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Abstract—We present a neural network (NN)-based 

transistor modeling framework which includes drain, 

source, and gate currents and charges, and their 

variabilities. The training data is generated by a Berkeley 

Short-channel IGFET Model (BSIM) with ranges of channel 

lengths, widths, and oxide thicknesses. The NNs are 

trained to learn the geometry dependence. The drain, 

source, and gate currents are modeled with one NN, and 

the charges by another NN. The NNs are trained to produce 

accurate variability prediction and derivatives of currents 

and charges. Quality and robustness tests such as 

Gummel symmetry, harmonic balance, and ring oscillator 

are performed and show excellent results. 

 
Index Terms— Compact model, machine learning, neural 

network (NN), variability modeling, field-effect transistor 

(FET). 

I. INTRODUCTION 

  ransistor models are important to the semiconductor 

industry which needs fast and accurate models for circuit 

simulation and design optimization. Industry-standard compact 

models, such as the Berkeley Short-channel IGFET Model 

(BSIM) series of models [1, 2], use physics-based equations. 

Developing accurate and computationally efficient analytic 

equations for each and every complex transistor behavior, such 

as short channel effects and quantum effects in gate-all-around 

transistors [3], can be time-consuming.  

    Neural network (NN)-based compact models [4-6] hold the 

potential of reducing the time of developing models of future 

new devices. The matrix multiplication nature and the ease of 

GPU accelera tion endow NN-based compact models with the 

potential of reducing the time needed for model calculation 

during circuit simulation.  Several previous works have studied 

using NN to model the variation in transistors. Ref. [7, 8] uses 

NN to predict some key merits in process variation such as ION, 

IOFF, and VTH without modeling the entire IV characteristics. 

Ref. [9] uses process variation parameters as inputs to train a 

NN that can reproduce IV characteristics line tunnel FETs. Still, 
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much more investigation is needed to determine whether 

NN-based models meet all the requirements of a  practical 

compact model. 

    In this work, we present a NN-based compact model of 

source, drain, gate currents and charges, with variability 

modeling; and demonstrate its robustness for circuit simulation. 

Different from our previous work [10] which only models drain 

current and gate charge, gate and drain leakage currents are 

included in the neural networks. Those leakages are important 

in evaluating the circuit performance. Furthermore, source and 

drain charges are also included which are essential and 

contribute to the transient currents at source/drain terminals, 

which is also what BSIM does to ensure charge conservation. 

All currents are included in one network and all charges are 

included in the other network. The improved loss functions are 

developed to accurately train the networks with these additional 

outputs by considering higher order derivatives. We focus on 

four process variation parameters: gate length (L), fin height 

(HFIN), equivalent oxide thickness (EOT) and work function 

difference (Δϕ) of FinFETs. It is shown that the demonstrated 

NN model can fit the IV and CV characteristics in the presence 

of process variations to the higher-order derivatives of current 

and charge. This model can also predict the statistical 

distribution of the device merits when used in Monte Carlo 

simulations.    

II. MODELING FRAMEWORK 

A. Currents 

      To have a NN trained with the process variations of L, HFIN, 
EOT, and Δϕ, we include these parameters as inputs in NN 

together with VGS and VDS. Fortunately, for Δϕ, we know from 
physics that the effect of Δϕ is equivalent to a gate voltage shift. 

Therefore, Δϕ does not need to be included among the inputs, 
rather it is treated as a gate voltage shift during training and 
inferencing as shown in (1). In this way, we can reduce the 

complexity of the NN and training time. Other variations such 
as fin thickness (TFIN) and temperature (T) are not included in 
this work for simplicity and will be added in the future 

follow-up study. The IV NN is trained to model drain current 
(ID) and gate current (IG). Again, for simplicity in this study, we 

assume a floating-body device so the IB=0. There are 3 outputs 
for the IV NN. The first output y1 is the transform of ID as 
shown in (2) [10]. For IG, we cannot easily determine its sign as 

ID. To make IG scaled by ln function, we separate it into positive 
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and negative parts using the smoothing functions as (3) and 
transform them into y2p and y2n where   is the smoothing 

factor and 
0I  is used to prevent 0. Thus, there are three outputs 

of this NN. The loss function is improved from [10] and shown 

in (4), where RMS is the root-mean-square error function, gm is 
the transconductance, gm’ is its derivative, gds is the output 

conductance, gds’ is its derivative, and a to f are the coefficients 
for each loss. We include up to second-order derivatives to 
obtain the desired accuracy. The process of determining the 

coefficients in (4) is similar to [10]. 
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B. Charges 

    For QV NN, different from our previous work [10] where we 
only trained QG, here we train QG, QS, and QD all in one 

network and QB is –(QG+QS+QD). Inputs are the same as (1) and 
outputs are shown in (5). In the loss function (6), we also 

include up to second-order derivatives to obtain good accuracy 
where a’ to f’ are the coefficients. The y in (6) represents y1,2,3 in 
(5).  

1,2,3 G,S,D ,y Q=                                (5) 
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III. IMPLEMENTATION & RESULTS 

    The NN is implemented with the Tensorflow package in 

Python and uses tanh as the activation function. The training 
data is generated using a BSIM-CMG [1] model that is 
calibrated to the Intel 10nm-node FinFET [11] with 10 fins and 

L is 18nm and HFIN is 46nm. We use that scaling capability of 
BSIM-CMG to generate data for L=[14, 16, 18, 20, 22, 24]nm,  
HFIN=[38, 42, 46, 50, 54]nm, and EOT=[0.68, 0.73, 0.78, 0.83, 

0.88]nm for training the NN to cover the range of possible 
device variations. Training uses 150 devices. Each device has a 

full ID & IG characteristic with VGS and VDS varying from -0.8V 
to 0.8V. The importance of training the full bias spectrum is 
discussed in [10]. 

    The training results are shown in Fig. 1 & 2 where we show 
the ID fitting for several L, HFIN, and EOT combinations.  

 
Fig. 1. The fitted IDVG curves at different L, HFIN, and EOT where the lines are 
the NN and symbols are the BSIM-CMG data.  

 

 
Fig. 2. The fitted IDVD curves at different L, HFIN, and EOT where the lines are 

the NN and symbols are the BSIM-CMG data.  

 
Fig. 3. The fitted IG charact eristics for different structures where the lines are 
the NN and symbols are the BSIM-CMG data. 

 
including some that are not in the training set. Both IDVG and 
IDVD are accurate to higher-order derivatives especially for gds 

in the saturation region which is known to be difficult to model. 
Fig. 3 shows the NN modeling results of IG for several 

structures and bias conditions. We can see that this modeling 
framework models all currents well by just using one network.  
    For QV NN, same inputs are fed in with three outputs QG, QS, 

and QD. In Fig. 4 & 5, we show the CV fitting accuracy 
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concluding data that are not in the training data set. The NN 
model can fit the capacitances well for varying geometries by 

using just one network. 
    To show the model’s capability of variability modeling, we 
use Monte Carlo simulation to generate 2000 devices having 

certain variations (σ) in L, HFIN, EOT and Δϕ with BSIM-CMG. 
Then, we extract the ION of these devices and compare them 

with the prediction of the NN model. Fig. 6 shows the ION 
distributions relative to the mean value. We can see that, the 
mean (µ ) and standard deviation (σ) of ION predicted by the NN 

model are in excellent agreement with those predicted by 
BSIM.  
    We also performed quality tests on the NN models. Fig. 7a 

shows the Gummel symmetry plot at 4th derivative is 
continuous and smooth. Because our model framework directly 

trains the NN using data from negative VDS to positive VDS, it 
can easily pass the Gummel test without applying smoothing 
functions like [4]. Therefore, this framework is applicable to 

devices that are inherently unsymmetric such as a MOSFET 
with different source and drain doping profiles. Fig. 7b shows 
the harmonic balance test result. The NN model produces the 

correct slope of each harmonic component. Finally, we show 
the transient simulation of a 17-stage ring oscillator and SRAM 

with the NN model in Fig. 8 & 9 by hard-coding the weights, 
biases, and matrix multiplications into Verilog-A. The result 
matches the BSIM-CMG perfectly with no convergence issue.  

We cannot compare the circuit simulation speeds for NN versus 
BSIM-CMG models at this time because Verilog-A has no 
efficient matrix calculation [4, 10]. However, we can compare 

the DC model evaluation speeds of NN and equation-based 
models using Python [10]. In Fig. 10, we show the speed of 

inferencing a NN-IV versus calculating a simplified 
BSIM-CMG core IV model in Python. We code the core 
quasi-static IV calculation of BSIM-CMG in Python. We use 

NumPy and test them on Intel Xeon Platinum 8260 versus bias 
points.  NN model holds about 13 times speed advantage. In the 
case of 10 million DC points, NN takes 59.6s while 

BSIM-CMG takes 806s. If we can further optimize the network 
and use hardware acceleration such as GPU, the NN speed 

advantage may be even more. 

VI. CONCLUSION AND DISCUSSION 

    We present an NN-based model framework. It contains two 
parts: IV and QV network. For IV network, we use one NN to 

model ID and IG including leakage current. One QV NN is used 
to model all charges (QG, QS, QD). We demonstrate that the 
proposed model can accurately predict the variability of the 

device and give smooth and correct high order derivatives.  
BSIM-CMG is used to generate data in this paper which has 

several benefits. Equation-based models such as BSIM-CMG 

can serve as a “noise filter” for the measured device data and 
training the NN with BSIM model data is an excellent approach 

for obtaining accurate high-order derivatives and variability 
capabilities as well as the charges which are difficult to get 
from measurements. The possibly faster inferencing of NN 

would replace the evaluation of model equations. The benefit 
would be faster circuit simulations. 

In our future work, we will keep completing the NN-based 

model by including parasitics, temperature effects, self-heating, 

and so on. 

 
Fig. 4. CV fitting of QG, QS and QD versus VDS for different L, HFIN and EOT. 

 
Fig. 5. CV fitting of QG, QS and QD versus VGS for different L, HFIN and EOT. 
 

 
Fig. 6. ION distribution relative to mean by Monte Carlo simulation for (a) σ of L 

= 0.54nm, (b) σ of HFIN =1.38nm, (c) σ of EOT = 0.04nm, and (d) σ of Δϕ = 
0.0167eV. The symbols are the data generated with BSIM-CMG and the lines 

are the predictions of the NN model. In the parentheses, we show the error rate 
of µ  and σ between NN and BSIM-CMG. 
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Fig. 7. (a) Gummel test at 4th derivative. (b) Harmonic balance test. The slope of 

each line meets the theoretical prediction. 

 

 
Fig. 8. The 17-stage ring oscillator simulations of BSIM-CMG and the NN 
model.  

 
Fig. 9. The SRAM SNM (signal noise margin) simulations of BSIM-CMG and 

the NN model. 

 
Fig. 10. Evaluation time comparison between NN and BSIM-CMG IV model.  
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