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Direct reservoir parameter estimation 

Direct Reservoir Parameter Estimation Using Joint Inversion of Marine Seismic AVA & 
CSEM Data 
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Yoram Rubin2, Zhangshuan, Hou2, and Don Vasco1 
 
1 Lawrence Berkeley National Laboratory 
2 University of California at Berkeley 
 
 
Abstract 
 

A new joint inversion algorithm to directly estimate reservoir parameters is described. This 
algorithm combines seismic amplitude versus angle (AVA) and marine controlled source 
electromagnetic (CSEM) data.  The rock-properties model needed to link the geophysical 
parameters to the reservoir parameters is described.  Errors in the rock-properties model 
parameters, measured in percent, introduce errors of comparable size in the joint inversion 
reservoir parameter estimates.  Tests of the concept on synthetic one-dimensional models 
demonstrate improved fluid saturation and porosity estimates for joint AVA-CSEM data 
inversion (compared to AVA or CSEM inversion alone).  Comparing inversions of AVA, 
CSEM, and joint AVA-CSEM data over the North Sea Troll field, at a location with well control, 
shows that the joint inversion produces estimated gas saturation, oil saturation and porosity that 
is closest (as measured by the RMS difference, L1 norm of the difference, and net over the 
interval) to the logged values whereas CSEM inversion provides the closest estimates of water 
saturation.  
 
Introduction 
 

The estimation of reservoir parameters from geophysical data is the goal of most geophysical 
surveys performed in the context of hydrocarbon exploration and production.  In recent years the 
focus has been on the use of time-lapse seismic data for predicting changes in pressure and fluid 
saturation (Tura and Lumley, 1999; Landro, 2001; Lumley et al., 2003).  Predictions of changes 
in pore pressure (Pp) and water saturation (Sw) can be done when there is only oil saturation (So) 
and Sw, since there are only two independent variables, Pp and either Sw or So (So+Sw = 1), to be 
derived from two data (acoustic impedance and shear impedance). The presence of gas 
complicates the problem by introducing a third independent variable, gas saturation (Sg) which 
causes, for example, the change in So as a function of the change in shear and acoustic 
impedance to become multivalued.    

 
Another interesting case arises in the exploration for economic gas deposits, where 

determining the level of Sg is critical.  While the amplitude of reflections as a function of the 
source-receiver offset (AVO), or versus angle (AVA), can be used to estimate Sw and So, its use 
for Sg is more problematic. The state of affairs for seismic gas exploration using AVO was 
summarized by Castagna (1993): “According to Gassmann’s equations, a gas sand with 1 percent 
gas saturation can have the same Vp/Vs as a commercial accumulation of gas. Thus, unless 



density can be very accurately extracted utilizing far offset information, AVO cannot distinguish 
commercial and noncommercial gas accumulations.” Subsequent research on the inversion of 
AVA data to predict seismic parameters (Debski and Tarantola, 1995; Drufuca and Mazzotti, 
1995; Plessix et al., 2000; Buland and More, 2003) has concluded that density is the least well-
determined parameter in any form of AVA inversion and cannot be reliably estimated for 
practical purposes. Thus, current seismic technology cannot reliably be used to distinguish 
economic from noneconomic gas accumulations, resulting in significant exploration losses.  
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Figure 1. Reference point for calculations is porosity (φ) = 0.2, Gas saturation (Sg) = 0.5., Soil

= 0.  Panel a) color contours of ∆Sg as a function of %∆ AVO intercept (A) and %∆ AVO 
slope (B).  Panel b) color contours of ∆φ as a function of %∆A and %∆B. Note that the axes 
for ∆Sg are a factor of 10 smaller than for ∆φ.
  

A simple rock-property modeling exercise is illustrative of the relative sensitivity of AVO 
ata to gas saturation and porosity of sand encased in shale. We use parameters for sand and 
hale from a log in the Troll Field, North Sea, to be discussed below.  The rock properties model 
or unconsolidated sand described by Dvorkin and Nur (1996) is used for calculating the Vp, Vs, 
nd density (ρ) as a function of Sg and porosity (φ), in a brine-gas system, at reservoir conditions.  
he AVO intercept (A) and slope (B) (Aki and Richards, 1980) are calculated from Vp, Vs, and 
.  To see the sensitivity of A and B to changes in Sg and φ, the change in (∆) A and B are 
alculated for values of Sg and φ that increment above and below reference values of Sg=0.5 and 
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φ=0.2.  Figure 1 presents maps of the change in Sg and φ.  The contour intervals are 0.1 in Sg 
(over a range 0.0-1.0) and 0.02 in φ (over the range 0.1-0.3), so that each contour interval 
represents a 10% change.  In Figure 1, the origin corresponds to the reference case (Sg=0.5, 
φ=0.2).  Contour lines represent constant φ in the case of ∆Sg (Figure 1a) or constant Sg in the 
case of ∆φ (Figure 1b).  The calculations show that increasing Sg by 10% (from 0.5 to 0.6) would 
produce a 3.1% decrease in A and a 0.22% increase in B (Figure 1a).  By contrast, increasing 
φ by 10% (from 0.2 to 0.22) produces a 158% decrease in A and an 8% decrease in B (Figure 
1b).  These calculations can be recast in terms of changes in Vp and Vs or in terms of changes in 
acoustic and shear impedance with the same relative importance of φ versus Sg.  The conclusion 
is that differences in A-B, Vp-Vs or acoustic-shear impedance produced by differences in Sg 
(excluding Sg values in the range of 0.0 to 0.1) are too small to be accurately estimated, given 
realistic noise levels of seismic data.  On the other hand, differences in A-B, Vp-Vs or acoustic-
shear impedance produced by differences in φ are one to two orders of magnitude larger than 
those produced by Sg, and should estimable from high-quality seismic data. 

In contrast to the insensitivity of seismic 
attributes such as Vp-Vs, AVO slope and 
intercept or acoustic-shear impedance to gas 
saturation, the electrical resistivity of reservoir 
rocks is highly sensitive to Sg, through the link 
to water saturation. This sensitivity can be 
seen using Archie’s law (Archie, 1942), which 
has been demonstrated to accurately describe 
the electrical resistivity of sedimentary rocks. 
Figure 2 shows the bulk resistivity (Rbulk) as a 
function of Sg=(1–Sw) for a sand having 25% 
porosity and brine salinity of 0.07 ppm at 600C 
(Rw= 0.05 Ω-m).  The relationship between 
Rbulk and Sg has the advantage of the steepest 
slope in Rbulk occurring in the Sg range from 
0.5 to 1.0, where the division between 
economic and noneconomic Sg usually occurs. 

 
The means of providing estimates for Rbulk 

have recently become available through the use 
systems.  Developments over the last decad
electromagnetic systems were driven, first, by the
high-velocity materials such as salt or basalt co
passive source magnetotelluric (MT) systems we
(Hoversten and Unsworth, 1994). It was noted 
superior resolving capabilities when compared to
of data interpretation favored MT, resulting in a 
(Hoversten et al., 1998; Constable et al., 1998;
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Figure 2. Rock bulk resistivity calculated 
from Archie’s Law.  Rw=0.05 for 0.07 
Salinity @ 60C.
of controlled-source electromagnetic sounding 
e in the petroleum application of marine 
 need for structural information in areas where 

vered prospective sediments. Both CSEM and 
re considered for petroleum-related exploration 
from the beginning that CSEM systems have 
 MT, but the logistics of deployment and ease 
preponderance of work on marine MT systems 
 Hoversten et al., 2000). The development of 
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CSEM systems actually predates the marine MT systems, in which CSEM was used for crustal 
investigations of the deep oceans (Filloux, 1983; Constable, 1990; Constable and Cox, 1996). In 
the last few years, attention has been focused on the use of CSEM systems in direct 
detection/mapping of hydrocarbons (Ellingsrud et al., 2002). 

 
A marine CSEM system consists of a ship-towed electric dipole source and a number of 

seafloor deployed recording instruments capable of recording orthogonal electric fields.  In the 
last few years, a number of contractors have begun offering marine CSEM data on a commercial 
basis.  Marine CSEM data has the potential to enhance the prediction of reservoir parameters 
over that which can be done using industry-standard AVA techniques alone, because of its high 
sensitivity to water saturation.  In this paper we illustrate the benefits of joint AVA-CSEM 
inversion for estimating fluid saturations and porosity from synthetic and field data.  
 
Model Parameterization 
 

There are substantial differences in the nature of energy propagation in the earth caused by a 
seismic source as opposed to a CSEM source.  Of particular importance to the joint inversion of 
seismic AVA and marine CSEM data is the high attenuation of electromagnetic energy 
compared to that of seismic energy.  After appropriate seismic processing (including amplitude 
recovery), we will assume that the seismic attenuation in the earth above the target interval (the 
overburden) have been accounted for and so can be neglected in the seismic modeling.  
However, this assumption cannot be made for modeling CSEM data, because the effects of the 
overburden on the target zone response are large and cannot be estimated independently, as is the 
case with velocity analysis.   This means that the CSEM calculations require a model with 
electrical conductivity described from the sea surface down (an infinite air layer is also 
included), while the seismic calculations only require reflection coefficients to be calculated over 
the area of interest. 

 
Since the CSEM and AVA 

calculations require different model 
domains, we have chosen to 
parameterize the model as illustrated in 
Figure 3.  Layers of variable thickness 
(layer thickness can be an inversion 
parameter) are common to all zones of 
the inversion domain.   The electrical 
conductivity (σ) from the air-sea 
interfaced to the top of the reservoir 
interval are parameters.  A zone above 
the reservoir interval is also 
parameterized by Vp, Vs, and density 
(ρ). The reservoir interval is 
parameterized by porosity (φ) and fluid 
saturations (Sw, Sg, So).  Pore pressure 

 

Figure 3: Inversion domain. Target zone is 
parameterized by Sw, Sg, So, and φ.  Target zone is 
surrounded by Vp, Vs and density zone for AVA 
data and surrounded by conductivity zone for 
CSEM data.
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is also included in the algorithm, but will be assumed constant for the examples shown here.  
Below the reservoir, layers are again parameterized by σ, Vp, Vs, and ρ.  Above the target zone, 
σ is required for the solution of the CSEM forward problem.  Overburden Vp, Vs, and ρ above 
the target are required for two reasons.  First, the time interval for the seismic data used in the 
inversion is chosen from a time-to-depth conversion based on the available velocity model, 
which may be in error.  If the depth to the top of the target (reservoir) zone does not exactly tie to 
the selected time window, the inversion can adjust Vp above the target zone as a correction.  
Secondly, log information required to calculate the rock properties model is usually only taken 
within the reservoir, so that we can only describe the target zone itself in terms of fluid 
saturations and φ. However, we need properties for the layer directly above the reservoir to 
calculate the reflection coefficient at the top of the reservoir.  The Vp, Vs, and ρ below the target 
interval are not strictly required, but provide continuity in the seismic data fit at times below the 
reservoir. 
 
Inversion Algorithm 
 

We have chosen to cast the inverse as a nonlinear least-squares problem, in which we 
minimize the Tikhonov functional (Tikhonov and Arsenin, 1977)  
 

[ ]( ){ } [ ]( ){ } ( )11/ 2 / 2
Tobs obs TTF m d F m d m W WmDθ λ−= − − +   (1) 

 
where T denotes transpose. W is a regularization matrix (we use the first spatial derivatives of the 
model parameters) that does not depend on m, and F[m] is the forward model to produce a 

calculated response to be matched to the observed data, d . The data covariance matrix, D,obs
 has 

estimated data variances on the diagonal and zeros off the diagonal.  This is a common approach 
in geophysical inverse problems.  Buland et al. (1996) applied Levenberg-Marquardt damped 
least-squares to AVO inversion of data from the Troll Field, where their algorithm uses the 

identity matrix rather than (  in Equation (1).    )TTm W Wm
 

This approach is often referred to as a local (Tarantola, 1987) optimization as opposed to a 
global optimization (Xie et al., 2000).  While a global approach is preferable for problems where 
the computational costs of the forward problems are low, they become impractical when the 
forward calculations become time- and/or memory-intensive. How much time and memory is 
considered too much increases each year with the advance of computer technology, but in 
general, any multidimensional geophysical forward problems involving wave propagation still 
are “too much” for most global inverse applications.  The work reported on in this paper 
represents the first steps in a larger program to develop 3D joint seismic-CSEM inversion, and as 
such the algorithms are to be applied to 3D forward problems in the future.  

 
One dimensional seismic AVA modeling uses the Zoeppritz equation (Aki and Richards, 

1980) to calculate the angle dependent reflectivity, which is convolved with an angle-dependent 
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wavelet to form the calculated seismic data.  The CSEM calculations are an integral equation 
solution for the electric (E) field from an electric dipole source located within a layered media 
(Ward and Hohmann, 1987).  These forward models provide the derivatives of data with respect 
to the geophysical parameters (Vp, Vs, ρ and σ) that form the Jacobian (J) of normal geophysical 
inverse problems.  The chain rule for derivatives is used to calculate the derivatives of the object 
function to be minimized (θ ) with respect to the reservoir parameters.  Equation (2) shows the 
derivative of θ  with respect to Sg in terms of all the required partial derivatives.  
 

 p s

g g p g s g

V V

S S V S V S gS

θ θ σ θ θ θ

σ ρ

∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅ + ⋅ + ⋅

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

ρ

T

1

    (2) 

 
The first half of each term on the right of Equation (2) comes from the geophysics, and the 
second half from the rock-properties model.   
 

The partial derivatives relating changes in geophysical data with respect to changes in model 
parameters are calculated by finite-differencing of forward solutions about the current model for 
fast 1D problems, and by the adjoint method for the CSEM portion of the problem using finite 
difference methods (Newman and Hoversten, 2000) for 3D problems.  The model parameters can 
be any reservoir parameter (i.e., water saturation, oil saturation, gas saturation, porosity, and pore 
pressure).  In the examples presented in this paper, fluid saturations and porosity are considered 
as inversion parameters, with pore pressure held constant.  
    

Linearizing (1) about a given model, mi, at the ith iteration produces the quadratic form;  
 

1
T T T T T TT T

i i iSJ J S J SJ S W W C C m SJm S d C hλ α δ α+  + + = + +   (3) 

where  is solved for using a quadratic programming algorithm (Fletcher and Jackson 1974) 
that allows for upper and lower bounds on the parameters. S is a matrix containing the 

reciprocals of the data standard deviations such that

1im +

2S D−= .  The current difference between 

calculated ( ) and observed data ( d ) is given byid obs ob
id dδ s d i= − .  The Lagrange multiplier 

(trade-off parameter) λ is adjusted from large to small as iterations proceed.  That the fluid 
saturations sum to unity can be imposed as an additional constraining equation,Cm , where 

1’s in the rows of C multiply the saturations in 
i h=

1im + , and the elements of h corresponding to 
sums of saturations equal 1.  Elements of h that correspond to porosity are 0.  The α is fixed at a 
value (100 in these examples) large enough to insure Cmi h=  to within a very small tolerance.  
When variable layer thicknesses are added to the parameter vector, an additional row is added at 
the bottom of C with 1’s at positions corresponding to layer thickness in the parameter vector, 
and an additional value equal to the desired total thickness of the variable layers is added to the 
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end of h.  This addition provides the further constraint that the inversion interval has the total 
thickness of the reservoir interval. 
 
The parameter covariance of m is: 

1( ) T TCov m M SJMJ S 1− −=     (4) 
where 

T T T TM J S SJ W W C Cλ α= + +   .    (5) 

 
There are many approaches for setting λ in the inversion.  Constable et al. (1987) use a 

golden section search for determining λ,  which requires on the order of ten additional forward 
problem calculations per iteration, in addition to those required for calculation of the Jacobian.  
This approach is robust, but the run time requirements are impractical for full 3D CSEM 
inversion.  Instead, we have adopted a simpler approach described by Newman and Alumbaugh 
(1997), one that has been demonstrated to be effective for large-scale CSEM problems.  In this 
scheme, λ  is selected as the iteration weighted maximum row sum of the matrix product 

T TJ S SJ  , where 

( 1)

1 1

/ 2
np

i
mj

m np j

Max aλ −

≤ ≤
=

= ∑  .    (6) 

 
Here amj is an element of T TJ S SJ , np is the number of parameters, and i is the inversion 

iteration number.  


 
Rock-Properties Model 
 

Direct inversion for the reservoir parameters requires a rock-properties model that links the 
reservoir and geophysical parameters. The model we have adopted uses the Hertz-Mindlin 
(Mindlin, 1949) contact theory for the dry frame bulk ( ) and shear ( ) moduli of a dense, 
random pack of spherical grains. Modified Hashin-Shtrikman lower bounds (Hashin and 
Shtrikman, 1963) are used to calculate the effective moduli for porosities below the critical 
porosity.   This model is described by Dvorkin and Nur (1996) as applied to modeling velocity-
pressure relations for North Sea Sand stones, and its use in combined seismic and EM inversion 
is described by Hoversten et al. (2003).  Archie’s law (Archie, 1942) is used to model electrical 
resistivity as a function of φ and S

dryK dryG

, oilK Kw.   The fluid bulk moduli ( ) and densities 

(

,brine gK

brineρ , oilρ , gρ ) of brine, oil, and gas respectively are computed using relations from Batzle and 
Wang (1992).  
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The field data examples presented in this paper come from the Troll Field in the North Sea.  
Seismic rock-properties model parameters are found by using a simplex algorithm to minimize 
L1, given by Equation (7). 

1
1 1

obs calc obs calc
p p

N N
V VL ρ ρ−= +∑ ∑ − ,    (7)  

where 
 are 

the sonic log compressional 
velocity, model-calculated 
compressional velocity, log 
density, and model calculated 
density, respectively.  The 
units used in defining L

, , ,obs calc obs calc
p pV V andρ ρ

1 are 
m/s and Kg/m3, so that the 
velocity and density have 
approximately equal numerical 
magnitude and hence equal 
weight in the value of L1.  If shea
Log data from a well approximat
(to be discussed below) was used
data with the calculated fit over th
inversion (assumed known) and 
modulus, grain Poisson ratio, an
inversions of Troll Field data, the

The three parameters, C, m
regression in the log10 domain: 

Employing the Sw, Rbulk, an
parameters yielded values of 0.7
value of n indicates very little sen
law parameters for logs from the
caused, in that case, by clay filli
inversion for porosity will be disc

 

 

Table 1. Fixed Parameters for rock-properties model 
regression and parameters determined from the regression. 
 

Fixed Parameters  Regression Fit 
Critical Porosity 0.38  Grain Shear Mod. 22.5 
Oil API 28.5  Grain Poisson 0.34 
Brine Salinity 0.07  Grain Density 2567
Gas Gravity 0.59  # Contacts/grain 13.5 
Temperature (C) 65    
r-velocity logs are available, Vs data misfit can be added to L1.   
ely 4 km to the northeast of the site used for the inversion tests 
 to derive the rock-properties model.  Figure 4 shows the log 
e reservoir interval.  Table 1 shows the parameters fixed in the 

those determined by the regression.  The values for the Shear 
d grain density are very close to that of feldspar.  For the 

 parameters shown in Table 1 were used. 

 and n, of Archie’s law, Equation (8), are found by linear 

m n
bulk wR CS φ− −=                  (8) 

d φ logs from the same well used for the seismic model 
8 Ω-m, 1.31 and 0.14 for C, m, and n, respectively.  The low 
sitivity to porosity.  This was also noted in developing Archie’s 
 Snorre field in the North Sea (Hoversten et al., 2001) and was 
ng the pore space.  The effects of the small value of n on the 
ussed further below.  
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Figure 4. Rock-properties regression fits for data from a well 4 km to the northeast of the site 
where AVA and CSEM data are jointly inverted.  Log Vp, density and Vs (blue crosses) 
compared to calculated values (red line) from regression fit are shown in the left most three 
panels.  Input saturations and porosity are shown in right panel. 

 
Synthetic Example 
 
To illustrate the properties of the individual and combined inversion of AVA and CSEM data, 
we have constructed a simple five-layer model, from the rock-properties parameters given in 
Table 1 and the Archie’s law parameters given above.  The synthetic AVA data is sampled at 2 
ms for seven angles (7.2, 13.5, 19.7, 25.6, 31.1, 36.3, and 41.0 degrees).  Gaussian random noise 
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was added, starting with a signal-to-noise ratio (SNR) of 5 for the first angle and decreasing to a 
SNR of 2.5 for the far angle.  The CSEM data is the amplitude and phase of the electric field at 3 
frequencies (0.25, 0.75, 1.25 Hz) for 8 source-receiver offsets (0.775, 1.7, 2.5, 3.3, 4.1, 4.5, 5.7, 
and 6.5 km) from an electric dipole source 50 m off the seafloor and electric field receivers on 
the seafloor.  Twenty percent Gaussian noise was added to the electric fields at the near offsets, 
increasing to 40 % at the maximum offset. The model has 1 km of seawater, with the target zone 
1.4 km below the sea floor.  Overburden (between seafloor and top of the target zone) 
conductivity is 1 Ω-m. The target zone is comprised of five 25 m thick layers, each with variable 
φ and Sg, with So = 0.  
 

We tested two starting models: (1) all five layers with constant Sg = 0.5, φ  = 0.2 within the 
target zone, and (2) Sg = (0.7, 0.2, 0.7, 0.2, 0.7), φ = (0.2, 0.2 ,0.2, 0.2, 0.2) for the five layers 
from top to bottom within the target zone.  AVA-only, CSEM-only, and joint AVA-CSEM 
inversions are presented to illustrate the sensitivities of the data used separately and together.  
The target RMS misfit of the error-weighted data was 1.0 and was reached in all inversions 
unless otherwise stated. 

 

 

Figure 5
Starting 
(0.2, 0.2
dashed l

Both 
converge 
minimum 

 

 
. CSEM-only inversion of synthetic model target zone.  True values are + symbols. 
values (green line), from top to bottom layer were Sg = (0.2, 0.7, 0.2, 0.7, 0.2), φ = 
, 0.2, 0.2, 0.2). Blue lines show final parameter estimates from inversion.  Black 
ines represent +- 1 standard deviation of model parameters.
  

CSEM-only and AVA-only inversions that began with uniform Sg=0.5 failed to 
to a model anywhere near the true model.  Both inversions became trapped in local 
in the object function, far from the true model.  In order for either CSEM-only or 
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AVA-only inversions to converge to a nearly correct model they had to be started from Sg = (0.7, 
0.2, 0.7, 0.2, 0.7), φ = (0.2, 0.2 ,0.2, 0.2, 0.2).  This starting model, with layers 2 and 4 having 
higher Sg than the surrounding layers, produces individual inversions (CSEM -only and AVA-
only) that distinguish the two high Sg layers.  Figure 5 shows the results of using the CSEM data 
only; Figure 6 shows the results of using only AVA data.  Using only the CSEM data produces 
Sg estimates that are very close in the high Sg layers and no more than 0.08 off in the low Sg 
layers.  However the Sg standard deviations are large and only plot on the scale of the figure for 
the high Sg layers.  The CSEM-only inversion provides essentially no information about the 
porosity. 

 
The inversion of the AVA data produces better estimates of Sg in the top and bottom layers 

(low Sg), with much lower parameter standard deviations overall.  The Sg estimate of the second 
high Sg layer is less accurate than that of the CSEM inversion.  The seismic inversion has 
produced much better estimates of layer porosities when compared to the CSEM inversion. 

 

 

Figu
targe
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re 6. Inversion for gas saturation (left panel) and porosity (right panel) of synthetic model 
t zone, using only seismic AVA data.  True values are + symbols.  Starting values (green 
, from top to bottom layer were Sg= (0.2, 0.7, 0.2, 0.7, 0.2), φ = (0.2, 0.2, 0.2, 0.2, 0.2). 
 lines show final parameter estimates from inversion.  Black dashed lines represent +- 1 
ard deviation of model parameters. 
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For the joint inversion of both the CSEM and AVA data, each data is weighted only by its 
assigned data errors.  No relative weighting between CSEM and AVA data in Equation (2) was 
used, although this may be considered in certain circumstances if there is reason to believe that 
one data set should dominate (e.g., the CSEM data is thought to be highly 3D, so that the 1D 
assumption is less valid for the CSEM than for the seismic). 

 
Figure 7 shows the Sg and φ estimates from jointly inverting both the CSEM and AVA data 

sets.  The CSEM and AVA observed and calculated data from the inversion are shown in 
 

 
 

Figure 7.   Inversion for gas saturation (left panel) and porosity (right panel) of synthetic 
model target zone, using seismic AVA and CSEM data.  True values are + symbols.  Starting 
values (green line), from top to bottom layer were Sg = (0.2, 0.7, 0.2, 0.7, 0.2), φ = (0.2, 0.2, 
0.2, 0.2, 0.2). Blue lines show final parameter estimates from inversion.  Black dashed lines 
represent +- 1 standard deviation of model parameters. 

Figures9 and 10 respectively.  The starting model here is the constant Sg and φ that caused both 
the CSEM and AVA inversions to find local minima that were not close to the true model.  Here, 
the CSEM data has provided enough low wave number information so that when the seismic 
data is added, the joint inversion does not get trapped in local minima and produces a final model 
close to the true model.  In general, the estimated Sg and φ are closer to the true values in the 
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joint inversion when compared to either the AVA- or CSEM-only inversions.  The Sg estimates 
from the joint inversion are the same or better than those from the AVA-only inversion.  In 
particular, the Sg estimates of the lower two layers are significantly closer to their true values in 
the joint inverse model (Figure 7) when compared to the AVA-only inverse model (Figure 6).  In 
addition, the parameter standard deviations of the Sg estimates are decreased.  The parameter 
standard deviations of the φ estimates are slightly increased in the joint inverse estimates when 
compared to the seismic only standard deviations.  However, φ estimates for the first three layers 
are the same for the joint and AVA-only inversion, and the φ estimates of the lower two layers 
re improved in the joint inversion.  

 
a

 

 

Figure 8.  Synthetic marine CSEM data (red dashed curves with error bars) from the true
model and calculated data (solid blue curves) from the joint inversion of synthetic AVA and 
CSEM data to produce the inverse model shown in Figure 7.  The left panels are amplitude of 
the received electric field and the right panels are the phase of the received electric field. 
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Figure  9.   Observed, calculated and difference AVA data for joint inversion model shown in 
Figure 7.  Left panel, synthetic data (considered as observed data by inversion) with SNR = 5 
to 2.5 from near to far angle respectively.  Middle panel calculated data from joint inverse 
model shown in Figure 7.  Right panel, difference between observed and calculated data.   

Sensitivity to Rock-Properties Model Parameters  
 

parameters that control Kdry (grain density, grain shear modulus, critical porosity, number of 

For Sg and φ, the inversion of either the CSEM or seismic data in isolation or in combination 
relies on the parameters of the rock-properties model, which can be determined by laboratory 
core measurements and/or regression fits to log data as described above and in Hoversten et al. 
(2003).  To check the sensitivity of the inversion to errors in the rock-properties model, the joint 
inverse shown in Figure 7 was run successively with 5% errors in each of the rock-properties 
parameters, and the mean error on φ and Sg was calculated (Figure 10). The red line in Figure 10 
shows the mean errors in the Sg and φ estimates with exact rock-properties parameters.  The 
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grain contacts, and grain Poisson ratio) are the most important.  The inverse estimates of φ are 
less sensitive to rock-properties errors than is Sg.  The sensitivity to parameters controlling Kdry  

 

 
 

Figure 10. Mean absolute errors in inversion parameters for 5% error in rock properties 
parameters. Mean errors in Sg estimates are shown in panel (a). Μean errors in φ estimates are 
shown in panel (b). 

can be understood by considering the Hertz-Mindlin representation of Kdry; 
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where φ0 is the critical porosity (the porosity above which the grains become a liquid 
suspension), Peff is the effective pressure, ν is the grain Poisson’s ratio, Ggrain is the grain shear 
modulus, and  l is the average 
number of grain contacts per 
grain.  Since Kdry is a non-
linear function of φ0,  l, 
ν, Ggrain, and Peff, using Kdry 
directly would be preferred if 
core measurements of Kdry are 
available.  When Kdry is used 
as a bulk parameter, not 
calculated from Equation (9), 
5% errors on Kdry  produce 
approximately 7% and 4% 
rrors for estimated Sg and φ 

Tro

e
respectively. 
 

ll Field Data 
 

Seismic and marine 
CSEM data were acquired 
over a portion of the Troll 
Field in 2003.  Figure 11 
shows the location of the 
marine CSEM line (dashed 
line between receiver sites 1 
and 24).  Well 31/2-1 
intersects the reservoir 
beneath the CSEM transect, as 
shown by the arrow in Figure 
11.   The CSEM receiver units 
were laid out in a line, with 
nominal separation of 750 m 
between location 1 and 24.  A 
200 m electric dipole 
transmitter, producing 200 
amps, was towed at 
approximately 2 knots along 
the receiver line in both 
directions, producing data at 
the receivers for transmitters on
nominally aligned with the surv
variation in the orientation of the

 

Figure 11. Troll top reservoir (Sognefjord) two-way time in  
seconds (after Hwang and McCorkindale, 1994). Marine  
CSEM line from Receivers 1 to 24.  The location of the 
intersection of well 31/2-1 with the vertical plane containing 
the CSEM line is shown by the black arrow. 
 either side of the receiver. The electric dipole transmitter is 
ey line, course corrections and ocean currents produce some 
 transmitter along the line.  The received CSEM data along with 
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the transmitter locations and current are recorded as time series.  In postprocessing, the CSEM 
time series are averaged to produce in-phase and out-of-phase electric field for average 
transmitter locations spaced 100 m apart along the line.  The transmitter fundamental is 0.25 Hz.  
There is sufficient power to extract the third and fifth harmonics, so that three frequencies (0.25, 
0.75, and 1.25 Hz) were acquired. 

 

 
 
Figure 12 shows the CSEM data converted to amplitude and phase of the electric field in the 

line direction (roughly parallel to the transmitter dipole orientation) from the receiver nearest the 
31/2-1 well.  If the earth had a one-dimensional conductivity structure (as the inversion forward 

e east are plotted in red. 

Figure 12.  Electric field amplitude (upper row) and phase (lower row) at 0.25, 0.75, and 1.25 
Hz as a function of the source-receiver offset (m) at a CSEM receiver near the 31/2-1 well. 
Transmitter locations to the west of the receiver are plotted in black, transmitter locations to 
th
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model assumes) the response, both amplitude and phase, would be identical for transmitters on 
either side of the receiver.  We see that this is true for offsets up to about 4 km.  Beyond 4 km, 
the difference between data from transmitters on either side of the receiver increases with offset 
and frequency. The largest asymmetry occurs for the highest frequency phase data at a 5 km 
offs

e, we have 
averaged the EM data for transmitters on either side of the receiver, thus causing the centroid of 
the 

e pairs were 
generated from the 31/2-1 well and used to determine the time window for the seismic data, such 
that rvoir zone. 

g parameters, (2) the L1 norm of the differences 
between inversion and log parameters, and (3) the net, or integrated, value of the inverted and 
log

et. 
 
In general, the spatial sensitivity of the CSEM data to this dipole-dipole configuration is a 

function of source-receiver offset, earth conductivity, and frequency, with lower frequencies and 
larger offsets having sensitivity to deeper changes (Spies, 1989).  As the transmitter-receiver 
offset increases, the centroid of the sensitivity region moves downward and away from the 
receiver in the direction toward the transmitter.  To approximate a 1D respons

sensitivity region of the averaged data to be directly below the receiver location. 
 
The 3D seismic data was pre-stack time migrated and sorted into common-midpoint gathers.  

Normal move-out (NMO) and residual NMO was applied, along with multiple removal and 
filtering to a nominal zero-phase wavelet.  The offsets were converted to angles by ray-tracing a 
layered model with velocity and density taken from the 31/2-1 well.  Depth-tim

 the data covered the depth interval 100 m above and below the rese
 
Ground Truth for comparrison and conditions of inverse models 
 
No production has occurred in the area of the 31/2-1 well, where our data analysis takes 

place.  The nearest production is from the oil rim (approximately 13 m thick) several kilometers 
from our site.  It is expected that Sw has not changed by more than one or two percent since the 
logs were taken.  The high gas saturation zone extends from 1415 m to 1544.5 m.  There is a 
predominantly oil zone between 1544.5, the gas-oil contact (GOC), and 1557.5 m where original 
oil saturations were between 70 and 85%.  Between 1557.5 m depth and the bottom of the logged 
interval, at 1670 m, is a paleo-oil-zone where original oil saturations were 20 to 30%.  No gas or 
oil saturation logs are available, but time lapse seismic data has been interpreted as follows: 
Between the time of log measurements and the geophysical surveys used in this paper, 
production from the oil rim has lowered reservoir pressures enough that gas has been released 
from the oil in the oil- and paleo-oil-zones, resulting in a 5% increase in gas saturation in these 
zones.  We therefore use the logged Sw to calculate oil and gas saturation as follows; above 
1544.5m oil saturation (So) is assumed to be zero, and we assume Sg = 1-Sw, below 1544.5 m So 
= 1-Sw-0.05 and Sg = 0.05.   The logged Sw and calculated Sg and So are used for comparing the 
performance of the different inversions.  In addition to visual inspection of the results, we 
calculate three measures of agreement between the inversion predictions and the logs: (1) the 
RMS difference between inversion and lo

 parameters over the reservoir interval.  
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The starting model for all inversions of the Troll Field data have linear ramps in Sw and Sg 
such that Sw goes from zero to one and Sg goes from one to zero from the top to the base of the 
reservoir.  The initial So is set to zero.  The φ starting values came from blocking the φ log.  The 
bounds used in the quadratic programming solver of Equation (3) were set at +- 0.3 for Sw and Sg 
(subject to a minimum and maximum of 0 and 1, respectively) and +- 0.1 for φ from their initial 
values.  The upper bound on So is 0.1 above 1544.5 m where no oil was present in the original 
logs.  Below 1544.5, the So upper bound begins at 0.7 at 1544.5 and decreases linearly to 0.1 at 
the

with 
uniform layer thickness performed better than those starting with thicknesses derived from the 
AI 

ity 
overburden consisted of thirteen layers above the target zone.  In addition to fluid saturations and 
φ in the target zone, layer thicknesses were added as inversion parameters in the AVA-only and 
joint AVA-CSEM inversions to accommodate placement of the sparse reflection coefficients. 

reservoir (since the CSEM response is most sensitive to the presence of a resistor at the top of the 

 base of the reservoir to allow oil where it was originally present.  The lower bound on So is 
zero everywhere.   

 
A sparse-spike acoustic impedance (AI) inversion (Levy and Fullagar, 1981) was first done 

on the zero-offset AVA trace.  The layering from the acoustic impedance inversion was used to 
determine the minimum number of layers required in the reservoir interval.   Initial inversions 
were begun with the layer thicknesses determined from the AI inversions in time and converted 
to depth using the log acoustic velocity.  However, it was found that inversions starting 

time layers and assuming the log velocities, so the results shown in subsequent figures began 
with the number of layers determined from the AI inversion with a uniform 20 m thickness. 

 
Because the inversions begin with a large value of λ used in Equation (1) (on the order of 

1000 as determined by Equation (6)), the smoothing term dominates the initial iterations and 
produces the flattest model within the bounds on the first iteration.  The starting models shown in 
Figure 13 are the input starting models before the first iteration.  In subsequent inverse model 
plots for the AVA-only and joint AVA-CSEM inversions we show the model after the first 
iteration has smoothed the input model since this is effectively where the algorithm begins.  The 
target data RMS misfit is 1.0.  The target interval was divided into thirteen 20 m thick layers, 
with five seismic layers above and one seismic layer below the target zone.  The conductiv

 
CSEM-only inversion 
 
The inversion for the CSEM data nearest the 31/2-1 well (Figure 12) is shown in Figure 13. 

The RMS data misfit achieved was 1.05.  The CSEM data cannot distinguish between oil and gas 
since the electrical resistivity is only a function of Sw and φ, so only these parameters were used 
in the CSEM-only inversion.   The observed and calculated CSEM data is shown in Figure 14.  
Sw at the top of the reservoir is 0.04, and then increases with depth.  The inversion has decreased 
Sw from the starting model at the bottom of the reservoir and has smoothed out the blocked log 
porosity starting values to a mean porosity of 0.21 with higher porosity in the top 100 m of the 
reservoir.  The inversion reflects the relative sensitivity of the bulk resistivity to Sw and φ, as 
discussed in the rock-properties section.   The Sw standard deviations are small at the top of the 

 19



reservoir) and increase with depth, whereas the φ standard deviations are too large to plot on the 
scale of the figures (average standard deviation over the reservoir interval was 2.2).  A very 
small Archie’s law porosity exponent (low sensitivity to φ) translates to high variance in φ 
estimates.   

 

 
 
 

 
Figure 13.  Inversion for Sw (left panel) and φ (right panel) using only CSEM data. Red plus 
signs are log values, the green line is the starting model, and the blue line is final inversion 
model. Black dashed lines are the 1 standard deviation bounds.  Porosity bounds are too large 
to plot on the figure, with the average standard deviation equal to 2.2. 
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 Observed and calculated inline E amplitude (left column) and phase (right

r CSEM-only inversion model shown in Figure 13. The total RMS data misfit is
y  inversion 

s of AVA-only and combined AVA-CSEM data were parameterized by Sw, Sg, So, φ 
kness within the reservoir zone.  Figure 15 shows the inverse model from inversion 
only data nearest the 31/2-1 well. The RMS data misfit achieved was 0.87.  The 
s decreased Sw and increased Sg in the upper 100 m of the reservoir.  Porosity 
 much closer to logged values than in the case of the CSEM-only inversion, with 
smaller φ standard deviations compared to the CSEM-only inversion.  All 

at include AVA data produce φ estimates with low parameter standard deviations.  
stent with the high sensitivity the AVA response to changes in porosity as shown in 
he inversion has estimated gas and water in the lower half of the reservoir rather 
hat is present.  The depths of the top of gas, the gas-oil contact, and the top of the 
e and the base of the logged interval are marked as T1, T2, T3, and T4 respectively 
have been converted using the log velocity. 
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15. Inversion estimates of water (left panel), gas (second from left), oil (second from
nd porosity (right panel) using only seismic AVA data. Red plus signs are log values,
ne is parameter values after first iteration (when smoothing has flattened the starting
 and the blue line is the final inversion model.  Black dashed lines are one standard
n of the model parameters.
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AVA-CSEM inversion 

 
Figure 16.  Observed seismic AVA gather (left panel), calculated AVA data from AVA-only 
inversion shown in Figure 15 (middle panel), and difference between observed and calculated 
AVA data (right panel).  Zero time corresponds 1300 m depth.  Times marked as T1, T2, T3, 
and T4 on right side of figure correspond to top of gas, gas-oil contact, top of paleo-oil zone 
and bottom of logged interval respectively.  The RMS data misfit is 0.87.  

 
Figure 17 shows the inversion of the CSEM and AVA data simultaneously.  The combined 

RMS data misfit is 0.91. The joint inversion has decreased Sw and increased Sg in the top 100 m 
of the reservoir, much as the AVA-only inversion.  However, the saturation estimates are much 
closer to the logged values in the lower half of the reservoir compared to the AVA-only 
inversion.  Here, the Sg has been reduced to near zero from the starting model, and So has been 
added.  The influence of the CSEM data has been to reduce the Sw in the lower half of the 
reservoir (as the CSEM-only inversion did), so that the Sw estimates from the joint inversion fall 
between those of the CSEM-only and the AVA-only estimates.  The parameter standard 
deviations have been reduced for all parameters, most significantly for Sw and So compared to 
the AVA-only inversion results shown in Figure 15.   
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Figure 17. Inversion for water (left panel), gas (second from left), oil (second from right), and 
porosity (right panel), using both seismic AVA and CSEM data. Red plus signs are log 
values, green line is parameter values after first iteration when smoothing has flattened the 
starting model, blue line is final inversion parameters.  Black dashed lines are one standard 
deviation bounds.
 
We note that the Sw levels in this interval (1,550 m to 1,670 m) correspond to Sw levels 

here Vp is least sensitive to changes in Sw.  Figure 19 shows the computed Vp, Vs, and density 
rom the rock-properties model used in the inversion for brine-gas and oil-gas combinations.  Vp 
as a minimum at Sw =0.8, with only small variations between Sw =0.9 and 0.6.  The Sw in the 
ower half of the reservoir interval is mostly in this range.  In addition, the Vp and Vs sensitivities 
o substitution of oil or brine are very small.  The differences in Vp, Vs and density between an 
0%-20% brine-gas mix and an oil-gas mix of the same ratio is only 1.2%, 1.0% and 2.4% 
espectively.  The insensitivity of the seismic parameters to exchange of oil or brine results in the 
VA-only inversion, substituting brine for oil in the lower half of the reservoir.  The advantage 

ntroduced by adding the CSEM data in the joint inversion is that it serves to constrain Sw.  With 
his added constraint the AVA data can distinguish between oil and gas saturations in the lower 
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portion of the reservoir.  Both AVA-only and AVA-CSEM inversion produce very similar φ 
estimates, the sensitivity to φ coming mostly from the AVA data.  However, the combined 
inversion provides lower parameter standard deviations than either CSEM-only or AVA-only 
inversions.  
 

None of the inversions (CSEM-only, AVA-only, or CSEM-AVA) have resolved the correct 
location of the GOC at 1544.5 m. The CSEM data by itself does not have the spatial resolution to 
locate the GOC.  The event on the AVA gathers marked T2 in Figures 16 and 18 corresponds to 
the depth of the GOC and both the AVA-only and the CSEM-AVA inversions have matched this 
portion of the AVA data.  Examination of the velocity and resistivity logs show that there is a 
smooth transition in velocity and resistivity through the oil zone from the GOC into the paleo-
oil-zone.  Surrounding hard streaks and porosity changes produce larger variations in velocity 
(and reflection coefficients) in this portion of the reservoir than that caused by the GOC.  Based 
on the resistivity and velocity logs we believe that the transition in Sg at the GOC is not as sharp 
as indicated in the calculated Sg and So logs shown in Figures 15 and 17 and that the inversion 
results reflect this fact. 
 

The CSEM data misfit is visually identical to that shown in Figure 15 for the CSEM data 
only inversion.  The slight increase in the data misfit for the AVA-CSEM inverse compared to 
the AVA-only misfit (0.91 compared to 0.87) is due entirely to an increase in the CSEM data 
misfit in the joint inversion.  We find that as the AVA-CSEM inversion iterations progress the 
CSEM data is fit first by the relatively smooth (high λ) models.  As the iterations increase and λ 
decreases, admitting rougher models, the AVA data misfit decreases and the CSEM data misfit 
increases.  Inconsistencies between the AVA and CSEM rock-properties models and differences 
in the spatial sensitivity of the two data sets are two likely sources of decreased data fit in the 
joint inversion. 

 

 

f
t
w

 

Table 2.  Numerical measures of fit between the inversion estimates of fluid saturations (Sw, 
Sg and So) and φ compared to the 31/2-1 well logs.  Log net Sw = 632, Sg = 831, So =262, 
φ =369.  The difference between the estimated and logged net values in the reservoir are 
annotated as ∆. 
 

Table 2 shows the numerical measures for the agreement between the inversion estimates of 
luid saturations and φ compared to the logs.  The lowest values (best) are highlighted in bold 
ype.  The joint inversion produces the lowest RMS and L1 norm fit to the Sg, So and φ logs as 
ell as net Sg, So and φ closest to the log over the reservoir interval.  The CSEM inversion

 
  Sw 

RMS 
Sw 
L1 ∆Sw Sg 

RMS
Sg 
L1 ∆Sg 

So 
RMS

So 
L1 ∆So 

φ 
RMS φ L1 ∆φ 

CSEM 0.15 192 104 na na na na na na 0.045 60 18 
AVA 0.27 356 86 0.38 459 131 0.23 459 218 0.049 67 13 
Joint 0.21 292 97 0.25 271 42 0.2 271 50 0.044 57 5 
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produces the lowest RMS and L1 norm fit to Sw.  The AVA-only inversion produces the lowest 
net Sw over the reservoir interval, slightly better than the CSEM-only inversion. 
 

 

 
Figure 18. Observed seismic AVA gather (left panel), AVA data calculated from joint seismic 
and EM inversion model shown in Figure 17 (middle panel), and difference between observed 
and calculated AVA data (right panel).  Zero time corresponds 1300 m depth.  Times marked 
as T1, T2, T3, and T4 on right side of figure correspond to top of gas, gas-oil contact, top of 
paleo-oil zone and bottom of logged interval respectively. The RMS data misfit is 0.91. 
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Figure 19. Reservoir bulk acoustic (blue), shear (red) velocity and density (black) calculated 
as a function of water or oil saturation using the rock properties model derived from logs and 
used in the inversions shown in Figures 15 and 17. 

 
Discussion and Conclusions 
 

We have developed an algorithm for joint AVA and CSEM inversion.  Tests on synthetic 1D 
models representing gas and petroleum reservoir scenarios show that combining AVA and 
CSEM data in an inversion for reservoir parameters produces better estimates, with lower 
variance, compared to either CSEM or AVA inversions done separately.  Analysis of error 
propagation through the rock-properties model shows that errors in the rock-properties model 
parameters introduce errors of comparable size (in terms of percent) in the joint-inversion 
reservoir parameter estimates.  Errors introduced by the rock-properties model can be reduced if 
laboratory-derived values for the dry-frame bulk modulus can be used (as opposed to computing 
the dry-frame bulk modulus from the nonlinear relations of the Hertz-Mindlin model).  Field data 
inversion results from the North Sea Troll Field are consistent with synthetic model results.  
Estimated gas and oil saturation and porosity from joint inversion are closer to the logged values 
by all numerical measures, than either CSEM or AVA inversion done separately.  The CSEM-
only inversion produces a better comparison to logged values for water saturation. 

 
The benefits of combining CSEM data with AVA are more striking in synthetic tests than in 

the field-data example presented here, although the joint inversion of field data does produce 
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closer agreement with logged values of Sg, So, and porosity with lower parameter standard 
deviations, than does inversion of either type of data done in isolation.  Part of the difference 
between the performance of the joint inversion on synthetic and field data is certainly a result of 
the large number of unknown noise sources inherent in the field data.  These include noise in the 
estimated angle-dependent wavelets and the possible presence of correlated (non-Gaussian) noise 
in both CSEM and AVA data sets.  The saturation and porosity logs themselves, assumed as 
ground truth, can be in error.  In addition, the 1D model may not accurately represent the actual 
earth.  This is more likely to be a problem for the CSEM data (which has a larger spatial 
footprint) than it is for the AVA modeling, although the assumption that all multiples have been 
removed and that true relative amplitudes have been recovered in the seismic data may also not 
be strictly valid.   

 
Many of the assumptions inherent in the algorithms presented here can be overcome by 

increasing the complexity of both the seismic and CSEM models.  The next improvement to be 
investigated would be the use of a 1D elastic seismic calculation that would include all multiples, 
mode-conversions, and waveform spreading.  The CSEM calculation will move from 1D to 3D.  
Both of these require significantly more computer time, with the 3D CSEM calculations 
dominating the computing budget and requiring implementation for parallel cluster computing.  
This work is currently under way.  It is also worth considering different types of seismic data for 
combination with CSEM.  In particular, seismic travel-time tomography may provide a better 
(certainly different) companion for CSEM data, in that the spatial scale of resolution would be 
more comparable. 

 
The limitations described above notwithstanding, there is benefit to be derived from 

combining CSEM with seismic data through joint inversion.  We hope that this work will 
stimulate others to pick up the investigation. 
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