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ABSTRACT

The paper begins with the problem of a firm subject to random productivity shocks drawn
from a particular distribution.  We are concerned with the case whereby the distribution of the
shocks changes without the knowledge of the firm.  Over time the firm learns about the nature and
extent of the change in the distribution of the shock and adjusts, incurring adjustment costs in the
process.  The long run loss in profits (�) due to the shift in the distribution we term the adaptation
costs.   The transitory profit loss, incurred while the firm is learning about the distribution shift, is
termed the adjustment cost.  The theory is developed and then applied to the problem of measuring
adaptation and adjustment costs in the face of unanticipated and imperfectly observed climate
change in agriculture.  The empirical part of the paper involves estimating a supply function for
corn that depends on actual weather realizations and expected weather, using county level data for
the US.  We then simulate the effect of an unobserved climate shock, where learning about the
climate shock is by observing the weather and updating prior knowledge using Bayes Rule.
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I. INTRODUCTION

One of the most important issues in the climate change debate is the quantification of the

costs of adjustment and adaptation that may be associated with a change in the climate.  If the sea

level is to rise, what are the costs of moving coastal cities inland?   If the midwest warms, how will

agriculture adapt and what will be the costs?  It is important to distinguish  between the long-run

effects and the short-run effects.  In the case of agriculture, the long-run effect involves changing

land use and cropping methods; the losses associated with such a change may be large or small and

may be either positive or negative.  A warmer Midwest may produce more, once agriculture has

adjusted.  In the literature, adaptation refers to the long-run changes that are taken in response to

climate change.  The issue of the ultimate cost of adapting to climate change has been the subject of

a number of papers.1

A second issue however, is the short-run effects of climate change.  If we are caught off-

guard or even unawares, costs will be incurred in adjusting to long-run equilibrium.  These

adjustment costs are the focus of this paper.  They have received very little attention in the

literature.  We are interested in the transitory costs of adjusting from one long-run equilibrium (the

current climate) to another long-run equilibrium (a changed climate).  This is not unlike the

question in the investment literature that arises when relative prices change unexpectedly and firms

must adjust the level of quasi-fixed factors such as capital.  While the long-run equilibrium effects

of the relative price change may be modest, the process of adjustment may be significant and

protracted.  In the case of climate change, the short-run is unlikely to be very short.

                                                          
1 See the discussion of adaptation in the National Academy of Sciences (1992) study on climate change.
Schimmelpfennig et al (1996) have addressed adaptation in agriculture.
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We divide adjustment costs into two basic components.  One is related to the cost of

adjustment of quasi-fixed factors, as mentioned in the previous paragraph, in the context of shifting

relative prices.  But shocks can be physical as well as monetary.  If the sea level rises unexpectedly,

there are costs of adjusting to that rise.  Buildings must be moved, and infrastructure abandoned and

reconstructed.  This is a problem of fixed capital, capital that cannot easily be moved, modified or

adjusted.  The slower the adjustment need be, the lower the cost.  In other sectors of the economy,

capital fixity is less of an issue; for instance, in agriculture, if the climate changes, crops can be

relatively easily changed and the amount of capital that is made obsolete is probably minimal.

Knowledge and information also play a key role in the magnitude of adjustment costs.  In

agriculture, a farmer may observe several consecutive hot summers but rationally attribute the

apparent increase in hot summers to random variation in the weather.  Eventually the farmer

realizes the climate has changed; in the meantime there are costs associated with “errors” in input

and crop choice.  On the other hand, if the climate change is anticipated or known to the farmer,

then the adjustment costs are lower or even zero.

There are two purposes of this paper.  One is to provide a theoretical structure for viewing

adjustment and adaptation in the context of environmental change, specifically climate change.  The

second purpose of the paper is to apply this theoretical structure; in particular, we consider

agriculture and examine the costs of adjustment in US corn production.

In the next section of the paper we provide background information, both on the cost of

adjustment in the context of the adjustment of quasi-fixed factors as well as the literature on

production in an environment of uncertainty.  In the subsequent section, we present a theoretical

model of the adaptation and adjustment costs of a neoclassical firm subject to random shocks and an

imperfectly observed change in the distribution of these shocks.  We then apply this model to US
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agriculture, measuring the structure of production as a function of expected climate and realized

climate (weather).  We conclude by hypothesizing Bayesian learning about an unobserved climate

change and estimate the output effects for a segment of agriculture (corn) associated with this

learning process.

II. BACKGROUND

There are two issues that are of concern in this paper.  One concerns how uncertainty and

unanticipated shocks affect production, particularly in agriculture (the application considered in this

paper).  The question is, if farmers know the climate has changed, how do they respond and what is

the welfare effect of this response?  This is adaptation.  The other issue of concern has to do with

the transition to a different climate.  This involves a variety of issues, including learning about the

climate and adjusting input use in response to changed conditions.  This is adjustment.

A.         Adapting to Climate Change

A number of authors have considered the effect of climate change on agriculture.  Adams et

al (1990) and Rosenzweig et al (1994) are prominent examples of the use of agricultural process

models (including crop growth models) to measure the effect on crop yields of climate change.2

These models are typically physiological with limited scope for endogenous farmer behavioral

response to climate change.  Typically, adaptation and adjustment are absent or exogenous.3

                                                          
2 Agricultural process models are akin to activity analysis models in production.  Complete enumeration of all possible
technological options is  desired; relative prices are used to determine an efficient technology choice (eg, see Adams et
al, 1990).
3 There are fewer econometric analyses of the effect of climate change on agriculture.  Perrin and Smith (1990)
investigate the effect of weather on several crops in North Carolina and then use results of climate models to estimate
the effect on crops of climate change.  Hansen (1991) estimates the effect of weather and climate on corn yield and then
postulates the effect of a change in climate.  Some studies in agricultural economics and agronomy focus more directly
on the weather effect (Kaylen et al, 1992; Thompson, 1986; Wescott, 1989).  These models approach the problem after
the production decisions have been made, only considering the effect of actual weather realizations on yield.  Typically
the weather data is transformed into some measure of deviation from expected weather.  The underlying idea is that the
effect of normal weather (represented by climatic expectations) is captured in the farmer’s cropping practices, but that
unusual weather will have an impact of yield.
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Some crop growth models allow a certain amount of farmer adaptation to climate change.

For instance, Kaiser et al (1993) use a simulation model to forecast a century of effects from a

gradual change in the climate.  Their model assumes farmers choose which variety of crop would

have done best in the previous (simulated) decade.  In this way, some adaptation over time is

represented in their model.  This results in considerably less loss from a doubling of carbon dioxide

concentrations (Schimmelpfennig et al, 1996).

Hansen (1991) suggests that the use of crop growth models (which must enumerate

substitution possibilities) may miss some of the substitution opportunities available to farmers.  He

estimates a cross-sectional model of corn production in the US where expected climate (July mean

temperature and precipitation) as well as realized weather (among other factors) are used to explain

cross-sectional variations in corn yield.  His results for a temperature increase are mixed (as might

be expected), showing yield increases in some climates and yield decreases in others.

Mendelsohn et al (1993, 1994) and Johnson and Haigh (1970) go even further and assume

complete adaptation, both in crops and input decisions.  Figure 1 (adapted from Mendelsohn et al,

1994) illustrates this point.  Shown in the figure are response curves for multiple uses of land as a

function of the climate (simplistically represented by average temperature).  These reflect the value

of the product (net of costs) of the land after full equilibration to a climate change. The upper locus

of points, shown as a heavier line, is the maximum value of the land.  A loss from climate change

would be the difference in this value associated with a changed climate, taking into account crop

substitution and other changes in land use.  Allowing this substitution to occur but keeping the crop

the same, results in a more significant loss from climate change, as illustrated by the points along

the wheat curve in the Figure (such as points C or F).  Keeping the crop fixed as well as all other
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practices of the farmer results in points interior to the crop-specific curve in the figure, such as point

G -- the “dumb farmer” point.

From this perspective, Mendelsohn et al (1993, 1994) have measured the differences in land

values across the US, inferring that land value differences are due to endowed soil quality and

climate.4  This allows the authors to infer the value of different climates.  Using this approach, they

infer a very small effect (possibly positive, possibly negative) on US agriculture from climate

change.5  In effect, the Mendelsohn et al papers establish a lower bound on the cost of climate

change on agriculture, corresponding to perfect and instantaneous adaptation.

McFadden (1983) has a different perspective, focusing on how a farmer (or other agent) may

change its behavior based on uncertainty about climate change (or even weather variability).  In

essence, if the farmer feels there is a possibility of climate change, he may adopt more robust

practices (e.g., irrigation) that perform relatively well over a range of weather or climates,

sacrificing a bit relative to the case of perfect knowledge about the weather.

B.         Adjusting to Climate Change.

The literature on adjustment costs in agriculture from climate change is very sparse.  The

only paper of which we are aware is Kaiser et al (1993).  As was mentioned in the previous section,

they simulate the effect of gradual warming by allowing crop variety choice to gradually change

over time, based on best practice in the previous time period (decade).

There are two related literatures that are relevant.  One concerns the rate of adoption of new

technologies.  As Riley (1995) points out, historically agriculture has been relatively slow to adapt

to innovation, ranging from new crops to new technologies.  There is some literature on the process

                                                          
4 Interestingly, Johnson and Haigh (1970) examined the value of climate using a very similar approach, though from the
point of view of valuing intentional and supposedly beneficial weather modification.
5 The climate change they consider is a uniform 5oF (2.8oC) warming accompanied by a uniform 8%  precipitation
increase.  A similar analysis of Russian agriculture found an output gain from the same amount of climate change
(Kolstad et al, 1998).
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of adopting new technology, focusing primarily on learning on the part of farmers in the context of

incomplete information (e.g., Fischer et al, 1996; Ellison and Fudenberg, 1993).  Farmers start out

with a very diffuse prior on the usefulness of the new technology; over time they observe how well

(or poorly) others do with the technology and from that experience, revise their priors.  Bayesian

learning is the starting point for these models although as Fischer et al (1996) point out, Bayesian

models tend to overstate learning rates in some cases.

The literature on adjusting the optimal level of capital in response to changed relative prices

(Slade et al, 1993) emphasizes the cost of rapidly adjusting the capital stock.  If, for instance, energy

prices rise rapidly and call for a substitution of capital for energy in production, this shift cannot be

made rapidly.  Explicitly recognizing the cost of adjustment makes the path of adjustment of the

capital stock the result on an intertemporal tradeoff between adjustment costs and expenditures on

other factors.  It would not appear that this literature has much to offer in the agricultural context

where capital (other than land) is relatively easy to change over time.

III ADJUSTMENT COSTS WITH UNOBSERVED CLIMATE CHANGE

Here we consider a neoclassical firm (a farm is what we have in mind) where the production

function is subject to stochastic shocks.   There are a number of input decisions the firm must make,

some before the shock is realized, some after.  The size of the shock in conjunction with input

decisions determines the magnitude of output.  An example is a farm which makes planting

decisions in the spring based on expected weather (including deciding on how much land to plant).

Output in the fall will be determined by these earlier input decisions and the weather that occurs

over the summer.  Thus output is a function of anticipated weather (climate) and realized weather,

as well as other exogenous factors, such as soil characteristics, and the use of conventional inputs
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into production.  This is an abstraction of a process where some input decisions are made prior to

the resolution of uncertainty; other input decisions may be made after some uncertainty has been

resolved; still other input decisions may be made after all uncertainty has been resolved.

Now suppose the climate changes but the farmer observes only the realized weather, not the

underlying distribution (the climate) generating the weather. Over time the farmer slowly updates

her prior on the anticipated weather, based on observed weather realizations.  While she is learning,

decisions are suboptimal, relative to the case of perfect information.  The loss of output and profits

constitutes the adjustment cost.

A.  Stochastic Production

We consider a stylized model of a firm subject to stochastic shocks.  In developing the

model, we avoid excessive detail related to a particular sector, such as agriculture.  That detail will

be added later in the paper when we present an empirical application of our model.6

The model we consider involves two time periods and a firm.  Production depends on input

choice as well as a stochastic shock. This could be a physical shock to the production technology

(which is how we consider it) or a price shock.  The shock occurs between the first and second time

periods. Thus the magnitude of the shock is uncertain in the first time period but known in the

second time period.  Inputs, X, are chosen in the first time period. Output is determined in the

second time period.  Let W be the random shock, distributed as W ~ g(T).  The density function, g,

as well as the parameters of the distribution, T, are fully known in both the first and second time

periods.  Production is determined by the realized shock only, not expectations:
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Y = f(X,W) (1)

This is an ex post production relation in the sense that the value of W is not known ex ante, when

input decisions must be made.  (This is consistent with the framework of Pope and Chavas, 1994.)

The firm faces prices for output, pY, and inputs, pX.  We assume these are not uncertain nor are they

affected by the shock. 7

We characterize production at two different points in time: prior to resolution of the

uncertainty (ex ante) and after resolution of the uncertainty (ex post) since demand for X is an ex

ante demand and the supply of Y is ex post.  Thus we generate ex ante profit, supply and factor

demand equations, which depend on information available in the first time period.  We also

generate ex post profit and supply equations, which depend on information available in time period

2 and decisions made in the first time period.

1.  Ex Ante Profits, Factor Choice and Output  Prior to the realization of the shock, the expected

profits, ex ante, are defined as

Π**(pX,pY, T) = max X   +T { pY f [X,W] - pX X } (2)

                                                                                                                                                                                                
6 Other authors have considered the theory of the firm under input and output price uncertainty.  See Sandmo (1971),
Batra and Ullah (1974) and Blair (1974).  A more recent application to international trade but in the spirit of firm choice
under uncertainty can be found in Wolak and Kolstad (1991).
7 One might expect there to be uncertainty in the price of output, particularly if there is a time lapse between the first
period and the ultimate sale of product.  Furthermore, one might expect the output price to be correlated with the shock.
This latter point may or may not be true.  In the case of agriculture, the futures price is the expected price at harvest,
which will be correlated with weather over the entire market. Thus the farmer should have expectations about her own
weather and market-wide weather.  These two may well be uncorrelated.  We are ignoring these issues, which amounts
to the producer entering into a contract to deliver output (the quantity of which is uncertain) at a agreed-upon price.
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where +T is the expectations operator over the random variable W, distributed as g(T). Associated

with the profit function in Eqn. (2) is a factor demand equation for factor X, chosen in the first

period: X(pX,pY, T).

2.  Ex Post Profits and Output.  Ex post profits are the profits as measured in the second period, after

the shock has been realized.  Define ex post profits as

Π*(pX,pY, W, T) = pY f[X(pX,pY, T),W] - pX X(pX,pY, T) (3)

In conjunction with Eqn. (3), there is an ex post output supply equation, Y*( pX,pY, W, T).

Note that the basic difference between the ex ante and ex post profit functions is the

knowledge of the realization of the random shock.  Clearly,

Π**(pX,pY, T)  =  Eω {Π*(pX,pY, W, T)} (4)

B.  Unanticipated and Unobserved Change in Distribution of Shocks

Now consider the case where the distribution of the shock changes but that change is both

unanticipated and imperfectly observed by the firm.  Over several production cycles the firm

observes realized shocks and slowly updates priors on the distribution of the shocks.

For instance suppose in the case of agriculture, that the mean July temperature has risen by

2o C.  How will this fact become known to farmers?  Over several years, farmers observe the July

temperature and gradually revise their estimate of the mean of that variable.  Until they become



     CORN99.DOC; 6 June 199910

completely informed of the new mean temperature, they will make input “mistakes” and thus suffer

output and profit losses, relative to being perfectly informed.

Figure 1 illustrates this.  Earlier we interpreted the horizontal axis as climate; we now view

the Figure as showing the net value of output as a function of realized weather.  Assume, somewhat

artificially, that the farmer can only choose what kind of crop to plant; there are no other

adjustments she can make (such as seed variety or timing).  This is clearly an oversimplification but

will suffice for our purposes.  As drawn, wheat is ideal if the anticipated weather is T1 whereas corn

is ideal if the anticipated weather is T2.  With different assumptions about mean weather (climate),

farmers will choose different crops.

We start with the assumption that the average temperature is T1.   Now suppose the climate

has changed so that the mean temperature is now T2.  In this case, corn should be the crop of choice.

If the climate change is unobserved, the farmer continues to plan wheat.  If the weather realization

is T2, then the value of output will be at point F, not D where it could be.  This is a loss associated

with incomplete information, the adjustment cost.  This process can be made more precise.

1.  Adaptation and Adjustment Costs

Suppose To is the firm’s initial subjective estimate of the parameters of the distribution of

the random shock at any point in time, based on the historical record.  Now suppose the distribution

changes so that Ì is the new true parameter vector on the distribution of the shock, though the

producer does not observe this change.  Let T(t) be the firm’s subjective assessment of the true

parameters of the distribution at any point in time, t.  Each year the realized shock, W(t), will be

drawn from the distribution g(Ì).  Assume the producer observes W(t) and updates her prior T(t-1)

to yield the posterior, T(t).  How this updating is done is another question, which we turn to later.

We would expect that lim t →4
 T(t) = Ì.   Output in any given year will be determined by the ex post
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supply function, Y*( pX,pY, W, T(t)), where W is the realized shock in year t, drawn from g(Ì).

This can be compared to the supply associated with perfect information about the distribution of the

shock, Y*( pX,pY, W, Ì).  Corresponding profit functions are Π*(pX,pY, W, T(t)) and Π*(pX,pY, W,

Ì).  There are two losses, one the adjustment cost due to incomplete knowledge of the new

distribution and another loss, the adaptation loss, due to the effect of the changed distribution on

production.  The per period adaptation cost is quite simply

 LADP(Ì) =  Π**[px,pY, Ì] -  Π**[px,pY, T] (5)

whereas the per period adjustment cost is

LADJ(Ì,T(t)) = +Ì{Π*[pX,pY, W, Ì] -  Π*[pX,pY, W, T(t) ]}. (6a)

=  Π**[pX,pY, Ì] - +Ì{Π*[pX,pY, W, T(t) ]}

Let φ be the discount rate; then the total adjustment cost is

NLADJ(Ì) =  ∑t (1+φ)-t LADJ(Ì,T(t)) (6b)

Eqn. (5) indicates how much better off or worse off the firm is as a result of the shift in the

distribution, leaving aside the question of incomplete information.  Eqn. (6a) defines the expected

annual loss in profit due to incomplete information (there would be an analogous loss in output) and

Eqn. (6b) converts a stream of these losses back to the present using the discount rate φ.  Both

depend on the ultimate distribution, Ì, as well as the path of knowledge about the distribution, T(t).
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It is important to point out that the losses in Eqn. (5-6) are not the net welfare losses to the

economy since we are focusing on a firm only.  We are assuming that these changes are occuring in

isolation, that there are no price effects (prices are constant).  To extend this to the market, we

would have to take into consideration the effect of the shock on prices, the effect of the change in

the distribution on prices, but not only for the product in question but other products whose demand

depends on the price of substitutes and complements.  In a dynamic context, we would have to take

into account the effect on technical change.  A welfare measure of the consequences of this learning

would involve the changes in surplus accruing to all producers and consumers.  If we were

examining a farm, with weather the shock and climate the distribution, then we would need to take

into account the full set of farm outputs, substitutes and complements for those outputs, effects of

weather and climate on prices, possibly worldwide, the effect of these changes on technology, and

the distribution of surplus between producers and consumers.

2.  Learning

How will T(t) evolve over time?  In the simplest case, assume that W is a scalar and that we

(including the producer) know that it is drawn annually from a normal, N(T,1/D), distribution.  Let

us assume we know D but do not know T, at least not perfectly (the case of not knowing either is a

simple extension).  At time t, we start with a prior on T, Tt, which we know with some precision, pt

(ie, a variance of 1/pt). Over time we observe draws (realizations) of W, Wt, drawn from the

distribution of whose mean we are not quite sure.  Bayes’ rule tells us how to efficiently update the

priors we have on the mean and precision of that estimate (DeGroot, 1970):

Tt+1 =  {Tt pt +  D Wt} / {pt + D} (7a)
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pt+1 = pt + D (7b)

If a change in the distribution occurs, changing the process which generates the shock, then the

producer will slowly update her prior on the random process according to eqn. (7).  How long will

this take?  Suppose at time zero, the mean of the shock changes to Ì.  Assume a priori that the

shock is distributed N(To,1/D).  Further, the variance on our estimate of  To is 1/po.  Then in

expectation, after n years, we expect (DeGroot, 1970) the updated mean shock to be given by

Tn =  {To po +  D n Ì} / {pt + n D} (8)

For Ì to dominate the first term in braces, either n (or D) must be large or po (the initial precision on

To) must be small.  One should expect this to be relatively slow moving.  Priors are built on many

decades of information; one should not expect that experience to be thrown out without many

decades of contrary information.

Although Bayesian updating is the efficient way to process this new information, it is not an

altogether satisfactory way of representing learning.  One “problem” is that a century of  past

observations will tend to cause the prior to change very slowly, even when confronted with

radically different new information.  For instance, in the case of agriculture, anecdotal evidence

suggests that some farmers are more myopic, weighing recent information more than is efficient

(Weber and Sonka, 1994; Smit et al, forthcoming).  Secondly, the Bayesian process requires a

structural model that includes as many determinants of the observed variable as possible.  For

instance, eqn. (7) assumed that the distribution of shocks was fixed, but with unknown mean and

variance.  If we posit a more complex process responsible for the change in the distribution, we will
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need a different structural model.  A different structural model may give quantitatively different

results on learning.

IV. AN EMPIRICAL ESTIMATE OF ADJUSTMENT COSTS FOR CORN

In implementing the theory of the previous section, we will focus on corn in the U.S.  As

articulated earlier in this paper, to completely characterize adjustment and adaptation, it is important

to capture farmer responses with regard to single crops as well as substitution of one crop for

another.  Thus focusing on one crop -- corn -- is clearly only an intermediate step, one which will

inevitably overstate adjustment costs.  For example, output losses in corn may be made up by output

gains in soybeans.  Furthermore, we will be ignoring the demand side of the market; thus price

changes as well as surplus changes for the consumer will be ignored.  Technological change will

also be assumed to be unchanged.  These assumptions about price and technology are really only

appropriate when climate change only affects a small part of the market, a questionable assumption.

There is some literature to draw upon in for guidance in estimating how weather, climate

and other factors affect corn output.  Kaufman and Snell (1997) estimate a model of how weather,

climate and economic factors influence yield and estimate their model on a cross-section of US

counties for the 1969-87 period.  This work is important in identifying what factors are most

important in determining yield.  Several other authors (Thompson, 1986; Kaylen et al, 1992;

Hansen, 1991; Westcott, 1989) have econometrically estimated yield equations for US corn,

typically on the basis of county data.  This work is also useful in identifying the most important

factors to use in explaining corn output.

The approach we used is based on Nerlove (1958).   The idea is to separate the land or

acreage choice decision from decisions on other inputs.  We then estimate a land demand equation
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and a conditional output equation, conditional on the amount of land used.   We assume that land is

chosen at the beginning of the season before weather has been realized.  Other inputs are chosen in

the summer, after weather has been realized.  This then determines output, which will be  a function

of prices and weather, as well as other factors that influence output.  Basically we estimate an ex

ante demand equation for acres planted to corn separately from a restricted supply equation for corn

output, conditional on acres planted to corn.  The estimation is conducted over a pooled time series-

cross section of US counties.  Because not all counties produce corn, we estimate output and

acreage equations only over counties that produce corn, adjusting the estimation for sample

selection bias.

A.  The Model.

One way to implement eqn. (5-6), in terms of output loss (rather than profit loss), is to

estimate the ex post supply function for corn.8  Following the development in the previous section,

we model supply as a two-step process.  The two steps involve first estimating a demand function

for land, depending on prices and climate (and other exogenous variables), but not the weather

realization (since the planting decision is made in the spring).9  The second step is to estimate the

restricted supply function for corn, conditional on the amount of land chosen.  This is the output of

corn, expressed as a function of land used, prices, climate (and other exogenous variables) and

weather.

The intuitive description of farmer behavior is consistent with this model.  In the spring, the

farmers in a county decide on the amount of land planted to corn in the county.  This is based on

climate in the county (ω:  April and July average temperature and average precipitation, the

                                                          
8 We examine output loss rather than profit loss because we do not have observations on cost nor other outputs of the
farm.  This assumption will tend to overstate the loss or gain from an unobserved change in climate.
9 This is somewhat of an oversimplification.  Some weather is realized in the spring prior to planting; farmers see how
wet the spring is, they see soil temperature, they see how late they actually are able to plant to to soil wetness.
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standard errors of these values and the covariance between temperature and precipitation in July),

the price of variable inputs (the Commodity Credit Corporation loan rate and an input price index --

pX), the futures price of corn and competing crops (wheat and soybeans), soil characteristics and

geographic information (latitude, longitude, elevation and soil) and demographic characteristics

(county size, total income of the county and total population of the county).  Technical change,

represented by a time trend, may also play a role.  Collect these exogenous variables into a matrix

R, defined over the panel.  Thus the land planted to corn in county i in time period t, represented as

the vector L, is given by:

L = f(R)  +  ξ (9)

where  ξ is an error term which we would expect to exhibit spatial and temporal autocorrelation.

We would also expect eqn. (9) to be homogeneous of degree zero in prices.

The second step decision is to choose levels of variable inputs, given the amount of land

planted to corn.  This is the restricted demand for variable inputs, conditioned on the amount of

land.  The exogenous variables are the same as for Eqn. (9) except that we omit the capital price

(CCC loan rate), the prices of substitutes and demographic variables;  we add weather variables

(April and July temperature and precipitation).  We assume that the price of other crops does not

affect the input decisions, once land has been committed.  Ex post corn output (Y) will thus be

determined by prices of corn and inputs, acreage planted to corn (L), climate, realized weather, soil

and geographic characteristics and a time trend to reflect technological change.  To reduce co-

linearity between weather and climate, weather is expressed as normalized deviation from expected
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weather -- a z-score.  Collect these exogenous variables over the panel into the matrix S.  Output in

county i, time period t, defined as Yit, is given by

Y =  g(S)  +  ζ (10)

where ζ is an error term which may have similar properties as ξ in eqn. (9).  Eqn. (10) should  be

homogeneous of degree zero in prices.  Constant returns to scale would imply Eqn. (10) is

homogeneous of degree one in acreage planted to corn.

B.  Estimation

Econometrically, there are several issues.  Many counties have no corn planted.  Those

counties that do plant corn are not a random sample of counties, but rather counties in which corn

does well. This sample selection can bias the OLS estimates of eqn. (9) and (10).  There are two

ways to deal with this.  One is to correct for sample selection using, for example, Heckman’s two-

step procedure with a sample selection equation (Greene, 1990).  Alternatively, we can apply a

Tobit procedure, recognizing that acreage and output are truncated at zero (Maddala, 1983).  Either

method will have problems when spatial autocorrelation exists in the data (which is likely here), but

these problems have substantially less effect for the first method, which we follow here.10

To be more specific, we correct our estimation for spatial and temporal autocorrelation,

heteroskedasticity and sample selection.  First consider sample selection. We adopt a method of

                                                          
10 In the Tobit, the truncation effect must simultaneously be estimated with the autocorrelation coefficients.  This creates
problems because of the presence of zero observations and lags.  This causes the autocorrelation parameters to be
overestimated because of the use of zeros for lagged variables that should be negative but are truncated.  In the sample
selection approach, the sample selection bias is first estimated, without correcting for autocorrelation.  The results of
this esimate are consistent but not efficient.  These estimates are used to generate the sample selection correction which
is used in the second stage.  The acreage and ouput equations are then estimated, correcting for both autocorrelation and
sample selection.
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Heckman (1979), as articulated in Greene (1990), to make this correction. Let yit be our censored

observations of the dependent variable and zit an indicator of whether yit is observed to be positive.

Recall that we are estimating a panel data set, a pooled time-series, cross-section.  The cross-section

has N members (indexed by i) and there are T time periods (indexed by t) for a total number of

observations of NT.  An OLS regression of y on independent variables will be biased due to the fact

that y is truncated (we do not observe negative yit).  The expectation of the error conditional on yit

being positive, is not zero.  This can be corrected by augmenting the independent variables by a

factor proportional to the conditional expectation of the error.

Define z*, which is unobserved, as a linear function of the dependent variables, V:

z*  =  V γ + u (11)

We do observe z, which is determined by z*:

zit =  1    if z*it >0 (12)

 0   otherwise

In Eqn. (12), z is the selection variable for observing z*.  Similarly, the truncated dependent

variable in which we are primarily interested is observed only when zit =  1.

In the first stage of the Heckman correction for sample selection, we estimate Eqn (11-12) as

a probit11.  (In estimating the probit, we use the same exogenous variables as the acreage equation,

Eqn. 9.)  Using the estimated probit, we calculate an auxillary variable, λit, for every member of the

                                                          
11 In estimating the probit, no attempt is made to correct for heteroskedasticity or autocorrelation, both of which may be
present.
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panel.  This variable represents the expectation of the residual, conditional on corn production being

greater than zero.  We then augment the exogenous variables (V) explaining the dependent variable,

y.  Let the augmented matrix of exogenous variables, including λ, be X.  This corrects for sample

selection.

Consider now the corrections for autocorrelation.  For a time period t, the cross-sectional

equation of N observations is

yt = Xt β + εt (13)

Spatial autocorrelation implies the error structure

εt = d W εt + ηt (14)

where W is a NxN weighting matrix.  We assume that the ijth element of W is 1/dij where dij is the

distance in miles between counties i and j.  For distances greater than 500 miles, we assume the

weight is zero.  This can be rewritten in terms of the entire panel as

ε = d M ε + η (15)

where the NT x NT matrix M = I ⊗ W, using the TxT matrix I.

Temporal autocorrelation of η can similarly be represented by

η = ρ T η  +  v  (16)
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where v ~ Normal (0, Ω) with Ω diagonal.  Eqn. (15) and (16) can be combined into

A ε = v where A = (I - ρT) (I - δM) = (I - ρT - δM) (17)

We can "pre-whiten" the variables in Eqn. 13 by pre-multiplying by A.  Define

y* = Ay (18a)

X* = AX (18b)

ε*  = Aε (18c)

where ε*it ~ Normal (0, σit
2).  Errors may be heteroskedastic, having different variances over the

cross-section.  We assume

σit
2  =  Zit υ (19)

where Zit is a row of the matrix of exogenous variables, X*, and υ is a vector of parameters (to be

estimated) that when combined with Z, yield the diagonal, σ, of the covariance matrix of ε*.

This completes the description of the model.  It is straightforward to write a likelihood

function for Eqn. (13), using the whitened data in Eqn (18) and correcting for heteroskedasticity

using Eqn. (19).  The parameter vector that maximizes this likelihood function is desired.

Parameters would include the coefficients of X* as well as the elements of υ (heteroskedasticity)

and the spatial and temporal autocorrelation terms, δ and ρ.
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C.  The Data.

The data set we use is annual county observations for the US, 1977-95.  Because we need

lagged values, we can use 18 years of data for over 3000 counties -- over 50,000 observations, of

which approximately 41,000 involve positive corn output.  We use data on climate, weather, soil

characteristics, economic variables, corn output and acres planted to corn.  Climate variables are

computed from county-level weather data from 1930 through the year prior to the year in question.

Thus the climate variables for a single county change modestly over our sample.  All other data

used, however, are from the 1977-95 period.  Weather for a county is constructed from weather

station information, following approximately the method of Mendelsohn et al (1994).  Weather is

normalized by subtracting the mean of a particular weather variable from the realization of that

variables and dividing the difference by the standard error of the variable.  The weather data that we

use are April and July average temperature and total rainfall for the month (four variables).  For

climate, we use the means and standard errors of April and July temperature and precipitation as

well as the covariance between July temperature and precipitation.

Soil characteristics were assumed to be unvarying over the sample period.  Thus we used

information from the 1982 National Resource Inventory for every year in the sample.  Price data is

from two sources.  For expected grain prices, we used the average daily closing price (weighted by

trading volume) for futures contracts traded in April and having delivery in July.12  For input prices,

we used a USDA index of the variable cost of producing one bushel of corn in a given year.  All

price data was deflated by the urban CPI.  Census data was used for county characteristics (income,

                                                          
12 The July delivery date avoids potential distortions from thin markets or from the influence of contracts which are near
their expiration date.
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population, per captia income and population density).  These data are interpolated from the

decennial census data.

Table I summarizes the variables used and their statistical properties.

D.         Estimation and Results

The problem is to estimate eqn. (9-10), correcting for statistical problems discussed above.

We adopt a mixed logarithmic functional form in estimating these equations. Specifically,

logarithms of economic variables (prices and quantities) are used whereas soil characteristics,

dummy variables and weather/climate are used in their natural form.  To allow for non-linearities in

the functional form, we include squared terms for weather, geographic, and census variables, but we

do not proceed with a full second order expansion because of the large number of variables.  There

are three equations to estimate, the probit sample selection equation, the acreage equation (Eqn. 9)

and the output equation (Eqn. 10).  The exogenous variables for the acreage equation and the probit

are identical (except for the sample selection term).  We consider April and July measures of

climate (precipitation, temperature, standard errors of these and the covariance of July precipitation

and temperature) and the squares of these measures.  We also consider the CCC loan rate as a proxy

for the price of capital, the price of corn, soybeans and wheat, an input price index, soil

characteristics, county urbanization variables, and a time trend.  For the output equation, we

consider these same variables except for the price of substitute crops, which we omit, weather

realizations (April and July precipitation and temperature), which we include, and acreage planted,

which we also include.  These variables are defined more precisely in Table I.

Tables II and III show the results of the estimation of eqn. (9-10).  Temporal autocorrelation

is assumed to be AR1 whereas spatial autocorrelation is proportional to the inverse of the square of
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the distance between counties, taking into account counties within 500 miles.  In adjusting for

heteroskedasticity, error variances are assumed proportional to a linear combination of a constant,

county size (siz) and the July temperature-preciptitation covariance (jcv).  Maximum likelihood is

used to estimate these equations.  Our preferred model for both equations is the one with the

corrections for autocorrelation and heteroskedasticity.

Note that the statistical corrections have a significant effect.  The temporal and spatial

autocorrelation parameters (act and acs) are highly significant.  Heteroskedasticity is significant in

the acreage equation (sig, sigc and sigs are the elements of υ in Eqn. 19; sig is the constant, sigc is

the coefficient on jcv and sigs is the coefficient on siz) but the parameters are not individually

significant in the output equation (Table III).  This is no doubt because the output equation exhibits

constant returns to scale; the coefficient on acreage (yac) is essentially unity.  Thus the output

equation is essentially a yield equation.  It is not surprising that variables such as the size of the

county have no effect on the variance of yield.

Examining the acreage equation in more detail (Table II), note the most of the variables

have the intuitively correct sign.  When a variable and its square are both in the regression, we

would generally expect the squared term to have a negative coefficient, indicating that the plot of

the dependent variable as a function of the independent variable is concave downward, reaching a

maximum for some value of the variable.  With a few exceptions, this is in fact the case.  With

regard to prices, higher prices of corn increase acreage planted (pcc) and higher prices for

substititues decrease acreage planted (pso, pwh).  Unfortunately, all of the price effects are

insignificant or barely significant.

Figure 2 shows how acreage planted responds to climate.  Shown in the figure is acreage in

the median county as a function of mean July precipitation, which takes the value 3.7" for the
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median county.  There is obviously some average July precipitation for which the maximum

acreage is planted to corn,13 and that is above the precipitation for the median county.  Of course

there is no need for the median county to be at that maximum, and it is not.  A similar picture is

painted in Figure 2, except for the case of mean July temperature, which takes the value 76.1oF for

the median county.  The median county’s July temperature is very close to that which yields a

maximum.

Focusing now on the output equation (Table III), somewhat surprisingly, the number of

significant variables is not great.  Acreage planted to corn is significant and essentially unity,

indicating constant returns to scale.  Weather is highly significant.  Higher than normal April

precipitation (zap) and July temperatures (zjt) decrease yield whereas higher than normal April

temperature (zat) and July precipitation (zjp) increase yield.  This is totally consistent with intuition

and in fact with the literature (compare the results for July with Thompson, 1986).  How do we

interpret the coefficient values on these z-scores?  The coefficient on April precipitation is -0.0126.

This means that a unit increase in the z-score reduces yield by 1.3%.  A unit increase in the z-score

is equivalent to a one standard deviation increase in April precipitation.  From Table I, we see that

one standard deviation in April precipitation is approximately 1.5 inches.  Thus April precipitation

that is one inch greater than expected reduces yield by slightly less than 1%.  Using this

approximation, yield seems to be most sensitive to July mean temperature.

Other significant coefficients in the output equation include the prices of corn and inputs as

well as time.  For some reason, higher prices of corn decrease output (pco).  The only explanation

for this is that higher prices induce increased planting in more marginal locations.  One other

                                                          
13 When y depends on ax2 + bx as well as other variables not involving x, clearly y attains a maximum or minimum with
respect to x when x = -b/2a.
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significant variable is the time trend, indicating an annual increase in yield of about 1.4%,

presumably due to technical change.

It is appropriate to note in Table III that before making statistical corrections for

autocorrelation and heteroskedasticity, nearly all of the coefficients were significant.  Only after the

statistical corrections were made did significance drop.  Most of the other econometric analyses of

corn yield (referenced earlier in this paper) do not correct for autocorrelation.  Our results suggest

that this is an important factor.

V THE SUPPLY EFFECTS OF ADJUSTMENT

We now turn to the question of the adjustment that may occur due to an unanticipated and

unobserved change in the climate.  Our approach will be to posit a change in the climate, a change

that the farmer does not directly observe.  The climate change will generate different weather and

over time the farmer will become aware of the new climate.  Using our estimate of corn supply for a

“typical” farm/county, we would ideally like to simulate both the learning process and the output

changes that occur while learning is taking place.

To simplify our climate change scenario, we adopt the same definition of climate change as

used by Mendelsohn et al (1994).  Their climate change scenario is a 5oF increase in temperature

and an 8% increase in precipitation (April and July).  We assume the variance of each variable does

not change and we ignore covariance between variables, except for July temperature-precipitation.

Note in particular the mean July rainfall (3.6”) and temperature (75.7oF).  The variance of these

estimates of the mean will be the sample variances divided by the number of observations

(approximately 50).  We assume temperature and rainfall are drawn from a normal distribution with
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mean and variance as in Table I (ignoring the covariance for ease of computation).  Figure 4 shows

how a Bayesian farmer would respond to an instantaneous increase in July temperature of 5

degrees.  Note the slow rate of learning, primarily because new observations only slowly dominate

the historic record.

However, for our simulations, we  assume this climate change occurs gradually, in fact

linearly over a century.  Using a multivariate version of eqn. (7), Figure 5 shows how the prior on

mean July temperature is expected to evolve over time under this climate change scenario (broken

line), while the actual mean July temperature follows the solid line.  Since learning takes place in

response to realized temperatures, learning will be slightly different for different draws from the

distribution of weather.  Figure 5 shows learning averaged over 1000 realizations of the weather.

Note that learning is relatively rapid at first although it takes some time for the farmer to completely

realize the true new mean of temperature.

The second step is to combine the mulitvariate version of eqn. (7) with eqn (9-10), to

determine how expected acreage and output will evolve over time.  This is a complex relationship

that we compute numerically.  We start by generating a particular trajectory of future weather, using

our prior on the distribution of weather.  Using that particular trajectory of future weather, we

compute the farmer’s subjective estimate of the climate over time (using the multivariate version of

eqn. 7), and the estimated acreage and output function, eqn. (9-10).  We can estimate these as a

function of time as the farmer is learning about the climate and compare this to the output and

acreage that would prevail if the farmer were fully informed of the climate.  This generates a

trajectory over time that approaches the “full information” output and acreage.  We repeat this

process for randomly drawn future weather trajectories and average the resulting trajectories.
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Figure 6 shows how corn acreage responds in this situation.  We focus our attention on the

median farmer/county; in other words, we examine an artificial county with the median of each of

the exogenous variables as given in Table I.  The solid line is the corn acreage for the median

county under perfect information about the changing climate.  The broken line shows the acreage

planted under incomplete information about the climate shock.  In this case, for the median county,

it is optimal to decrease acreage in response to higher temperatures.  Apparently, corn does not

grow as well at these higher temperatures and precipitation so the optimal response is to switch to

another crop (not represented in our model).  The broken line shows the path of the poorly informed

farmer as he slowly reduces acreage planted.

A similar analysis can be done with corn output conditional on acreage planted.  Figure 7

shows how corn output changes under these two information conditions.  The solid line shows the

evolution of corn output under perfect information about the climate change.  The broken line

shows how output evolves for the imperfectly informed farmer.  We know from the output equation

that yield is fairly constant.  Most of this decline in output is due to a decline in acres planted to

corn.

At first blush, these results suggest that it is good to be ill-informed.  After all, in Figure 7,

there is more corn output under imperfect information than under perfect information.  This is not

the correct interpretation however.  The farmer should be responding to the changed climate by

taking acreage out of corn and putting it in wheat (for example).  This gives the highest level of

profit.  The ill-informed farmer is not taking enough acreage out of corn.

The loss in corn output due to the climate change is represented in Figure 7 by the drop in

output from approximately 5.4 million bushels to less than 1 million bushels.  This is a substantial

drop.  However, the what happens to the median county in no way indicates what might happen to
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the rest of the country.  Furthermore, the significance of this drop can only be determined by

examining what happens to other crops as corn output drops.  Despite this, if we let the area

between the dashed line and the solid line in Figure 7 be the adjustment costs in output terms, we

see that it is a significant compared to the adaptation loss in output.

V. CONCLUSIONS

In this paper we have presented a method for estimating the adjustment costs associated with

an unanticipated and unobserved change in the climate.  The important result of this paper is a

theoretical framework for quantifying the adjustment costs.  We show that these interim adjustment

costs may be significant, even if farmers can completely adjust, without loss, to climate change.

Future work could involve refining the empirical estimation to move away from a single crop,

possibly examing overall farm output.  Other improvements might involve examining other models

of learning, other that simple Bayesian learning.
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Data Appendix

The weather data used for estimation are weighted averages of all weather stations within

500 miles (weighted by the inverse of the distance). The meteorological station data is from the U.S.

Historical Climatology Network Serial Temperature and Precipitation Data (NOAA, 1996),

available electronically at ftp.ncdc.noaa.gov/pub/data/ushcn. Geographic information for each

county comes from two sources. Climate data is constructed as an average of the last 30 years for

each county.

The county centroid longitude and latitude are from the National Weather Service Shapefile

Catalog (NOAA, 1997), drawn form USGS data (USGS 1:2,000,000 DLG), available electronically

at ftp.nws.noaa.gov/modernize/shapemap/county. The elevation data comes for the National

Resource Inventory soils database, as supplied by ZIPFIP from the USDA Economic Research

Service (1982), available electronically at ftp.mannlib.cornell.edu/data-sets/general/93015. The

conversion factor used for distance (both to generate weather estimates and for the autocorrelation

correction) was 90 miles per degree, which is approximately correct in the center of the United

States.

The soil variables are county-wide estimates that were generated from the 1982 National

Resource Inventory, and are also supplied by ZIPFIP from the USDA Economic Research Service

(USDA-ERS, 1982).

The price data comes from two sources. For expected grain prices, we used the average daily

closing price (weighted by trading volume) for futures contracts traded in April and having delivery

in July, as supplied by Tick Data, Inc. (1996). For input prices, we used an index supplied by the

Department of Agriculture (USDA-ERS, 1996), available electronically at

ftp.mannlib.cornell.edu/data-sets/inputs/94010, which approximates the variable cost associated
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with producing one bushel of corn in a given year. Finally, all of the prices for grains and inputs are

adjusted by the consumer price index, seasonally adjusted U.S. cities average for urban consumers,

base 1982-1984, from the U.S. Bureau of Labor Statistics (1997).

The census data is from interpolated values, using decennial census data and interim

surveys, constructed at the county level by the U.S. Census Bureau, and supplied by the U.S.

Department of Commerce (1997).

National Oceanic and Atmospheric Administration, National Climatic Data Center (1996). U.S.
historical climatology network serial temperature and precipitation data. NOAA-NCDC,
Asheville, NC.

National Oceanic and Atmospheric Administration, National Weather Service (1997). U.S.
Shapefile Catalog. NOAA-NWS, Silver Spring, MD.

Tick Data, Inc. (1996). Commodities futures tick prices. Tick Data, Inc., Lakewood, Co.
U.S. Bureau of Labor Statitistics (1997). Data Series CUSR0000SA0: Consumer Price Index -

seasonally adjusted. US BLS, Washington, DC.
U.S. Department of Commerce, Economics and Statistics Administration, Bureau of Economic

Analysis, Regional Economic Information System (1997). Personal income, total population
and per capita income by county and metropolitan area. U.S. Dept. of Commerce,
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Table 1: Summary of variables, 41,126 Observations NB:  Statistics over counties with positive corn production
Data  Mean Median Std. Dev.  Min   Max Description
aps 1.501 1.424 0.501 0.252 4.983 April precipitation standard deviation (inches)
aps2 2.504 2.027 1.801 0.064 24.826 aps * aps
apx 3.301 3.345 1.071 0.188 5.694 April precipitation mean (inches)
apx2 12.045 11.188 6.827 0.035 32.418 apx * apx
ats 2.86 2.777 0.542 1.729 6.082 April temperature standard deviation (degrees F ÷ 10)
ats2 8.475 7.714 3.245 2.989 36.99 ats * ats
atx 5.351 5.384 0.756 3.655 7.415 April temperature mean (degrees F ÷ 10)
atx2 29.209 28.991 8.206 13.356 54.982 atx * atx
gel 10.625 8.13 10.36 -1.0 75.74 elevation (feet ÷ 100)
gel2 220.23 66.097 534.095 0.0 5,736.54 gel * gel
gln -8.99 -9.018 0.921 -12.382 -7.236 longitude (degrees ÷ 10)
gln2 81.659 81.333 17.306 52.358 153.314 gln * gln
glt 3.852 3.833 0.443 2.62 4.884 latitude (degrees ÷ 10)
glt2 15.032 14.692 3.404 6.862 23.856 glt * glt
jcv -1.264 -1.137 1.047 -13.481 3.542 July covariance of precipitation and temperature
jcv2 2.693 1.293 4.947 0.0 181.741 jcv * jcv
jps 1.551 1.555 0.457 0.031 5.908 July precipitation standard deviation (inches)
jps2 2.616 2.417 1.603 0.001 34.906 jps * jps
jpx 3.828 3.79 1.311 0.014 8.888 Ju;y precipitation mean (inches)
jpx2 16.376 14.367 10.372 0.0 78.99 jpx * jpx
jts 2.105 1.974 0.575 0.863 9.706 July temperature standard deviation (degrees F ÷ 10)
jts2 4.759 3.896 3.114 0.744 94.204 jts * jts
jtx 7.575 7.611 0.439 6.07 9.797 July temperature mean (degrees F ÷ 10)
jtx2 57.58 57.924 6.658 36.841 95.988 jtx * jtx
lmb 0.288 0.362 0.308 0.0 3.825 lambda -- sample selection correction factor
pcc 0.7 0.637 0.17 0.451 0.975 CCC loan rate (ln of percentage rate)
pco 5.496 5.123 0.335 5.027 6.034 futures price of corn (ln ¢/bushel)
pin 5.528 5.392 0.165 5.296 5.821 price of variable inputs, USDA (ln, ¢/bushel)
pso 6.396 5.956 0.319 5.956 6.993 futures price of wheat (ln, ¢/bushel)
pwh 5.749 5.442 0.305 5.367 6.217 futures price of soybeans (ln, ¢/bushel)
scl 0.113 0.0 0.317 0.0 1.0 1 if clay, 0 otherwise
sfl 0.165 0.086 0.206 0.0 1.0 Fraction of acres in county prone to flooding
sir 0.102 0.0 0.231 0.0 1.0 Fraction of acres in county irrigated
siz 6.411 6.418 0.628 4.431 9.907 Size of county (ln square miles)
skf 0.271 0.283 0.088 0.0 0.469 k-factor (soil erodability index)
ssa 0.012 0.0 0.044 0.0 0.522 Fraction of acres in county treated for high salinity
ssl 1.841 1.615 1.3 0.0 13.526 Slope (average distance in feet to water basin)
ssn 0.124 0.0 0.33 0.0 1.0 1 if sandy, 0 otherwise
swt 0.061 0.012 0.101 0.0 0.949 Fraction of acres in county that are wetlands
tim 10.296 19.0 5.187 2.0 19.0 Time index (1978=2)
xin 1.254 1.285 0.138 0.727 1.875 County total income per capita(ln 10,000$)
xin2 1.591 1.65 0.354 0.528 3.515 xin * xin
xpo 1.013 1.004 0.12 0.605 1.549 County total population (ln 1,000s persons)
xpo2 1.04 1.008 0.251 0.366 2.4 xpo * xpo
yac 8.902 7.696 1.963 2.303 12.863 acreage (ln acres)
you 8.738 7.659 2.16 1.253 13.295 output (ln 1,000s of bushels)
zap 0.023 0.078 1.122 -4.359 6.201 actual April precipitation z-score
zat 0.009 -0.408 1.044 -3.256 3.541 actual April temperature z-score
zjp 0.157 -0.225 1.177 -14.453 8.935 actual July precipitation z-score
zjt 0.06 0.267 1.006 -5.023 3.561 actual July temperature z-score
Other parameters
act temporal autocorrelation parameter NB:  Median is calculated for 1995 only.
acs spatial autocorrelation parameter
sig effect of constant on variance of residual (heteroskedasticity)
sigc effect of jcv on variance of residual (heteroskedasticity)
sigs effect of siz on variance of residual (heteroskedasticity)
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Table II: Estimates for Acreage Equation (Dependent variable: yac)
No autocorrelation or hetero correction:With autocorrelation & heteroskedasticity:

estimate std. err. t-stat estimate std. err. t-stat

act n.a. n.a. n.a. 0.6675 <.0001 >1000 **
acs n.a. n.a. n.a. 0.0003 <.0001 >1000 **
sig 1.3547 0.0159 85.2013 ** -0.3199 0.0153 -20.9766 **
sigc n.a. n.a. n.a. -0.0296 0.002 -14.8028 **
sigs n.a. n.a. n.a. 0.1575 0.0028 55.3967 **

con -301.4335 4.6933 -64.2269 ** -391.6426 1.0934 -358.1973 **
aps 1.0552 0.1404 7.5132 ** 0.2565 <.0001 >1000 **
aps2 -0.104 0.0343 -3.0281 ** 0.1366 0.0172 7.937 **
apx 0.9708 0.0758 12.809 ** 0.1725 0.0222 7.7666 **
apx2 -0.3637 0.0094 -38.6751 ** -0.2367 0.0084 -28.0554 **

ats 7.796 0.2005 38.8921 ** 3.61 0.2382 15.1576 **
ats2 -1.1657 0.0318 -36.6247 ** -0.4884 0.0368 -13.2811 **
atx -4.858 0.4788 -10.1467 ** -9.3393 0.4829 -19.3384 **
atx2 0.371 0.0457 8.1101 ** 0.9222 0.0429 21.5194 **
gel -1.4802 0.0297 -49.9112 ** -1.4478 0.0346 -41.8658 **

gel2 0.0508 0.0055 9.3043 ** 0.0238 0.0056 4.2596 **
gln -11.3158 0.3251 -34.8083 ** -16.5001 <.0001 >1000 **
gln2 -0.5568 0.0174 -31.9077 ** -0.8282 <.0001 >1000 **
glt 25.2303 1.2075 20.8944 ** 46.9548 0.6768 69.3773 **
glt2 -3.0577 0.1474 -20.7509 ** -5.7162 0.0926 -61.73 **

jcv -0.8246 0.0262 -31.4173 ** -0.7212 0.0261 -27.6669 **
jcv2 -0.1831 0.004 -46.0892 ** -0.1479 0.0034 -43.2295 **
jps -4.187 0.1234 -33.9299 ** -1.5962 0.0878 -18.1833 **
jps2 0.8686 0.0313 27.7773 ** 0.2001 0.0233 8.5834 **
jpx 2.3527 0.061 38.5977 ** 1.5072 0.0614 24.5634 **

jpx2 -0.1718 0.0058 -29.8807 ** -0.1122 0.0061 -18.4465 **
jts -2.5361 0.1008 -25.1625 ** -3.1134 0.0726 -42.8634 **
jts2 0.2876 0.0139 20.6568 ** 0.376 0.0104 36.0724 **
jtx 48.1955 0.7849 61.4019 ** 57.1976 0.7129 80.2298 **
jtx2 -3.0857 0.0514 -60.0133 ** -3.7897 0.0442 -85.8077 **

lmbd 2.1662 0.0675 32.0747 ** 0.9792 0.0243 40.3503 **
pcc 0.1564 0.0671 2.3296 * 0.233 0.1477 1.5771
pco 0.1084 0.0806 1.3458 0.1578 0.1789 0.8823
pin 1.0186 0.1861 5.4734 ** 1.5095 0.4148 3.6388 **
pso -0.2245 0.0831 -2.7026 ** -0.0699 0.1841 -0.3798

pwh -0.3183 0.0934 -3.4091 ** -0.3426 0.2067 -1.658
scl -0.2059 0.0231 -8.9172 ** -0.2439 0.0165 -14.7899 **
sfl -0.7842 0.0356 -22.0103 ** -0.754 0.0267 -28.2229 **
sir 0.0862 0.033 2.6136 ** 0.0406 0.0252 1.6138
siz 0.5976 0.0204 29.2851 ** 0.9739 0.0133 73.3084 **

skf 0.9383 0.1226 7.6514 ** 1.268 0.0912 13.9085 **
ssa -0.5768 0.163 -3.5385 ** -0.0304 0.1212 -0.2506
ssl -0.0161 0.0058 -2.7611 ** -0.0051 0.0044 -1.1578
ssn 0.1976 0.0311 6.3501 ** 0.2885 0.0231 12.4666 **
swt 0.2795 0.0767 3.6428 ** -0.1206 0.0574 -2.1007 *

tim -0.058 0.0042 -13.7935 ** -0.0197 0.0101 -1.9516
xin -35.3055 0.8279 -42.6441 ** 5.6843 0.1643 34.6043 **
xin2 16.5037 0.3752 43.9905 ** -0.8952 0.0065 -137.6565 **
xpo 67.7243 1.0114 66.9581 ** 24.4568 0.1835 133.2734 **
xpo2 -35.2697 0.5442 -64.8157 ** -12.8171 0.009 >1000 **
*significant at 5% confidence level **significant at 1% confidence level



     CORN99.DOC; 6 June 199936

Table III: Estimates for Output Equation  (dependent variable = you)
No autocorrelation or hetero correction:With autocorrelation & heteroskedasticity:

estimate std. err. t-stat estimate std. err. t-stat

Act n.a. n.a. n.a. 0.1959 <.0001 >1000 **
Acs n.a. n.a. n.a. 1.2633 0.0002 >1000 **
Sig 0.2825 0.0258 10.9534 ** -0.029 0.296 -0.0981
Sigc n.a. n.a. n.a. -0.0174 0.0201 -0.8654
Sigs n.a. n.a. n.a. 0.0302 0.0428 0.7056

Constant -0.0171 0.1535 -0.1114 -8.4512 3.9275 -2.1518 *
Yac 1.071 0.001 1071 ** 0.9989 0.0005 >1000 **
Aps -0.1881 0.0284 -6.62 ** -0.1808 0.2408 -0.7508
aps2 0.0492 0.007 7.0339 ** 0.0464 0.0591 0.7863
Apx -0.201 0.0148 -13.6063 ** 0.2274 0.1418 1.6045

apx2 0.0164 0.0019 8.4357 ** -0.0337 0.0181 -1.8627
Ats 1.4734 0.042 35.0719 ** 0.8573 0.3604 2.3788 *
ats2 -0.2194 0.0066 -33.0109 ** -0.1189 0.0577 -2.0609 *
Atx 1.4365 0.0871 16.4964 ** 0.2302 0.8272 0.2783
atx2 -0.1333 0.0078 -17.0501 ** -0.0207 0.0844 -0.2448

Gel 0.0241 0.0063 3.801 ** -0.0338 0.0583 -0.5798
gel2 -0.0172 0.001 -16.6499 ** 0.0017 0.0105 0.1636
Gln -0.3362 0.0491 -6.8418 ** -1.0219 0.5771 -1.7708
gln2 -0.0125 0.0027 -4.6357 ** -0.0541 0.0316 -1.7106
Glt 3.0076 0.145 20.7435 ** 2.1635 2.2367 0.9673

glt2 -0.4131 0.0186 -22.1631 ** -0.2749 0.2657 -1.0345
Jcv 0.0008 0.0055 0.1532 -0.0363 0.0492 -0.7388
jcv2 -0.002 0.0008 -2.4288 * 0.0008 0.007 0.12
Jps 0.1282 0.0254 5.0541 ** 0.2052 0.2275 0.9022
jps2 -0.0119 0.0065 -1.8461 -0.0362 0.057 -0.6344

Jpx -0.0171 0.0124 -1.3824 -0.1169 0.1096 -1.066
jpx2 0.0061 0.0012 5.2346 ** 0.0046 0.0109 0.4241
Jts -0.3983 0.0181 -21.9635 ** -0.3711 0.2072 -1.7912
jts2 0.0419 0.0026 16.3222 ** 0.0371 0.0304 1.2211
Jtx -3.4477 0.1029 -33.5167 ** -0.7718 0.4642 -1.6625

jtx2 0.2121 0.0061 34.6951 ** 0.0468 0.027 1.7318
Lmbd 0.0709 0.0094 7.5084 ** -0.051 0.0406 -1.2585
Pco -0.066 0.0138 -4.789 ** -0.1237 0.0383 -3.227 **
Pin 0.2079 0.0329 6.3252 ** 0.3018 0.1014 2.977 **
Scl -0.0172 0.0047 -3.6597 ** -0.0002 0.0627 -0.003

Sfl 0.018 0.0074 2.4238 * 0.0122 0.0946 0.1295
Sir 0.0674 0.0068 9.8711 ** -0.0033 0.0857 -0.0387
Siz -0.0463 0.0036 -12.8009 ** -0.0198 0.0415 -0.4763
Skf -0.0019 0.0255 -0.0757 -0.0697 0.3287 -0.2119
Ssa -0.079 0.034 -2.3247 * -0.035 0.4449 -0.0787

Ssl 0.0009 0.0012 0.7514 -0.0006 0.0156 -0.0398
Ssn 0.0056 0.0064 0.866 -0.0257 0.0827 -0.3108
Swt -0.0686 0.0159 -4.3171 ** -0.0011 0.2033 -0.0056
Tim 0.0155 0.0007 21.8774 ** 0.0137 0.0036 3.7764 **
Zap -0.0127 0.0013 -9.5558 ** -0.0126 0.0031 -4.0971 **

Zat 0.035 0.0014 24.9005 ** 0.0092 0.0035 2.6006 **
Zjp 0.0345 0.0014 24.6818 ** 0.0187 0.0033 5.5933 **
Zjt -0.0659 0.0017 -38.6828 ** -0.0387 0.0036 -10.9033 **
*significant at 5% confidence level **significant at 1% confidence level



Figure 1:  Value of land as a function of climate or weather
Source:  Adapted from Mendelsohn et al, 1994.
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Figure 2:  Acreage Planted as a Function of July Precipitation for Median County

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60
1000s of Acres planted in Corn as a Function of July Mean Rainfall

10
00

s 
of

 A
cr

es

Mean July Rainfall in Inches



     CORN99.DOC; 6 June 199939

Figure 3: Acreage Planted as a Function of July Temperature For Median County
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Figure 4:  Learning about an unobserved 5oF increase in temperature.
Prior: 75.9oF, standard error 0.078oF.
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Figure 5:  Actual and Estimated Mean July Temperature, under assumed climate change
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Figure 6:  Acres planted to corn in median county, under assumed climate change
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Figure 7:  Ln corn output for median corn producing county under assumed climate change
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