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Weight Distribution of a Class of Binary Linear
Block Codes Formed from RCPC Codes

Yushi Shen, Pamela C. Cosman, Senior Member, IEEE, and Laurence B. Milstein, Fellow, IEEE

Abstract— In this paper, we study the weight enumerator and
the numerical performance of a class of binary linear block codes
formed from a family of rate-compatible punctured convolutional
(RCPC) codes. Also, we present useful numerical results for a
well-known family of RCPC codes.

Index Terms— Block codes, punctured convolutional codes,
weight distribution, soft-decision decoding.

I. INTRODUCTION

Rate-compatible punctured convolutional (RCPC) codes,
first introduced by Hagenauer [1], are a powerful form of
punctured convolutional codes, having flexible rates and re-
quiring an adaptive decoder. Any binary (punctured) convolu-
tional code can be transmitted as a fixed length binary block
code, and the knowledge of the weight distribution of linear
codes is crucial in its error performance analysis. Methods to
obtain the weight distribution of linear block codes formed
from a convolutional code were presented in [2], [3]. In this
paper, we extend the previous results to compute the weight
enumerator of a family of RCPC codes.

II. RCPC CODES: ENCODING AND DECODING

RCPC codes are a special case of punctured convolutional
codes, obtained by adding a rate-compatibility restriction
which implies that a high rate code is embedded in the
lower rate codes [1]. Mathematically, a family of RCPC
codes is described by a mother code and a sequence of
puncturing matrices. Assume the generator matrix is G =
(gi,j)S×(M+1), with rate R = 1/S and memory order M .
Also assume the puncturing matrices are a(l) = (ai,j(l))S×P

for l = 1, . . . , (S − 1)P , with the puncturing period
P , and ai,j(l)ε(0, 1) where 0 implies puncturing. The rate-
compatibility restriction implies

if ai,j(l0) = 1, then ai,j(l) = 1 for all 1 ≤ l0 ≤ l.

Note the rate of a RCPC code is R(l) = P/(P + l), so a code
with a larger value of l has more powerful error correction
capability.

A simple example of a family of RCPC codes is given
in [1], where a rate 1/2 convolutional code with M = 2 is

Manuscript received January 26, 2005. The associate editor coordinating the
review of this letter and approving it for publication was Prof. Marc Fossorier.
This research was supported by the California Institute for Telecommunica-
tions and Information Technology, by Ericsson, Inc., by the State of California
under the UC Discovery program, and by the Office of Naval Research under
Grant N00014-03-1-0280.

Y. Shen, P. C. Cosman, and L. B. Milstein are with the Department of
Electrical and Computer Engineering, University of California, San Diego, La
Jolla, CA 92093-0407 USA (e-mail: {yushen,pcosman,lmilstein}@ucsd.edu).

Digital Object Identifier 10.1109/LCOMM.2005.09014.

punctured periodically with P = 4. The generator polynomial
of the mother code is G(D) = {D2 + D + 1,D2 + 1}, and a
sequence of puncturing tables is

a(1) =

(
1 1 1 0
1 0 0 1

)
, a(2) =

(
1 1 1 0
1 1 0 1

)
,

a(3) =

(
1 1 1 1
1 1 0 1

)
, a(4) =

(
1 1 1 1
1 1 1 1

)
,

with code rates 4/5, 4/6, 4/7 and 4/8, respectively.
On the receiving side, the decoder can use the Viterbi

algorithm (VA) with a trellis modified by the current punc-
turing matrix a(l). Suppose x is sent and y is received. For
binary transmission over an an additive white Guassian noise
(AWGN) channel, the VA will find the path x̂m which satisfies

max
m

(
J∑

j=1

S∑
i=1

ai,j x̂m
i,j yi,j) (1)

where ai,(j+P ) = ai,j is the (i, j)-th entry of a(l), and J is
the trellis length.

III. TRANSITION MATRIX SEQUENCE

The transition matrix of a convolutional code is used to
describe the state transition possibilities and corresponding
output weight of the code [2]. For a convolutional code with
rate R = 1/S and memory M , the transition matrix is a 2M by
2M matrix. Assume inε(0, 1) is the weight of the n-th output,
and H =

∑S
n=1 in is the Hamming weight of the entire

output. Denoting by Ai,j the (i, j)-th entry of the transition
matrix, Ai,j = DH if there is an input (either zero or one) that
takes the encoder from state i to state j; otherwise, Ai,j = 0.
For example, the transition matrix of the convolutional code
given in Section II is

A =

⎛
⎜⎜⎜⎝

D0 · D0 D1 · D1 0 0
0 0 D1 · D0 D0 · D1

D1 · D1 D0 · D0 0 0
0 0 D0 · D1 D1 · D0

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 D2 0 0
0 0 D D

D2 1 0 0
0 0 D D

⎞
⎟⎟⎟⎠ . (2)

As stated in [2], the (i, j)-th element of the K-th power of A,
(AK)i,j , gives the output weight enumerator, given that the
encoder starts in state i, ends in state j, and K binary digits
are fed into the encoder.

1089-7798/05$20.00 c© 2005 IEEE
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D D D D D D

Puncturing Table 

for example 

the rate 2/3 code:   

a  =

Generator Matrix 

1  0  1  1  0  1  1
1  1  1  1  0  0  1
1  1  0  0  1  0  1

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

Fig. 1. The 64-state RCPC codes with puncturing period P = 8.

TABLE I

WEIGHT DISTRIBUTION OF BLOCK CODES FORMED FROM THE 64-STATE

RCPC CODES, WITH PERIOD P = 8.

Weight
Distance

Rate 8/9 RCPC Code
K=200 K=400 K=600 K=800

0 1 1 1 1

3 94 194 294 394

4 1390 2965 4540 6115

5 17247 37822 58397 78972

6 195637 455037 724437 1003837

7 2254907 5634757 9329607 13339457

8 25932510 70104784 120872684 178236209
(a) dmin = 3

Weight
Distance

Rate 2/3 RCPC Code
K=200 K=400 K=600 K=800

0 1 1 1 1

6 96 196 296 396

7 1509 3109 4709 6309

8 4447 9247 14047 18847

9 14350 30150 45950 61750

10 57369 121569 185769 249969

11 213677 457177 700677 944177

12 794911 1726461 2668011 3619561
(b) dmin = 6

Weight
Distance

Rate 1/3 RCPC Code
K=200 K=400 K=600 K=800

0 1 1 1 1

14 194 394 594 794

16 1338 2738 4138 5538

18 2072 4272 6472 8672

20 6546 13546 20546 27546

22 16698 34698 52698 70698

24 51209 107009 162809 218609

26 147582 309782 471982 634182
(c) dmin = 14

For RCPC codes, the output information changes period-
ically due to the periodic puncturing. Therefore, we need
a transition matrix sequence to describe the state transition
possibilities and the weights of the outputs. We denote this
sequence by A1, A2, · · ·, Ax, · · ·, where Ax+P = Ax. Each
matrix Ax is obtained from the structure of the mother code
and the λ-th column of the puncturing matrix a(l), where
λ ≡ x (mod P ) and λ ε (1, · · ·, P ). Specifically, the (i, j)-th
entry of Ax is equal to Dh, if there is an input that takes
the encoder from state i to state j, and h is the Hamming
weight of the punctured output using the λ-th column of a(l);
otherwise (Ax)i,j = 0.

For example, for the family of RCPC codes described by
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Fig. 2. Performance evaluation for the ZT codes formed from the RCPC
codes, as shown in Fig. 1, with fixed length K = 400. The corresponding
weight distributions are given in Table I. (a) Block error prob. vs. the energy-
per-bit divided by the noise power density. (b) Bit error prob. vs. the energy-
per-bit divided by the noise power density.

Section II, define matrix A as in Equation (2), and define
matrices B and C as follows, which correspond to the first
and second output, respectively:

B =

⎛
⎜⎜⎜⎝

1 D 0 0
0 0 D 1
D 1 0 0
0 0 1 D

⎞
⎟⎟⎟⎠ , C =

⎛
⎜⎜⎜⎝

1 D 0 0
0 0 1 D

D 1 0 0
0 0 D 1

⎞
⎟⎟⎟⎠ .

The matrix sequences of the four RCPC codes are

a(1) : A1 = A, A2 = B, A3 = B, A4 = C, · · ·
a(2) : A1 = A, A2 = A, A3 = B, A4 = C, · · ·
a(3) : A1 = A, A2 = A, A3 = B, A4 = A, · · ·
a(4) : A1 = A2 = A3 = A4 = · · · = A.

We define matrix ΦK by ΠK
x=1Ax, which yields the output

information for K continuous steps of the RCPC code. In
particular, the (i, j)-th element of the matrix ΦK , (ΦK)i,j ,
gives the output weight enumerator, given that the encoder
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starts in state i, ends in state j, and K binary digits are sent
into the RCPC encoder.

IV. WEIGHT ENUMERATOR

Several different methods for constructing binary linear
block codes from a convolutional code were presented in [2],
along with a way to find the corresponding weight enumerator
T (D) =

∑
d AdD

d, where Ad is the number of codewords of
weight d. These methods can be applied to the block codes
formed from a RCPC code. Denote by Rp and Rblock the rate
of an unterminated punctured convolutional code and of the
resultant block code, respectively, and denote by K and N the
fixed block length of the input and output of the block RCPC
encoder, respectively. As an example, from [2], for the zero tail
(ZT) method, T (D) is given by (Φk)1,1, Rblock = (K−M)

K Rp,
and N = K/Rp = (K − M)/Rblock.

Having the weight enumerator T (D) of a linear block code,
we may use T (D) to evaluate its performance. Denote by dmin

the minimum distance of the block code, and by Es/N0 the
energy-per-symbol divided by the noise power density. Note
that Es/N0 = Rblock ·Eb/N0 where Eb/N0 is the energy-per-
bit divided by the noise power density. The union bound on
the block error rate of a RCPC code for binary transmission
over an AWGN channel is given by

Pblock ≤
N∑

d=dmin

AdQ(
√

2d
Es

N0
). (3)

Furthermore, a good approximation to the union bound of the
bit error probability Pbit is obtained by scaling each term in
the sum of Equation (3) by (d/N) [4].

V. NUMERICAL EXAMPLES

In this section, we show the results for the block codes
formed from the “Good” RCPC codes with M = 6 and P =
8 [1], whose encoder is shown in Fig. 1. In particular, we
examine the block codes formed from the rate 8/9, 2/3 and
1/3 codes in this family [5].

With the ZT method, using the method illustrated in this pa-
per, the weight distributions of the block codes with different
input block lengths K are given in Table I. The block error
rates and bit error rates of these block codes with K = 400
for an AWGN channel are shown in Fig. 2.

VI. CONCLUSIONS

We illustrated how to compute the weight enumerator and
evaluate the performance of binary linear block codes formed
from a family of RCPC codes. The concept of the transition
matrix sequence was explained for these codes. Numerical
results for a well-known family of RCPC codes were also
presented.
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