UC Irvine
ICS Technical Reports

Title
The semantics of asynchrony: the relationships between two different interpreters of a
programming language

Permalink
https://escholarship.org/uc/item/9mx093sp
Authors

Arvind

Gostelow, Kim P.

Publication Date
1976

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/9mx093sp
https://escholarship.org
http://www.cdlib.org/

-

—iCDOC—

The Semantics of
Asynchrony: The
Relationships Between Two
Different Interpreters of
a Programming Language

Arvind
and

Kim P. Gostelow

* DEPARTMENT OF

INFORMATION AND COMPUTER SCIENCE
UNIVERSITY OF CALIFORNIA, IRVINE -

~ IRVINE, CALIFORNIA 92664 -

The Semantics of
Asynchrony: The
Relationships Between Two
Different Interpreters of
a Programming Language

Arvind
and

Kim P. Gostelow

August, 1976

Technical keport, #88
Information and Computer Science Department
University of California, Irvine
Irvine, California 92717

This work was supported by NSF grant MCS76-12460.

Index

Abstract L 0 . 00 ...
General RKemarks « « o o . .
Data Flow Programs
Definitions of Some Funections
Semantics of DDF Operators According to
Queued Interpreter
Semantics of DDF Operators According to
Interpreter
Semantics of Procedure Calls (the apply
Semanties of Data Flow Programs
Acknowledgements
keferences

Appendix -- A note on the gate operator

Page 2

e« ¢« « « < . 15
the Unraveling

A |
operator) . . 31
e« « « « .« . 35
e« « « « . . 45
e e+« « . . 46

o e e o o« . . 47

Page 3

Abstract

This report describes the meaning of various data flow
operators in terms of relationships between the history of
input lines and the history of output lines associated with
an operator. Data flow programs are formed by
interconnecting data flow operators, and by specifying the
program input lines. The history of each line in a progran
is determined by the history of the input lines of the
program. The semantics of a program are defined by a set of
fixpoint equations determined by the data flow operators and
their interconnections. The least fixpoint solution of such
a system of equations is considered, and it is shown that
all the operators and all programs under the Unraveling
Interpreter are more defined than wunder the usual Queued
Interpreter. However, 1if only physically meaningful (i.e.
proper) inputs are considered then it is shown that both
interpreters will arrive at the same 1least fixpoint
solution. Since the Unraveling Interpreter is more defined
than the Queued Interpreter, the dynamics of token
generation under the Unraveling Interpreter, in general,
exhibit more asynchrony than under the Queued Interpreter,
even if the inputs to the program are restricted to be
physically meaningful.

Page 4

1. General Remarks: Let us consider a very simple data
flow operator f (e.g., Identity, Square, Constant) in terms
of how it transforms an input token to produce an output
token. According to Dennis’ Data Flow [1,2] language and,
in particular, the "gueued interpreter" QI associated with
that language*, whenever an input token is present function
f can execute by absorbing the token holding the value x
from 1line X and producing an output token holding the value
Yy on line Y after some unspecified but finite time. Figure

1 shows function f which computes the value given by

y = £(x) (1.1)

XIX lx
£ = £
v Ve

Figure 1. Function f Under Interpreter QI

*We have assumed Dennis’ interpreter to handle queues of
tokens; this is a trival generalization of Dennis’ in which
a queue of maximum length 1 was assumed.

Page 5

Even though equation (1.1) relates the value of the
input token to the value of the output token, it does not
capture the complete semantiecs of the operator. For
example, it does not tell wus that the input token is
absorbed, nor that the next token on the 1line X cannot
appear unless the previous token has already been absorbed.
Due to these observations, it becomes necessary to define
every data flow operator in terms of relations between
histories of the input lines and histories of the output
lines. According to the definition of interpreter QI,
tokens appear in sequence on 1lines. Therefore we can
associate a number k with a token if it is the k%D token to
appear on some line X. The history of line X wunder QI is
then simply a set X of ordered pairs where X, represents the

value of the kth token on line X:

X = {<x1,1>,<x 2>y ey <xy k>,) (1.2)

27
If the program terminates, the history set associated with

every line will be finite.

The situation 1is slightly different under a new

interpreter UI* [2]. Suppose we wish to determine the set

¥From now on the new interpreter [2] will be called the
U-interpreter where U may be read as unraveling or
unfolding.

Page 6

of tokens that are intended for the input X of some
statement s, assuming that statement s is a part of
procedure P which 1is called in context u. Then we define
the history X under UI to be the set of tokens with prefix
u.P.s which are intended for input X of statement s. In the

sequel, we 1ignore the context from which procedure P is

called, so the history of input X is represented as

X = {<x, ,i i .. ., - .
{ Xl1,11>,<xi2,12>,. ,<xlk,1 >, } (1.3)

Please note that for any set X representing the history

of line X, regardless whether under QI or UI, the predicate
(<a,i>€X and <b,j>eX) => i#]j (1.4)

must be true. Therefore {<a,1>,<b,2>,<c,1>} 1is not a

history.

Let H be the set of all possible histories, including
¢ (the null set). We define a partial order «c on the set

H, where ¢ 1is set containment.

So far we have only discussed a way to assign neanings
to a single data flow gperator by means of the histories of
input and output lines. The meaning of data flow programs
can also be considered in terms of the relationships between
the history of the input 1lines to the program and the

history of the output lines from the program. Two programs

Page 7

are defined to be weakly equivalent iff for all possible
inputs they produce the same outputs. However, we will work
with the notion of strong equivalence between programs which
states that for all possible inputs both programs produce
the same histories on all lines. A data flow program
defines interconnections between various operators and,

hence, relationships between the histories of all the lines.

We explain further by giving an example below (Figure 2).

The history associated with line i is represented by

Xi. Xi(k) refers to that element of set Xi which has k

associated with it as the second value in the ordered pair

H

(e.g., if X, = {<a,1>,<b,3>} then X;(3) = b, X, (1) = a).

i
Note that the value of any history set Xi associated with
line i 1is determined by the value of the token on the
program input lines (X1 in Figure 2), and the
interconnection between the various data flow operators.

The following algebraic equations represent these

relationships for the program of Figure 2.

Page &

Figure 2. A Data Flow Program

Page 9

AiC1) = u (the input) (2.1)
Xo(k) = 1f Xg(k)then X (t)else A, (m) (2.2)
where

t = number of true tokens in {X5(1),X5(2),...,X5(k)}

m = number of false tokens in {X5(1),X5(2),...,X5(k)}
x3(k) = f‘(X2(k)) (2.3)
X, (k) = p(X3(k)) (2.4)
X1(t) = X3(k)
where

t = number of true tokens in {Xu(T),...,Xu(k)} (2.5)
Xs(k) = if k=1 then false else X, (k=1) (2.6)
X6(t) = X3(k)
where

t = number of false tokens in {Xu(1),...,xu(k)} (2.7j

The output is X6(1).

The above set of equations completely defines the
program in Figure 2 once the value of the input token u is
specified. Depending upon input token u, the histories of
lines X1 through X6 will each assume a certain steady state
value. Now, if we regard each X; as a function of input 4,

then the equations (2.1) to (2.7) define a set of fixpoint

equations [3] where the functionals are represented in terms

Page 10

of data flow operators and their interconnections. By the
theory of fixpoint equations we know that if all operators
are continuous, then the set of eqguations will yield a
unique least fixpoint soclution. For the above set of
equations the solution will be the history of each line. We
propose to determine for any program p the exact

relationship between the standard interpreter QI and the new

interpreter UI [2] in terms of least fixpoint solutions.

s

First, we will define the meaning of each type of
operator (e.g., merge, gate, function) according to both

O 1 -
, Wwhere I

interpreters in terms of the mapping HI~9H
represents the number of input lines to the operator and O
represents the number of output lines from the operator.
With no 1loss in generality we assume O=1. The history set
Xi associated with output line i will be expressed in terms
of a functional T which is a composition of the history
variables of all lines and the data flow operators. The
histories of the input lines to a dataflow program (i.e.,
lines without sources) will be designated A1 to Am‘ Let the

total number of lines output from all operators in a data

flow program be n. We summarize the notation below.

H = a chain-complete partially ordered set of
histories.¥*

¥et P be a partially-~ordered set and S ¢ P. Then S 1is a
chain if a,b €S implies a<b or b<a, where "<" is the partial
order on P. An xe€ P i3 an upper bound of § if a<x for all
aecs, and x 1is a least upper bound (lub) for S if x<y for
all upper bounds y of S. Finally, S 1is chain-complete if
every chain in S has a lub.

Page 11

X, : H"SH is a mapping from m input histories to one output
history, and is the history associated with the

line i, 1<i<n.
T: + X, x X, x...xn-axi cr
[H">H]1" - [H™>SH] for 1<i<n.

That is, T, is a functional associated with line i and
is expressed a3 a composition of data flow operators and

history function variables Xj (1<j<n).

A dataflow program P is a set of n equations and n

history inputs (A1 to Am, such that each Ai € H) where

Xi(A LA) = T[X

m i 1,A ...,kn](A A)

1,A2,..., -
for 1<i<n (2.8)

17 - - o9

The meaning of the program P is the 1least fixpoint

solution to the set of equations (2.8).

Before we leave this section we would like to point out
that the only physically meaningful initial input histories

Ai’ 1<i<m to a program P under interpreter QI are the

30-called complete proper histories (i.e., histories of the

e}

type {<u1,1>,<u2,2>...<uk,k>}). In the next section we
define such histories rigorously. For the time being it
suffices to notice that {<a,1>,<b,2>} is a complete proper

history while {<a,2><b,3>} and {<a,1>,<b,3>} are not.

Page 12

In Section 7 we will prove that if all the input
histories to a program are complete proper histories then
both interpreters, QI and UI, produce exactly the same

histories on all lines.

The next section contains the definitions of some
functions that are wused in Sections 4 and 5. They define

the semantics of data flow operators.

3. Definitions of some functions

Throughout this section we will assume that B
represents the boolean set {true, false}, I represents the
set of all positive integers, and K represents the set of
values where values may be anything (e.g., reals, booleans,
ete.). The functions 3.1-3.7 below are used in
characterizing the semanties of data flow operators and

program:s in Sections 4 and 5.

3.1 value funciion: [x T—=1u]

11 if {1 iD€ES (’{.1
value(U,i) =
undefined othervise.

5

Lote L. <. then value(U,i) = value(U 7 .i).

Ny

true 1f <u,iv>eu
tavon(u,i) = (3.2)
false otherwise

Wote that if UcU” then match(U,i) => mateh(U ,i).

3.3 proper-function: [H xI-B]

proper(U,i) = /\ mateh(U, j) (3.3)
1<3<1

Note that if U <U’ then proper(U,i) => proper(U ,i).

The next two functions deal with the history associated

with control lines.

3.4 true-token-count-function: [HX I—I])

truecount(U,i) = |{<true,j> eUﬁjgi}l (3.4)

3.5 false-token-count-function: [H xI—=>I]
falsecount(U,i) = |{<false,j> GU}jﬁi}l (3.5)
Again, if UcU’ then
truecount(U,i) < truecount(U’,i) and

falsecount(U,i) < falsecount(U ,i).

If 1 represents that maximum j such that match(U,j) is
true and proper(U,i) is true, then we will call U a complete

proper history.

Lastly, we define two functions which deal exclusively
with the dummy token within the merge cperator. In [2] the

dummy token in a merge contains an ordered pair of values

Page 14

represented as <dum,, duamg>. The history of such dummy

tokens will be represented as

Dum = {---,<<dumT,dumF>,1>,...}

Functions truevalue and falsevalue below are defined to
extract the values dum, and dumF assoclated with the ith
1

token.

3.6 true-value-of-dummy-function: [HxI=>I}

dumT if <<dumg,,dum.>,i>ebum
truevalue(bum,i) = ‘ £
undefined otherwise (3.6)

3.7 false-value-of-dummy-function: [HxI->TI}

5dumF if <<dumT,dumF>,i>eDum
falsevalue(Dum,i) = !

undefined otherwise. (3.7)

4. Semantics of DDF operators according to the Queued

interpreter

The meanings of DDF operators in this section and the
next section is specified as a function relating the history
of input lines to the histories of output 1lines. Since
there are many ways to express the meaning of an operator,
there is no way of proving that the equations in these two
sections are correct. A reader is encouraged to question
the meanings of operators given here and even to give his
own meanings to the operators. For this paper, since the
functions representing the operators are more important, we
will specify whether the meaning of operator f is according
to the interpreter QI or is according to the interpreter UI.
it should alsc be noted that whenever new operators are
introduced into dataflow, or another dataflow language [6]
is used, this same technicue can be used to express the

meaning of those operators and language.

4.1 Functions and predicate:

1]

U v

(u,Vv)

Fliguare 3. A function Under Ql

Page 16

£u,v) = Y (

i per(U,i)Aproper(V,i)
<u,i>elU ¢
€

roper
{<f{u,value(Vv,i)) ,id>}
)

=iy
(U= Kol

=3
&

(4.1)*

It should be noted that f(U,V)** as defined by equation

(4.1) is a monotonic operator, that is, if U; < U, and Ve v,

¥Lquations (4.1) and some of the equations in the sequel can
be written more symmetrically in the following manner

£,v) = U (i£ proper(U,i) n proper(Vv,i)
ieN then{<f(value(U,i),value(Vv,i)),i>}
else ¢) '
where N is the set of natural numbers. However, infinite

union of sets poses a problem in proving monotonicity of
these functions.

o

¥¥The notation in equation (4.1) is 31lightly ambiguous. ;
on the right hand side denotes the results produced by one
application of operator f, while the f on the left hand side
operates on the history sets. Unambiguous notation would
require using a different symbol (for example F) on the left
hand side. We have used the simplified notation throughout
the paper on the assumption that an alert reader will not
confuse between two f 3 due to the context.

t hen f(U1,V1) < £(u,, V,). Ve prove this as follows:
Let U, = Uqu Xy where Uyn £1 =0
and V, = Vqu X, where V,n X, = 6

From equation (4.1)

‘(UZ’ V,) = £(u,u Xq,V,5)
= (if proper(U,,i) A proper(Vv.,,i)
<u,is>e U 2 2’

§hqq{<f(u,value(vz,i)),i>}
else &) v X, (4.1.1)

where

Ry = U if proper(U,,i) A proper(V,,i)

<x,i> e X

gaqq{<f(x,value(vz,i)),i>}

else &

Page 17

By the definition (equation 3.3) of proper, we know

that if proper(U1,i) is true then so is proper(UZ,i), and

similarly proper(v1,i) => proper(Vz,i). Hence, 4.1.

be written as

1 can

Page 108

f(UZ,V2) = LJ (if proper(U1,i)A proper(v1,i)
<u,i> € Ul
then {<f(u,value(V,,i)),i>}
else o©) U Xy uX (4.1.2)
3

where X), contains {<f(u,value(V2,i)),i>}
corresponding to those <u,i> for which
proper(U2,i)A proper(VZ,i) is true but

PPOPGP(U1,i)Aproper(V1hi) is false.

In equation (4.1.2) value (VZ’i) will be evaluated only

if match(VW,i) is true. By the definition (eguation (3.1))
of the function value value(v1,i) = Value(VZ’i) provided

value(V1,i) exists. Hence, equation (4.1.2) can be written

as
f(U2,V2) = (if proper(U,,1i) Aproper(V1,i)
<w,id> €u,
then {<f(u,value(V1,i)),i>}
else &) uX v Xg (4.1.3)
= 1(U1,V1) UX, U X3

llence,
‘(U1,v1) = f(Ua,VZ) Q.E.D.

Page 19

4.2 Gates
U
C gate-if-true
gateT(C,U)
Figure 4. A Gate-if-true Under QI
gateT(C,U) = LJ (if proper(C,i)rproper(U,i)
<c,i>eC then (if c=true then
{<value(U,i),truecount(C,i)>}
else o)
else &) (4.2)

Gate-if-false can be defined in a similar fashion.

4.3 lierge

nerge(C,U,V)

= (if proper(C,i) then

<¢,i><C (if e=true then
(if proper(U,truecount(C,i))
then {<va1u9(U traeoount(c i)),i>}
else &)

else

(if proper(V,falsecount(C,i))
then {<value (d,;dlbecount(c i1)),i>}
else &))

else ¢) (4.3)

Page 20

f
i

5

Figure 6. A D-box Under @I

One D-box is required for each initial token present.
Note that D-boxes (and hence all initial tokens) are treated
as program definition.

DW= | J (if proper(U,i) then {<u,i+1>} else &) U {<b , 1>}
<u,i>ecl

(4.4)

Discussion:

According to equations (4.1) to (4.4), if inputs are
histories, the operators can produce only histories
including ¢, the empty history. History ¢ also represents
the undefined history. If a program does not halt then the

history of some lines is infinite.

it is easy to check that the gate, merge, and D-box
operators are all monotonic with respect to their inputs.
The proof is similar to the one given in Section 4.1.

Intuitively one can see that the way we defined proper,

Page 21

match, ete. 1in Section 3 and the fact that the definition

&

o' each operator is given in terms of a union of sets, the
right hand side of equations (4.2) to (4.4) can only contain

new terms if the inputs are given new tokens.

We use a prime mark () to indicate that DDF operators

are being interpreted according to the interpreter UI.

J{U J/V

J’f’(U,V)
Figure 7. A Function Under UI

£7(U,V)

(if mateh(V,i) then {<f(u,value(V,i)),i>}
b) (5.1)

<u,i>el
3

)

el

This definition of £’ is monotonic with respect to U
and V. Further, it is obvious by comparing equations (4.1)
and (5.1) that if U and V are complete proper histories then
both £ and f’° yield the same result. In general, however,

f” is more defined than f, that is

Page 22

£(U,V) < £7(U,V)

gate~if-true

Figure 7. A Gate-if-true Under UI

gate'T (C,U,DumT) = <c,%g€c (it mateh(U,i)amateh(Dumg,i)
then (if c=true then
{<value(U,i),valué(DumT,i)>}
else ¢)

else §) (5.2.1)

Page 23

bum,(C,U) = L} (if mateh(U,i)rmateh(Dumy,i)
: <c,i>eC :

then (if c=true

then{<value(Dum,,i)+1,i+1>}

g%qe{(value(bumT,i),i+1>})

else &) u {<1,1>} (5.2.2)

Discussion: Ve want to determine the relationship between
equations (5.2.1) and (5.2.2), and (4.2). First we define
kU to be the largest k such that proper(U,k) holds. The
following lemma shows that DumT can only be a complete

proper history.
Lemma 1l: For a gate-if-true given C and U

true if i{min(kc,ku)+1
proper(Dum,.,i) =
: false otherwise

(by contradiction)

]

i

ase 1: ssume that proper(DumT,i) = false for some
iSmin(kC,kU)+1. Further, assume that j is the smallest
3uéh i. (Hote that j>1 since <1,1>eDumT by (5.2.2).)
Thus, match(DumT,j) is false while match(DumT,j-T) is
true. Since j—1§kc and j-1<k;, both mateh(C, j-1)* and

*Instead of saying <¢,i>€C we can write match(C,i) is true.

Page 24

mateh(U, j=1) must be true. But according to the definition
of DumT and the fact that mateh(C, j-1), mateh(U, j-1),
and match(DumT,j-1) are all true, either
<value(DumT,j-1)+1,j> or <value(Dumg,j-1),3> must be
included in DumT by (5.2.2). In either case

match(DumT,j) is true. Contradiction.

)

Casze 2: Assume that proper(DumT,i) = true for some

i>min(kc,kU)+1. Thus, proper (DumT,j) is true providéd

j<i. Since 1>m1n(kc,ku)+1, match(DumT,min(kC,kU)+2)
must be true. Letus write k for min(kc,kU). According
to definition (5.2.2) of Dum,, the only way

match(DumT,k+2) can be true is if all of match(C,k+1),

match(U,k+1) and match(Dum.,k+1) are true. Since

T7
k=min(kc,ku), then either k+1>k, or k+1>k; or both.
Therefore, either match(C,k+1) is false or match(U,k+1)

is false or both are false. Contradiction. [J

Lue to lemma 1, Dum, is completely determined once C
and U are specified. Hence, we may write gate'T(C,U)
instead of gate'T(C,U,DumT). Also, note that the predicate
match(C,i)Amatch(U,i)Amatch(DumT,i) is true if and only if
the predicate proper{(C,i)aproper(U,i) is true. Substituting

this predicate in equation (5.2.1) we get

Page 25

gate’ (C,U) = (if proper(C,i)aproper(U,i)
T <e,idcC
'"7€Y then (if c=true then
{<value(U,i),value(DumT,i)>}
else o)
else &) (5.2.3)
According to the definition of DumT (i.e., equation

(5.2.2)) and 1lemma 1 we note that value(DumT;i).is exactly
truecount(C,i) provided value(C,i) is true. We clarify by

giving an example.

Suppose C = {<T,1>,<T,2>,<F,3>,<F, 4> ,<F,5>,<T,6>,<F,7>}

Then, 1 = 1, 2, 3, 4, 5, 6, 7.

value(C,i) =T T F F F T F

tiruecount(C,i) =1 2 2 2 2 3 3

value(DumT,i) =t 2 3 3 3 3 4
+4 A

From the above table
if value(C,i) = true

Value(DumT,i) = if
then truecount(C,i)
el

e truecount(C,i)+1 (5.2.4)

€
3

Substituting truecount(C,i) for value(Dum,,i) under the
1

condition value(C,i)=true in equation (5.2.3) we get

gate _(C,U) = LJ (if proper(C,i) Aproper(U,i),
* <e,i>eC

et
lon

en (if c=true then
{<value(U,i) ,truecount(C,i)>}
else ¢)

else §) (5.2.5)

Page 26
rquations (5.2.5) and (4.2) are exactly the same. Hence,

gater(C,U) = gate T(C.U)

£

While writing this report a new technique for
interpreting gates become apparent. A discussion of the new
interpretation and new semantics of the gate operator appear
in the appendix. It is proven in the appendix that if UI
interprets gates according to the new scheme then

gate < gate’

5.3 Merge
iU \Y

T T T T T e T -
! e l i
! —Dumz | i
A e i
I :§ v
] P i | M Mo

C-7 ;mij MC :ﬁ ___________ 3 T F :
t i - 14 :
J oo [
: i i merge " (C, U, V, Dum |
!Dum(C) R '

V(merge (C,G,V)
Figure 8. £ Merge Under UI
Note that the value of Dum 1is an ordered pair

<de
dJmT,dumF>.

Page 27

nerge (C,U,V,Dum) = LJ (if match(Dum,i)
<c,1%¢C then(if c=true then
(if match(U,truevalue(Dum,i))then
{<value(U, trJLvalue(Dum i)),i>}lelse &
el;e
(if match(V,falsevalue(Dum,i)) the
{<value(V,falsevalue(Dum, 1)) i>lelse
else o) (5.3.1)
bun(cC) = LJ (i€ mateh{Dum.i)then (if c= true then
<e,i>eC {<<t“jPVd]J((uU‘ 1)+1,
Falsevals)“(A 11\,,)> ’+1>}
else
1(<ILJPVdLJ(\ n,i)
Tae{(Lun 1Y+ 1> i+ })
glz: GF LTt 1>, 1>}
(5.3.2)
Discussion: Again we want to compare nerce and nerge. Ve
proceed by eliminating Dum as an argumment to merge’ since
bum is an internal history of the merge statement. Again,
let kU be the largest k such that proper(U,k) holds.

Lemnma 2@ For a merge statement given input C

Proof:

true 1<K+
proper(Dum,i) =
false otherwise
(By contradiction)
Case 1: Assume proper(Dum,i) = false for some i<k +1.

C
Further, assume that j is the smallest such i. (Note

that j>1 since <<1,1>,1>¢ Dum by (5.3.2).) Then
proper(Dum,j-1) = true and proper(Dum,j) = false.
Since j—1§kc+1 both mateh(Dum,j-1) and match(C, j-1) are

true. Then due to equation (5.3.2) match(Dum,j) must

N

be true. Since proper(Dum, j=1) is true and
match(Dum, j) is true then proper(Dum,j) is true.
Contradiction.

Case 2: Assume proper(Dum.i) = true for some i>kc+1.

Thus, proper(Dum,j) is true provided j<i. Since ko+2<1
both proper(DUm,kC+2) and match(Dum,kC+2) nust be true.
Due to the definition of Dum (equation (5.3.2)) if

mateh(Dum,k +2) is true then so must be match(Dum,k .+1)

o C
and match(C,kC+1). But according to the definition of
kc, proper(c,kc+1) is false. Since proper(c,kc) is

true prOpeP(C,kC+1) can be false cnly if match(C,kC+1)

is false. Contradiction. [J

Note that due to lemma 2 the predicate
match(C,i)Amateh(Dum,i) is true if and only if the predicate
proper(C,i) is true. Substituting this in (5.3.1) and
noting that since Dum is completely internal to merge’ we
can eliminate Dum as an argument to merge’, we arrive at

merge (C,U,V) = LJ (if proper(C,i)then (i

L cz=true
<c,i>eC n
(if mateh(U,truevalue(bum,i))th

{<value(U, trupvalue

’\La el od
(O wRC e g

clse
(if mateh(V,falsevalue(Dum,i))th
{<value(V,falsevalue(Dum, 1)) i>}

(5

else &)

e
€l

¢

9]
Wt

3. 3)

gA)}“"]D
(W]

e

(en
um,i)),i>telsed)
1

©))

Page 29

Since proper{(Dum,i) is always true provided <c,i>eC, we
y

note that truevalue(Dum,i) = truecount(C,i) if value(C,i) is
true, and falsevalue(Dum,i) = falsecount(C,i) if value(C,i)
is false. Making these substitutions in (5.%.3) we get
merge (C,U,V) = L) (if proper(C,i)then (i =true then
<ec,k> e C (if mateh(U, truecount(c 1)) then
{<value(U, truecount(c 1)) i>} else
else
(if matceh(V,falsecount(C,i))then
{<value(V,falsecount(C,i)) ,i>}lelse ¢))
else o) (5.3.4)

We would also like to draw attention to the physical
behavior of UI. Even though it accepts tokens only in order
at the control input, the tokens at the other inputs can be
accepted out of order. This implies that merge under UI can

sroduce tokens which are not necessarily in corder.

By comparing equations (4.3) and (5.3.4) we notice that
the only difference between merge and merge is that two
occurrences of proper in merge (4.3) have been replaced by
two ocecurrences of match in merge” (5.3.4). Since
proper(W,j) => match(W,j) for any W and j, we conclude that

merge never contains fewer terms than merge. Hence,

merge(C,U,V) < merge (C,U,V)

Page 30

5.4 D=box
U D(U)
re
[
Figure 9. A D-box Under UI
W) = Y {<u,i+s1>} v (<o, 1>} (5.4)

<u,i>ely

Clearly D(U) = D(U).

Discussion: Again, without proof, we state that operators

!

“,gate ,merge’ and D are all monotonic. Intuitively.
monotonicity follows once we observe that the right hand
side of equations (5.1), (5.2.5), (5.3.4) and (5.4) are
defined in terms of union of sets, and increasing the input
sets (introducing more input tokens) can only increase the
number on terms on the right hand side (produce additional

cutput tokens).

Page 31

6. Semantics of Procedure Calls (the apply operator)

At least two distinct ways have - been suggested for
invoking procedures in data flow. According to Dennis [1]
an apply operatér creates a copy of the called procedure
whenever it receives the argument 1list. In order to
distinguish the tokens for the called procedure from the
tokens of the calling procedure, a wunique color is
associated with each procedure invocation. (The activate
part of the apply operator changes the color of argument
tokens before starting the called procedure.) When the
called procedure terminates, it passes the results to the
calling procedure by changing back the color of the tokens.

information regarding the change of colors is stored in the

Another technique that has been suggested for executing
procedures differs from the first one only when more than
one argument is allowed in the procedure calls. It has been
suggested by Weng [5] that actual substitution of the called
procedure code should take place as soon as any of the
arguments become available. 0f course, some naming or
coloring scheme will have to be devised in order not to
confuse the calling procedure from the called procedure.
The advantage of \Weng’'s scheme is obviously greater

asynchrony. Here, we are only interested in the semantics

Page 32

of procedures, and not the relative merits of these two

schemes.

Since the U-interpreter creates a new procedure domain
only after all the arguments for invoking a procedure become
available®, it executes procedures in a way very similar to
Dennis”® scheme. One can think of the context part of an
activity name (the u in u.P.s.k.) as representing the color
of the tokens. In the following we only compare the meaning

of procedure calls for Dennis’ and Weng’'s scheme.

Under both schemes the arguments to the called
procedure are passed by value. The arguments must be
evaluated in the context of the calling procedure, and the
called procedure cannot possibly affect the evaluation of
arguments. Also, well-behaved data flow procedures, by
definition, restore the initial token distribution and thus
produce no side-effects (e.g. they exhibit no memory).
These restrictions force a strict functional behavior on

procedure calls, which in turn means that one invocation of

¥The U-interpreter can be easily modified to execute
procedures according to Weng s scheme.

Page 33

a procedure cannot interfere with any other invocation of
the same procedure. Since Dennis” scheme (as well as the
U-interpreter) invokes procedures only after all the
arguments become available, the function represented by a
well-behaved procedure has to be a naturally extended
functicn* [3] since a procedure cannot produce an output
unless all/tﬁe input tokens arrive. In data flow an absent
token (infinite wait) represents the undefined value. When
only naturally extended functions are considered, then all
computation rules (rules of evaluation) yield the least
fixpoint. For the sake of completeness we point out that
both the Q and the U-interpreter use the parallel-innermost

computation rule [3].

It seems that procedures under VWeng s scheme may
sometimes produce output even though one or more inputs may
be undefined (may not have yet arrived). We conjecture,
Lthat if only well-behaved data flow procedures are
considered, even Weng s scheme will attach only naturally

extended functions as the semantic meaning of a procedure

¥The value of a naturally extended function is undefined
whenever any of its arguments is undefined [3].

Page 34

call.

Since both the (-interpreter and the U-interpreter
treat procedure application as identical to a function box,
based on Sections 4.1 and 5.1 we can write

apply < apply’

Page 35

in this section let T; represent a functional composed
o data flow operators whose semantic meanings are specified
by Dennis” interpreter QI. Also, let '{i be the functional
composed of exactly the same data flow operators but whose
meanings are specified by the U interpreter. By composition

o

Of functions here we mean exactly what 1is meant by

mathematical composition. Instead of Ffunctions on the
domain of 1integers,this paper deals with functions defined
on the history set H. Physically, operator composition
essentially means connecting the output of any data flow
operator to the input of one cr mcre data flow operators
(including the operator whose output is to be connected).
Tne only restriction is that any input can be connected to

at most one output. Hence, convergence of two lines (see

Figure 10) is illegal and mathematically meaningless.

v

e |
| g

Figure 10. An illegal connection

Page 36

Gince we have already stated that all the data flow

operators, under both schemes of interpretation, are
monotonic (under <, the set ccntainment relation), then
functionals T; and T'i, which are composed of data flow

operators, must be continuous [3]. We have also shown that

£fcrf (7.1)
pate, = gate'T (7.2)
nerge < merge’ (7.3)

D <D’ (7.4)

kelations (7.1) to (7.4), along with the fact that all
the data flow operators are nonctonice imply that T, Ty

In Section 2 it was stated that the meaning of a . data
flow program under QI can be regarded as the least fixpoint

solution to a set of n equations where

,,xn] for 1<i<n

We will represent this system of eqguations in an

abbreviated notation as

X(A) = t[x1(a) (7.5)

where X represents a vector of history variables, and

Page 37

T represents the vector of the functional asscciated with
cach line. A is the vector of input histories to the

progranm.

The same program P, when interpreted according to the

U-interpreter will be represented as

X(a) = ©[x]1(A) (7.6)
Let the soclution vector of histories (i.e., the vector of
least fixpoints for equations (7.5) and (7.6)) be

represented as Fp and F~

Let us assume that a machine can execute any data f[{low
program written in DDF according to some interpreter. Ve
record the history associated with every line in the program
every time any change takes place in the system. We assume
without going into the physics of the implementation, that

no two changes can take place simultaneously. Let the state

of the system at the ith change be represented by X(i). if
the machine executes without violating any of the following
three conditions, then it will calculate the histories
according to the least fixed point of the program. These

conditions are

Page 3¢

C1. Initally all lines are enpty, i.e.,
xVay = 8
ce. At no time does the machine get ahead of the

mathematical definition of a function or forget what it

has already produced, i.e.,

Xy kG ay ¢ (g0
C3. The machine is said to stop at time s when the history

F 2

of all the lines has reached a steady state,i.e.,

s = min x(P)y = Eyay
1 .

Note that the stopping condition implies that there exists a

fixpoint Y of T[X] such that Y(a) = x(3)(a)

For some inputs, s may be infinitely 1large implying
that the machine does not halt. In such cases history of

some line is also infinitely large.
Theorem 1: If Y is defined as follows:
For all A e€H

Y(a)=x$3) (a) wnere x(5) (a)= ¢ [x(3)(n)

then Y is the least fixpoint of T [X].

Proof: (By contradiction).let ¥ be the least fixpoint of

- * A
T{Zjand 4 % Y. Sinece 1 1s also a fixpoint of tlal],

Page 39

*
X “© Y. Hence, there must be an 1input A such that
x(A) © Y(A). Let b be such an input. Hence

Xe)ye vy = 203 (p)

let t be the minimum i such that for some J
3o (i),
L) < X E
J() 3 (E)
Then by condition C2
- Tt
Agt)(ﬁ) e x' 1 y(E)

all

)
o}
v3

J
Due to the assumptions about t, Xy(t’1)(5) < ik

. (t-1) _ X , X
k 4#j and Xj (B) = kj (B) Hence,
- %
0y < ki)
put X is a fixpoint of T[{X], hence
®
TX1(B = X (E)
¥
A

J-(B). Contradiction. [J

-2 Helationship between the interpreters QI and UL. Now we

state and prove the theorem that gives a relationship

petween the two interpreters.

Thecorem 2: If 1t and 1~ are continuous functionals and

TCcT then F c g~
p- P

Prcof: Since T and T are continucus
Foo= lub {T7[4]) (7.7)
F' = lub {17004} (7.8)

by Kleene’s theorem [3], where ¢ represents the least

Page 440G

*
defined function or the enpty history and
i+1 i . .
T (&) = t[T7[&]]. Let n3 define a predicate
A
b= t[X] ct[X]. ¥ is elearly an admissible predicate [3]

because T and T are continucus functionals and ¥ has the
form of a simple ineqguality. Hence, if we show by induction
that t1[é] < 1M[&) holds for all i then by continuity

1ub {ti &7}

In

1ub {17161} must also hold; then due to

equations (7.7) and (7.8), Fp c F'p must also be true.

Now we show by induction that Ti[b]fi{l[b] is indeed

true.

Basis i = 1 T[é] c T[¢] is true because T < T
Assume tife] evire)

and show Ti+1[b] S'{i+1[b].

Now Tl+1[é] = t[t[61] < tlt' Y é6]1] since T is
ionotonic and by the induction step Ti c T'i. But

ft 1] =ttt i1 since T oo, or

¥The use of ¢ here 1is ambiggous. What 1s meant by ¢ is
the function £ where 2(aA) £ ¢, for all AcH.

Page 41

t 0101 c v (6] by derinition or vi*T,
hence 1 1+7[g] < ity

’

hence F < F~ J

Une physical interpretation of Theorem 2 1is
that given an input vector A to a data flow program P the U
interpreter may procduce sonme output 1in addition to the

output produced by interpreter (I.

We had briefly indicated towards the end of Section 2
that only physically meaningful histories are those which
are complete proper histories (i.e., if for all <u,i> €y,
proper(U,i) is true then U is a complete proper history).
Theorem 3 states the relationship between the two

interpreters for a restricted class of input histories.

Theorem 3: If each input history Ai (1<i<m) is complete

proper, then the interpreters QI and UI will generate proper

histories on all lines and X(A) =t[X]J(A) = 1 [X](Aa).

Proof': 1. Ve first prove that for complete proper inputs
toth interpreters are equal. The proof is based on showing
that under both interpreters all operators in DDF produce
the same results whenever complete proper histories are
considered. This is quite straightforward once we notice

that for a complete proper history X,

mateh(X,i)=proper(X,i).

Functions and predicates: Leplace matceh(V,i) by proper(V,i)

in eguation 5.1. It reduces to equation (4.1). Hence

Gates: Ve have already shown gate=gate’ .

lerges: keplace mateh(U,truecount(C,i)) by
proper(U,truecount(C,i)) and match(V,falsecount(C,i)) by
proper (V,falsecount(C,i)) in equation (5.3.4). It reduces

to equation (4.3). Hence merge=merge’ .

L-box: In equation (4.4) proper(U,i) is always true due to

our assumptions. Removing the conditional reduces equation

(4.4) to equation (5.4).

Hence, a functional composed of functions, predicates,
gates, merges and D-boxes has the same meaning regardless of
which interpreter is used if the inputs are restricted to

complete proper histories. Hence, T = T .

According to theorem 2 then Fp(A) = F'p(A) for the

restricted class of ccmplete proper inputs.

2. HNow we show that interpreter QI always produces complete

proper histories using Scott’s induction rule [4].

Page 43

A test for complete properness of a history is clearly
an admissible predicate. Let 1P(Xi,...,Xn) be true if and

only if all Xi(1gi§n) are complete proper histories.
Basis ¥ (¢,0,...,0) is clearly true.

Assume W(X1,X2,...,Xn) is true and show
W(H[X], TZ[X]""’ Tn[X]) is also true. Each T, must be
one of the DDF operators. Therefore, each Ti is covered by

one of the following cases:

Functions and predicates: The right hand side of (4.1)
contains one and only one term for each i such that
proper(U,i) A proper(V,i) is true. Hence, if <f(u,v),i> is a
term on the right hand side then so are <f(u,v),j> for all

J<i. Hence, the right hand side represents a complete

proper history.

Gates: Again, by the definition of gate in (4.2) if
<w,k> €gateT(C,U) then mateh(gateT(C,U),j) must be true for
all j<k. Note that if truecount(C,i) is k then
truecount(C,i)<k Ffor i'<i. Hence, no term below k can be

missing from gate(C,V).

Herge: For every i such that proper(C,i) is true a term
corresponding to i is produced on the right hand side of
equation (4.3). Hence, (4.3) can only oproduce complete

proper histories.

Page 44

D-boxes: By examination of (4.4) it is obvious that a D-box

precduces only a complete proper history.

i

Hence, 1if each Xi is complete proper then so 1is each

Ty [(x].
Hence, P (T1[X], T2[X],..., Tn[X]) is true, Hence,
W(FP) is true. [J
Liscussion: bBoth interpreters produce the same results

provided the 1inputs t¢ the program are complete proper
histories. However, theorem 3 only deals with the steady
state or the final history of eaqh line. The dynamic
behavior, that is, how histories are constructed during the
execution of a program will, in general, be quite different
under the two interpreters, and UI is, in general, less
constrained than QI. The dynamie behavier of the
interpreters can also be understood in terms of the
conditions for proper implementation stated in section 7.1.
if instead of recording changes when they occur, we record
them according to a clock which ticks fast enough s0 as not
Lo miss a change, we will see that the number of clock
cycles required to reach the steady state (if it exists) can

be less for the U interpreter than the Q interpreter.

Page 445
Acknowledgements

We are pleased to acknowledge the help of Professor J.
Goguen of UCLA 1in proving theorem 2. Mr. Wil Plouffe s
interest in semantics of programs and his critical reading
0f this paper has been very helpful. It is only due to Ms.
Shirley hasmussen’ s perseverence and genius that this report

could be perpared on a computer inspite of its rigidity.

We would also like to point out that the idea of using
the theory of fixpoint equations to define the semantics of
parallel programs first occurred to us after reading G.

Kahn’s [4] paper.

(3]

(4]

(5]

Page U6

Dennis, J. B., "First Version of a Data Flow Procedure
Language, " C Structures, Group Memo 93,

Project MAC, MIT November 1973, Revised May 1675.

+,0
i3
e}
=
ct
AV
s
[N
O
o

I
-3

Arvind, Gostelow, K. P., "A New Interpreter for Data
Flow Schema:s and its Implications for Computer
Architecture", U. C. Irvine, Information and Computer
Science Department, Tech Report #72, October 1975.

lManna, Z.,Mathematical Theory of Comgutation'(Chapter 5,

The Fixpoint Thecry ofﬁifdérammiﬁéy,nﬁgdféﬁ-Hill, 1974,

o

Lahn, G., "The Semantiecs of a Simple Language for
Parallel Programming," Preprints of IFIPS, 1974.

Weng, Kung-Song, "Stream-0Oriented Computation in
Kecursive Data Flow Schemas," Project MAC Technical
lHHemorandum 68, MIT (October 1975).

Kosinski, Paul k., "Mathematical Semantics and Data Flow
Programming, " Conference Third AClM Symposium on
Principles of Programming Languages, 1976, pPg.
175-184.

Agpendix*

A Note on the Gate Operator

1. General

A gate-if-true operator lets the token pass whenever the corres-

ponding control token is true,otherwise it absorbs the input token.

P’ gate-if-true

C=true C=false

/N

Figure 1

According to the unfolding interpreter [2] the gate must wait
for an additional token before executing. This additional token is called
the "dummy token" and carries the initiation count for the token to be
output. For example, if j true tokens have been received in the first k
initiations of a gate operator, then the dummy token will carry the
value j+1 for the k.+lSt initiation of the gate. At each initiation, the
gate also outputs an appropriate dummy token for its next execution.

One effect of this scheme of interpretation is that gates exhibit

no more asynchrony than the usual scheme of interpretation (5 la Dennis).

This appendix is a reproduction of Data Flow Note 8.

47

This is due to the chaining effect of the dummy tokens. Consider the
following situation. (Since we are interested only in the initiation
count part of the activity name, we will show only the initiation count

part of the activity names.)

(Value tokens with initiation
counts 1 to k-1 have been
absorbed but the value token
with initiation count k has %ﬁF
(k+1) yet arrived, although the k+l1
has arrived.)

—t e = dUmmMy

(k+1) (k)
(Control tokens up to initiation N
count k-1 have been absorbed.) 1
Figure 2

Figure 2 shows a situation where the control tokens with initiation
count k and k+1 are available, but on the value side only the token with
initiation count k+l is present. According to [2] the k+1St execution of the
gate cannot proceed until the token with initiation count k arrives on the
value input. This is unnecessarily restrictive in view of the fact that

t . . .
all information necessary for the k+1°" execution of the gate is available
th .
even though the k execution of the gate has not yet taken place. In
order to further explain, let us assume that the value of the dummy token
th . .. st
for the k execution is j. The value of the dummy token for the k+1
. . . . th . .
execution will be j+1 if the k control token is true, or will be j if

the kth control token is false.

48

The main point being that the moment the value of the control token is
known, the value of the dummy token can be determined.

This suggests that the operation of gates can be sped up by
splitting the gate into two parts, the control part and the value part.
This idea is very similar to the splitting of the merge statements in
[2]. The control part will accept a control token and a dummy token and
produce as output the usual dummy token and a special "intermediate token"
to be directed to the value part. This intermediate token will carry a
copy of the control token and the activity number for the output token in

case the value token is allowed to pass.

If gates are executed according to the scheme shown in Figure 3,
we have proven that only the control parts of a gate need to execute in

sequence. The value parts of the gate may execute out of sequence. Since

this scheme involves generation of an extra token for each initiation of the

gate, it is more expensive in terms of token traffic. It is also worth
pointing out that even though this new interpretation of gates can never
be slower than the interpretation of gates according to [2], the real

benefits will be realized only when control tokens arrive much faster than

value tokens. This latter situation is not uncommon when gates are used

in the implementation of for-loops or while-loops with easily evaluated

predicates.

49

dummy
token

value
token

control
token

c=falise

&4

GC
1
1

!

v
c=truc /
)
_’ Sy ‘9[C¢ '“ Sy

' Tntermediate L

token ! token
dummy ‘IIEEEII' dummy “IEEEI"

'
v

token token

Figure 3: Splitting of a Gate

2. Semantics of the New Interpretation of the Gate Operator

U
| g
| | 1
| | /" Dum_! I
! e L i I At I
[| / I .
I | i gate-if-true
b © |
C 1 I i]
-——*:————-i—? G e i -E-————} e i
E . « Imd | v
f | [T i
| < |
1 1 AN | 1 1
; { ————————————— A ——— -—
‘ E \3 _..___= gate (U, Imd
I T "? T]
| P e _ i
‘ gatei(C,U)
Figure 4

pum () = (<115} |)t match (Dun,, 1)
<c,1i>eC then(if c=true
then{<value(Dum,_,i)+1,i+1>}
else{<value(DumT,i),i+l>})

else ¢)
, Ide(C,DumT) = <Ef£>ec if match(DumI,i) '
then {<<c,va ue(DumT,1)>,i>}
else ¢)
gate;(Ide,U)= LJ (if match(U,i) then
<<c,dumT>31>€Ide
(if c=true then{<value(U,i),dum >}
— T
else ¢)
else ¢)

It should be noted that given a C, according to equation (2.1),

completely determined,and, similarly, once C and DumT

51

are known, Ide

(2.1)

(2.2)

(2.3)

D .
umT 1s

is completely determined by equation (2.2). We now state lemma 1 which

’

is used in determining the histories Dum_, and Ide. Let kc represent the

T
largest k such that proper(C,k) is true.
Lemma 1. For a gate-if-true, given C

true if 1si <k +1
proper (Dum,_,i) = ¢
T? false otherwise
true if 1=i<k
roper(Imd,,i) = ¢
P T? false otherwise

The proof of this lemma is quite straightforward, using equations
(2.1) and (2.2).

Equation (2.3) shows gate” to be a function of U and Ide. We
have already shown that Ide is completely known once C is specified.
Therefore, we can determine the expression of gate” as a function of U

and C (i.e., gatei(C,U), note that both Dum,_ and Ide are completely

T

internal to the definition of a gate). Due to lemma 1 we know that

%
if <<c,dumT>,i>cIde then proper(Ide,i) must be true. Hence, we could

rewrite equation (2.3) as follows.

gatei(C,U) = LJ (if match(U,i)aproper(Imd_,i) then
<<c,dum >,i>eIde(i§_c=true then{<value(U,1),dumT>}
else ¢)

else ¢) (2.4)

From equation (2.1) and lemma 1 we assert that value(DumT,i) is exactly the
number of true tokens in the first i tokens of C provided value(C,i) is true.

Hence,

In general, <u,i>eU iff match(U,i) is true.

52

value(Dum,,,i) = if value(C,i)=true

T then truecount(C,i)

else truecount(C,i)+1 (2.5)

However, proper(Ide,i) is true only if proper(C,i) is true. Also
whenever <<c,dumT>,i>eIde then so is <c¢,i>eC and visa versa. Moreover,

in equation (2.4) is value(DumT,i). Substituting proper(C,i) for proper

and value(DumT,i)(equation (2.5)) for dum,, in equation (2.4) we get,

T

gate%(C,U) = LqJ' (if match(U,i) A proper(C,i) then

! <C’1>€Qi£ c=true then {<value(U,i),truecount(C,i)>}
else ¢)

else ¢) (2

We reproduce here the usual semantics of the gate-if-true operator
the sake of comparison.
gate, (C,U) = L\J (iﬁ.proper(U,i)/\proper(C,i)

T <c,1>eC then (if c=true then

{<value(U,i), truecount(C,i)>}
else ¢)

else ¢) (2.

From equations (2.6) and (2.7) it is obvious that given a C and a U
either

gate_(C,U) = gate (C,U)
T T
or
gateT(C,U) c gate%(C,U) .

Hence, in general,

< gate_, .

gate -

T

53

dumT

(Ide,l)

.6)

for

7)

3. Monotonicity of the Gate Operator

In this section we show that gate,,as defined in equation (2.6), is

a monotonic operator; that is, given UlE_U2 and Cl E_Cz, then
7 s
gateT(Ul’Cl)<E gateT(Uz,Cz) .

Let U U, v Xl’ where Ul nX =¢ and C, = C, v X2, where Cl n X2 = ¢.

2~ "1 1 2 M1

Therefore, whenever match(U,i) is true then so is match(UZ,i). Similarly,
whenever proper(Cl,i) holds, so does proper(Cz,i).

Also,

value(Ul,i) = value(Uz,i)

and
truecount(Cl,i) = truecount(Cz,i)

provided Value(Ul,i) and truecount(Cl,i) are defined. Hence, by equation (2.6)

gateT(Cz,Uz) = gateT(Cl,Ul)LJX

where X is some set, possibly empty, determined by the sets X1 and X2 inU

and C2.

Therefore,

;(C

T U,) .

gate%(cl,Ul) < gate (C,,

54

