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Abstract

Aspects of Black Holes in Higher Dimensions

by

Gavin S. Hartnett

This thesis is divided into three Parts. In Part I the general theory of black

holes in higher dimensions is discussed. In addition to an introductory essay, two

studies of linear perturbations of Myers-Perry black holes are presented. These

black holes are the higher dimensional generalization of the Kerr black hole, and

their analysis reveals numerous instabilities. Threshold unstable modes provide

the connection between the Myers-Perry black holes and novel stationary black

hole solutions such as black rings or black Saturns, as well as other non-stationary

solutions known as single Killing vector field black holes.

In Part II gauge/gravity duality is briefly reviewed and two aspects are studied

in detail. First, the problem of finding a holographic dual to a superconductor

with d-wave order parameter is investigated, and second, we examine the problem

of holographic thermalization in field theories dual to rotating black holes.

Lastly, in Part III the role of de Sitter solutions in string theory is discussed.

A recent puzzle surrounding the fate of the de Sitter landscape is reviewed, and

it is shown how the study of black holes in certain flux backgrounds can provide

insight into this puzzle. We then present a theorem ruling out the addition of

black holes to a certain class of flux backgrounds. Finally, a study is presented

which shows that black holes can be added to the flux backgrounds relevant for

xi



the de Sitter landscape in string theory, thereby providing strong evidence for the

resolution of the puzzle.
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Chapter 1

Introduction

It has been my pleasure to work on a wide variety of problems throughout my

graduate career, ranging from black hole instabilities, holographic models of su-

perconductors, general relativity in the limit of large dimensions, and the de Sitter

landscape in string theory. That such a diverse collection of topics belongs in a

single thesis is a consequence of the remarkable directions the fields of high en-

ergy physics and gravitation have taken in recent years. As a result, this Thesis is

naturally divided into 3 Parts. Part I concerns the study of black holes in higher

dimensions, Part II the gauge/gravity duality, and Part III the de Sitter landscape

in string theory. In this section a brief introduction to the study of black holes in

higher dimensions will be presented. Given that there is ample evidence that the

world around us is four dimensional (3 space + 1 time), it is eminently reasonable

to ask “why study higher dimensions?” This introduction therefore begins by

answering this question.

One of the most common answers is that higher dimensions (10, or 11, de-

2



Introduction Chapter 1

pending on the solution) are predicted by string theory, the most successful and

popular theory of quantum gravity. It could well be that our universe is truly 10-

or 11-dimensional, with the extra dimensions curled up to be very small. Another

popular way to account for the extra dimensions in string theory is to suppose

that the Standard Model fields are constrained to lie on a lower dimensional brane.

Regardless of the mechanism, the study of black holes in higher dimensions is par-

tially motivated by string phenomenology, which is the study of how exactly string

theory can explain and predict physics in the real world. Beyond this motivation,

even if it turns out that our universe is not governed by string theory, string

theory has already allowed significant advances in our understanding of quantum

gravity and quantum field theory, and has also provided important insights into

real world condensed matter systems. The most prominent example of such an

advance is the AdS/CFT duality and its generalization, the gauge/gravity dual-

ity. The study of black holes is crucially important for understanding both string

theory in general, as well as the gauge/gravity duality, and therefore even if a

given higher dimensional black hole is almost certainly not realizable in nature,

its study can lead to important insights into these other areas.

Another answer, independent of string theory, the gauge/gravity duality, or

other putative models of quantum gravity, is that classical gravity has no “knobs”

to turn. In order to gain a better understanding of a particular theory, it is useful

for it to possess parameters that can be varied or used to construct controlled

expansions. In this sense, the dimension D of a theory can be thought of as a

parameter to be varied to gain insight into the nature of the theory, in much the

same way that the rank of the gauge group of a Yang-Mills theory can be used.

3



Introduction Chapter 1

This perspective is developed further below in Sec. 1.3. A related answer is that in

attempting to gain an understanding of a particular theory, is often helpful to have

the freedom to consider different but related theories as a way to separate salient

from minor features in a given problem. As an example, in the canonical textbook

on quantum field theory in curved space [7], Birrell and Davies find it convenient

to introduce Hawking Radiation first in two dimensions, and a major advance in

the study of black hole evaporation came from a 2D model which allowed many

explicit calculations that would be much harder to do in four dimensions [8].

1.1 A Beastiary of Black Holes

Although there is a rich body of mathematical results concerning black holes

in general relativity, and despite the fact that important advances in our under-

standing of black holes are being made even today, almost 50 years after the term

black hole was first coined, there is a strong sense in which black holes have an

appealing simplicity. Perhaps this is captured most eloquently by Chandrasekhar:

“The black holes of nature are the most perfect macroscopic objects there are in

the universe: the only elements in their construction are our concepts of space and

time.” An important property obeyed by black holes in this regard is that they

“have no hair”.1 The unique stationary black hole solution to 4-dimensional Ein-

stein gravity is the Kerr solution describing a charged and rotating black hole, and

this solution is fully specified by three global charges–mass, angular momentum,

and charge.

1Actually, black holes can have hair, but not in 4D Einstein-Maxwell theory, the usual subject
of the no hair theorems.

4
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Does this aspect of gravity remain true in higher dimensions? Restricting to

the case of vacuum, source-less solutions, there is indeed a natural generalization

of the Kerr solution to higher dimensions, found by Myers and Perry. This solution

describes a stationary black hole with b(D−1)/2c angular momentum parameters

(there are multiple angular momenta in D > 4 because as the dimension increases

beyond 4 there are multiple orthogonal planes that the black hole can rotate in).

Remarkably, there are other, completely novel solutions possible in D > 4! The

first such solution to be discovered was the rotating black ring of Emparan and

Reall in D = 5 [9]. A black hole horizon is a (D−1)-dimensional null hypersurface,

with a (D − 2)-dimensional spatial cross section. For D = 4 the Kerr solution

has spatial horizon topology S2, i.e. that of a sphere. In D = 5 the Myers-Perry

solution is the natural generalization, having spatial horizon topology S3. The

black ring however, has topology S2 × S1! In fact, there are even more exotic

solutions beyond the black ring. There are black Saturns, bicycling rings and in

fact a whole infinite family of such solutions with novel topologies! Gravity in

higher dimensions therefore appears to allow for a much richer set of solutions.

Moreover, these solutions are interconnected with one another in a way made clear

through the study of linear perturbations.

1.2 Quasinormal Modes and Linear Mode Anal-

ysis

Much of this Thesis (in particular Chapters 2, 3, 6) concern the linear mode

analysis of black holes in higher dimensions. It is therefore prudent to provide

5



Introduction Chapter 1

a brief introduction to the subject of quasinormal modes before turning to the

question of how linear instabilities provide the connections between various black

hole solutions. Before progressing it is worth mentioning the excellent review

article [10] which does great justice to the subject of black hole quasinormal modes.

The concept of a normal mode is very common in physics. The normal mode

characterizes how an object “rings”. Normal modes represent an idealization as

they do not incorporate dissipation; in the real world however, bells ring only for

a finite time. Quasinormal modes are then the generalization of normal modes

to include modes with complex frequencies, with the imaginary part determining

the exponential decay (or growth, in the event of an instability) of the mode.

Quasinormal modes of black holes are the modes of linear perturbations of the

black hole spacetime. As a concrete example, consider the case of a free Klein-

Gordon scalar field on the Schwarzschild background. Often we are most interested

in linear metric perturbations, but a free scalar field is simpler to consider and

retains the essential features of the problem. The equation of motion is �φ = 0,

which for a generic perturbation is a complicated PDE in 4 dimensions, even for

this very simple example. There are many ways to study this equation. One

such way is to view it as an initial value problem, with initial data given on

some initial time surface and then evolved forward in time using the equation of

motion. The problem is also amenable to a spectral analysis, wherein the function

φ is decomposed into a set of mode functions. The PDE may be separated using

spherical harmonics and complex exponentials, as in φ(t, r,Ω) = ψ(r)e−iωtY (Ω),

resulting in a single ODE for the radial profile function ψ(r). This equation is then

a boundary value problem, with the boundaries being the horizon and asymptotic

6
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infinity. The boundary conditions are determined by demanding that the field be

purely outgoing at infinity (i.e. there is no energy travelling into the spacetime),

and that it be purely ingoing at the horizon (i.e. there is no energy exiting

the horizon). A solution to the equation satisfying these boundary conditions

only exists for a countably infinite set of complex frequencies ω, known as the

quasinormal mode frequencies. Quasinormal modes are naturally interpreted as

the “sound” of a black hole. These modes govern the decay of a perturbation,

and after a short time the perturbation will be dominated by the mode with least

negative imaginary part, (i.e. the lowest lying one).

For bona fide quasinormal modes, Im(ω) < 0, so that the perturbation will

decay. For the case of Kerr in D = 4, all quasinormal frequencies lie in the lower

half complex plane, and therefore the Kerr black hole is linearly mode stable. In

higher dimensions, it so happens that many, if not all, of the exotic solutions are

believed to be unstable, that is, they possess frequencies for which Im(ω) > 0.

The existence of an unstable mode implies that small perturbations will not

remain small, and will in fact grow exponentially. The implication of this growth

depends on the problem at hand. As a mode changes from being stable to unstable,

it crosses a threshold point where Im(ω) = 0. If the real part also vanishes, that is,

ω = 0, then this mode is correctly interpreted as the linearization of a new branch

of stationary solutions splitting off of the background branch of solutions. The new

branch will correspond to a black hole with a deformed horizon. As an example,

for sufficiently rapid rotation Myers-Perry black holes possess instabilities which

pinch the horizon in various locations depending on the instability. The first mode

to go unstable as the rotation increases from zero pinches the black hole at the

7
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north and south poles. At the threshold points, these modes correspond to the

joining of the Myers-Perry branch with branches in which the horizon is non-

uniform, or “lumpy”. As one moves further down these so-called lumpy branches

of solutions, the lumps on the black hole grow pronounced, and the pinching

more severe, and there is a topology changing transition leading to the novel

solutions discussed above. For the case of the pinching occurring at the poles,

the lumpiness will eventually become so pronounced that the solution will join

the black ring branch of solutions through a topology-changing transition. It is

believed that other instabilities will connect the other novel solutions, for example

black Saturns, etc, in exactly the same manner. In some cases these connections

between different branches of solutions is somewhat speculative, and in others,

most notably the case of Kaluza-Klein gravity in D = 5, the connections have

been studied extensively with combined analytic and numerical analyses.

If Re(ω) 6= 0 at the threshold, as happens for superradiant instabilities which

carry momentum around a circular direction, then the interpretation of the un-

stable mode becomes more complicated. In general, there is no new branch of

solutions as the backreaction of the perturbation will be necessarily time depen-

dent. However, if Re(ω) = mΩH , with ΩH the angular velocity of the horizon,

and m the angular quantum number, then although the perturbation breaks both

time translation invariance and axisymmetry, the mode preserves a very special

linear combination of the two symmetries, the generator of the Killing horizon. In

particular, K = ∂t+ΩH∂φ will remain an unbroken symmetry of the perturbation,

where t, φ are the time and azimuthal coordinates. In this special case, the thresh-

old perturbation corresponds to the linearization of a new solution which preserves

8
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this symmetry. These solutions are known as single Killing field black holes, and

have been much less studied than stationary black hole solutions. They are some-

what exotic, as rotating non-axisymmetric solutions must radiate, and only with a

kind of reflecting boundary condition is the outgoing radiation able to be balanced

with the reflected radiation. Miraculously, these boundary conditions are natu-

rally enforced by requiring that the spacetime be asymptotically AdS. Therefore,

these superradiant instabilities and their associated novel 1 Killing Field Theory

black hole solutions should have an interesting interpretation in terms of the dual

field theory.

Before moving on to another interesting aspect of the study of black holes

in higher dimensions, a few comments are in order regarding the limitations of

quasinormal modes. Typically when a linear mode analysis is preformed, as is

done in the case of quasinormal modes, the idea is that a generic perturbation can

be decomposed as an infinite superposition of modes which can be be individually

solved for. This is not the case for black hole quasinormal modes, however. They

are known to be incomplete, that is they do not form a complete basis of functions

for generic perturbations. In fact, for asymptotically flat black holes stable quasi-

normal modes exhibit divergent behaviour at asymptotic infinity. As a result of

these limitations, the response of a black hole to generic perturbations is unable

to be expressed entirely using quasinormal modes, although for certain timescales

the response is dominated by quasinormal mode ringing. A second, somewhat re-

lated issue is that quasinormal modes do not provide a comprehensive delineation

between stable and unstable solutions. Certainly a solution with an exponentially

growing mode should be regarded as unstable, but the converse is not necessarily

9
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true. If there are no exponentially growing modes, the system could still be un-

stable because not all instabilities are mode instabilities, and also because generic

perturbations cannot be expressed entirely of quasinormal modes. It may become

clear to the reader at this point that a precise definition of instability has not been

given, and this has been by design. Exponentially growing modes are in many

ways to most violent form of instability, but there are other more benign instabil-

ities. An interesting recent example concerns the Aretakis instability of extremal

black hole horizons [11], wherein the unstable behaviour is polynomial growth in

time, and moreover this growth is restricted to the horizon. Instances such as

these are a refinement beyond the linear quasinormal mode stability discussed in

this thesis, and shall not be considered here further.

1.3 The Large D-Limit

Now that we have unburdened ourselves from thinking about only four-dimensions,

what dimension should we focus on? 5? 6? 7? It is rare to see analysis beyond

D = 11, as this is the largest dimension in which a supersymmetric theory of grav-

ity can be constructed. In this section we will be interested in the case D = ∞!

More precisely, the large-D limit of general relativity will be introduced wherein

the number of dimensions is taken large and used as an expansion parameter, much

akin to the more familiar large-N expansion of SU(N) gauge theories. Although

it may seem preposterous to study a theory in the limit of large dimensions, there

are good reasons for doing so. The Einstein equations are notoriously complicated,

and precious few exact, analytical results exist. If the equations admit a sensible

10
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expansion in 1/D, then perhaps the large-D limit can provide a calculational tool

to learn about physics in more modest numbers of dimensions, such as D = 10.

A program to develop the Large-D limit was recently initiated by Emparan

and collaborates. There are a number of interesting features of this limit. The

exponential in D fall off of black hole warp functions (for example f = 1 − rD0 −3

rD−3

is the warp factor for Schwarzschild-Tangherlini) means that in the limit of large-

D, the spacetime outside a black hole is negligibly curved, and the black hole

can be replaced by a hole cut out of the spacetime with particular boundary

conditions if the horizon radius is held constant as the limit of large D is taken.

Furthermore, the ratio of volume of a unit cube and sphere in D dimensions

vanishes exponentially fast in the limit D → ∞, and therefore black holes have

finite radius but zero area.

The large-D expansion has been successfully used to analytically approximate

solutions to a wide range of problems. In this brief review attention will be

restricted to the calculation of quasinormal modes. Preliminary investigations into

the quasinormal modes of black holes in the large-D limit revealed a fascinating

universality. For a wide range of black holes, the quasinormal mode spectrum

was found to be universal to leading order in 1/D [12]. Moreover, as D → ∞,

|ω| → ∞ also, with the frequencies moving downward in the lower half complex

plane. In Sec. 3, we present work in which a second class of quasinormal modes

were discovered in the large-D limit for the case of D-dimensional Schwarzschild,

i.e. zero rotation. These frequencies do not scale with D, i.e. ω ∼ D0, and

moreover these modes are not universal; they encode the details of the horizon

geometry. These are in some sense the most important quasinormal frequencies

11
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because they have finite lifetime, Im(ω−1) ∼ D0 as opposed to the vanishing

lifetime of the scaling modes in the large D limit.

The existence of these modes has important implications for the solution space

of black holes in large-D. Investigations of D = 5 revealed an interesting zoology

of novel black hole solutions which are related via linear instabilities. These novel

solutions are believed to exist in all D > 5, and therefore the instabilities which

interconnect them should as well. Evidence in support of this is presented in Sec.’s

2, 3, where it is shown that the instabilities persist in each dimension studied (as

high as D = 15), and moreover, important features such as the critical rotation

speed seem to converge to a fixed, finite value in the limit of large D. This informs

us that the instabilities are connected to the non-scaling modes found for zero

rotation. Thus we see that the non-scaling modes are intimately related to the

continued existence of the novel black hole solutions in higher D; if there were no

scaling modes and all the quasinormal frequencies of D-dimensional Schwarzschild

obeyed |ω| ∼ D−α, for some α > 0, then as the rotation increased the frequencies

would have to travel infinitely far in the complex plane in order to become the

threshold unstable modes which connect, for example, the Myers-Perry and black

ring solutions. 2

The remainder of this Part is organized as follows. In 2 a study is presented in

2The existence of the non-scaling modes is important for instabilities which occur at finite
rotation in the large D limit. It is worth pointing out that for certain configurations of the angular
momenta parameters, there is no extremal bound and the black holes can rotate arbitrarily
fast, which may lead one to wonder if the instabilities occur at faster and faster speeds as D
increases. There well may instabilities of this sort, however, for generic configurations in which
all the angular momenta are turned on, there is an extremal bound, and moreover this bound
asymptotes to a constant as D → ∞. Therefore, we can conclude that there exist instabilities
which must occur at finite rotation, and hence the necessity of the non-scaling quasinormal
modes at zero rotation.
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which a non-axisymmetric instability of a rotating black hole in higher dimensions

is discovered and analyzed. In 3 an comprehensive study of quasinormal modes

of black holes in higher dimensions is presented, and the non-scaling quasinormal

modes are presented for the first time.
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Chapter 2

Non-Axisymmetric Instability of

Rotating Black Holes in Higher

Dimensions

Introduction: Black holes in four spacetime dimensions are remarkably feature-

less. The Kerr metric is the unique stationary and axisymmetric solution to the

vacuum Einstein equations, and is completely characterized by just two param-

eters, its mass and angular momentum [13]. In contrast, General Relativity in

higher dimensions allows for a fantastic diversity of different asymptotically flat

black objects. In addition to black holes of spherical topology, there are also black

rings [9], black Saturns [14], systems of bicycling black rings [15], and so on 1. In

fact, it has been shown [17] that in marked contrast to the uniqueness of the Kerr

metric in four dimensions, in higher dimensions there are many black holes of a

1For a recent and comprehensive review, see [16].
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given mass and set of angular momenta. Perhaps more exotically, in [18], it has

been argued that an infinite number of black holes can exist with the same set

of conserved asymptotic charges! Understanding the phase space of black hole

solutions, as well as their stability, is currently a very active program of research.

In this Letter we report progress in this direction by studying the classical sta-

bility of Myers-Perry (MP) black holes, which are the generalization of the Kerr

solution to higher dimensions [19]. In D spacetime dimensions these solutions are

characterized by their mass and b(D − 1)/2c angular momenta parameters. The

properties of these solutions strongly depends on both the dimension of spacetime

as well as the angular momenta. For example, for D ≥ 6, when none of the angu-

lar momenta vanish there is an extremal limit and the black hole cannot be made

to rotate arbitrarily fast, just as in four dimensions. However, when at least one

of the angular momenta vanishes, there is no extremal limit and the remaining

angular momenta can be taken to be arbitrarily large.

The lack of an extremal limit suggests that these black holes might be unsta-

ble. Emparan and Myers [20] showed that in the limit where n angular momenta

are taken to be arbitrarily large, the horizon ‘pancakes’ out to have topology

R2n × SD−2n−2. Black holes with this horizon shape are known as black branes,

and were famously shown to be unstable by Gregory and Laflamme [21]. There-

fore, Emparan and Myers conjectured that MP black holes should also be unsta-

ble, at least in certain fast-spinning regions of the parameter space. Although the

comparison to the Gregory-Laflamme instability was made in the limit of infinite

rotation, it was expected that the instability would set for finite, sufficiently rapid

rotation.
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Since this conjecture, there has been much work on investigating the stabil-

ity of MP black holes in various dimensions and for various configurations of the

angular momenta parameters. One of the most studied cases has been in odd

dimensions with all the angular momenta equal. This is because in this limit

the metric becomes cohomogeneity-1, which is to say that it depends non-trivially

only on the radial coordinate, and therefore the linearized Einstein equations form

a coupled system of ODE’s. For generic rotations, the perturbation equations nec-

essarily involve PDE’s, greatly complicating the stability analysis. The fact that

there exists a cohomogeneity-1 MP metric is rather remarkable, as the only other

case in which the linearized Einstein equations are known to separate on a rotat-

ing black hole background is Kerr, as shown by Teukolsky [22].

Although the perturbation equations become more tractable for equal angular

momenta, in this case the spins cannot be made arbitrarily large, and a priori it

is not clear whether the black hole would be able to rotate at a sufficiently rapid

speed to become unstable. A precise definition of sufficiently rapid was given in

[23], who formulated an ultraspinning condition based upon black hole thermo-

dynamics. In odd D ≥ 7 this ultraspinning condition can be satisfied for the

equal angular momenta case, and therefore these black holes might be unstable.

Indeed, it was found that very near extremality these black holes were unstable to

perturbations that do not break rotational symmetries.2 It is expected that this

instability persists for all odd D ≥ 7.

No instability was found in D = 5, and in fact this was not unexpected since

2This instability was first found in D = 9 [23], but upon further investigation (motivated by
the study of the relationship of near-horizon instabilities to instabilities of the full geometry in
Ref. [24]) the instability was found to also exist in D = 7.
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the ultraspinning condition is only possible in D ≥ 7. Further evidence for stabil-

ity in D = 5 for the case of equal angular momenta came from the linear pertur-

bative analysis of Ref. [25]. The study of axisymmetric perturbations has been

extended to configurations with a single non-vanishing spin [26], and more general

configurations [27]. Instabilities have been found in all D ≥ 6. These instabilities

are very important for the phase diagram of black holes in higher dimensions,

because at the threshold of instability, the perturbations are time-independent

and therefore correspond to a new family of stationary, axisymmetric black holes

branching off of the MP family.

Thus far the discussion has been restricted to axisymmetric perturbations. Of

course a full analysis of the stability of any physical system should include all

possible perturbations; therefore we now turn to discuss non-axisymmetric per-

turbations. In an impressive series of numerical simulations, it was found that

singly-spinning MP black holes were unstable to non-axisymmetric instabilities,

first in D = 5 [28], and then in D = 6, 7, 8 [29]. These results strongly suggest that

black holes might be much more sensitive to non-axisymmetric perturbations than

to axisymmetric perturbations, since D = 5 black holes are stable to axisymmet-

ric perturbations, but unstable to non-axisymmetric ones. It might therefore be

expected that in higher D non-axisymmetric instabilities set in for smaller spins

than the axisymmetric ones.

The above results motivated the work presented here. We study non-axisymmetric

perturbations of higher dimensional black holes. We restrict our attention to the

equal angular momenta case (and therefore odd D), due to the simplification

that occurs when the metric is cohomogeneity-1. We find that in odd D ≥ 7,
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equal angular momenta MP black holes are unstable to non-axisymmetric per-

turbations, and that these instabilities set in for much smaller rotations than the

previously discovered axisymmetric ultraspinning instabilities [23]. Our analy-

sis explores the full spectra of scalar-gravitational perturbations, in particular its

quasi-normal mode frequencies. We studied the cases of D = 5, 7, 9, 11, 13, 15,

and found instabilities for D ≥ 7. We expect these instabilities to persist for all

higher odd D.

Methodology and Results: The equal angular momenta Myers-Perry black hole

line element is

d̄s
2

= −f(r)2dt2 + g(r)2dr2 (2.1)

+ h(r)2[dψ + Aadx
a − Ω(r)dt]2 + r2ĝabdx

adxb.

Here f, g, h,Ω are functions of r which can be found in Ref. [23], and xa, ĝab are

the coordinates and Fubini-Study metric on CPN , respectively. N is related to

the spacetime dimension D by D = 2N+3, while Aa is related to the Kähler form

J by dA = 2J . In this equal angular momenta case the above metric functions

depend on two dimensionful parameters, which we take to be the horizon radius

r+, and the spin parameter a. When a→ 0, this reduces to the higher-dimensional

Schwarzschild metric, with the S2N+1 metric expressed as the Hopf fibration. The

presence of the CPN factor is what facilitates the separability of the equations into

ODE’s, rather than PDE’s. That this manifold only exists for integer N explains

why the separability only happens in odd spacetime dimension. Extremality is
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reached at a = aext, the value of which can also be found in Ref. [23].

We studied linear perturbations of this background:

gµν = ḡµν + hµν , (2.2)

where barred quantities refer to the MP background. We then solved the linearized

vacuum Einstein equations, which after imposing the traceless and transverse

gauge conditions become

(∆Lh)µν ≡ −∇̄ρ∇̄ρhµν − 2R̄µρνσh
ρσ = 0. (2.3)

We further used the stationarity and axisymmetry of the background metric to

decompose the time and azimuthal dependence as hµν ∝ e−i(ωt−mψ). Here ω is a

complex number which will be determined numerically, and m is restricted to be

an integer. The azimuthal coordinate is ψ, and therefore perturbations with m = 0

are axisymmetric, whilst those with m 6= 0 are non-axisymmetric. Lastly, follow-

ing [23], we separated the angular dependence of the perturbation hµν through

the use of charged scalar harmonics on CPN . As this decomposition is beyond

the scope of this article, and results in numerous lengthy equations, we refer the

reader to the original article for details [23]. Each such charged scalar harmonic

can be classified by two integers (κ,m), with κ ≥ 0. We also mention that mode

stability for tensor perturbations was shown in [30], for both axisymmetric and

non-axisymmetric modes. The vector case remains to be investigated.

Our strategy was to look for exponentially growing solutions to the above

equations. These are modes with Im(ω) > 0. Threshold unstable modes have
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Im(ω) = 0, and the spin at which this happens is labelled acrit. The absence

of exponentially growing modes does not establish stability, but the existence of

one clearly does imply an instability. We used the physically relevant boundary

conditions of ingoing waves at the horizon, and outgoing near infinity. This choice

corresponds to studying the quasi-normal mode spectrum of these black holes 3.

With the decomposition of perturbations described above, the problem has now

been reduced to a quadratic Sturm-Liouville eigenvalue problem for ω in a cou-

pled system of ODE’s. We used a numerical scheme based on spectral methods

to solve these equations, see Ref. [23] for more details 4.

Our results are as follows. In D = 5, we find no instability, which is consis-

tent with Ref. [25], who also studied the equal angular momenta case. It is also

consistent with Ref. [28], who found an instability, but only for singly-spinning

black holes. For D = 7, 9, 11, 13, 15, we find numerous bar-mode instabilities. In

Fig. 2.1 we plot Im(ω) for the (κ,m) = (0, 2) mode, which is the first mode to

go unstable as the spin in increased. We refer to this mode as the dominantly

unstable mode, as it sets in before any others, and is the mode with the largest

growth rate. For completeness we also show in Fig. 2.2 the real part of the domi-

nant mode, as a function of a/r+. Our results indicate that acrit/r+ saturates

as a function of D, which suggests a possibly analytic understanding in a 1/D

expansion as in [32].

We expect that the unstable modes we find will persist for all odd D ≥ 7. In

all dimensions studied, the dominant instability was due to the (κ,m) = (0, 2)

3For a review of quasi-normal modes, see Ref. [10].
4Actually, Ref. [23] used an identical numerical scheme, but applied it to a slightly different

problem, the study of the Gregory-Laflamme instability for the black string constructed out of
these MP black holes.
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Figure 2.1: Plot of Im(ω) for for the dominantly unstable mode, (κ,m) = (0, 2).
The black points at a = 0 were computed using a different code based upon the
gauge invariant formalism of Ref [31]. Note that as D increases the critical spin
for which Im(ω) = 0 decreases. For D = 5, Im(ω) → 0− as a/aext → 1, and
we find no instability. The inset plot zooms the region where Im(ω) becomes
positive.
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Figure 2.2: Plot of Re(ω) for for the dominantly unstable mode, (κ,m) = (0, 2).
The black points at a = 0 were computed using a different code based upon
the gauge invariant formalism of Ref [31].
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mode. We also found instabilities for (0,m) modes with m > 2 as well as for

(1,m) modes with m ≥ 1, but these have a larger value of acrit
5 In Table 2.1 we

tabulate the critical spin at which the bar mode and axisymmetric instabilities

first set in. The bar mode instabilities set in for much smaller rotation speeds,

and are therefore the dominant instabilities of these black holes.

We computed several checks on our results. First, we computed the Schwarzschild

quasi-normal modes using the gauge-invariant formalism of Ref. [31] and found

that our results reproduced this spectrum as a → 0. We also computed the ax-

isymmetric (2, 0) mode that was first found to be unstable, and compared our

result with Ref. [23], who only calculated this mode for Im(ω) > 0. It was ex-

pected that as a was increased from zero, ω would in general be complex, reach

ω = 0 at acrit, and then become purely imaginary. However, we find that this

mode is always purely imaginary, taking the form Im(ω) = iK(a) where K(a) is

a real function that is negative for a < acrit, zero at acrit, and positive for a > acrit.

For a > acrit, our results agreed with Ref. [23].

Discussion: While a thorough investigation of the linear mode stability is still

far from complete for the full MP family, it is nearly finished in the equal angu-

lar momenta sector. Scalar perturbations have been examined here in the non-

axisymmetric case, and in Ref. [23] for the axisymmetric one. Tensor pertur-

bations of both types were studied in [30]. Only vector perturbations remain to

be analyzed, although it is expected that the dominantly unstable modes will be

5This is in contrast to the phenomenon of superradiance in AdS space, where larger m modes
become unstable before smaller m modes, first conjectured in [33], and later explicitly checked
in [34] using the Teukoslky formalism.
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D 1− acrit/aext (NA) 1− acrit/aext (A)

7 0.1891 2.339× 10−5

9 0.2537 2.116× 10−3

11 0.2587 7.854× 10−3

13 0.2631 1.504× 10−2

15 0.2669 2.232× 10−2

Table 2.1: Critical rotations for non-axisymmetric (NA) and axisymmetric
(A) ultraspinning instabilities. The critical rotation is defined to be the largest
rotation such that there are no instabilties for the sector of perturbations in
question (axisymmetric or non-axisymmetric). The values for the (A) sector
were first presented in [23] and [24]. Note that the bar mode instability sets in
for much smaller spins.

scalars. Thus it is likely that we have found the dominant instabilities for these

black holes, and it is then natural to inquire about the endpoint of this instability.

Of course, this question deserves a full non-linear numerical treatment, but

our results provide some insights. Due to the fact that these perturbations break

axisymmetry, the black hole will radiate angular momentum and energy, and in

doing so spin down until it reaches a stable spin. In order for the black hole to

be able to radiate, the loss of angular momentum and energy must be consistent

with Hawking’s Area Law, δA ≥ 0. This condition was shown to be equivalent

to the superradiant bound Re(ω)−mΩH < 0 [29], and indeed, we find that only

after this condition is satisfied are there modes with Im(ω) > 0. Therefore, for

initial spins slightly larger than the critical values, it is expected that the black

holes will simply radiate until they reach a stable configuration.

However, for initial spins much larger than the critical value it will take the

black holes some finite amount of time to radiate away their excess angular mo-

mentum, and during this time the horizon will be rapidly deformed by the grow-

ing perturbation. An exciting possible outcome of this scenario would be that
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the time scale for the growth of the perturbation might exceed the time scale for

radiation, and that the black hole might actually fragment into a multiple black

hole configuration. If the fragmentation is sufficiently violent, these black holes

could fly apart and escape to infinity. Otherwise, they would continue to radiate

away energy and angular momentum and would eventually inspiral and merge

into a single, non-axisymmetric black hole. This black hole would itself continue

to radiate until it settled down to axisymmetric and stationary state. This is

a fascinating, but speculative possibility for the endpoint of the instability that

would necessarily violate the cosmic censorship.

This bar mode instability has implications for the stability of some of the

more novel black hole solutions that branch off from the MP family. The points

in the black hole phase diagram where these solutions join with the MP black

holes correspond to the existence of axisymmetric perturbations with ω = 0. As

the spins for which these modes exist are all much greater than the smallest non-

axisymmetric acrit we find, our results suggest that these new solutions will be

unstable at least near the branching point, and perhaps more generally.

A curious feature of our solutions concerned the existence of purely imaginary

frequencies ω. As noted earlier, the (2, 0) unstable mode was found to be purely

imaginary for any a. We also found that the a → 0 limit of the (1,m) unstable

modes were purely imaginary. In D = 4, purely imaginary frequencies have special

status, and some of them are associated with changes in the algebraic classifica-

tion of the spacetime. The important role that these purely imaginary modes had

in determining the stability of the black hole, and in connecting the MP family to

new stationary axisymmetric families suggested that there might be a connection
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with changes in algebraic classifications. However, it has recently been shown that

there are no algebraically special modes of Schwarzschild in D ≥ 5 [35], and there-

fore it appears unlikely that any special geometrical significance can be assigned

to these modes.

In summary, we have found a new, non-axisymmetric instability of a certain

class of higher dimensional rotating black holes. These black holes were previ-

ously found to be unstable to axisymmetric perturbations, and the instabilities

we find occur for much slower rotation speeds. We expect that the instability we

find with the smallest acrit corresponds to the dominant instability of equal an-

gular momenta Myers-Perry black holes. We discussed two possible endpoints of

this instability, either spinning down through gravitational radiation, or through

a more complicated process involving black hole fragmentation as an intermediate

step.
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Chapter 3

Quasinormal modes of

asymptotically flat rotating black

holes

3.1 Introduction

The understanding of asymptotically flat higher-dimensional black holes (BHs)

in classical general relativity has seen remarkable progress in recent years (see [36]

for an excellent review on the subject). We have learned that BHs in d ≥ 5 space-

time dimensions have markedly different properties from their four-dimensional

counterparts: several asymptotically flat higher-dimensional BHs exist for the

same set of asymptotic charges [37], horizons can have distinct topologies [37, 38],

solutions with disconnected horizons exist [14], and cosmic censorship does not
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hold in d ≥ 51 [39], to name but a few. Given the plethora of higher-dimensional

BHs and the intricate nature of the phase space of BH solutions, it is interesting

to study their stability. This paper addresses this question for a specific class of

higher-dimensional BHs.

The most general exact solution known in closed form for an arbitrary number

of dimensions is the Myers-Perry BH (MP BH) [19]. In many ways, this is the

natural generalization of the Kerr solution to higher dimensions. The spatial cross

section of the horizon has topology Sd−2, and it is uniquely characterized by its

mass and b(d−1)/2c angular momenta. The properties of these solutions strongly

depend on the spacetime dimension, as well as the angular momenta. In d ≥ 6, if

all angular momenta are non-vanishing, there is an extremal limit, meaning that

all angular momenta are bounded above. If, on the other hand, at least one of

the angular momenta vanishes, there is no upper bound on any of the remaining

angular momenta and MP BHs are allowed to rotate arbitrarily fast. This fact was

picked out by Emparan and Myers in [20], who conjectured rapidly spinning MP

BHs to be unstable. When ñ of the angular momenta are taken to be arbitrarily

large, the horizon “pancakes” out near the poles, and acquires an almost exact

R2ñ × Sd−2ñ−2 topology, i.e. they look like black branes. Since black branes are

known to be unstable [21, 39], they conjectured these highly deformed BHs to

be unstable as well. The argument given above, strictly speaking, only works

if the rotation parameters are taken to be infinitely large. However, Emparan

and Myers went beyond this and estimated the rotation for which the instability

1Strictly speaking, a black string is not asymptotically flat. To date, there is no proof that
a violation of cosmic censorship occurs for asymptotically flat BHs in d ≥ 5, even though very
thin black rings provide an excellent candidate for such a phenomenon.
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should appear for singly spinning BHs. In order to do this, they used two distinct

arguments that each give different estimates. In the first argument, the critical

rotation was estimated by the condition that thermodynamic quantities, such as

the temperature, behave similarly to those of a black brane. The other argument

directly compares the entropy of a singly spinning BH to that of two disjoint

BHs with the same total energy and angular momentum. The latter process

necessarily breaks the rotation symmetry of the original BH. The critical rotation

extracted from the former argument is systematically larger than that of the latter.

Moreover, the first argument only applies to d ≥ 6, whereas the second gives a

positive result for d ≥ 5. The first type of instability was coined the ultraspinning

instability, and the second, rotational symmetry-breaking instability was dubbed

the m−bar or bar-mode instability.

It took six years to know whether this conjecture was correct, and to detail its

properties. In [26, 40] it was shown that singly spinning MP BHs in d ≥ 6

are unstable to perturbations that do not break rotational symmetry, and in

[28, 29] it was found that, at the full non-linear level, MP BHs are also unstable

to perturbations that do break rotational symmetry, but this time for d ≥ 5. The

rotation required to herald the second type of instability was found to be much

smaller than the first, in agreement with the conjecture of [20]. None of these

results shed any light on what happens in the general case, where all angular

momenta are non-vanishing. The arguments given by Emparan and Myers are

also much weaker in this case, because there is an upper bound on the angular

momenta and the horizons cannot get very distorted. The reason why singly

spinning BHs were easier to study is related to the fact that they preserve a
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much larger symmetry group than the general case. There is however, one case

that is amenable to a more systematic study, and that has an upper bound on

the rotation. In odd spacetime dimensions, the equal angular momenta (EAM)

MP solution exhibits a large symmetry group that can be employed to reduce

the study of general linearized perturbations to a system of coupled ordinary

differential equations. This was used in [23] to show that equal angular momenta

MP solutions in odd d ≥ 7 have ultraspinning instabilities 2, very much like

the singly spinning case. It was further shown in [27], that the ultraspinning

instability found in the equal angular momenta MP is connected to the one found

in the singly spinning MP. More recently, in [5], the m−bar instability was also

shown to exist in equal angular momenta MP BHs.

However, to date, the study of quasinormal modes (QNMs) of higher-dimensional

rotating BHs in asymptotically flat space is very meager. The main reason for

this is the absence of a master equation that governs how generic gravitational

perturbations propagate on such backgrounds. For the Kerr geometry such equa-

tion exists, the Teukolsy equation [22]. Partial progress was made for the d = 5

equal angular momenta MP, where a clever decomposition was used [25]. More-

over, certain simple gravitational perturbations of higher-dimensional BHs have

been studied [42, 30], but only for very special perturbation sectors where no in-

stabilities were found. Another approach, pursued in [24], focused the study of

near horizon geometries and their stability properties. The idea is simple: the

authors prove that, for certain matter fields, and for axisymmetric perturbations,

an instability of the near horizon geometry implies an instability of the full ex-

2This instability was first found in d ≥ 9 [23]. However, upon further investigation requested
by the authors of Ref. [41], the instability was found to also exist in d = 7.
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tremal geometry. However, it is much easier to study the stability of near horizon

geometries, which often exhibit a large isometry group that reduces the problem

to an algebraic calculation. Nevertheless, none of the studies described above gave

a complete description of the behavior of QNMs in higher-dimensional rotating

backgrounds, since their main goal was to study stability of such geometries. This

article is entirely devoted to complete that gap, and presents a first exhaustive

study of QNMs of the most representative cases of higher-dimensional asymptot-

ically flat rotating BHs. Furthermore, the instability found in [28, 29] has never

been reproduced with a linear calculation, which we attempt in this manuscript.

Although in this paper we are mostly interested in the QNMs of rotating BHs,

we begin by reviewing QNMs of the Schwarzschild-Tangherlini BH (henceforth

referred to as simply Schwarzschild). There are two motivations for doing so.

First, the rotating BHs considered in later sections reduce to Schwarzschild in

the zero rotation limit, and in this limit the QNMs of these rotating BHs should

reduce to those of Schwarzschild. A second motivation for studying Schwarzschild

is the recent interest in studying general relativity in the large-d limit [12, 43, 32].

This is a very interesting limit to consider. The equations simplify drastically, and

yet enough structure is preserved such that the physics does not become trivial.

For example, the physical picture associated with the infinite-d limit is that the

space outside a BH is completely flat, BHs have zero cross-section, and can be

modelled as dust. From this picture one might conclude that the infinite-d limit is

too strong to be useful, and that it has erased all the interesting features of BHs.

However, this is certainly not the case, and our analysis of Schwarzschild QNMs

and their connection with instabilities of rotating BHs adds to the interesting
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results of the infinite-d limit.

We conclude this section with a brief outline of the paper. In Section 3.2 we

introduce the general metric of MP BHs, showing that under appropriate limits

it reduces to the Schwarzschild, singly spinning MP and equal angular momenta

MP BHs. In Section 3.3 we briefly review the Kodama-Ishibashi formalism, and

present the QNMs of the Schwarzschild BH as a function of the spacetime dimen-

sion d. Section 3.4 studies generic gravitational perturbations, including scalar,

vector and tensor-type perturbations, of the equal angular momenta MP BH and

in Section 3.5 we present gravitational QNMs of the singly spinning MP BH. We

then conclude in Section 3.6.

Note added. As this work was nearing completion, we learned from Emparan,

Suzuki, and Tanabe of their recent work [44] studying the (in)stability of odd-

dimensional rotating black holes with equal angular momenta in the large dimen-

sion limit. When a comparison is possible, our numerical results agree with the

analytical findings of [44].

3.2 General Myers-Perry black holes

3.2.1 Most general Myers-Perry family

In this section we present the general MP solution [19], for general d ≥ 4, and

as a function of their mass M and b(d− 1)/2c rotation parameters {ai}. Its line
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element, in Boyer-Lindquist coordinates, takes the following form

ds2 = −dt2 +
rd−3

0

U(r, µ1, . . . , µÑ)

dt− Ñ∑
i=1

aiµ
2
i dϕi

2

+

Ñ∑
i=1

µ2
i (r

2 + a2
i )dϕ

2
i +

U(r, µ1, . . . , µÑ) dr2

F (r)− rd−3
0

+
Ñ+ε∑
i=1

(r2 + a2
i )dµ

2
i (3.1)

where

U(r, µ1, . . . , µÑ) = rε
Ñ+ε∑
i=1

µ2
i

r2 + a2
i

Ñ∏
j=1

(r2 + a2
j) , and F (r) = rε−2

Ñ∏
j=1

(r2 + a2
j) .

(3.2)

We have also defined d = 2Ñ+1+ε (where ε = 1 for even d, and ε = 0 otherwise)

and for even d, aN+1 = 0. Finally, the coordinates µi are not independent, and

must satisfy
Ñ+ε∑
i=1

µ2
i = 1 . (3.3)

The energy and angular momenta of this solution can be readily computed

using Komar integrals, and yield:

M =
(d− 2)ωd−2

16πGd

rd−3
0 , and Ji =

2

d− 2
M ai , (3.4)

where ωd−2 is the area of a (d − 2) round sphere with unit radius and Gd is

the d−dimensional Newton’s constant. The event horizon, located at r = r+, is

defined as the largest real root of F (r)− rd−3
0 .

Finally, for the sake of completeness, we also present the remaining thermo-

33



Quasinormal modes of asymptotically flat rotating black holes Chapter 3

dynamic quantities, such as the entropy SH , Hawking temperature T and angular

velocities Ωi:

SH =
ωd−2

4 r1−ε
+ Gd

Ñ∏
i=1

(r2
+ + a2

i ) , T =
r+

2π

 Ñ∑
i=1

1

r2
+ + a2

i

− 1

(1 + ε)r2
+

 and Ωi =
ai

r2
+ + a2

i

.

(3.5)

It is clear from the line element (3.1) that, unless d = 4 or d = 5, studying a

generic gravitational perturbation of a general MP solution in a given dimension,

will necessarily involve solving PDEs in more than two variables. This makes the

problem quite difficult to study. For this reason, we focus on particular configura-

tions of the angular momenta parameters that result in solutions with enhanced

symmetry, which we describe next.

3.2.2 Schwarzschild, singly spinning and equal angular mo-

menta MP black holes

The simplest solution corresponds to the case where all of the angular momenta

are set to zero. This is the Schwarzschild-Tangherlini solution first presented in

[45], and whose line element is given by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−2, f(r) = 1− rd−3
0

rd−3
, (3.6)

where dΩ2
n is the line element of an n−dimensional unit round sphere. The spatial

symmetry group of Schwarzschild is enhanced to SO(d− 1), which we will use in

Section 3.3.
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Another simplifying limit occurs if we set all but one angular momenta to

zero. This BH is often denominated singly spinning MP BH. In this case, the line

element (3.1) reduces to:

ds2 =
(1− x̃2)

Σ

[
dφ
(
a2 + r2

)
− adt

]2 − ∆

Σ

[
dt− adφ

(
1− x̃2

)]2
+

Σ

∆
dr2 +

Σ

1− x̃2
dx̃2 + r2x̃2 dΩ2

(d−4) , (3.7)

where

∆ = r2 + a2 − rd−3
0

rd−5
, Σ = r2 + a2x̃2 and x̃ = cos θ ∈ (0, 1) . (3.8)

The symmetry group is now enhanced to SO(d − 3), which means that generic

perturbations will reduce to a set of coupled PDEs in two variables, r, x̃ (after

Fourier mode decomposition both in time and rotational angle φ). This line

element, in many ways, is the simplest generalization of the Kerr BH to higher

dimensions. Note that in this case, the temperature defined in Eq. (3.5) cannot be

made zero for d ≥ 6, and as such no upper bound on the rotation exists. For the

special case of d = 5, there is an upper bound on the rotation, corresponding to

a = r0, but this corresponds to a naked singularity, i.e. r+ = 0. Despite the many

efforts over the past years, no decoupled equation describing how gravitational

perturbations propagate on the singly spinning MP BH has been found, see for

instance [46] for a recent effort in this direction. We shall proceed in Section 3.5

by considering the full PDE problem.

A even more drastic simplification, which is less obvious, occurs when all the

angular momenta are equal, i.e. ai = a, and when d is odd, as was first noted in
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[47]. In this case the general line element (3.1), reduces to

ds2 = −p(r̂)
h(r̂)

dt2 +
dr̂2

p(r̂)
+ r̂2

[
h(r̂)2 (dψ + Aadx

a − u(r̂)dt)2 + ĝabdx
adxb

]
(3.9)

where d = 2N + 3, and the metric functions are defined as follows:

p(r̂) = 1− r
2N
0

r̂2N
+
r2N

0 a2

r̂2(N+1)
, u(r̂) =

r2N
0 a

r̂2(N+1)h(r̂)
and h(r̂) = 1+

r2N
0 a2

r̂2(N+1)
. (3.10)

Here ĝab is the Fubini-Study metric on CPN and A is related to its Kähler form

by J = dA/2. Some comments concerning this line element are in order. First,

we note that the radial coordinate r̂ is related to the general Boyer-Lindquist

coordinate as r̂2 = r2 + a2. Second, this line element has a much larger isometry

group than the singly spinning MP solution, namely R × U(1) × SU(N + 1).

Finally, in passing from Eq. (3.1) to Eq. (3.9) we have used the fact that any

round S2N+1 sphere can be written as a Hopt fibration over CPN , i.e.

dΩ2
2N+1 = (dψ + Aadx

a)2 + ĝabdx
adxb . (3.11)

These equal angular momenta BHs cannot rotate arbitrarily fast, and in fact have

an extremal bound,

aext =

√
N

N + 1
r+. (3.12)

A remarkable property about the line element (3.9) is that it is cohomogeneity-one,

which is to say that it only depends non-trivially on one coordinate, namely r̂. Its

large symmetry group will allow us to study generic gravitational perturbations

by studying a system of coupled ODEs. This procedure was first used in [23],[30],
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and shall be reviewed in Section 3.4.

3.3 Schwarzschild black holes

In this section we review gravitational perturbations of Schwarzschild and

study the QNM spectrum in the limit of large dimensions.

3.3.1 Review of the Kodama-Ishibashi formalism

Here we briefly review the Kodama-Ishibashi (KI) master variable formalism

[31], which has proven to be an invaluable tool for the study of the linear stability

of BH spacetimes. The KI formalism exists for spacetimes for which the line

element can be written as

ds2 = hAB(y)dyAdyB + r2(y)ĝabdx
adxb. (3.13)

Here hAB is the Lorentzian metric of a two-dimensional orbit spacetime, and

ĝab is the metric for a n = d − 2 dimensional Euclidean signature space which

(in our study) is restricted to be maximally symmetric with constant sectional

curvature, normalized to be 0 or ±1. In what follows, we will restrict ourselves to

Schwarzschild BHs, for which the line element is given by (3.6).

We wish to consider linearized gravitational perturbations of this spacetime.

Although a general metric perturbation will depend on all the coordinates, the

angular and time dependence can be separated out using spherical tensor harmon-

ics on Sd−2 and complex exponentials of the form e−iωt. The linearized Einstein
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equations then become a system of ordinary differential equations. Three types

of harmonic tensors will be needed to construct the most generic perturbation:

scalar, vector, and tensor. The scalar harmonics S are both the most familiar and

the simplest, and satisfy

(∇̂2 + λS)S = 0, (3.14)

where the requirement of regularity quantizes the eigenvalue as λS = ˜̀
S(˜̀S+n−1),˜̀

S = 0, 1, 2, .., and ∇̂a is the covariant derivative on the n-sphere. Less familiar

are vector V and tensor T harmonics which satisfy similar equations:

(∇̂2 + λV )Va = 0, ∇̂aVa = 0 ; (3.15)

(∇̂2 + λT )Tab = 0, ∇̂aTab = 0, ĝabTab = 0, Tab = T(ab). (3.16)

The eigenvalues of these regular harmonics are quantized as λV = ˜̀
V (˜̀V +n−1)−1,˜̀

V = 1, 2, .., and λT = ˜̀
T (˜̀T+n−1)−2, ˜̀T = 1, 2, .. 3. In terms of these harmonics,

the most general metric perturbation can be constructed from superpositions of

scalar, vector, and tensor perturbations, which take the form

δgAB = f
(S)
ABS, δgAa = rf

(S)
A Sa, δgab = r2(H

(S)
T Sab +HLĝabS) (scalar),

(3.17)

3 Gravitational scalar perturbations with ˜̀S = 0, 1 or vector perturbations with ˜̀V = 1 do
not represent local degrees of freedom. Scalar perturbations with ˜̀S = 0 or vector perturbations
with ˜̀V = 1 describe simply a variation of the mass and angular momentum parameters of the
solution, respectively, and ˜̀S = 1 corresponds to a pure gauge mode [31, 35]. We do not consider
these special modes further.
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δgAB = 0, δgAa = rf
(V )
A Va, δgab = r2H

(V )
T Vab (vector), (3.18)

δgAB = 0, δgAa = 0, δgab = r2H
(T )
T Tab (tensor). (3.19)

In the above, Sa, Sab, and Vab are derived harmonics which can be written as

derivatives of the more fundamental harmonic. For example, Sa = −λ−1/2
S ∇̂aS is

a scalar-derived vector harmonic. We refer the reader to the original paper for

more details. The functions fAB, fA are functions of the orbit coordinates (t, r)

only, and the time dependence can be trivially separated into Fourier modes, as

in fAB ∝ e−iωt, as mentioned above.

With this parametrization, the linearized equations become a system of ODE’s.

At this point the gauge redundancy has not been taken into account, and in fact

the above decomposition is not gauge invariant; under a linearized gauge trans-

formation, many of the above functions will shift. Kodama and Ishibashi were

able to combine the perturbation functions for each of the sectors into a single

function called the master variable which is a gauge invariant quantity 4. A dif-

ferential map acting on this master variable reconstructs the metric perturbation

in a given gauge. The remarkable end result is that one can study gravitational

perturbations of Schwarzschild by simply solving a Schrödinger equation for each

sector. The master equations are of the form:

−f∂r(f∂rφI) + (VI − ω2)φI = 0, (3.20)

4The tensor sector is trivially put into master variable form, since there is only one pertur-
bation function and it is already gauge invariant.
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where I is an index that runs over scalar, vector, or tensor perturbations and φI

is the master variable. The expressions for the potentials VI are rather lengthy

and we will not reproduce them here; they can be found in the original Kodama

Ishibashi paper [31]. QNMs are then solutions to these equations with appropriate

boundary conditions: the perturbations should be ingoing at the horizon and

outgoing at infinity.

3.3.2 Gravitational QNMs of Schwarzschild in higher di-

mensions

The QNM spectrum of the four dimensional Schwarzschild BH has been well

understood for many years, and there are also many studies of the spectrum in

higher dimensions. For a detailed review, see [10]. Here, we are interested in

the the spectrum not at any one particular value of d, but as a function of d.

In particular, we are interested in the behaviour of the frequencies as d tends

toward infinity. Although Schwarzschild BHs exist for integer d ≥ 4, we will

find it useful to consider d a continuous parameter and to study the spectrum

as d increases. The Kodama-Ishibashi (KI) equations were derived analytically

for arbitrary integer d, and we will simply use these equations but allow d to

vary continuously. Here a comment is in order. Considered as a function of d,

the potentials are not analytic, and one should use care in considering the QNM

frequencies as continuous functions of d. Our main motivation for considering

non-integer d is twofold: it will make clearer the pattern of the QNM behavior

as d is increased, and it will allow us to use a certain powerful numerical method

which utilizes a continuous parameter. Of course, when d is an integer, we will
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check that our results for the continuous-d code agree with the results of the

integer-d code.

As mentioned above, the KI formalism allows the complicated equations for

gravitational perturbations to be reduced to simple Schrödinger-type ODE’s. A

simple Frobenius analysis yields the following behaviour near the two boundaries

(here we suppress the I-index),

φ = eiωr?φout
∞ + e−iωr?φin

∞ (infinity), (3.21)

φ = eiωr?φout
hor + e−iωr?φin

hor (horizon), (3.22)

where r? =
∫
dr/f is the usual tortoise coordinate, and the functions φ

in/out
hor/∞

are regular and non-zero at the relevant boundary. The boundary conditions

appropriate for QNMs are such that the perturbation is ingoing at the BH horizon

and outgoing at infinity. These conditions can be easily formulated in Eddington-

Finkelstein coordinates, and they amount to setting φin
∞ = φout

hor = 0. It is useful

to define a new function φ̃ with this asymptotic behaviour stripped off 5,

φ =
(

1− r0

r

)− iωr0
d−3

eiωrφ̃, (3.23)

which is then regular and finite at either boundary when the above conditions are

imposed.

We then solved these equations numerically for the new φ̃I variables using the

following scheme: introduce a compactified radial coordinate r = r0/z, where z ∈

[0, 1], with z = 0 corresponding to infinity, and z = 1 corresponding to the horizon.

5The case d = 4 is special and has a slightly different fall-off near infinity.
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Figure 3.1: Schwarzschild. The complex QNM frequencies for scalar (top
left), vector (top right), and tensor (bottom) perturbations. In these plots, the
dimension ranges from d = 6 to d = 100. For the scalar plot, ˜̀S = 2, 3, 4, 5, 6
modes are displayed, while for vectors ˜̀V = 2, 3, 4, and for tensors ˜̀T = 1, 2.
As d is increased the QNM’s generally move to larger values of |ωr0| in the
lower half of the complex plane, although there are some interesting exceptions
to this rule. These plots are meant to give the reader a rough sense of the
behaviour of the QNM frequencies as d is increased; more quantitative and
focused analyses follow below.

This interval is then discretized using a Chebyshev grid. The QNMs were then

solved for using one of two methods. The first relies on converting the equations

into an eigenvalue problem for the frequencies ω, which can then be solved using

Mathematica’s built-in routine Eigensystem. More details of this method and

the discretization scheme can be found in [23]. The second method is based on

an application of the Newton-Raphson root-finding algorithm, and is detailed in

[4]. The strength of the first method is that it gives many QNMs simultaneously,
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Figure 3.2: Schwarzschild. The real and imaginary parts of the saturating
scalar QNM’s for ˜̀S = 2, 3, 4, 5. Higher ˜̀S curves lie above lower `S curves.

allowing for easy determination of the spectra. The second method can only be

used to compute a single mode at a time, and only when a seed is known that

is sufficiently close to the true answer. However, this method is much quicker as

both the size of the grid and numerical precision increases, and can be used to

push the numerics to extreme regions of the parameter space. For example, using

the Newton-Raphson method, dimensions as large as d = 100 were attainable,

which is quite remarkable considering the steepness of the warp function f(r) =

1− (r0/r)
d−3 near the horizon.

We are now ready to present our results. In Fig. 3.1 we display the QNM

frequencies for scalar, vector, and tensor perturbations. We will analyse these re-

sults in more detail below, but two interesting features are immediately obvious.

The first is that many of the modes scale with d, so that both their decay rate

Im(ω) and oscillation frequency Re(ω) increase in magnitude as the dimension is
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Figure 3.3: Schwarzschild. The saturating scalar QNM’s in the complex ω
plane for ˜̀S = 2 (top left), ˜̀S = 3 (top right), ˜̀S = 4 (bottom left), ˜̀S = 5
(bottom right). The curves begin at d = 6, 6, 9, 15 (large dots) for ˜̀S = 2, 3, 4, 5,
respectively, and d increases along the curve, reaching d = 100 at the other
endpoint.

increased. The second is that many of the curves seem to lie on top one another.

The curves that scale together have different angular quantum numbers ˜̀. Evi-

dently in the large-d limit, the difference between these QNMs with ˜̀∼ O(d0)

goes to zero.

A perhaps less obvious feature is arguably the most interesting: in the scalar
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plot there are QNM curves that do not scale with d, and in fact seem to not stray

too far from their low-d values. We dub these modes saturating modes, and will

study them in detail below. Let us also mention that saturating modes also exist

for vectors, but they cannot be seen from the above plots because they are purely

imaginary 6. We found no saturating modes for tensors.

Figure 3.4: Schwarzschild. Plot of non-saturating scalar modes for˜̀
S = 2, 3, 4, 5. For both plots the curves appear in terms of increasing ˜̀S ,

from bottom to top.

6Throughout this paper we will encounter purely imaginary modes, and therefore two com-
ments concerning them are in order. Firstly, in d = 4 there is a very interesting relationship
between purely imaginary modes and algebraically special perturbations–a relationship which,
unfortunately, does not appear to extend to higher dimensions [35]. Secondly, in d = 4 it is
known that there is a branch cut for the Green’s function and certain homogeneous solutions of
the perturbation equations [10]. The branch cut is realised in our numerics as many spurious
purely imaginary or almost purely imaginary modes which pollute the data. To isolate the
QNMs from the numerical manifestation of the branch cut, we can utilise two techniques. The
first is to vary the number of grid points, which typically causes the spurious modes to jump
around and thereby be identified. The second technique is to use the results of the following
sections and add a small amount of rotation. If the purely imaginary mode is legitimate, it will
connect to a QNM of the slowly rotating BH. We do not know of studies on branch cuts in
higher dimensions or rotating BHs, which would certainly be interesting to investigate.
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Scalar modes

Amongst the three sectors, the scalar potential is the most complicated, and it

is presumably this structure which allows for the interesting behaviour observed

as d is varied. We start by presenting our scalar results for the saturating QNMs.

In Fig. 3.2, we display the real and imaginary part of the saturating modes for˜̀
S = 2, 3, 4, 5. These modes are clearly saturating to finite values as d → ∞. In

Fig. 3.3 we plot these saturating QNM’s in the complex plane. In all cases the

curves begin at the large dot and execute interesting trajectories as d increases.

The values of the saturating modes for d = 100 are likely close to their limiting

values, and are:

(˜̀S, ωr0) ' (2, 1.01−1.00i), (3, 1.45−2.02i), (4, 1.81−3.06i), (5, 2.12−4.12i).

(3.24)

One would expect a simple analytic formula to describe these results. It is not

obvious how the real part is changing as a function of ˜̀S, but the imaginary part

seems to obey the simple relation limd→∞ Im(ω) = −( ˜̀S − 1). The error of the

numerical data from these values is consistent with the corrections being O(d−1)

7.

In addition to the saturating modes, there are also modes which scale with d

and that we might call non-saturating or scaling modes. Indeed, as can be seen

from Fig. 3.1, many QNMs scale the same way in the large-d limit. In Fig. 3.4

we plot one such group of scaling QNMs. For these curves we can extract their

7After the first version of this article appeared, we learned that an analytic formula had

been derived by Ref. [44] who found: ωr0 = ±
√ ˜̀

S − 1 − i( ˜̀S − 1) at leading order, agreeing
remarkably well with our numerical results.
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dependence on d. It is power law with roughly the dependence

Im(ω r0) ∼ d1/2, Re(ω r0) ∼ d. (3.25)

We stress that these results pertain just to the group of modes plotted, and it

could well be the case that there are many different scalings. It is harder to

extract the power laws of the other groups of scaling modes as they enter the

scaling regime at larger d’s than the group displayed.

Vector modes

We now turn to discuss the vector modes. We again find both saturating and

scaling modes. Interestingly, the saturating vector modes are purely imaginary.

These are plotted in Fig. 3.5. The values of the saturating vector modes for

Figure 3.5: Schwarzschild. The imaginary part of the saturating vector
QNM’s for ˜̀V = 2, 3, 4. Higher ˜̀V curves lie above lower ˜̀V curves.
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d = 100 are:

(˜̀V , ωr0) ' (2,−1.01i), (3,−2.04i), (4,−3.09i). (3.26)

As before, the data suggests a simple formula for the saturating QNM in the

d→∞ limit: limd→∞ ω = −(˜̀V − 1) 8. For reference, we also quote the value of

the lowest lying purely imaginary mode in d = 5, namely ωr0 = −1.50i. 9

Turning to the modes that scale with d, we can make the same plot as in the

scalar case, plotting QNM’s of different ˜̀V that seem to scale the same way. The

results are plotted in Fig. 3.6. These modes also have the same scaling (3.25) as

in the scalar case, namely Im(ωr0) ∼ d1/2, and Re(ωr0) ∼ d.

Tensor modes

For the tensor modes, we observe no saturating modes. A few of the lowest-

lying scaling modes are plotted in Fig. 3.7. Once again, these modes have the

same scaling (3.25) as in the scalar and vector cases, i.e. Im(ωr0) ∼ d1/2, and

Re(ωr0) ∼ d.

8This agrees exactly with the leading order expression derived in Ref. [44].
9Previous literature on QNMs did not find purely imaginary modes in d = 5. Our numerical

method is however more robust than those used in the past to study QNMs. Indeed, we use a
Chebyshev differentiation scheme with (crucially) quadruple precision which directly integrates
the perturbation equations and exhibits exponential convergence as the number of grid points
is changed. So, varying this number of grid points, we are able to resolve the branch cut along
the negative imaginary axis and we manage to single out the physical modes that do not change
as the grid changes. As a further test we look to the eigenfunction of the modes: the physical
mode eigenfunctions are clearly distinct from any other wave function along the poles that are
associated with the branch cut.
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Figure 3.6: Schwarzschild. Plot of non-saturating vector modes for ˜̀V = 2, 3.
For both plots the curves appear in terms of increasing ˜̀V , from bottom to top.

Figure 3.7: Schwarzschild. Plot of non-saturating tensor modes for ˜̀T = 1, 2.
For both plots the curves appear in terms of increasing ˜̀T , from bottom to top.
For the imaginary plot, the two curves are so close as to be indistinguishable.
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Discussion of results

The physics of the saturating modes is very interesting. In terms of the Schwarzschild

time t, the modes that scale with d decay increasingly rapidly as d increases, whilst

the saturating modes have a finite decay rate even in the infinite-d limit. Thus,

for phenomena for which t is the relevant time, the QNM mode spectra consists

only of the saturating modes and all the others become irrelevant. This is a par-

ticularly sharp characterization of the way in which the large-d limit simplifies the

physics.

Another important feature of the saturating modes is that they are localized

near the horizon. In Fig. 3.8 we plot the real and imaginary parts of the scalar

gauge invariant wavefunction φ̃S for ˜̀S = 2 and various d. It is clear that as d is

increased, the wavefunction becomes increasingly localized around z = 1, which

corresponds to the horizon. The near-horizon geometry was shown to take the

form of the direct product of a 2d string BH and a sphere [43],

ds2 =
4r2

0

ñ2

(
− tanh2 ρdt̂2 + dρ2

)
+ r2

0dΩ2
ñ+1, (3.27)

where ñ = d−3 and the time coordinate of the near-horizon geometry is related to

the usual time via t̂ = ñt/(2r0). In terms of this time coordinate, the saturating

modes do not decay or oscillate in the infinite-d limit,

exp(−iωt) = exp(−2iωr0t̂/ñ) ∼ 1. (3.28)

Ref. [43] argued that modes with ω ∼ O(d0) could be said to decouple from
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the asymptotic region, and the localization of the wavefunctions of these modes

confirms this.
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Figure 3.8: Schwarzschild. The real (dashed) and imaginary (dotted) parts
of the scalar gauge invariant wavefunctions φ̃S for ˜̀S = 2. As the dimension is
increased, the wavefunctions become localized near the horizon.

The presence of the saturating modes connects nicely to recent observations

concerning unstable perturbations of rotating BHs in higher dimensions. Before

turning to the rotating case, a comment is in order concerning overtones. For a

given spherical harmonic there are an infinite number of QNM frequencies. These

are typically indexed by an integer n, called the overtone number. The name

suggests that n might correspond to the number of zeros of a function, but actually

the indexing is defined so that n sorts the frequencies by increasing −Im(ω), with

n = 0 corresponding to the smallest value (see, for example the review article [10]).

We have observed that as d increases many of the QNM’s cross. For example, in

Fig. 3.3 the overtone number changes as one moves along the curves. Since in this

section we were primarily interested in how the frequencies varied with d, we did
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not consider the overtone number. For a given value of d, the overtone number is

a very useful concept, and it remains so even in the expansion around d =∞ done

in Ref. [44]. Interestingly, they found that the saturating modes had only a single

overtone–that is, for a given spherical harmonic there is only a single saturating

mode.

3.4 Cohomogeneity-1 Myers-Perry black holes

As discussed in Sec. 3.2.2, when all the angular momenta are equal and non-

zero for an odd dimensional Myers-Perry BH, there is a dramatic enhancement

of the symmetry and the equations of motion of linearized gravitational pertur-

bations can be reduced to systems of ODE’s. As in the Schwarzschild case, the

gravitational perturbations can be classified into three sectors–scalar, vector, and

tensor, according to how the metric perturbation transforms under the isometries

of the CPN base space. The tensor sector is the simplest, where just as in the

Schwarzschild case the linearized Einstein equations reduce to a single Schrödinger

equation. We shall not consider tensor perturbations here, as they were studied

in [30], and no instabilities were found. The study of scalar modes was first initi-

ated in [23], where axisymmetric perturbations were studied, and continued in [5],

where non-axisymmetric perturbations were considered. Instabilities were found

for both types of perturbations, in agreement with the predictions of Emparan

and Myers [20]. The axisymmetric instabilities are particularly interesting be-

cause they indicate the existence of new families of BHs with a single rotational

symmetry [23], and the non-axisymmetric m-bar mode instabilities are important
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because they occur for much slower rotations than the axisymmetric instabilities,

and are hence the most dominant.

In this section we study scalar and vector perturbations of these BHs. We

begin by reviewing the harmonic tensors needed for the separation of variables,

and then discuss our numerical results.

3.4.1 Charged harmonic tensors on CPN

We now review charged scalar and vector harmonic tensors on CPN which allow

the separation of variables for linearised gravitational perturbations. Charged

scalar harmonics were studied in [48], and vector harmonics in [24]. By charged

harmonics we mean those tensors which are eigentensors with respect to the deriva-

tive operator

D̂a ≡ ∇̂a − imAa, (3.29)

where ∇̂ is the covariant derivative on CPN , and Aa is again related to the Kähler

form via J = dA/2. This is the natural derivative operator given the appearance

of the Hopf fibration in the BH metric. The charge of a given harmonic is m,

which we take to be an integer.

Scalar harmonics

Charged scalar harmonics are functions of the CPN coordinates which satisfy

(D̂2 + λS)S = 0. (3.30)
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Here the eigenvalue is a function of two quantized parameters, (κ,m):

λS = l(l + 2N)−m2, l = 2κ+ |m|, (3.31)

where κ = 0, 1, 2..., and m ∈ Z. Charged scalar-derived vectors can be obtained

by differentiating,

Sa = − 1√
λS
D̂aS. (3.32)

These can be further decomposed into Hermitian and anti-Hermitian parts

J b
a S±b = ∓iS±a . (3.33)

Lastly, the scalar-derived tensors are given by

S++
ab = D̂+

(aS
+
b), S−−ab = D̂−(aS

−
b), S+−

ab = D̂+
(aS
−
b)+D̂

−
(aS

+
b)−

1

2N
ĝabD̂·S. (3.34)

Here D̂±a is the (anti-)Hermitian projection of the D̂ operator, D̂±a = 1
2

(
δa
b ± iJab

)
D̂b.

Vector harmonics

Next we consider the vector harmonics which only exist for N ≥ 2. These are

also eigenfunctions of D̂2 which transform as vectors in CPN and which are also

transverse with respect to D̂a:

(D̂2 + λV )Va = 0, D̂aVa = 0. (3.35)
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Just as the scalar-derived vectors, these may be further characterized according

to their eigenvalue under the complex structure,

J b
a Vb = −iεVa, ε = ±1. (3.36)

The vector-derived tensors are given by

V±ab = − 1√
λV

D̂±(aVb). (3.37)

The eigenvalues were first computed in [24] for the uncharged case, m = 0,

λ
(m=0)
V = 4κ(κ+ 2) + 2(N + 1)(2κ+ 3). (3.38)

In Appendix 3.A we extend this result for non-zero m in the N = 2 case 10:

λ
(N=2)
V = 4κ (κ+ 3 + |2 +mε|) + 6|2 +mε|+ 6 + 2mε. (3.39)

3.4.2 Perturbation decomposition and equations

In order to implement the harmonic decomposition of the perturbation, it will

be useful to introduce the 1-forms, eA, where A ∈ (0, 1, 2):

e0 =
p(r̂)1/2

h(r̂)1/2
dt, e1 = p(r̂)−1/2dr̂, e2 = r̂h(r̂)(dψ + Aadx

a − u(r̂)dt). (3.40)

10There a third integer appeared, ñ, in addition to the (κ,m). In what follows we have set
ñ = 1 without loss of generality.
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The scalar sector of metric perturbations is then

hAB = fABS, (3.41)

hAa = r̂(f+
A S

+
a + f−A S

−
a ), (3.42)

hab = − r̂2

λ1/2
(H++S++

ab +H−−S−−ab +H+−S+−
ab ) + r̂2HLĝabS, (3.43)

and the vector sector is

hAB = 0, hAa = r̂f
(V )
A Va, hab = − r̂2

λ1/2
(H+V+

ab +H−V−ab). (3.44)

Here the perturbation functions fAB, f
+
A , etc are functions of the non-CPN coor-

dinates (r, t, ψ), analogous to the f
(S)
AB , f

(S)
A , etc functions introduced in the the

Kodama-Ishibashi decomposition for perturbations of Schwarzschild reviewed in

Sec. 3.3.1 11. Separation of the perturbation equations requires that the (t, ψ)-

dependence is e−i(ωt−mψ). The value of m provides an important characterization

of the perturbation. Those with m = 0 are axisymmetric, while those with m 6= 0

are non-axisymmetric.

This decomposition in terms of CPN harmonic tensors parallels the one based

on S2N+1 tensors used in the Kodama-Ishibashi formalism applied to Schwarzschild.

Using this decomposition Kodama and Ishibashi constructed gauge invariant vari-

ables and were furthermore able to reduce the number of independent functions to

one–the so called master variable. Unfortunately we do not know how to define a

master variable for our system of equations, and will therefore impose a gauge and

11Note that the ± superscript indicates a (anti)-Hermitian projection when it appears on a
CPN harmonic, i.e. S+

a , and is simply a label when it appears on the perturbation functions,
for example f+

A .
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solve the coupled ODE’s 12. The gauge we will work in is the traceless transverse

gauge,

h = gµνhµν = 0, ∇µhµν = 0. (3.45)

In this gauge the Einstein equations take the simple form:

∇2hµν + 2Rµρνσh
ρσ = 0. (3.46)

3.4.3 Numerical results

Here we present our results for the QNMs of equal angular momenta Myers-

Perry (MP) BHs in odd dimensions d ≥ 5. To discuss the results, first note

that when the rotation vanishes, the Schwarzschild background has the discrete

symmetry t→ −t; consequently the associated QNM frequencies always come in

trivial pairs of {ω,−ω∗}. The t → −t symmetry is broken when the rotation is

turned on and for each pair of angular quantum numbers {κ,m} we have a pair

of modes that are no longer trivially related. However since the rotating BHs

we consider are stationary and axisymmetric, they have the symmetry (t, ψ) →

(−t,−ψ) and thus we can focus our attention only on modes with m ≥ 0, say.

Indeed there are two family of modes for each m, one with Re(ω) > 0 and the other

with Re(ω) < 0. It follows from the (t, ψ) symmetry that modes with negative

azimuthal number −m just trade the sign of the frequencies of the m > 0 modes.

Secondly, we will be primarily interested in instabilities, as they are by far

12Two comments are in order. Firstly, it has been shown by Kol that constraint-free gauge
invariant variables can always be constructed from linearised perturbations of cohomogeneity-1
spacetimes [49]. Rather than working with these variables we find it more convenient to impose
the gauge directly. Secondly, master variables have been successfully defined for these EAM-MP
BHs in the special case of d = 5 by using a decomposition different from ours [25].
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the most important perturbations. By definition (see the discussion at the end of

Sec. 3.3.2 above) unstable modes have lower overtone than stable modes. There-

fore we will mostly be interested in the lowest (unstable) overtone.

Lastly, the numerical methods used are the same as in Sec. 3.3, but adjusted

to allow for coupled ODE’s rather than a single ODE. Once again a compactified

radial coordinate r̂ = r+/z is used, and the grid is Chebyshev, as before. Here we

omit a detailed description of the boundary conditions. They are still determined

by the physical condition of being ingoing at the horizon and outgoing at infinity,

but the exact form they take depends on the perturbation sector, the dimension,

and the CPN quantum numbers. The reason for the perhaps unexpected depen-

dence on these last two quantities is due to the fact that for certain dimensions

and quantum numbers various CPN harmonics vanish. For example, in N = 1,

S+− = 0 and in all N , S++ = 0 for κ = 1, m > 0. We refer the interested reader

to Ref. [23] for a discussion of boundary conditions that can easily be adapted to

specific cases.

Scalar modes

The scalar sector of perturbations is again the most complicated, involving the

largest number of perturbation functions. Recall that charged scalar harmonics

on CPN are characterized by two integers, (κ,m). Axisymmetric modes (m = 0)

were first studied in [23] where it was found that the (2, 0) mode was ultraspinning

unstable for odd d ≥ 7 (see footnote 2). Ref. [5] studied scalar perturbations for

m 6= 0 where a bar-mode instability was found for the (0,m) mode for m ≥ 2.

Ref. [23] first found the axisymmetric, ultraspinning instability by studying

58



Quasinormal modes of asymptotically flat rotating black holes Chapter 3

the related problem of the Gregory-Laflamme instability for these rotating BHs.

It was expected that the instability would produce a zero mode at the threshold

of instability, i.e. ω = 0, and that for larger rotations it would take the form

ω = iK(a), with K(a) a positive an increasing function of the rotation a. The

approach of [23] only allowed for the determination of ω at and above the threshold

of instability. However, our methods allow us to follow this mode all the way down

to zero rotation and find its Schwarzschild limit. This is shown in Fig. 3.9 in which

the QNM frequency associated with the (2, 0) ultraspinning instability is plotted

for d = 11 and d = 13 13. Interestingly, we find that ω is always purely imaginary

and, at zero rotation, this mode connects to a Schwarzschild vector mode with˜̀
V = 3.

Next we consider the bar-mode instability. In Fig.’s 3.10, 3.11, and 3.12 we

plot the real and imaginary parts of the dominantly unstable bar-mode14 for the

(0,m) mode for m = 2, 3, 4. The (0, 2) mode is unstable for d ≥ 7, while the (0, 3)

and (0, 4) modes are unstable for d ≥ 9. Of all the bar-mode instabilities found,

the (0, 2) mode is most unstable, i.e. it has the largest growth rate, Im(ω). These

bar-modes connect to Schwarzschild scalar modes with ˜̀S = 2 at zero rotation.

To conclude our investigation of the scalar sector, in Fig. 3.13 we plot the

dominant QNM for the (κ,m) = (1, 1) sector. Here we find instabilities for d ≥ 9.

These modes connect to the Schwarzschild vector mode with ˜̀
V = 5 at zero

rotation. Of course there are an infinite number of modes we have omitted, but

13We could of course study other dimensions quite easily in principle, but oddly it becomes
numerically difficult to isolate this mode for smaller values of d, although it is undoubtedly
present.

14By dominantly unstable we mean the frequency with the largest value of Im(ω), considered
as function of the rotation. Here we stress that as the rotation is tuned, the QNM frequencies
can cross, and we are plotting the modes which attain the largest Im(ω) for all a.
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it’s quite reasonable that the physical importance of these will be subdominant

to the modes studied here. In Table 3.1 we list the critical rotations for the

instabilities studied.
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Figure 3.9: EAM MP. Left Panel: The purely imaginary (2, 0) frequency for
d = 11 (circles) and d = 13 (squares). The large dots at a = 0 correspond to
a Schwarzschild vector modes with ˜̀V = 3. Right Panel: A zoomed in plot
showing the modes crossing the instability threshold.

A very important quantity for non-axisymmetric modes is the so-called su-

perradiant factor, $ = Re(ω) − mΩH . The energy flux through the horizon is

proportional to this factor. When it is negative, the energy flux across the horizon

is negative and the perturbation is said to be superradiant. The first law, applied

to a process that extracts the energy δE = −Re(ω) and the angular momentum

δJ = −m to the BH, yields that the change in horizon area is controlled by $:

δAH ∝ [mΩH −Re(ω)] = −$. Therefore, the second law, δAH ≥ 0, requires that

any unstable mode (whose growth rate is sourced by energy and momenta ex-
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Figure 3.10: EAM MP. Real (left panel) and imaginary (right panel) parts
of the QNM frequency for the (0, 2) scalar mode for d = 5 (filled-in circles),
d = 7 (filled-in squares), d = 9 (filled-in diamonds), d = 11 (filled-in triangles),
d = 13 (filled-in upside-down triangles), and d = 15 (open circles). For zero
rotation the frequencies reduce to the ˜̀S = 2 scalar modes of Schwarzschild,
which are depicted by large black dots. These were calculated using a separate
code based on the KI master equation.

tracted from the BH) must satisfy $ ≤ 0. We have explicitly checked that $ < 0

for the non-axisymmetric bar-mode instabilities we found numerically. Note that

these modes have Im(ω) > 0 and m 6= 0, so in a non-linear time evolution the

system will have to radiate since the associated linear mode breaks axisymmetry.

Vector modes

Since CPN charged vector harmonics only exist forN ≥ 2, vector perturbations

only exist for d ≥ 7. In order to study these perturbations, the spectrum of

charged vector harmonics is needed. For N = 2 we derived this in Appendix

3.A. For all other N , the result is only known for uncharged (m = 0) harmonics.
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Figure 3.11: EAM MP. Real (left panel) and imaginary (right panel) parts
of the QNM frequency for the (0, 3) scalar mode for d = 5 (filled-in circles),
d = 7 (filled-in squares), d = 9 (filled-in diamonds), d = 11 (filled-in triangles),
d = 13 (filled-in upside-down triangles), and d = 15 (open circles). For zero
rotation the frequencies reduce to the ˜̀S = 3 scalar modes of Schwarzschild,
which are depicted by large black dots. These were calculated using a separate
code based on the KI master equation.

Therefore, we are able to exhaustively study vector perturbations only in d = 7.

We also studied axisymmetric perturbations for d = 9, 11, 13, 15. In no cases were

instabilities found.

We now present our results for d = 7. Since there are no special modes to

single out, i.e. ones that become unstable, in Fig. 3.14 we plot the complex QNM

frequencies for some of the d = 7 vector modes. Here we need to be careful. Using

our explicit construction of the charged vector harmonics, we can verify that for

κ = 0, one or both vector-derived tensors vanish (recall this also happened for

the scalar perturbations). To discuss this, it is useful to introduce the parameter

α = 2 + mε. For α = 0, both vector-derived tensors vanish. For α > 0, ε = ±1,
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Figure 3.12: EAM MP. Real (left panel) and imaginary (right panel) parts
of the QNM frequency for the (0, 4) scalar mode for d = 5 (filled-in circles),
d = 7 (filled-in squares), d = 9 (filled-in diamonds), d = 11 (filled-in triangles),
d = 13 (filled-in upside-down triangles), and d = 15 (open circles). For zero
rotation the frequencies reduce to the ˜̀S = 4 scalar modes of Schwarzschild,
which are depicted by large black dots. These were calculated using a separate
code based on the KI master equation.

V ± = 0, and for α < 0, ε = ±1, V ∓ = 0.

3.4.4 Unstable black holes in the large-d Limit

The large range of dimensions studied in this section allows for some interest-

ing observations concerning the large-d limit. As the dimension grows, it seems

like some of the QNM frequencies are approaching limiting values. In particular,

the critical rotation seems to approach a limiting value. This motivates a connec-

tion with the saturating Schwarzschild modes, discussed in Sec. 3.3. In Fig. 3.16

we plot in black both the low-lying ˜̀S = 2 saturating and scaling QNM curves of
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Figure 3.13: EAM MP. Real (left panel) and imaginary (right panel) parts
of the QNM frequency for the (1, 1) scalar mode for d = 7 (circles), d = 9
(squares), d = 11 (diamonds), and d = 13 (triangles). For zero rotation the
frequencies reduce to ˜̀V = 5 vector modes of Schwarzschild, which are depicted
by red dots. These were calculated using a separate code based on the KI master
equation.

the Schwarzschild solution in the complex ω plane. On top of this we also show, in

color, the complex frequencies associated with the (κ,m) = (0, 2) bar-mode insta-

bility for equal angular momenta MP BHs. For d = 5, 7, the MP curves connect to

the scaling Schwarzschild mode but, for d = 9, 11, 13, 15, they connect to the sat-

urating Schwarzschild mode. Similar results hold for the other instabilities found.

In particular, the (0,m) bar-modes connect to the saturating Schwarzschild scalars

with ˜̀S = m, and, for large enough dimension, the (κ,m) = (2, 0) ultraspinning

mode connects to the saturating Schwarzschild vector mode with ˜̀V = 3. We

expect the (κ,m) = (1, 1) instability to connect to a saturating vector for ˜̀V = 5,

but we have not verified this, since as ˜̀ increases it takes larger d values to see the
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d (2, 0) (0, 2) (0, 3) (0, 4) (1, 1)
7 0.99998 0.8109 stable stable stable
9 0.9979 0.7463 0.8644 0.9291 0.9252
11 0.9921 0.7413 0.8547 0.9052 0.9024
13 0.9850 0.7369 0.8504 0.9011 0.8873
15 0.9777 0.7331 0.8464 0.8973 −

Table 3.1: Critical rotation ac/aext at which the instabilities set in for (κ,m)
scalar sector of perturbations. d = 5 is linearly stable. Dashes indicate modes
for which no data exists. The (2, 0) data is taken from [23], [24]. In the
dimensions where we independently have data for the (2, 0) mode we agree
with [23], [24] to within a few percent.
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Figure 3.14: EAM MP. Left Panel: κ = 0 vector QNM frequencies for
(m, ε) = (1, 1) (magenta), (2, 1) (blue), (1,−1) (yellow), (2,−1) (green). Right
Panel: κ = 1 vector QNM frequencies for m = 0 (magenta), and (m, ε) = (1, 1)
(blue), (1,−1) (yellow). At zero rotation the curves connect to Schwarzschild
vector modes (red dots) and tensor modes (blue dots) of various ˜̀ values. The
first few overtones of each harmonic (labelled by (κ,m, ε)) are shown.

QNM begin to saturate. To summarize, it seems that in all cases we can study,

the instabilities of these MP BHs, for sufficiently large d, can be connected to

saturating Schwarzschild modes in the zero rotation limit.

Thus, we see that the existence of saturating modes in the Schwarzschild geom-

etry seems to be essential to allow for instabilities of rotating BHs for arbitrarily
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large-d. Indeed, if there were no such saturating modes, then an unstable mode

of a large-d MP BH would necessarily start off far from the origin in the complex

plane, and would need to move a large distance in order to become unstable for a

finite value of the rotation. This seems particularly unlikely for the equal angular

momenta case as the rotation cannot be taken arbitrarily large. Therefore, any

instability of equal angular momenta MP BHs that persists for arbitrarily large-d

is very likely connected to a saturating Schwarzschild mode. One of the moti-

vations for studying the equal angular momenta case was the expectation that

it might be representative of generic MP BHs which have no vanishing angular

momenta. These BHs also have an upper bound on the rotations, and are likely

to suffer from instabilities similar to the equal angular momenta BHs. Therefore,

we conjecture that, for sufficiently large-d, all unstable modes of MP BHs with no

vanishing angular momenta are connected to saturating Schwarzschild modes in

the zero rotation limit.

Next, we discuss a second interesting feature of large-d unstable BHs. Above

we remarked that any unstable modes must satisfy $ ≤ 0. Suppose that both

$ and Im(ω) cross zero at the same critical rotation for some bar-mode instabil-

ity (so with m 6= 0). This is a particularly interesting possibility because then

we exactly have ω = mΩH at the threshold of the instability, and although the

perturbation breaks the t, ψ-translational symmetries, it is invariant under the

horizon-generating Killing field, K = ∂t + ΩH∂ψ. This is not an academic as-

sumption since it actually happens for superradiant instabilities in the Kerr-AdS

BH, and it signals the existence of a new family of BHs that are neither axisym-

metric nor time independent, but are invariant under the linear combination K
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Figure 3.15: EAM MP. The logarithm of the absolute value of the superradi-
ant factor for the scalar (0,2) mode (bottom curve), (0,3) mode (middle curve),
and (0,4) mode (top curve), plotted as a function of d.

(see [30, 4] and references therein). It is thus interesting to investigate whether or

not this is also the case for the asymptotically flat bar-mode instabilities, i.e. if

ω = mΩH when Im(ω) = 0 in the MP BHs. In Fig. 3.15 we plot log10(−$) at the

threshold of the instability (where Im(ω) = 0) for the (0,m) bar-modes studied 15.

Interestingly, it appears that as the dimension increases, this factor quickly goes

to zero 16. This agrees with analytic results for the large-d limit of the m−bar

instability [44]. Thus, in analogy with the single Killing field BHs that have been

conjectured to exist in AdS [4], it seems like large-d asymptotically flat BHs only

approximately allow for such solutions, with the approximation becoming better

as d increases.

15The negative of the superradiant factor is considered because by the area law one must have
$ ≤ 0 at the threshold.

16We do not observe a similar trend for the other bar-mode instability studied, the (1, 1)
mode. It could be that such an effect is not present for this mode, or it could be that it is, and
we simply don’t have data for large enough dimensions to observe it.
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In Sec. 3.3 saturating QNMs of Schwarzschild were studied, and the existence

of these modes supported the idea that gravity in the large-d limit still retains

some very interesting features. The results of this section further support this in-

terpretation, as we have seen that some of the most interesting physics of rotating

BHs, namely linearly instabilities, survives the large-d limit.

Figure 3.16: EAM MP. The QNM frequency ω in the complex plane for dif-
ferent BHs. The curves in black represent the ˜̀S = 2 Schwarzschild frequencies
(the smallest d is indicated with a large dot. The dimension then increases
along the curves). The top and bottom curves correspond to the scaling and
saturating modes discussed in Sec. 3.3, respectively. The coloured curves cor-
respond to the (0, 2) scalar frequencies for equal angular momenta MP BHs.
At zero rotation the MP frequencies agree with the Schwarzschild modes, and
as the rotation increases the frequencies move upwards in the complex plane,
becoming unstable for d ≥ 7. For d = 5, 7, the MP curves connect to the scaling
Schwarzschild mode, while for d ≥ 9 they connect to the saturating mode.

3.5 Singly Spinning MP black holes

The singly spinning MP BH can be written as direct sum of the metrics of

a 4-dimensional orbit space gAB
(
xC
)
, with A,B,C = {t, r, x̃, φ}, and spherical
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fibres:

ds2 = gµνdx
µdxν = gAB

(
xC
)
dxAdxB +R2

(
xC
)
dΩ2

d−4, (3.47)

where R = rx̃ and dΩ2
d−4 = γi,jdx̂

idx̂j is the line element of a unit-radius (d− 4)-

sphere (we will use small latin indices i, j to describe the coordinates on the

sphere). We can decompose perturbations on this background according to how

they transform under diffeomorphisms of the sphere Sd−4. More concretely, an

arbitrary metric perturbation hµν can be decomposed into perturbations of scalar,

transverse vector, and transverse traceless tensor types on Sd−4.17 Ref. [42]

studied in detail the tensor sector of perturbations. They found no instability in

this sector and computed its QNM frequencies. We will have nothing to add to

this tensor sector analysis. Our aim in this subsection is to study the spectrum of

QNMs and instabilities in the scalar and vector sectors since this study is missing.

We are particularly motivated by the fact that two known instabilities of the MP

BH, namely the bar-mode [20, 28, 29] and ultraspinning [20, 26, 40] instabilities

are precisely in the scalar sector of perturbations.

We briefly summarize the novel results that emerge from the study we do next.

We will find the (most relevant, low-lying) scalar and vector QNMs of the singly

spinning MP BH and will compute the timescale of the bar-mode instability that

is present in d ≥ 6. As a major result we find that the d = 5 singly spinning MP

BH is linearly stable in the sense that we find no linear instability; in particular,

17 Note that the KI formalism for the Schwarzschild BH of Section 3.3 uses the harmonic de-
composition of perturbations on a Sd−2 sphere [31], while in the singly spinning MP background
of this Section we will use a harmonic decomposition with respect to Sd−4. To distinguish the
different dimensionality of these two families of harmonics we will use a different notation, i.e.
S,Va,Tab and `S , `V , `T for the decomposition on the Sd−4 instead of the notation S, Va, Tab
and ˜̀S , ˜̀V , ˜̀T employed in the Sd−2 decomposition.
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we find that it does not have a linear bar-mode instability (a bar-mode instability

was reported to be present also in the d = 5 BH in the time evolution study of

[28, 29]).

Technically, we find convenient to introduce the dimensioneless rotational pa-

rameter α and new coordinates {T, y, x, xi} related to the standard coordinates

{t, r, x̃, xi} as

α = a/r+ ; t = r+T , r =
r+

1− y2
, x̃ = x

√
2− x2, (3.48)

where y is a compact radial coordinate, 0 ≤ y ≤ 1, with horizon at y = 0

and asymptotic spatial infinity at y = 1, and the new polar coordinate x ranges

between 0 ≤ x ≤ 1. With these new coordinates gtt and gφφ vanish quadratically

as y2 and (1−x2)2 at the horizon and pole, respectively, as they should at a bolt.

Moreover, in this coordinate frame the boundary conditions will be much simpler.

In these coordinates the geometry of the singly spinning MP BH reads

ds2 =
∆yΣy

ρy
y2dT 2 +

4Σy

(1− y2)4 ∆y

dy2 +
4Σy

(2− x2) (1− y2)2 dx
2 (3.49)

+
(1− x2)

2
ρy

(1− y2)2 Σy

(
dφ− α (1− y2)

2

ρy

(
α2
(
1− y2

)2
+ 1− y2∆y

)
dT

)2

+
x2 (2− x2)

(1− y2)2 dΩ2
d−4
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where

∆y =
(1− y2)

2

y2

∆(y)

r2
+

, Σy = α2x2
(
2− x2

) (
1− y2

)2
+ 1 ,

ρy =
[
α2
(
1− y2

)2
+ 1
]2

− α2
(
1− x2

)2 (
1− y2

)2
y2∆y . (3.50)

3.5.1 Scalar QNMs (d ≥ 5). Bar-mode and ultraspinning

instabilities

Scalar perturbations of the singly spinning MP background can be expanded

in terms of a basis of scalar harmonic S on the unit sphere Sd−4 that solve the

eigenvalue equation (see footnote 17)

(�Sd−4 + λS) S = 0 , (3.51)

where λS is the eigenvalue, and � = DiDi with D being the derivative defined by

the metric γij of the base space Sd−4. Regularity of the scalar harmonics requires

λS = `S (`S + d− 5) , with `S = 0, 1, 2, · · · . (3.52)

Note that the angular base space is exactly a sphere. Therefore the perturbation

equations and solutions are independent of the azimuthal quantum number of the

S(d−4). They only depend on the quantum number `S that measures the number

of nodes along the polar direction of the S(d−4). Out of this scalar harmonic we

can construct a scalar-type vector harmonic Si and a traceless scalar-type tensor
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harmonic Sij as

Si = − 1√
λS
DiS , Sij =

1

λS
DiDjS +

1

d− 4
γijS . (3.53)

Scalar perturbations are then given by

hab = fabe
−iωteimφS, hai = fae

−iωteimφSi, hij = e−iωteimφ (HLγijS +HTSij) ,(3.54)

with fab, fa, HT , HL functions of {r, x̃}, and we used the fact that ∂t and ∂φ are

Killing vector fields of the background to do a Fourier decomposition along these

directions.

We will restrict our analysis to s-wave modes, i.e. modes with `S = 0, which

effectively means that we set fa = 0 = HT . This considerably reduces the compu-

tational cost of our task since we “just” have to solve a coupled PDE system of

ten equations for ten variables fab, HL; a task that is itself already hard even nu-

merically. Moreover, the most interesting properties of the scalar perturbations,

namely the bar-mode and ultraspinning instabilities, are precisely in this s-wave

sector.

In the sequel we describe the procedure we find most tractable to solve the

technical problem at hand. We find convenient to introduce the tetrad basis

e(1) = dt− α
(
1− x2

)2
dφ , e(2) = dy , e(3) = dx ,

e(4) = −α
(
1− y2

)2
dt+

[
1 + α2

(
1− y2

)2
]
dφ , e(i) = êi , (3.55)

where êi are a vielbein for the metric dΩ2
(d−4) of the unit-radius (d − 4)-sphere.
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This basis has a diagonal metric (with elements that are not equal to unity) and

considerably simplifies the computations. The most general scalar perturbation

has eleven non-vanishing tetrad components namely, e−iωteimφh(a)(b), with a, b =

1, 2, 3, 4 and h(i)(i) = e−iωteimφh(Ω)(Ω) for i = 5, · · · d. Since h is a symmetric tensor

this gives a total of 11 unknown functions.

We choose to work in the traceless-transverse (TT) gauge,

h
(a)

(a) = 0 , ∇(a)h(a)(b) = 0 . (3.56)

In this gauge the linearised Einstein equations read

(∆Lh)(a)(b) ≡ −∇(c)∇(c)h(a)(b) − 2R
(c) (d)

(a) (b) h(c)(d) = 0 , (3.57)

where ∆L is the Lichnerowicz operator and R the Riemann tensor.

The traceless condition can immediately be used to eliminate h(Ω)(Ω) since it

can be written as an algebraic relation as a function of {h(1)(1), h(2)(2), h(3)(3), h(4)(4)}.

The transverse conditions give algebraic relations that could be used to eliminate

further variables but we find that this yields complicated equations of motion

that increase the numerical error in our computations. Instead we identify the

following system of PDEs

(∆Lh)(1)(3) = 0 , (∆Lh)(2)(2) = 0 , (∆Lh)(2)(3) = 0 ,

(∆Lh)(2)(4) = 0 , (∆Lh)(3)(3) = 0 , (∆Lh)(3)(4) = 0 ,

∇(a)h(a)(1) = 0 , ∇(a)h(a)(2) = 0 , ∇(a)h(a)(3) = 0 , ∇(a)h(a)(4) = 0 ,

(3.58)
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which give a system of 10 independent equations to solve for the 10 independent

variables h(a)(b), with a, b = 1, 2, 3, 4. Note that we have explicitly checked that

this system of 10 equations closes the Lichnerowicz system, i.e. that the equations

(3.58) imply that the remaining equations in (3.57) are also obeyed.

Boundary conditions

To discuss the boundary conditions (BCs) on the future event horizon H+

we introduce the ingoing Eddington-Finkelstein (EF) coordinates {v, φ̃} that are

regular at H+

dT = dv −
2
(

1 + α2 (1− y2)
2
)

y (1− y2)2 ∆y

dy , dφ = dφ̃− 2α

y∆y

dy . (3.59)

The BC at the future horizon requires that the metric components h(a)(b) are

smooth functions of the ingoing EF coordinates {v, y, x, φ̃, xi} at y = 0. This

requires the BCs

h(1)(1)

∣∣
y=0
∼ y

−2 i
ω−mΩH

4πTH H11(x) , h(1)(2)

∣∣
y=0
∼ y

−2 i
ω−mΩH

4πTH
−1
H12(x) ,

h(1)(3)

∣∣
y=0
∼ y

−2 i
ω−mΩH

4πTH H13(x) , h(1)(4)

∣∣
y=0
∼ y

−2 i
ω−mΩH

4πTH H14(x) ,

h(2)(2)

∣∣
y=0
∼ y

−2 i
ω−mΩH

4πTH
−2
H22(x) , h(2)(3)

∣∣
y=0
∼ y

−2 i
ω−mΩH

4πTH
−1
H23(x) ,

h(2)(4)

∣∣
y=0
∼ y

−2 i
ω−mΩH

4πTH
−1
H24(x) , h(3)(3)

∣∣
y=0
∼ y

−2 i
ω−mΩH

4πTH H33(x) ,

h(3)(4)

∣∣
y=0
∼ y

−2 i
ω−mΩH

4πTH
−1
H34(x) , h(4)(4)

∣∣
y=0
∼ y

−2 i
ω−mΩH

4πTH H44(x) ,(3.60)

where Hab(x) are smooth functions of x.

At spatial infinity, y → 1, i.e. r → ∞, we demand that the perturbations
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preserve the asymptotic flatness of the spacetime. This means that they must

decay strictly faster than the asymptotic Minkowski background asymptotic. In

this asymptotic region, the Lichnerowicz equation (3.57) reduces to �h(a)(b) = 0.

We would like to solve this system to find the exact decay of the asymptotic

solutions. À priori this is a hard task since, in the spherical coordinate system

we work, the non-vanishing connections in the differential operator means that

we have a coupled system of 10 differential equations to solve for. However,

we can make our life considerably easier and get the desired result by solving a

single ODE. The procedure is the following. Consider Minkowski spacetime and

the perturbation components h′ab in Cartesian coordinates. In these conditions

the affine connection vanishes and �h′ab = 0 reduces simply to ∂c∂
ch′ab = 0. A

Fourier decomposition in the time direction, h′ab = e−iωth′ab allows to write it as

∇2h′ab = −ω2h′ab. Using the spherical harmonic decomposition of the perturbation

h′ab = h′ab(r)Y`(x) and writing the spatial operator in spherical coordinates this

equation reads

1

rd−2
∂r
(
rd−2∂rh

′
ab

)
+
`(`+ d− 3)

rd−2
h′ab = −ω2h′ab. (3.61)

Near spatial infinity, h′ab behaves as h′ab
∣∣
r→∞ ∼ Cin r

− d−2
2 e−iωr + Cout r

− d−2
2 eiωr

where the amplitudes {Cin, Cout} are a function of {A,B}. Asymptotically we

want outgoing waves so we impose the BC Cin = 0. We conclude that all the

Cartesian components of the perturbation must decay asymptotically as h′ab ∼

r−
d−2

2 eiωr in order to have outgoing BCs that preserve the asymptotic Minkowski

structure of the spacetime. We can now apply a coordinate transformation from
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Cartesian to our spherical coordinates {t, y, x, φ, xSd−4} to find the decays of h(a)(b)

in the spherical frame. In this process we keep in mind that we are interested

only in scalar perturbations so we do not consider the vector contributions here.

We find that scalar perturbations with asymptotically Minkowski outgoing BCs

behave as:

h(1)(1)

∣∣
y=1
∼
(
1− y2

) d−2
2 e

iω
1−y2H11(x) , (3.62)

h(1)(2)

∣∣
y=1
∼
(
1− y2

) d−2
2
−2
e

iω
1−y2H12(x) ,

h(1)(3)

∣∣
y=1
∼
(
1− y2

) d−2
2
−1
e

iω
1−y2H13(x) ,

h(1)(4)

∣∣
y=1
∼
(
1− y2

) d−2
2
−1
e

iω
1−y2H14(x) ,

h(2)(2)

∣∣
y=1
∼
(
1− y2

) d−2
2
−4
e

iω
1−y2H22(x) ,

h(2)(3)

∣∣
y=1
∼
(
1− y2

) d−2
2
−3
e

iω
1−y2H23(x) ,

h(2)(4)

∣∣
y=1
∼
(
1− y2

) d−2
2
−3
e

iω
1−y2H24(x) ,

h(3)(3)

∣∣
y=1
∼
(
1− y2

) d−2
2
−2
e

iω
1−y2H33(x) ,

h(3)(4)

∣∣
y=1
∼
(
1− y2

) d−2
2
−2
e

iω
1−y2H34(x) ,

h(4)(4)

∣∣
y=1
∼
(
1− y2

) d−2
2
−2
e

iω
1−y2H44(x) ,

(3.63)

where Hab(x) are smooth functions of x.

To find the BCs at the equator, x = 0 where gΩΩ → 0, we require that the

metric perturbation habdx
adxb is a regular symmetric 2-tensor when expressed in

coordinates where the background metric is regular. A procedure similar to the
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one described in detail in Section 3.3 of [40] yields that smooth BCs at x = 0

require that

h(a)(b)

∣∣
x=0
∼ xHab(y) , for (a)(b) = {(1)(3), (2)(3), (3)(4)};

h(a)(b)

∣∣
x=0
∼ Hab(y), otherwise (3.64)

where Hab(y) are smooth functions of y.

Finally we discuss the BCs that the metric perturbations must satisfy at the

axis of rotation, x = 1, where ∂φ vanishes. Near x = 1, a generic component of the

metric behaves as h(a)(b) = (1−x)βjh(a)(b)(y) for some constant βj that generically

is a function of the azimuthal quantum number m associated with the Killing field

∂φ. Our task is to find the ten βj’s that yield smooth perturbations at x = 1.

These can be determining introducing the Cartesian coordinates {X, Y } as ρ ≡

1−x =
√
X2 + Y 2 and φ = ArcTan (Y/X) and then requiring the absence of non-

analytical or divergent contributions (e.g. of the type
√
X2 + Y 2 or (X ± i Y )−1)

on each component of the metric perturbation in this frame. This requires the

BCs at x = 1:

h(1)(1)

∣∣
x=1
∼ (1− x)mH11(y) , h(1)(2)

∣∣
x=1
∼ (1− x)mH12(y) ,

h(1)(3)

∣∣
x=1
∼ (1− x)m−1H13(y) , h(1)(4)

∣∣
x=1
∼ (1− x)mH14(y) ,

h(2)(2)

∣∣
x=1
∼ (1− x)mH22(y) , h(2)(3)

∣∣
x=1
∼ (1− x)m−1H23(y) ,

h(2)(4)

∣∣
x=1
∼ (1− x)mH24(y) , h(3)(3)

∣∣
x=1
∼ (1− x)β1 H33(y) ,

h(3)(4)

∣∣
x=1
∼ (1− x)β2 H34(y) , h(4)(4)

∣∣
x=1
∼ (1− x)β3 H44(y) , (3.65)
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where Hab(y) are smooth functions of y and the exponents β1,2,3 depende on m

and are given by

 {β1, β3, β3} = {1, 2, 3} , if m = 1 ,

{β1, β3, β3} = {m− 2,m− 1,m} , if m ≥ 2 ,
(3.66)

For reasons that will be explained in Section 3.6, we will not present results for

m = 0 scalar modes.

Numerical procedure

To solve numerically the equations of motion it is a good idea to factor out

the singularities and/or leading behaviour identified in (3.60), (3.62), (3.64) (3.65)

which allows to work with manifestly analytic functions. Hence we introduce the
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new independent variables q1, · · · , q10 defined as

h(1)(1) = (1− x)m y
−2 i

ω−mΩH
4πTH

(
1− y2

) d−2
2 e

iω
1−y2 q1 ,

h(1)(2) = (1− x)m y
−2 i

ω−mΩH
4πTH

−1 (
1− y2

) d−2
2
−2
e

iω
1−y2 q2, ,

h(1)(3) = x (1− x)m−1 y
−2 i

ω−mΩH
4πTH

(
1− y2

) d−2
2
−1
e

iω
1−y2 q3 ,

h(1)(4) = (1− x)m y
−2 i

ω−mΩH
4πTH

(
1− y2

) d−2
2
−1
e

iω
1−y2 q4 ,

h(2)(2) = (1− x)m y
−2 i

ω−mΩH
4πTH

−2 (
1− y2

) d−2
2
−4
e

iω
1−y2 q5 ,

h(2)(3) = x (1− x)m−1 y
−2 i

ω−mΩH
4πTH

−1 (
1− y2

) d−2
2
−3
e

iω
1−y2 q6 ,

h(2)(4) = (1− x)m y
−2 i

ω−mΩH
4πTH

−1 (
1− y2

) d−2
2
−3
e

iω
1−y2 q7 ,

h(3)(3) = (1− x)β1 y
−2 i

ω−mΩH
4πTH

(
1− y2

) d−2
2
−2
e

iω
1−y2 q8 ,

h(3)(4) = x (1− x)β2 y
−2 i

ω−mΩH
4πTH

−1 (
1− y2

) d−2
2
−2
e

iω
1−y2 q9 ,

h(4)(4) = (1− x)β3 y
−2 i

ω−mΩH
4πTH

(
1− y2

) d−2
2
−2
e

iω
1−y2 q10 . (3.67)

where β1,2,3 are defined in (3.66).

Introducing these new definitions in the equations of motion (3.58), and solv-

ing these equations using a standard Taylor expansion around each of the four

boundaries, it is now straightforward to find the final BCs we need to impose in

each of the variables qj(x, y). Namely, we find simple Robin, Neumann or Dirich-

let BCs for all qj’s at the equator x = 0, axis of rotation x = 1 and horizon y = 0.

At the asymptotic boundary, y = 1 some of the qj’s obey Dirichlet BCs and the

others are subject to less simple Robin BCs.

The equations of motion (3.58) constitute a coupled system of ten partial

differential equations that forms a quadratic eigenvalue problem in the frequency
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ω, for a given mode m. To solve this eigenvalue problem, we use a pseudospectral

collocation procedure to descretize our PDE system. We use a collocation grid,

in the x and y directions, on Gauss-Chebyshev-Lobbato points. Alternatively, to

check results and especially when we want to increase the accuracy of our results

at lower computational cost, we use the novel numerical procedure introduced and

described in [4] and already used in previous sections. This numerical method is

based on the Newton-Raphson root-finding algorithm that searches for specific

QNMs, once a seed solution is given.

As described in detail in Section 3.3, we have also written an independent

code to search directly for the QNMs of the Schwarzschild BH using the Kodama-

Ishibashi (KI) decomposition on a Sd−2[31]. These independent results are very

useful to check the numerical results we get with the codes for the single spin MP

BH when the rotation vanishes. Recall that the KI formalism for the Schwarzschild

BH uses the harmonic decomposition of perturbations on a Sd−2 sphere [31] (while

in the our spinning case we use a harmonic decomposition with respect to Sd−4).

There are scalar, vector and tensor KI modes specified by quantum numbers

that we will denote as ˜̀S, ˜̀V , ˜̀T , respectively. Non-trivial KI perturbations are

described by integer ˜̀S ≥ 2, ˜̀V ≥ 2, ˜̀T ≥ 1. The results from the KI code will

be useful also to establish the relation between the harmonic decomposition on

Sd−4, and associated quantum numbers (`S,m), that we use in our analysis of the

single spin MP BH and the KI harmonic decomposition on Sd−2 and its quantum

numbers ˜̀S, ˜̀V , ˜̀T . In Section 3.3 we were mainly interested in the large-d limit

of Schwarzschild QNMs, while in the present section we will be interested in the

results for d = 5, 6, 7.
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Results

To discuss the results, first note that as for the equal angular momenta case,

we may restrict our attention to modes with m > 0. The argument presented in

Sec. 3.4.3 applies equally well here, since it only relied on the discrete symmetry

(t, φ) → (−t,−φ) that all stationary and axisymmetric BHs possess when φ is

the standard azimuthal coordinate. Secondly, as the modes with smallest −Im(ω)

(i.e. lowest overtone, see the discussion at the end of Sec. 3.3.2) are the slowest to

decay, they are the most important for the time evolution, and we will therefore

focus on them.

Typically, we will express our results using the dimensionless frequency ωr+

and dimensionless rotation a/r+. However, sometimes we will also find convenient

to express our results in terms of the dimensionless quantities ωr0 and dimension-

less rotation a/r0 where r0 is the mass radius related to the horizon radius r+ by

r0 = r+

(
a2

r2
+

+ 1

) 1
d−3

. (3.68)

Finally note that we choose to present results only for d = 5, 6, 7 dimensions

since we expect higher dimensions to have a behavior that is similar to the cases

d = 6, 7.

Consider first the results when the rotation vanishes. The KI scalar, vector

and tensor modes of the Schwarzschild BH (with lower overtone) in d = 5, 6, 7

are listed in Table II of [3] (see footnote 3; these agree with the d = 5 QNMs of

[50]). Some of these KI modes will be represented by red dots in the plots of Figs

3.17-3.22 and they agree with zero rotation results of the single MP analysis.
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Switching-on the rotation, consider first the scalar modes of the singly spinning

MP BH with `S = 0 andm = 2. There is a pair of curves (one with positive and the

other with negative real part) with (`S,m) = (0, 2) in each spacetime dimension

d. Fig. 3.17 shows these pairs of curves for d = 5 (green disk curves), d = 6 (blue

square curves) and d = 7 (black triangle curves); these are the pairs of curves for

the zero overtone solutions. The left panel (right panel) plots the real (imaginary)

part of the dimensional frequency ωr+ as a function of the dimensional rotation

parameter a/r+. When the rotation vanishes these curves coincide exactly with

the KI scalar mode with ˜̀S = 2 of the Schwarzschild BH (see Table II of [3]). It

is interesting to point out that, although not shown in Fig. 3.17, there are other

(`S,m) = (0, 2) scalar modes of MP − with higher overtone and consequently

with higher absolute value of the imaginary part of the frequency − that connect

to even ˜̀S = 4, 6, . . . KI scalar QNMs, to odd ˜̀V = 3, 5, . . . KI vector QNMs, and

to even ˜̀T = 2, 4, 6, . . . KI tensor QNMs when a/r+ → 0. We concentrate on the

lowest-lying modes that are less damped and thus dominate the time evolution of

a perturbed BH.

In Fig. 3.17 we find that there are two modes that stand out, because as the

rotation increases their imaginary part goes from negative to positive. Therefore

they are QNMs at low rotation but they become unstable modes after a critical

rotation. These two modes are plotted in more detail in Fig. 3.18. They are the

low-lying scalar modes with (`S,m) = (0, 2) for d = 6 (blue squares) and d = 7

(black triangles). We identify them as the linear modes that are responsible for the

bar-mode instability that was first conjectured to exist by Emparan-Myers [20] and

later confirmed to be indeed present in a full non-linear time evolution analysis
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Figure 3.17: Single MP. Scalar modes with (`S ,m) = (0, 2) for d = 5 (green
disks), d = 6 (blue squares) and d = 7 (black triangles). These modes reduce
to the ˜̀S = 2 KI scalar QNMs when a/r+ → 0 (pinpointed as red dots; see
Table II of [3]).

of a perturbed singly spinning MP BH by Shibata-Yoshino [29]. Indeed, the

critical rotation at which Im(ωr+) = 0 agrees precisely with the critical rotation

above which the time evolution code of Shibata-Yoshino [29] finds the bar-mode

instability. The values we find for these onset critical rotations are given in Table

3.2 (to be compared with Table I of [29]).

Bar −mode ac/r+ ac/r0

d = 5 Not present Not present
d = 6 0.903± 0.002 0.740± 0.001
d = 7 0.833± 0.002 0.730± 0.001

Table 3.2: Critical dimensionless rotation at which the bar-mode (linear) in-
stability onset occurs.

In the inset plot of the Right Panel of Fig. 3.18 we zoom the bar-mode in-

stability in d = 6 and d = 7 near its onset using the frequency and the rotation
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Figure 3.18: Single MP. bar-mode instability in d = 6 (blue squares) and
d = 7 (black triangles). Left Panel: Real part of the frequency Re(ωr+) as a
function of the dimensionless rotation a/r+. Right Panel: Imaginary part of
the frequency Im(ωr+) as a function of a/r+. The inset plot in the Right Panel
details the bar-mode instability in d = 6 and d = 7 near the onset (this time
in mass radius r0 units) and is further discussed in the text.

in mass radius units, ωr0 and a/r0. Both in d = 6 and d = 7 we find that near

the onset the unstable mode scales as Im (ωr0) ∼ Cτ (a− ac)/r0 with Cτ ∼ 0.521

where ac is the critical rotation above which the instability is present. This be-
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haviour agrees with the linear relation predicted by the time evolution analysis of

Shibata-Yoshino (see discussion associated with equation (61) of [29]).

Figure 3.19: Single MP. Scalar modes with (`S ,m) = (0, 2) for d = 5. There
is no linear bar-mode instability.

Coming back to Fig. 3.17 we find that the (`S,m) = (0, 2) scalar mode does

not become linearly unstable in d = 5, contrary to what happens in d ≥ 6. To

analyse this in more detail, we have followed this (`S,m) = (0, 2) scalar mode

up to rotations a/r+ = 4 using a numerical code with very high precision. The
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Figure 3.20: Single MP. Left Panel: Log plot for the scalar modes with
(`S ,m) = (0, 2) in d = 5. We find that Im (ωr+) = A0e

−γa/r+ with γ ∼ 1.9
and A0 ∼ 0.69. Right Panel: Scalar modes with (`S ,m) = (0, 2) in d = 5. The
green disk curve is the one already shown in Fig. 3.19 and in the left panel of

this Fig. that connects to the KI scalar mode with ˜̀S = 2. The dark-green
triangle curve is also a (`S ,m) = (0, 2) but with higher overtone that connects
to the KI vector mode with ˜̀V = 3 when a/r+ → 0 (see Table II of [3]).

associated results are plotted in Fig. 3.19. Clearly we find no linear bar-mode

instability in d = 5. Actually, as shown in more detail in the log-log plot of the

left panel of Fig. 3.20, a fit of our numerical data indicates that the imaginary

part of the frequency of this modes approaches exponentially zero from below but

never becomes positive. As we pointed out previously, there are other (`S,m) =

(0, 2) scalar modes of MP (with higher radial overtone) besides the one shown in

Fig. 3.19. These modes connect to the even ˜̀S = 4, 6, . . . KI scalar QNMs, to the

odd ˜̀V = 3, 5, . . . KI vector QNMs, and to the even ˜̀T = 2, 4, 6, . . . KI tensor

QNMs when a/r+ → 0, all of which have lower Im(ωr+) than the ˜̀S = 2 KI scalar

QNM pinpointed as a red point in Fig. 3.19. Nevertheless, given the negative

result we get for the possibility of a d = 5 bar-mode instability in the mode of
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Figure 3.21: Single MP. Scalar modes with (`,m) = (0, 2), (`,m) = (0, 3)
and (`,m) = (0, 4) for d = 5. The (`,m) = (0, 2) mode is the green disk curve
already shown in previous plots while the (`,m) = (0, 3) and (`,m) = (0, 4)
modes are, respectively, the blue square line and the brown triangle line which
reduce to the ˜̀S = 3 and ˜̀S = 4 KI scalar modes when a/r+ → 0. The m = 3
and m = 4 scalar modes show no instability: one finds that the frequency
approaches exponentially zero as the rotation grows large.

Fig. 3.19, we have done an exhaustive study of these other (`S,m) = (0, 2) scalar

modes of MP. We find that these modes always have, for a given rotation, Im(ωr+)

that is more negative than the value shown in Fig. 3.19. (A particular example

illustrating this study is shown in the right panel of Fig. 3.20 where we look to the

scalar mode that connects to the KI vector mode ˜̀V = 3 when a/r+ → 0). This

in particular means that their Im(ωr+) does not become positive above a certain

critical rotation and thus they are not associated to a linear bar-mode instability.

We have also considered the possibility that a linear bar-mode instability could

be associated to a scalar mode with m > 2. However we did not find such a

m ≥ 3 mode with an imaginary part of the frequency that is positive; in fact the
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imaginary part of the frequency of m ≥ 3 scalar modes is more negative than the

one of the m = 2 scalar mode plotted in Fig. 3.19. An example that illustrates

this discussion is shown in Fig. 3.21 where the blue square curve describes the

low-lying scalar mode with m = 3 and the brown triangles describe the m = 4

mode; these curves (the imaginary part of the frequency) are below the m = 2

scalar mode curve (green disks). Finally, in our data analysis we also rule out the

less conventional possibility of an unstable mode that is not connected to a QNM

of the Schwarzschild BH. We conclude that the d = 5 singly spinning MP BH is

not unstable to a linear bar-mode instability.

Concluding, we find absolutely no evidence of a linear bar-mode instability

in d = 5. Note however that the non-linear numerical time evolution analysis of

[28, 29] does find a bar-mode instability for rotations ac/r+ > 1.76 (i.e. ac/r0 >

0.87). Our linear results indicate that the d = 5 instability appearing in the

non-linear analysis of [28, 29] has no linear origin.

We now proceed to the discussion of scalar modes of the singly spinning MP

BH with `S = 0 and m = 1. Again, there is a pair of curves (one with positive

and the other with negative real part) with (`S,m) = (0, 1) in each dimension.

Fig. 3.22 gives detailed data for the (`S,m) = (0, 1) scalar modes of the d = 5 case.

The blue disk line reduces to the ˜̀S = 3 KI scalar mode when a/r+ → 0, while the

brown square (green triangle) line connects to the ˜̀V = 2 KI vector mode (˜̀T = 3

KI tensor mode) when a/r+ → 0. These Schwarzschild KI QNMs (see Table II of

[3]) are pinpointed as red dots. For d ≥ 6, (`S,m) = (0, 1) scalar QNMs behave

similarly to those in d = 5. In particular, we checked that these modes are always

stable for any dimension. Not shown in Fig. 3.22, for d = 5 (and d ≥ 6) there
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are other m = 1 scalar modes of MP with higher absolute value of the imaginary

part of the frequency that connect to the odd ˜̀S = 5, 7, · · · KI scalar QNMs, to

the even ˜̀V = 4, 6, · · · KI vector QNMs, and to the odd ˜̀T = 5, 7, · · · KI tensor

QNMs.

Figure 3.22: Single MP. Scalar modes with (`,m) = (0, 1) for d = 5. The
blue disk line reduces to the ˜̀S = 3 KI scalar mode when a/r+ → 0, while
the brown square (green triangle) line connects to the ˜̀V = 2 KI vector mode
(˜̀T = 3 KI tensor mode) when a/r+ → 0. These Schwarzschild KI QNMs are
pinpointed as red dots. For d ≥ 6 the behaviour of the m = 1 QNMs has a
similar behaviour. As highlighted in the inset plot of the Right Panel these
modes are always stable, i.e. they have Im(ωr+) < 0.

3.5.2 Vector QNMs (d ≥ 6)

We now turn to the study of vector perturbations, which are out of vector

harmonics Vi

hab = 0 , hai = e−iωteimφhaVi, hij = − 1

2
√
λV

e−iωteimφhTD(iVj) , (3.69)
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where {ha, hT} are functions of (r, x̃), and Vi denotes a transverse vector harmonic

on Sd−4:

DiV
i = 0,

(
D2 + λV

)
Vi = 0 (3.70)

Regularity of the vector harmonics requires

λ = `V (`V + d− 5)− 1 , with `V = 1, 2, 3. (3.71)

Harmonics with `V = 1 are special since they are Killing vectors on Sd−4.

Boundary conditions and numerical approach

Like in the scalar sector, we work in the traceless-transverse (TT) gauge, and

we insert the vector perturbations (3.69) into the linearised Einstein equations,

(∆Lh)ab = 0. The TT gauge conditions can be used to express hT as an algebraic

function of ha and their first derivatives. We have then 4 independent variables,

h1, h2, h3 and h4. The following equations,

(∆Lh)1Ω = 0 , (∆Lh)2Ω = 0 , (∆Lh)3Ω = 0 , (∆Lh)4Ω = 0 , (3.72)

(where here the subscript Ω describes the azimuthal coordinate of the S(d−4))

constitute a system of four independent equations to solve for the four independent

variables ha, and that closes the full Lichnerowicz system.

The singular or leading behaviour of the ha’s at each of the four boundaries can

be determined following similar procedures to those described in the scalar sector

case. Again, it is convenient to factor them out to work with manifestly analytical
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functions. Therefore we introduce the new independent functions q1, · · · , q4:

h1 = x`+1 (1− x)m y
−2 i

ω−mΩH
4πTH

(
1− y2

) d−2
2
−1
e

iω
1−y2 q1 ,

h2 = x`+1 (1− x)m y
−2 i

ω−mΩH
4πTH

−1 (
1− y2

) d−2
2
−3
e

iω
1−y2 q2, ,

h3 = x` (1− x)α3 y
−2 i

ω−mΩH
4πTH

(
1− y2

) d−2
2
−2
e

iω
1−y2 q3 ,

h4 = x`+1 (1− x)α4 y
−2 i

ω−mΩH
4πTH

(
1− y2

) d−2
2
−2
e

iω
1−y2 q4 , (3.73)

where  {α3, α4} = {1, 2} , if m = 0 ,

{α3, α4} = {m− 1,m} , if m ≥ 1 ,
(3.74)

Inserting (3.73) into the equations of motion (3.72) and Taylor expanding to

solve these equations around each of the four boundaries it is straightforward to

find the BCs we need to impose on each of the qj(x, y). Namely, the horizon has

simple Dirichlet or Neumann BCs (depending on the qj’s) and we also find very

simple Robin, Neumann or Dirichlet BCs for all qj’s at the equator x = 0 and axis

of rotation x = 1 and horizon y = 0. At the the asymptotic boundary, y = 1, q2

has a Dirichlet BC while the other qj’s are subject to Robin BCs (the expressions

for which are rather lengthy and so we omit their presentation here).

We solve numerically our system using the same two numerical methods that

were described in the scalar sector of perturbations.

Results

Vector modes of the singly spinning MP BH exist for d ≥ 6. As in the scalar

case, in the vector sector there is also an infinite family − associated to different
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Figure 3.23: Single MP. Vector modes in d = 7 with m = 1 and: `V = 2 (blue
disks), `V = 3 (magenta squares), `V = 4 (black squares) and `V = 5 (brown
triangles). In the Right Panel the inset plot shows the difference between
the imaginary part of the modes with respect to the `V = 2,m = 1 mode.
These MP vector modes with m = 1 and `V = 2, 3, 4, 5 respectively connect to˜̀
V = 3, 4, 5, 6 KI vector QNMs when a/r+ → 0, which are pinpointed as green

points.

radial overtones − of vector QNMs for each pair (`V ,m) of vector modes (with

`V ≥ 2 and |m| ≤ `V ). We will present results only for the lowest-lying QNMs

(that have smaller |Im(ωr+)|). When the rotation vanishes the vector QNMs of

the singly spinning MP BH reduce to certain QNMs of the Schwarzschild BH that

are listed in Table II of [3] and that will be pinpointed as green dots in the plots

of this subsection. They will confirm that our spinning QNMs are being correctly

computed. There is a pair of curves (one with positive and the other with negative

real part) for each vector mode specified by the angular quantum numbers (`V ,m).

For the vector modes we will show only the element of the pair that has Re(ωr+) >

0, since for m > 0, only these can go unstable. This is a simple consequence of

the area-law argument presented in Section 3.4. Quite often in the inset plots of
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the imaginary part of the frequency we will present subtracted frequencies with

respect to a specified reference mode to better visualise the curves, since the curves

would otherwise be very close to each other.

Figure 3.24: Single MP. Vector modes in d = 7 with `V = 2 and: m = 0 (red
squares), m = 1 (blue disks), m = 2 (purple triangles). In the Right Panel
the inset plot shows the difference between the imaginary part of the modes
with respect to the `V = 2,m = 0 mode. These MP vector modes with `V = 2
and m = 0, 1, 2 respectively connect to ˜̀V = 2, 3, 4 KI vector QNMs when
a/r+ → 0, which are identified as green points.

Fig. 3.23 shows the frequencies of the d = 7 vector modes with fixed m = 1

and different `V ’s, namely: `V = 2 (blue disks), `V = 3 (magenta squares), `V = 4

(black squares) and `V = 5 (brown triangles). These MP vector modes with m = 1

and `V = 2, 3, 4, 5, respectively connect to ˜̀V = 3, 4, 5, 6 KI vector QNMs when

a/r+ → 0, which are pinpointed as green points (see Table II of [3]). We find no

instability in this vector spectrum.

Fig. 3.24 fixes `V = 2 and shows the vector modes in d = 7 with m = 0 (red

squares), m = 1 (blue disks), m = 2 (purple triangles). These MP vector modes
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with `V = 2 and m = 0, 1, 2, respectively connect to ˜̀V = 2, 3, 4 KI vector QNMs

when a/r+ → 0, which are identified as green points (see Table II of [3]). Again

we find no instability in this spectrum.

Finally, to exemplify that the behaviour of the vector modes is similar for any

d ≥ 6, in Fig. 3.25 we show again the (`V ,m) = (2, 1) and (`V ,m) = (3, 1) vector

modes in d = 7 but now we compare them with those with same angular quantum

numbers in d = 6.

Figure 3.25: Single MP. Vector modes in d = 6 and d = 7 with m = 1 (real
part in the Left Panel and imaginary part in the Right Panel). In d = 6 we have
the green disks with `V = 2 and the brown triangles with `V = 3. In d = 7 we
have the blue disks with `V = 2 and the magenta squares with `V = 3. These
MP vector modes with m = 1 and `V = 2, 3 respectively connect to ˜̀V = 3, 4
KI vector QNMs when a/r+ → 0, which are pinpointed as green points.

3.5.3 Tensor QNMs (d ≥ 7)

Tensor perturbations of the singly spinning MP background can be expanded

in terms of a basis of transverse (∇iT
i
j) and traceless (Ti

i = 0) harmonic tensors
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Tij on the unit sphere Sd−4 that solve (�Sd−4 + λT ) Tij = 0. Regular tensor

harmonics have eigenvalue λT = `T (`T + d− 5)− 2 with integer `T ≥ 2.

Tensor-type perturbations have the form

hab = 0 , hai = 0, hij = e−iωteimφHT (r, x̃)Tij , (3.75)

Ref. [42] studied this tensor QNM spectrum in great detail so we do not discuss

this sector of perturbations further. In particular, [42] found no instability in the

tensor sector of linear perturbations.

3.6 Conclusions and Outlook

This manuscript makes a thorough study of the QNMs of the two most rep-

resentative cases of asymptotically flat MP BHs as a function of the spacetime

dimension d, including in the limit where all rotations are taken to zero, i.e. the

Schwarzschild BH. For the latter BH, we give particular emphasis to the limit

d → +∞. Also, due to the lack of symmetry of the most general MP BH, we

focus on two particular classes of MP BHs: the singly spinning MP BH, and the

odd-dimensional equal angular MP BH.

QNMs of the Schwarzschild BH show an interesting structure as d increases.

Scalars and vector gravitational perturbations have two distinct sectors of QNMs

which exhibit an universal behavior. In the first, which we denominate class I,

the corresponding QNMs saturate as the spacetime dimension increases. In the

second, which we coin class II, the QNMs scale with d, with (at least some of)

the modes scaling as Im(ωr0) ∝ −d1/2 and Re(ωr0) ∝ d. Furthermore, in class I,
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our results allow us to conjecture that the imaginary part is universal, depending

on ` only, and saturates at Im(ωr0) = −(` − 1), and the real part depends on

the sector, being zero for vectors and non vanishing for scalars. Finally, the

tensor gravitational perturbations only exhibit QNMs of class II. Each of these

behaviors should be derivable from a matched asymptotic expansion, such as the

one proposed in [12, 43, 32].

The structure of QNMs typical of Schwarzschild BHs, seems to persist when

rotation is included. The clearest setup where this is evident, in the sense that

we are able to increase d to relatively large values, occurs when we study grav-

itational perturbations of the equal angular momenta MP BHs. For sufficiently

high d, we have shown that both the bar-mode and ultraspinning instabilities

are continuously connected, as the rotation is taken to zero, to QNMs of class I.

This observation could have been anticipated from the following simple argument.

All unstable modes of MP BHs must, at zero rotation, reduce to Schwarzschild

modes. These we have found to consist of two classes, those that saturate to finite

values in the infinite-d limit, and those that scale with d. If an instability of an

equal angular momenta BH connected to a class II (scaling) mode, then it would

need to move a large distance in the complex ω plane as the rotation is increased

a finite amount in order to turn into an instability (recall that these BHs have

extremal limits). This seems unlikely, and thus it is quite natural that instabili-

ties of these large-d MP BHs should stem from saturating Schwarzschild modes.

More generally, a generic MP BH with no vanishing angular momenta also has an

extremal bound and is expected to suffer from instabilities similar to the equal

angular momenta case, and therefore we conjecture that, for sufficiently large d,
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all instabilities of MP BHs with no vanishing angular momenta connect to class

I (saturating) Schwarzschild modes at zero rotation 18. Singly spinning MP BHs,

for d > 5, do not have extremal limits, and the above argument does not apply.

However, for large dimension, one would at least expect that the first mode to go

unstable as the rotation is increased would connect to a saturating Schwarzschild

mode, since these will be the lowest lying modes.

In addition to these observations concerning perturbations in the large-d limit,

we have also continued the study of linear perturbations of the equal angular

momenta MP BH. For the case of d = 7, this study is now complete as we were

able to make use of our derivation of the charged vector harmonics on CP2 to

study the vector sector of perturbations. In both cases studied, the equal angular

momenta and singly spinning MP BH, only the scalar sector contains QNMs that

go unstable. For axisymmetric (m = 0) modes, this corroborates the near-horizon

analysis of [24].

One of the central results of this manuscript is the study of the linear analysis

of the bar-mode instability of singly spinning MP BHs. For d ≥ 6 our linear

analysis reproduces the key results of the non-linear time evolution of [28, 29],

including the slope of the growth rate as the QNMs become unstable. However,

we find no evidence of a linear instability in the d = 5 singly spinning MP, which

seems to be at odds with the results found in [28, 29]. In fact, we find that the

lowest lying QNMs have an imaginary part that approaches zero exponentially

18After the first version of this article appeared we learned that for the specific case of equal
angular momenta this conjecture has been firmly established by the results of Ref. [44]. They
analytically computed the QNMs which become unstable at large rotation in the large D limit,
and found that for all rotations (including zero) the frequencies are ω ∼ O(D0), i.e. belonging
to class I, in accord with our conjecture.
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in the rotation parameter a/r+. It would be interesting to try to understand

whether this result is amenable to an analytic understanding. We leave this for

future work. In d = 5, it seems that our results are only compatible with those

found in [28, 29], if the bar-mode instability is a non-linear instability. This might

well be the case, due to the aforementioned exponential approach.

An extension of our work would be to study the m = 0 sector of perturbations

of the singly spinning MP BH, which describes the ultraspinning instability [20,

26, 40]. This would allow to compute the instability timescale, which is missing.

This turns out to be a very complicated sector, due to the existence of a zero

mode - namely, another MP with a slightly different angular momentum. We

did not manage to use Newton’s method to disentangle such perturbations, the

main reason being that we don’t know of a good starting seed for our iteration

procedure. For the m 6= 0, we use the QNMs of the Schwarzschild BH as a starting

point. However, for m = 0, and given what we observe in the equal angular

momenta MP, we expect the ultraspinning mode to have zero real frequency.

This means we should search for a QNM of the Schwarzschild BH with zero real

part of the frequency, thus lying along the purely imaginary axis, where a branch

cut exists. This makes the numerics very challenging.

The work presented in this paper can be extended in many directions. We can

use our PDE methods to compute the QNMs of the Kerr-Newman BH, which is

a long standing problem in Classical General Relativity. Even though there is no

known mechanism to herald an instability in such system, it would be interesting

to test some of the conjectures put forward in [51]. Another extension pertains the

study of graybody factors of higher-dimensional asymptotically flat BHs, which is
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a mild extension of our work with possible implications for LHC physics [52, 53].

Another longstanding problem that could be tackled by the methods used in this

paper, is the stability of the Emparan-Reall black ring found in [37]. Recently,

using indirect methods, the fat branch of the black ring solutions has been shown

to be unstable [54] (see also [55] for a more heuristic argument, that leads to the

same conclusion), but the stability of the thin ring remains largely unknown.
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Appendix

3.A Spectrum of Charged Vector Harmonics on

CP2

Here we derive the spectrum of charged vector harmonics on CP2. We will

use the coordinates and conventions of Ref. [23], in which the metric on CPN is

constructed iteratively starting from the metric on CP1 ' S2. Letting dΣ2
N and

AN denote the line element of the Fubini-Study metric on CPN and the U(1)

connection, respectively, for N = 1 we have

dΣ2
1 =

1

4
dΩ2

2 =
1

4

(
dx2

1− x2
+ (1− x2)dφ2

)
, A1 =

x

2
dφ. (3.76)

The line element and connection for general N can then be determined iteratively,

dΣ2
N =

dR2
N

(1 +R2
N)

2 +
1

4

R2
N

(1 +R2
N)

2 (dΨN + 2AN−1)2 +
R2
N

1 +R2
N

dΣ2
N−1(3.77)

AN =
1

2

R2
N

1 +R2
N

(dΨN + 2AN−1) .
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Charged vector harmonics are characterized by the following attributes: they are

regular, transverse with respect to D̂a = ∇̂a − imAa, and eigenvectors of both

D̂2 and the complex structure. To analyse the regularity of the vectors, it is

important to understand the geometry of CPN near the origin. Near RN = 0, the

line element takes the form

dΣ2
N ∼ dR2

N +R2
N

[(
dΨN

2
+ AN−1

)2

+ dΣ2
N−1

]
, (3.78)

which is easily seen to be R2N once the quantity in brackets is recognized as S2N−1

written in terms of the Hopf fibration with the non-standard periodicity for the

U(1) coordinate ΨN . It is now relatively straightforward to introduce locally

Cartesian coordinates. The form of the metric near the origin suggests that these

coordinates should correspond to the embedding of CPN−1 in CN . For example,

for N = 2 this is achieved by

z1 = R2

√
1− x

2
e
i
2

(φ−Ψ2), z2 = R2

√
1 + x

2
e
i
2

(φ+Ψ2). (3.79)

We are now in a position to derive the charged vector harmonics for the case

N = 2. Consider the following vector,

V(0)
a dxa = Y2(R2)Y1(x)A1e

in2Ψ2 . (3.80)

This can be decomposed into hermitian and anti-hermitian parts,

Va =
1

2

(
δ ba + iεJ b

a

)
V(0)
b , ε = ±1. (3.81)
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Requiring that this vector be transverse yields

Y1(x) = x−1
(
1− x2

)−n2/(2ε) . (3.82)

The function Y2(R2) and the integer n2 are constrained by the requirement of

regularity. Using the above locally Cartesian coordinates, one can show that the

near R2 = 0 geometry reveals that V displays two types of pathological behaviour.

First, even at finite R2, it diverges lower-dimensional subspaces, and secondly, it

diverges as R−2
2 near R2 = 0. The first problem is resolved by the choice n2 = −εñ,

with ñ = 1, 2, ..., and the second will be fixed by the quantization of λV , to which

we now turn.

For the above vector, the eigenvalue equation (D̂2 + λV )Va = 0 reduces to a

single ODE,

Y ′′2 (R2) +
Y ′(R2)

R2

− 4ñ2 + (−6 + 8ñ2 + 2mε(2ñ− 1)− λV )R2
2 + (2ñ+mε)2R4

2

R2
2(1 +R2

2)2
.

(3.83)

It is convenient to introduce the coordinate z−1 = 1 + R2
N and to define a new

function, Y2(z) = (1− z)ñz|2ñ+mε|/2w(z), which brings the equation into hyperge-

ometric form,

z(1− z)w′′(z) +
(
c− (a+ b− 1)z

)
w′(z)− abw(z) = 0. (3.84)

Here c = 1 + |2ñ + mε|, and a + b = 1 + 2ñ + |2ñ + mε|. Requiring that the

solution is regular will fix the solution and impose a quantization condition on

the eigenvalues. The general solution can be written as a sum of hypergeometric
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functions with argument z. Since c is an integer, one of the two independent

solutions contains factor of ln(z), which is not analytic and therefore the coefficient

of this solution is set to zero. The solution is then

Y2(z) = (1− z)ñz|2ñ+mε|/2
2F1(a, b; c; z). (3.85)

This is regular at z = 0 (RN =∞). To analyse the regularity near z = 1, use the

identity [56]

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1(a, b; a+ b− c+ 1; 1− z) (3.86)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−b2F1(c− a, c− b; c− a− b+ 1; 1− z).

Regularity requires that the coefficient of the second term vanish, since c−a−b =

−2ñ. If b = −κ, where κ = 0, 1, 2, ..., then the second term will vanish and the

solution will be manifestly regular at both z = 0, 1. This leads to the quantization

λ
(N=2)
V = 4κ̃(κ̃+ 5) + 18−m(m+ 2ε), κ̃ = κ+ (ñ− 2) + |2ñ+mε|/2. (3.87)

It is perhaps disconcerting that the spectrum depends on the three quantum

numbers, (κ,m, ñ), rather than on (κ,m) as happens for the scalars, and tensors

[30]. To understand the effect of ñ, first examine the case m = 0. Then,

λ
(N=2,m=0)
V = 4κ̃(κ̃+ 5) + 18, κ̃ = κ+ 2(ñ− 1). (3.88)
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For ñ = 1, the smallest possible value, this agrees with the result derived in [24].

The effect of ñ > 1 is simply to shift the starting value of κ from 0 to 2(ñ − 1).

Similarly, one can show that in the charged case the allowed values of λ
(N=2)
V for

ñ > 1 are a subset of the allowed values for ñ = 1. Therefore, from the perspective

of gravitational perturbations, ñ = 1 can be taken without loss of generality.

We have only succeeded in deriving the spectrum of charged vector harmonics

for the case N = 2. The main obstacle to explicitly constructing the harmonics for

larger N is finding a tensorial structure that is regular near the origin and satisfies

the other criteria. It would be useful if this result could be further generalized to

arbitrary N .
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Gauge/Gravity Duality
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Introduction

This section serves as an introduction to Part II. The AdS/CFT correspondence

and its generalization, the gauge/gravity duality will be briefly reviewed. There

are numerous introductions to the gauge/gravity duality at varying levels of tech-

nical detail. Rather than attempting a thorough introduction to the subject, here

I will take a historical perspective and review the developments leading up to Mal-

dacena’s conjecture, with the goal of explaining the extent to which gauge/gravity

duality has grown beyond its string theory origin, and I will also give some insight

into the current and future directions of the fields of this research.

4.1 A Brief History of String Theory Prior to

1997

The most important goal in the overlap of the fields of high energy physics and

gravitation is also the oldest and the most ambitious–the search for the quantum
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theory of gravity. This has been the outstanding desire for theoretical physi-

cists ever since the remarkable successes of Einstein’s theory of General Relativity

and the quantum theories, starting with quantum mechanics and growing to in-

clude quantum field theories (QFT)’s, eventually culminating in the Standard

Model. Despite the brilliant successes of these separate theories, and despite

the widespread belief amongst physicists that gravity is quantized, it has proved

tremendously difficult to unify these two frameworks. The two major approaches

to quantum gravity are Loop Quantum Gravity and String Theory. String theory

is the more developed and mature of the pair, and it is the theory I have spent the

most time studying. Therefore, in this Introduction and throughout this Thesis,

I will restrict my attention to either string theory or more general theories which

are inspired by lessons learned using string theory.

String theory is a truly remarkable theory, and has itself undergone several

transformations since its initial inception as a theory of hadrons. In order to

place the work of this Thesis into context, and to introduce the AdS/CFT cor-

respondence, here I present a very brief (and biased) history of string theory.

String theory began as an attempt to explain the physics of hadrons, an attempt

that was abandoned after Quantum Chromodynamics was found to be the correct

description. During this initial period, a small number of physicists continued

exploring the theory, discovering a number of surprises. First, it was found that

the theory was only consistent in higher dimensions (26 for the bosonic string, and

10 for the superstring). If string theory is to describe our universe, then clearly

these extra dimensions must be accounted for. The most common proposal is that

these dimensions are curled up into tiny, un-observable spaces, as in Kaluza-Klein
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theory. A second (perhaps more pleasant) surprise was that the theory required

a graviton, leading to the interpretation of string theory as a quantum theory of

gravity. More precisely, string theory is a theory of gravity with certain matter

content. The bosonic string theory only includes bosonic degrees of freedom, but

the superstring incorporates fermions as well. Fermions are a necessary ingredient

in supersymmetric theories, and they serve the useful functions of helping to en-

sure that solutions can only have positive energy and cancelling singularities that

come from quantum loops. Another reason why fermions are important is that

they are a part of nature! Unfortunately, however, superstring theory incorpo-

rated chiral fermions, and such theories are generally anomalous in the sense that

quantum fluctuations will spoil gauge symmetries and render the theory inconsis-

tent. In 1984 the discovery of the Green-Schwarz mechanism [57] demonstrated

that in string theory these anomalies cancelled, leading to what is now known as

the First Superstring Revolution, a period of intense growth and popularity for

the nascent theory.

Some important developments during this time included the development of

the heterotic string theories, as well as the discovery that if the extra 6 dimensions

of the superstring were curled up in a special way (i.e. as a Calabi-Yau man-

ifold), then the resulting four dimensional theory would preserve some amount

of supersymmetry [58], which is attractive from a phenomenological standpoint.

Perhaps most importantly for this thesis, in 1995 D-branes were discovered to be

non-perturbative objects in the theory, and moreover these solitonic objects were

found to be related to the previously discovered black p-brane solutions of the

supergravity theories that were the low energy limits of the various string theories
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[59, 60]. This advance initiated what is now known as the Second Superstring Rev-

olution. A fundamental insight came shortly afterwards when Ed Witten realized

that the many different string theories were actually unified into one overarching

theory called M-theory. 1 Witten’s realization was based on duality, the notion

that two superficially distinct and unrelated theories could actually be the same.

This was a tremendous result: string theory, the most successful candidate theory

of quantum gravity, had a surprising amount of uniqueness. There is just one

single theory, M-theory, and the previously distinct perturbative string theories

are interpreted as representing various corners of the solution space of this master

theory. The idea of a single unique theory of quantum gravity is certainly attrac-

tive, and string theory is often praised as having “no free parameters”, in contrast

to the Standard Model. However, this sentiment is a bit misleading. The modern

view is that although string theory has no free parameters, it has many solutions.

This multitude of solutions is known as the string landscape, and indeed it is a

multitude–a commonly cited number is that there are perhaps 10500 vacua! 2 In

Part III we will have more to say about the landscape.

Another remarkable discovery relying on the concept of duality came in 1996

when Strominger and Vafa were able to show that string theory could account

for the entropy of a black hole [62]. Any successful theory of quantum gravity

should be able to account for the laws of black hole thermodynamics, in which

1The name “M-theory” has a bemusing origin: Witten has suggested that the M should stand
for “magic”, “mystery”, or “membrane” according to taste.

2See [61] for a detailed analysis.

109



Introduction Chapter 4

black holes are assigned a Bekenstein-Hawking entropy which is

SBH =
AH
4GN

, (4.1)

where AH is the area of the event horizon, and GN is Newton’s gravitational con-

stant. The equations of general relativity can be used to show that SBH behaves

very similarly to a thermodynamic entropy, but the interpretation as a bona fide

entropy would require identifying the microstates of the hole, which would seem

to require a very detailed understanding of quantum gravity. Strominger and Vafa

were able to show that string theory could account for these microstates by using

the fact that the system at weak coupling had a description in terms of D-branes,

for which the worldvolume field theory was known. Using this field theory, they

were able to count the number of microstates in a given ensemble, and mirac-

ulously, because the system they were studying was supersymmetric, the same

answer held for the case of strong coupling for which the system had a description

in terms of a certain black brane. The brane’s area (and therefore entropy) could

be calculated in a straightforward way, and the two answers matched! This served

as a major achievement of string theory.

4.2 Maldacena’s Conjecture and the Gauge/Gravity

Duality

Building off of the growing number of connections between D-branes, their

world-volume conformal field theories (CFT’s), and the black p-branes of super-
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gravity, Maldacena in 1997 made a startlingly bold conjecture, that Type IIB

string theory in AdS5 × S5 was dual to N = 4 supersymmetric SU(N) Yang-

Mills in 4-dimensional Minkowski space, which is the conformal boundary of the

5-dimensional AdS space. The reason why this was such a bold conjecture is

that the first theory is a theory of gravity in 10 dimensions and the second is a

quantum field theory in one fewer dimensions. Therefore, this is a holographic

duality, realizing the holographic principle of t’Hooft and Susskind. As a result

of the work of Bekenstein and Hawking, it had long been understood that black

holes store information holographically, that is, their entropy scales with area and

not volume. It was later proposed by t’Hooft (and developed further by Susskind)

that such a property should extend generally to quantum gravity, that the physics

inside a certain region of spacetime should be encoded on the boundary of that

region. Excitingly, this is precisely what is accomplished by the AdS/CFT duality

of Maldacena!

The Maldacena duality possess another fascinating feature. The duality is a

weak-strong duality, meaning that when one theory is weakly coupled, the other

theory is strongly coupled. So, in particular, if the gauge theory is strongly cou-

pled the gravitational theory is weakly coupled. It’s hard to imagine the duality

making sense if it were a weak-weak duality, as the degrees of freedom of both the-

ories are well understood and are clearly not in correspondence with one another.

Moreover, the weak-strong nature of the duality allows it to be extremely useful.

It is hard to calculate many properties of strongly-coupled field theories, and the

AdS/CFT duality therefore provides us with a new tool with which to study these

theories. It can also work the other way, providing a non-perturbative definition of
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quantum gravity (with certain boundary conditions). Additionally, it has opened

up surprising connections between previously disparate ideas. For example, black

holes in AdS are dual to thermal states in the dual field theory. This remarkable

fact implies that black holes in a rather unusual background spacetime from the

point of view of our actual universe can be used to understand properties not

of astrophysical systems, but of the kind of strongly coupled field theories which

might govern a superconductor constructed in a laboratory.

Maldacena’s conjecture has never been rigorously proven, (and there is no

reason to hope for such a proof anytime soon, as rigorous mathematical results

in even comparatively well-understood quantum field theories are very difficult

to obtain), however it has passed a remarkable number of tests, and has had a

lasting and tremendous impact on on the fields of high energy physics and gravita-

tion. Since the initial AdS5/CFT4 conjecture using Type IIB string theory, other

AdS/CFT correspondences have been discovered within string theory. Moreover,

there are plenty of examples where the duality differs significantly from the orig-

inal correspondence. For example, there are dualities with non-AdS boundary

conditions, which can correspond to dual field theories lacking a UV fixed point

(as in Klebanov-Strassler [63]), or to field theories on non-trivial boundary mani-

folds, for example a boundary Schwarzschild black hole [64]. Through this manner,

one may obtain a wide variety of AdS/CFT-like dualities, and as a result many

researchers prefer the umbrella term “gauge/gravity duality”.

There are even attempts to expand the gauge/gravity duality beyond string

theory. After all, although string theory is the most understood and well stud-

ied theory of quantum gravity, there is no reason to believe that all theories
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of quantum gravity are string theories. Also, the original motivations for the

gauge/gravity duality such as the thermodynamic properties of black holes and

the arguments of t’Hooft and Susskind should hold generally for any theory of

quantum gravity. Additionally, all the known dualities “derived” in string the-

ory come along with extra dimensions, as in the S5 of the original AdS5 × S5.

There has been much progress in understanding gauge/gravity duality without

string theory and without the extra dimensions in the case of D = 3. For AdS3,

Brown and Henneaux [65] showed independently of string theory or any other UV

completion of gravity that the asymptotic symmetry group of the spacetime is

that of a 2D conformal field theory. There have been various conjectures as to

the precise dual field theory, for example [66]. Along these lines of extending the

gauge/gravity duality beyond string theory, there is an argument due to Marolf

that any gravititational theory is in some sense holographic, at least perturba-

tively around certain backgrounds [67]. Thus it could well be that the original

Maldacena duality of Type IIB string theory and developments inspired by it

will eventually lead to a general understanding of quantum gravity. This is a very

intriguing possibility, although one that will not be pursued further in this Thesis.

Much current research concerns potential real world applications of the gauge/gravity

duality. Many important and not entirely well-understood condensed matter sys-

tems are governed by strongly coupled field theories. If the duality could be

exploited to find a gravitational dual to these systems, then certain quantities

that would be hard to calculate or study in the field theory might become more

tractable in the dual description. A rather famous and close-to-home application

of this is the holographic superconductor by Hartnoll, Herzog, and Horowitz [68].
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Although it is often said that black holes “have no hair”, this is simply not true

(as Gary likes to say, regarding the non-linear stability of AdS). In asymptotically

flat contexts, there are a number of ways for a black hole to have hair, but they

are a bit exotic, for example a black hole can have non-abelian Yang-Mills hair. In

asymptotically AdS spaces, black holes can even have U(1) hair, as Gubser first

noticed [69]. Expanding on this result, working in the theory of Einstein grav-

ity with a negative cosmological constant, a U(1) Maxwell field, and a charged

massive scalar field (i.e. not string theory), the above authors constructed asymp-

totically AdS black hole solutions with static, charged scalar hair. This theory

does not have a precise and well understood dual field theory at the level of the

original AdS5×S5 duality, for example, but there are a few approaches one could

take. Firstly, one might regard this theory as capturing the crucial ingredients

of the system of interest, and worry later about embedding it in a higher di-

mensional string theory duality. This was indeed later shown to be possible, see

for example [?]. Secondly, one could imagine working in the sort of expanded

notion gauge/gravity duality discussed above, without worrying about the UV

completion. This last approach is somewhat similar in spirit to Landau-Ginzburg

theory.

Supposing that a dual field theory exists, Hartnoll et al showed that according

to the standard AdS/CFT dictionary, the field theory dual to the charged black

holes was in a superconducting state! Since this initial work, there have been

hundreds of papers expanding upon this simplified model of holographic super-

conductivity, and in fact the use of the gauge/gravity duality to model real-world

condensed matter phenomena is by now a well-established sub-field, which goes
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by the name of AdS/CMT (CMT for condensed matter theory). Along these

lines, in Sec. 5 a study will be presented which investigates an enlargement of the

program initiated by Horowitz, Herzog, and Hartnoll to encompass a particular

model of superconductivity which has eluded a complete theoretical description

thus far–high-Tc superconductors. A spin-2 or d-wave order parameter is widely

believed to be crucial for achieving high-Tc superconductivity, and we investigate

a novel way of incorporating such an order parameter in models of holographic

superconductivity.

In most of the gauge/gravity dualities, AdS space plays a prominent role.

Therefore, it is good to have a thorough understanding of classical gravity in

asymptotically AdS spacetimes, as gravity is a universal ingredient in the duali-

ties. Asymptotically stationary black holes are a particularly important class of

spacetimes to consider, as they are dual to field theories at finite temperature.

When the black holes are rotating, they may exhibit the interesting phenomenon

of superradiance, just like their asymptotically flat counterparts. Superradiance

is the phenomenon in which a wave may scatter off a rotating black hole and

with the reflected wave carrying away more energy and angular momentum then

it started with. This naturally causes the black hole to lose mass and to slow

down. In AdS, the boundary conditions force this reflected wave to reflect off

the boundary, causing the superradiant scattering to repeat. Therefore, there is

a feedback look, and an instability may develop. In Sec. 6 we will present a study

which investigated these superradiant instabilities in an attempt to understand

thermalization in conformal fluids.
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Spin-2 Condensates and the AdS

Soliton Geon

5.1 Introduction

A geon is a classical solution to the vacuum Einstein equations representing a

localized and non-dispersing lump of gravitational energy held together by its own

gravitational attraction. Geons were originally conjectured to exist by Wheeler,

and the first serious attempt to construct them was made by Brill and Hartle [70].

Their geon, however, has only a finite lifetime; at late times the gravitational waves

comprising the geon will break free and disperse. This is a common feature of

asymptotically flat geons [71]. The tendency of geons to disperse can be remedied

with a negative cosmological constant, as anti-de Sitter (AdS) space acts like a

confining box. Perturbative geons in global AdS in four dimensions have been

recently constructed in [72]. This provides strong evidence that associated with
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every individual linearized graviton mode in global AdS, there is a one parameter

family of exact nonsingular geons1.

One should be able to construct geons starting with gravitational perturbations

of any locally asymptotically AdS ground state. In particular, one can start with

the AdS soliton [74, 75], which has seen several applications in gauge/gravity

duality. It was originally introduced to describe the ground state of a confining

gauge theory [74], but in more recent condensed matter applications it has been

used to construct the gravitational dual of an insulator/superconductor quantum

phase transition [76, 77]. In this note we perturbatively construct a class of geons

starting with the five-dimensional AdS soliton.

Although the geons we find are interesting in their own right, perhaps the

most intriguing aspect of these solutions is the potential connection with a d-wave

superconductor. The possibility of obtaining a gravitational dual of a d-wave

superconductor is exciting because this is what is seen in the high-Tc cuprates.

While the original holographic superconductor exhibited an s-wave order param-

eter [68], and later a model with a p-wave order parameter was constructed in

[78], the d-wave case remains elusive. The major obstacle to building a d-wave

superconductor is that there is no known consistent action for a charged, massive,

spin-2 field minimally coupled to gravity. Various authors [79, 80] have worked

with incomplete actions and found d-wave superconducting condensates, but as

of yet no consistent holographic model has been found.

An alternative approach towards constructing a d-wave holographic super-

conductor is to study metric perturbations in Kaluza-Klein theory. Upon dimen-

1This is not true for generic perturbations of AdS containing superpositions of modes [72, 73].
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sional reduction, gravitons carrying momentum along a compact direction become

charged under a gauge group that corresponds to the isometry group of the inter-

nal manifold. Kaluza-Klein gravity therefore provides a natural framework to find

a consistent theory of charged spin-2 fields coupled to gravity. We will explore

the feasibility of this approach using the geons we construct2.

The AdS soliton is a particularly interesting background to consider because

in addition to the U(1) gauge field coming from the dimensional reduction along

its S1, the linearized metric perturbations may be decomposed into scalar, vector,

and tensor types, corresponding to s, p, and d-wave excitations in the bound-

ary theory. The Kaluza-Klein approach applied to the AdS soliton thus provides

the exciting possibility of being able to describe a range of qualitatively different

superconductors using just pure gravity. Unfortunately, we find that d-wave su-

perconductors are not described by the perturbative geons we construct because

the condensates are never thermodynamically preferred. This result is in contrast

to the one obtained when one puts a Maxwell field and charged scalar field in the

soliton background (rather than obtain them by Kaluza-Klein reduction). In that

case, there is a continuous phase transition which turns on the scalar field as one

increases the chemical potential. We discuss a likely explanation for the different

behavior.

This paper is organized as follows. In section two the linearized metric pertur-

bations of the AdS soliton are reviewed and the perturbative construction of the

geons is described. In section three holographic superconductors based on the AdS

2During this work we learned that the Kaluza-Klein approach to d-wave superconductivity
is also being studied by Kim et al [81], who consider dimensionally reduced supergravity in 10
and 11 dimensions.
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soliton background are briefly reviewed, and the possibility that the dimensionally

reduced geons could describe d-wave superconductors is considered.

5.2 Geons Built from the AdS Soliton

5.2.1 Linearized Metric Perturbations

We study five-dimensional gravity described by the simple action

S =

∫
d5x
√
−g
(
R +

12

L2

)
, (5.1)

where we have set 16πG = 1. The AdS soliton is a solution of the above action

with line element

ds2 =
L2

r2f(r)
dr2 +

r2

L2

(
f(r)dỹ2 +

2∑
µ,ν=0

ηµνdx
µdxν

)
, f(r) = 1−

(r0

r

)4

. (5.2)

This solution can be obtained from the planar black hole via a double Wick

rotation. The geometry smoothly caps off at r = r0 if the ỹ-coordinate is chosen

to be periodic with period πL2/r0. The conformal boundary is the direct product

of three-dimensional Minkowski spacetime with a circle, M3 × S1.

Throughout this paper we work in perturbation theory around the background

of the AdS soliton. For this purpose an expansion parameter ε is introduced and

the metric is expanded as

gAB(ε) =
∞∑
i=0

εig
(i)
AB, (5.3)
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where g
(0)
AB is the AdS soliton metric. Since the Einstein equations will need to be

solved numerically, it will be useful to work with a compactified radial coordinate

and to scale the dimensionful constants out of the metric. The background line

element then becomes

g
(0)
ABdx

AdxB =
1

z2

[
dz2

(1− z4)
+

1

4
(1− z4)dy2 − dt2 + dx2

1 + dx2
2

]
. (5.4)

The circle coordinate has been rescaled so that y ∼ y+ 2π. The radial coordinate

takes values in the range z ∈ [0, 1]. The conformal boundary is at z = 0 and the

tip is located at z = 1.

Next, we briefly review linearized metric perturbations of the AdS soliton back-

ground. A comprehensive treatment may be found in [82]. The perturbations are

decomposed into scalar, vector, and tensor types according to their transformation

properties under the SO(1, 2) Lorentz symmetry of the soliton. We shall focus on

tensor perturbations, which can be parametrized as

g
(1)
AB = εAB

H(z)

z2
cos(qy − ωt). (5.5)

Here q ∈ Z and εAB is a polarization tensor. In five-dimensions, there are two

independent polarizations,

εx1x2 = 1, all other components zero, (5.6)

εx1x1 = −εx2x2 = 1, all other components zero. (5.7)
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With the above ansatz for the metric perturbation, the Einstein equations

reduce to a single second order ODE for the function H(z). Requiring that the

perturbation be regular at the tip and normalizable at the boundary yields a

Sturm-Liouville eigenvalue problem. Solutions only exist for a discrete set of

frequencies ω ∈ R. These solutions are the normal modes and the ω are the normal

mode frequencies. The tensor perturbations may therefore be characterized by two

integers, the radial overtone number and the momentum q.

The perturbation breaks some, but not all, of the symmetries of the back-

ground. Translational invariance in the t and y directions is broken, but the per-

turbation remains invariant under the helical Killing field K = ∂t+(ω/q)∂y. Since

ω > 2q, this Killing field is timelike near the tip and spacelike near the boundary.

The perturbation also remains invariant under translations in the x1, x2 directions

and under the combined discrete operations of t→ −t and y → −y.

5.2.2 Perturbative Construction of Geons

We now extend the study of the previous section to higher orders in per-

turbation theory. We will call the resulting metrics geons as they are solutions

describing nonlinear, non-dispersing concentrations of gravitational waves. The

structure of the perturbative construction is very similar to Gubser’s study of the

non-uniform black string [83]. For every distinct linear perturbation there should

exist a corresponding one-parameter family of geons, gAB(ε), with symmetries

similar to those of the linearized mode. The expansion parameter will be chosen

so that the momentum of the geon is P = ε2V2, where V2 is the coordinate volume
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of the x1-x2 plane, although other choices are also possible. The metric ansatz is

ds2 =
1

z2

[
Ady2+Bdz2+Cdt2+D(dx2

1+dx2
2)+Edtdy+Fdzdt+Gdzdy+Hdx1dx2

]
.

(5.8)

This ansatz corresponds to a geon seeded by a tensor perturbation with po-

larization (5.6). Here A through H are functions of the coordinates z, t, and y, as

well as the expansion parameter ε. Periodicity of the circle coordinate implies that

the y-dependence of these functions will be organized into a Fourier series, while

the existence of the helical Killing vector implies that the functions will depend

on y and t only through the combination (qy − ωt). Thus the expansions for A

through E take the form

A(z, y, t, ε) =
∞∑
n=0

A2n(z, ε) cos
(

2n(qy − ωt)
)
, (5.9)

while the expansions for F and G take the form

F (z, y, t, ε) =
∞∑
n=1

F2n(z, ε) sin
(

2n(qy − ωt)
)
. (5.10)

Whether a given metric function is written as a sum of sines or cosines is deter-

mined by requiring that the line element be invariant under the discrete symmetry

(y, t)→ (−y,−t). The amplitude of each Fourier mode may also be expanded in

powers of ε. The expansions for A2n through G2n take the form

A2n(z, ε) =
∞∑
i=0

ε2n+2iA
(2i)
2n (z). (5.11)
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The structure of the perturbative equations dictates that only even Fourier modes

and even powers of ε appear in the above expansions. The function H differs from

functions A through G because it seeds the geon. It is expanded in odd Fourier

modes and in odd powers of ε,

H(z, y, t, ε) =
∞∑
n=0

H2n+1(z, ε) cos
(

(2n+ 1)(qy − ωt)
)
, (5.12)

H2n+1(z, ε) =
∞∑
i=0

ε2n+2i+1H
(2i)
2n+1(z).

Note that although an infinite number of Fourier modes will be needed to describe

the solution, the higher modes only enter at higher orders in perturbation theory.

When constructing geons in global AdS, there was a potential problem due to

resonances. Since all the normal mode frequencies were integer multiples of the

lowest one, there were resonances at higher orders in the perturbative construction

which threatened to introduce growing modes into the solution. It was found

however, that this could be avoided by letting ω depend on ε, provided one starts

with individual graviton modes [72].

The normal mode frequencies in the AdS soliton are not integer multiples of

each other, so there are no exact resonances. Nevertheless ω still depends on ε

for the following reason: recall that for the linearized perturbation, the value of

ω was determined by requiring that H(z) be regular at the tip and normalizable

at the boundary. This linear perturbation then seeds the nonlinear geon, and

is relabelled H
(0)
1 (z). At second order, the background geometry is altered, and

at third order, the original seed Fourier mode is corrected because the function

H
(2)
1 (z) is turned on. The original value for ω does not allow H

(2)
1 (z) to be both
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regular and normalizable, therefore ω must also be corrected. These corrections

will be determined from odd orders in perturbation theory, but the corrections to

ω will be in even powers of ε,

ω(ε) =
∞∑
i=0

ε2iω2i. (5.13)

The geon is not invariant under the action of the vectors ∂t or ∂y individually,

but these are asymptotic Killing vectors and therefore the geon will carry the

corresponding conserved charges of energy and momentum. These charges also

have an expansion in even powers of ε,

E(ε) =
∞∑
i=0

ε2iE2i, P (ε) =
∞∑
i=0

ε2iP2i. (5.14)

In the above expansions, ε appears as a formal expansion parameter. In order

to relate the expansion parameter to a physical quantity, we define ε to make

P (ε) = ε2V2.

At each order in perturbation theory the Einstein equations reduce to a set of

coupled ODE’s. The first order equations are homogeneous, while all the higher

order equations have inhomogeneous source terms consisting of powers of the lower

order functions and their derivatives. We choose boundary conditions that enforce

regularity at the tip and leave the boundary metric unchanged. We also fix the

periodicity of the circle to be 2π.

We numerically solved the perturbative hierarchy of Einstein’s equations to

third order. The energy and momentum were obtained using the AdS stress ten-

sor formalism of Ref. [84]. We find that the geon has larger energy than the
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background, E2 > 0, in accord with the positive energy conjecture [75]. As a nu-

merical check, we verified that the solutions obey the first law of thermodynamics

to O(ε4). Since there are no horizons (and hence no entropy) and the solution is

invariant under ∂t + ω/q ∂y, this is simply [85]

dE =
ω

q
dP. (5.15)

We also checked that the boundary stress tensor is traceless. Odd-dimensional

asymptotically locally AdS spacetimes may have a conformal anomaly, but not

when the boundary is Ricci flat, as it is for these geons. Since there are no exact

resonances, there should be no obstructions to extending the perturbative solution

to all orders and constructing a one parameter family of exact solutions for each

linearized mode.

For later reference, we now consider how the frequency changes with the

Kaluza-Klein excitation q: ω(q) = ω0(q) + ω2(q)ε2 + O(ε4). For large q, one

finds ω0 → 2q. This is a simple consequence of the fact that as q → ∞, the

support of the first order normal mode becomes both squeezed (in the coordinate

z) and pushed further away from the tip (see Fig. 1). For arbitrarily large q, the

normal mode is effectively localized on the boundary, and so its equation of motion

becomes that of a massless scalar field on M3 × S1. This leads to the dispersion

relation ω0 = 2q. The factor of 2 arises from the fact that the y coordinate has

been rescaled to make its period 2π. As discussed above, the second order term

in the frequency expansion, ω2, is found by requiring that the function H
(2)
1 (z) be

regular at the tip and normalizable at the boundary. The result is always nega-
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tive (see Fig. 2). With our choice of expansion parameter, P = ε2V2, the second

order change asymptotes to 0 as q → ∞. This is simply a reflection of the fact

that as q gets larger, the amplitude of the linearized perturbation must decrease

to maintain a fixed P . Thus the second order backreaction becomes smaller and

hence there is a smaller change in the frequency. The fact that ω2 < 0 will play

an important role in the next section. The global AdS geons also had ω2 < 0 [72].
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q = 2

Figure 5.1: The linearized tensor perturbation for three different choices of q.
As q increases the function becomes squeezed and pushed towards z = 0. These
functions correspond to the lowest overtone number, and have been normalized
so that the area under the curve is 1.

5.3 Geons and Holographic Superconductors

5.3.1 AdS Soliton Superconductors

In this section we briefly review the holographic superconductor in the AdS

soliton background [76, 77]. This system has many features in common with the

dimensionally reduced geons, and the review will be useful when we investigate the

possibility that geons could model holographic superconductors. We also present
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Figure 5.2: Plot of the second order change in frequency, ω2(q). For all q
studied, ω2 < 0. Normalization is fixed so that P = ε2V2 is constant.

a simple characterization of the superconducting phase transition and show that

it is not caused by a linear instability towards scalar condensation.

Consider the Einstein-Maxwell-scalar theory defined by the following action

S =

∫
d5x
√
−g
(
R +

12

L2
− 1

4
F 2 − |(∇− iqA)Ψ|2 −m2|Ψ|2

)
. (5.16)

The possibility that this theory could describe a T = 0 insulator/superconductor

phase transition in the background geometry of the AdS soliton was first consid-

ered in Ref. [76]. They worked in the probe limit in which the backreaction of

the metric is neglected but the nonlinearities of the Maxwell and scalar fields is

preserved. A superconducting phase transition was found to occur as the chemical

potential µ was increased from zero to some critical value, µc. Then [77] consid-

ered the full backreaction and found the complete phase diagram. Both groups

either explicitly or implicitly considered the following ansatz for the matter fields

A = φ(r)dt, Ψ = ψ(r)e−iωt. (5.17)
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As a result of gauge invariance, the equations of motion are invariant under the

transformation φ→ φ+C, ω → ω− qC, where C is a constant. In both papers C

was chosen to set ω = 0. Since the chemical potential is defined to be the leading

term in the near-boundary expansion of the gauge field, φ = µ− ρ/2r2 +O(r−4),

this corresponds to a choice of chemical potential.

The critical chemical potential found in the probe limit in Ref. [76] simply

corresponds to the smallest normal mode frequency of a charged scalar field in

the AdS soliton background (divided by the charge q). To see this, consider

the system in the probe limit right at the critical point, φ = µc. The Maxwell

field is pure gauge, and the scalar field is negligibly small, so the equations of

motion reduce to a single linear ODE for the static scalar field Ψ = ψ(r). By

using the above symmetry this field configuration can be transformed to φ = 0,

Ψ = ψ(r) exp(−iqµct). The φ equation of motion is trivially satisfied, and the ψ

equation is identical to that determining the normal modes, except with ω → qµc.

So the determination of µc is equivalent to the problem of finding the normal

mode frequencies of a scalar field in the AdS soliton background. This connection

between the critical chemical potentials and the normal mode frequencies was first

discussed in [86].

There is a crucial difference between the superconducting phase in the AdS

soliton background and the original holographic superconductor based on the

Schwarzschild AdS solution [68]. In the latter case, below a critical temperature,

the black hole becomes unstable to forming charged scalar hair. In the AdS

soliton there is no instability for any value of the chemical potential. Instead, the

insulator/superconductor phase transition reflects which configuration has lower
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free energy and hence dominates a grand canonical ensemble. If there were an

unstable linearized mode growing exponentially in time for some φ = µ > µc, then

the above shift symmetry could be used to set φ = 0 at the cost of shifting the

real part of ω. This shift would not affect the exponentially growing behaviour of

the mode, so it would therefore be an unstable perturbation of the AdS soliton.

But it is known that the AdS soliton is stable to linearized perturbations of both

the metric and a free massless scalar field [75, 82]. So such a growing linearized

mode cannot exist, and the appearance of a new branch of static solutions (the

superconducting condensates) is not related to any linear instability.

5.3.2 Holographic Dual of the Geons

We now investigate the possibility that the dimensional reduction of the geons

could model a holographic superconductor. Recall the standard Kaluza-Klein

reduction of a five dimensional metric with a U(1) symmetry. One can write the

metric in the form

ds2 = gABdx
AdxB = φ2(dy + Aadx

a)2 +
1

φ
g

(4)
ab dx

adxb, (5.18)

where xa = (r, xµ) and the functions depend on the xa coordinates only. This

parametrization leads to a four-dimensional Einstein-Maxwell-dilaton theory in

the Einstein frame. The off-diagonal part of the metric, Aa, is interpreted as

a Maxwell field. Five-dimensional coordinate transformations of the form y →

y+λ(x) correspond to four-dimensional gauge transformations, Aa(x)→ Aa(x) +

∂aλ(x).
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The AdS soliton can, of course, be written in the above form3 with Aa = 0. A

simple five-dimensional coordinate transformation y → y+µt generates a nonzero

gauge field At = µ. If there is a phase transition to forming the geon at a critical

value µ = µc, then near µc the amplitude of the geon will be small and it can

be approximated by the leading O(ε) correction to the metric (5.5). When µ =

ω/q (where ω is the frequency of the linearized graviton mode) the dimensional

reduction of this mode corresponds to a static, charged spin-2 field. In the dual

boundary theory, this corresponds to turning on a charged spin-2 condensate

〈Ox1x2〉. Since the AdS soliton is stable to linearized metric perturbations, the

appearance of this new branch of static solutions is analogous to turning on the

superconducting condensate in Ref.’s [76, 77]; in neither case is the condensation

the result of a linearized instability.

The key question is whether the condensate has lower free energy than the

original state with no condensate. To compute this, one needs to construct the

geon to higher order as we have done in the previous section. Consider the five-

dimensional theory in the zero temperature grand canonical ensemble. The rel-

evant free energy functional is the Gibbs free energy, which, in the absence of

any black hole horizons or true five-dimensional Maxwell fields, takes the form

G = E− (ω/q)P . Making use of the first law (5.15), the Gibbs free energy obeys

dG = −P
q
dω = −2P2ω2

q
(1 +O(ε2))V2ε

3dε. (5.19)

Since P2 > 0, the sign of the free energy depends on the sign of ω2, which we have

3The four dimensional Einstein metric will be singular at the location of the tip and is not
asymptotically AdS. However in terms of applications to gauge/gravity duality, both of these
problems can be resolved by applying holography directly to the five dimensional solution [87].
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found is always negative (see Fig. 2). Therefore, at least in perturbation theory,

the geon will always have a larger free energy than the AdS soliton. Since the

free energy is unaffected by dimensional reduction, we conclude that the spin-2

condensate will also have a larger free energy than the field theory state with no

condensate. This result spoils the hope that the perturbative geon could model a

d-wave superconductor.

What is the key difference between this case and the earlier result that there

is a phase transition when the Maxwell field and charged scalar field are added to

the five dimensional action? The most likely explanation is that when a charged

scalar is added, one can increase the charge q keeping the mass fixed, while in

the Kaluza-Klein case, increasing q also increases the effective mass in the four

dimensional theory. Indeed, it was shown in [77] that for m2 = −15/4 and q = 1

the free energy increases when the scalar turns on. It decreases only for larger q

(with the same m). However, even for q = 1, it turns out that as the amplitude of

the scalar field increases, the change in free energy eventually becomes negative

and there is a first order phase transition [77].

It remains possible that the exact geon solutions will behave like the q = 1

charged scalar. However, even if the change in free energy eventually becomes

negative, the condensate will not be pure spin-2. From the structure of the per-

turbative Einstein equations, it is clear that the first order seed perturbation

H
(0)
1 (z) sources an infinite number of higher Fourier modes, and that the higher

order perturbations are complicated combinations of scalar, vector, and tensor

modes. Therefore, the corresponding state in the dual field theory is a nonlinear

combination of spin-0, 1, and 2 condensates of various charges. This is conve-
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niently described in terms of 〈Tµν〉. Since the metric is the only nonzero bulk

field in five dimensions, the only dual operator with a nonzero expectation value

is the (traceless) stress tensor. The Maxwell field on the boundary arises from

Kaluza-Klein reduction of the (fixed) boundary metric.

To summarize, we have perturbatively constructed a class of geons in the

background geometry of the AdS soliton to third order. We only considered

geons seeded by tensor perturbations; vector and scalar perturbations would lead

to different classes of geons. These solutions have an exact helical Killing vector

K = ∂t+(ω/q)∂y. We considered the dimensional reduction of the geons and found

some features suggestive of d-wave superconductors. However, these geons do not

provide a gravitational dual of a continuous phase transition to a superconductor.

We have also seen that the previously studied phase transition in the AdS

soliton is not the result of a linear instability. The dimensionally reduced spin-

2 condensate we construct is also not the result of a linear instability. Perhaps

the Kaluza-Klein approach towards holographic superconductivity would be more

successful if the gravitational background became linearly unstable to a metric

perturbation as some control parameter is varied. This possibility deserves further

investigation.
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Chapter 6

Holographic thermalization,

quasinormal modes and

superradiance in Kerr-AdS

6.1 Introduction and summary

The behavior of perturbed black holes (BHs) in asymptotically anti de-Sitter

(AAdS) spacetimes is of central importance in both current fundamental and

practical research endeavors. Since these spacetimes contain a timelike bound-

ary, exploring such behavior requires taking into account the role of boundary

conditions. Of particular relevance are physically motivated conditions implying

the absence of dissipation at infinity. This introduces new features and chal-

lenges in the analysis of fluctuations in AAdS scenarios: generic perturbations

“bounce back” off infinity and come back to interact, in the core region of AdS
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or with the black hole, in finite time. Such interaction dissipates the quasinormal

modes (QNMs) only at the horizon and can trigger superradiant instabilities at

the linear level, and even induce other nonlinear phenomena. Additionally, BHs

in AAdS play a central role in the formulation and applications of the AdS/CFT

correspondence. This correspondence [88, 89] provides a remarkable framework

for studying certain strongly coupled gauge theories in d dimensions by mapping

them to weakly coupled quantum gravitational systems in d + 1 dimensions. In

a certain limit (namely in the large ‘t Hooft coupling and planar limit), quantum

gravity in the bulk reduces to classical general relativity. Within this holographic

framework, a black hole is dual to a thermal state and the question of ther-

malization in the boundary gauge theory translates, in the gravitational bulk,

to understanding the “return to equilibrium” behavior of perturbed black holes

[90, 91, 92, 93, 94, 95, 96, 97].

Here, we will be interested in the original gauge/gravity duality, namely the

AdSd+1/CFTd correspondence (for the d = 3, 4 cases for which Super-Yang-Mills

theory is dual to string theory on AdS4×S7 and AdS5×S5, respectively). More-

over, we are particularly interested in systems with a rotating chemical potential.

This requires looking to CFTs formulated on a sphere (since a rotational shift is

a pure gauge transformation on a plane), i.e. for bulk solutions that asymptote

to global AdS (which is conformal to the static Einstein Universe Rt × Sd−1).

Henceforward, when we refer to AAdS spacetimes it is implicitly assumed that we

mean global AdS (although some of the discussions are also valid for planar AdS

i.e. the Poincaré patch of AdS that asymptotes to Rt ×Rd−1). We will often use

the notation D = d + 1 for the bulk spacetime dimension; Greek indices denote
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the bulk dimensions while Latin indices describe boundary coordinates.

Certainly, important headways on thermalization can be made by studying

the behavior of perturbed black hole spacetimes at a linearized level. Naturally,

the applicability of such analysis depends on the strength of the perturbation off

the stationary black hole and the behavior obtained can hint of possible instabil-

ities [98, 99, 100, 101].

The analog problem in asymptotically flat spacetimes is, to a large degree,

understood. The approach to equilibrium depends sensitively on the character of

the perturbation: massless fields (scalar, vector or tensor type) die off through

their quasinormal modes (QNMs), with a time dependence of the form e−iωt with

Im(ω) < 0 (for a review see [10])1. Massive fields on the other hand, have a much

richer phenomenology, tied to the fact that they can be trapped inside a cavity

with size of the order of the Compton wavelength. This trapping causes the field

to decay much slower, or can even become unstable for large black hole rotation

(see [102] and references therein). The linear behavior of massive fields around

rotating black holes is not fully understood yet (and certainly not the nonlinear

regime), but it is akin to that of massless fields in AAdS backgrounds in that

both can develop trapping potentials. However, an important difference is that

the height of the potential barrier is unbounded in the AdS case while it is finite

for a massive scalar in a flat background.

Accurate expressions for the QNMs for generic black holes in the asymptot-

ically flat case are known for both static and stationary black holes (see the re-

1Exceptions exist however, as QNMs do not constitute a basis for perturbations, nevertheless
cases where QNMs are known to fail to describe the solution in linearized perturbative regimes
are either finely-tuned or, like tails, arise after a QNM epoch can be identified).
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view [10]); remarkably this is not the case in the AdS background as they are

not known for the Kerr-AdS BH. This status of affairs is, at first sight, surprising

given the central role they play in holographic dualities as well as in studies of

AAdS black hole stability.

It is thus worth discussing in detail the reason for this gap in our knowledge.

Since an AAdS spacetime is a non-globally hyperbolic spacetime (i.e., spatial in-

finity is a timelike boundary in the Carter-Penrose diagram and thus null rays can

reach it in finite time), in order to predict the future time evolution of the system

we need to give not only initial data but also to specify the choice of boundary

conditions (BCs). At the inner boundary (origin or horizon) regularity fixes the

BC. However, at the asymptotic boundary this choice is à priori arbitrary, being

fixed by a physical motivation. From a pure gravitational perspective it is often

stated in the literature that one is interested in “reflecting BCs” which suggests

the idea that we want vanishing flux of energy and angular momentum across

the asymptotic boundary. On the other hand, in the context of the AdS/CFT

duality we typically want to choose BCs that preserve the asymptotic boundary

(conformal) metric. Next, and in Appendix 6.A, we emphasize that these two

perspectives require exactly the very same BCs. Formally, the discussion of the

asymptotic BCs is more clear if we write the total metric (background plus pertur-

bations, if present) in Fefferman-Graham coordinates (this frame is defined such

that gzz = L2/z2 and gzb = 0, where z is the radial distance with boundary at

z = 0, and xb are the coordinates on the boundary), and looking at its boundary

expansion (see [103] and references therein). For odd boundary dimension d this
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reads2

ds2 =
L2

z2

[
dz2 + gab(z, x)dxadxb

]
,

gab
∣∣
z→0

= g
(0)
ab (x) + · · ·+ zdg

(d)
ab (x) + · · · with 〈Tab(x)〉 ≡ d

16πGN

g
(d)
ab (x),(6.1)

where g(0)(x) and g(d)(x) are the two integration “constants” of the expansion; the

first dots include only even powers of z (smaller than d) and depend only on g(0)

(thus being the same for any solution that asymptotes to global AdSd) while the

second dots depend on the two independent terms g(0), g(d) (we will fix Newton’s

constant as GN ≡ 1). Within the AdS/CFT duality we are (typically) interested

in Dirichlet BCs that do not deform the conformal metric g(0). Indeed, this defines

the gravitational background where the CFT is formulated and we want to keep

it fixed; in our case this is the static Einstein Universe. Stated in other words, we

allow perturbations in the bulk that only deform the expectation value of holo-

graphic stress tensor 〈Tab(x)〉 (that specifies and describes the boundary CFT)

3 but that preserve the asymptotic structure of the original background that we

perturb.4 As discussed in Appendix 6.A these BCs do not allow asymptotic dissi-

pation of energy or angular momentum. In other words, everything that hits the

asymptotic boundary is reflected back to the bulk core allowing for a non-trivial

interplay between the asymptotic and inner (e.g. horizon) boundaries. We have

2For even d, the asymptotic expansion (6.1) contains also a logarithmic term zd log z2g̃
(d)
ab and

the holographic stress tensor has an extra contribution proportional to the conformal anomalies
of the boundary CFT [103]. These details are not essential for the present discussion.

3Note that g(d) is an integration “constant” but not a free function; it is fixed solving the
Einstein equation in the bulk subject to regular BCs at the horizon or radial origin.

4Other BCs that might be called asymptotically globally AdS (and that promote the bound-
ary graviton to a dynamical field) were proposed in [104]. However, they turn out to lead to
ghosts (modes with negative kinetic energy) and thus make the energy unbounded below [105].
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now growing evidence that these conditions favour the development of instabilities.

For instance, it has been shown recently that even arbitrarily small perturbations

can trigger black hole formation in global AdS [73, 72], indicating that global AdS

is nonlinearly unstable to a weak perturbative turbulent mechanism (note however

the existence of “islands” of stability [106, 107, 108]). Additionally, it has recently

been shown that turbulent behavior 5 (akin to the one displayed by hydrodynam-

ics) arises in long-wavelength perturbations of 3+1 Kerr-AdS [110, 111].

The BCs we need to impose to study AAdS perturbations of global AdS BHs

are therefore well known. Yet, we still need to understand why the study of QNMs

and superradiant instabilities of global AdS BHs is not a closed chapter. For that,

we need to look to the perturbation equations. Studying linearized gravitational

perturbations requires solving the linearized Einstein equations for the metric

perturbation. For generic perturbations this is a coupled nonlinear system of

PDEs. Solving this PDE system directly with the above BCs is a hard problem,

even numerically. In certain special cases, however, drastic simplifications occur.

Fortunately, and quite remarkably, in four dimensions it has been shown that if we

use certain gauge invariant scalar variables we can reduce the problem of looking

for the most generic perturbations of the above AAdS BHs to solving a single PDE.

Moreover, using the harmonic decomposition of the system, the later reduces to

solving two ODEs. This remarkable reformulation of the linearised perturbation

problem is known as the Regge-Wheeler−Zerilli or Kodama-Ishisbashi formalism

for perturbations of Schwarzchild BHs [112, 113, 31], and Teukolsky formalism for

perturbations of Kerr BHs [114, 22]. We ask the reader to see the companion paper

5As well, in planar AdS backgrounds, turbulent behavior of gravity has also been uncovered
for (sufficiently) long-wavelength perturbations of black holes in [109, 110].
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[115] for a detailed discussion of these two formalisms and for the map relating

them when the background rotation vanishes. Once the solution for the gauge

invariant scalars is known a simple differential map generates the corresponding

metric perturbation tensors (in a particular gauge).

At this point, to find QNMs or instability timescales of AAdS BHs we just

need to take the above BCs, discussed for the metric perturbations, and trans-

late them to get the corresponding BCs that need to be imposed on the gauge

invariant scalars. On general grounds we should expect the Dirichlet BCs on the

metric to translate to Robin BCs (which relate the field with its derivative) on

the gauge invariant scalars. In the static background case, this dictionary was

found by [96, 97]. There are two families of perturbations: scalar (also called even

or polar) and vector (odd or axial) sectors. The associated QNMs of the global

AdS Schwarzchild BH were then computed [96, 97, 115]: vector QNMs agree with

those first computed in [116, 117, 118] (the scalar modes of [116, 117, 118] do

not preserve the asymptotic AdS structure). In the stationary case, the BC map

was constructed only recently in the companion paper [115]. With it at hand, we

can finally compute the gravitational QNM spectrum and superradiant instabil-

ity growth rates of the Kerr-AdS BH. This is one of main aims of the work here

reported. (Previous work on gravitational QNMs [119] and superradiant instabil-

ity of Kerr-AdS [120] imposed BCs that do not keep the boundary metric fixed).

While many of the methods presented here are readily applicable to arbitrary di-

mensions we concentrate in dimensions d = 3 and d = 4 because of their interest

for the AdSd+1/CFTd holographic dualities.

The interest on the superradiant instability is not restricted to its growth
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rate. Indeed, the onset curve of this instability (where the imaginary part of the

frequency vanishes) is an exact zero mode that is invariant under the horizon-

generating Killing field of Kerr-AdS. Therefore we will argue that, in a phase

diagram of stationary solutions, this onset curve signals a bifurcation curve to a

new family of BHs that have a single Killing vector field (KVF), i.e. that are peri-

odic but not time dependent neither axisymmetric. A far reaching consequence of

this statement is that Kerr-AdS BHs are not the only stationary BHs of Einstein-

AdS gravity. These BHs can exist because they evade a main assumption of the

rigidity theorems [121, 122, 123]. We will give the explicit perturbative construc-

tion of the leading order thermodynamics and properties of these BHs. These

ideas were first proposed in [30] and further developed in [124, 72]. Now that we

have the precise onset curve of superradiance, we have the opportunity to expand

their discussion.

Another aim of the present work is to confirm that long wavelength gravita-

tional QNM frequencies agree with the hydrodynamic relaxation timescales that

we obtain when we consider the near-equilibrium and long wavelength effective

description of the CFTd. This will provide the first explicit confirmation that the

match between the QNM spectrum and the CFT thermalization timescales also

holds in the presence of a rotating chemical potential. Incidentally, it provides the

first non-trivial confirmation that the Robin boundary conditions for the Teukol-

sky gauge-invariant variable derived in the companion paper [59] are indeed the

ones that we must impose if we want the perturbations to preserve the conformal

metric.

This work is divided as follows. Section 6.2 reviews relevant properties of D =
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4 Kerr-AdS spacetime and the equations of motion and the BCs [115] governing the

behavior of perturbations at the linear level. Section 6.3 describes the numerical

methods employed to solve them. One of these numerical approaches is novel

and we expect it to be of interest for other applications. Section 6.4 presents our

results for the full spectrum of gravitational QNMs and superradiant instability

timescales of the Kerr-AdS BH. In Section 6.5 we construct and discuss the novel

single Killing vector field BHs that merge with the Kerr-AdS BH at the onset

of superradiance. In section 6.6 we use the fluid/gravity duality to confirm the

match between the gravitational long-wavelength QNM spectrum and the CFT3

hydrodynamic modes even in the presence of a rotating chemical potential. Section

6.7 repeats the previous section computations and discussions but this time for

the D = 5 rotating system that is of interest for the AdS5/CFT4 duality. It

will also contribute to identify universal properties of systems with a rotating

chemical potential. We work in a particularly clean environment where we study

perturbations around the equal angular momentum Myers-Perry BH. Indeed, this

background has enhanced symmetry − it only depends non-trivially on the radial

direction − and its perturbations have an exact harmonic decomposition. The

present study fills important gaps in our knowledge but confirms and opens some

interesting questions. In Section 6.8 we discuss these open questions in what can

be viewed as a roadmap in the subject from our viewpoint.
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6.2 Gravitational perturbations & boundary con-

ditions of Kerr-AdS black hole

In this section we review the basic properties of Kerr-AdS black holes and

their gravitational perturbations.

6.2.1 Kerr-AdS black hole

The Kerr-AdS geometry was originally discovered by Carter in the Boyer-

Lindquist coordinate system {T, r, θ, φ} [125]. For our purposes, it is convenient

here, to follow Chambers and Moss [126] and introduce the new time and polar

coordinates {t, χ}, which are related to the Boyer-Lindquist coordinates {T, θ} by

t = ΞT , χ = a cos θ , (6.2)

where a is the rotation parameter of the solution and Ξ is to be defined in (6.4).

In this coordinate system the Kerr-AdS black hole line element reads [126]

ds2 = − ∆r

(r2 + χ2) Ξ2

(
dt− a2 − χ2

a
dφ

)2

+
∆χ

(r2 + χ2) Ξ2

(
dt− a2 + r2

a
dφ

)2

+
(r2 + χ2)

∆r

dr2 +
(r2 + χ2)

∆χ

dχ2 , (6.3)

where

∆r =
(
a2 + r2

)(
1 +

r2

L2

)
−2Mr , ∆χ =

(
a2 − χ2

)(
1− χ2

L2

)
, Ξ = 1− a

2

L2
.

(6.4)
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The Chambers-Moss (CM) coordinate system {t, r, χ, φ} has the appealing prop-

erty that the line element treats the radial r and polar χ coordinates on an almost

equal footing. This property extends to the radial and angular equations describ-

ing gravitational perturbations in the Kerr-AdS background. In this frame, the

horizon angular velocity and temperature are given by

ΩH =
a

r2
+ + a2

, TH =
1

Ξ

[
r+

2π

(
1 +

r2
+

L2

)
1

r2
+ + a2

− 1

4πr+

(
1−

r2
+

L2

)]
. (6.5)

The Kerr-AdS black hole obeys Rµν = −3L−2gµν , and asymptotically approaches

global AdS space with radius of curvature L. This asymptotic structure is not

manifest in (6.3), one of the reasons being that the coordinate frame {t, r, χ, φ}

rotates at infinity with angular velocity Ω∞ = −a/(L2Ξ). However, if we introduce

the coordinate change

T =
t

Ξ
, Φ = φ+

a

L2

t

Ξ
,

R =

√
L2 (a2 + r2)− (L2 + r2)χ2

L
√

Ξ
, cos Θ =

L
√

Ξ r χ

a
√
L2 (a2 + r2)− (L2 + r2)χ2

,(6.6)

we find that as r →∞ (i.e. R→∞), the Kerr-AdS geometry (6.3) approaches

ds2
AdS = −

(
1 +

R2

L2

)
dT 2 +

dR2

1 + R2

L2

+R2
(
dΘ2 + sin2 Θ dΦ2

)
, (6.7)

which we recognize as the line element of global AdS. In other words, the conformal

boundary of the bulk spacetime is the static Einstein universe Rt × S2: ds2
∂ =

limR→∞
L2

R2 ds
2
AdS = −dT 2 + dΘ2 + sin2 Θ dΦ2. This is the boundary metric where

the CFT lives in the context of the AdS4/CFT3 correspondence.
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The ADM mass and angular momentum of the black hole are related to the

mass M and rotation a parameters through MADM = M/Ξ2 and JADM = Ma/Ξ2,

respectively [127, 128]. The horizon angular velocity and temperature relevant

for the thermodynamic analysis are the ones measured with respect to the non-

rotating frame at infinity [127, 128] and are given in terms of (6.5) by Th = ΞTH

and Ωh = Ξ ΩH + a
L2 . The event horizon is located at r = r+ (the largest real root

of ∆r), and it is a Killing horizon generated by the Killing vector K = ∂T + Ωh∂Φ.

We discuss our results in terms of the horizon radius and rotation parameter,

which uniquely determine a given Kerr-AdS black hole. The mass parameter is

given in terms of these by M =
(
r2

+ + a2
) (
r2

+ + L2
)
/ (2L2r+). All regular black

hole solutions must obey TH ≥ 0 and a/L < 1. This translates into the following

conditions for r+/L and a/L:

a

L
≤ r+

L

√
L2 + 3r2

+

L2 − r2
+

, for
r+

L
<

1√
3
,

(6.8)

a

L
< 1, for

r+

L
≥ 1√

3
.

The first inequality is saturated for a degenerate extremal regular horizon. On

the left panel Fig. 6.1, we show the allowable domain for a/L and r+/L. Further

properties of the Kerr-AdS spacetime are discussed in Appendix A of [129].

We will find it useful to parametrize the black hole in variables that are natu-

rally related to the onset of superradiance, and that are gauge invariant. Here we
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Figure 6.1: Left panel: Allowable region for a/L and r+/L: the vertical dashed
line is given by r+/L = 1/

√
3, the dashed dotted lines indicate extremality, and

the horizontal solid lines indicate |a| = L. Right panel: Allowable region for
ΩhL and R+/L: the horizontal dashed line marks the onset of superradiance,
the dashed dotted lines indicate extremality.

choose the pair (R+,Ωh), with R+ given by:

R+ =

√
r2

+ + a2

√
Ξ

. (6.9)

Extremality is attained at

∣∣Ωext
h

∣∣ =
1

LR+

√
(L2 +R2

+)(L2 + 3R2
+)

2L2 + 3R2
+

. (6.10)

Note that R+ is just the square root of the area of the spatial section of the

event horizon, divided by 4π, often denominated areal horizon radius. The allowed

values of R+/L and ΩhL are depicted on the right panel of Fig. 6.1.
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6.2.2 Gravitational master equation and global AdS bound-

ary conditions

In the Newman-Penrose−Teukolsky formalism, all the information about (non-

trivial) gravitational perturbations with spin s = −2 is encoded in the single vari-

able δΨ4 which describes the perturbation of the Weyl scalar Ψ4 = Cabcdn
am̄bncm̄d.

The equation of motion for this perturbation δΨ4 is described by the s = −2

Teukolsky master equation [114, 22]. Introducing the separation ansatz

δΨ4 = (r − iχ)−2 e−iω̃t eimφR
(−2)
ω̃`m (r)S

(−2)
ω̃`m (χ) , (6.11)

the spin s = −2 Teukolsky master equation separates into angular and radial

equations [126, 115]:

∂χ

(
∆χ∂χS

(−2)
ω̃`m

)
+

[
−
(
Kχ + ∆′χ

)2

∆χ

+

(
6χ2

L2
+ 4K ′χ + ∆′′χ

)
+ λ

]
S

(−2)
ω̃`m = 0 , (6.12)

∂r

(
∆r∂rR

(−2)
ω̃`m

)
+

[
(Kr − i∆′r)

2

∆r

+

(
6r2

L2
+ 4iK ′r + ∆′′r

)
− λ

]
R

(−2)
ω̃`m = 0 , (6.13)

where we have defined

Kr = Ξ
[
ma− ω̃

(
a2 + r2

)]
, Kχ = Ξ

[
ma− ω̃

(
a2 − χ2

)]
. (6.14)

The eigenfunctions S
(−2)
ω̃`m (χ) are the spin-weighted s = −2 AdS-spheroidal har-

monics. The positive integer ` specifies the number of zeros of the eigenfunction
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along the polar direction which are given by ` −max{|m|, |s|} (so the smallest `

is ` = |s| = 2). The associated eigenvalues λ are functions of ω̃, `,m which can

be computed numerically. Regularity imposes the constraints that −` ≤ m ≤ `

must be an integer and ` ≥ |s|. This equation has been studied in [115] in the

limit where the rotation vanishes.

If we solve (simultaneously) the angular and radial equations, which are cou-

pled through the two eigenvalues ω̃ and λ, we get information about the most

general perturbation of the Kerr-AdS black hole. In particular, the Teukolsky

equation and its solution for the spin s = +2 perturbations, described by the

variable δΨ0 = (r − iχ)−2 e−iω̃t eimφR
(2)
ω̃`m(r)S

(2)
ω̃`m(χ), follow trivially from the

spin s = −2 solution. Namely, R
(2)
ω̃`m is the complex conjugate of R

(−2)
ω̃`m and

S
(2)
ω̃`m(χ) = S

(−2)
ω̃`m (−χ). The later statement implies that the separation constants

are such that λ
(−2)
ω̃`m = λ

(2)
ω̃`m ≡ λ. The only exceptions to the above are the trivial

perturbations, the “` = 0” and “` = 1” modes, which shift, respectively, the mass

and angular momentum of the solution along the original Kerr-AdS family, and

to which the Teukolsky formalism is blind [130, 31, 35, 115].

Quasinormal modes and unstable modes of the Kerr-AdS black hole are solu-

tions of (6.12)-(6.13) obeying physically relevant boundary conditions (BCs) [115].

At the horizon, the BCs must be such that only ingoing modes are allowed. A

Frobenius analysis at this boundary gives two independent solutions,

R
(−2)
ω̃`m ∼ Ain (r − r+)

1−i ω̃−mΩH
4πTH [1 +O (r − r+)]+Aout (r − r+)

−1+i
ω̃−mΩH

4πTH [1 +O (r − r+)] ,

(6.15)

where Ain, Aout are arbitrary amplitudes and ΩH , TH are the angular velocity and
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temperature defined in (6.5). To impose the correct BC, we introduce the ingoing

Eddington-Finkelstein coordinates {v, r, χ, φ̃}, which are appropriate to extend

the solution through the horizon. These are defined via

t = v − Ξ

∫
r2 + a2

∆r

dr, φ = φ̃−
∫
aΞ

∆r

dr . (6.16)

The BC is determined by the requirement that the metric perturbation is reg-

ular in these ingoing Eddington-Finkelstein coordinates, where the metric ten-

sor is constructed applying a differential operator to δΨ4 (this is known as the

Hertz map; see the companion paper [115]). It follows that the metric per-

turbation is regular at the horizon if and only if R(r)|H behaves as R(r)|H ∼

RIEF (r)|H (r − r+)
1−i ω̃−mΩH

4πTH where RIEF (r)|H is a smooth function 6. Therefore,

the appropriate BC at the horizon demands we set Aout = 0 in (6.15):

R
(−2)
ω̃`m

∣∣∣∣
r→r+

= Ain (r − r+)1−i$ [1 +O (r − r+)] (6.17)

where

$ =
ω̃ −mΩH

4πTH
, (6.18)

is what we might call the superradiant factor. Less formally, but perhaps more

intuitively, when ω̃ is real and non-zero we can understand this horizon BC by

noting that the wave solution e−iω̃t (r − r+)−i$ = e−i(ω̃t+$ ln(r−r+)) is the one that

describes ingoing modes at the horizon since r must decrease when t grows to

6This analysis misses the special case in which 2i ω̃−mΩH
4πTH

is a positive integer. For this
special value, our boundary conditions still allow for outgoing modes at the horizon. However,
by inspecting our numerical data we can a posteriori test if this condition is satisfied. In all our
simulations, this never seems to be the case.
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keep the phase constant (classically, we cannot have outgoing modes leaving the

horizon).

Consider now the asymptotic boundary. A Frobenius analysis of the radial

Teukolsky equation(6.13) at infinity yields the two independent asymptotic decays

R
(−2)
ω̃`m

∣∣
r→∞ = B

(−2)
+

L

r
+B

(−2)
−

L2

r2
+O

(
L3

r3

)
, (6.19)

for arbitrary amplitudes B
(−2)
± . We want the perturbations to preserve the asymp-

totic global AdS structure of the background Kerr-AdS black hole, i.e. we want

the deformation to preserve the asymptotic line element (6.7). In the companion

paper [115] we found that this requirement yields the following Robin BC,

B
(−2)
− = i βB

(−2)
+ , (6.20)

with two possible solutions for β, that we call βs and βv,

1) β = βs =
Λ0 −

√
Λ1

Λ2

, or (6.21)

2) β = βv =
Λ0 +

√
Λ1

Λ2

, (6.22)
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where we have introduced

Λ0 ≡ 2a2(λ− 6)− 8(λ+ 1)L4ω̃2Ξ2 + 8L6ω̃4Ξ4

+ L2
[
λ(λ+ 2)− 4 Ξ2aω̃ [5(m− aω̃) + 2aω̃]

]
,

Λ1 ≡ 4a4(λ− 6)2 + L4λ2(λ+ 2)2 + 48(λ+ 6)a3Ξ2L2ω̃(m− aω̃)

+ 8λ(5λ+ 6)(m− aω̃)L4Ξ2aω̃

+ 4a2L2

[
λ
[
−12 + (λ− 4)λ+ 24(m− aω̃)2Ξ2

]
+ 12Ξ2L2ω̃2

[
2λ+ 3(m− aω̃)2Ξ2

] ]
,

Λ2 ≡ 4LΞ
[
2am+ L2ω̃

(
2 + λ− 2L2ω̃2Ξ2

)]
. (6.23)

Perturbations obeying the BCs (6.20)-(6.21) preserve the asymptotically global

AdS behavior of the background. These are also natural BCs in the context of

the AdS/CFT correspondence: they allow a non-zero expectation value for the

CFT stress-energy tensor while keeping fixed the boundary metric.

The BC (6.20),(6.21) generates what we might call the “rotating sector of

scalar modes”, in the sense that when the rotation vanishes, these perturbations

reduce continuously to the Kodama-Ishibashi scalar modes [115].7 By a similar

reasoning the BC (6.20), (6.22) selects the “rotating vector modes” of the spec-

trum. Having this in mind we will often use the nomenclature “scalar/vector”

modes when discussing our results [115].

As discussed previously, the Chambers-Moss coordinate system {t, r, χ, φ} ro-

7The Kodama-Ishibashi vector master equation is the Regge-Wheeler master equation for
odd (also called axial) perturbations [112], and the Kodama-Ishibashi scalar master equation is
the Zerilli master equation for even (also called polar) perturbations [113].
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tates at infinity. However, the coordinate transformation (6.6) introduces the

coordinate frame {T,R,Θ,Φ} appropriate to discuss the asymptotic global AdS4

structure of the geometry and the boundary metric where the dual CFT3 and

its hydrodynamic limit are formulated. Consider a generic linear perturbation

in Kerr-AdS written in the Chambers-Moss frame {t, r, χ, φ}. Since ∂t and ∂φ

are isometries of the background geometry we can Fourier decompose the per-

turbation in these directions as e−iω̃t eimφ as we did in (6.11). The frequency

ω̃ measured in the frame {t, r, χ, φ} differs from the frequency measured in the

frame {T,R,Θ,Φ}. It follows from the coordinate transformation (6.6) that they

are related by

e−iω̃t eimφ ≡ e−i ω T eimΦ, with ω ≡ ω̃ Ξ +m
a

L2
. (6.24)

The quantity ω can be viewed as the natural or fundamental frequency since it

measures the frequency with respect to a frame that does not rotate at infinity.

This is also the natural frequency measured by a CFT3 and associated fluid rest

frame observer. Therefore, although we will use the frame {t, r, χ, φ} and ω̃ to

discuss many of our results, we choose to plot our results in terms of ω. Note that

the superradiant factor defined in (6.17) can equally be written as $ = ω−mΩh
4πTh

where the angular velocity Ωh and temperature Th as measured in the {T,R,Θ,Φ}

frame are given below (6.7).
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6.3 Numerical procedures

In this section we discuss the numerical procedures applied to solve for the

characteristic frequency ω and separation constant λ. We present three such

methods based on: shooting, series expansion, and Newton-Raphson. The first

two methods are typically used in studies of QNMs and the latter we introduce

here and have found it to be the most robust when exploring limiting cases. As

a powerful check, we find excellent agreement between different methods when

more than one is applicable.

Shooting. The first method “shoots” for the correct answer in both the angular

and radial component. Regularity of the angular eigenfunctions require that they

admit the following expansion

S(θ) ∼ θ|m−2|
∑
n=0

BL
n (ω̃, λ)θn , θ ∼ 0 , (6.25)

∼ (π − θ)|m+2|
∑
n=0

BR
n (ω̃, λ)(π − θ)n , θ ∼ π , (6.26)

at the left- and right-boundaries respectively. The coefficients BL
n , B

R
n can be

extracted from the angular equation and are functions of the frequency and the

separation constant. We typically keep the first six terms in the expansion, nu-

merically integrate the solutions towards each other where we match the logarith-

mic derivative at an intermediate point. We proceed identically with the radial

equation, by imposing conditions (6.17) and (6.20) at the boundaries. Due to well-

known divergences of QNMs at the horizon (stable modes diverge exponentially),

152



Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS Chapter 6

we use an analytical, series expansion close to the horizon and a similar expansion

close to spatial infinity. An example notebook of how the radial equation is dealt

with can be found online [10]. The method gives stable, convergent results for

small black holes, but becomes less accurate for large black holes.

Series expansion. A powerful alternative is based on a series solution of the

radial equation which avoids the divergent nature of QNMs at the horizon al-

together by factoring the relevant terms [90, 10]. For simplicity let us focus

on non-rotating BHs in this brief description, the extension to rotating BHs is

straightforward. Let us start by re-expressing the boundary condition (6.20)

as −r(r/LR(−2)
ω̃`m )′ = iβR

(−2)
ω̃`m , where primes denote derivative with respect to r

and all quantities are evaluated at spatial infinity. Redefine the wavefunction to

R
(−2)
ω̃`m = ∆r

r5 e
−iωr∗Z(r), with dr/dr∗ = ∆r/r

2. Then, make the variable change

z = 1/r and re-write the radial equation as

s(z)
d2Z

dz2
+

t(z)

z − z?
dZ

dz
+

u(z)

(z − z?)2
Z = 0 , (6.27)

and the boundary conditions as

Z ′/L = iZ (β − Lω) , (6.28)

where primes now denote derivative with respect to z and z? = 1/r+.

The idea is now to look for a series solution, Z = an(z − z?)
n, where the
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coefficients an are found through the recurrence relation

an = − 1

Pn

n−1∑
k=0

[k(k − 1)sn−k + k tn−k + un−k] ak , (6.29)

where Pn = n(n−1)s0 +n t0 and where s, t, u have been expanded in Taylor series

around the horizon. The boundary condition then translates into

∑
an(−z?)n

[
1 +

n

h(iβ − iω)

]
= 0 , (6.30)

where β is given by either Eq. (6.21) or Eq. (6.22). Extension to rotating geome-

tries is obtained simply by replacing ω with the corresponding superradiant factor.

Newton-Raphson. We have also developed a novel numerical procedure based

on the Newton-Raphson root-finding algorithm that searches for specific quasi-

normal modes, once a seed solution is given. In order to proceed we first need to

recast Eq. (6.12) and Eq. (6.13) in a different form. Let us introduce the following

auxiliary functions:

R
(−2)
ω̃`m (r) =

(
1− r+

r

)1−i$ L

r
q1

(
1− r+

r

)
, (6.31)

S
(−2)
ω̃`m (χ) =

(
1 +

χ

a

)|m2 +1| (χ
a

)|m2 −1|
q2

(
1 +

χ

a

)
, (6.32)

where we have implicitly introduced two new compact coordinates y = 1 − r+/r

and x̃ = 1+χ/a, which map the problem to the unit square: (x̃, y) ∈ (0, 1)×(0, 1).

The boundary conditions on the qI simply arise from regularity, and translate into
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four Robin boundary conditions at each integration boundary, i.e.

q′I(0) = aI qI(0) and q′I(1) = bI qI(1) ,

where both aI and bI are constants and I = {1, 2}. For q2, both a2 and b2

are determined by solving the equations of motion (6.12) off the singular points

x̃ = {0, 1}. q1 on the other hand, is a little more subtle. At y = 0, we still get the

Robin boundary conditions by solving Eq. (6.13) off y = 0, but the condition at

y = 1 is obtained directly from either Eq. (6.21) or Eq. (6.22).

We are now ready to introduce the new numerical procedure that determines

{q1, q2, ω, λ}. For the sake of presentation we will only discuss below the case in

which we have a single differential equation to solve. The extension to a coupled

system like the one above is straightforward.

Consider the following “nonlinear Stürm-Liouville” problem in {f, λ̃}:

H(λ̃)f = 0 with f′(0) = a0 f(0) , f′(1) = b0 f(1) , (6.33)

where H(λ̃) is nonlinear function in λ̃, and a linear differential operator in f and

both {a0, b0} are constants. In many circumstances H takes the following simple

form: H(λ̃)f = H0f − λ̃H1f − λ̃2H2f, where each of the Hi is a second order

differential operator independent of λ̃. The former differential equation is often

called a quadratic eigenvalue problem, so long as the constants {a0, b0} admit a

similar expansion. The method we describe below allows for any dependence in

λ̃.

We discretize our Eq. (6.33) by introducing a spatial grid {yi}, with N + 1
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grid points. Because we are solving for manifestly analytic functions qI , we can

readily use a pseudospectral collocation discretization scheme. We choose the

Gauss-Chebyshev-Lobatto grid as our collocation points. The nonlinear Stürm-

Liouville problem (6.33) reduces to a nonlinear eigenvalue problem of the form:

Hi,j(λ̃)fj = 0 with DN+1,ifi = a0 fN+1 , D1,ifi = b0 f1 , (6.34)

where Di,j is a Chebyshev differentiating matrix and Hi,j is the discretization of

the operator H. We now introduce a normalization for the eigenvector {fi}, using

an auxiliary constant vector {vi}, such that vifi = 1. In all cases, we choose {vi}

to have only one nonzero component, which without loss of generality we choose

to be the horizon and the south pole located at y = 0 and x̃ = 0, respectively.

The procedure is now clear: we promote λ̃ to be a parameter to be determined

via the Newton-Raphson method. Recall that we have to solve

f(fj, λ̃) =

 Ĥi,j(λ̃)fj

vifi − 1

 = 0 ,

where Ĥi,j is obtained from Hi,j by removing its first and last lines, and substitute

them by the last two conditions in Eq. (6.34). The Newton-Raphson method

states that the correction to our initial guess for ({f(0)
i }, λ̃(0)) can be determined

by inverting the following linear system of equations:

 Ĥi,j(λ̃
(0))

∂Ĥi,j

∂λ̃
fj

∣∣∣
fj=f

(0)
j ,λ̃=λ̃(0)

vj 0


 δfj

δλ̃

 = −

 Ĥi,j(λ̃
(0))f

(0)
j

vjf
(0)
j − 1

 . (6.35)
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We then iterate this procedure until |δfj| and |δλ̃| are below some tolerance, which

in this manuscript we take to be 10−30. All computations using this method were

performed with octuple precision, which is particularly relevant for small black

holes.

Our results have been benchmarked using previous results in the literature,

specifically for scalar field perturbations of Kerr-AdS BHs [34, 120, 131]. In partic-

ular, we recover to all significant digits the numerical results reported in Ref. [131].

Furthermore, we recover all known results from gravitational perturbations of

Schwarzschild-AdS BHs with the same boundary conditions [116, 132, 97, 115].

Finally, we note that an important symmetry of the relevant perturbation

equations and boundary conditions for QNMs is that if (ω, λ) is a solution for a

given m then (−ω∗, λ∗) is a solution for −m. As such, we will only discuss positive

real part modes, with the understanding that they come in complex conjugate

pairs.

6.4 QNMs and superradiance in Kerr-AdS: re-

sults

In this section we present the numerical results obtained, make contact with

some analytical results, and discuss implications with the phenomena of superra-

diance.
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6.4.1 Comparison between analytical and numerical re-

sults

The angular (6.12) and radial (6.13) equations constitute a system of ordinary

differential equations coupled through the frequency ω̃ and angular λ eigenval-

ues that cannot be solved analytically when M,a 6= 0. For this reason, we solve

these equations using the numerical methods outlined in Section 6.3. There is

however a regime where we can use a matched asymptotic expansion procedure to

get an approximate analytical solution for the QNM and superradiant instability

frequency spectra. This perturbative analytical computation provides useful phys-

ical insights about the system and is valuable to check our numerical results. We

leave the details of this analytical construction to Appendix 6.C and present here

only the main outcome of the computation and its comparison with the numerical

results.

As justified in Appendix 6.C, the perturbative analytical results are valid in

the regime of parameters where

r+

L
� 1 ⇒ a

L
� 1 , aω̃ � 1 , r+ω̃ � 1 ;

a

r+

� 1 . (6.36)

i.e., for Kerr-AdS black holes with small horizon radius in AdS radius units and

even smaller rotation parameter, and for perturbations whose wavelength is much

bigger than the black hole lengthscales.

In Appendix 6.C we find that the matched asymptotic expansion analysis

indicates that the frequency spectrum is quantized by the condition (6.143), for
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Figure 6.1: Imaginary part of the QNM frequency as a function of the rotation
parameter a/L, for fixed horizon radius r+/L = 0.005, for scalar (Right Panel)
and vector modes (Left Panel). This is for ` = 2 modes with no radial overtone.
These are an example of the QNM spectrum in the regime a/L < r+/L � 1
where the analytical matching analysis is valid and its approximated results
can be used to both test our numerical code (valid in any regime), and es-
timate more precisely the regime of validity of the analytical approximation.
The red dots are the exact results from our numerical code. The green curve
is the numerical solution of the matching transcendental equation (6.37), while
the dashed black curve is the approximated analytical solution (6.38) or (6.39)
of (6.37). In both figures there is a critical rotation where Im(ω̃L) = 0 and
Re(ω̃)−mΩH ' 0 to within 0.01%. For lower rotations the QNMs are damped
and with Re(ω̃) −mΩH > 0, while for higher rotations we have unstable su-
perradiant modes with Re(ω̃)−mΩH < 0.

a generic mode with quantum numbers ` and m. This frequency quantization

condition simplifies considerably when we choose a particular harmonic `. For

instance, for the lowest harmonic ` = 2, the condition (6.143) reads

i(−1)Lω̃+1L−5

(
r+ −

a

r2
+

)5

Lω̃
(
L2ω̃2 − 1

) (
L2ω̃2 − 4

)
Γ(5− 2i$)

+5400
[
εj + (−1)Lω̃

]
Γ(−2i$) = 0 , (6.37)

where the superradiant factor $ is defined in (6.18), and εj = 1 describes scalar
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modes with the BC (6.138) while εj = −1 represents vector modes with the

BC (6.139). We can find the frequency that solves this transcendental equa-

tion numerically using a standard root-finder routine (for instance Mathemat-

ica’s built-in FindRoot routine). Alternatively we can also provide an approx-

imate analytic solution, still in the limit of a/L � r+/L � 1, assuming that

the frequency has a double expansion in the rotation and in the horizon radius,

ω̃(a, r+)L =
∑n

j=0

(
a
L

)j∑p
i=0 ω̃j,i

(
r+
L

)i
, and solving progressively (6.37) in a series

expansion in a/L and r+/L. Here, ω̃0,0 is the global AdS frequency (see footnote

21). Namely, the fundamental (no radial overtone) ` = 2 scalar and vector nor-

mal mode frequencies are ω̃
(s)
0,0 = 3/L and ω̃

(v)
0,0 = 4/L, respectively. In the regime

(6.36) we work in this subsection, the correction to the real part of the frequency

is very small (compared with ω̃0,0) and (6.37) fixes the the imaginary part of the

frequency for fundamental ` = 2 modes to be

1) Scalar modes: Im(ω̃L) ' 16

15π

[
−

3r6
+

L6
+
mar4

+

L5

(
1 + 15(5γ − 7)

r2
+

L2

)]
+ · · · ,(6.38)

2) Vector modes: Im(ω̃L) ' 96

15π

[
−

4r6
+

L6
+
mar4

+

L5

(
1 +

80(5γ − 7)

3

r2
+

L2

)]
+ · · · ,(6.39)

where γ ' 0.577216 is the Euler-Mascheroni constant. For both scalar and vector

modes the imaginary part of the frequency starts negative for a = 0, consistent

with the fact that QNMs of Schwarzschild-AdS are always damped. However,

as a/L increases, Im(ω̃L) increases. A good check of our analytical matching

analysis is that we find that at the critical rotation where the crossover occurs,

i.e. Im(ω̃L) = 0, one has Re(ω̃)−mΩH ' 0 to within 0.01%. For smaller rotations

one has Re(ω̃)−mΩH > 0 and for higher rotations one has Re(ω̃)−mΩH < 0 and
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Im(ω̃L) > 0. Therefore, the instability which is triggered at large rotation rates

has a superradiant origin since the superradiant factor becomes negative, $ < 0

precisely when the QNMs go from damped to unstable. These analytical matching

results provide also a good testbed check to our numerics. Indeed we find that

our analytical and numerical results have a very good agreement in the regime

of validity of the matching analysis. This is demonstrated in Fig. 6.1 where we

plot our numerical and analytical results for the fundamental ` = 2 scalar and

vector modes. As a rough reference we can take this to be r+/L < 5 × 10−3

and a/L < 10−4. (A similar analysis that lead to the results (6.37)-(6.39) can be

repeated for any other harmonic starting from (6.143)).

6.4.2 Properties of superradiant unstable modes and QNMs

We are now ready to present the properties of the superradiant unstable modes

and QNMs for generic solutions in the parameter space. We use the numerical

methods described in Section 6.3 to find the solution of the coupled ODE angular

(6.12) and radial (6.13) equations that describe the most general linear pertur-

bation of a Kerr-AdS BH. We first present the gravitational scalar perturbations

that obey the BCs (6.21), and then the gravitational vector perturbations that

obey the BCs (6.22).

Consider a Kerr-AdS BH parametrized by particular values of the gauge in-

variant parameters {R+/L,ΩhL} described in the end of Section 6.2.1. A generic

perturbation can have a frequency with negative, positive, or vanishing imaginary

part. Quasinormal modes are damped, Im(ω) < 0, whereas unstable modes grow
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exponentially in time, Im(ω) > 0. Thus, a particularly important set of modes,

if present, are the marginal modes that define the stability boundary in a phase

diagram. The marginal mode (or onset mode) curve is defined to be the locus

of points in the parameter space (R+/L,ΩhL) for which a mode with Im(ω) = 0

exists. There will be a marginal mode curve for each distinct pair of wave numbers

{`,m} resulting in an instability. To understand the nature of this instability it

is useful to look into another useful characterization of linear perturbations. It

comes from considering the difference between the real part of the frequency and

mΩh, which determines the sign of the the energy and angular momentum fluxes

the perturbation carries through the future horizon; see Appendix 6.A8. Modes

with Re(ω) > mΩh carry positive flux through the horizon, whereas modes with

Re(ω) < mΩh carry negative flux across the horizon, and are called superradiant.

Vanishing flux at the horizon requires Re(ω) = mΩh. We find that Re(ω) = mΩh

whenever Im(ω) = 0 and that Re(ω) < mΩh when Im(ω) < 0. Therefore, unstable

modes in Kerr-AdS are always associated to the superradiant instability.

As important illustrative examples, in the left panel of Fig. 6.2 we identify

the superradiant onset curves (OC) for ` = m scalar modes (with vanishing radial

overtone) in the phase diagram of Kerr-AdS BHs. The axes are given by the

gauge invariant horizon radius R+/L and the horizon angular velocity ΩhL (for

the frame that does not rotate at infinity), as previously introduced in Fig. 6.1.

Regular Kerr-AdS BHs exist in the blue shaded area, starting at ΩhL = 0 and all

the way up towards the black curve where extremality is attained. We identify

the OC for the scalar modes with ` = m = 2, 3, 4, 5. BHs that are above a

8Note that reflecting boundary conditions at the conformal boundary enforces the vanishing
of the flux there; see Appendix 6.A
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particular ` = m OC are superradiantly unstable to modes with those particular

values of ` = m, while BHs below a particular OC are stable to the associated

modes. For completeness, in the right panel of Fig. 6.2 we plot the angular

eigenvalue λ along the superradiant OC. Since Im(ω) = 0 along this OC, it follows

from the mathematical structure of the coupled equations that we must also have

Im(λ) = 0.

The OCs have some properties that merit a detailed discussion. First, in both

plots of Fig. 6.2 the large black points on the left at R+/L = 0 are computed

analytically and serve as additional checks for the numerical code. They describe

the scalar normal mode frequencies and the associated angular eigenvalues of

global AdS given by [72, 107],

LωAdSs = 1 + `+ 2p , λ = `(`+ 1)− 2 , (6.40)

where p = 0, 1, 2, · · · is the radial overtone (number of radial nodes). In more

detail, to get the black points in the left panel of Fig. 6.2 we use the superradiant

onset condition to find Ωh

∣∣
R+=0

= ωAdSs /m and we set p = 0, ` = m, i.e.

LΩh

∣∣
R+=0

= 1 +
1

m
, (6.41)

Note that given a {`,m} pair there is an OC for each radial overtone p, but p > 0

curves always lie above the p = 0 curve, and therefore p = 0 modes are the first

to go unstable as the rotation is increased. For this reason only the p = 0 curves

are plotted.

The OCs always have ΩhL > 1, monotonically approaching ΩhL → 1 (from
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above) asymptotically as R+/L→∞, where all the scalar superradiant OCs pile

up. This means that only ΩhL > 1 BHs can be unstable to superradiance, a

property that was first proven in [33].

Finally, note that for small BHs (say with R+/L . 0.45) as ` = m increases

the corresponding superradiant OC lowers. This means that, e.g. we can have

small BHs (those in the triangle-like region between the ` = m = 2 and ` = m = 3

curves) that are stable to ` = m = 2 modes but unstable to all other ` = m ≥ 3

modes, or e.g. BHs that are stable to ` = m = 2 and ` = m = 3 but always

unstable to all other ` = m ≥ 4 modes. However, as the areal radius grows we

find that the OCs start crossing each other. For example, the ` = m = 2 curve

crosses the ` = m = 3 curve at R+/L ∼ 0.45 and for higher radius it crosses the

` = m = 4 and then the ` = m = 5 curve. So, e.g. at R+/L = 1 the ` = m = 2

OC is below the three OCs ` = m = 3, 4, 5. This means that at this radius we can

have Kerr-BHs that are unstable to ` = m = 2 modes but not to ` = m = 3, 4, 5

modes.

At first sight, this is of course exciting as it seems to indicate that there is

a region of parameter space where Kerr-BHs are unstable to ` = m = 2 modes

but stable to any other superradiant modes, with obvious consequences for the

endpoint of the superradiant instability. However, this is not the case. Indeed,

first notice that as ` = m → ∞ the corresponding OC still starts precisely at

the point defined by (6.41). Thus, as ` = m grows large, its threshold modes are

described by an OC that progressively approaches the line ΩhL = 1, becoming

horizontal in the limit ` = m→ +∞. Therefore as the BH rotation is increased,

the first modes that become superradiantly unstable are the m→∞ modes. The
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Figure 6.2: The onset of superradiance for the first ` = m = 2, 3, 4, 5 scalar
modes of the Kerr-AdS BH. The left panel shows the OC in the phase diagram
described by the gauge invariant parameters (R+/L,ΩhL) (the inset plot zooms
out the main plot to show an enlarged view of the parameter space). Regular
Kerr-AdS BHs exist in the blue shaded area all the way up to the black curve
where extremality is attained. In the right panel we show the value of the
angular eigenvalue λ as a function of the areal radius R+/L as we move along
the OC. In both plots, the larger black points on the left with R+/L = 0 are
fixed by the properties (6.40) of scalar normal modes of global AdS.

conclusion that m → +∞ modes are the “first” to become unstable was first

presented in the equal angular momenta Myers-Perry BHs in [30]. Furthermore,

as we shall discuss later, all vector modes will be superradiantly unstable.

As stated previously, in the left panel of Fig. 6.2, BHs that are above a

particular ` = m OC are superradiant unstable to those particular ` = m modes.

That is, their perturbations have frequencies with Im(ω) > 0 and Re(ω) < mΩ.

On the other hand, BHs below a particular OC are damped and thus stable

(when perturbed these BHs return to equilibrium via the emission of QNMs with

Im(ω) < 0 and Re(ω) > mΩ).
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Having studied the OCs for scalar modes with ` = m, we now turn to consider

one particular mode throughout a region of the parameter space to gain more in-

sight into the stability properties of these black holes. A natural mode to consider

is the ` = m = 2 one, as this is the mode with the largest value of the growth

rate Im(ω) found in our study. The imaginary and real parts of the ` = m = 2

scalar mode frequencies are plotted in Fig. 6.3, and the imaginary and real part

of the associated angular eigenvalues is shown in Fig. 6.4. These quantities are

plotted as a function of the dimensionless horizon radius r+/L and rotation a/L

and they define a 2-dimensional surface. To extract more efficiently the relevant

physics, we plot in the right panel of Fig. 6.3 is the real part of the superradiant

factor Re($) = (Re(ω)−mΩh) /(4πTh), as introduced in (6.18). In all these plots

the blue curve is the ` = m = 2 OC already identified in the phase diagram of

Fig. 6.2. To guide the eye (when appropriate) we draw an auxiliary plane with

a grid that intersects the physical 2-dimensional surface along the OC and that

has Re($) = 0, Im(ω) = 0, and Im(λ) = 0. We also plot some black curves at

constant radius r+/L.

In the left panel of Fig. 6.3, modes that are above the auxiliary plane grid

are superradiant unstable modes. In the right panel of Fig. 6.3 and in the left

panel of Fig. 6.4 they correspond to the surface region below the auxiliary plane

grid. Finally, in the right panel of Fig. 6.4 these unstable modes are described

by the surface region “below” the blue line. In the four plots, the superradiant

unstable surface region is a 2-dimensional surface bounded by the superradiant

OC (blue line) and by the extremality curve (where the black curves at constant
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Figure 6.3: Superradiant modes and QNMs for the ` = m = 2 scalar
harmonic. The left panel plots the imaginary part Im(ω) of the frequen-
cies while the right panel shows the real part of the superradiant factor, i.e.
(Re(ωL)−mΩhL)/(4πTh), as a function of the horizon radius r+/L and rota-
tion a/L parameters. The blue curve is the superradiant OC with Im(ω) = 0
and Re($) = 0. The large red point signals the Kerr-AdS BH that is most
unstable to scalar superradiance described by (6.42).. The black curves have
constant radius r+/L = 0.1; 0.2; 0.3; 0.4; 0.445; 0.5; 0.6; 0.7; 0.8. These plots
are discussed in more detail in the text.

radius end).9 In all these plots, the surface region that starts at the blue OC that

is complementary to the unstable region describes the QNMs of the Kerr-AdS BH.

An important feature of the gravitational scalar superradiant instability con-

cerns the order of magnitude of its timescale τ ∼ 1/Im(ω). Inspecting the data we

find that the maximum growth rate of the instability is reached in a neighborhood

of the point {r+/L, a/L}max ' {0.445± 0.020, 0.589± 0.020} where the frequency

is given by ωL ∼ 1.397 + 0.032 i. So, the maximum growth rate for the scalar

superradiant instability and the gauge invariant properties of the BH where it is

9Note that in the right panel of Fig. 6.3 the shown surface would extend for smaller negative
values of Re($) but we stop it at Re($) = −4 for better visualization.
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Figure 6.4: Imaginary (left panel) and real (right panel) part of the angular
eigenvalues of the superradiant modes and QNMs of the ` = m = 2 scalar
harmonic whose frequencies are shown in Fig. 6.3. The color coding of the
lines/points is the same as Fig. 6.3.

attained are

Scalar: {R+/L,ΩhL} ∼ {0.914, 1.295} , Im(ωL) ∼ 0.032 , Re($L) ∼ −3.247 .

(6.42)

This maximum is denoted with a large red dot in the plots of Fig. 6.3 and Fig. 6.4.

Note that this maximum occurs close to extremality but not at it. In particular,

if we plot the instability growth rate as a function of the rotation parameter a/L

at fixed radius (e.g. r+/L = 0.445), we find that, typically, starting from the

onset the instability timescale first increases, reaches a maximum for a/L close to

extremality, and then decreases as we approach the Th = 0 Kerr-AdS BH.

Consider now the gravitational vector modes which obey the BCs (6.22). The

left panel of Fig. 6.5 displays the phase diagram of Kerr-AdS BHs with the OCs for

the ` = m = 2, 3, 4, 5 vector modes displayed (again, only curves with vanishing
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Figure 6.5: Onset of superradiance for the first ` = m = 2, 3, 4, 5 vector modes
of the Kerr-AdS BH. The left panel shows the OC in the (R+/L,ΩhL) phase
diagram (the inset plot zooms out the main plot). The right panel shows how
the angular eigenvalue λ varies with R+/L along the OC. In both plots, the
larger black points on the left with R+/L = 0 are fixed by the properties (6.43)
of vector normal modes of global AdS.

radial overtone are shown). As in the scalar case, BHs that are above a particular

` = m vector OC are superradiantly unstable to modes with those particular

values of ` = m, while BHs below a particular OC are stable to the associated

modes. In the right panel of Fig. 6.5 we plot the angular eigenvalue λ along the

OC for vector modes.

The large black points at R+/L = 0, in both plots of Fig. 6.5, describe the

vector normal modes of global AdS, namely [72, 107],

LωAdSv = 2 + `+ 2p (p = 0, 1, 2, · · · ) , λ = `(`+ 1)− 2 . (6.43)

Together with the superradiant onset condition (with p = 0 and ` = m) these
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Figure 6.6: Superradiant modes and QNMs for the ` = m = 2 vector
harmonic. The left panel plots the imaginary part Im(ω) of the frequen-
cies while the right panel shows the real part of the superradiant factor, i.e.
(Re(ωL)−mΩhL)/(4πTh), as a function of the horizon radius r+/L and rota-
tion a/L parameters. The blue curve is the superradiant OC with Im(ω) = 0
and Re($) = 0. The large red point signals the Kerr-AdS BH that is most
unstable to vector superradiance described by (6.45). The black curves have
constant radius r+/L = 0.1; 0.2; 0.3; 0.325; 0.4; 0.5; 0.565; 0.585; 0.6 (the later
two only in the left panel). These plot are discussed in more detail in the text.

normal modes give the black points of Fig. 6.5,

LΩh

∣∣
R+=0

= 1 +
2

m
, (6.44)

As in the scalar case, the vector OCs always have ΩhL > 1 but contrary to

the scalar case, these curves always end at extremality and the OCs for different

` = m never cross each other. In particular, this means that a BH that is unstable

to ` = m = 2 modes must also be unstable to all ` = m ≥ 3 modes. As ` = m

grows, the curves hit extremality at a higher areal radius R+/L and they approach

the ΩL = 1 line. Modes with m → +∞ reach extremality only in the limit

R+/L→ +∞.
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Figure 6.7: Imaginary (left panel) and real (right panel) part of the angular
eigenvalues of the superradiant modes and QNMs of the ` = m = 2 vector
harmonic whose frequencies are shown in Fig. 6.6. The color coding of the
lines/points is the same as Fig. 6.6.

To discuss details of the superradiant and quasinormal modes of the vector

sector, we focus again our attention in the ` = m = 2 case. The superradiant

and QNM properties can be read from the plots of Fig. 6.6 (imaginary and real

part of the frequencies) and in Fig. 6.7 (imaginary and real part of the angular

eigenvalues). We use a similar color coding and visualization angle as the ones

used in the scalar case. Therefore, in all these plots the blue curve is the OC

already studied in Fig. 6.5; again the auxiliary plane with a grid intersects the

physical 2-dimensional surface along the OC and helps visualizing the separation

between unstable superradiant modes (Im(ω) > 0 and Re(ω) < mΩ) and damped

QNMs (Im(ω) < 0 and Re(ω) > mΩ); and we plot some black curves at constant

radius r+/L. It follows that in the left panel of Fig. 6.6 the unstable modes are in

the upper region between the blue OC and extremality, while in right panel they

are in the lower region (that we do not show it in all its extension). The upper
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region of the left panel of Fig. 6.7 shows the imaginary part of the eigenvalues

of the QNMs (we do not show the upper surface in its full extension but its

completion should be clear from the continuation of the interrupted black curves

with constant r+/L = 0.5 and r+/L = 0.6).

In the plots of Fig. 6.6 and Fig. 6.7 the large red point signals the region where

the gravitational vector superradiant instability reaches its maximum strength.

This occurs for a Kerr-AdS BH with {r+/L, a/L}max ' {0.325 ± 0.020, 0.386 ±

0.020} where the frequency is given by ωL ∼ 2.667 + 0.058 i. Stated in other

words, the maximum growth rate for the vector superradiant instability and the

gauge invariant properties of the BH where it is achieved are

Vector: {R+/L,ΩhL} ∼ {0.530, 1.687} , Im(ωL) ∼ 0.058 , Re($L) ∼ −4.451 .

(6.45)

In general, e.g. moving along a constant r+/L, we find that the maximum of the

vector superradiant instability is achieved much closer to extremality than in the

scalar case. This property is probably related to the fact that the vector OC ends

at extremality, as opposed to the scalar OC.

Comparing the properties of the maximum unstable cases (6.42) and (6.45), we

see that the instability growth rate of the scalar and vector sectors is of the same

order, with the maximum growth rate in the vector sector being approximately

twice stronger than in the scalar sector. Moreover, the most unstable case in the

vector case occurs for a Kerr-AdS BH that is smaller (i.e. with smaller gauge

invariant areal radius R+/L) but rotates faster than the Kerr-AdS BH where the

scalar instability is highest.
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Figure 6.8: Left panel: Imaginary part of the “shear mode” as the cosmological
constant is changed. The vertical purple line indicates where the Hawking-Page
transition takes place. Right panel: absolute value of the vectorial Kodama
Ishibashi variable in ingoing Eddington-Finkelstein coordinates.

Finally, note that the strength of the scalar or vector gravitational instabilities

can can be orders of magnitude higher than the strength of the same superradiant

instability sourced by a scalar field perturbation [34, 131].

6.4.3 Large AdS limit and comparison with special QNMs

in asymptotically flat cases

As we will discuss in section VI, the slowly decaying QNMs in Kerr-AdS play

a key role in the fluid/gravity correspondence. These modes have a particularly

appealing interpretation in terms of a relativistic hydrodynamic problem naturally

induced at the AdS boundary. This correspondence also indicates that rich and

complex hydrodynamic phenomena have counterparts in the gravitational theory,

as recently demonstrated in [110, 109, 111]. Such a remarkable, and previously un-

expected, phenomena displayed by gravity in the AdS context raises the question

of what analogues to hydrodynamic behavior arise in general scenarios. Studying
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such question is beyond the scope of this work (for recent works related to the

gravity/hydro connection in AF settings see e.g. [38, 133]); however, as we here are

concerned with QNMs we can explore the connection of hydrodynamical modes

in AdS with relevant ones in AF spacetimes. To this end, we examine in partic-

ular the purely-imaginary QNM mode (often called “shear mode”) in the limit

r+/L → 0 for the non-spinning case, see left panel of Fig. 6.8. In this limit one

makes contact with its possible asymptotically flat counterpart describing QNMs

of a Schwarzschild black hole. Interestingly, we find the result obtained coincides

with the “algebraically special” QNM mode. Furthermore, we can look at the

profile of this mode, as we change the cosmological constant. It turns out it is

very localized around the horizon (becoming more and more localized as we lower

the cosmological constant), perhaps indicating that the dynamics involved here

does not feel the boundary in any special way, see right panel of Fig. 6.8. At this

stage we stress this does not necessarily imply complex hydrodynamic phenomena

has a gravitational analogue in AF cases as has been shown to be the case in the

AdS case. Nevertheless this is certainly a tantalizing observation deserving further

exploration.

6.5 Superradiance and black holes with a single

Killing field

In the previous sections we confirmed that Kerr-AdS BHs with ΩhL > 1

are unstable to superradiance. An interesting observation is that at the onset

of the superradiant instability there is an exact zero mode with ω = mΩh and
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Imω = 0. This zero mode is special because it is invariant under the horizon-

generating Killing field K = ∂T + Ωh∂Φ. Consequently it is regular on both the

past (H−) and future (H+) horizons (generic perturbations can be made regular

on the future or past horizons, but not both). In these conditions and for a given

m, [30] proposed that, in a phase diagram of stationary solutions, the OC of the

instability should signal a bifurcation or merger of the Kerr-AdS BH with a new

family of BH solutions that are stable to superradiant modes with the given m

and that preserve the same isometry of the superradiant onset mode (see also the

nice discussion in [134]). That is, these new BHs have a single Killing vector field

(KVF); the helical Killing field K = ∂T + Ωh∂Φ. In the context of superradiance

of a scalar field, BHs with a similar helical single KVF that merge with the Kerr-

AdS family have scalar hair orbiting around the central core. Examples of such

hairy BHs were explicitly constructed perturbatively and non-linearly in [124]

10. Given this explicit proof of existence in the scalar field case, it is natural to

expect that a similar new family of single KVF BHs with “lumpy gravitational

hair” merge with the Kerr-AdS BH at the OC of gravitational superradiance.

The existence of such purely gravitational single KVF BHs was first proposed in

[30] and contact between these BHs and geons was made in [72]. In this section

we will give the explicit construction (omitted in [72]) that leads to the leading

order thermodynamics and properties of these BHs. Perhaps the most important

consequence of this study is that Kerr-AdS BHs are not the only stationary BHs

of Einstein-AdS gravity [124, 72].11

10Recently, a single KVF was constructed analytically in D = 3 Einstein-AdS theory [134].
(In this case superradiance is absent.)

11The use of the word “stationary” in this context requires a comment. A solution is static
if ∂t is a KVF and the solution has the t → −t symmetry. Strickly speaking, a solution is said
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We can discuss some of the main properties of the single KVF BHs [124, 72]

in terms of general arguments. Recall again the main properties of superradiance

in global AdS. A mode e−iωT+imΦ can increase its amplitude by scattering off a

rotating BH with angular velocity Ωh satisfying ω < mΩh. In asymptotically

global AdS spacetimes, the outgoing wave is reflected back onto the BH and scat-

ters again further increasing its amplitude. This multiple amplification/reflection

leads to an instability. The process decreases Ωh and eventually results in a BH

with “lumpy hair” rotating around it. Such a BH is invariant under just a single

Killing field which co-rotates with the hair, K = ∂T + Ωh∂Φ. Thus, the BH is

stationary (periodic) but not time symmetric nor axisymmetric. However, it does

not violate the rigidity theorems [121, 122, 123]. Indeed, these theorems assume

the existence of a Killing vector, typically ∂T , that is not normal to the horizon,

and prove that a second Killing field ∂Φ must then be present. Such a BH is

thus time symmetric and axisymmetric. The single KVF BHs evade the primary

assumption of the rigidity theorem because in this case K = ∂T + Ωh∂Φ is normal

to the Killing horizon.

As stated previously, single KVF BHs and horizonless boson star solutions of

this type with scalar hair have been constructed perturbatively as well as numeri-

cally at the full nonlinear level in [124]. Alternatively, the leading order description

to be stationary if ∂t is still a KVF but the t→ −t symmetry is no longer present. In addition,
∂t must be timelike everywhere along the asymptotic boundary of the spacetime. The single
KVF BHs discussed here and in [124, 72] certainly do not have ∂t as a KVF. Instead, they
have a helical KVF. Moreover, this KVF is not timelike everywhere at spatial infinity; indeed
it is timelike in the neighbourhood of the poles but spacelike near the equator of the sphere.
Nevertheless these single KVF solutions are periodic. Now, a periodic solution can be considered
to fit in the intuitive notion we have of stationarity. For this reason we follow [124, 72] who
proposed extending the original definition of stationarity to accommodate these novel periodic
BHs as members of the stationary class of solutions.
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of these BHs can also be found using a thermodynamic analysis [135, 136, 137, 124]

similar to the one done below. The full nonlinear result confirms that this ther-

modynamic construction gives accurate leading order results 12. For small charges

the single KVF hairy BHs exist in a region of the phase diagram that is bounded

by the OC of scalar superradiance and by the boson star curve.

In the purely gravitational sector of Einstein-AdS theory that we discuss here,

the gravitational analogue of the horizonless boson stars are the geons constructed

in [72]. Using the aforementioned thermodynamic model we will conclude that

single KVF BHs exist in a region of the phase diagram that is bounded by the

OC of gravitational superradiance and by the geon curve.13

We are ready to start the leading order thermodynamic construction of the

single KVF BHs. We first review the geon and Kerr-AdS solutions, then we

construct the single KVF BHs by placing a small Kerr-AdS BH on the top of a

geon.

Geons are classical lumps of gravitational energy, with harmonic time depen-

dence e−iωT+imΦ, in which the centrifugal force balances the system against gravi-

tational collapse [72]. They are horizon-free, nonsingular, asymptotically globally

AdS, and can be viewed as gravitational analogs of boson stars. Each geon is

specified by `, which gives the number of zeros of the solution along the polar

direction, and azimuthal quantum number m. It is a one-parameter family of

12A similar thermodynamic model was introduced and proved to be correct, when compared
with the exact non-linear results, also in the charged superradiant systems discussed in [135,
136, 137]

13The hairy BHs of [124] could be constructed non-linearly because they depend non-trivially
only on the radial direction while the gravitational single KVF BHs we discuss here have an
additional non-trivial dependence on the polar angle. It is challenging to solve the associated
coupled system of PDEs and we leave its construction for future work.
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solutions parametrized e.g. by its frequency. At linear order, a geon is a small

perturbation around the global AdS background and its possible frequencies are

given by the AdS normal modes, namely (6.40) in the scalar sector, and (6.43) in

the vector sector. The energy and angular momentum of the geon are related by

Eg = ω
m
Jg + O(J2

g ); they have zero entropy Sg = 0 and undefined temperature,

and they obey the first law of thermodynamics, dEg = ω
m
dJg.

14

Consider now the Kerr-AdS BH. For small E and J (i.e small r+/L expansion),

the leading and next-to-leading order thermodynamics of this solution is

EK '
r+

2

(
1 +

r2
+

L2

(
1 + Ω2

hL
2
))

+O

(
r4

+

L4

)
, JK '

1

2
r3

+Ωh +O

(
r4

+

L4

)
,

S ' πr2
+

(
1 + Ω2

hr
2
+

)
+O

(
r5

+

L5

)
, Th '

1

4πr+

(
1 +

(
3− 2Ω2

hL
2
) r2

+

L2

)
+O

(
r2

+

L2

)
,(6.46)

which obeys the thermodynamic first law, dEK = Ωh dJK + Th dS, up to next-to-

leading order.

We can now construct perturbatively the single KVF BH of the theory by

placing a small Kerr-AdS BH at the core of the geon. The associated single KVF

of the solution is inherited from the geon component of the system. To argue for

the existence of this solution and to find its thermodynamic properties we can use

a simple thermodynamic model where the leading order thermodynamics of the

single KVF BH is modeled by a non-interacting mixture of a Kerr-AdS BH and

a geon Absence of interaction between the two components of the system means

that the charges E, J of the final BH are simply the sum of the charges of its

individual constituents: E = EK + Eg, J = JK + Jg.

14Back-reacting to higher order each of the individual normal modes of global AdS we approach
the full nonlinear geon, but we do not need this knowledge for our argument [72].
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In this mixture, the Kerr-AdS component controls the entropy and the tem-

perature of the final BH (since by definition the geon has no entropy and has

undefined temperature). The single KVF BH chooses the partition of its charges

between the geon and the Kerr-AdS components in such a way that the total en-

tropy S of the system is extremized. Indeed, maximizing S = SK(E−Eg, J − Jg)

with respect to Jg and using the first laws for the geon and for the Kerr-AdS, we

find that the partition is such that the angular velocities of the two components

are the same, Ωh = ω
m

, i.e. the two phases are in thermodynamic equilibrium.

Actually, there is a much simpler way to derive this result. Since the geon has

only one Killing field, K = ∂T + (ω/m)∂Φ, and we place a Kerr-AdS BH with a

Killing horizon at its centre, the geon’s Killing field must coincide with the horizon

generator of the single KVF BH.

The non-interacting and equilibrium conditions together with the leading or-

der thermodynamics of the Kerr-AdS BH and of the geon yields that the final

distribution of the charges among the system’s constituents and the entropy and

temperature of the single KVF BH are, respectively,

{
Jg , Eg

}
=
{
J ,

ω

m
J
}
,
{
JK , EK

}
=
{

0 , E − ω

m
J
}
,

S = 4π
(
E − ω

m
J
)2

, Th =
1

8π

(
E − ω

m
J
)−1

. (6.47)

So, at leading order, the geon component carries all the rotation of the system and

the Kerr-AdS component stores all the entropy. By construction, these relations

obey the first law of thermodynamics dE = ThdS + ΩhdJ , up to order O (M,J)

with Ωh = ω/m and ω given by (6.40) in the scalar sector, or by (6.43) in the
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Figure 6.1: Phase diagram of global AdS stationary solutions of the d = 4
Einstein-AdS theory, for small E/L and J/L2. Non-extremal Kerr-AdS BHs
exist only above the extremal black line (grey region). The blue curve above
the extremal line sets the onset of the gravitational superradiant instability to
` = m = 2 scalar modes (already represented e.g. in Fig. 6.2). Kerr-AdS
BHs below these curves are unstable to the associated ` = m = 2 superradiant
scalar modes. The dashed curve in the bottom represents the scalar ` = m = 2
geon described by E = ω

m J with ω = ωs = (1 + `) and ` = m = 2 (and p = 0).
Single Killing field BHs with m = ` = 2 exist between the superradiant OC
and the geon line (blue and blue/gray regions). In the blue/gray shaded region
between the black and the upper blue line, Kerr-AdS and single KVF BHs
coexist, i.e. we have non-uniqueness.

vector sector.

Using this simple thermodynamic model we can further predict the region

in phase space where single KVF BHs should exist. A single KVF BH merges

with the Kerr-AdS family at a curve that describes the onset of the m-mode

superradiant instability. This occurs at an angular velocity that saturates the

superradiant condition, ω ≤ mΩh, where {ω,m} are the frequency and azimuthal

number of the linearized geon component of the single KVF BH. (It suffices to
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consider the linearized geon since the gravitational hair is very weak near the onset

of the instability.) At the superradiant merger, the Kerr-AdS and single KVF BH

thermodynamics coincide. Thus, we can use the Kerr-AdS BH thermodynamics

(6.46) with Ωh = ω/m to determine the charges of the final system. In a phase

diagram {E, J} − see Fig. 6.1 − this determines the upper bound curve of the

region where single KVF BHs exist:

E
∣∣
merger

' r+

2
+

r3
+

2L2

(
1 +

ω2L2

m2

)
, J

∣∣
merger

' 1

2

ω

m
r3

+ . (6.48)

Moving down from this curve, the Kerr-AdS contribution weakens and the leading

order thermodynamics of the system is increasingly dominated by the geon com-

ponent. In the limit where r+ → 0, the lower bound curve of single KVF phase

is expected to be the geon curve. This discussion is best illustrated in Fig. 6.1,

where we represent the phase diagram associated to the ` = m = 2 solutions of

the scalar sector with frequency ω = ωs given by (6.40).

Note that there is a region in the phase diagram (the blue/gray shaded region

in Fig. 6.1) where the Kerr-AdS and single KVF BH families coexist, i.e. the

present system provides the first example of non-uniqueness in Einstein gravity

in four dimensions. The two families of BHs can have the same mass and angular

momentum but different entropy.

As emphasized previously, in the scalar field superradiant system of [124],

and in the charged superradiant system of [135, 137], the available full non-linear

results confirm that the thermodynamic model we use also here gives the correct

leading order thermodynamic properties of the system. We leave for the future
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the explicit non-linear construction of the single KVF BHs.

We postpone for Sec. 6.8 the discussion of the stability properties of the single

KVF BHs and the role they might have in the time evolution and endpoint of the

superradiant instability of the Kerr-AdS BH.

6.6 Hydrodynamic thermalization timescales in

the AdS4/CFT3 duality

In the context of the gauge/gravity duality, a black hole is dual to a thermal

state in the holographic quantum field theory (QFT). Moreover, QNMs are fun-

damental entities in this correspondence since the QNM frequencies in the bulk

black hole describe the thermalization or relaxation timescales in the dual QFT.

This map was first proposed in [90, 91] and later it was understood and established

that the QNM spectrum of a given field perturbation coincides with the poles of

retarded correlation functions of the gauge theory operator that is dual to the

perturbation at hand [92, 93, 94]. This was done in the framework of linear re-

sponse theory appropriate for describing linearized fluctuations of any wavelength

about AdS backgrounds as long as the perturbation amplitude is small. A partic-

ularly relevant family of perturbations are the lowest QNMs, i.e. those with small

frequency whose wavelength is large compared to the thermal scale of the field

theory. The relaxation timescales of these modes have a hydrodynamic descrip-

tion and can be computed studying perturbations of the Navier-Stokes equation

that describes the hydrodynamic regime of the holographic QFT [94, 95, 96, 97].

These hydrodynamic modes are also captured by the fluid/gravity correspondence
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which is a formal one-to-one map between Einstein’s equations in AdS and non-

linear hydrodynamic equations [138, 139]. It follows from a perturbation theory

analysis where the small expansion parameter is the ratio of the mean free path

of the theory (i.e. the thermal scale) over the typical variation wavelength of the

fluid variables and gravitational field. With respect to linear response theory it

has the advantage that it captures also non-linear physics but it is restricted to

long wavelength physics. The two regimes therefore complement each other and

intersect in a corner of the phase space corresponding to linearized long wave-

length perturbations [139]. These are precisely the hydrodynamic QNMs that we

want to study in this section.

A particular example of a gauge/gravity duality is the AdS4/CFT3 correspon-

dence, whereby supergravity on the Kerr-AdS×S7 background is dual to a thermal

conformal field theory (CFT) on the holographic boundary of the global AdS ge-

ometry. In this case the Kerr-AdS black hole is dual to a thermal state with a

rotational chemical potential in the CFT3 that is formulated on a sphere.

In this section we aim to compare the long wavelength gravitational QNMs of

Kerr-AdS with the hydrodynamic relaxation timescales of the dual CFT3. First,

in Section 6.6.1 we compute the hydrodynamic modes both perturbatively and

numerically and later, in Section 6.6.2, we compare them with with the long

wavelength gravitational QNMs. The excellent match that we find provides a fur-

ther confirmation of the holographic interpretation of the QNM spectrum, of the

shear viscosity to the entropy density bound, η/s = 1/(4π), and ultimately of the

correspondence itself. Not less importantly, it provides the first non-trivial con-

firmation that the Robin boundary conditions for the Teukolsky gauge-invariant
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variable derived in the companion paper [115] are indeed the ones that we must im-

pose if we want the perturbations to preserve the asymptotic global AdS structure

of the background. Indeed, had we chosen different BCs, e.g Dirichlet or Neumann

BCs, and the QNM spectrum would not match the hydrodynamic timescales.

6.6.1 Hydrodynamic thermalization timescales

The conformal boundary of the Kerr-AdS geometry is the static Einstein uni-

verse Rt × S2 with line element that this time we write as

ds2
∂ = hbc dx

bdxc = −dT 2 +L2dΩS2 , dΩS2 =
dX2

1−X2
+
(
1−X2

)
dΦ2 . (6.49)

where X is related to the standard polar angle on the sphere introduced in (6.7)

by X = cos Θ. The CFT3 is described by an holographic stress tensor 〈Tbc〉 which

can be found using, e.g. the formulation of Haro, Skenderis and Solodukhin [103].

We first introduce the Fefferman-Graham coordinate frame {T, z,X,Φ} whereby

the Kerr-AdS geometry can be recast in an asymptotic expansion around the holo-

graphic boundary z = 0 (r =∞) as

ds2 =
L2

z2

[
dz2 + ds2

∂ +
z2

L2
h2 +

z3

L3
h3 +O(z6)

]
, (6.50)

with ds2
∂ defined in (6.49). The coordinate transformation that takes Kerr-AdS in

the Chambers-Moss frame into the FG frame is obtained as an expansion in z, with

the successive terms of the expansion being fixed by requiring that gzz = L2/z2

and gzb = 0 (b = T,X,Φ) at all orders. Up to the order relevant for our analysis,
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this FG coordinate transformation is explicitly given by

t = ΞT , φ = Φ− a

L2
T ,

r =
√
L2 − a2 (1−X2)

(
L

z
+
z

L

a4 (1−X4)− L4

4 [L2 − a2 (1−X2)]2

+
z2

L2

(
r2

+ + a2
) (
r2

+ + L2
)

6r+ [L2 − a2 (1−X2))3/2

)
+O

(
z3

L3

)
,

χ =
aLX√

L2 − a2 (1−X2)

(
1 +

z2

L2

a2 (L2 − a2) (1−X2)

2 [L2 − a2 (1−X2)]2

)
+O

(
z4

L4

)
. (6.51)

The leading terms in these expansions are fixed by our choice of conformal frame,

namely we want the normalization where gTT = −1 and the sphere has radius

L2 in the boundary metric ds2
∂. On the other hand the azimuthal coordinate

transformation guarantees that the conformal frame does not rotate.

The holographic stress tensor can be read from the h3 contribution of the

expansion (6.50) via [103]

〈Tbc〉 =
3h3

16πG4

, (6.52)

where b, c run over the boundary metric coordinates {T,X,Φ}. This stress tensor

has the form of a perfect fluid with energy density ρ, pressure p, and fluid velocity

u given by

〈Tbc〉(0) = (ρ+ p)ubuc + p hbc ,

ρ(0) = 2p(0), p(0) =

(
r2

+ + a2
) (
r2

+ + L2
)

3r+ Lγ(X)−3
,

u(0) = γ(X)
(
∂T − Ω∞∂Φ

)
, (6.53)

where Ω∞ =
a

L2
, γ(X) =

[
1− a2

L2

(
1−X2

)]−1/2
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are the angular velocity Ω∞ of the fluid, and the ratio γ−1 = T
T between the

fluid temperature T and the local temperature T (this gives the redshift factor

relating measurements done in the laboratory and comoving frames), and ∂T , ∂Φ

are the Killing vectors corresponding to the isometries of the boundary background

(6.49),. Further, u2 = −1 and the equation of state ρ = 2p follows from the fact

that the holographic QFT and its fluid are conformal which implies that the

stress tensor is traceless. The stress tensor is conserved with respect to (6.49),

∇b〈T bc〉 = 0, since there are no sources (e.g., scalar or Maxwell) in our system.

Our bulk background is stationary and therefore the boundary fluid is also in

stationary equilibrium fluid configuration with rigid roto-translational motion.

Our choice for the fluid velocity definition is such that it obeys the Landau gauge

condition

ub〈T bc〉 = ρuc . (6.54)

This condition guarantees that the stress tensor components longitudinal to the

velocity give the local energy density, in the local rest frame of a fluid element

[140].

A generic perturbation of the stationary fluid configuration will drive the sys-

tem away from equilibrium and dissipation must be included to study the evolu-

tion of the system. This dissipative contribution to the total holographic stress

tensor is encoded in the term 〈Πbc〉 (this follows from a gradient expansion of

Einstein equations around AdS in the regime where the thermodynamic variation

lengthscales are much larger than the thermal scale of the stationary background
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[138, 139]),

〈Tbc〉 = 〈Tbc〉(0) + 〈Πbc〉 〈Πbc〉 = −2ησbc (6.55)

where σbc =
1

2

(
P bd∇du

c + P cd∇du
b
)
− 1

2
ϑP bc

ϑ = ∇cu
c , P bc ≡ hbc + ubuc ,

are the shear viscosity tensor σbc, the fluid expansion ϑ, and the is the projector

P bc onto the hypersurface orthogonal to u. The quantity η is the shear viscosity.

Since the fluid is conformal, its stress energy tensor must be traceless (i.e. the

conformal anomaly is proportional to T c
c and vanishes15). Consequently the fluid

must have vanishing bulk viscosity. Also, the Landau frame condition (6.54)

implies u
(0)
a Πbc = 0 which discards a possible heat diffusion contribution to the first

order dissipative stress tensor (i.e. in this frame all the dissipative contributions

are orthogonal to the velocity field) [140].

We recall that a precise statement for the validity of the hydrodynamic regime

of dual system can be made as follows. The mean free path of a theory is typically

given by the ratio of the shear viscosity to the energy density, `mfp ∼ η
ρ
. We are

working with a conformal theory so the associated fluid equation of state is ρ = 2p

and the viscosity to entropy bound is saturated, η = s/(4π) [141]. For any fluid

we also have the Euler-Gibbs relation ρ + p = T s, where the local temperature

is related to the fluid temperature (dual to the black hole temperature T = Th)

by the Lorentz factor. Therefore we can write `mfp ∼ η
ρ
∼ 3

2
η

ρ+P
∼ 3

2
η
T s ∼

3
8π

1
T ∼

15A CFT is invariant under Weyl transformations hbc → hbce
−2λ(x) which requires that its

stress tensor is traceless. In a curved background the Weyl anomaly breaks in general the
conformal symmetry and yields T ∝ R2, but this breaking occurs only at fourth order in a
gradient expansion and the bulk viscosity appears at first order [140].
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3
8π

γ−1

Th
. The hydrodynamic approximation is valid for when the thermodynamic

quantities of the fluid and of its perturbations vary on lengthscales that are much

larger than `mfp, namely

r+

L
� 1 , and

a

L
� 1 , (6.56)

where to get the first relation we used the fact that 0 < γ−1 ≤ 1 and that the

temperature scales as Th ∼ r+ for large radius black holes − see (6.5) − while the

second relation follows from the fact that the background pressure p(0) is not a

constant and its gradient scales with the rotation parameter in AdS units.

According to the holographic dictionary, the fluid temperature is identified

with the Hawking temperature Th of the black hole and it follows from the previous

discussion that the angular velocity of fluid Ω∞ = a/L2 is precisely the shift in

the azimuthal coordinate such that the (non-dynamical) background on which

the fluid flows is static. On the other hand, the viscosity is given in terms of the

horizon radius of the bulk black hole as

η =
1

3
Lr2

+ . (6.57)

This is a universal relation for any fluid that is holographically dual to a black

hole of Einstein-AdS4 theory. It follows from the celebrated viscosity to entropy

density ratio of the theory namely η = s/(4π) [141]. This is a constitutive relation

that is independent of the rotation of the fluid since it follows from measuring

quantities in the rest frame of the fluid. Namely we can write the entropy density

as s = S/V = Sρ(0)/E = 2p(0)S/E which yields (6.57) after using the relations
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for the static black hole entropy and energy, S = πr2
+ and E = r+

(
1 + r2

+/L
2
)
/2,

and taking the hydrodynamic limit r+/L→∞.

The hydrodynamic equations of motion for the perturbed fluid, that will ulti-

mately quantize the relaxation timescales of the system, follow from the conser-

vation of the total stress tensor,

∇b

(
〈T bc〉(0) + 〈Πbc〉

)
= 0 . (6.58)

These equations can be written as a set of two family of equations, namely the

relativistic continuity and Navier-Stokes equations, 16

uc∇cρ+ (ρ+ p)ϑ = 2ησbc∇buc ,

(ρ+ p)ub∇bu
c = −P bc∇bp+ 2η

(
∇bσ

bc − ucσbd∇bud
)
. (6.59)

To study the perturbations of these fluid equations, we use the fact that ∂T

and ∂Φ are isometries of the background to write the most general perturbations

for a conformal fluid as a sum of the following Fourier modes

ρ = 2p, p = p(0) + e−iωT eimΦδp(X) ,

u = u(0) + e−iωT eimΦδuc(X) dxc. (6.60)

16The continuity equation follows from projecting (6.55) along the fluid velocity. Plugging
it into (6.55) then yields the Navier-Stokes equation, which is the projection of (6.55) in the
hypersurface orthogonal to the velocity.
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The velocity normalization u2 = −1 requires u(0) · δu = 0 i.e

δuT = − a

L2
δuΦ (6.61)

Plugging these fluctuations in the linearized version of the hydrodynamic equa-

tions (6.59) we get the equations of motion (EoM) that the fluid perturbations

{δP, δuX , δuΦ} have to obey. We solve these equations exactly using numerical

methods like those we use to solve the gravitational equations. In addition, to get

extra physical insight and check the numerics, we also find a perturbative explicit

analytical expression for the fluid quantities of interest.

To solve the linearized hydrodynamic equations using a perturbative method

[135, 136, 124, 137], we assume a double expansion in the shear viscosity and in

the rotation, both for the fluid perturbations introduced in (6.60), {Q(f)(X)} =

{Q(1), Q(2), Q(3)} ≡ {δP/L, δuX , δuΦ}, and for the perturbation frequency ω:

Q(f)(η, a;X) =
1∑
j=0

Q
(f)
j (a;X)

( η
L3

)j
and Q

(f)
j (a;X) =

p∑
i=0

Q
(f)
j,i (X)

( a
L

)i
,

ω(η, a) =
1∑
j=0

ωj(a)
( η
L3

)j
, and ωj(a) =

p∑
i=0

ωj,i

( a
L

)i
, (6.62)

and solve progressively (6.58) or (6.59) in a series expansion in η/L3 and a/L.

For our purpose it will be enough to go up to third order (p = 3) in the rotation

expansion.

Inspecting the EoM at leading order O (η0, a0), we immediately conclude that

we have to split our analysis into two family of modes, namely the scalar and

vector modes. The latter have ω0,0 = 0 and perturb the fluid velocity but not
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the pressure, while the former have ω0,0 6= 0 and perturb all fluid variables. At

this order rotation is absent and the hydrodynamic modes have an expansion

in terms of the scalar Si and vector Vi Kodama-Ishibashi harmonics (which are

both related to the associated Legendre polynomials [31, 97, 115]). This is in

agreement with the fact that the gravitational QNMs split also into two families

as dictated by the two possible global AdS boundary conditions (6.20)-(6.22). As

rotation and/or viscosity are turned on these two families naturally continue to

follow different paths.

Our main goal is to find the characteristic damped oscillation frequencies of the

fluid. We leave the details of our computation to Appendix 6.B and give here only

its relevant outcome, namely the hydrodynamic CFT thermalization frequencies

that can propagate in the CFT3. The frequencies of the hydrodynamic scalar

191



Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS Chapter 6

modes are:17

ωL
∣∣
s =

[√`(` + 1)
√

2
+
a

L

m(` + 2)(` − 1)

2`(` + 1)
−
a2

L2

(` + 2)(` − 1)

4
√

2(2` − 1)(2` + 3)[`(` + 1)]5/2

×
(

2(` − 3)(` + 4)`
2
(` + 1)

2
+ 3m

2
(
6 + ` + `

2
) (

1 + 2` + 2`
2
) )

+
a3

L3

m

2`4(` + 1)4(2` − 1)(2` + 3)

(
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2
(` + 1)

2
(
`
6

+ 3`
5

+ 6`
4
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)
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(
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5
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4

+ 132`
3

+ 224`
2

+ 152` + 48
) )
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 a4

L4

 ]

+ i
η

r3
+

(` − 1)(` + 2)

[
−

1

2
+
a

L

m
(
2 + 3` + 3`2

)
2
√

2[`(` + 1)]3/2

+
a2

L2

1

2`3(` + 1)3(2` − 1)(2` + 3)

(
`
2
(` + 1)

2
(
8 + ` + `

2
) (

3 + 2` + 2`
2
)

−2m
2[

12 + `(` + 1)
(
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2
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3
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4
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+
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L3

m

8
√
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m
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+ O

 a4

L4

 ],

(6.63)

while the frequencies of the hydrodynamic vector modes are:

ωL
∣∣
v =

ma

L

[ (` + 2)(` − 1)

`(` + 1)
+ 4

a2

L2

( 12 + `(` + 1)
(
2 + ` + `2

)
`2(` + 1)2(2` − 1)(2` + 3)

−
m2

[
12 + `(` + 1)

(
26 − 2` + `2 + 6`3 + 3`4

)]
`4(` + 1)4(2` − 1)(2` + 3)

)
+ O

 a3

L3

 ]

+ i
η

r3
+

(` − 1)(` + 2)

[
− 1 +

a2

L2

( 24 + `(` + 1)
(
4`2 + 4` − 5

)
`(` + 1)(2` − 1)(2` + 3)

+
8m2

[
`(` + 1)

(
`4 + 2`3 + `2 − 5

)
− 3

]
`3(` + 1)3(2` − 1)(2` + 3)

)
+ O

 a3

L3

 ].

(6.64)

17In (6.63) and (6.64) we discard terms of order O
(
ηL2/r5

+

)
.
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In these expansions (and associated Figs. 6.1, 6.2 below) we assume the relation

(6.57) for the viscosity. When the rotation vanishes, (6.63) and (6.64) reduce to

the hydrodynamic frequencies first computed in [97].
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Figure 6.1: Real and Imaginary part of the frequency for the scalar hydrody-
namic modes as a function of the adimensional rotation parameter. The disks
(squares) are the exact numerical solutions of the hydrodynamic equations for
the ` = m = 2 (` = m = 3) harmonics. On the other hand the dashed line
(` = 2 ) and the dashed-dotted line (` = 3) are the curves dictated by the
perturbative analytical expression (6.63). In the right panel the upper (lower)
branches of each harmonic pair describe the imaginary part of the modes with
positive (negative) real part.

As illustrative examples, Figs. 6.1 and 6.2 show the regime of validity of

the perturbative expressions (6.63) and (6.64) by comparing them against the

exact numerical solutions of the linearized hydrodynamic equations (6.59) for the

` = m = 2 and ` = m = 3 harmonics in both the scalar and vector sectors. As

is evident from the figures, the match is excellent in the small rotation regime as

expected.

Fig. 6.1 describes the hydrodynamic scalar modes. For each harmonic ` there
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Figure 6.2: Real and Imaginary part of the frequency for the vector hydrody-
namic modes as a function of the adimensional rotation parameter. The disks
(squares) describe the exact numerical solution of the hydrodynamic equations
for the ` = m = 2 (` = m = 3) harmonics. On the other hand the dashed line
(` = 2 ) and the dashed-dotted line (` = 3) are the curves predicted by the
perturbative analytical expression (6.64).

is a pair of solutions, one with positive and the other with negative real part of

the frequency. At zero rotation and only in this case, the background has the

t− φ symmetry and thus the two solutions are physically the same: they form a

pair {ω,−ω∗} related by complex conjugation. Rotation breaks this degeneracy.

Fig. 6.2 describes the hydrodynamic vector modes. These are characterized by

having vanishing frequency real part when the rotation vanishes, so there is only

one family of solutions for each harmonic.

6.6.2 Long wavelength QNMs and hydrodynamic modes

In the last subsection we computed analytically and numerically the hydrody-

namic relaxation timescales. In this section we compare these timescales with the
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long wavelength gravitational QNMs.

To perform the comparison we recall that the hydrodynamic and gravitational

modes are expected to match in the regime of parameters (6.56), namely r+/L� 1

and a/L � 1. We thus consider a Kerr-AdS black hole with radius parameter

r+/L = 100 to do the comparison. A measure of the deviation between the numer-

ical hydrodynamic frequencies (call them ωhydro) and the numerical gravitational

QNM frequencies (call them ω) is given by |1− ωhydro/ω|. In Fig. 6.3 we plot

this deviation measure as a function of the rotation parameter a/L (a/L < 1 for

regular black holes) for a Kerr-AdS BH with r+/L = 100� 1. The brown curve

(disks) is for scalar modes, while the green curve (squares) is for vector modes.

We see that the match between the hydrodynamic and long wavelength QNM

frequencies is very good even when the rotation grows large and thus moves away

from the hydrodynamic validity regime a/L � 1: for scalar (vector) modes the

maximum deviation is below 10−4 (2× 10−3).

This perfect match when the rotating chemical potential is present is a further

confirmation of the holographic interpretation of the QNM spectrum, of the shear

viscosity to the entropy density bound, η/s = 1/(4π), and ultimately of the

AdS/CFT correspondence itself.

6.7 QNMs and superradiance in 5 dimensions

In this section we extend the study of thermalization, quasinormal modes,

and superradiance to five dimensions. There are many motivations for doing so.

Firstly, there is currently a general interest in studying gravity in higher dimen-
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Figure 6.3: Comparison between the long wavelength gravitational QNMs and
the hydrodynamic modes (for the later we use the exact numerical results) for
r+/L = 100. The brown (disks) curve describes the scalar modes while the
green (squares) curve is for the vector modes.

sions, for a modern review see [16]. It is interesting to ask how the solutions to

the Einstein equations and their properties vary with D. As the dimension in-

creases, the types of black hole solutions increase dramatically. Some examples of

the non-standard black holes possible in higher dimensions are black rings, black

Saturns, and black branes. Many of these solutions challenge the intuition gained

from studying four dimensions by exhibiting non-uniqueness and a variety of in-

teresting instabilities, some of which likely lead to topology-changing transitions

once quantum effects are included. In addition to this very general motivation,

we shall see that superradiance in five dimensions is qualitatively very similar to

four dimensional Kerr-AdS case. Thus we expect that the intuition we gain from

studying superradiance in four and five dimensions will be useful for thinking

about other dimensions. Additionally, because of the properties of the particular

class of black holes we chose to study, certain aspects of the problem will turn out
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to be more tractable than the Kerr-AdS case.

A second motivation for studying five dimensional asymptotically AdS black

holes is that they play an important role in understanding strongly coupled field

theories in four dimensions via gauge/gravity duality. In particular, the most

well-developed example of this duality is Type IIB string theory on AdS5 × S5

spacetimes, which is dual to N = 4 Supersymmetric Yang-Mills. The physics

of five dimensional AdS black holes can thus lead to an improved understanding

of this specific duality, and more generally about the physics of four dimensional

field theories at finite temperature. As in the Kerr-AdS case, large black holes

will be particularly interesting in this regard as they will be dual to field theories

admitting a hydrodynamic description.

6.7.1 Myers-Perry−AdS black holes with equal angular

momenta

The generalization of the Kerr metric to higher dimensions was found by Myers

and Perry [19]. It was then further generalized to include negative cosmological

constant for the case of five dimensions in [142], and then to arbitrary dimensions

by [143, 47]. Although our numerical results are for five dimensions only, in the

presentation that follows we will keep the dimension general whenever possible.

We therefore refer to these black holes as Myers-Perry−AdS (MP-AdS) black

holes.

In higher dimensions there are more planes for an object to rotate in than in

four dimensions, and therefore these black holes are described by n = b(D−1)/2c

angular momenta parameters. For generic choices of the angular momenta, the
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symmetry of the MP-AdS black hole is R×U(1)n. The first factor is due to time

translations, and the n U(1)’s are due to the n independent planes of rotation.

For certain choices of the angular momenta, this symmetry can be increased. For

odd dimensions, a particularly dramatic enhancement occurs when all angular

momenta are equal. In this case, the isometry becomes R × U(1) × SU(N + 1),

where D = 2N + 3. For this case, the line element becomes cohomogeneity-1,

which is to say that it depends non-trivially only on the radial coordinate. This

feature makes the study of linear stability particularly tractable for these black

holes, as the linearized perturbation equations can be easily separated and reduced

to ODE’s. Therefore, in what follows, we shall restrict ourselves to odd dimensions

and the equal angular momenta sector of the full parameter space.

Here we introduce the MP-AdS black holes for odd dimension D = 2N + 3

and with all angular momenta equal. The line element is

ds2 = −f(r)2dt2 + g(r)2dr2 +h(r)2(dψ+Aadx
a−Ω(r)dt)2 + r2ĝabdx

adxb, (6.65)

with the metric functions defined as follows:

g(r)2 =
(

1 +
r2

L2
− r2N

M

r2N
+
r2N
M

r2N

a2

L2
+
r2N
M a2

r2N+2

)−1

, h(r)2 = r2
(

1 +
r2N
M a2

r2N+2

)
, (6.66)

Ω(r) =
r2N
M a

r2Nh(r)2
, f(r) =

r

g(r)h(r)
. (6.67)

Here ĝab is the Fubini-Study metric on CPN . We will adopt the convention that

lowercase latin indices run over CPN coordinates, and that hatted tensors are
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associated with this space. The Fubini-Study metric is Einstein, with the following

proportionality constant

R̂ab = 2(N + 1)ĝab. (6.68)

When the angular momenta are set to zero, this metric reduces to the usual

Schwarzschild-AdS metric with the unit sphere written in terms of the Hopf fi-

bration:

dΩ2
2N+1 = (dψ + Aadx

a)2 + ĝabdx
adxb, (6.69)

where here A is related to the Kähler form by 2J = dA. Constant t, r slices have

the geometry of homogeneously squashed spheres, with the amount of squashing

determined by h(r).

The energy, angular momenta, and angular velocity of the horizon are [128]:

E =
A2N+1

8πG
r2N
M

(
N +

1

2
+

a2

2L2

)
, J =

A2N+1

8πG
(N + 1)r2N

M a (6.70)

ΩH =
r2N
M a

r2N+2
+ + r2N

M a2
. (6.71)

The horizon-generating Killing field is K = ∂t + ΩH∂ψ. The physics of perturba-

tions of this black hole will depend crucially on ΩH . For ΩHL < 1, K is timelike

everywhere outside the horizon. If ΩHL > 1, then it becomes spacelike suffi-

ciently far away from the horizon, and in particular is spacelike at the conformal

boundary. For ΩHL = 1, K is exactly null at the conformal boundary.

The metric is described by three dimensional parameters, (L, rM , a). We will

find it useful to use instead the parameters (L, r+,ΩH), where r+ is the horizon
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radius, to describe the solution. Note that these parameters are defined indepen-

dently of the parameters that appear in the Kerr-AdS case, and also note that

the boundary metric is not rotating in these coordinates.

For these equal angular momenta black holes the angular velocity cannot be

arbitrarily large and must obey the extremal bound

ΩHL ≤

√
1 +

N

N + 1

L2

r2
+

. (6.72)

In Fig. 6.1 we plot the domain of the parameter space for the case D = 5. We also

plot the lines ΩHL = 1 and r+/L = 1. These divide the sub-extremal parameter

space into four distinct regions. This division comes from the analysis of Hawking

and Reall [33]. The importance of the line ΩHL = 1 is that black holes with

ΩHL < 1 are expected to be stable, whereas those with ΩHL > 1 are expected to

be susceptible to instabilities. Additionally, the partition function of these black

holes in a grand canonical ensemble becomes ill-defined for ΩHL ≥ 1, as the dual

CFT will be rotating faster than the speed of light. The importance of r+/L = 1

is that black holes larger than this are thermodynamically preferred over thermal,

rotating AdS in the grand canonical ensemble, whereas smaller black holes are

not.

6.7.2 Scalar-gravitational perturbations

We now review the problem of linear perturbations of the above metric. The

decomposition we employ was first utilized in [23], where scalar-gravitational per-

turbations of asymptotically flat MP black holes with equal angular momenta
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Figure 6.1: The parameter space for 5D equal angular momenta black holes.
Below the line ΩHL = 1 the black holes are expected to be stable, and above
they can potentially be unstable. Black holes to the right of the line r+/L = 1
are thermodynamically preferred in the grand canonical ensemble, whereas
black holes to the left are not. Note that the domain extends infinitely in both
directions.

were studied. Metric perturbations may be decomposed according to how they

transform under the isometries of the CPN base space. There are three sectors

of perturbations to consider: scalar, vector, and tensor. Tensor and scalar field

perturbations of the MP-AdS black holes were studied in [30]. A major simplify-

ing feature of five dimensions is that vector and tensor perturbations do not exist,

because the associated vector and tensor harmonics do not exist on CP1 [30, 24].

Thus, we need only consider the scalar sector of perturbations in five dimensions.

We now briefly review charged scalar harmonics on CPN following [48, 23]. First,

introduce a charged covariant derivative:

Da ≡ ∇̂a − imAa. (6.73)
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That this is the natural derivative operator to consider can be seen from the

dimensional reduction of the fibre coordinate in the Hopf fibration. Charged scalar

harmonics (with charge m) are then those functions of the CPN coordinates that

satisfy

(D2 + λ)Y = 0. (6.74)

Here the eigenvalue is a function of two quantized parameters, (κ,m):

λ = l(l + 2N)−m2, l = 2κ+ |m|, (6.75)

where κ = 0, 1, 2..., and m ∈ Z. Charged scalar-derived vectors can be obtained

by differentiating,

Ya = − 1√
λ
DaY. (6.76)

These can be further decomposed into Hermitian and anti-Hermitian parts

J baY±b = ∓iY±a . (6.77)

Lastly, the scalar-derived tensors are given by

Y++
ab = D+

(aY
+
b), Y−−ab = D−(aY

−
b), Y+−

ab = D+
(aY
−
b) +D−(aY

+
b) −

1

2N
ĝabD · Y.

(6.78)

In order to implement the harmonic decomposition of the perturbation, it will

be useful to introduce the 1-forms,

e0 = f(r)dt, e1 = g(r)dr, e2 = h(r)(dψ + Aadx
a − Ω(r)dt). (6.79)

202



Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS Chapter 6

The CPN scalar sector of metric perturbations can then be written as

hAB = fABY, (6.80)

hAa = r(f+
AY

+
a + f−AY

−
a ), (6.81)

hab = − r2

λ1/2
(H++Y++

ab +H−−Y−−ab +H+−Y+−
ab ) + r2HLĝabY, (6.82)

where upper case latin indices run over 0,1,2, and lower case latin letters run over

the CPN coordinates. Adopting the traceless transverse gauge,

h = gµνhµν = 0, ∇µhµν = 0, (6.83)

the linearized Einstein equations are then

∇2hµν + 2Rµρνσh
ρσ = 0. (6.84)

With the above parametrization, the CPN dependence in the Einstein equations

will separate, resulting in a system of coupled ODE’s. These equations are rather

lengthy, and depend non-trivially on the particular harmonic (κ,m) under con-

sideration, and we therefore omit their presentation here. The non-trivial way in

which the equations depend on the CPN harmonic in question is as follows: For

certain values of (κ,m), some of the harmonic tensors do not exist and therefore

their coefficient functions are zero. As an example, for N = 1 (D = 5), and m > 0,

Y+
a = Y++

ab = Y+−
ab = 0, and so therefore the functions f+

A , H
++, H+− do not enter

into the perturbation.
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6.7.3 Boundary conditions

We now turn to a discussion of the boundary conditions. Boundary conditions

must be supplied at the horizon and at the conformal boundary. The appropri-

ate boundary conditions for quasinormal modes are those that correspond to an

ingoing perturbation on the future horizon H+, and a normalizable perturbation

at the boundary. For the case of asymptotically flat equal angular momenta MP

black holes, the requirement of being ingoing at the horizon was translated into

boundary conditions in Ref. [23]. The same method applies here, and so we omit

a detailed discussion of the horizon boundary conditions.

The boundary conditions at infinity are less straightforward. Here we describe

a general method for finding the boundary conditions of a normalizable gravita-

tional perturbation of asymptotically locally AdS spacetimes. Recall that in the

Kerr-AdS case the perturbation equations were reduced to a single gauge invariant

equation, the Teukolsky equation. There were two steps in the process of finding

the boundary conditions at infinity. First, a Frobenius expansion analysis yielded

the allowed fall-off’s, and then the requiring that the perturbation be normalizable

fixed a certain linear combination of the two solution branches.

We wish to generalize this method to a system of n 2nd order ODE’s for n

functions fi. In will be convenient to convert to a new radial coordinate, z = 1/r.

First we demonstrate that z = 0 is a regular singular point of the equations. To

do so, change to a new basis of functions qi = zαifi, and write the equations as

Aij(z)z2∂2
zqj +Bij(z)z∂zqj + Cij(z)qj = 0. (6.85)
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If some choice of the αi and overall multiplicative factors can be made such that

the coefficient matrices approach finite and non-zero constant matrices in the limit

z → 0, then we will have demonstrated that z = 0 is a regular singular point of

this system of equations. We do not know of an algorithmic way to determine the

α’s, but for the problem at hand we have demonstrated that the equations can be

put into this form. Then, after changing coordinates to ∂t = z∂z, the equations

become:

Aij(0)∂2
t qj + (Bij(0)− Aij(0))∂tqj + Cij(0)qj = 0.

This is a 2nd order system of ODE’s with constant coefficients, which can be

solved via the standard method of writing it as a system of coupled 1st order

ODE’s:

V̇a = MabVb (6.86)

Where

Va =

 qi

∂tqi

 , Mab =

 0 I

−A(0)−1.C(0) (I− A(0)−1.B(0))

 , (6.87)

and a = 1, ..., 2n. The generic solution (excluding possible logarithmic terms in

z) is then

Va =

 qi

∂tqi

 =
2n∑
b=1

cb exp
(
tλb

)
v(b)
a ,

where the λb, v
(b)
a are the eigenvalues and vectors of M . There are 2n coefficients

cb, which is expected: for n 2nd order ODE’s there should be 2n constants of

integration. This is the generalization of the first step in the Frobenius method,
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in which the two independent branches of a solution to an ODE around a regular

singular point are determined. The next and last step is to use physical consid-

erations to determine the cb that correspond to the type of perturbation being

studied. For normalizable metric perturbations, the boundary metric is held fixed

and the boundary stress tensor is varied. For the purpose of translating this

condition into choices of the constants of integration cb, it is useful to put the

full metric (background plus perturbation) into Fefferman-Graham gauge. In this

gauge the metric takes the form

ds2 =
L2

z2
(dz2 + gab(z, x)dxadxb), (6.88)

gab(z, x) = g0(x) + ...+ zdgd(x) + zd log(z2)hd(x) + ... (6.89)

Here D = d + 1 and the lower case Latin indices run over all but the radial

coordinate. In order to make the perturbation normalizable we require that it

only affects the terms gd and higher in the above expansion. This corresponds

to holding fixed the boundary metric and only allowing the metric perturbation

to affect the expectation value of the stress tensor of the dual field theory. This

requirement will fix n of the constants cb. This method generalizes the usual

Frobenius method for finding normalizable fall-off’s for fields in AdS.

As an explicit example, we display the fall-off’s for D = 5 and for the (0,m)

harmonic (for m > 0. For this mode, the non-zero perturbation functions are

(f00, f01, f02, f11, f12, f22, f
−
0 , f

−
1 , f

−
2 , H

−−, HL), (6.90)

and the gauge conditions can be used to algebraically solve for the functions
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(f00, f
−
0 , f

−
1 , f

−
2 , H

−−). Then a new auxiliary set of functions qi(r) can be defined

which are finite and non-zero at both boundaries via:

f01(r) =
(

1− r+

r

)−iα(ω−mΩH)−1(r+

r

)5

q1(r) (6.91)

f02(r) =
(

1− r+

r

)−iα(ω−mΩH)−1/2(r+

r

)4

q2(r) (6.92)

f11(r) =
(

1− r+

r

)−iα(ω−mΩH)−1(r+

r

)6

q3(r) (6.93)

f12(r) =
(

1− r+

r

)−iα(ω−mΩH)−1/2(r+

r

)5

q4(r) (6.94)

f22(r) =
(

1− r+

r

)−iα(ω−mΩH)(r+

r

)4

q5(r) (6.95)

HL(r) =
(

1− r+

r

)−iα(ω−mΩH)(r+

r

)4

q6(r). (6.96)

Here we have introduced the quantities

α =
h(r+)

r+∆′(r+)
, ∆(r) = g(r)−2. (6.97)

Once these qi functions are known, one can easily find the boundary conditions

by expanding the equations near the endpoints.

6.7.4 Numerical results

Here we present our numerical results. We calculated scalar-gravitational

QNM frequencies for the five dimensional, equal angular momenta MP-AdS black

hole. The possible perturbations are parametrized by two integers (κ,m). We

are particularly interested in the onset of superradiant instabilities, which was

discussed earlier in Sec. 6.4.2. We remind the reader that superradiant modes

are characterized by the condition Re(ω) < mΩH , and linear instabilities by the
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condition that Im(ω) > 0. For superradiant instabilities in AdS, these two condi-

tions are satisfied simultaneously as the mode becomes unstable. In considering

the onset of these instabilities, we will find it useful to consider the function

ΩH,onset(r+/L), which for a given (κ,m), is the value of the rotation such that

ω = mΩH,onset.

Before presenting our results on scalar perturbations, we briefly review the

results for tensor perturbations [30], which exist for D odd and D ≥ 7. There an

infinite number of superradiant instabilities were found, all for ΩHL > 1. Lower m

modes become unstable for larger values of the rotation, and in the limit m→∞,

the critical rotation approaches ΩH,onset → 1. Also, ΩH,onset depends only very

weakly on the size of the black hole, and in particular the ordering of ΩH,onset’s

for different m’s is independent of the size of the black hole. For a given m the

instability terminates once the black hole is taken to be sufficiently large. We will

find that some scalar perturbations behave qualitatively differently than these

tensor perturbations.

In Fig. 6.2 we plot the onset of the superradiant instability for (0,m) modes,

for a range of m. We calculated these threshold unstable modes using the Newton-

Raphson method presented in Sec. 6.3. As a check on our results, it is useful to first

consider small black holes. For small black holes, the onset of the instability can

be very easily predicted by first setting ω = mΩH for the onset of superradiance,

and then also setting ω = ωAdS, where ωAdS is the normal mode frequency of AdS.

For (0,m) modes, this results in

ΩH,onsetL = 1 +
2

m
, (6.98)
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Notice that for m → ∞, ΩH,onset → 1. As the size of the black hole is increased,

the onset curves for different m begin to cross. This behaviour was also observed

for scalar perturbations of Kerr-AdS in Sec. 6.4.2, and is qualitatively different

from the behavior of the tensor instabilities discussed above. Although the onset

curves cross as the size is increased, the fact that the m → ∞ instability hugs

the line ΩHL = 1 indicates that the “m = ∞ mode will never be crossed”, i.e.

arbitrarily large m-modes will be the first ones to go unstable as ΩHL is increased,

even for arbitrarily large black holes. This same phenomenon occurs for scalar

perturbations of Kerr-AdS, and is discussed in more detail in Sec. 6.4.2. Another

difference between these scalar instabilities and the tensor ones is that, for a given

m, the scalar onset curves extend for arbitrarily large black holes, whereas the

tensor curves terminate. For very large black holes, we can examine the approach

of the onset curve to it’s limiting value of ΩHL → 1. Interestingly, the approach

is power-law, with the exponent independent of m:

ΩH,onsetL ∼ 1 + const
( L
r+

)4

. (6.99)

In Fig. 6.3 we plot the onset of the superradiant instability for (1,m) modes.

These instabilities are evidently qualitatively different from the (0,m) instabilities

in that a) the onset curves do not cross, and b) for a given m, the instabilities

do not persist for arbitrarily large black holes. In fact, these modes appear to be

qualitatively very similar to the tensor modes on CPN for N ≥ 2.

In Fig. 6.4 we plot contour plots of the real and imaginary parts of ω for the

(0, 2) mode. The black dashed line corresponds to the onset mode, ω = mΩH ,
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and the black dot corresponds to the data point with the largest positive value of

Im(ω). This point is near the extremality bound, and lies at the end of the grid

used to scan the parameter space, and so it is likely that true maximum either

lies along or very near the extremality curve. This point is given by

(r+/L,ΩHL) = (0.579, 1.548), ωL = 2.481 + 0.039i. (6.100)

Lastly, we remark on the importance of the onset modes, ω = mΩH , on the

phase diagram of black hole solutions in five dimensions. In Sec. 6.5 it was dis-

cussed how threshold unstable modes with ω = mΩH signified new branches of

single KVF black hole solutions. We expect much of this analysis to carry over to

five dimensions. It would be interesting to study these putative solutions further.

Also, as in the Kerr-AdS case, the endpoint of the superradiant instability remains

a very interesting open question, especially given the crossing of the onset curves

observed in the (0,m) scalar sector of perturbations.

6.7.5 Hydrodynamic thermalization timescales

in the AdS5/CFT4 duality

We now turn to study the hydrodynamic QNM’s of the five dimensional MP-

AdS black hole. As discussed in Sec. 6.6, this serves as a powerful check on our

numerics, the hydrodynamic approximation, and more generally, gauge/gravity

duality itself. Compared to the Kerr-AdS case, the hydrodynamic approximation

for the cohomogeneity-1 MP-AdS black holes is conceptually simpler and has a

wider range of validity. Recall that in the Kerr-AdS case, the pressure was a
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Figure 6.2: The onset of superradiance for (0,m) modes. The dashed horizonal
lines are the analytic prediction for small black holes, discussed above. We
extend the curves past r+/L = 0 to emphasize the fact that the onset curves
are all monotonically decreasing. Two major features of the plot are 1) the
crossing of the onset curves, and 2) that as m→∞ the onset curve approaches
ΩHL = 1. Inset: a zoomed-out plot showing an enlarged view of the parameter
space.

function of the angular coordinate θ, and this introduced another length scale

into the approximation which limited it’s domain of applicability (although the

agreement turned out to be excellent even for large rotations). In contrast, the

pressure for these five dimensional black holes is constant, and the approximation

is valid for all rotations ΩHL < 1. As is often the case, we will find that the

hydrodynamic approximation agrees excellently with our numerical for reasonably

large black holes.

The general theory of hydrodynamic modes was reviewed in Sec. 6.6, and so

here we only remark on the differences that occur for these five dimensional equal
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Figure 6.3: The onset of superradiance for (1,m) modes. The dashed hori-
zonal lines are the analytic prediction for small black holes, which we extend
pass r+/L = 0 to emphasize the fact that the onset curves are monotonically
decreasing. Notice that these curves do not cross each other and terminate at
finite ΩH , in contrast to the (0,m) modes. Inset: a zoomed-out plot showing
an enlarged view of the parameter space. Due to numerical limitations, the
onset curves do not extend all the way to r+/L = 0.

angular momenta MP-AdS black holes. The boundary metric is now

hµνdx
µdxν = −dt2 + L2

(
(dψ + Aadx

a)2 + ĝabdx
adxb

)
. (6.101)

The energy density, pressure, and fluid velocity are related to the black hole

parameters via

ρ = (D − 2)p, p =
r2N
M

2L

(
1− a2

L2

)
, (6.102)

uµdx
µ =

(
1− a2

L2

)−1/2(
− dt+ a(dψ + Aadx

a)
)
.
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Figure 6.4: Contour plots of Re(ω) (Left plot), and Im(ω) (Right plot). Above
the solid black line the black hole is nakedly singular. The dashed lines cor-
respond to the onset of the superradiant instability, ω = mΩH . The isolated
black dots correspond to the data point with the largest positive value of Im(ω)
found in our scan of the parameter space.

We will also need to use the viscosity to entropy relation, η = s/4π, which in our

conventions yields η = r3
+/(2L).

Hydrodynamic modes are obtained through perturbations of the stress tensor

that are traceless and divergenceless. The CPN dependence of these equations

can again be separated using the charged harmonics introduced above. Since

our numerical data is for scalar perturbations, we will restrict our attention to

hydrodynamic scalar modes. The decomposition of the fluid variables is:

δρ = (D − 2)δp, δp = δp̂Ye−i(ωt−mψ), (6.103)

δuµdx
µ =

(
(δutdt+ δuψdψ)Y + (δu+Y+

a + δu−Y−a )dxa
)
e−i(ωt−mψ).

The perturbed quantities {δp̂, δut, δuψ, δu+δu−} and ω can then be solved for by
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using the conservation of the stress tensor. As the expressions are rather lengthy,

and depend non-trivially on the harmonic under consideration, we omit their

full presentation here. Given the difficulty of obtaining analytic predictions for

black hole QNM’s, we will however include the expressions in an expansion about

ΩH = 0. For D = 5 and the (0,m), harmonics (with m ≥ 2), and to first order in

both L/r+, ΩL = ΩHL, the hydrodynamic modes are

ω± =

(
±
√
m(m+ 2)√

3
+

2 (m2 + 2m− 3) ΩL

3(m+ 2)
+O

(
Ω2
L

))
+ (6.104)

+
L

r+

(
−1

6
i
(
m2 + 2m− 3

)
± i (m4 + 4m3 + 3m2 − 2m− 6) ΩL

2
√

3m(m+ 2)3/2
O
(
Ω2
L

))
+O

(
L2/r2

+

)
,

ω0 =

(
m2ΩL

m+ 2
+O

(
Ω2
L

))
+
L

r+

(
−1

4
im(m+ 4) +O

(
Ω2
L

))
+O

(
L2/r2

+

)
.

(6.105)

Next, we compare our numerical data for large black holes with the hydrodynamic

approximation. In Fig.’s 6.5 and 6.6, we fix r+/L = 100 and plot the analytic

prediction of the hydro modes against our numerical data for two choices of CP1

harmonics: (0, 2) and (1, 1). We work to leading order in L/r+ and find excellent

agreement for all ΩHL < 1. The typical error of the hydro approximation is 10−4,

which is exactly what we’d expect as the next term in the expansion comes in at

O(L2/r2
+) ∼ 10−4. Although we find excellent agreement between the hydrody-

namic approximation and our numerical data, the approximation fails to capture

the superradiant instabilities. As mentioned earlier, all superradiant instabili-

ties necessarily have ΩHL > 1. For these black holes, the boundary is rotating
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faster than the speed of light, and the hydrodynamic approximation shouldn’t

be expected to be valid. So, while the hydrodynamic approximation has again

proven to be an excellent approximation scheme, in this case it fails to capture

the instabilities.
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Figure 6.5: Comparision of the leading order hydrodynamic approximation for
(κ,m) = (0, 2) modes. Here r+/L = 100. Right Inset: For ΩHL ≥ 1 the
hydrodynamic approximation breaks down, and despite the otherwise excellent
agreement, fails to predict the superradiant instability.

6.8 Discussion and open problems

We studied the most general linear perturbations of the Kerr-AdS BH and

of the equal angular momentum Myers-Perry-AdS BH in D = 5. We imposed

asymptotic BCs that preserve the conformal metric [103, 115]. These BCs also

guarantee that the energy and angular momentum fluxes across the asymptotic

boundary vanish. Using a novel numerical approach, which we believe might also
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Figure 6.6: Comparision of the leading order hydrodynamic approximation
for (κ,m) = (1, 1) modes. Here r+/L = 100. Once again, we find excellent
agreement between our data and the hydrodynamic prediction.

be useful for other applications, we computed the QNM spectrum of these BHs

and the growth rate of their instabilities. The only linear instability that we find

in the D = 4 and D = 5 stationary BHs have a superradiant nature and they

appear only in BHs with ΩhL > 1. We focused on these spacetimes because of

their interest for AdS4/CFT3 and AdS5/CFT4 dualities formulated on the static

Einstein Universe, i.e. on the sphere. Higher dimensional stationary BHs with

D ≥ 6 were not considered here but they should have novel features that might

be worth investigating. Indeed, it is established that D ≥ 6 stationary BHs

are also unstable to the ultraspinning instability, whose onset was identified in

[144] (this instability was first studied in asymptotically flat stationary BHs in

D ≥ 6 [20, 26, 40, 23, 27]). However, it is still an open question whether another

instability that is present in D ≥ 6 vacuum stationary BHs, namely the bar-mode
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instability [20, 28, 29, 5], is present in AAdS rotating BHs.

The onset of the superradiant instability is an exact zero mode that is invari-

ant under the horizon-generating Killing field of the Kerr-AdS (MP-AdS) BH. On

the shoulders of an idea originally proposed in [30], we argued that, in a phase

diagram of stationary solutions, the superradiant onset curve is a bifurcation line

to a new family of BH solutions with a single Killing field that span a region that

is further limited by the geon family constructed in [72]. We have constructed

perturbatively the leading order thermodynamics of these novel BHs using a sim-

ple thermodynamic model [135, 136, 137, 124]. In the future, it is important to

construct explicitly (numerically) these single KVF BHs and geons at full nonlin-

ear level to confirm the ideas here discussed (in the context of scalar superradince,

similar single KVF BHs and boson stars have already been constructed nonlin-

early in [124]. Their properties are in agreement with the thermodynamic model

we use here, in the regime of small charges). It is worth emphasizing that these

single KVF BHs are periodic but not time symmetric neither axisymmetric and

their existence shows that the Kerr-AdS and MP-AdS BHs are not the only sta-

tionary BHs of Einstein-AdS theory (as discussed in detail before, their existence

is not in conflict with the rigidity theorems).

An interesting open question concerns the time evolution and endpoint of the

superradiant instability. Before addressing this issue for rotating systems, it is

useful to discuss first the situation for global AdS Reissner-Nordström BH (RN-

AdS BH) with chemical potential µ that are unstable to charged superradiance.

This is the case if the RN-AdS BH is scattered by a charged scalar wave with

frequency ω and charge e that obeys ω ≤ eµ. Here, the marginal mode with
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ω = eµ signals a bifurcation curve, in a phase diagram of static solutions, to a

new family of charged BHs with scalar hair that have been explicitly constructed

(perturbatively and nonlinearly) in [135, 136, 145, 137]. When they coexist, the

entropy of the hairy BHs is always higher than the entropy of the RN-AdS BH

with same mass and charge, for fixed e. Moreover, the hairy BHs are not unstable

to superradiance since for a given mass and charge (and fixed e) the chemical po-

tential of the hairy BH is smaller than the chemical potential of the RN-AdS BH;

therefore the would-be superradiant modes of hairy BHs no longer fit inside the

global AdS box. So far we have just discussed the phase diagram of solutions but

said nothing about the time evolution of the original RN-AdS BH. The expecta-

tion, to be confirmed by a full time evolution, is that the endpoint of the charged

superradiant instability in the RN-AdS BH is one of the hairy BHs constructed

in [135, 136, 137]. This follows from the fact that for a given mass and charge

(and fixed scalar charge e) the hairy BH has higher entropy and lower chemical

potential than the RN-AdS BH. Therefore a time evolution towards the hairy BH

is compatible with the second law of thermodynamics and the endpoint would be

stable (to superradiant modes with the given fixed e). Given the properties of

this charged system, and the obvious similarities with the rotating superradiant

system, it is often assumed that we can use the charged system to extrapolate on

evolution properties of the rotating system. However, we next argue that such

an extrapolation for time evolution properties is not appropriate. To begin, no-

tice a fundamental difference between the charged and rotating systems. The

charge of the scalar field e, that enters the superradiant condition ω ≤ eµ, is

fixed. However, the azimuthal quantum number m, that enters the superradiant
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condition ω ≤ mΩh, is not fixed since the nonlinearities of Einstein equation will

excite other m modes during a time evolution. This means that a given single

KVF BH, constructed in association with a given m mode, can be at most just

a metastable state but never the endpoint of the superradiant instability. This is

because the single KVF BH is stable to the particular m-mode but not to other

m superradiant modes that are inevitably excited in a time evolution. Therefore

the endpoint of the superradiant instability in rotating BHs is not known at all

and finding it is one of the most interesting open questions in BH perturbation

physics. Not much can be said about it without performing the full time evolution

but it is interesting to observe that, typically, stable BHs to a given m-mode are

nevertheless unstable to higher m-modes. So one possibility is that the system

will evolve to configurations with higher and higher m structure. Another impor-

tant observation is that only BHs with angular velocity ΩhL < 1 are stable to

superradiance, as first proved in [33]. So a natural expectation for the endpoint

of the superradiant instability would be a (single KVF) BH with ΩhL < 1. Find-

ing whether such a BH exists requires constructing the single KVF BHs at full

nonlinear level. However, in the similar scalar superradiant system of [124], where

much of the present discussion about the time evolution also applies, the single

KVF BHs of the theory have been explicitly constructed nonlinearly but none of

them has ΩhL < 1.

Within the gauge/gravity correspondence, black hole QNMs are dual to ther-

malization timescales in the dual CFT. An explicit check of this statement is

possible in the regime where the CFT admits a near equilibrium, long wavelength

effective hydrodynamic description. We have explicitly checked that for BHs with
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radius much larger than the AdS length (and small rotations in the four dimen-

sional case), the long wavelength gravitational QNMs of stationary BHs match the

hydrodynamic relaxation timescales of the dual CFT. This confirms that the holo-

graphic interpretation of the QNM spectrum extends to systems with a rotating

chemical potential. It is also a further check of the validity of the shear viscosity

to the entropy density bound, η/s = 1/(4π), and a non-trivial confirmation that

the global AdS BCs derived in the companion paper [115] preserve the conformal

boundary.

The damped QNM modes of a BH have a well defined dual CFT interpretation,

but not much is known about the holographic interpretation of the superradiant

instability (for discussions in this direction see[33]). From the gravity side it is

clear that the superradiance instability has to do with a quenched cooling of the

system, since increasing the angular momentum very rapidly, cools the system

down. It would be interesting to connect this interpretation with a simple CFT

model for such a phenomena, where one could perhaps understand the final state

of the system. In addition, it would also be important to understand the novel

holographic phases or states that are dual to the single KVF BHs and geons that

appear in the superradiant context. From a different perspective, in the bulk we

have discussed BHs only at the classical level. However, when quantum effects are

included, Hawking radiation is also present and it is entangled with spontaneous

superradiant emission. These phenomena should have a microscopic or statistical

description. Within string theory, certain BHs can be described by a configuration

of D-branes. In this context, Hawking radiation can be microscopically under-

stood as the emission of a closed string off the D-branes as a result of the collision
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of two open strings that are attached to the D-branes (see [146] and references

therein). Similarly, superradiant emission has a microscopic description in terms

of collisions of fermionic (spinning) left and right moving string excitations, and

the superradiant condition ω ≤ mΩh follows from the Fermi-Dirac statistics for

the fermionic open strings [146]. It would be interesting to extend this microscopic

description to BHs (like Kerr-AdS) that do not have a D-brane description.

The properties of spheroidal wavefunctions and eigenvalues are known analyt-

ically for some time in AF spacetimes [147]. Our (numerical) analysis leaves the

corresponding analytical analysis of spheroidal harmonics in AAdS unexplored,

but clearly a compelling topic. Specially interesting is the extremal regime a = L,

which might be amenable to a full analytic treatment, both in the angular eigen-

value and in the eigenfrequency.

In a similar vein, a detailed analysis of superradiance in extremal, AF and

AAdS geometries is seemingly lacking. Quasinormal mode results for the extremal,

AF Reissner-Nordstrom geometry uncovered an interesting symmetry between

different perturbations [148] which might propagate to superradiant amplification

factors and to other geometries. Note that our analysis does not apply to the

extremal Kerr-AdS BH because it has a double horizon and thus our BCs are not

appropriate. However, as one approaches the extremal BH, superradiance emission

persists as first observed for the Kerr BH in [149]. An interesting observation is

that in the AF case, when the Kerr BH is extremal and the perturbations have

a frequency that saturates the superradiant bound, i.e. ω = mΩext
h , the radial

Teukolsky equation has an exact solution in terms of hypergeometric functions

[150]. However, for the Kerr-AdS BH we can no longer solve the radial equation
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analytically, even in the above particular conditions [151]. Extremal Kerr(-AdS)

BHs are also interesting because they have a near-horizon limit where a Kerr/CFT

correspondence can be formulated (see e.g. [152, 151] and references therein). The

study of gravitational perturbations in the Kerr(-AdS) near-horizon geometries

was done in [152, 151]. It is interesting to note that all frequencies in the near-

horizon geometry correspond to the single frequency ω = mΩext
h in the original

full geometry. Probably this is the reason why no signature of superradiance is

found in the near-horizon geometry. It might be useful to explore further this

system since its radial solutions are analytical.

We conclude this discussion section with some important general remarks con-

cerning perturbations of AAdS spacetimes. One might wonder whether Robin

boundary conditions, such as the ones used throughout this paper, lead to a well

defined initial value problem for fields propagating in arbitrary asymptotically

AdS backgrounds. This has been shown to be the case for the propagation of a

real scalar field in [153, 100], where no assumption about the stationarity of the

background or separability of the wave equation was made. The proof given there

can be readily extended to complex of multi-component fields, including the grav-

itational perturbations discussed here. In the absence of a linear instability, one

might think that linear perturbations about Kerr-AdS will decay exponentially

with time, in a manner dictated by the QNM spectrum. However, it turns out

that this is not the generic case, and indeed, depending on the smoothness of the

initial data, the decay might be a lot slower than that. A simple argument suggest

logarithmic decay: modes with very large angular momentum have a very large

timescale, their growth rate can be shown (using for instance the WKB approx-
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imation) to decay exponentially with increasing angular quantum number `, i.e.

τ ≡ Im(ω)−1 ∼ exp(α`), where α is independent of `. This suggests that very

long timescales can be achieved if the initial data contains support in very large

angular momentum quantum numbers, that is to say ` ∼ log τ . Since the initial

data has to live in a Sobolev space of sufficiently high order, we conclude that

||ψ|| ∼ (log τ)−p, where p is related to the Sobolev norm we are considering. Note

that even real analytic data might not decay exponentially, this would correspond

to taking the limit p→ +∞, which would lead to ||ψ|| ∼ τ−β, for some constant

β. The logarithmic behavior has been rigorously shown to be sharp in [101, 99].

Perhaps more worrying, the long time behavior of generic perturbations about

black hole in global AdS might not even be related with quasinormal modes at

all! In [154], it was shown, by counterexample, that quasinormal modes do not

form a complete basis and that some perturbations can never be described by their

dynamics. However, we should stress that in the presence of a linearly unstable

mode, such as a superradiant instability, the linear spectrum of perturbations does

provide an accurate description of the dynamics at early times.
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Appendix

6.A Fluxes across the horizon and asymptotic

boundary

In this Appendix we explicitly show that the energy and angular momentum

fluxes across the asymptotic boundary vanish if we impose boundary conditions

(BCs) that preserve the conformal metric. We also review why the flux across the

horizon is proportional to the superradiant factor.

The energy and angular momentum fluxes of gravitational perturbations are

calculated using the Landau-Lifshitz “pseudotensor” whose definition we review

next (see e.g. [152]). Consider metric perturbations hµν around a background ḡµν

up to second order in the amplitude,

gµν = ḡµν + hµν = ḡµν + h(1)
µν + h(2)

µν +O(h3). (6.106)

The linearized Einstein equation reads

G(1)
µν [h(1)] = 0 . (6.107)
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At second order, the Einstein equation relates terms linear in h(2) to terms quadratic

in h(1):

G(1)
µν [h(2)] = −G(2)

µν [h(1)] ≡ 8πGTµν [h(1)] , (6.108)

where the RHS is quadratic in h(1). Written out explicitly, for generic perturba-

tions it reads (here, we use the notation hµν ≡ h
(1)
µν ; if we choose the traceless-

transverse gauge this is known as the Landau-Lifshitz “pseudotensor”):

8πGNTµν = −
1

2

[ 1

2

(
∇µhαβ

)
∇νh

αβ
+ h

αβ
(
∇ν∇µhαβ +∇α∇βhµν −∇α∇µhνβ −∇α∇νhµβ

)

+∇αh
β
µ

(
∇αhβν −∇βh

α
ν

)
−∇αh

αβ
(
∇µhβν +∇νhµβ −∇βhµν

)

+
1

2
∇αh

(
∇µhβν +∇νhµβ −∇βhµν

) ]

+
1

4
ḡµν

[ 1

2

(
∇γhαβ

)
∇γhαβ + h

αβ
(
∇γ∇

γ
hαβ − 2∇α∇

γ
hγβ
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(
∇αh
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∇γhβγ

+∇αh
βγ

(
∇αhβγ −∇βh

α
γ

)
+

1

2
∇αh

(
2∇βh

αβ −∇αh
) ]
. (6.109)

We can now define the fluxes associated with the first order perturbation.

Let ξ be one of the Killing vector fields ξ = ∂t or ξ = −∂φ of (Kerr-)AdS,

that are conjugate to the energy (E) and angular momentum (J) of the solution,

respectively. Conservation of the “pseudotensor” Tµν , ∇µT µν = 0, and the Killing

equation, ∇(µξν) = 0, imply that the 1-form Jµ = −Tµνξν is conserved, d?J = 0,

where ? is the Hodge dual. We can then define the energy or angular momentum

flux across a hypersurface Σ (like the horizon or the asymptotic boundary) as

Φξ ≡ −
∫

Σ

?J = −
∫

Σ

dVΣ Tµνξµnν (6.110)

where nν is the normal vector to Σ and dVΣ is the induced volume on Σ.
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Consider first the asymptotic boundary Σ = Σ∞ which is the timelike hyper-

surface defined by z = 0 (where z is the FG radial coordinate). This has unit

normal n = z/L dz. As discussed in association with the FG expansion (6.1),

AAdS backgrounds start differing from each other only at order O
(
g(d)zd−2

)
.

This in particular also implies that the most general perturbation of a global AdS

background that preserves the asymptotic structure of the background has an

asymptotic expansion around z = 0 that starts at order O
(
zd−2

)
, i.e. hzµ = 0

and hab = e−iωteimφf(X)zd + · · · (the Fourier decomposition in t, φ follows from

the fact that these directions are isometries of the background). Inserting this gen-

eral perturbation in the “pseudotensor” (6.109) and computing the fluxes (6.110)

we find that they vanish because the integrand of the fluxes has a polynomial

expansion that starts at O
(
zd
)

(for both Killing fields):

Φξ

∣∣
∞ = −

∫
Σ∞

?J = 0 . (6.111)

That is, perturbations that preserve the conformal metric (the static Einstein

Universe) have vanishing energy and angular momentum fluxes at the asymptotic

boundary.

Take now the Killing horizon (null) hypersurface, Σ = ΣH , defined by r = r+.

To find the flux across the horizon we work with the ingoing Eddington-Finkelstein

coordinates {v, r, χ, φ̃}, introduced in (6.16), that extend the solution through

the horizon. The horizon generator is by definition normal to the horizon, i.e.

n ≡ K = ∂v+Ωh∂φ̃. The metric perturbation hµν ≡ h
(1)
µν is constructed applying a

differential operator to the Teukolsky variable δΨ4 (this is known as the Hertz map;
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see the companion paper [115]). This yields long expressions for the components

of hµν that are not at all illuminating. The keypoint is that inserting them in the

“pseudotensor” (6.109) we find that the fluxes across the horizon are proportional

to the superradiant factor (Cξ are positive constants if {ω > 0,m > 0}),18

Φξ

∣∣
H

= −
∫

ΣH

?J = −(ω −mΩh)Cξ . (6.112)

That is, these fluxes are negative (inwards the BH) if ω > mΩh for which we per-

turbations are damped (QNMs); positive (outwards the BH) if ω < mΩh in which

case this energy and angular momentum fluxes feed the superradiant instability

growth; and finally they vanish when ω = mΩh, i.e. at the onset of superradiance.

6.B Details of the hydrodynamic QNM compu-

tation (D = 4)

In this appendix we give details of the hydrodynamic computation that leads

to the frequency quantization (6.63) and (6.64).

Our starting point is the double expansion (6.62) in the shear viscosity and in

the rotation, both for the fluid perturbations introduced in (6.60), {Q(f)(X)} =

18This property is universal to scalar, electromagnetic and gravitational perturbations. A
massless real scalar field perturbation obeying the Klein-Gordon equation is the simplest case
that illustrates the origin of the superradiant factor. Indeed, inserting a scalar perturbation

Ψ = e−iωveimφ̃Ψ(r, χ) + c.c. in its energy-momentum tensor Tµν = ∂µΨ∂νΨ− (1/2) (∂Ψ)
2
, and

computing the flux vector across the horizon we find

−nµξνTµν = −nµ∂µΨξν∂νΨ = −(∂vΨ + Ωh∂φ̃Ψ)ξν∂νΨ = −(ω −mΩh)cξ [Re(−iΨ)]
2
,

where ct = ω and cφ̃ = m. We used n ≡ K = ∂v + Ωh∂φ̃ and ξ ·K
∣∣
H

= 0.
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{Q(1), Q(2), Q(3)} ≡ {δP/L, δuX , δuΦ}, and for the perturbation frequency ω.

These expansions are inserted in the hydrodynamic equations of motion (6.58)

or (6.59) that are then solved progressively in a series expansion in η/L3 and a/L.

For our purpose it will be enough to go up to first order in the viscosity (n = 1)

and up to second order in the rotation (p = 2) expansions. There are two families

of modes, namely the scalar and the vector modes.

6.B.1 Scalar modes

Consider first the scalar modes. At leading order in the aforementioned ex-

pansion, the viscosity and rotational effects are absent, and we are interested

in finding the quantities S
(f)
0,0 and ω0,0 (for scalar modes we use the notation

S
(f)
j,i ≡ Q

(f)
j,i ). In these conditions, the pressure perturbation is proportional to

the Kodama-Ishibashi scalar harmonic S(X,Φ) ∼ eimΦPm
` (X), where Pm

` (x) is the

associated Legendre polynomial, while the velocity perturbation is proportional

to the vector derived scalar harmonics obtained by taking angular derivatives

of the scalar harmonic Si ∝ DiS (where Dj is the covariant derivative associ-

ated to the unit radius metric on S2). We thus have S
(1)
0,0 e

imΦ = A1 e
imΦPm

` (X),

S
(2)
0,1 e

imΦ = A2 e
imΦPm

` (X)′ and S
(3)
0,1 e

imΦ = imA2 e
imΦPm

` (X), for arbitrary am-

plitudes Ak. Inserting these expressions in the equations of motion (EoM) we fix

the ratio A1/A2 and quantize the frequency ω0,0. This yields (we introduce the
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notation z+ = r+
L

)

S
(1)
0,0 = i A2 z+

(
1 + z2

+

) √`(`+ 1)√
2

Pm
` (X),

S
(2)
0,0 = A2 P

m
` (X)′ ,

S
(3)
0,0 = imA2 P

m
` (X), (6.113)

and ω0,0 that can be read from (6.63). This conclusion agrees with the static

results first derived in [97].

Still at leading order in the viscosity, we now consider the first order correc-

tion introduced by the rotation. It follows from two of the EoM at this order that

the perturbations Q
(2)
0,1 and Q

(3)
0,1 can be algebraically expressed as a function of

S
(2)
0,1 and/or its derivative. Plugging these relations in the third EoM we fix the

frequency correction ω0,1 as written in (6.63) (this is done doing the procedure ex-

emplified below for the ω0,2 conribution) and the differential equation for S
(1)
0,1 that

is left is the familiar associated Legendre equation. Altogether, the perturbation

eigenfunctions at order O (η0, a1) are then

S
(1)
0,1 = B0 P

m
` (X),

S
(2)
0,1 =

A2mz+

(
1 + z2+

) (
`2 + 5` + 2

)
− 2iB0`(` + 1)

√
2z+

(
1 + z2

+

)
[`(` + 1)]3/2

(` + 1)X

1 −X2
P
m
` (X)

−
A2mz+

(
1 + z2+

) (
`2 + ` + 2

)
− 2iB0`(` + 1)

√
2z+

(
1 + z2

+

)
[`(` + 1)]3/2

(` + 1 −m)

1 −X2
P
m
`+1(X),

S
(3)
0,1 =

i A2z+

(
1 + z2+

) (
m2

(
`2 + ` + 2

)
+ `(` + 1)2

(
X2(` + 4) − `

))
− 2iB0m`(` + 1)

√
2z+

(
1 + z2

+

)
[`(` + 1)]3/2

P
m
` (X)

+
2i
√

2A2`(` + 1)(m − ` − 1)

[`(` + 1)]3/2
XP

m
`+1(X). (6.114)

where B0 is a new arbitrary amplitude that is introduced at this order.
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We can improve our approximation by finding the correction up to second

order in the rotation (at this point still at vanishing viscosity). This requires

looking to the EoM at order O (η0, a2) that involve the unknown quantities S
(f)
0,2

and ω0,2. We use this case to exemplify in detail how we typically solve equations

of our problem to get the perturbative frequency corrections. Two of the EoM at

order O (η0, a2) yield two algebraically equations for S
(2)
0,2 and S

(3)
0,2 in terms of S

(1)
0,2

and its derivative (in addition to Legendre polynomial contributions sourced by

the lower order solutions). Inserting these algebraic relations in the third EoM

we get a second order ODE for S
(1)
0,2 . Explicitly, the equations discussed in this

paragraph are:

S
(1)
0,2(X)

′′ −
2X

1 −X2
S

(1)
0,2(X)

′ −
m2 +

(
X2 − 1

)
`(` + 1)(

1 −X2
)2 S

(1)
0,2(X)

+
iA2z+

(
1 + z2+

) (
5`2 + 5` + 16

)
√

2
√
`(` + 1)

XP
m
` (X)

′

+
iA2z+

(
1 + z2+

)
2
√

2(`(` + 1))3/2

Pm` (X)

1 −X2

[
m

2
[
12 + `(` + 1)

(
`
2

+ ` + 4
)]

−`2(` + 1)
2
[
20 −

(
1 −X2

) (
`
2

+ ` + 22
)
− 4
√

2
√
`(` + 1)Lω0,2

] ]
= 0

S
(2)
0,2(X) = −

i
√

2S
(1)
0,2(X)′

z+

(
1 + z2

+

)√
`(` + 1)

+ P
m
` (X)

′

− iB0m
(
`2 + ` + 2

)
z+

(
z2
+

+ 1
)
`2(` + 1)2

+ A2

m2
(
`2 + ` + 2

)2
2`3(` + 1)3

+
2
√

2X2z2+

(
`2 + ` + 4

)
−
√

2
(
2z2+ + 1

)
`(` + 1) − 2ω0,2Lz

2
+

√
`(` + 1)

√
2z2

+
`(` + 1)



+

A2

[
4m2

(
`2 + ` + 2

)
+ `2(` + 1)2

(
1 −X2

)]
`(` + 1)

−
4iB0m

z+

(
z2
+

+ 1
)
 XPm` (X)

`(` + 1)
(
1 −X2

)

S
(3)
0,2 =

√
2mS

(1)
0,2(X)

z+

(
1 + z2

+

)√
`(` + 1)

+ P
m
` (X)

 iA2m
3
(
`2 + ` + 2

)2
2`3(` + 1)3

+
2iA2mX

2
(
`2 + ` + 4

)
`(` + 1)

−
iA2m

(
2z2+ + 1

)
z2
+

−
i
√

2A2mLω0,2√
`(` + 1)

+
B0

[
m2

(
`2 + ` + 2

)
+
(
X2 − 1

)
`2(` + 1)2

]
z+

(
1 + z2

+

)
`2(` + 1)2



+
4iX

(
1 −X2

)
Pm` (X)′

z+

(
1 + z2

+

)
`2(` + 1)2

[
A2mz+

(
1 + z

2
+

) (
`
2

+ ` + 2
)
− iB0`(` + 1)

]
. (6.115)

Note that the ODE for S
(1)
0,2 is of the form f1S

(1)
0,2
′′ + f2S

(1)
0,2
′ + f3S

(1)
0,2 + s2P

m
`
′ +
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s1P
m
` = 0, with fk and sk being functions of X that can be read from the

first equation in (6.115). Contracting this equation with
∫
dXPm

` we can now

use the properties of integration by parts. Namely, we can subtract the van-

ishing total divergence contribution
∫
dX∂X

(
Pm
` f1S

(1)
0,2
′
)

to the previous equa-

tion and integrate by parts the
∫
dXPm

` f1S
(1)
0,2
′′ term to rewrite the “EoM” as∫

dXPm
`

[
f̂2S

(1)
0,2
′ + f3Q

(1)
0,2 + ŝ2P

m
`
′ + s1P

m
`

]
= 0, where we have redefined the co-

efficients f2 → f̂2 and s2 → ŝ2 to absorb the new contributions arising from the

integration by parts. We use again a similar approach, namely we subtract the

total divergence term
∫
dX∂X

(
Pm
` f̂2S

(1)
0,2

)
= 0 and use integration by parts to

get
∫
dXPm

` (s̃2P
m
`
′ + s1P

m
` ) = 0 where we made the redefinition ŝ → s̃2 and a

would be S
(1)
0,2 contribution is absent since f3 − f̂2

′ = 0. Subtracting the total

divergence
∫
dX∂X [s̃2 (Pm

` ) 2] and a third final integration by parts finally yields∫
dXPm

` ŝ1P
m
` = 0 with ŝ1 = s̃2

′ + s1. Explicitly, this final condition is

A2z+

(
1 + z2

+

)
2`(`+ 1)

{[
`(`+ 1)

(
`2 + `+ 7

)
− 48

] ∫ 1

−1

dX X2 Pm
` (X)2

−
[
`(`+ 1)

[
`(`+ 1)

(
4
√

2
√
`(`+ 1)ω0,2 + `2 + `− 3

)
− 16

]
+m2

[
`(`+ 1)

(
`2 + `+ 4

)
+ 12

] ]∫ 1

−1
dX Pm

` (X)2

`(`+ 1)

}
= 0 .(6.116)

To proceed we use the integrals

∫
Pm
` (X)Pm

` (X)dX =
2

(2`+ 1)

(`+m)!

(`−m)!∫
X2Pm

` (X)Pm
` (X)dX =

2 (2`2 + 2`− 2m2 − 1)

(2`− 1)(2`+ 1)(2`+ 3)

(`+m)!

(`−m)!
, (6.117)
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to rewrite (6.116) as

0 =
A2z+

(
1 + z2

+

)
(2`− 3)!!(`+m)!

`2(`+ 1)2(2`+ 3)!!(`−m)!{
3m2(`− 1)(`+ 2)

(
`2 + `+ 6

) (
2`2 + 2`+ 1

)
+2`2(`+ 1)2

[
2
√

2
√
`(`+ 1)(2`− 1)(2`+ 3)ω0,2L

+(`+ 1)`3 + (`+ 1)`2 − 14(`+ 1)`+ 24
]}
.

This condition finally quantizes the frequency contribution ω0,2 as

ω0,2L = −(`+ 2)(`− 1) [2(`− 3)(`+ 4)`2(`+ 1)2 + 3m2 (6 + `+ `2) (1 + 2`+ 2`2)]

4
√

2(2`− 1)(2`+ 3)[`(`+ 1)]5/2
.

(6.118)

To include the effects of dissipation we now consider the linear order contribu-

tion in the viscosity, while still doing also an expansion in the (adimensional) ro-

tation parameter, i.e. we solve the perturbative EoM at order O (η, a0), O (η, a1),

O (η, a2). The technical analysis proceeds in a way that is very similar to the

procedure already outlined for the zero-order contribution in the viscosity so we

now omit further details and just give the final results for the frequencies ω1,i and

for the perturbation eigenfunctions S
(f)
1,i (X). At order O (η, a0) the eigenfunctions

are

S
(1)
1,0 =

[
i

1√
2
K2 z+

(
1 + z2

+

)√
`(`+ 1)− 1

2
A2 (`+ 2)(`− 1)

]
Pm
` (X),

S
(2)
1,0 = K2 P

m
` (X)′,

S
(3)
1,0 = imK2 P

m
` (X). (6.119)
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where K2 is a new arbitrary amplitude, and the frequency ω1,0 is written in (6.63).

At order O (η, a1) the eigenfunctions are

S
(1)
1,1 = C0 P

m
` (X),

S
(2)
1,1 =

iXPm` (X)

2
√

2
(
1 −X2

)
z+

(
1 + z2

+

)
`2(` + 1)

[
4
√

2A2m(` + 1)(` + 2)(2` + 1)

−
2i

z+

(
1 + z2

+

) (K2mz
2
+

(
1 + z

2
+

)2 √
`(` + 1)

(
`
2

+ 5` + 2
)

−`(` + 1)
[√

2B0(` − 1)(` + 2) + 2iC0z+

(
1 + z

2
+

)√
`(` + 1)

])]

−
i(` + 1 −m)Pm`+1(X)

2
√

2
(
1 −X2

)
z2
+

(
1 + z2

+

)
2`2(` + 1)2

(
4
√

2A2mz+

(
1 + z

2
+

) (
5`

2
+ 5` + 2

)

−2i

[
K2mz

2
+

(
1 + z

2
+

)2 √
`(` + 1)

(
`
2

+ ` + 2
)
−
√

2B0(` − 1)`(` + 1)(` + 2)

]

−4C0z+

(
z
2
+ + 1

)
[`(` + 1)]

3/2
)
,

S
(3)
1,1 =

Pm` (X)

2z2
+

(
1 + z2

+

)2
`2(` + 1)2

[
− 4X

2
z+

(
1 + z

2
+

)
`(` + 1)

2

×
[
2A2

(
`
2

+ ` + 1
)
− i
√

2K2z+

(
1 + z

2
+

)√
`(` + 1)

]

−A2z+

(
1 + z

2
+

) [
4m

2
(
5`

2
+ 5` + 2

)
+
(
1 −X2

)
`
2
(` + 1)

2
(
`
2

+ ` − 14
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+2m`(` + 1)

[√
2C0z+

(
1 + z

2
+

)√
`(` + 1) − iB0(` − 1)(` + 2)

]

+i
√

2K2z
2
+

(
1 + z

2
+

)2 √
`(` + 1)

[
m

2
(
`
2

+ ` + 2
)
−
(
1 −X2

)
`
2
(` + 1)

2
] ]

+
2(` + 1 −m)X Pm`+1(X)

z+

(
1 + z2

+

)
`(` + 1)

[
2A2

(
`
2

+ ` + 1
)
− i
√

2K2z+

(
1 + z

2
+

)√
`(` + 1)

]
, (6.120)

where C0 is a new arbitrary amplitude, and the frequency contribution ω1,1 can

be found in (6.63).

Finally, to get the frequency correction at order O (η, a2) we use again the

integration by parts procedure that we already described to get the O (η0, a2)

contribution. Going through this procedure we find the frequency ω1,2 that can

be read from (6.63) and we omit here the associated long expressions for S
(f)
1,2 .
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The frequency contribution ω1,3 written in (6.63) is computed in a similar way.

6.B.2 Vector modes

Consider now the vector modes. These distinguish from the scalar modes

because at leading order in the viscosity and rotation they have vanishing pressure

perturbation and vanishing frequency: V
(0)

0,0 = 0 and ω0,0 = 0 (for scalar modes

we use the notation V
(f)
j,i ≡ Q

(f)
j,i ).. In these conditions it follows from the EoM

that (as it could not be otherwise) the velocity perturbation of these modes can be

expanded in terms of the Kodama-Ishisbashi vector harmonics Vi, i = X,Φ (which

can themselves be expressed as a function of the associated Legendre polynomials

Pm
` ). Altogether, at leading order O (η0, a0), the vector hydrodynamic modes have

eigenfunctions

V
(1)

0,0 = 0,

V
(2)

0,0 =
imA3

1−X2
Pm
` (X) ,

V
(3)

0,0 = A3 (1−X2)Pm
` (X)′, (6.121)

and ω0,0 = 0.

The EoM at O (η0, a1) and O (η0, a2) combined give the frequency corrections
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ω0,1 and ω0,2 = 0.19 The eigenfunctions at order O (η0, a1) are

V
(1)

0,1 =
2A3z+

(
z2

+ + 1
)

`(`+ 1)

[
(`+ 1−m)Pm

`+1(X)− (`+ 1)2XPm
` (X)

]
,

V
(2)

0,1 =
imB0

1−X2
Pm
` (X),

V
(3)

0,1 = −B0

[
(`+ 1)X Pm

` (X)− (`+ 1−m)Pm
`+1(X)

]
, (6.122)

where B0 is a new arbitrary amplitude and ω0,1 is given in (6.64).

To find the frequency contribution at order O (η0, a3) we use two of the EoM

at the previous order O (η0, a2) to find V
(1)

0,2 explicitly and an algebraic relation

for V
(3)

0,2 as a function of V
(2)

0,2 and its derivative. Then, one of the EoM at order

O (η0, a3) is a second order ODE that only involves the unknown V
(2)

0,2 and its

first and second derivatives, in addition to two source contributions proportional

to the associated Legendre polynomial and its derivative. It is used to find the

frequency contribution ω0,3 as given in (6.64), after using several integrations by

parts as exemplified in the previous scalar mode treatment. The long relations

associated to this discussion are omitted here.

We now consider the viscosity contributions. Using the EoM at order O (η, a0)

19To be more clarifying, the first order EoM determine ω0,1 = 0 but leave V
(2)
0,1 undetermined

and V
(3)
0,1 is left just as a function of V

(2)
0,1 and its derivative. The explicit expressions for V

(2)
0,1

and V
(3)
0,1 , as written in (6.122), are found only at second order where we also determine ω0,2.

Ultimately, this technical property of the vector modes is due to the fact that the frequency
contribution of rotational odd powers vanish when η = 0.
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and O (η, a1) we find the eigenfunctions

V
(1)

1,0 = 0,

V
(2)

1,0 =
imK2

1−X2
Pm
` (X),

V
(3)

1,0 = K2[(`+ 1−m)Pm
`+1(X)− (`+ 1)XPm

` (X)], (6.123)

where K2 is an arbitrary amplitude, and fix the frequency contribution ω1,0 as

written in (6.64) and ω1,1 = 0.

The EoM at order O (η, a1) also determine V
(1)

1,1 and V
(3)

1,1 that we write below,

while EoM at order O (η, a21) find algebraic relations for V
(1)

1,2 and V
(3)

1,2 (that we

do not write here) and a second order ODE for V
(2)

1,1 . The relations just described

are

V
(1)
1,1 =

2K2z+

(
1 + z2+

)
`(` + 1)

[
(` + 1)

2
XP

m
` (X) − (` + 1 −m)P

m
`+1(X)

]
,

V
(2)
1,1 (X)

′′ −
6X

1 −X2
V

(2)
1,1 (X)

′
+

(` − 1)(` + 2) −m2 − (` − 2)(` + 3)X2(
1 −X2

)2 V
(2)
1,1 (X)

+
2A3

(
8 − `(` + 1)

(
`(` + 1)

(
`2 + ` − 5

)
+ 14

))
(
1 −X2

)
z+

(
z2
+

+ 1
)
`(` + 1)

X P
m
` (X)

′

−
A3 P

m
` (X)

2
(
1 −X2

)2
[ 2m2

(
3`8 + 12`7 + 16`6 + 6`5 − 25`4 − 46`3 + 58`2 + 80` − 24

)
z+

(
z2
+

+ 1
)
`(` + 1)(2` − 1)(2` + 3)

−
X2

(
`(` + 1)

(
`2(` + 1)2 − 28

)
+ 32

)
z+

(
z2
+

+ 1
) +

(` − 1)`2(` + 1)2(` + 2)

z3
+

(
z2
+

+ 1
)

−
2`(` + 1)

(
−3`6 − 9`5 + 15`3 + 10`2 + ` + 6

)
z+

(
z2
+

+ 1
)

(2` − 1)(2` + 3)
+ iω1,2L`

2
(` + 1)

2
]

= 0

V
(3)
1,1 =

i
(
1 −X2

)
m

[ (
1 −X2

)
V

(2)
1,1 (X)

′ − 2XV
(2)
1,1 (X)

+
A3(` − 1)(` + 2)

z+

(
1 + z2

+

)
4XP

m
` (X) −

`2 + ` − 4

`(` + 1)

(
1 −X2

)
P
m
` (X)

′
 ], (6.124)

We use the ODE for V
(2)

1,1 to determine the frequency contribution ω1,2, explicitly

written in (6.64), after several integration by parts.
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6.C QNMs and superradiance: a perturbative

analytical analysis (D = 4)

In this appendix we give details of the perturbative matched asymptotic ex-

pansion that leads to the frequency quantization (6.37) and that we compare with

the numerical results in Section 6.4.1. This perturbative approach was introduced

to study perturbations of a scalar field in the Kerr black hole by Starobinsky [155],

Unruh [156] and Detweiller [157], and later used successfully to study scalar and

gravitational perturbations in rotating black holes in [158, 159, 34, 120, 160]. In

particular, the superradiant timescales of a scalar field in the Kerr-AdS black hole

computed with this method [34] were confirmed to be accurate by the numerical

analysis of [131].20

The matched asymptotic expansion procedure allows to solve perturbatively

the angular (6.12) and radial (6.13) equations, and yields an approximate analyt-

ical solution for the QNM and superradiant instability frequency spectra.

This analysis starts with the observation is that if we work in a regime of

parameters where a
L
� 1 and aω̃ � 1 the angular equation for the spin-weighted

AdS-spheroidal harmonics reduces approximately to the standard equation for

the spin-weighted spherical harmonics [161, 147]. In particular it is independent

of the mass parameter M and cosmological radius L, and its regular solutions

can be found analytically (see e.g. [115] for a detailed construction). Here, it is

important to highlight that regularity of these eigenfunctions requires that the

20Here we do not follow the alternative perturbative analysis of [135, 136, 124, 137] to find
QNM and superradiant frequencies because, in the present system, it requires going to a high
order in perturbation theory − the imaginary part of the frequency appears only at order
O(r+/L)6 − where the source terms make it difficult to solve analytically the equations.
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angular eigenvalues and quantum numbers are quantized as

λ = (`− 1)(`+ 2)− 2m

`

`2 + `+ 4

`+ 1
aω̃ +O

(
a2ω̃2,

a2

L2

)
,

with ` = 2, 3, 4, · · · , |m| ≤ ` , (6.125)

where the azimuthal quantum number m is an integer, and we have introduced the

quantum number ` with properties discussed after (6.14). This fixes the angular

eigenvalue spectrum and we just need to solve now the radial equation in a regime

of parameters that is consistent with the approximation where (6.125) is valid.

We follow a standard matching asymptotic expansion analysis whereby we

divide the exterior spacetime of the Kerr-AdS black hole into two regions; a near-

region where r − r+ � 1
ω̃

and a far-region where r − r+ � r+. In each of these

regions, some of the terms in radial equation make a sub-dominant contribution

and can be consistently discarded. We will find that if we further require r+
L
� 1,

this procedure yields an equation with an (approximate) analytical solution in

both spacetime regions. The next important step is to restrict our attention to

the regime r+ω̃ � 1. In this regime, the far and near regions have an overlaping

zone, r+ � r−r+ � 1
ω̃

, where the far and near region solutions are simultaneously

valid. In this matching region, we can then match/relate the set of independent

parameters that are generated in each of the two regions. We will also find that

if we further restrict our analysis to the regime a
r+
� 1, it is sufficient to work

only with the the leading order contribution for the angular eigenvalues in (6.125),

λ ∼ (`− 1)(`+ 2).

The regime of validity of the matching analysis can be expressed in a much sim-
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plified form. Indeed, the rotation parameter is constrained by the extremity condi-

tion a ≤ r+

√
3r2

++L2

L2−r2
+

for r+ <
√

3L and by a < L for r+ >
√

3L (see e.g. [129]). For

the regime we are interested, r+
L
� 1, we thus have a ≤ r+

√
3r2

++L2

L2−r2
+

= r+ +O(r3
+).

Thus r+
L
� 1 automatically implies a

L
� 1. Moreover, for r+

L
� 1 the (real part)

of the QNM frequencies of the BH do not differ much from the normal mode

frequencies of global AdS that are order ω̃L ∼ O(1). Therefore r+
L
� 1 also

implies r+ω̃ � 1 and aω̃ � 1. To sum, our analysis will be valid in the regime of

parameters (6.36). We discuss the different regions separately and discuss how to

match the solutions obtained next.

6.C.1 Near-region equation and regular solution at the

horizon

The near-region is defined by r − r+ � 1
ω̃

. Introducing the wave function

Φ = ∆rR
(−2)
`ω̃m , the radial equation (6.13) reads

∆rΦ
′′ −∆′rΦ

′ +

(
6r2

L2
+ 4iK ′r +

K2
r − 2iKr∆

′
r

∆r

− λ
)

Φ = 0 . (6.126)

If we further restrict to the regime r+
L
� 1, the cosmological constant contribu-

tion can be neglected. Specifically, in the radial equation (6.126) the following
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approximations are valid

∆r

∣∣
r∼r+

' r2 + a2 − 2Mr + · · · ' (r − r+)(r − r−) , with r− '
a2

r+

,(
6r2

L2
+ 4iK ′r

) ∣∣
r∼r+

'
6r2

+

L2
− 8ir+ω̃

(
1− a2

L2

)
∼ −8ir+ω̃ + · · · , (6.127)

K2
r − 2iKr∆

′
r

∆r

∣∣
r∼r+

'
Ξ2
(
r2

+ + a2
)2

(4πTH)2$($ + 2i)

∆r

+ 8ir+ω̃ + · · ·

' (r+ − r−)2$($ + 2i)

(r − r+)(r − r−)
+ 8ir+ω̃ + · · · ,

where ΩH , TH are the angular velocity and temperature defined in (6.5), and

motivated by the BC (6.17) we have introduced the superradiant factor,

$ ≡ ω̃ −mΩH

4πTH
' (ω̃ −mΩH)

r2
+ + a2

r+ − r−
, (6.128)

With these near-region approximations the radial equation (6.126) is then

∆rΦ
′′(r)−∆′rΦ

′(r) +

(
(r+ − r−)2$($ + 2i)

(r − r+)(r − r−)
− (`− 1)(`+ 2)

)
Φ(r) ' 0 ,(6.129)

where, in the approximation regime (6.36), we replaced the eigenvalue λ by its

leading contribution in (6.125) (the requirement a/r+ � 1 is fundamental here

since we neglect a contribution proportional to msa/r+ when compared with λ ∼

(`−1)(`+ 2)). Introducing a new radial coordinate z and wavefunction F defined

as

z =
r − r+

r − r−
, 0 ≤ z ≤ 1 ; Φ = zi$(1− z)`−1 F , (6.130)
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the near-region radial wave equation takes the form

z(1−z)∂2
zF +

[
(−1 + i 2$)− [1 + 2`+ i 2$] z

]
∂zF

− (`+ 1) [`− 1 + i 2$]F = 0 . (6.131)

This is a standard hypergeometric equation [56], z(1− z)∂2
zF + [c − (a + b +

1)z]∂zF − abF = 0, whose most general solution in the neighborhood of z = 0 is

Ain z
1−cF (a− c+ 1, b− c+ 1, 2− c, z) +Aout F (a, b, c, z). Using (6.130), one finds

that the most general solution of the near-region equation is therefore

Φ = Ain z
2−i$(1− z)`−1F (a− c+ 1, b− c+ 1, 2− c, z)

+ Aout z
i$(1− z)`−1F (a, b, c, z) , (6.132)

with

a = `− 1 + i 2$ , b = `+ 1 , c = −1 + i 2$ . (6.133)

The first term represents an ingoing wave at the horizon z = 0, while the second

term in (6.132) represents an outgoing wave which we set to zero, Aout = 0, to

guarantee that no perturbations come off the horizon.

For the matching we need the large r (i.e z → 1) behavior of the ingoing

near-region solution. To get this, we use the z → 1− z transformation law for the
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hypergeometric function [56],

F (a−c+1, b−c+1, 2−c, z) =

(1−z)c−a−b
Γ(2− c)Γ(a+ b− c)

Γ(a− c+ 1)Γ(b− c+ 1)
F (1−a, 1−b, c−a−b+1, 1−z)

+
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b)
F (a−c+1, b−c+1,−c+a+b+1, 1−z) ,

and the property F (a, b, c, 0) = 1. Finally, noting that when r → ∞ one has

1 − z = (r+ − r−)/r, one obtains the large r behavior of the near-region wave

solution that is regular at the horizon,

Φ ∼ Ain Γ(3− 2i$)

[
(r+ − r−)−`−2 Γ(2`+ 1)

Γ(`+ 1)Γ(3 + `− 2i$)
r`+2 +

(r+ − r−)`−1 Γ(−2`− 1)

Γ(−`)Γ(2− `− 2i$)
r1−`

]
.(6.134)

6.C.2 Far-region wave equation and global AdS solution

The far-region is defined by r − r+ � r+. In this region the effects induced

by the black hole mass and angular momentum can be neglected to leading ap-

proximation. The far-region background where the gravitational perturbation

propagate is then simply global AdS spacetime. Our approximations then yield

∆r ' r2
(

1 + r2

L2

)
and, in the regime where the eigenvalue λ is given by the leading

contribution in (6.125), the radial equation (6.13) boils down to

∂r

(
∆r∂rR

(−2)
`ω̃m

)
+

[
(ω̃r2 + i∆′r)

2

∆r

+ 2

(
9r2

L2
+ 1

)
− 8irω̃ − (`− 1)(`+ 2)

]
R

(−2)
`ω̃m ' 0 .

(6.135)
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This is again a hypergeometric equation in whose most general solution is

R
(−2)
`ω̃m =

L

r

(
L

r
+ i

) 1
2

(Lω̃−2)(
L

r
− i
)− 1

2
(Lω̃+2`) [

B0 F

(
`− 1, `+ 1 + Lω̃; 2(`+ 1);

2r

r + iL

)
+B1(−2i)−(2`+1)

(
L

r
− i
)2`+1

F

(
−`− 2, Lω̃ − `;−2`;

2r

r + iL

)]
,(6.136)

where B0, B1 are at this point arbitrary amplitudes whose ratio will be constrained

by the asymptotic global AdS BC.21

Asymptotically the solution decays as

R
(−2)
`ω̃m

|r→∞ ' e
i π

2
(Lω̃+`) ×

{
− i

L

r

[
B0 F

(
` − 1, ` + 1 + Lω̃; 2(` + 1); 2

)
+ 2
−(2`+1)

B1 F
(
− ` − 2, Lω̃ − `;−2`; 2

)]

+
L2

r2

[ 1

2

B0

` + 1

( [
2
(
L

2
ω̃

2
+ 1

)
+ `(Lω̃ − 1) − `2

]
F
(
`, ` + 2 + Lω̃; 2` + 3; 2

)

+`(` − 1 + Lω̃)F
(
` + 1, ` + 2 + Lω̃; 2` + 3; 2

))

−2
−(2`+1)

B1

(
Lω̃ F

(
− ` − 2, Lω̃ − `;−2`; 2

)

−(` + 2)F
(
− ` − 1, Lω̃ − `;−2`; 2

))]}
+ O

L3

r3

 . (6.137)

To have an asymptotically global AdS perturbation we need to match this decay

with (6.19), namely, R
(−2)
ω̃`m

∣∣
r→∞∼B

(−2)
+

L
r

+B
(−2)
−

L2

r2 +O
(
L3

r3

)
and impose the BC

21If we were working exactly in global AdS (a = 0 and M = 0 everywhere) this solution would
be exact and extending all the way down to the origin where regularity would require setting
B1 = 0. Then the asymptotically global AdS BC imposed below instead of constraining the ratio
B1/B0 would instead quantize the frequencies that can propagate in global AdS. Indeed we can
explicitly check that the expression for B1/B0 that we get when we do the procedure described
below (6.139) vanishes when we insert the global AdS frequencies for scalar, ω̃L = 1 + ` + 2p,
or vector modes, ω̃L = 2 + `+ 2p (integer p is the radial overtone).
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(6.20), B
(−2)
− = i βB

(−2)
+ . In the regime we are working one has a ' 0 and the BC

expressions (6.21)-(6.23) for β simplify considerably reducing to

1) β = βs = −Lω̃
(

1 +
λ

λ− 2 (L2ω̃2 − 1)

)
, (6.138)

2) β = βv =
λ

2Lω̃
− Lω̃ , (6.139)

for scalar and vector modes, respectively. Here, λ = (` − 1)(` + 2). Going

through this asymptotic matching we find how the amplitudes B0

(
B

(−2)
+ , β

)
and

B1

(
B

(−2)
+ , β

)
must be related to the BC parameters B

(−2)
+ and β for the pertur-

bation to be asymptotically global AdS.

For a later matching with the near-region solution we will need the small r

behaviour of the far-region solution Φ = ∆rR
(−2)
`ω̃m with R

(−2)
`ω̃m given by (6.136).

This is

Φ ∼ B
(−2)
+

1

αD

[
i e−i

π
2

(`+Lω̃)L−`(`+ 1)αN r
`+2 − ei

π
2

(`−Lω̃)L`+1` βN r
1−`] , (6.140)
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where we defined

αD = (` + 1)(` + 2)(` − Lω̃)F
(
− ` − 1, Lω̃ − ` + 1, 1 − 2`, 2

)
F
(
` − 1, Lω̃ + ` + 1, 2(1 + `), 2

)

+` F
(
− ` − 2, Lω̃ − `,−2`, 2

)[
(` + 1)(2` + 1)F

(
` − 1, Lω̃ + ` + 1, 2(` + 1), 2

)
,

+(` − 1)(` + 1 + Lω̃)F
(
`, Lω̃ + ` + 2, 2` + 3, 2

)]
,

αN = `(` + 2 − β − Lω̃)F
(
− ` − 2, Lω̃ − `,−2`, 2

)

+(` + 2)(` − Lω̃)F
(
− ` − 1, Lω̃ − ` + 1, 1 − 2`, 2

)
,

βN = (` + 1)(Lω̃ + ` − 1 + β)F
(
` − 1, Lω̃ + ` + 1, 2(` + 1), 2

)

+(` − 1)(Lω̃ + ` + 1)F
(
`, Lω̃ + ` + 2, 2` + 3, 2

)
. (6.141)

6.C.3 Matching. QNM and superradiant frequencies

In the regime r+ω̃ � 1, the near and far regions have an overlaping zone,

r+ � r − r+ � 1
ω̃

, where both are simultaneously valid. The requirement that

the solutions can be matched across the overlapping zones related the amplitudes

Ain, B
(−2)
+ and quantizes the frequency ω̃. In particular, the frequencies that are

allowed to propagate in the Kerr-AdS black hole are found matching the large r

behavior (6.134) of the near-region solution with the small r behaviour (6.140)

of the far-region solution. This yields two conditions, one following from the

matching of the r`+2 coefficients and the other from the matching of the r1−`

coefficients. One of these constraints is used to find the ratio between the near

and far region amplitudes A0/B
(−2)
+ that is then inserted in the other constraint
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to finally yield the matching condition that quantizes the frequency spectrum:22

`!

(2`− 1)!

i(`+ 1)Γ (`+ 1) Γ (`+ 3− 2i$)

4L2`+1`2Γ [2(`+ 1)] Γ (2− `− 2i$)

(
r+ −

a

r2
+

)2`+1

×[
`(`+ 2− Lω̃ − β)F

(
− `− 2, Lω̃ − `,−2`, 2

)
+(`+ 2)(`− Lω̃)F

(
− `− 1, Lω̃ − `+ 1, 1− 2`, 2

)]
= (`+ 1)(`− 1 + Lω̃ + β)F

(
`− 1, Lω̃ + `+ 1, 2(1 + `), 2

)
+(`− 1)(`+ 1 + Lω̃)F

(
`, Lω̃ + `+ 2, 2`+ 3, 2

)
, (6.143)

where the superradiant factor $ was introduced in (6.18), and the asymptotic BC

parameter β is given by (6.138) for scalar, and by (6.139) for vector perturbations.

Recall that this expression is valid in the approximation regime (6.36).

This frequency quantization condition simplifies considerably when we choose

a particular harmonic `. In particular, for the lowest harmonic, ` = 2, it reduces

to (6.37). We leave the detailed discussion of the solution of this frequency quan-

tization condition and the comparison with the associated exact numerical results

to subsection 6.4.1.

22To get this result, as observed in a similar context in [162], we should keep in mind that the
angular eigenvalue is an integer strictly only in the limit of zero rotation. Therefore the ratio of
gamma functions that appears in our computation should be taken as

lim
ε→0

Γ(−`− ε)
Γ(−2`− 2ε)

=
4(2`− 1)!

(−1)`(`− 1)!
, (6.142)

after using the gamma function property Γ(−n + ε) ∼ (−1)n/(n!ε), for ε � 1 and integer n
(assuming at the starting point that ε = 0 gives a result that differs from the correct one by a
factor of 2).
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Chapter 7

Introduction

In Part. II of this Thesis, anti-de Sitter (AdS) space played a very prominent

role. Recall that AdS is the maximally symmetric Lorentz signature manifold

with negative curvature. If the spacetime is analytically continued to Euclidean

signature, it becomes simply hyperbolic space. The positive curvature analogue

of AdS is known as de Sitter (dS) space, as it was actually the first of the two

solutions to be discovered. de Sitter is the maximally symmetric Lorentz signature

manifold with positive curvature, i.e. the Lorentzian version of a sphere. de

Sitter also plays an extremely important role in physics and in string theory, in

particular it is central to the study of cosmology. The Poincare patch line element

on d-dimensional dSd is

ds2 = −dt2 + eHt
d−1∑
i=1

dx2
i , (7.1)

which corresponds to a flat, exponentially expanding FRW universe. The universe

experienced such exponential expansion early in its history during the inflation-
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ary era. After inflation ended the universe experienced different epochs, and we

are currently transitioning from an epoch in which the cosmological expansion

is dominated by non-relativistic matter to an epoch where it is dominated by

the mysterious dark energy. Although the true nature of the dark energy is un-

known (hence the name), the effect is to produce an accelerated expansion well

approximated by de Sitter space.

Therefore, if string theory is indeed a viable candidate theory of quantum

gravity, it should contain de Sitter solutions, or vacua. Perhaps surprisingly, it

has proven very difficult to construct such solutions in the supergravity theories

that are the low energy effective field theories of the various string theories. In

fact, there are no-go theorems [163, 164] which explicitly rule out such solutions as

compactifications of string theory. There are various workarounds, but they all are

a bit contrived and tend to not be phenomenologically attractive. 1 It should be

stressed that the no-go theorems and the workaround approaches address classical

constructions of de Sitter vacua. In this Introduction we will review the most

popular construction of de Sitter vacua in string theory, the KKLT construction,

as well as a recent debate surrounding the validity of this procedure. A more

thorough review of both topics, as well as of inflation in string theory, can be

found in [165].

1For example, one way to produce a de Sitter compactification with these classical sources is
to allow time dependence in the internal directions.
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7.1 The KKLT Construction

In [166], Kachru, Kallosh, Linde, and Trivedi (KKLT) achieved a major break-

through in the problem of finding de Sitter vacua in string theory. A discussion of

the KKLT mechanism naturally must begin with the moduli problem. In string

compactifications, the size and other important properties of the internal space

are controlled by a collection of scalar fields, called moduli, and these typically

have potentials with flat directions. Therefore, configurations where the moduli

fields take on particular constant values will be unstable to either classical per-

turbations or quantum fluctuations. These perturbations could be catastrophic,

causing the internal space to de-compactify (which is to say that the space will not

remain small in size and the full 10-dimensional manifold would not be interpreted

as even approximately 4-dimensional even to low-energy observers). Therefore, in

the problem of finding a bona fide string compactification, not only must a so-

lution be found, but there should be no flat directions in the moduli potentials,

so that small perturbations or fluctuations will not destroy the compactification.

The problem of moduli stabilization was addressed in [167], where most, but not

all, of the moduli were shown to be stabilised by the addition of fluxes in the

so-called no-scale models. 2 As fluxes are the crucial ingredient in stabilizing the

moduli, a short digression to explain what fluxes are is in order.

The bosonic low-energy descriptions of the various string theories are super-

gravity theories. The particular supergravity depends on the string theory in

question 3, but a universal feature is the presence of p-form gauge fields, which

2These solutions were called no-scale because the modulus controlling the overall size of the
internal space remained un-stabilised, that is, it had a flat potential.

3Recall that there are superficially 5 different superstring theories in 10 dimensions, which
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are simple abelian generalizations of a Maxwell field. For example, the bosonic

part of 11-dimensional supergravity is

2κ2
11S =

∫
d11x
√
−g
(
R− 1

2
|G4|2

)
− 1

6

∫
C3 ∧G4 ∧G4. (7.2)

Here G4 is a 4-form field strength related to a 3-form potential via G4 = dC3.

These p-form fields are generalizations of the Maxwell field, with the gauge trans-

formation C3 → C3 + dB2, which leaves the field strength invariant.

The presence of the p-form fields in supergravity is intimately related to the

presence of extended objects in string theory. To see the connection, take the

familiar example of a point particle charged under a standard U(1) Maxwell field.

The particle sweeps out a one-dimensional worldline, against which the potential

Aµ can be integrated. Similarly, for the case of a p-form field strength, there is a

(p−1)-dimensional potential which couples to a (p−1)-dimensional worldvolume,

i.e. the worldvolume of a (p− 2)-dimensional extended object. These objects are

known as branes. For each distinct p-form field present in a theory, there are two

associated branes, one that couples to the field strength in the manner outlined

above, known as an electric coupling, and there is a second brane which couples

magnetically to the field strength. For example, in the case of M-theory above

(7.2), there is an electric 2-brane known as the M2-brane which couples to G4,

and a magnetic M5-brane which couples to the Hodge dual form, G7 = ?G4.

These p-form fluxes are a universal ingredient in the various supergravity the-

ories, and flux backgrounds or flux vacua are solutions in which these fluxes

are believed to be merely vacua of the same overarching M-theory. Included in M-theory is
11-dimensional supergravity.
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are turned on to take non-zero values. An important point is that although

branes serve as sources for the fluxes, just as point charges are sources for electric

fields in Maxwell theory, in the flux vacua solutions there are typically no brane

sources. The flux is either sourced by the boundary conditions or the Chern-

Simons/transgression terms in the form equations. For example, in D = 11 su-

pergravity, the Bianchi identity for the form G4 is dG4 = 1
2
G4 ∧G4, which shows

that a flux configuration can source itself, without the need for explicit singular

sources on the right hand side.

Returning to the KKLT construction, the starting point are the no-scale flux

backgrounds of [167], where most of the moduli have been stabilized by flux. In

these models, the full 10 dimensional space consists of a warped product of four-

dimensional Minkowski space and a 6-dimensional Calabi-Yau manifold, and they

also have the property that there is a large hierarchy of scales, which is attractive

from the point of view of engineering a 10-dimensional solution in which to a

particular class of observers, physics appears to be 4-dimensional. The KKLT

construction then is as follows. Starting from a no-scale model, they consider

two sources of corrections, 1) Euclidean D3-branes, and 2) non-Abelian gauge

groups arising from D7 branes wrapping 4-cycles in the Calabi-Yau. Each of these

corrections have the effect that all the moduli then become stabilised, breaking

the no-scale property. Moreover, the solution becomes a supersymmetric AdS

vacuum. The original large hierarchy of scales allows the negative cosmological

constant (or length scale of the AdS space) to be tuned parametrically small.

The next step in the KKLT construction is to add anti-D3 branes to the cor-

rected solution. They argue that the effect of this addition will be a metastable dS
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solution with small cosmological constant. Their argument relies on a very impor-

tant previous calculation by Kachru, Pearson, and Verlinde (KPV) [168], which

showed that anti-branes could be added to a certain flux background to produce

long-lived, metastable states. A sketch of the KKLT argument is as follows: In

the KPV calculation, anti-D3 branes were added to a particular flux background,

known as the Klebanov-Strassler (KS) solution [63]. The KS solution contains

D3-brane charge, without any D3-brane sources. The positive charge of the back-

ground naturally wants to annihilate against the added negative charge of the

anti-D3 branes, but the usual annihilation channel of brane-anti-brane annihila-

tion (an open string tachyon) is not present. What is needed is a mechanism of

brane-flux annihilation. KPV worked out this annihilation process, and were able

to show that, for a certain regime of parameters, annihilation proceeded through

tunnelling, and that a metastable state of co-existing anti-branes and flux existed.

Then, building off of this result as well as the important fact that an example

of a no-scale model can be approximated by the KS solution in a certain region,

KKLT then argued that the addition of anti-branes to the corrected no-scale

solution produced a metastable dS solution. The solution will contain a de Sitter

factor because positive energy has been added to the solution. The difference in

cosmological constant between the original AdS solution and the final dS solution

comes from the positive tension of the added anti-D3 branes.

Of the two steps in the KKLT construction, correcting the no-scale solution

to a supersymmetric AdS vacua and “uplifting” the AdS solution to a dS solution

using anti-branes, this last step of uplifting has come under intense scrutiny in

recent years. We turn now to review these criticisms, which have at times been
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given the colorful name of “Scapezilla” by one of their major proponents, Iosif

Bena.

7.2 A Problem with the Landscape (Scapezilla)

The KKLT construction was and is hugely influential, with the paper hav-

ing over 2000 citations as of the time of the writing of this thesis. Despite this

tremendous amount of work, no explicit construction exists of the metastable de

Sitter solutions, or even the intermediary KPV metastable solution consisting of

expanded branes in the Klebanov-Strassler solution. This perhaps startling lack of

fundamental solutions is due to the fact that the solutions are not supersymmetric

and break the symmetry of the background, and therefore obtaining these solu-

tions would require solving a complicated system of coupled, non-linear PDE’s.

Given how hard it is to find the exact solution, and given how important the

KKLT construction is to cosmological applications of string theory, it seems de-

sirable to make progress by constructing related, simpler solutions which capture

the major salient features of the desired, more complicated solutions. These sim-

pler solutions correspond to backreacted smeared anti-branes added to the flux

background.

Branes are extended objects, but are point like in the transverse space. For

example, a D3-brane is extended along 3 spatial and 1 time dimensions, and is a

point in the transverse 6-dimensions. Therefore, addition of a brane source charge

to a given solution possessing certain symmetries will lead to a less symmetric

solution in much the same way the addition of a point source would. If the
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brane charge is not added at a point in the transverse space, but instead smeared

out uniformly over an extended region, then it is possible for the symmetries

to remain intact. For the case most relevant to the KKLT construction, anti-D3

branes added to the KS solution, if the anti-D3 branes are smeared uniformly over

the finite-sized sphere at the tip of the deformed conifold, then the backreacted

solution will remain cohomogeneity-1, that is, all the metric functions will simply

be functions of a single radial coordinate.

In the Introduction of Sec. 9 the history of the construction of these smeared

solutions and their relevance to the problem of backreacted anti-branes is reviewed.

To summarize here, the smeared solutions all exhibited singularities which were of

an unfamiliar form. Singularities play an important role in string theory. Some-

times they are an indication that a solution is unphysical, for example negative-

mass Schwarzschild. At other times, they are strictly speaking unphysical, but in

a much gentler sense. In fact, there is a strong connection between these rather

benign singularities and the IR singularities sometimes encountered in QFT, for

example, in the problem of soft photon emission amplitudes. The interpretation

is that the singularity is a pointer towards non-trivial IR physics that has been

missed. In contrast to the negative-mass Schwarzschild solution then, there are

singular supergravity solutions for which there exist partner solutions wherein the

singularity has been resolved. It can be that the resolved solution is still a valid

gravity solution, or it could be that stringy corrections are required which take

one outside the validity of the supergravity regime. “Bad” or unphysical singu-

larities are those not cured by stringy effects, and in the case of negative-mass

Schwarzschild, it is actually a good thing that the singularity does not get resolved.
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If the negative-mass solution were physical, there would exist states of arbitrarily

negative energy [169], which is clearly pathologic. This solution is unphysical,

and it is handy that it is also singular–otherwise a perhaps more sophisticated or

nuanced criterion than simply demanding that physically acceptable solutions be

non-singular would be needed to rule out unphysical behaviour.

Given that solutions which are related to the desired anti-branes in the Klebanov-

Strassler solution exhibit strange singularities, the all-important question is: are

these singularities of the kind that would rule out these solutions as unphysical,

or are they resolved by some mechanism? All attempts to find resolution mecha-

nisms have failed. It could be that there does exist some resolution mechanism,

and it simply has yet to be found. An indirect method for testing whether or

not a singularity is physical is to see if it can be cloaked by a small black hole.

This is known as the Gubser criterion [170], and all attempts to shield the above

singularities behind horizons have also failed, leading most researchers, including

myself, to be of the opinion that the smeared singularities are unphysical.

The next step is where opinions diverge, and this is very much an area under

active investigation by numerous researchers. With the apparent un-physicality of

the smeared solutions, some then make the leap to say that the singularities of the

smeared solutions are indicative of singularities in the desired, more complicated

localized solution. The conclusion that follows is then that the KKLT construc-

tion is an invalid mechanism for constructing de Sitter solutions because adding

anti-branes to flux backgrounds unavoidably produces unphysical singularities.

This conclusion is rather controversial. There are many reasons to believe in the

validity of the anti-brane uplifting mechanism, and if the mechanism is invalid for
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some reason, it would be nice to have a good insight as to where these reasons

fail. Although some explanations have been offered, none have been uniformly

accepted.

I am of the opinion that the singular smeared solutions may very well be

unphysical, but that the leap taken to say that the localised solutions relevant for

KKLT are unphysical is not justified, and in fact adding anti-branes is a perfectly

fine uplifting mechanism. Evidence for this view comes from Sec. 9, where I

show that black holes in the Klebanov-Strassler solution can be used to shield

the singularities associated with localised anti-brane sources. My analysis shows

that there is a crucial difference between smeared and localised branes, and if

the Gubser criterion is to be believed, the existence of these black holes strongly

suggests that there is in fact no obstruction to the addition of anti-branes to the

Klebanov-Strassler solution, and the KKLT construction remains a valid method

for constructing de Sitter vacua in string theory.

The remainder of this Part is organized as follows. In Sec. 8 a problem some-

what tangential to the above story is considered, the problem of adding black

holes into a simple class of flux backgrounds which are not of the right form to

be relevant to the above controversy. The reason for this detour is that this is

in many ways a warm-up to the more difficult problem discussed above, as it is

shown that black holes cannot be added to these solutions without producing sin-

gularities or introducing time dependence. Next, in 9 the problem of anti-branes

in flux backgrounds is addressed, and as discussed above, it is found that black

holes can shield the singularities associated with the anti-branes.
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Chapter 8

A No Black Hole Theorem

8.1 Introduction

Our basic understanding of black holes includes a series of “no-hair” theorems

which state that certain types of matter must vanish outside stationary black

holes. Intuitively, this says that the matter either falls into the black hole or

radiates out to infinity. These theorems were originally proven for linear fields,

but they were thought to hold more generally. It was later realized that many

types of hair are indeed possible. One class of examples consists of black holes in

anti-de Sitter space. Perhaps the simplest case is a charged scalar field which can

exist outside certain charged black holes [69, 68]. A large class of asymptotically

flat examples involves theories that admit stationary solitons. One can often put

a small stationary black hole inside the soliton without destroying it [171]. This

includes solutions of Einstein-Yang-Mills theory [172, 173, 174], and monopoles of

the Einstein-Yang-Mills-Higgs system [175]. (For a comprehensive review of these
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solutions, see [176].) One can also put a rotating black hole inside a rotating

boson stars [124, 177].

There are some cases where one cannot put a static black hole inside a static

soliton. For example, if one puts a small black hole inside a static perfect fluid

star it will grow and slowly consume the star. Similarly, one cannot put a static

black hole inside a static boson star1 [178]. The matter content of the soliton

determines whether or not one can put a static black hole inside.

In higher dimensions, there are extended black holes such as black strings

and black branes. There are also extended solitons such as flux-branes. These

are higher dimensional generalizations of “Melvin’s magnetic universe” [179] which

describes a static, cylindrically symmetric, gravitating magnetic flux-tube. A nat-

ural question is whether one can put a static black brane inside a static flux-brane.

Since there is an exact four dimensional static solution describing a Schwarzschild

black hole inside Melvin’s magnetic universe [180], one might expect the answer

is yes. We will show that this is incorrect. If one puts a black brane inside a

flux-brane, it will necessarily grow and consume the brane.

The simplest example starts with an electric flux-tube in five dimensions. As

this solution does not appear to exist in the literature, we will numerically con-

struct it in Sec. 8.4. That is, we find a static, cylindrically symmetric solution of

the five-dimensional Einstein-Maxwell theory describing a self-gravitating electric

flux-tube. The product of four-dimensional Schwarzschild and a line is a simple

five-dimensional black string with the same symmetry as the flux-tube. Our result

shows that one cannot put a thin black string inside the flux-tube and keep the

1A subtlety here is that although the metric is static, the scalar field has a time dependent
phase and is not static itself.
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solution stationary.

A much larger class of examples that have been discussed in the literature

are the flux-branes of string theory [181], which are sourced by one of the higher

rank forms in supergravity. We will review these solutions in Section 4. Our

result implies that one cannot put a stationary black brane inside any of these

flux-branes 2.

As a final application of our result, one can consider higher dimensional vac-

uum solutions with a U(1) symmetry. Under Kaluza-Klein reduction there is a

Maxwell field, and one can construct an electric flux-tube solution of the dimen-

sionally reduced theory. Since one cannot put a stationary black string inside this

flux-tube, it follows that one cannot put a black two-brane in the higher dimen-

sional vacuum solution. At first sight, this example is more surprising than the

first two. When there is nonzero flux outside the horizon, one can imagine that a

stationary black hole cannot exist since the flux falls in causing the black hole to

grow. But in a vacuum solution, there is no matter to fall in.

The answer to this puzzle lies in the Raychaudhuri equation applied to the

null geodesic generators `a of the event horizon (in D spacetime dimensions):

dθ

dλ
= − 1

D − 2
θ2 − σabσab − Tab`a`b (8.1)

where λ is an affine parameter, θ is the expansion, and σab is the shear of the null

geodesic congruence. For a stationary black hole, the left hand side must vanish.

Since the theories we are interested in all satisfy the null energy condition, the

2It was earlier shown [182] that certain rank forms cannot exist outside static black holes
which are asymptotically flat in all directions.

261



A No Black Hole Theorem Chapter 8

right hand side is the sum of three negative terms. In order for a stationary black

hole to exist, each one much vanish. This is indeed possible for black holes placed

inside some solitons [176], but we will see that for the flux-branes, the last term

is always nonzero. In the Kaluza-Klein example where the higher dimensional

solution has no matter, we will see that the shear is necessarily nonzero on the

horizon causing the horizon to grow.

The outline of this paper is as follows. In the next section we prove that a

uniform black brane cannot remain stationary inside a flux-brane. In section 3, we

discuss the generalization to nonuniform black branes. We will prove that there

cannot exist stationary black branes which are nonuniform in a compact direction

and argue that similar results hold for noncompact directions also. In section 4 we

discuss the flux-branes in detail, and construct some numerically. We conclude in

section 5 with some open questions. The two appendices contain some technical

details.

8.2 No Uniform Black Branes

Consider a theory of gravity in D dimensions coupled to a closed (p+ 1)-form

field strength Fp+1. We will assume a general (Einstein-frame) action of the form

S =

∫
dDx
√
−g
[
R− 1

2
(∇φ)2 − 1

2(p+ 1)!
eaφF 2

p+1

]
(8.2)

Note that we have included a possible (but not required) scalar field with coupling

to Fp+1 governed by a constant a. (One can also include additional matter fields

or Chern-Simons terms and they will not affect our argument.) The equations of
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motion following from (8.2) are

Rab = τab, d ?
(
eaφFp+1

)
= 0, ∇2φ− aeaφ

2(p+ 1)!
F 2
p+1 = 0, (8.3)

where τab is the trace-reversed stress tensor τab = Tab − T
D−2

gab given by

τab =
1

2
∇aφ∇bφ+

eaφ

2

[
1

p!
(Fp+1)a...(Fp+1)b

... − p

(D − 2)(p+ 1)!
gabF

2
p+1

]
. (8.4)

In addition, one has the constraint dFp+1 = 0. There are “flux-brane” solutions

to this theory which are nonsingular solutions with at least p + 1 (commuting)

translational symmetries which include time, and Fp+1 is nonzero when restricted

to this homogeneous subspace. We will not need the detailed form of these solu-

tions to prove our “no black hole theorem” so we delay our construction of these

solutions until Sec. 8.4. In this section we rule out uniform black branes inside

these flux-branes, and in the next section we will argue that similar results hold

for the nonuniform case.

Theorem: Consider a “flux-brane” solution to (8.2), i.e., a nonsingular solution

in which Ftx1···xp is nonzero, and all fields are independent of t, x1, · · · , xp. Then

one cannot put a stationary, translationally invariant, black p-brane in the center

of this flux-brane.

Proof: First note that Ftx1···xp ≡ E must be constant. If it were a function of

another coordinate, say r, then dF = 0 would require that F has a component

Fr··· that depends on t or one of the xi contradicting the translation invariance.

We will first rule out static black branes, and then generalize to the stationary
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case. If there were a solution describing a static black p-brane in the center of this

flux-brane with horizon at r = r0, then Ftx1···xpF
tx1···xp →∞ as r → r0. To obtain

a flux which is smooth on the future horizon, one can introduce Frx1···xp(r) so that

the t and r components of Fp+1 combine to give Fvx1···xp = E, where v = t+ h(r)

is a good coordinate near the horizon. The static Killing field which is null on

the horizon is now ξ = ∂/∂v (since we have not changed the radial coordinate),

so the flux of energy crossing the horizon is

Tbcξ
bξc ∝ eaφ(ξbFb···)(ξ

cFc
···) = eaφFvi···jFv

i···j (8.5)

This cannot vanish since the right hand side is a sum of nonnegative terms with

at least one positive contribution coming from Fvx1···xp .
3 This contradicts the

assumption that the black brane was static, since the Raychaudhuri equation

(8.1) shows that the horizon must grow when there is an energy flux across the

horizon.

This argument is easily extended to rule out stationary black branes as well.

If a black brane is stationary but not static, the Killing vector which is null on

the horizon takes the form

ξ = ∂/∂t+ v∂/∂x+ Ω∂/∂φ (8.6)

where x denotes some direction along the brane, i.e., a linear combination of the

xi, and φ denotes a rotation in the transverse space. One can first perform a boost

3The metric on the x1, · · · , xp subspace must be positive definite since the horizon is a null
surface, and these coordinates denote directions along a cross section of the horizon, not along
a null generator.
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in the (t, x) plane to a co-moving frame (t̃, x̃) where the black brane is at rest.

Since the flux is boost invariant, we have Ft̃x̃··· = E. This effectively removes the

second term on the right hand side of (8.6). One can now repeat the argument

above. Good coordinates near the horizon of a rotating black hole take the form

v = t + h1(r), φ̃ = φ + h2(r). The second coordinate transformation does not

affect the flux, and the first is identical to the static case. So one again finds that

if Fp+1 is regular on the future horizon, there must be a nonzero flux of energy

crossing this horizon causing the black hole to grow. QED

The theorem holds whether or not the black brane carries a charge. A black

p-brane can carry electric charge of a p+2 form, or magnetic charge of a D−(p+2)

form. It can also carry smeared charges of lower rank forms. All these charges

produce fields which are smooth on the horizon with no flux of energy crossing

it. So they do not affect the above result. They cannot stop the black hole from

growing.

There are various extensions of this theorem. A simple one just uses Hodge

duality. Consider a solution with a magnetic q-form field F̃ which is nonzero. If

there is a function h such that F = h ? F̃ satisfies the conditions of the theorem,

then one cannot put a stationary black brane in such a solution.

A less trivial extension is the one mentioned in the introduction. Even if

there are no form fields F in the higher dimensional theory, there can be solutions

which, after dimensional reduction, have a Maxwell field satisfying the conditions

of the theorem. One cannot add stationary black branes to such a solution. For
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example, consider a higher dimensional vacuum solution of the form

ds2 = gyy(dy + Exdt)2 + gttdt
2 + gxxdx

2 + gijdz
idzj (8.7)

where the metric functions are independent of t, x, y. After Kaluza-Klein reduction

on y, one has a Maxwell field Fxt = E, so one cannot add a stationary black string.

We will see an example of this type of solution in Sec. 8.4.

Our result certainly does not rule out the familiar planar black hole in AdS5×

S5, even though that solution is sourced by a (self-dual) five-form. The reason

is that in the usual Poincare coordinates for AdS5, the nonzero component of

the flux is Ftrx1x2x3 . Since the radial direction is included (in which there is no

translational symmetry) and a constant r surface is null at the horizon, the right

hand side of (8.5) vanishes.

8.3 Generalization to Nonuniform Black Branes

We now ask what happens if we relax the assumption that the black branes

are translationally invariant. It is likely that static spherical black holes can exist

inside these flux-branes. Indeed, exact solutions have been constructed describing

a static Schwarzschild black hole inside a magnetic flux-tube in both four [180],

and higher [183] dimensions. In D = 4, one can dualize the magnetic flux-tube

to an electric flux-tube, but this is not possible for D > 4. So to our knowledge

exact solutions describing static spherical black holes in higher dimensional electric

flux-branes have not yet been constructed, but are likely to exist.

If the horizon is extended in all p directions, it is likely that it cannot remain
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stationary even if we relax the assumption that it is uniform. We will prove this

when the nonuniform directions are compact, and then give an argument which

applies to noncompact directions.

8.3.1 Compact case

Suppose one direction x1 is periodically identified with period L. It is easy

to rule out stationary black branes which are inhomogeneous in this compact

direction. Choose a radial coordinate r such that the horizon is at constant r and

x1 is a coordinate along the horizon. Expanding Ftx1···xp in a Fourier series in x1

we get

Ftx1···xp = F
(0)
tx1···xp +

∑
n6=0

F
(n)
tx1···xpe

2πinx1
L , (8.8)

The coefficients, F
(n)
tx1···xp are independent of xi, but can depend on coordinates off

the brane, say r. We can similarly expand

Ftrx2···xp = F
(0)
trx2···xp +

∑
n 6=0

F
(n)
trx2···xpe

2πinx1
L , (8.9)

where the coefficients F
(n)
trx2···xp again are independent of xi, but can depend on

r. The condition dFp+1 = 0 can also be expanded in a Fourier series and must

hold mode by mode. In particular, if we look at just the zero mode, we get

∂rF
(0)
tx1···xp = 0. But F

(0)
tx1···xp must be nonzero at large distance from the brane

since we are considering a flux brane. Since it is constant, we can now apply the

argument in the uniform black brane case to conclude that stationary nonuniform

black branes cannot exist.
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This argument immediately generalizes to more than one compact direction

along the brane. One can Fourier transform Ftx1···xp in all the compact directions.

The overall zero mode must again be constant and nonzero at large distances from

the black brane.

8.3.2 Noncompact case

When the black brane is inhomogeneous along a noncompact direction, the

argument is more subtle. One cannot just apply a Fourier transform in x1 and

look at the k = 0 contribution. Since we have a constant flux at infinity, the

individual k = 0 mode diverges. In this section we will show that inhomogeneous

black strings (i.e. p = 1) cannot exist within a flux-tube because the horizon

would thin out along the string direction at a rate so rapid that the string would

pinch off. We leave for future work the general p case which we believe will yield

similar results.

Let us suppose that the non-uniform black string in a flux-tube solution exists

and consider the features it must possess. At a large radial distance R away from

the string, there is a uniform electric field Ftx = E. This means that asymp-

totically the electrostatic potential grows linearly with x, At = Ex. In contrast,

the horizon must be an equipotential surface At = 0 4 independently of x, which

means that the equipotential surfaces coming in from large radius cannot hit the

horizon. Instead they must bunch up, producing a radial component of the electric

field that grows with x (see Fig. 8.1). The radial electric field on the horizon, Frt,

4This follows either from our previous argument that if Ftx is nonzero on the horizon, there
must be energy flux across the horizon, or simply from the fact that a nonzero At on the horizon
would have diverging norm.
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will be positive for large x > 0 but negative for large x < 0. This requires that the

black string has a positive charge density for x > 0 and negative charge density

for x < 0, which is similar to what happens if one puts a long conducting rod in

an electric field; there is charge separation with positive charge accumulating at

one end and negative charge at the other.

+

++

+ +

+ +

+ + +

−

−

−−

− −

− −

− − −

+

+

+

+

+

r+ r

x

Figure 8.1: Non-uniform black string in an electric flux-tube. The black lines
are equipotential surfaces. The horizon is required to be an equipotential sur-
face with value At = 0; this forces the field lines to bunch up as x → ±∞,
which means that the black string is locally positively charged at large positive
values of x, and negatively charged at large negative values of x. The string
remains neutral overall, however. Inset: In the neighbourhood of some positive
value of x, the non-uniform black string in a flux-tube should be approximated
by a uniform charged black string with an electric field perturbation.

If the horizon indeed extends to x = ±∞ without pinching off at a finite

value of x, the x-dependence of the metric should be negligible near the horizon

compared with the r-dependence, as the radial electric field grows indefinitely.

Then, the geometry at large x should be well described by a perturbation of a

translationally invariant charged black string solution. To explore this possibility,

we consider the following ansatz for the D = d+ 1 dimensional Einstein-Maxwell
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theory (8.2) with no dilaton and p = 1:

ds2
d+1 = −e2AH−H+dt

2 + e2B

(
H
− 2
d−2

− dx2 +H
−1+ 2

(d−3)(d−2)

− H−1
+ dr2

)
(8.10)

+ e2Cr2H
2

(d−3)(d−2)

− dΩ2
d−2,

Aµdx
µ =

√
2(d− 1)

(d− 2)

(
r−
r+

) d−3
2

H+e
Ddt.

Here H± = 1 − (r±/r)
d−3 and A,B,C,D are functions of r and x. When A =

B = C = D = 0, this is the translationally invariant electrically charged black

string solution. This solution first appeared in [184] for the case d = 4, and

the general d solution can be derived by dualising and uplifting the magnetically

charged dilatonic black holes of [185, 186]. The horizon topology is Sd−2×R and

is located at r = r+, while the curvature singularity is at r = r−. The extremal

limit corresponds to r+ = r− and has zero horizon area. The temperature is

T =
(d− 3)

4πr+

[
1−

(
r−
r+

)d−3
]1− 1

(d−3)(d−2)

. (8.11)

To model the putative non-uniform black string in the neighbourhood of some

large positive x value, we will start with this charged solution (with A = B =

C = D = 0) and add a small electric flux along the x-direction.

A linear perturbation of the uniform charged black string can be described by:

A(r, x) = εA1(r)x, B(r, x) = εB1(r)x, (8.12)

C(r, x) = εC1(r)x, D(r, x) = εD1(r)x,
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where ε is the small parameter controlling the perturbation and is proportional to

the asymptotic value of the electric flux. Note that the perturbed gauge potential

At vanishes on the horizon r = r+ as required by regularity. Also note that all

perturbations have a linear dependence on x. Typically, a perturbation about a

translationally invariant solution would be expanded in modes eikx. Here we are

using the fact that we expect the dominant contribution to come from small k,

and have kept only the linear term5.

The equations governing the perturbation come from linearizing the back-

ground Einstein and form equations (8.3):

δRab = δF(a|cFb)
c − 1

2
FacFbdh

cd − 1

2(d− 1)
gabF · δF −

1

4(d− 1)
habF

2 (8.13)

+
1

2(d− 1)
gabFceFd

ehcd,

∇a (δF )ab +
1

2
∇a

(
hF ab

)
− 2∇a

(
hc[aFc

b]
)

= 0. (8.14)

There are 6 independent components of the Einstein equations and 1 indepen-

dent form equation. Two equations are first order constraints: the rx-component

Einstein equation is the momentum constraint and a linear combination of the

diagonal components yields the Hamiltonian constraint. Using these constraints,

the system can be shown to reduce to 4 ODE’s, first order in A1, C1 and second

order in B1, D1.

The boundary conditions we desire are such that the perturbation is regular

5We checked that the perturbation equations derived in this section are identical to those
derived from a perturbation with an eikx−dependence once the limit k → 0 is taken. Therefore
the perturbation is both a gradient expansion as well as a perturbation in the amplitude of the
asymptotic electric field (controlled by ε).
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at the horizon and asymptotically the perturbed metric functions fall-off to zero

and the Maxwell perturbation is that of a constant electric field whose magnitude

is proportional by the expansion parameter ε 6:

A1, B1, C1 → 0, D1 → const = 1. (8.15)

Requiring the perturbation to be regular at the horizon translates into the Dirich-

let condition A1(r+) = B1(r+) as well as additional Robin boundary conditions

relating functions and their derivatives at r = r+. This is a boundary value prob-

lem, and to solve it numerically we first convert to a compactified coordinate and

discretize using a spectral grid. It can then be converted to a simple linear algebra

problem of the form M.v = b, with M a matrix and b, v vectors. In Fig. 8.2 we plot

the solutions for the representative case of d = 4, T =
√

2/5/(4π), and r+ = 0.632.

The solutions for other parameter values or dimensions are qualitatively similar.

It turns out that the effect of the perturbation on the horizon geometry can be

understood very simply. Starting with the uniform charged solution, Eq. (8.10)

with A = B = C = D = 0, the effect of the electric field can be taken into

account by promoting the black hole parameters to be functions of x: r± = r±(x).

To see this, note that requiring that the temperature be independent of x imposes

a relation between dr+/dx and dr−/dx. Using this condition, one can calculate

dAH/dx in terms of dr+/dx, where AH is the cross-sectional area of the horizon at

fixed x. Returning to the linearized perturbation, one can also calculate dAH/dx

6These boundary conditions correspond to the linearisation (in E) of the electric flux-brane
solutions discussed later in Sec. 8.4. Although those solutions are not asymptotically flat, they
are when restricted to linear order in the asymptotic value of the electric field E, which is
proportional to ε in the current perturbative treatment. The deviations from flatness arise at
O(ε2).
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Figure 8.2: Left Panel: The numerical solution for A1 (solid), B1 (dashed), C1

(dotted) for d = 4 and T =
√

2/5/(4π). At the horizon, A1(r+) = B1(r+),
as required by regularity. Right Panel: The numerical solution for D1 for the
same dimension and temperature.

in terms of C1(r+). Equating these two expressions yields

dr+

dx
=

(
d2 − 5d+ 5

(d− 3)(d− 2)

)
εC1(r+)r+. (8.16)

Similarly, one can calculate dgxx/dx
∣∣∣
r+

in two different ways: first in terms of

dr+/dx, and then in terms of the perturbation B1(r+). Equating the answers

yields

dr+

dx
= −

(
d2 − 5d+ 5

(d− 3)

)
εB1(r+)r+. (8.17)

Thus we see that if

C1(r+) + (d− 2)B1(r+) = 0 (8.18)

holds for our numerical solutions, then the horizon geometry is accurately mod-

elled by the uniform charged string with the parameters r+, r− promoted to

functions of x and subject to the constraint that dT/dx = 0. And indeed, we
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find that this condition is satisfied for our solutions, up to a very small numerical

error. Therefore, the perturbed horizon behaves exactly as the uniform charged

black string made non-uniform by slowly varying parameters r±(x).

Since C1 < 0, we see that as x → +∞ the horizon thins out and the electric

field evaluated at the horizon increases. It seems that there are two possibilities:

either the horizon radius goes to zero in finite distance, in which case one cannot

place inhomogeneous non-compact black strings in flux-tubes, or the horizon con-

tinues to shrink without pinching off as x increases. This would be a new type of

black hole solution, a “spiky black hole”, that would look somewhat like Fig. 8.1 7.

To investigate whether such a solution is possible, let us analyse the rate at which

the perturbed horizon radius decreases with x. In Fig. 8.3, we plot C1(r+) for

d = 4 and fixed temperature, in this case arbitrarily chosen to be T =
√

2/5/4π.

We find that C1(r+) is always negative, and appears to be diverging as r+ → 0.

The divergence is well fitted by a power law,

C1(r+) ∼ −αr−β+ + γ, (8.19)

with α, β, γ positive fit parameters that are in principle functions of d and T .

Surprisingly, we find that γ = 2 independent of d or T , and that β is independent

of T and takes on the values:

d 4 5 6 7 8 9 10 11 12 13
β 2.000 1.200 1.091 1.052 1.034 1.024 1.018 1.014 1.011 1.009

It is interesting to note that it appears that β → 1 as d→∞. Lastly, α depends

7Of course, even if this solution were found to exist, quantum effects would become important
since the curvature is growing large as the horizon shrinks and comes closer to the singularity
at r = r−.
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on both d and T , but importantly is always positive. We can now use the fact

that the perturbed black string is well modelled as the uniform black string with

x-dependent parameters by combining Eq.’s (8.16), (8.19) to find that for small

r+

r+(x)β ∼ c0 − c1εx, (8.20)

with c0 a constant of integration which we take to be positive, and c1 a positive

constant. Clearly r+(x) pinches off at finite x, which is very strong evidence

against the existence of these “spiky black holes”. This result, together with the

proofs of Sec.’s 8.2 and 8.3.1, rules out any sort of extended black string in a

flux-tube.

Although we only considered the case of p = 1 for the non-uniform, non-

compact case, it seems likely that the result holds for higher p as well. To fully

answer this question one should repeat the analysis done here. The relevant

uniform charged black brane solutions can be constructed in a very similar manner

to (8.10), although an additional uplift would be required.

8.4 Flux-branes

In this section we construct various flux-brane solutions to (8.3). They can be

described by the general ansatz

ds2 = e2αds2
p+1 + e2βdr2 + e2γds2

D−p−2, Fp+1 = E vol(ds2
p+1), (8.21)
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Figure 8.3: C1(r+) for d = 4 and T =
√

2/5/(4π). This data, along with
Eq. (8.16), shows that the black string is tapering off as x increases. The
apparent divergence as r+ → 0 indicates that the string will reach zero radius,
i.e. pinch off, in finite x distance.

where α, β, γ and the dilaton φ are all functions of the radial coordinate only, and

ds2
p+1, ds2

D−p−2 are Einstein metrics obeying

(p+1)Rµ
ν = λp+1δ

µ
ν ,

(D−p−2)Ri
j = λD−p−2δ

i
j, (8.22)

where λp+1 and λD−p−2 are constants, indices belonging to the (p+1)-dimensional

space are labelled with Greek letters, and the indices belonging to the (D−p−2)-

dimensional space are labelled with lowercase Latin letters starting with i, j, ..

Note that the form equations are already satisfied: Fp+1 is trivially closed, and

although its Hodge dual in general possess a non-trivial radial dependence, it also

acquires a dr-leg, and is therefore also closed. Also note that the gauge freedom

associated with the choice of radial coordinate has not been fixed yet. We will

276



A No Black Hole Theorem Chapter 8

find it convenient to work in different gauges, therefore we leave it un-fixed for

now. The equations of motion for this ansatz are presented in Appendix 8.A.

8.4.1 Melvin Flux-branes

The above ansatz includes both the original four-dimensional Melvin flux-

tube [179], as well as its generalization to higher dimensions and non-trivial dila-

ton [186]8. The geometry of the original Melvin solution consists of the two-

dimensional Lorentz invariant worldvolume of the flux-tube, the radial direction,

and a transverse circle. We will call flux-branes Melvin-like if the flux-brane has

the same cohomogeneity as the original four-dimensional solution. Thus we set

p + 1 = D − 2 to obtain a p = (D − 3)-dimensional flux-brane. The solution is

given by:

ds2 = Λ
4

a2(D−2)+2(D−3)
(
ηµνdx

µdxν + dr2
)

+ Λ
2(6−2D)

a2(D−2)+2(D−3) r2dϕ2, (8.23)

e2φ = Λ
− 4a(D−2)

a2(D−2)+2(D−3) , Fp+1 = E vol(ηµνdx
µdxν),

where Λ is given by

Λ =

(
1 +

a2(D − 2) + 2(D − 3)

16(D − 2)
E2r2

)
. (8.24)

Here we have imposed the gauge α = β which is common for these solutions. For

these flux-branes of cohomogeneity-2, exact solutions can be found because the

(D − p − 2)-dimensional transverse space is simply S1, which has no curvature.

8Our conventions differ from those of [186], in particular we are choosing to work with an
electric D − 2 = p+ 1-form as opposed to the dual magnetic 2-form.
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For flux-branes of higher cohomogeneity the circle is promoted to a sphere, the

curvature of which induces a coupling between the metric functions and makes

the equations much harder to solve analytically [181].

Note that the magnetic dual of (8.23) involves a two-form Maxwell field. For

p = 1 and the special value of the dilaton coupling a = −
√

2(D − 1)/(D − 2),

the action (8.2) is equivalent to pure gravity in D + 1 dimensions (see Appendix

8.B). So for this value of a (in the dual magnetic frame), the magnetic dual of the

above solution comes from dimensional reduction of a vacuum solution. In fact, it

can be obtained from flat Minkowski spacetime by dimensionally reducing along

a combination of a translation and a rotation in a perpendicular plane [187].

Our theorem is of limited applicability for this class of flux-branes for the

following reason. Near r = 0, the backreaction of the flux-brane can be neglected

and the spacetime looks flat. It is known that there are no vacuum black holes

with horizon topology RD−3 × S1, and so the stationary black holes excluded by

the above theorem do not exist in the absence of flux.9 In order to obtain flux-

brane solutions that could in principle admit small black branes at their centre,

the S1 must be replaced with a higher dimensional sphere.

8.4.2 Higher Cohomogeneity Flux-branes

We now generalize the Melvin flux-branes to branes of higher cohomogene-

ity, so that the transverse space includes a sphere of dimension two or greater,

while keeping the p + 1-dimensional worldvolume to be Minkowski space. These

9It is possible that the non-standard asymptotics of the flux-brane geometries allow for these
horizon topologies, i.e. that black branes of a large enough radius do exist in the flux-brane.
Our theorem then implies that these black branes must not be stationary.
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solutions have been studied before [181, 188, 189] and include the flux-brane solu-

tions of string theory/M-theory for appropriate choices of the parameters (D, p, a):

NS flux-branes correspond to (D, p, a) = (10, 2,−1) and (10, 6, 1); the RR flux-

branes correspond (D, a) =
(
10, 4−p

2

)
; and the two flux-branes of M-theory have

(D, p, a) = (11, 3, 0) or (11, 6, 0). Here we review and extend the analysis of these

solutions.

Electric Flux-tubes in D = 5

Perhaps the conceptually simplest generalization of the above flux-brane so-

lutions is the case of a (non-dilatonic) electric flux-tube in D = 5. A flux-tube

corresponds to p = 1, therefore our ansatz is

ds2 = e2α
(
−dt2 + dx2

)
+ e2βdr2 + e2γdΩ2

2, F2 = Edx ∧ dt, (8.25)

A convenient gauge choice comes from examination of the constraint equation

(8.41). No derivatives of β appear, therefore if we impose a gauge by directly

fixing e2γ to be a β-independent function (here we will use e2γ = r2), then the

constraint can be used to algebraically solve for β and the system will reduce to

a single ODE for α (it seems that the convenience of this gauge has not been

appreciated before in the literature). One can scale E out of the equation since

rescaling the coordinates t, x, r by λ rescales the metric by λ2. Einstein’s equation

remains unchanged if we also rescale F2 by λ. The resulting ODE for α is:

3z(4e4α+z2)α′′+3(8e4α−5z2)α′−12z(−4e4α+z2)(α′)2+2z2(6e4α−z2)(α′)3−4z = 0,

(8.26)
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where z ≡ Er.

We were unable to determine the general solution analytically, but a simple

closed form solution does exist, and is

e2α =

√
5

6
Er, e2β =

5

2
, e2γ = r2. (8.27)

This solution is clearly singular at r = 0 and hence is not of physical interest.

Nevertheless, it is quite useful since it can be shown that this solution is an

attractor solution for the large-r behaviour of general solutions [181]. To see this,

linearise around the exact singular solution, α = αsingular + δα. The solution to

the linearised perturbation takes the form

δα = r−1 [c1 sin(2 ln r) + c2 cos(2 ln r)] , (8.28)

where c1,2 are constants of integration. For large r, the perturbation oscillates

with a decaying envelope and asymptotes to the above exact singular solution,

indicating that it is indeed an attractor.

The solution we are interested in is regular along the axis r = 0. We did

not succeed in finding it analytically, but the equations can be solved numerically

once the boundary conditions are supplied. The large-r behaviour is that of the

attractor, and the small r behaviour is simply regularity at the origin. There

will be a curvature singularity unless e2α → const, and e2β → 1. Expanding the

equations in a power series around r = 0 yields

e2α = 1 +
z2

9
+

2z4

405
+O

(
z6
)
, e2β = 1 +

7z2

36
+

61z4

6480
+O

(
z6
)

(8.29)
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We have used the scaling symmetry of the Minkowski directions to set an overall

constant to 1. The boundary condition required by regularity is then A(0) = 1,

A′(0) = 0, where A = eα. In Fig. 8.1 we plot the numerical solution for this

flux-tube. From the plot, the non-singular solution can be seen to asymptote to

the attractor solution at large r.

This electric flux-tube is much better behaved asymptotically than the Melvin

flux-branes. One can see from (8.23) that in the Melvin case, the S1 in the

transverse space shrinks to zero size as r → ∞. In the current solution, the

effect of the flux-tube on the asymptotic geometry is weaker, and the S2 in the

transverse space continues to grow asymptotically. However, the solution is still

not asymptotically flat in the transverse directions. It is asymptotically a cone.
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Figure 8.1: The metric functions e2α (left panel) and e2β (right panel) for a
non-dilatonic electric flux-tube in five dimensions (D = 5, p = 1, a = 0). The
solid curves correspond to the numerical, non-singular solution, and the dotted
curve corresponds to the singular attractor solution.

Applying the results of Sections 2 and 3 to this solution, we see that we cannot

put a stationary black string inside the electric flux-tube. Stated intuitively, there

is no way to prevent stress energy from flowing into the black string, which would
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cause it to grow.

There is a simple physical interpretation of this result in terms of a stretched

horizon10. The stretched horizon has finite electrical conductivity, so if one puts

a black string along an electric field, a current will flow. Since the resistance is

nonzero, the current will generate heat and cause the black string to grow. So

a static black string is impossible. This is very similar to the discussion in [190]

where an exact solution was found showing a black hole growing when an electric

field is applied.

Kaluza-Klein flux-tube in D = 5

An interesting extension of this five-dimensional example is to include a dila-

ton, and consider it in the context of Kaluza-Klein theory. As before, we choose to

impose the gauge e2γ = r2, and eliminate β using the constraint. Now the system

has been reduced to two coupled ODE’s in α and φ. As noted in Ref. [181], the

dilaton equation of motion becomes a copy of the α equation of motion if we set

φ = −3a

2
α. (8.30)

Therefore the system has again been reduced to a single ODE, and the inclusion

of the dilaton comes at no cost in complexity. We omit the presentation of the

equation as it is rather lengthy. Once again, we find that the general solution

must be solved for numerically, and that a simple, singular solution exists.

For the case a = aKK = −
√

8/3, the flux-tube can be uplifted to a vacuum so-

lution of Einstein gravity (see Appendix 8.B). The flux-tube has been geometrized,

10We thank Juan Maldacena for suggesting this.
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and the six-dimensional line element is now

ds2
6 = e−3α (dy + Exdt)2 + e3α

(
−dt2 + dx2

)
+ eα+2βdr2 + eα+2γdΩ2

2. (8.31)

where we have chosen the gauge A = Exdt. While the metric (8.31) has three

translational symmetries, they do not all commute. The Killing fields include

∂/∂t, ∂/∂y, and ∂/∂x − Et∂/∂y. This is a timelike version of the Bianchi Type

II symmetries of a homogeneous anisotropic cosmology. To gain some insight into

this Ricci-flat solution, we can examine its large-r behaviour, which is governed

by the singular attractor solution:

e2α =

(
3

2

)1/4

(Er)1/2, e2β =
27

16
, e2γ = r2. (8.32)

Note that the KK circle is pinching off at infinity.

Since one cannot put a stationary black string in the five-dimensional flux-tube,

one cannot put a stationary black two-brane in this vacuum solution. One can see

this directly in six-dimensions, by deriving the following contradiction. Adding a

stationary uniform black two-brane would produce a metric of the following form:

ds2
6 = gyy (dy + Exdv)2 + h

[
−fdv2 + 2dvdr

]
+ gxxdx

2 + r2dΩ (8.33)

where v is an ingoing null coordinate, and f vanishes at some radius r0 denoting

the horizon. The metric functions gxx, gyy, h depend only on r. The vector ` =

∂/∂v − Ex∂/∂y is null on the horizon but it is not a Killing vector. So the six-

dimensional spacetime does not have a Killing horizon. One can show that the
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vector ` is tangent to a null geodesic, and has zero expansion, but nonzero shear.

This violates the Raychaudhuri equation (8.1) and shows that the assumption of

a stationary solution is inconsistent with the field equations. To see why the shear

is nonzero, consider a small bundle of light rays extended in the x and y directions

with thickness ∆x,∆y. Starting at v = v0, this bundle has a rectangular cross-

section. Under evolution by `, the rectangle gets distorted with geodesics pushed

forward in the y direction by an amount proportional to x. This produces shear.

This argument is a Lorentzian version of the one given by Iizuka et al [191] who

consider five dimensional black holes having Bianchi symmetry on the horizon.

They show that for Bianchi types II, VI0, or VII0, if ∂/∂v−` is not a Killing field,

then the shear will be nonzero and the solution cannot be stationary.

General Case

Having studied five-dimensional flux-tubes we now discuss the general case.

Much of the above analysis carries over in higher dimensions. The gauge e2γ = r2

is imposed, and the constraint equation is used to algebraically solve for β. The

system now only involves two coupled and undetermined functions, α and φ. As

in the five-dimensional dilatonic flux-brane, the φ equation of motion becomes

identical to the α equation of motion after a rescaling [181] 11

φ = − a(D − 2)

(D − p− 2)
α. (8.34)

11As Ref. [181] worked with the Hodge dual picture, their expression is related to ours, (8.34),
via p+ 1→ 10− (p+ 1).
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Therefore the equations of motion for this general ansatz have been reduced to

a single ODE, the presentation of which we omit as it is quite long. As before a

simple analytic family of singular solutions exists:

e2α =

[
(2 + a2)(D − 2) + 2p(D − 2)− 2p2

4(D − 2)(D − p− 3)
(Er)2

] 2(D−p−2)

a2(D−2)+2(1+p)(D−p−2)

, (8.35)

e2β =
(a2(D − 2)(D − p− 3) + 2(p+ 1)(D − p− 2)2)

(D − p− 3) (a2(D − 2) + 2(p+ 1)(D − p− 2))2 (8.36)

×
(
a2(D − 2) + 2

(
D(p+ 1)− (p+ 1)2 − 1

))
.

These solutions have been noticed by numerous authors for various values of the

parameters (D, p, a) [181, 188, 189]. Although clearly singular at r = 0, these

exact solutions are still quite useful as they are often attractors for the large-r

behaviour of more general solutions [181]. As before, this can be determined by

linearising around the exact solution, α = αsingular + δα. The solution to the

linearised perturbation takes the form

δα = r−q (c1 sin(ν ln r) + c2 cos(ν ln r)) , (8.37)

where c1,2 are constants of integration, and q, ν are constants depending on (D, p, a).

If both q, ν2 > 0, then the perturbation oscillates with a decaying envelope and

asymptotes to the above exact singular solution for large r, indicating that it is an

attractor. We have checked the singular solution is an attractor for the following

solutions: the two 5d flux-tubes presented above, and all of the flux-branes of

string theory/M-theory with co-dimension greater than two.
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The solutions we are interested in are, of course, nonsingular at the origin.

We did not succeed in finding analytic non-singular solutions, but the equations

can be solved numerically, just as they were in the D = 5 cases considered above.

We therefore see that there is a large class of non-singular flux-brane solutions for

which our theorem applies, including flux-branes that appear in string/M-theory.

These flux-branes cannot be “blackened” without introducing time-dependence12.

8.5 Discussion

We have shown that one cannot put stationary black branes inside flux-branes.

This was rigorously established for uniform black branes or black branes that are

nonuniform in compact directions. For the case of black strings inside a flux-tube,

we have given numerical evidence that this result extends to the noncompact case,

and we expect that it extends to all cases where the horizon is noncompact.

A translationally invariant black string (or black brane) is subject to Gregory-

Laflamme instabilities. One can stabilize it by compactifying the direction it is

extended along. Our result shows that even when it is stable, the black string

cannot remain stationary inside a flux tube.

An interesting open question in this compactified context is the following13. In

vacuum gravity with one direction compactified on a circle, there is a well studied

black hole - black string transition in the space of static solutions (see [192] and

12Here a comment is in order: The flux-brane solutions are qualitatively different from the
p-brane solutions of string theory. The p-branes are singular supergravity solutions that possess
degrees of freedom associated with their worldvolume, whereas the flux-branes are completely
non-singular (the simple family of singular solutions is not physical), and have no worldvolume
degrees of freedom. Therefore, the inability to “blacken” the flux-branes carries no implications
for a worldvolume theory.

13We thank Henriette Elvang for raising this question.
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references therein). One can start with a small spherical black hole and increase

its size. One obtains a continuous family of solutions in which the spherical black

hole gets distorted when it approaches the size of the circle. It then makes a

transition to a nonuniform black string and eventually turns into a uniform black

string. Now suppose we start with an electric flux-tube wrapping the compact

direction. As we argued in section 2, a small static spherical black hole should

still exist. We can continuously increase the size of this black hole and it is likely

that there will again be a transition to a nonuniform black string. But we have

seen that the nonuniform black string cannot be static. So when does the static

solution stop existing? The intuitive picture of the electric field inducing currents

on the stretched horizon given in section 4.2.1 suggests that it will not be until

the nonuniform black string forms.

What is the analog of this intuitive picture for higher rank forms? Can one

understand the absence of static black two-branes inside F3 flux vacua, by postu-

lating that the stretched horizon contains strings which move when placed inside

this flux? This seems likely since one can dimensionally reduce a flux p-brane

along p − 1 directions to obtain a flux-tube. We have argued that one cannot

put a static black string in this flux-tube due to the existence of currents on the

stretched horizon which imply the existence of charged particles. From the higher

dimensional standpoint, these charged particles are charged p − 1 branes. We

should emphasize that there is no actual charged matter in the spacetime. These

charged objects arise in an effective description of form fields interacting with

black holes. This property of stretched horizons deserves further investigation.

287



A No Black Hole Theorem Chapter 8

Acknowledgements

It is a pleasure to thank H. Elvang, V. Hubeny, J. Maldacena, and A. Puhm

for discussions. This work was supported in part by NSF grant PHY12-05500, by

NSF grant PHYS-1066293 and the hospitality of the Aspen Center for Physics.

It was also supported in part by JSPS KAKENHI Grants No. 26400280.

288



Appendix

8.A Equations of Motion

Here we present the equations of motion (8.3) for the ansatz (8.21). The

form equations are already satisfied as noted above. The three independent (trace

reversed) Einstein equations are

Rµ
ν =

[
−
[
α′′ − α′β′ + (p+ 1)(α′)2 +mα′γ′

]
e−2β + λp+1e

−2α
]
δµν , (8.38)

= τµν = − m

2(D − 2)
E2eaφ−2(p+1)αδµν .

Rr
r =

[
−(p+ 1)α′′ −mγ′′ + (p+ 1)α′β′ +mβ′γ′ − (p+ 1)(α′)2 −m(γ′)2

]
e−2β

(8.39)

= τ rr =
1

2
e−2β(φ′)2 +

p

2(D − 2)
E2eaφ−2(p+1)α.
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Ri
j =

[
−
[
γ′′ − β′γ′ +m(γ′)2 + (p+ 1)α′γ′

]
e−2β + λme

−2γ
]
δij (8.40)

= τ ij =
p

2(D − 2)
E2eaφ−2(p+1)αδij.

where m = D − p− 2 and primes indicate derivatives with respect to r. A very

useful linear combination of these equations is the “Hamiltonian constraint”

Gr
r = e−2β

[
1

2
m(m− 1)(γ′)2 +

1

2
p(p+ 1)(α′)2 +m(p+ 1)α′γ′

]
(8.41)

− m

2
λme

−2γ − 1

2
(p+ 1)λp+1e

−2α

= T rr =
1

4
(φ′)2e−2β +

E2

4
eaφ−2(p+1)α.

Lastly, the dilaton equation of motion is

e−(p+1)α−β−mγ∂r
(
e(p+1)α−β+mγ∂rφ

)
+
aE2

2
eaφ−2(p+1)α = 0. (8.42)

8.B Uplift of Kaluza-Klein Electric Flux-tubes

If the dilatonic coupling in (8.2) takes the special value

a = aKK = −

√
2(D − 1)

(D − 2)
, (8.43)

and p = 1 (so Fp+1 is a standard Maxwell field) then a solution of the Einstein-

Maxwell-dilaton theory (8.2) in D dimensions uplifts to a solution of the vacuum
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Einstein equations in D + 1 dimensions. The uplifted line element is

ds2
D+1 = e

−
√

2(D−2)
(D−1)

φ
(dy + Aµdx

µ)2 + e

√
2

(D−2)(D−1)
φ
ds2

D (8.44)

Here A is the 1-form gauge potential related to the field strength via F = dA.
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Chapter 9

Localised Anti-Branes in Flux

Backgrounds

9.1 Introduction

There has been much recent work on the study of anti-branes in flux back-

grounds.1 This interest is historically motivated by the work of Kachru, Pearson,

and Verlinde (KPV) [168] who found that a small number of anti-D3 branes

placed at the tip of the Klebanov-Strassler (KS) solution [63] would expand into

a metastable NS5 brane. The NS5 brane would then eventually decay via tun-

nelling, although its lifetime could be tuned to be parametrically long. This mech-

anism has led to a number of interesting applications, including the construction

of de Sitter (dS) compactifications of string theory in the KKLT scenario [166],

holographic duals of dynamical supersymmetry breaking [166, 194, 195], and non-

1For a recent review, including a comprehensive list of references, see [193].
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extremal black hole microstate geometries [196, 197].

Given these varied and important applications, it is of obvious interest to con-

struct the full backreacted NS5 brane solution and to study its properties. Unfor-

tunately, such a solution would depend non-trivially on two coordinates, leading to

a complicated non-linear PDE problem that is quite intractable. As a result, the

backreaction of smeared anti-D3 branes added to the tip of the KS solution was

studied instead, and unexpected singularities in the 3-form field strengths were

found at the location of the anti-branes [198, 199, 200, 201, 202]. This prompted

many additional investigations, the results of which all point to the fact that

singularities generically arise when anti-branes are added to flux backgrounds in

both string theory and M-theory [203, 204, 205, 206].2 Importantly, these studies

also found that the singularities are not artefacts of either linearisation in the

anti-brane charge nor smearing.

The physical interpretation of these singularities has been the source of much

debate. String theory is known to resolve many singularities in gravity. Perhaps

one of the most well-known mechanisms for resolving singularities is through brane

polarisation, also known as the Myers effect [207], which was shown to resolve the

singularity associated with a mass deformation of N = 1∗ SU(N) supersymmet-

ric Yang-Mills by Polchinski and Strassler (PS) [208]. Another famous example

concerns the KS solution itself, which can be interpreted as the resolution of the

singularity present in the Klebanov-Tseytlin [209] solution. Not all singularities

are resolved by string theory however, and in fact singular solutions play an im-

portant role in constraining the theory by, for example, ruling out negative mass

2Here and throughout this article, by anti-brane we mean that the brane is not mutually
BPS with respect to the flux background.
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states [169].

The singularities associated with anti-branes in flux backgrounds throws the

fate of the KPV metastable state and its many applications into doubt. Thus

far, all attempts to resolve the singularities via polarisation have either failed

[210, 211], or partially succeeded [212, 213], but have also indicated the presence

of repulsive instabilities which might destabilize the metastable states.3 As the

backreaction of localised anti-branes in flux backgrounds has been too difficult to

tackle directly, these authors cleverly extracted the polarisation potentials from

the backreacted smeared solutions.

A widely held view, dubbed the Gubser criterion [170], is that if a singular-

ity can be shielded behind a finite temperature horizon, then it is physical and

resolvable by some (perhaps unknown) mechanism in string theory. According

to this criterion, there is then an important relationship between the space of

black brane solutions and anti-brane singularities. For a horizon to shield an

anti-brane singularity the solution should asymptote to the flux background of

interest, for example KS, and the horizon should carry negative charge. Thus far

all attempts (including both analytic arguments and the numerical construction

of solutions) to hide smeared anti-brane singularities behind horizons have failed,

and only black branes with positive charge have been found [215, 216]. Addition-

ally, a no-go theorem has been recently formulated which excludes non-singular

solutions corresponding to anti-branes in flux backgrounds at both zero and finite

3An example where polarisation does resolves the singularity without any repulsive insta-
bility is [214] for the case of AdS7 flux vacua. The polarisation relied on the curvature of the
worldvolume AdS7, and the flux backgrounds we consider here will have no curvature on the
worldvolume.
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temperature, regardless of smearing [206]. 4

If the interpretation of the smeared anti-brane singularities is that they are

unphysical and unable to be resolved as these many results suggest, then there

are dramatic consequences for the de Sitter landscape, metastable non-SUSY field

theory states, and the construction of non-extremal microstate geometries. It also

raises a vexing contradiction with the original KPV calculation [168]–namely,

where did this calculation go wrong? One interesting suggestion is that the probe

approximation severely underestimated the amount of flux clumping caused by

charge screening, and that the branes annihilate against the flux through classical

time evolution [204, 217, 218].

In this work, we will provide evidence that the metastable states do in fact

exist, and show that the singularity of anti-branes in flux backgrounds can be

resolved. We will accomplish this by constructing, in a linear approximation,

localised black branes of either sign charge in flux backgrounds that approximate

the IR of KS in Type IIB string theory, and the analogous solution in M-theory, the

Cvetič-Gibbons-Lü-Pope (CGLP) solution [219]. At first glance this result appears

to directly contradict the no-go theorem of [206], however it has a loop-hole which

our constructions make use of. The existence of these solutions demonstrates that

the anti-brane singularities can be shielded behind a smooth horizon. According to

the Gubser criterion then, the anti-brane singularities are physical and are resolved

by string theory. It therefore appears that, in contrast with the title of [215],

horizons can and do in fact save the landscape, once the smearing approximation

4It is worth noting that the inability to hide a singularity behind a horizon does not necessarily
imply that the singularity is physically unacceptable. Examples of physically acceptable singular
solutions that cannot support finite temperature include vacua on the Coulomb branch of N = 4
SYM [170].

295



Localised Anti-Branes in Flux Backgrounds Chapter 9

is dropped!5

Insight into the nature of the resolution can be gained by considering the

extremal limit. As the charge is made large and negative, the flux at the hori-

zon grows without bound. In the extremal anti-brane limit, the flux is found

to diverge in a way known to be resolved in certain cases by brane polarisation

in a non-supersymmetric version of Polchinski-Strassler. Although we cannot

directly evaluate this possibility without going to higher order in our approxima-

tion scheme, we will argue that indeed polarisation resolves the singularity. As

mentioned above, this resolution mechanism was previously argued to not apply

[210, 211, 212, 213], and we will therefore attempt to explain the discrepancy as

a consequence of smearing. If, however, polarisation does not resolve the singu-

larity, then either there is some new resolution mechanism yet to be discovered,

or else the Gubser criterion fails and being able to shield a singularity behind a

horizon is not a sufficient criterion for accepting it as physical.

The approach taken here, where the number of anti-branes is taken to be

large enough that the gravity description is valid, is complementary to the recent

analysis of [220], who argued that for at least a single anti-brane, the physics

could be well understood from the effective field theory of the brane worldvolume

theory. It therefore seems that for both a single anti-brane and many, KKLT [166]

remains a valid mechanism for constructing metastable dS vacua in string theory.

This paper is organized as follows. In Sec. 9.2 we construct solutions cor-

responding to D3 branes at both finite and zero temperature localised in a toy

flux background which approximates the IR of the KS solution. The analogous

5It should be emphasized that the anti-brane singularities themselves are not artefacts of
smearing.
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problem of anti-M2 branes in a toy background which approximates the CGLP

solution of M-theory is quite similar, and all the main conclusions of the Type

IIB case carry over. Accordingly, we relegate its treatment to Appendix 9.C. We

close with concluding remarks in Sec. 9.3.

9.2 D3 Branes in Type IIB Flux Backgrounds

One of the major obstacles in the problem of anti-D3 branes in KS has been

the complicated geometry of the deformed conifold which has discouraged at-

tempts to study inhomogeneous or localised solutions. Therefore, in this section

we will study localised D3 and anti-D3 branes in a toy flux background which

approximates the IR of the KS solution. As we will argue below, this serves as an

excellent approximation for the solution corresponding to branes at the tip of the

KS solution. We first introduce the background and argue that it can be used to

study the problem of anti-branes in KS, and then review smeared solutions before

finally constructing localised solutions.

9.2.1 A Toy Model of the Klebanov-Strassler Flux Back-

ground

The Klebanov-Strassler solution [63] is the supersymmetric Type IIB super-

gravity solution corresponding to fractional D3 branes at the tip of the deformed

conifold. Recall that the conifold is a six-dimensional Ricci-flat space which

asymptotically takes the form of the cone ds2
6 ∼ dr2 + r2ds2

T1,1
6, and smoothly

6Here T1,1 is the coset space SU(2)× SU(2)/U(1).
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caps off at the tip, where the geometry consists of a finite-sized S3 and a shrink-

ing S2. A simple exact solution of Type IIB supergravity which serves as a toy

model relevant for approximating the IR of KS is

ds2 = H−1/2
(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+H1/2

(
dr2

1 + r2
1dΩ2

2 +
3∑
i=1

dy2
i

)
, (9.1)

F5 = (1 + ?)F5, F5 = εFdH
−1 ∧ dt ∧ dx1 ∧ dx2 ∧ dx3,

G3 = F3 − iH3 = m
(
dy1 ∧ dy2 ∧ dy3 − iεF r2

1dr1 ∧ dΩ2

)
,

with all other fields zero. The warp factor is

H = 1 +
a0

r1

− m2

6
r2

1. (9.2)

The complex 3-form G3 is (anti)-imaginary self-dual, that is ?6G3 = iεFG3, where

?6 is the Hodge dual on the 6-dimensional transverse space. A solution exists

for either sign of the flux, εF = ±1, and the constant a0 is proportional to the

number of (anti)-D3 branes smeared over the y directions, which for the purpose

of approximating KS, we set to zero, a0 = 0. The constant m controls the amount

of flux and is analogous to the M constant in the KS solution. This solution is

related via T-duality to the “massive-D6” solution of massive IIA supergravity

found in [221], and was used as a toy model for KS in the context of adding

smeared anti-branes to the solution by [210, 216].

That this solution approximates the IR of KS can be seen as follows. The

geometry near the “tip”, r1 → 0, consists of a shrinking S2 times R3, which is

very similar to the shrinking S2 times S3 geometry of the near-tip KS solution.
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In both solutions F3 near the tip is simply the volume form on the non-shrinking

space, either S3 or R3. Also, for each solution H3 contains a term proportional

to the volume form on the shrinking space (in the toy flux background, this is

the only term present). Therefore, the IR of both solutions is seen to be quite

similar–the essential difference is that one solution contains an S3 at the tip and

the other an R3.

In this paper we will be primarily interested in approximating the solution

corresponding to anti-D3 branes localised at both the tip of the deformed conifold

and at a point on the S3. Since the branes sit at a single point, the curvature of the

S3 is negligible, and therefore the near-brane solution will be very similar to the

analogous solution in the toy flux background (9.1). If the branes are blackened

by turning on a small temperature, then they will no longer be localised at a

single point, but for sufficiently small temperature their Schwarzschild radius will

be small compared to the curvature of the S3 and the toy flux background will

remain an excellent approximation for KS in the vicinity of the branes. For the

sake of constructing these solutions, it will be convenient to introduce spherical

coordinates for the yi,

3∑
i=1

dy2
i = dr2

2 + r2
2dΩ̃2

2, dy1 ∧ dy2 ∧ dy3 = r2
2dr2 ∧ dΩ̃2, (9.3)

where dΩ̃2
2, dΩ̃2 are the line element and volume form for a second, distinct unit

S2.

The toy flux backgroud (9.1) has a disturbing property. For large r1, the warp

factor H is large and negative, indicating that at some point it passes through
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zero. For the case of interest, a0 = 0, this occurs for r1 =
√

6/m. We will argue

that this naked singularity and strange asymptotics are actually irrelevant for the

present purpose of studying localised anti-branes in flux backgrounds. Firstly, the

singularity occurs at a radius that can be taken much larger than the radius of the

localised solution, and for small radii the toy flux background approximates the

KS solution. Secondly, it is shown in Appendix 9.A that although the supergravity

description is singular, strings are in fact well behaved and perfectly non-singular

at the point H = 0 7.

9.2.2 Analogue of the KPV Calculation

In this section we briefly review the KPV [168] calculation, in which a metastable

NS5 brane is found to exist in the KS solution. We then repeat the analysis for

the toy flux background introduced above, (9.1). Although there are important

differences between the two cases, the main conclusion remains the same, namely

that the probe calculation indicates that a static, expanded brane configuration

should exist, strengthening the argument of the previous section that localised

branes in the IR of KS are be well modelled by the analogous solution in the toy

flux background.

In KPV, the potential for a probe NS5 brane carrying p units of anti-D3 charge

was computed. The brane was embedded at the tip of the KS flux background

as follows: it filled out the four-dimensional Minkowski space and wrapped an

S2 inside the finitely sized S3 at the tip. Writing the line element on the S3 as

dχ2 + sin2 χ2dΩ2
2, the NS5 brane was localised at fixed χ, and the potential was

7This point was understood as a result of joint work with G. Horowitz and A. Puhm.
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found in [168] to be proportional to

ΦKPV(χ) =
1

π

√b4
0 sin4 χ+

(
π
p

M
− χ+

1

2
sin 2χ

)2

− χ+
1

2
sin 2χ

 , (9.4)

where b2
0 ≈ 0.93266, p is the anti-D3 charge, and M is the KS flux parameter.

This potential is plotted in Fig. 9.1 for various values of p.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.10

-0.05

0.00

0.05

0.10

χ

ΦKPV

Figure 9.1: p/M = 0.01, 0.03, 0.04, 0.07, 0.09, from bottom to top. Metastable
minima exist for p/M . 0.08, and are indicated by black dots.

For anti-branes (p > 0), the south pole χ = π is always the global minima.

For p/M . 0.08 there is a second, metastable minima corresponding to a puffed-

up NS5 brane. As p increases, the size of the wrapped S2 increases from zero

until a minima with a maximally-sized S2 is attained for p/M ' 0.08. Brane

flux-annihilation occurs either via tunnelling (p/M . 0.08) or through classical

evolution by rolling down the potential hill (p/M & 0.08).
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For the present case of anti-branes in the toy flux background the analogous

set-up would be that the branes are localised “at the tip” (r1 = 0), as well as at

the origin of the transverse R3 (r2 = 0). For small enough radii of the wrapped S2,

the difference between an S2 in S3 or R3 should vanish, and the KPV potential

should match the potential for the toy background. Since the KPV potential

always has a minima in the limit of p → 0, and in this limit the radius of the

wrapped S2 vanishes, the anti-branes at the tip of the KS solution should be

excellently approximated by anti-branes at the tip of the toy flux background for

p small enough (but large enough so that the gravity description is valid).

Although the potentials should agree for small radius, they will be quite differ-

ent in the opposite limit of large radius. Since R3 is topologically trivial, the true

minima corresponding to the south pole of the S3 will not exist in the toy flux

background, and in fact there should be no analogue of the KPV brane-flux an-

nihilation mechanism where the wrapped S2 tunnels from the metastable minima

to the south pole.

Let us now turn to the calculation of the potential. The NS5 brane action is

8

S = µ5

∫
d6ξ
(
− detG|| det (G⊥ + 2πF2)

)1/2
+ µ5

∫
B6. (9.5)

Here 2πF2 = 2πF2 − C2, with F3 = dC2 = md (r3
2/3) ∧ dΩ̃2 , and F2 = (p/2)dΩ̃2

represents p units of anti-D3 charge carried by the NS5 brane worldvolume. The

NS5 brane couples to B6, where

?H3 = H7 = dB6 = −mεF
H

d

(
r3

2

3

)
∧ d4x ∧ dΩ̃2. (9.6)

8Here, and throughout this paper we set gs = 1.
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The potential is then found to be proportional to

Φ =
m2

π

√r4
2 +

(
pπ − mr3

2

3

)2

− mεF
3

r3
2

 , (9.7)

where the value of the warp factor at the tip, H(r1 = 0) = 1, has been used. To

compare with the KPV potential, it is useful to convert to the new flux parameter

m = µ−1/2 and dimensionless coordinate r2 = µ1/2ρ. Then for εF = 1, the

behaviour of the two potentials near the tip is

ΦKPV ∼
p

M
− 4

3π
χ3 +

b4
0

2π2

M

p
χ4 +O(χ5), (9.8)

Φ ∼ p

µ
− 2

3π
ρ3 +

1

2π2

µ

p
ρ4 +O(ρ7).

There are two sources for the different coefficients. Firstly, deviations should

be expected at high enough order for the simple reason that the geometries are

different. Secondly, we have not taken care to ensure that the tip of the KS

solution is parametrized identically to the tip of the toy flux background. The

large ρ-behaviour of the toy flux background potential strongly differs from the

KPV behaviour, and is

Φ ∼ 3

2π
ρ− p

µ
+O(ρ−1). (9.9)

Since the potential is decreasing near ρ = 0, but increasing for large ρ, there must

be a turning point at a real positive value of ρ for all values of p! In Fig. 9.2 this

potential is plotted for p/µ = 1.
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Figure 9.2: The probe potential Φ for p/µ = 1. The global minima is indicated
by a black dot. The key differences between the potential for the KS background
and the toy flux background (9.1) are that the minima corresponding to an
NS5 brane wrapping a finitely sized S2 is 1) always present for the toy flux
background, and 2) always the global minima as opposed to simply a metastable
minima.
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As expected, there are important global differences between the two potentials.

The finite ρ-minima in the toy background always exists and is the global minima,

and there is no possibility of brane-flux annihilation through either quantum tun-

nelling or classical evolution. However, for small p and small ρ, the KPV potential

is qualitatively very similar to the potential for the toy background once the coor-

dinates χ and ρ are identified, and a perturbatively stable, static expanded brane

configuration exists in both solutions.

9.2.3 Smeared Branes

Before turning to the main focus of this paper, the construction of localised

black branes in the toy flux background (9.1), we first discuss smeared solutions.

In the extremal case, Ref. [210] found that the solution T-dual to smeared anti-D3

branes in the toy flux background possessed singular fluxes which were not resolved

by brane polarisation. In the finite-temperature case, Ref. [216] formulated a no-

go theorem excluding regular black hole solutions where the charge on the black

hole is negative. These results strongly suggest that the singularity associated

with smeared anti-branes in this flux background is simply unphysical and unable

to be resolved.

In order to highlight the important differences between smeared and localised

solutions, here we will approximately construct the solution corresponding to a

positively charged smeared brane in the toy background. Near the brane the

solution can be approximated as a linear G3 flux perturbation of the thermal,
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smeared D3 brane solution:

ds2 = H−1/2
(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+H1/2

(
dr2

1

f
+ r2

1dΩ2
2 + dy2

1 + dy2
2 + dy2

3

)
,

F5 = εB coth β dH−1 ∧ dt ∧ dx1 ∧ dx2 ∧ dx3, (9.10)

H = 1 + sinh2 β

(
r+

r1

)
, f = 1− r+

r1

.

The boost parameter β characterises the charge of the brane, and we will take

β ≥ 0 and allow εB = ±1 to characterise the difference between positive and

negative charge. The extremal limit is β → ∞ while keeping a0 ≡ r+ sinh2 β

fixed.

The most general ansatz for the perturbation consistent with the symmetries

of the problem is

G3 = m
(
gydy

1 ∧ dy2 ∧ dy3 − i gΩr
2
1dr1 ∧ dΩ2

)
, (9.11)

where gy, gΩ are functions of r1 only. The Bianchi constraint dG3 = 0 fixes gy to

be a constant, which we choose to be gy = 1. The linearised equation of motion

d ? G3 + iG3 ∧ F5 = 0 then becomes

∂r1
(
H−1fgΩ − εB coth βH−1

)
= 0, (9.12)

which has the simple solution

gΩ = f−1 (Hc0 + εB coth β) , (9.13)
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with c0 a constant of integration. First, consider the extremal case. The solution

is

gΩ = c0

(
1 +

a0

r1

)
+ εB. (9.14)

Regularity at the brane location requires c0 = 0, in which case the flux has

a definite imaginary self-duality (ISD) character: ?6G3 = iεBG3, where ?6 is

the Hodge operator on the transverse 6-dimensional space. Crucially, the flux is

constrained to have the same self-duality sign as the brane charge. In fact, this

solution just corresponds to adding ISD flux to the smeared brane solution (or

AISD flux to the smeared anti-brane solution), i.e. it is simply a linearisation of

the toy flux background (9.1) with the warp factor replaced by

H = 1 +
a0

r
− m2r2

1

6
. (9.15)

Suppose we took the opposite perspective and fixed the asymptotic value of

the flux, rather than its behaviour near the brane source. Requiring the flux to

have the opposite sign, ?6G3 = −iεBG3, fixes c0 = −2εB, which causes the flux

to diverge at r1 = 0. This perturbation corresponds to the linearisation of the

solution corresponding to anti-branes added to the toy flux background. These

singularities were shown to not be resolved by polarisation in [210].

Next, consider the finite temperature case. Requiring regularity at the horizon

fixes c0 and the solution is simply

gΩ = εB tanh β. (9.16)
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This perturbation corresponds to the linearisation of the positively charged smeared

black brane in a flux background (which has not been constructed yet). The sign

of the flux is constrained to be of the same sign as the brane charge, in agreement

with the no-go theorems ruling out negative charged branes [216]. In fact, the

later and more comprehensive no-go theorem of [206] correctly predicts the diver-

gence associated with the negatively charged brane. If the constant c0 had been

taken to be any other value, including values that would yield negatively charged

black branes, then the 3-form fluxes would diverge as |H3|2 ∼ f−1. This point

will be important later.

Having reviewed the problem of smeared anti-branes in the toy background

(9.1), we now turn to the central focus of this paper, the construction of localised

black branes.

9.2.4 Localised Branes

Here we will construct the solution corresponding to localised D3 branes at

the tip of the toy flux background (9.1) to linear order in the 3-form flux. Since

the backreaction of the flux alters the asymptotics, this approximation is only

valid in the vicinity of the branes. The approach we take is very similar to the

one employed in [222] to approximate localised Schwarzschild black holes in the

AdSp × Sq solutions of string and M-theory.

As we are interested in finding solutions corresponding to localised D3 branes

at the tip of this flux background, it will be useful to first recall the D3 brane
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solution:

ds2 = H−1/2
(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+H1/2

(
dr2

f
+ r2dΩ2

5

)
, (9.17)

F5 = εB coth β dH−1 ∧ dt ∧ dx1 ∧ dx2 ∧ dx3,

H = 1 + sinh2 β
(r+

r

)4

, f = 1−
(r+

r

)4

.

As before, we will take β ≥ 0 and allow εB = ±1 to characterise the difference

between positive and negative charge. The extremal limit is β →∞ while keeping

r2
0 ≡ r2

+ sinh β fixed. The case β = 0 corresponds to no charge at all, in which

case the solution is simply Schw7 ×R3. A useful coordinatization of the 5-sphere

is

dΩ2
5 = dψ2 + sin2 ψdΩ2

2 + cos2 ψdΩ̃2
2, (9.18)

which connects to the coordinates employed in the toy flux background (9.1) upon

identifying r1 = r sinψ, r2 = r cosψ.

We now wish to consider a linear G3 perturbation of the D3 brane solution.

Because we wish to consider localised branes in the flux background, we will

require the G3 flux to approach the flux background form asymptotically:

lim
r→∞

G3 = m
(
r2

2dr2 ∧ dΩ̃2 − iεF r2
1dr1 ∧ dΩ2

)
, (9.19)

= mr2
(

cos2 ψ (cosψdr − r sinψdψ) ∧ dΩ̃2 − iεF sin2 ψ (sinψdr + r cosψdψ) ∧ dΩ2

)
.
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Using this asymptotic form as a guide, a suitable ansatz for the perturbation is

G3 = mr2 cos2 ψ (g1 cosψdr − g2r sinψdψ) ∧ dΩ̃2 (9.20)

− iεFmr2 sin2 ψ (g3 sinψdr + g4r cosψdψ) ∧ dΩ2.

As in [222], we find that the perturbation functions can be taken to be simply

functions of r only. The Bianchi constraint dG3 = 0 is satisfied for

g2 = g4, g1 = g3 =
1

3
r−2∂r

(
r3g4

)
.

The linearised equation of motion d?G3 + iG3∧F5 = 0 then reduces to the simple

ODE 9

r2fHg′′4+
(
r2Hf ′ − r2fH ′ + 7rfH

)
g′4+3 (H (rf ′ + 3f − 3) + rH ′(ε coth β − f)) g4 = 0,

(9.21)

where ′ indicates derivative with respect to r, and we have introduced ε = εF εB.

Note that the perturbation equation only depends on the relative sign of the charge

of the brane and flux background. For ε = 1 they are aligned, and for ε = −1

they are anti-aligned. We will solve this equation separately for the non-extremal

and extremal cases.

9A similar equation was derived in [223] in the context of studying finite temperature effects
in Polchinski-Strassler polarisation. They were not concerned with matching the solution to a
flux background, and therefore dropped the asymptotic region (the overall constant in H).
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Non-Extremal Case

Unfortunately, we were unable to find analytic solutions for the general non-

extremal case, and will therefore turn to numerical methods. To facilitate the

numerical evaluation, convert to the compactified coordinate x = (r+/r)
4, for

which the equation becomes

∂2
xg4 +

(
1 + x+ x(3− x) sinh2 β

2x(x− 1)
(
1 + x sinh2 β

)) ∂xg4

+

(
6ε sinh 2β − 3 + 3(3x− 4) sinh2 β

16x(x− 1)
(
1 + x sinh2 β

) )
g4 = 0. (9.22)

The boundary conditions we desire are that the perturbation approaches the form

of the flux background at infinity g4(x = 0) = 1, and that the perturbation be

regular at the horizon. By expanding g4 in a power series around x = 1, this last

condition can be seen to be equivalent to

[
3

16
(1− 4 ε tanh β) g4 − ∂xg4

]
x=1

= 0. (9.23)

We solved (9.22) numerically, and in Fig. 9.3 a typical solution is plotted.
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Figure 9.3: The perturbation function g4 for β = 1 and ε = 1 (lower curve)
and ε = −1 (upper curve). Note that the flux at the horizon, (r+/r)

4 = 1, is
significantly larger for the anti-aligned ε = −1 case.

We find, remarkably, that a solution exists for both signs of the charge! This

is the central result of this paper. When the charges are anti-aligned, the flux at

the horizon is significantly larger than the case when they are aligned, as might

have been expected. The norm of the flux at the horizon is

|G3|2 = 6m2 g4(r+)2

cosh3 β
. (9.24)

In Fig. 9.4 the quantity g+ ≡ g4(r+)/ cosh3/2 β ∝ |G3| is plotted as a function of

β for both signs of ε. For large positive charge, the flux at the horizon vanishes,

while for large negative charge it grows without bound. 10

10Of course, for large enough |G3| the linear approximation will break down and the backre-
action will become non-negligible.
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Figure 9.4: The value of the rescaled perturbation g+ at the horizon. As ex-
tremality is approached, the flux either vanishes (ε = 1), or diverges (ε = −1).
Recall that our convention is that β ≥ 0 always. Fitting the data indicates
that g+(r+) ∼ eβ/2 as β →∞ for ε = −1, which corresponds to g4(r+) ∼ e2β.

Next, we are obliged to conduct a few checks on our calculation and to compare

it with previous results. Firstly, an analytic solution can be found for the special

case of β = 0:

g4(x) = 2F1

(
−3

4
,
1

4
;−1

2
;x

)
−

(
2Γ
(

3
4

)
Γ
(

7
4

)
Γ
(

1
4

)2

)
x3/2

2F1

(
3

4
,
7

4
;
5

2
;x

)
. (9.25)

Comparing this analytic expression against the numerical solution provides a use-

ful check on the numerics which is passed excellently.

Secondly, as in [222], even though a static and non-singular perturbation has

been found, because the flux does not vanish at the horizon it could be the case

that stress-energy is flowing across the horizon and that the solution is not consis-

tent with the Raychaudhuri equation, which requires that the energy flux across

a static horizon must vanish. Letting ka = (∂/∂t)a denote the null generators of

the horizon, it is easy to verify that Tabk
akb = 0, as F5 is the only flux with t-legs,

and is uncorrected at this order: Tabk
akb ∝ (F5)acdef (F5)b

cdefkakb = 0.
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As mentioned in the Introduction, this result appears to violate the recent

no-go theorem of [206], and therefore some comments are in order. This theorem

has a number of loop-holes. They are: (a) it could be that the boundary term

does not satisfy their Eq. 4.24, (b) that C(M0, T ) is not analytic 11, and (c) it

could be the case that singular terms conspire to cancel. Unfortunately, due to

our approximation scheme wherein the solution is only known near the branes,

we cannot evaluate options (a) and (b). We will however argue that option (c) is

the relevant loop-hole.

Recall the perturbation of the smeared black brane (9.13). The symmetries of

the problem result in a single integration constant, which for general values lead

to a singular flux |H3|2 ∼ f−1. Only for a particular choice of the constant do

different singular terms cancel to make a regular perturbation. This cancellation

of singular terms is actually standard practice in constructing hairy black hole

solutions–unless the boundary conditions are chosen to make the hair regular at

the horizon, the generic solution will diverge there. In the smeared case, since there

is only one constant, the flux cannot be chosen to both be regular and to have the

opposite orientation as the brane. In the localised case, there are fewer symmetries

and therefore the flux has enough freedom to interpolate between a smooth value

at the horizon and the desired value at infinity. Having two integration constants

now allows both for the cancellation of singular terms at the horizon as well as

for the flux to asymptote to either an ISD or AISD form far from the brane. It

appears that this is how the no-go theorem is evaded.

The localised solution constructed here has important implications for the

11The definition of the boundary term and C(M0, T ) can be found in [206].
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existence of the KPV metastable state. According to the Gubser criterion the

existence of a localised black brane with negative charge implies that the singu-

larity associated with anti-D3 branes in the KS solution are physical, and can in

fact be resolved by string theory. As the brane approaches the negatively charged

extremal limit, the flux diverges outside the horizon, which suggests a resolution

by polarisation. We will examine this possibility next.

Extremal Case

We next turn to the extremal case, for which the perturbation equation (9.21)

has a very simple analytic solution:

(ε = 1) g4 = c0 + c1

(
r6

0

r6
+

3

5

r10
0

r10

)
, (9.26)

(ε = −1) g4 = c0

(
1 + 3

r4
0

r4

)
+ c1

r6
0

r6
,

where c0, c1 are integration constants. The boundary condition that g4(∞) = 1

requires c0 = 1. Generically, the perturbation is singular in the IR. The norms of

the 3-form fluxes are

(ε = 1) |F3|2 ∼ |H3|2 ∼ r−14, c1 6= 0, |F3|2 ∼ |H3|2 ∼ r6, c1 = 0,

(9.27)

(ε = −1) |F3|2 ∼ |H3|2 ∼ r−6, c1 6= 0, |F3|2 ∼ |H3|2 ∼ r−2, c1 = 0.

For ε = 1, the norm can be made non-singular at the brane location by setting

c1 = 0. In fact, for this case an exact solution exists at the non-linear level corre-
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sponding to extremal branes added to the flux background. This just corresponds

to adding a singular harmonic source term to the warp factor H, just as in the pre-

vious section. Explicitly, the solution fits the same ansatz as the flux background

(9.1), but the warp factor is now 12

H = 1 +
r4

0

r4
− m2r2 sin2 ψ

6
. (9.28)

For ε = −1, there is no way to keep the asymptotic condition c0 = 1 and to

also keep the norm non-divergent. As expected from the extremal limit of the

previous section, the fluxes must diverge as r → 0. The interpretation of this

singularity is of crucial importance for understanding the problem of anti-branes

in flux backgrounds. That it can be shielded by a finite-temperature horizon

implies that it can be resolved by string theory.

The obvious candidate resolution mechanism is brane polarisation. In fact,

the set-up is very similar to the one considered by Polchinski-Strassler in the

supersymmetric case [208]. The anti-D3 branes source an AdS5 throat, into which

the singular G3 flux will leak. If the fluxes take the right form, polarisation will

occur and the singularity will be resolved in a manner similar to the way in which

Polchinski-Strassler resolves the singularity associated with a mass deformation

of the N = 1∗ theory, which we now review very briefly.

Taking both the near-brane and extremal limit of D3 brane solution (9.17)

12Note that the branes added here are localised. The addition of D3 branes smeared over 3
dimensions corresponds to the addition of a term a0/r1 = a0/(r sinψ), as discussed previously.
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results in the line element

ds2 ≈
( r
r0

)2

dxµdx
µ +

(r0

r

)2

dr2 + r2
0dΩ2

5, (9.29)

which is simply AdS5×S5. Polchinski and Strassler considered Lorentz invarance-

preserving G3 perturbations of this solution. The perturbation transforms under

the transverse SO(6) according to two possible representations: the 10 and the

10. There are two solutions for each representation, each of which has a definite

scaling with r, i.e. for r → λr, G3 ∼ λ−∆G3. For this very symmetric case

of perturbations of AdS5, only a single power of r is present, as opposed to the

more general case where a whole power series would be expected. The possible

conformal dimensions are

10 : ∆ = 7, ∆ = −3, (9.30)

10 : ∆ = 3, ∆ = 1.

For ∆ ≤ 0 the mode is regular in the IR (r → 0), and for ∆ > 0 it diverges.

Polchinski and Strassler studied the perturbation corresponding to the ∆ = 1

mode in the supersymmetric case and found that the singularity was cured through

the physics of brane polarisation.

Returning now to the case of G3 perturbations of the full D3 brane solution,

as opposed to simply the near-horizon AdS5×S5, we see that for the case ε = −1,

there are three modes present, that is, G3 is a sum of three terms with distinct

definite scalings:

G3 ∼ c1λ
−3 + c0

(
λ−1 + λ3

)
. (9.31)
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The perturbation therefore contains the conformal dimensions ∆ ∈ (3, 1,−3).

Taking c0 6= 0, as required by the boundary condition that the flux approach

(9.19) asymptotically forces the modes ∆ = 1,−3 to be turned on. The most

singular ∆ = 3 mode can be eliminated by setting c1 = 0 . What remains is

the non-singular ∆ = −3 mode, which becomes vanishingly weak and therefore

negligible in the deep IR (r → 0), and the ∆ = 1 mode, which diverges down the

throat [208]. 13

In the original Polchinski-Strassler analysis, the form of the ∆ = 1 mode

was chosen to be supersymmetric, which allowed the polarisation potential to

be determined from simply the linear G3 flux perturbation. The present case

is more complicated, as the form of the divergent ∆ = 1 mode can be shown to

not preserve supersymmetry. In the SO(3)-invariant, non-supersymmetric version

of Polchinski-Strassler [224], the polarisation potential depends on 3 parameters,

mPS,m
′
PS, µPS, which are defined as follows. The ∆ = 1 G3 perturbation can be

written as

G3 ∝
1

r4

(
T3 −

4

3
V3

)
, (9.32)

where T3 and V3 are 3-forms on the R6 transverse to the branes defined in [208]

and reproduced in Appendix 9.B. The coefficient of the (1, 2) component of T3

is denoted mPS, while m′PS is the coefficient of the (3, 0) component. µPS is a

parameter that comes from the second order backreaction of the G3 perturbation.

In the supersymmetric case, m′PS = µPS = 0, and the linear flux perturbation

13There is a nice connection with the weaker divergence associated with setting c1 = 0 for the
ε = −1 case, and the no-go results of [206] which in the present zero temperature case imply
that the 3-form fluxes must diverge as |H3|2 ∼ H1/2 ∼ r−2. Unlike the finite temperature case,
this divergence cannot be cured by adjusting constants to procure cancellations.
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suffices to compute the polarisation potential. In the present case, the form of

the ∆ = 1 mode of the flux is shown in Appendix 9.B to give rise to m′PS = mPS,

and the perturbation therefore breaks all supersymmetry. In order to definitively

determine whether or not polarisation resolves the singularity, the parameter µPS

would also need to be computed, which would require going beyond the linear

approximation considered here.

Despite the lack of a definitive polarisation calculation, the finite-temperature

and extremal cases together paint a compelling picture. In the extremal case of

anti-branes added to the flux background, the anti-D3’s source an AdS5 throat into

which the G3 fluxes leak. It could have turned out that the most singular mode in

the IR, the ∆ = 3 mode, was forced to be present from the requirement that the

flux approach the flux background solution asymptotically, but that did not turn

out the be the case. Instead, the only singular mode that leaks into the throat is

the ∆ = 1 mode. As r → 0 is approached, this mode grows until polarisation via

the Myers effect likely takes over, leading to a completely non-singular, puffed-up

brane configuration. The full solution corresponding to anti-branes in KS would

then correspond to a gluing of the backreacted non-supersymmetric Polchinski-

Strassler solution (which has yet to be explicitly constructed) to the KS geometry.

This is schematically depicted in Fig. 9.5.

Our calculation in the extremal case is similar to one that appears in [225].

The existence of negatively charged black branes at finite temperature therefore

strengthens the picture considered there and in [226] wherein the gravity dual of

the KPV metastable state was argued to be a gluing of the polarised Polchinski-

Strassler solution with the Klebanov-Strassler one. Finite temperature is seen
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Klebanov-Strassler

D3's

G3

AdS throat

Polchinski-Strassler IR

Figure 9.5: Schematic depiction of the proposed supergravity solution cor-
responding to anti-D3 branes in the Klebanov-Strassler solution. The solu-
tion interpolates between a Klebanov-Strassler throat asymptotically, and a
mass-deformed AdS5×S5 throat. The ∆ = 1 mode of the G3 flux grows down
the throat, until it eventually induces polarisation, leading to the (as yet un–
constructed) backreacted non-supersymmetric Polchinski-Strassler solution. It
should be noted that each throat has a distinct radial coordinate.
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to act as an IR regulator of the un-polarised singular solution. For negatively

charged solutions close to extremality, one would expect that these black branes

are unstable to a finite temperature version of brane polarisation as the flux is

very large outside the horizon. 14

The existence of negatively charged black branes at finite temperature provides

evidence, according to the Gubser criterion, that the anti-brane singularity is re-

solved. The diverging form of the flux in the extremal limit strongly suggests that

the appropriate resolution mechanism is brane polarisation, a conclusion at odds

with previous calculations which suggested that polarisation only occurs in certain

channels, and that the throat is unstable to fragmentation [210, 211, 212, 213].

Note that there is no indication of a fragmentation instability of the blackened

anti-D3 brane solutions constructed here. In these works the the potentials were

computed for probe branes in the solutions corresponding to smeared anti-branes

in flux backgrounds, and it was then argued that the potential for localised anti-

branes could be extracted from the smeared result. Central to the argument is the

remarkable fact that in Polchinksi-Strassler the polarisation potential for branes

in a mass-deformed AdS5 throat is independent of the warp factor H. Since

the potential is independent of H, the potential for a probe brane in the mass-

deformed throat created by a stack of D3 branes is the same as that created by

a configuration of D3-branes smeared over an S2, a key point in the original PS

analysis.

However, the smearing in the present case is much more drastic than the

smearing considered in PS. For the case of anti-D3 branes added to the toy flux

14Finite temperature effects in the N = 1∗ theory are treated in [223].
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background (9.1), it is clear that the smearing not only alters the form of the

near-brane AdS5 throat, but also greatly restricts the form of the fluxes in the

throat. In particular, it is no longer appropriate to consider general SO(6) rep-

resentations of G3 perturbations, as these will generically break the symmetry

imposed by smearing. It is important to note that the asymptotic form of the flux

is invariant under the symmetries imposed by smearing, but the form of the flux

down the throat, where polarisation would occur, is not. This fact, together with

the finite temperature case where the smearing clearly constrains the form of the

flux to be such that it is unable to be both regular at the horizon and asymp-

tote to either self-duality signature, strongly suggests that smearing destroys the

resolution mechanism. 15

The calculations presented here indicate that the singularities associated with

anti-D3 branes at the tip of the Klebanov-Strassler throat are resolved and that the

KPV metastable state exists. In Appendix 9.C we repeat the above analysis for a

toy flux background of M-theory which approximates the IR of the CGLP solution

[219]. All the main results carry over, and we therefore turn to a concluding

discussion.

9.3 Conclusion

In this paper we studied localised black branes in toy flux backgrounds in both

string theory and M-theory. The finite temperature solution was constructed to

leading order in an approximation scheme where the flux was treated perturba-

15It should be noted that even if smearing does indeed destroy the resolution mechanism so
that the smeared solution does not capturing this crucial aspect of the localised solution, the
smeared solution has been shown to pass certain non-trivial tests, see for example [227].
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tively near the branes. Remarkably, black brane solutions were found to exist

for either sign charge, indicating that the singularity associated with localised

anti-branes can be shielded behind a smooth horizon. According to the Gubser

criterion, the anti-brane singularities are then physical and resolvable by string

theory.

As the charge of the black brane is taken taken to be large and negative,

the flux at the horizon is seen to increase without bound. The natural resolu-

tion mechanism is therefore brane polarisation à la Polchinski-Strassler [208] or

its M-theory analogue [228]. And indeed, when the extremal anti-brane limit is

taken, the divergent flux is of the form known to be resolved by polarisation in

the supersymmetric case. Because the matching of the AdS throat sourced by the

branes with the flux background breaks supersymmetry, a non-supersymmetric

version of Polchinski-Strassler [224] or its M-theory analogue is required. In or-

der to determine the polarisation potential in the non-supersymmetric case, and

to definitively address whether or not polarisation resolves the singularity, the

solution will need to be extended to second order in the flux perturbation. If po-

larisation is indeed the correct resolution mechanism, which we view as likely, then

the metastable non-SUSY states corresponding to puffed-up branes not only exist,

but also possess supergravity descriptions. In the Type IIB case this corresponds

to a gluing of the polarised Polchinski-Strassler solution to a Klebanov-Strassler

throat.

The calculations of the current work are in tension with a number of recent

results. The existence of localised black holes in the IIB flux background we

considered appeared to be ruled out by the no-go theorem of [206], however we
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argued that this theorem is evaded by a loop-hole. The fluxes are indeed gener-

ically singular at the horizon, but by a choice of integration constants these can

be made regular in both the smeared and localised cases. The symmetry imposed

by smearing is rather restrictive, and does not allow the flux at the horizon to be

both regular and anti-aligned with the asymptotic value. In the less symmetric

localised case, there is enough freedom to simultaneously enforce regularity at the

horizon as well as to fix the orientation to be either sign asymptotically.

Additionally, previous calculations used smeared results to argue that polar-

isation only occurs in certain channels for the localised case, and that the AdS

throats were unstable to fragmentation instabilities (the so-called tachyons), thus

rendering the anti-brane singularities unphysical [210, 211, 212, 213]. However

our calculation of the flux near the brane in both the extremal and non-extremal

cases strongly suggests that polarisation does occur, and yields no indication of

the fragmentation instability. We argued that the discrepancy could be due to the

restrictive symmetry imposed by smearing. It appears that smearing destroys the

resolution mechanism, a possibility in accord with existence of negatively charged

anti-branes in the localised case, and the absence of them in the smeared case.

If polarisation is not the resolution mechanism, then there is either some novel

mechanism yet to be discovered which cures the singularity, or else the Gubser

criterion as it is currently understood fails and requires revision.

Despite recent work suggesting an increasingly dire outlook for the fate of

anti-branes in flux backgrounds and their many interesting applications, there are

now a few distinct and complementary results which suggest that the metastable

states do in fact exist as originally understood. First, there are the original polar-
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isation calculations [168, 229]. Secondly, in [220] it was convincingly argued that

a single brane should be non-singular and described by effective field theory. The

calculations of the present work indicate that the physics of many branes is also

non-singular (after they polarise, or are resolved by some new mechanism). There

is no need to resort to time dependence to resolve the singularity [204, 217, 218],

and there are no challenges to the de Sitter landscape or other applications of the

non-SUSY metastable states.

The results of this paper suggest many avenues for future work. It is of obvious

interest to go beyond the linear approximation considered here, and to construct

the solutions in a systematic matched asymptotic expansion for both the extremal

and non-extremal cases. In the extremal case, this would allow for a definitive an-

swer to the question of whether polarisation resolves the singularities and results

in a smooth, stable throat. It would also be very worthwhile to explore the solu-

tion space of black branes in flux backgrounds further. In addition to localised and

smeared solutions, there are likely to exist inhomogeneous black branes as well. In

many ways, the problem of black brane solutions in flux backgrounds seems qual-

itatively similar to the problem of black hole/string solutions in 5d Kaluza-Klein

gravity.16 In particular, it seems likely that there is a very interesting relationship

between inhomogeneities of the black branes and charge. Additionally, the nega-

tively charged localised black holes constructed here might themselves be unstable

to a finite-temperature version of Polchinski-Strassler [223]. In a future work we

plan to explore these and related issues.

16For a review, see [230]. Black holes in a simpler family of flux backgrounds were studied
recently in [2].
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Appendix

9.A Strings are Well Behaved in the Toy Flux

Backgrounds

In this section we show that although the toy flux backgrounds (9.1), (9.46) are

certainly singular at the locus H = 0, strings propagating on these backgrounds

are actually non-singular and completely well behaved. The work presented in

this appendix is a result of joint work with G. Horowitz and A. Puhm.

Both the toy flux backgrounds considered in this paper and the KS and CGLP

solutions are actually U-dual to plane-fronted waves with parallel propagation, or

pp-waves for short [231]. PP-wave spacetimes are of the form

ds2 = −2dudv + F (u, x⊥)du2 + dx2
⊥, (9.33)

where dx2
⊥ is some Ricci-flat transverse space. The vector `a = ∂au is null and

covariantly constant, and both the Riemann and Ricci curvature tensors can easily
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be written in terms of ` and F [232]:

Rabcd = 2`[a∂b]∂[cF`d], Rab = −1

2

(
∇2
⊥F
)
`a`b, (9.34)

where ∇2
⊥ is the scalar Laplacian on the transverse space. Note that the u-

dependence is completely arbitrary.

Because the curvature is null, all curvature invariants of pp-waves vanish, in

particular the Ricci scalar. When F depends quadratically on the transverse

coordinates, the spacetime is said to be an exact plane wave. If ∇2
⊥F = 0, then

the plane wave is a vacuum solution, otherwise the geometry will be sourced by a

stress tensor that is also purely null, Rab = Tab.

For concreteness, consider the Type IIB toy flux background (9.1). although

similar comments apply to the other flux backgrounds considered here (the toy

M-theory solution considered in Appendix 9.C, and the KS and CGLP solutions).

This can be dualised to a Type IIB pp-wave according to the following chain of

transformations 17

 D3

D5

Tx3−→

 D2

D4

 ↑ x11−−→

 M2

M5

 ↓ x2−−→

 F1

D4

Tx1−→

 P

D3

 , (9.35)

where Txi indicates T-duality on the xi-coordinate, and l xi indicates either the M-

theory uplift or reduction along xi. The D3 charge dissolved in flux of the original

solution becomes momentum while the fractional D3 brane charge (D5 branes

wrapping additional two-cycles) becomes D3 charge. The resulting background is

17An alternative duality chain involving Tx3
Tx2

STx1
results in a IIA pp-wave background.
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ds′
2
10 = 2εFdtdx1 +Hdx2

1 +
(
dx2

3 + dx2
11 + ds2

6

)
, (9.36)

where ds2
6 is the 6-dimensional transverse space. The warp factor H takes the

place of F (u, x⊥), and depends only on r1 The last coordinate to be T-dualised

upon, x1, serves as the null coordinate. The Ricci tensor is

Rab = −1

2

(
∇2

6H
)
∂ax1∂bx1. (9.37)

Since ∇2
6H 6= 0, this geometry must be supported by matter. The dilaton is

constant, e2Φ′ = 1, and the only non-vanishing form field is

F ′5 = [F 0
3 ∧ dx3 +H0

3 ∧ dx11] ∧ dx1, (9.38)

where F 0
3 and H0

3 denote the original three-form fluxes of the toy flux background.

The five-form flux is null and self-dual. The stress tensor is then

Tab =
1

2
m2∂ax1∂bx1. (9.39)

An interesting feature of this duality frame is that the imaginary self-duality

property of the original 3-form flux corresponds to the fact that the curvature

and matter are null.

We now use the above duality chain to show that strings are perfectly well be-

haved in the toy flux background solution, despite the appearance of a singularity

at the locus H = 0. The original solutions’ naked singularities can be studied

using the dual plane wave solutions. The physics of strings propagating on the
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original solutions is dual to the physics of strings propagating on the dual plane

waves, since the worldsheet theory of the strings is duality-invariant.

Recall that plane waves are a special case of pp-waves in which the F function

is quadratic in the x⊥ coordinates. The warp factor of the toy flux background

is H = 1 − m2r2
1/6, and so the dual solution is an exact plane wave. The fact

that these simple flux backgrounds dualise to plane waves is particularly nice

because plane waves have the special property in string theory that strings may

be quantized exactly [232] 18 After dualising, the plane wave is completely non-

singular at the locus H = 0. To see this, note the radius at which H = 0 is no

longer gauge invariant; under the coordinate transformation t = t̃+Dx1, with D

a constant, the radius at which H = 0 is shifted. Therefore, whereas H = 0 in the

original solutions corresponded to a naked singularity, the geometry is completely

regular in the dual plane waves. Strings quantized on the plane wave backgrounds

would not experience any singular behaviour, and therefore we can conclude that

neither would they experience singular behaviour in the original flux background

solutions.

18More precisely, because the curvatures are null, pp-waves are solutions of the supergravity
equations to any order in α′. Plane waves, moreover, are solutions even non-perturbatively in α′.
Additionally, pp-waves are the only non-flat spacetime to admit lightcone gauge on the string
worldsheet, and for the special case of plane waves, the string equations of motion are linear
and different modes decouple, allowing the string to be quantized exactly.
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9.B Explicit Form of the G3 Flux in Complex

Coordinates

In this appendix we verify that the form of the G3 perturbation considered in

Sec. 9.2.4 breaks the supersymmetry of the AdS5 throat with m′PS/mPS = 1.

First, introduce the complex coordinates zi = xi + iyi, for i = 1, 2, 3. The

metric on R6 is then

ds2
R6 =

3∑
i=1

dzidz̄i =
3∑
i=1

(
dx2

i + dy2
i

)
. (9.40)

These coordinates are related to the ones used in the perturbation of the G3 flux

for the localised case considered in Sec. 9.2.4 by

3∑
i=1

dx2
i = dr2

1 + r2
1dΩ2

2,
3∑
i=1

dy2
i = dr2

2 + r2
2dΩ̃2

2, (9.41)

with r1 = r sinψ, r2 = r cosψ. In the anti-aligned case ε = −1, the flux profile

was found in (9.26) to be

g4 = c0

(
1 + 3

r4
0

r4

)
+ c1

r6
0

r6
. (9.42)

The most singular term in the IR (r → 0) can be eliminated by setting c1 = 0, and

the asymptotic boundary condition requires c0 = 1. For this choice, the leading
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term of the flux perturbation in the IR is

G3 ∼ m

(
r4

0

r2

)(
cos2 ψ (− cosψdr − 3r sinψdψ) ∧ dΩ̃2 (9.43)

+ i sin2 ψ (− sinψdr + 3r cosψdψ) ∧ dΩ2

)
+ ...

In the notation of Polchinski-Strassler [208], the ∆ = 1 flux perturbation is written

as G3 ∝ r−4 (T3 − 4V3/3), where in the SO(3)-invariant case (in which the chiral

superfields have the same mass),

T3 = mPS

(
dz1 ∧ dz̄2 ∧ dz̄3 + dz̄1 ∧ dz2 ∧ dz̄3 + dz̄1 ∧ dz̄2 ∧ dz3

)
+m′PSdz

1 ∧ dz2 ∧ dz3,

V3 =
xq

r2
(xmTqnp + xnTmqp + xpTmnq) . (9.44)

The parameter mPS is therefore the coefficient of the (1, 2) component of T3 and

m′PS is the coefficient of the (3, 0) component. For m′PS 6= 0, the perturbation

breaks all supersymmetry of the AdS5 throat. For the case at hand, (9.43) can be

shown to be equivalent to

G3 ∼ −
3i

4

m

mPS

(
r4

0

r4

)(
T3 −

4

3
V3

)
+ ..., m′PS = mPS. (9.45)

The overall normalization is irrelevant, and can be changed by simply rescaling

m. This establishes that a non-supersymmetric version of the Polchinski-Strassler

analysis is needed.

332



Localised Anti-Branes in Flux Backgrounds Chapter 9

9.C M2 Branes in M-theory Flux Backgrounds

The analysis of Sec. 9.2 can be repeated for M-theory. The M-theoretic version

of the KS solution is the CGLP solution [219], which corresponds to fractional M2

branes at the tip of a higher dimensional version of the deformed conifold, known

as the n = 3 Stenzel space.19 The analogue of the KPV calculation was performed

by Klebanov and Pufu (KP) [229], who found qualitatively similar results, namely

that for small enough anti-M2 charge there is a metastable minima corresponding

to anti-M2 branes polarised into M5 branes.

In this appendix we present a toy model of the CGLP solution. We then

repeat the calculations of Sec. 9.2 and are led to exactly the same conclusions–

that localised M2 brane solutions exist for any sign charge in the non-extremal

case. In the extremal case, resolution by polarisation again appears likely.

9.C.1 A Toy Model of the CGLP Flux Background

A toy model relevant for approximating the IR of CGLP is

ds2 = H−2/3
(
−dt2 + dx2

1 + dx2
2

)
+H1/3

(
dr2

1 + r2
1dΩ2

3 +
4∑
i=1

dy2
i

)
, (9.46)

G4 = εF dH
−1 ∧ dt ∧ dx1 ∧ dx2 +mα4,

where

α4 = dy1 ∧ dy2 ∧ dy3 ∧ dy4 − εF r3
1dr1 ∧ dΩ3 (9.47)

19the n = 2 and n = 1 Stenzel spaces are the deformed conifold and the Eguchi-Hanson
instanton, respectively.
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is the (anti)-self dual magnetic part of the four-form, ?6α4 = −εFα4, which should

be thought of as analogous to the G3 flux in the IIB case. The warp factor is

H = 1 +
a0

r2
− m2

8
r2

1, (9.48)

where, as in the IIB case, a0 is proportional to the number of smeared M2 branes

which we take to be zero and m controls the amount of flux. This solution is

related via duality (reduction on x2 followed by T-dualising the x1 coordinate)

to the plane wave solutions considered in [231]. This toy flux background also

possesses a naked singularity, and the same comments as in the Type IIB case

apply here as well (see Appendix 9.A).

The geometry near the tip of the n = 3 Stenzel space consists of a finitely-sized

S4 and a shrinking S3. In complete analogy with the discussion in Sec. 9.2, the

flux background (9.46) is seen to capture the key features of the CGLP solution,

with the main difference being that the transverse S4 is replaced with a R4. For

the purpose of discussing M2 branes localised at both tip of the background and

also at a point in this transverse space, it is useful to introduce the coordinates

4∑
i=1

dy2
i = dr2

2 + r2
2dΩ̃2

3, dy1 ∧ dy2 ∧ dy3 ∧ dy4 = r3
2dr2 ∧ dΩ̃3, (9.49)

where dΩ̃2
3, dΩ̃3 are the line elements and volume form for a second, distinct unit

S3.

In complete analogy with Sec. 9.2.2, the Klebanov-Pufu polarisation calcu-

lation can be repeated here with the same conclusion–namely that the toy flux

background always possess a minima corresponding to a puffed-up 5-brane wrap-
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ping an S3 in the transverse R4 at the tip. This minima is the global minima,

and there is no brane-flux annihilation process due to the non-compactness of

the R4. For small anti-M2 charge, the potential is very similar to the KP po-

tential, and the near-brane solution corresponding to localised anti-branes in the

toy flux background should be identical to the analogous solution in the CGLP

background.

9.C.2 Localised Branes

In this section we study localised branes in the toy M-theory flux background

(9.46). As in Sec. 9.2.4, our approach is very similar to that of Ref. [222]. The

thermal M2 brane solution is

ds2 = H−2/3
(
−fdt2 + dx2

1 + dx2
2+
)

+H1/3

(
dr2

f
+ r2dΩ2

7

)
, (9.50)

G4 = εB coth β dH−1 ∧ dt ∧ dx1 ∧ dx2,

H = 1 + sinh2 β
(r+

r

)6

, f = 1−
(r+

r

)6

,

where as before β ≥ 0 is the boost parameter and εB = ±1 characterises the

difference between positive and negative charge. The extremal limit is β → ∞

while keeping r3
0 ≡ r3

+ sinh β fixed. A useful coordinatization of the 7-sphere is

dΩ2
7 = dψ2 + sin2 ψdΩ2

3 + cos2 ψdΩ̃2
3, (9.51)

which connects to the coordinates employed in the toy flux background upon

identifying r1 = r sinψ, r2 = r cosψ.
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We now wish to consider a linear magnetic G4 perturbation of the M2 brane

solution. The G4 flux should approach the (9.46) form asymptotically:

lim
r→∞

G
(m)
4 = m

(
r3

2dr2 ∧ dΩ̃3 − εF r3
1dr1 ∧ dΩ3

)
, (9.52)

= mr3
(

cos3 ψ (cosψdr − r sinψdψ) ∧ dΩ̃3

− εF sin3 ψ (sinψdr + r cosψdψ) ∧ dΩ3

)
.

Using this asymptotic form as a guide, a useful ansatz for the perturbation is

δG3 = mr3 cos3 ψ (g1 cosψdr − g2r sinψdψ) ∧ dΩ̃3 (9.53)

− εFmr3 sin3 ψ (g3 sinψdr + g4r cosψdψ) ∧ dΩ3,

where again the functions gi = gi(r). The Bianchi constraint dG4 = 0 is satisfied

for

g2 = g4, g1 = g3 =
1

4
r−3∂r

(
r4g4

)
, (9.54)

and the linearised equation of motion d ? G4 + 1
2
G4 ∧G4 = 0 then reduces to the

ODE

r2fHg′′4 +
(
r2Hf ′ − r2fH ′ + 9rfH

)
g′4

+ 4 (H (rf ′ + 4f − 4) + rH ′ (ε coth β − f)) g4 = 0, (9.55)

where again ε = εF εB. We will again consider the non-extremal and extremal

cases separately.
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Non-Extremal Case

As before, we were unable to find analytic solutions for the general finite

temperature case, and will therefore turn to numerical methods. To facilitate

the numerical evaluation, convert to the compactified coordinate x = (r+/r)
6, for

which the equation becomes

∂2
xg4 +

(
1 + 2x+ x(4− x) sinh2 β

3x(x− 1)
(
1 + x sinh2 β

)) ∂xg4

+

(
3ε sinh 2β − 2 + 2(2x− 3) sinh2 β

9x(x− 1)
(
1 + x sinh2 β

) )
g4 = 0. (9.56)

The boundary conditions we desire are that the perturbation approaches the form

of the flux background at infinity g4(x = 0) = 1, and that the perturbation be

regular at the horizon, which requires

[
2

9
(1− 3ε tanh β) g4 − ∂xg4

]
x=1

= 0. (9.57)

Once again, a solution exists for either sign of the charge! A typical solution is

plotted in Fig. 9.C.1.

337



Localised Anti-Branes in Flux Backgrounds Chapter 9

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■■■■■■■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■■■■■

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

(r+/r)6

g 4

Figure 9.C.1: The perturbation function g4 for β = 1 and ε = 1 (lower curve)
and ε = −1 (upper curve).

The flux is larger at the horizon for ε = −1 than for ε = 1. The norm of the

perturbation is

|δG4|2 = 24m2 g4(r+)2

cosh8/3 β
. (9.58)

In Fig. 9.C.2 the rescaled function g+ ≡ g4(r+)/ cosh4/3 β ∝ |δG4| is plotted

against β for both signs of ε. As expected, for εβ → +∞ the norm vanishes, and

as εβ → −∞, the norm diverges.
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Figure 9.C.2: The value of the perturbation at the horizon. As extremality
is approached, the flux either vanishes (ε = 1), or diverges (ε = −1). Recall
that our convention is that β ≥ 0 always. Fitting the data indicates that
g+(r+) ∼ e2β/3 as β → ∞ for ε = −1, which leads to the same growth as in
the Type IIB case, g4(r+) ∼ e2β.

Once again, an analytic solution exists for the special case of β = 0:

g4(x) = 2F1

(
−2

3
,
1

3
;−1

3
;x

)
−

(
Γ
(
−1

6

)
Γ
(

2
3

)
28/3Γ

(
−2

3

)
Γ
(

7
6

))x4/3
2F1

(
2

3
,
5

3
;
7

3
;x

)
,

(9.59)

and for β = 0 our numerics agrees with this analytic result. It is also easy to see

that the perturbation is consistent with the Raychaudhuri equation, Tabk
akb = 0.

Unlike the Type IIB case, there is no no-go theorem excluding these solutions.

According to the discussion of Sec. 9.2.4, the ability to shield the anti-brane

singularities behind a finite temperature horizon indicates that the singularities

are physical and resolvable by string theory. As before, the natural resolution

mechanism is polarisation. To investigate this possibility, we now turn to the

extremal case.
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Extremal Case

For the extremal case, the perturbation equations again have very simple an-

alytic solutions. They are

(ε = 1) g4 = c0 + c1

(
r8

0

r8
+

4

7

r14
0

r14

)
, (9.60)

(ε = −1) g4 = c0

(
1 + 4

r6
0

r6

)
+ c1

r8
0

r8
,

where c0, c1 are integration constants. The boundary condition g4(∞) = 1 requires

c0 = 1. Generically, the perturbation is singular in the IR. The norms of the 3-form

fluxes are

(ε = 1) |G4|2 ∼ r−20, c1 6= 0, |G4|2 ∼ r8, c1 = 0.

(ε = −1) |G4|2 ∼ r−8, c1 6= 0, |G4|2 ∼ r−4, c1 = 0.

For ε = 1, the norm can be made finite by setting c1 = 0. As in the Type IIB

case, an exact solution exists at the non-linear level corresponding to extremal

branes added to the flux background.

For ε = −1, there is no way to keep the asymptotic condition c0 = 1 and

also keep the norm finite. The fluxes must diverge as r → 0. To examine the

possibility of the singularity being resolved by polarisation, we first recall that the

M2 branes source an AdS4 throat: taking the near-brane extremal limit of the M2

brane solution (9.50) results in the line element

ds2 ≈
( r
r0

)4

dxµdx
µ +

(r0

r

)2

dr2 + r2
0dΩ2

7. (9.61)
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After converting to a new radial coordinate r2 = 2r0R, and setting r0 = 2L, this

is seen to be simply AdS4 × S7:

ds2 ≈ R2

L2
dxµdx

µ +
L2

R2
dR2 + (2L)2dΩ2

7. (9.62)

The set-up is exactly as in the Type IIB case; the branes source anAdS throat, into

which the flux leaks. Depending on the form of the fluxes, polarisation may or may

not occur. The M-theory analogue of Polchinski-Strassler was worked out by Bena

in [228]. For G4 perturbations transforming under the transverse SO(8), there are

two possible representations, the 35±, whose associated conformal dimensions are:

35+ : ∆ = 5, ∆ = −2, (9.63)

35− : ∆ = 2, ∆ = 1,

where again, δG4 ∼ λ−∆δG4 under the scaling of the AdS4 coordinate R → λR.

For ∆ ≤ 0 the mode is regular in the IR (R→ 0), and for ∆ > 0 it diverges. Bena

studied the perturbation corresponding to ∆ = 1 in the supersymmetric case and

found that the singularity was cured through the physics of brane polarisation.

Returning now to the case of G4 perturbations of the full M2 brane solution,

we see that for the case ε = −1, there are three modes present, that is, δG4 is a

sum of three terms with distinct and definite scalings:

δG4 ∼ c1λ
−2 + c0

(
λ−1 + λ2

)
. (9.64)

The perturbation therefore contains the conformal dimensions ∆ ∈ (2, 1,−2).
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Taking c0 = 1 as required by the boundary condition at infinity forces the ∆ =

1,−2 modes to be turned on. The more singular ∆ = 2 mode can be discarded

through the boundary condition c1 = 0. In the deep IR the ∆ = −2 mode

becomes insignificant and the IR physics is dominated by the ∆ = 1. As in the

Type IIB case, in order to definitively address whether polarisation occurs, a non-

supersymmetric version of [228] will be needed, which will require the solution to

be constructed to higher order.

To summarise, we find that in both Type IIB string theory and M-theory,

regular localised black branes of either sign charge exist for finite temperature.

According to the Gubser criterion then, the singularities should be regarded as

physical, and are resolved in string theory. In the extremal case of anti-branes

added to flux backgrounds the solutions are singular in a manner that is strongly

suggests resolution by brane polarisation.
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