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Abstract

Children tend to produce words earlier when they are connected to
a variety of other words along both the phonological and semantic
dimensions. Though this connectivity effect has been extensively
documented, little is known about the underlying developmental
mechanism. One view suggests that learning is primarily driven
by a network growth model where highly connected words in the
child’s early lexicon attract similar words. Another view suggests
that learning is driven by highly connected words in the external
learning environment instead of highly connected words in the early
internal lexicon. The present study tests both scenarios system-
atically in both the phonological and semantic domains, and across
8 languages. We show that external connectivity in the learning
environment drives growth in both the semantic and the phonolog-
ical networks, and that this pattern is consistent cross-linguistically.
The findings suggest a word learning mechanism where children
harness their statistical learning abilities to (indirectly) detect and
learn highly connected words in the learning environment.
Keywords: semantic network, phonological network, network
growth, mechanism of word learning

Introduction
What factors shape vocabulary learning over the course of
early childhood? To investigate this question, scientists have
adopted multiple research strategies, from conducting controlled
laboratory experiments (e.g. Markman, 1990) to analyzing
dense corpora capturing language learning in context (e.g., B.
C. Roy, Frank, DeCamp, Miller, & Roy, 2015). One strategy
consists in documenting the timeline of words’ acquisition, and
studying the properties that make words easy or hard to learn. For
example, within a lexical category, words that are more frequent
in child-directed speech are acquired earlier (J. C. Goodman,
Dale, & Li, 2008). Other factors include word length, the mean
length of utterances in which the word occurs, and concreteness
(see Braginsky, Yurovsky, Marchman, & Frank, 2016).

Besides these word-level properties, the lexical structure
(that is, how words relate to each other) also influences the
age of acquisition of words. The lexical structure is best
characterized in terms of a network where each node represents
a word in the vocabulary, and each link between two nodes
represents a relationship between the corresponding pair of words.
Previous studies have investigated early vocabulary structure by
constructing networks using a variety of word-word relations
including shared semantic features, target-cue relationships in free
association norms, co-occurrence in child directed speech, and
phonological similarity. These studies have found that children
tend to produce words that have higher neighborhood density (i.e.,
high connectivity in the network) earlier, both at the phonological
and the semantic level (Engelthaler & Hills, 2017; Hills, Maouene,
Riordan, & Smith, 2010; Hills, Maouene, Maouene, Sheya, &
Smith, 2009; Stella, Beckage, & Brede, 2017; Storkel, 2009).

While most studies have focused on the static properties of
the lexical network, a few have investigated the underlying
developmental process. In particular, Steyvers & Tenenbaum
(2005) suggested that the observed effects of connectivity are
the consequence of how the lexical network gets constructed
in the child’s mind. According to this explanation, known as
Preferential Attachment (PAT), highly connected words in the
child’s lexicon tend to “attract” more words over time, in a
rich-get-richer scenario (Barabasi & Albert, 1999). In other
words, what predicts word learning is the internal connectivity in
the child’s early lexicon. In contrast, Hills et al. (2009) suggested
that what biases the learning is not the connectivity in the child’s
internal lexicon but, rather, external connectivity in the learning
environment. They called this alternative explanation Preferential
Acquisition (PAC). Figure 1 shows an illustration of both growth
scenarios with the same simplified network. These two proposals
represent two divergent ideas about the role of lexical networks
in acquisition. On the PAT proposal, network structure is a causal
factor in early word learning; in contrast, on the PAC approach,
network structure is not internally represented and, therefore,
might be an epiphenomenon of the statistics of the linguistic input.

Figure 1: Illustration of the growth scenarios. Filled circles (I1-I4)
represent known words (internal), and empty circles (E1 and E2)
represent words that have not been learned yet (external). Black
lines represent links that are relevant in each growth scenario,
and gray lines represent links that are irrelevant. For PAT, the
utility of a candidate, external node is the average degree (i.e.,
number of links) of the internal nodes that it would attach to.
Thus, according to PAT, the node E1 is more likely to enter the
lexicon first. For PAC, the utility of a candidate node is its degree
in the entire network. According to PAC, the node E2 is more
likely to enter the lexicon first.

Studies that investigate lexical network growth have focused
on semantic networks using English data (Hills et al., 2010, 2009;
Steyvers & Tenenbaum, 2005). The novelty of the current study
is threefold: First, it investigates whether phonological networks,
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like semantic networks, grow by PAC, or if they rather grow by
PAT. Second, it provides a systematic comparison of both network
growth scenarios in the phonological and the semantic domains
and assesses their relative contribution to the learning process.
Third, it tests the generality of the findings across eight languages.

Networks
Data
We used data from Wordbank (Frank, Braginsky, Yurovsky,
& Marchman, 2017), an open repository aggregating cross-
linguistic language developmental data of the MacArthur-Bates
Communicative Development Inventory (CDI), a parent report
vocabulary checklist. Parent report is a reliable and valid
measure of children’s vocabulary that allows for the cost-effective
collection of datasets large enough to test network-based models
of acquisition (Fenson et al., 1994). We used the Words and
Sentences version of the CDI which contains the productive
vocabulary of toddlers (age varied between 16 to 36 months).
Following previous studies (Hills et al., 2009; Storkel, 2009), we
restricted our analysis to nouns. We defined the age of acquisition
of a given word by the month at which this word was produced
by at least 50% of children (J. C. Goodman et al., 2008), and
we excluded nouns that have not been learned (according to this
criterion) by the last month for which we have CDI data.

We obtained these nouns in eight languages: Croatian, Danish,
English, Italian, Norwegian, Russian, Spanish, and Turkish.
We used the subset of nouns that had entries in the Florida
Association Norms (see below). Since these norms are available
only in English, we used the hand-checked translation equivalents
provided by Braginsky et al. (2016), allowing us to use the
English association norms across languages. Table 1 gives an
overview of the data used. Translation equivalents were originally
constructed for a subset of words appearing on the toddler CDI
form, and so not all words are currently available. Note, however,
that all languages have at least 60% of nouns translated.

language total translated normed
1 Croatian 253 177 170
2 Danish 295 198 187
3 English 296 296 274
4 Italian 311 203 194
5 Norwegian 305 193 186
6 Russian 311 311 285
7 Spanish 240 173 163
8 Turkish 293 175 164

Table 1: Total number of nouns produced by toddlers in the CDI
(left). We included in our study the subset of these nouns that had
available English translations (middle). The final set consisted
of nouns that had both available translations as well entries in
the Free Association Norms (right).

Semantic networks
We constructed semantic networks following the procedure
outlined in Hills et al. (2009). We used as an index of semantic

relatedness the Florida Free Association Norms (Nelson, McEvoy,
& Schreiber, 1998). This dataset was collected by giving adult
participants a word (the cue), and asking them to write the first
word that comes to mind (the target). For example, when given
the word “ball”, they might answer with the word “game”. A pair
of nodes were connected by a directed link from the cue to the
target if there was a cue-target relationship between these nodes
in the association norms. The connectivity of a given node was
characterized by its indegree: the number of links for which the
word was the target. To model growth from month to month,
we constructed a different network at each month, based on the
words that have been acquired by that month.

Phonological networks
We generated approximate International Phonetic Alphabet
(IPA) transcriptions from the orthographic transcription, across
languages, using the open source text-to-speech software Espeak.
We used the Levenshtein distance (also known as edit distance) as
a measure of phonological relatedness between two nodes. The
measure counts the minimum number of operations (insertions,
deletions, substitutions) required to change one string into another.

In previous studies, two nodes were linked if they had an edit
distance of 1 (e.g., Storkel, 2009). However, in these previous
studies the network was built using an adult vocabulary. In the
current study, however, network growth models are based on
the children’s early vocabulary which contains very few word
pairs with an edit distance of 1. When using this threshold, the
resulting networks were too sparse and uninformative. Thus,
we increased the threshold from 1 to 2, that is, two nodes were
related if their edit distance was equal to 1 or 2. The connectivity
of a given node was characterized with its degree: the number
of links it shares with other words.

Analysis
Static properties of the global network
We start by analyzing word connectivity in the global (static) net-
work. We constructed this network using nouns learned by the
oldest age for which we have CDI data (e.g., in English this corre-
sponds to the network by 30 months). This global network is the
end-state towards which both PAT and PAC should converge by
the last month of learning. Moreover, following Hills et al. (2009),
we used this end-state network as a proxy for the external connec-
tivity in the learning environment. Below we analyze properties
of this global networks that are relevant to PAC and/or PAT.

Connectivity predicts the age of acquisition Connectivity in
the global network is directly related to PAC as it represents the
explicit criterion PAC uses to determine what words should be
learned first (Figure 1). Therefore, a direct consequence of a
PAC-like growth scenario is a correlation between connectivity
in the global network and the age of acquisition.1 Figure 2 shows

1This correlation is also compatible with PAT, although the causality
is reversed. Indeed, from the perspective of this growth scenario, higher
connectivity in the global network is caused by earlier learning, not the
other way around. Some words end up being highly connected in the
global network precisely because they happen to be acquired earlier and,
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Figure 2: Age of acquisition in the global network as predicted by the degree in this network. Results are shown in each language
for phonological and semantic networks. Each point is a word, with lines indicating linear model fits.
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Figure 3: Log-log plot of the cumulative degree distribution function for the global phonological and semantic networks across
languages. A perfect power-law distribution should appear as a straight line in this graph.

how the age of acquisition for each word varies as a function of
its degree (or indegree for the semantic network). For ease of vi-
sual comparison, the predictor (i.e., the degree) was centered and
scaled across languages. The plots show, overall, a negative corre-
lation between the month of acquisition and the degree, indicating
that nouns with higher degrees are generally learned earlier.

Power-law degree distribution? We also analyzed the global
network’s degree distribution. The shape of this distribution is
particularly relevant to PAT as this growth scenario is known
to generate networks with a power-law degree distribution (i.e.,
a distribution of the form p(k)µ 1

ka , Barabasi & Albert, 1999).
If the network displays this property, this fact would suggest a
PAT-like generative process. Conversely, if the degree distribution
does not follow a power law, this fact would weaken the case for
PAT. The log-log plots are shown in Figure 3. We fit a power law
to each empirical degree distribution following the procedure out-
lined in Clauset, Shalizi, & Newman (2009) and using the related
R package (poweRlaw, Gillespie, 2015). In brief, the analysis
consisted in two steps. First, we derived the optimal cut-off, kmin,
above which the distribution is more likely to follow a power
law,2 and we estimate the corresponding scaling parameter a.
Second we calculated the goodness-to-fit, which resulted in a
p-value quantifying the plausibility of the model. Overall, we
could not reject the null hypothesis of a power-law distribution:
the p-value was generally above 0.1, except for the Italian
phonological network where we obtained p< 0.05, suggesting
that the power law can be ruled out in this particular case.

In sum, the static properties of the global network are a priori

therefore, have a higher chance of accumulating more links over time.
2In natural phenomena, it is often the case that the power law applies

only for values above a certain minimum.

compatible with both PAT and PAC. In order to decide between
these two developmental scenarios, we need to fit explicit growth
models to the data.

Network growth models

How does each growth scenario predict noun development?
To test the network growth scenarios, we fit different growth
models to the data. We calculated the probability that a word wi,
with a growth value di would enter the lexicon at a given month,
using a softmax function:

p(wi)=
ebdi

Â jebdj
(1)

where b is a fitted parameter that captures the magnitude of the
relationship between network parameters and growth (analogous
to a regression coefficient). A positive value of b means that
words with higher growth values di are acquired first, and a
negative value means that words with lower growth values are
acquired first (see Figure 1 for an illustration of how growth
values di are defined in each growth scenario). The normalization
includes all words that could be learned at that month.

We estimated the parameter b using a Bayesian approach. The
inference was performed using the probabilistic programming
language WebPPL (N. Goodman & Stuhlmuller, 2014). We
defined a uniform prior over b, and at each month, we computed
the likelihood function over words that could possibly enter the
lexicon at that month, fit to the words that have been learned
at that month (using formula 1). Markov Chain Monte Carlo
sampling resulted in a posterior distribution over b, which we
summarized in Figure 4.
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Figure 4: Evaluation of network growth scenarios both individually (dotted), and when combined in the same growth model (solid).
Each dot represents the mean of the posterior distribution of the corresponding growth parameter, with ranges representing 95% credible
intervals (computed using the highest density intervals). Positive values mean that learning proceeds according to the predictions of
the growth scenario. Negative values mean that learning proceeds in opposition to the predictions of the growth scenario.

For the semantic networks, the results replicate Hills et al.’s
finding in English, which is that the semantic network grows by
PAC, not by PAT. Moreover, this finding holds in seven of the
eight languages we examined.3 The PAC model also fits better
than PAT for phonological networks. We note however that PAT,
though weaker, fares better for the phonological networks (where
it predicts part of the growth process in some languages such as
Croatian, English, Norwegian and Russian) than it does for the
semantic networks (where it is rather universally unpredictive).
What is the relative contribution of each growth model?
Above we evaluated the network growth scenarios individually.
As a next step, we analyzed their relative contribution to the learn-
ing process. This was done through adding more fitted parameters
to the model, that is, by substituting bdi in formula (1) with:

b1di,1+b2di,2+b3di,3+b4di,4

where the indices represent the 4 networks: semPAT, semPAC,
phonoPAT and PhonoPAC. Using the same fitting technique, we
obtained the values shown in Figure 4. PAC dominates the learn-
ing. Both phonological and semantic networks contribute to lex-
ical growth, but the phonological network appears to be stronger
and more consistent across languages. In summary, the findings
show that both semantic and phonological networks contribute to
the learning process, and that they both grow primarily by PAC,
relying on the external connectivity in the learning environment,
rather than the internal connectivity in the acquired lexicon.

3One could imagine that the fact of using English free association
norms cross-linguistically would decrease the effect of non-English
semantic networks because of possible cultural differences. However,
our findings do not support this assumption as the effects were generally
similar in magnitude cross-linguistically.

Comparison to other predictors of age of acquisition
We saw that the way semantic and phonological information is
structured in the learning environment (i.e., PAC) contributes to
noun learning across languages. However, we know that other
factors influence learning as well (e.g., Braginsky et al., 2016).
Next we investigated how semantic and phonological connectivity
interact with two other factors. The first one is word frequency, a
well studied factor shown to predict the age of acquisition in a re-
liable fashion (e.g. J. C. Goodman et al., 2008). The second factor
is word length, which correlates with phonological connectivity.

Since PAT was uninformative, we dropped it from this analysis,
keeping only PAC. This simplified the model because we no
longer needed to fit growth month-by-month.4 A more direct way
to assess and compare the contribution of PAC in relation to other
word-level factors is through conducting linear regressions, where
connectivity in the learning environment, frequency and length
predict the age of acquisition.

We used the frequency estimates from Braginsky et al. (2016)
where unigram counts were derived based on CHILDES corpora
in each language.5 For each word, counts included words that
shared the same stem (e.g., “cats” counts as “cat”), or words that
were synonymous (e.g. “father” counts as “daddy”). For word
length, we counted the number of phonemes in our generated
IPA transcription.

We conducted two analyses. We fit a linear regression for
each language, and we fit a linear mixed-effect model to all the
data pooled across languages, with language as a random effect.
Figure 5 shows the coefficient estimate for each predictor in each

4This was a requirement only for PAT where the words’ utilities
varied from month to month, depending on how connectivity changed
in the growing internal network.

5Note that these frequency counts are based on transcripts from
independent sets of children and represent a general estimate of
environmental frequency across children.
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Figure 5: Estimates of predictor coefficients by language, with ranges indicating 95% confidence intervals. Positive values indicate
a positive relationship (e.g. longer words tend to have a higher AoA), while negative values indicate a negative relationship (e.g. words
with higher frequency tend to have a lower AoA).

language, and Figure 6 shows the coefficient estimates for all
languages combined (all predictors were centered and scaled).
The findings were as follows. Overall, frequency is the largest
and most consistent predictor of age of acquisition, replicating
results for nouns across a variety of analyses (Braginsky et al.,
2016; J. C. Goodman et al., 2008; B. C. Roy et al., 2015). Word
length predicts learning in some languages such as Croatian and
Norwegian, but not in others (including English). It remains,
however, a significant predictor in the global model. As for the
factors of interest, i.e., semantic and phonological connectivity,
we also found cross-linguistic differences. Phonological
connectivity contributes to learning in languages such as Croatian,
English and Russian, whereas semantic connectivity contributes
to learning in Turkish, Spanish and to some extent in Croatian,
but not in English.6 Despite these cross-linguistic differences,
both phonological and semantic connectivity are significant
predictors in the combined model.

Discussion
The present study provided a comprehensive analysis of how
lexical connectivity influences the age of acquisition of nouns
in toddlers. We compared two network growth scenarios and
assessed their relative contributions across eight languages. One
scenario, PAT, described a rich-get-richer network growth model
in which the structure of the learner’s internal network determines
future growth; the other, PAC, described a model in which the
external, global environmental network structure determines
learners’ growth patterns. Our findings largely replicate the results
obtained by Hills et al. (2009): Semantic networks grow by

6Semantic connectivity does not explain variance in English data
beyond that explained by phonological connectivity, frequency and
length. This contrasts with the original finding in Hills et al. 2009.
However, in this previous study, semantic connectivity was not tested in
a model that included frequency, length and phonological connectivity as
covariates. Another important difference is the number of words tested:
Our study uses a larger set of nouns.

preferential acquisition, not by preferential attachment. A novel
finding is that phonological networks also grow primarily by pref-
erential acquisition. Moreover, both semantic and phonological
connectivity in the learning environment predict growth. These
findings generalize well across languages. When pitted against
other known predictors of age of acquisition (word frequency and
length), the effect of word connectivity shows a cross-linguistic
variation, predicting learning in some languages, but not in others.
Nevertheless, this cross-linguistic variability is to be taken with a
grain of salt as it might be exaggerated in our study by the limited
and partially-overlapping sample of nouns for each language. In
fact, both phonological and semantic connectivity are significant
predictors when data are pooled across languages.

frequency

length

semPAC
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estimate

pr
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r

Figure 6: Estimates of predictor coefficients in the combined
mixed-effect model with language as a random effect. Ranges
indicate 95% confidence intervals. Lighter points indicate
estimates of PAC predictors in a model that does not include
frequency and length as covariates.

Children start by learning words that have high semantic and
phonological similarity to a variety of other words in the learning
environment, not in the child’s available lexicon. This result
suggests that children are sensitive to connectivity even without
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having first acquired the connected words. How can children
indirectly detect highly connected words, and why would such
words be more readily learned?

In the semantic case, the networks are based on free association
norms. These associations can be (partly) derived from the
patterns of word-word co-occurrence (e.g., Griffiths, Steyvers,
& Tenenbaum, 2007), i.e., two words are associated if they
co-occur in many different contexts. In a network structure,
highly connected words would be the words that co-occur with
many other words in various contexts. Why would such words be
easier to learn? One possibility, suggested by Hills et al. (2010),
is that the referents of these words are more easily disambiguated
from other potential referents because their presence in multiple
contexts provides more cross-situational, disambiguating statistics
about their true referents (Smith & Yu, 2008).

In the phonological case, connectivity is inherently correlated
with phonotactic probability (Vitevitch, Luce, Pisoni, & Auer,
1999). That is, highly connected words tend to be made of
frequent sound sequences. Even infants show a sensitivity for high
frequency sound sequences in the ambient language (Jusczyk,
Luce, & Charles-Luce, 1994). Moreover, phonotactic probability
facilitates learning and recognition (e.g., Storkel, 2001). In other
words, children’s sensitivity to local phonotactic regularities
might lead them to learn higher-probability words more easily.
This learning effect, in turn, would lead to an observed pattern of
growth that would appear to follow the PAC growth model even
though learners themselves would only be tracking local statistics.

Finally, while validating previous results using network growth
models, our study suggests that these correlational patterns may
emerge from the operation of simpler mechanisms in both the
semantic and phonological domains. One question for future
experimental work is whether such patterns of growth can be
produced in controlled behavioral experiments.

All data and code for these analyses are available
at https://github.com/afourtassi/networks
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