fortran 77Fortran 77
codecode      ADIFOR     ADIFOR     ADIFOR Code to compute

derivatives
Code to computeCode to compute

derivativesderivatives

Control
Script

ControlControl
ScriptScript Compile

& Link
CompileCompile
& Link& Link  

 
Figure. 1. Schematic diagram of the use of an 

automatic differentiation tool to generate 
a new code for derivative computations. 

TOUGH2 SIMULATOR 

TOUGH2 is a numerical simulator that solves the 
coupled equations of fluid and heat flow in a 
geothermal reservoir. For a given arbitrary 
subdomain Vn bounded by the surface Γn, the mass- 
and energy-balance equations solved in TOUGH2 
model can be written in the general form (Pruess, 
1991): 

 ∫∫∫ +Γ⋅=
Γ nnn V

kk

V

k dvqndFdvM
dt
d   (4) 

where each mass component is labeled by k = 1,…, 
NK. The quantity M in the accumulation term of this 
equation represents mass (m) or internal energy (h) 
per unit reservoir volume: 
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where φ is porosity, S is phase saturation, ρ is 
density, u is internal energy, C is specific heat, T is 
temperature, and kxβ  is the mass fraction of 
component k existing in each phase β. The subscripts 
l, g, and R indicate the phases of liquid, gas, and 
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rock, respectively. The total mass flux in Equation 4 
is a sum of the fluxes over each phase: 
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Individual phase fluxes are derived by Darcy’s law: 
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where k is the absolute permeability, kβr is relative 
permeability, µβ is viscosity, Pβ is the pressure in the 
corresponding phase β, and g is the gravitational 
acceleration. The total heat flux is given by: 
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where λ is saturation-dependent thermal conductivity, 
hβ is the specific enthalpy, and Fβ is the mass flux of 
phase β. After substituting Equations 5 through 9 into 
Equation 1, appropriate surface and volume 
integration procedures are applied to obtain the 
discretized form 
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where Mn is the average value of M over gridblock 
volume Vn, Anm is the interface area between 
gridblock n and m, and Fnm is the average value of the 
normal component of F over the surface segment Anm. 
The detailed integration procedure of each term in 
this equation is given in Appendix B of the TOUGH2 
user’s manual (Pruess, 1991).  
The residual equation is derived by applying the time 
discretization as a first-order finite difference to the 
left-hand-side term of Equation 10. The residual 
equation is written as follows: 
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This system of equations is solved by the Newton-
Raphson method, as described in the introductory 
section above.  

IMPLEMENTATION OF TOUGH2-AD 

The governing equations for multiphase fluid and 
heat flow have the same mathematical form, 
regardless of the nature and number of fluid phases 
and components present. TOUGH2 is set up with a 
modular architecture, in which the main flow and 
transport module interfaces with an equation-of-state 
(EOS) module describing the thermophysical 
parameters of the fluids. The thermodynamic state in 
each gridblock is defined through a set of 

appropriately chosen primary variables; all other 
thermophysical properties needed to assemble 
Equation 11 are referred to as secondary parameters. 
The original TOUGH2 code released in 1991 
provides five different EOS modules (Pruess, 1991) 
that can be used for different multiphase and heat 
transport systems. In our work for the 
implementation of the TOUGH2-AD model, the EOS 
module labeled “EOS1” was selected. The EOS1 
module has been used as the most basic EOS module 
for geothermal applications. Two water components 
(water and traced water) can be handled in liquid and 
vapor phase under isothermal or nonisothermal 
conditions. The details of the formulation to describe 
the thermodynamic properties of water can be found 
in the Pruess (1991). Choice of the primary variables 
depends on the phase composition. Pressure and 
temperature are for single-phase conditions, whereas 
pressure and saturation are used under two-phase 
conditions. Primary and secondary thermodynamic 
variables computed in the EOS1 module are listed in 
Figure 2. 
  

P r i m a r y  v a r i a b le s
P r e s s u r e                P
T e m p e r a t u r e         T
S a tu r a t io n             S

S e c o n d a r y  v a r ia b le s
P h a s e  s a t u r a tio n                  S
R e la t i v e  p e r m e a b i l i ty          k r
V is c o s i t y                             µ
D e n s i t y                                ρ
S p e c if ic  e n th a lp y                h
C a p i l la r y  p r e s s u r e               P c
D if f u s io n  fa c to r  1               a
D if f u s io n  fa c to r  2               b
M a s s  f r a c t io n  1                   x 1

M a s s  f r a c t io n  N K               x N K

 
Figure. 2. Thermodynamic properties of TOUGH2 

module EOS1 for nonisothermal two-
phase flow of water and traced water. 

 
 
Once all the thermodynamic variables are computed, 
the flow module calculates the accumulation and 
flow terms and constructs a set of linear equations 
(see Equation 11) for the Newton-Raphson iterations. 
The resulting matrix is inverted by means of either 
direct or iterative linear equation solvers.  
To implement the AD-generated derivative codes for 
the TOUGH2 simulator, both the EOS and main flow 
module are differentiated using ADIFOR. The 
simplest approach for calculating derivatives of the 
two key modules is to combine the EOS1 and flow 
modules into one code and then generate one 
derivative code in a single AD processing step. 
However, mixing the two modules will result in a 
loss of flexibility, by breaking up the modular 
structure of TOUGH2. To maintain the modular 
structure in the AD processing, we differentiated 
each module separately and then combined the two 
AD-generated derivative codes by the chain rule to 
construct the Jacobian matrix comprising the linear 
system of residual equations. A schematic diagram 
describing ADIFOR processing of the two key 
TOUGH2 modules is shown in Figure 3.  
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Ja c o b ia n  m a trix  c o m p u te d  
by  n ew  A D  ge n e ra te d  c od e
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w ith  c o n tro l s c rip t

L in e a r s o lve r 
an d  N e w to n  ite ra tio ns

 
Figure. 3. Automatic differentiation of TOUGH2 

equation-of-state and flow modules using 
ADIFOR. 

 
Given the residual equation 11, the chain rule used to 
combine the two derivative codes for computing the 
Jacobian matrix at the p-th Newton iteration is 
written in the following form: 
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Here, xi indicates each primary thermodynamic 
variable; the secondary thermodynamic variables are 
denoted by yj (see Figure 2).  The term ∂yj/∂xi is 
computed in a new ADIFOR-processed EOS1 code 
and the term ∂R/∂yj in a new flow module generated 
by ADIFOR. Using this approach, the modular 
structure of TOUGH2 is maintained.  

NUMERICAL EXPERIMENTS 

We tested the AD-processed codes with typical 
geothermal reservoir problems. First, we compared 
the AD- and FD-computed derivatives to check the 
correct implementation of the AD method in the 
TOUGH2 modeling structure. A simple one-
dimensional test problem consisting of 13 gridblocks 
was used for the comparison. Fluid was extracted 
from the first element of a one-dimensional, initially 
fully liquid saturated system. Table 1 shows some 
elements of the Jacobian matrix at the first Newton 
iteration. 
 
Table. 1. Diagonal elements of Jacobian matrix 

calculated with AD and FD using 
different increment factors for calculating 
derivatives. 

 
i,j

location
AD FD, ∆=1.E-6 FD, ∆=1.E-8 FD, ∆=1.E-10

1,1 0.482692E-06 0.482690E-06 0.482697E-06 0.477482E-06
2,2 0.373454E+07 0.373454E+07 0.373407E+07 0.371710E+07
3,3 0.482692E-06 0.482690E-06 0.482697E-06 0.477482E-06
4,4 0.373454E+07 0.373454E+07 0.373407E+07 0.371710E+07
5,5 0.144135E-06 0.144134E-06 0.144140E-06 0.143529E-06
6,6 0.235361E+07 0.235361E+07 0.235356E+07 0.235186E+07
7,7 0.144135E-06 0.144134E-06 0.144140E-06 0.143529E-06
8,8 0.235361E+07 0.235361E+07 0.235356E+07 0.235186E+07

 

The FD derivatives were computed using increment 
factors of 10-6, 10-8, and 10-10. The AD-computed 
derivatives match well with the FD-computed 
derivatives, especially with an increment factor of 
10-6. However, it was observed that the FD methods 
with the smaller increment factor of 10-8 or 10-10 
resulted in derivatives that exhibit minor, albeit 
inconsequential round-off errors.  
We continued a similar test with a two-dimensional, 
five-spot, production-injection problem, which is 
typically encountered in deeper-zone geothermal 
reservoir systems (Pruess, 1991 and Pruess and Wu, 
1993). This problem consisted of 180 gridblocks, 
with the grid pattern and the location of two wells as 
shown in Figure 4. Water is injected at the rate of 30 
kg/s with an enthalpy of 500 kJ/kg. The same amount 
is produced at the upper-left corner of the domain. 
 

 

Injection 

Production 

 
Figure. 4. The locations of injection and production 

wells and grid pattern (1/8 symmetric 
domain of a five-spot well pattern) used 
for test problem No. 2. 

 
The test simulation with this problem was run for a 
one-week period. The derivatives calculated with AD 
and FD were again consistent. Minor differences 
between the AD- and FD-calculated derivatives are 
visualized in Figure 5, which shows 36×36 Jacobian 
sub-matrices at the first Newton iteration.  
As indicated in the figure, the AD-computed and FD-
computed derivatives are consistent, especially with 
the increment factor of 10-6 and 10-8. With the smaller 
increment factor of 10-10, FD results are corrupted by 
truncation errors, caused mainly by the inappropriate 
sensitivity computation of the accumulation term to 
the primary variables. Note that the current default 
increment factor in TOUGH2 is 10-8. Table 2 
summarizes information about the linear and 
nonlinear iterations observed in this test simulation. 
In addition, the computational running time of each 
derivative code is indicated.   
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Table. 2. Performance comparison of AD- and FD-
based codes for calculating derivatives. 

CPU time for computing Jacobian (sec)Methods Linear
iterations

Newton
iterations Total EOS module FLOW module

AD 109 28 3.06 7.71E-3 3.052
FD ∆=1.E-4 111 28 4.22 6.93E-3 4.213
FD ∆=1.E-6 110 28 4.23 6.98E-3 4.223
FD ∆=1.E-8 110 28 4.23 6.96E-3 4.223
FD ∆=1.E-10 101 27 4.09 6.74E-3 4.083

 
 

 

 
Figure 5. Derivative difference of the Jacobian 

matrix elements computed by the AD and 
FD methods. 

 
 
As Table 2 indicates, the AD-processed modules 
perform well compared to the FD-based modules. 
The major computational time-saving of the AD 
codes is from the differentiation of the flow module, 
with speed-ups on the order of 30%. The AD-

processed EOS module is somewhat slower than the 
FD code for this test case. We observed that the 
linear and nonlinear solution steps take almost 
identical iterations for the selected solver, 
preconditioning options, and convergence criteria.   
Note that fewer Newtonian iterations were needed for 
the FD scheme with a increment factor of 10-10, 
which has shown less accurate derivatives. This 
unexpected result could indicate that the test problem 
is likely to exhibit a wide (or smooth) convergence 
radius in the solution search space of the Newton 
scheme. The Newton convergence behavior of each 
differentiation method computed at the first time step 
is shown in Figure 6.  
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Figure. 6. Convergence behavior of AD and FD 

derivative codes during Newton iteration. 

CONCLUSIONS AND FUTURE WORK 

We described a methodology for implementing 
automatic differentiation techniques in the TOUGH2 
multiphase flow simulator. Automatic differentiation 
provides accurate analytical derivatives for the 
Jacobian matrix, which is required to numerically 
capture the nonlinear behavior inherent in 
nonisothermal multiphase flow problems. In the 
numerical experiments with typical geothermal 
problems tractable with TOUGH2, we determined 
that the more accurate AD technique provides faster 
derivative computations compared with the 
conventional finite difference method. For the test 
cases described here, the reduction in computational 
running time of the AD derivative code over the FD-
based derivative code was about 28%. The AD 
approach to calculating derivatives further enhances 
the efficiency and robustness of the TOUGH2 family 
of codes. 
For future work, we plan to measure the 
computational performance of the AD derivative 
codes using large-size problems with stronger non-
linearities. We expect even better performance than 
reported here, since the AD technique requires 
significantly less storage for derivative computation 
than the FD scheme. In addition, we will examine 
how the analytical derivatives relate to the 



 

 

6 

convergence behavior of the nonlinear (Newton-
Raphson) iterations as well as the solution of the 
iterative linear equation solvers currently 
implemented in TOUGH2. Finally, AD techniques 
will be considered for the calculation of the 
sensitivity matrix used in the various minimization 
algorithms of the iTOUGH2 inverse modeling code 
(Finsterle, 1999).  
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