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HIGHLIGHTED ARTICLE
| INVESTIGATION

Simultaneous Modeling of Disease Status and Clinical
Phenotypes To Increase Power in Genome-Wide

Association Studies
Michael Bilow,* Fernando Crespo,†,‡ Zhicheng Pan,§ Eleazar Eskin,*,** and Susana Eyheramendy†,1

*Department of Computer Science, §Bioinformatics Program, and **Department of Human Genetics, University of California, Los
Angeles, California 90095, †Department of Statistics, Pontificia Universidad Católica de Chile, Santiago, Chile 8320000, and ‡El
Centro de Desarrollo y Transferencia Tecnológica, Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O’Higgins,

Santiago, Chile 8320000

ABSTRACT Genome-wide association studies have identified thousands of variants implicated in dozens of complex diseases. Most
studies collect individuals with and without disease and search for variants with different frequencies between the groups. For many of
these studies, additional disease traits are also collected. Jointly modeling clinical phenotype and disease status is a promising way to
increase power to detect true associations between genetics and disease. In particular, this approach increases the potential for
discovering genetic variants that are associated with both a clinical phenotype and a disease. Standard multivariate techniques fail to
effectively solve this problem, because their case–control status is discrete and not continuous. Standard approaches to estimate model
parameters are biased due to the ascertainment in case–control studies. We present a novel method that resolves both of these issues
for simultaneous association testing of genetic variants that have both case status and a clinical covariate. We demonstrate the utility of
our method using both simulated data and the Northern Finland Birth Cohort data.

KEYWORDS multivariate analysis; covariates

GENETIC case–control association studies have found
thousands of associations between genetic variants

and disease (Spencer et al. 2009; Welter et al. 2014; Zhou
and Stephens 2014). These studies can be designed to in-
clude cases and controls in two different ways. First, they
can include an equal number of cases and controls. Second,
they can include cases and controls obtained randomly from
a population cohort. The true prevalence of the disease in the
population can be inferred from a population cohort, but not
from the design in which there are an equal number of cases
and controls. The latter case is strongly influenced by a selec-
tion bias, which can affect the estimation of the true genetic
effects on the phenotype (Zaitlen et al. 2012).

Many case–control association studies consider the genet-
ic association with a single phenotype at a time even if they

have collected additional clinical phenotypes, such as body
mass index, high-density lipoproteins (HDL) cholesterol,
low-density lipoproteins (LDL) cholesterol, smoking habits,
etc. (Kuo and Feingold 2010). In cases where it is well known
that a clinical phenotype affects disease status, such as body
mass index on diabetes, most commonly the clinical pheno-
type is incorporated in the analysis as a covariate. Studies
have shown that when the clinical phenotype is correlated
with disease status, this approach can lose its power to detect
genetic associations (Pirinen et al. 2012; Zaitlen et al. 2012).
Zaitlen et al. (2012) propose a model that is based on the
liability threshold model, which performs informed condition-
ing on the clinical phenotypes in order to remedy the deleteri-
ous effect that a clinical phenotype has when it is incorporated
into the analysis as a covariate. Also, in Zaitlen et al. (2012), the
model parameters are estimated using external epidemiology
data to avoid the problem of selection bias in the design of
equally sampled cases and controls.

We propose an alternative approach to incorporate the
clinical phenotype into the model. Specifically, we propose
amodel that jointly assesses the effect of the genetic variant
on the clinical phenotype and the disease. Previously,
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several methods have been proposed to identify genetic
variants associated with multiple phenotypes (Korte et al.
2012; Zhou and Stephens 2014; Furlotte and Eskin 2015).
These methods increase power when phenotypes are cor-
related (Neuhaus 1998; Mefford and Witte 2012) and con-
tribute to the understanding and discovery of pleiotropic
effects (Chanock et al. 2007; Frayling 2007; Amos et al.
2008; Hung et al. 2008; Thorgeirsson et al. 2008).

However, these previous methods assume that both
phenotypes are continuous. Unfortunately, the case–
control disease status is coded as variables with discrete
values. Often a disease is coded with a one, and a control
without the disease is coded with a zero. Performing asso-
ciation for both the case–control status and the clinical
covariate is challenging, and only a fewmethods have been
proposed for this scenario (Liu et al. 2009; Prerau et al.
2009). It is harder to model the correlation structure and
perform inference in such a model when one variable is
discrete and one is continuous as opposed to when both
are continuous. A second challenge is that diseases are
typically rare and therefore the design of a case–control
study involves substantially oversampling cases compared
to a representative population cohort (Kuo and Feingold
2010). This creates a complex distribution of the clini-
cal covariate among the individuals in the study (Bays
et al. 2007).

In this paper, we present a novel method for simulta-
neous association of a genetic variant that has both the
case–control status and the clinical covariate. Our method
combines the liability threshold framework with multivar-
iate methods. Specifically, our method explicitly handles
the issue of ascertainment/selection bias by developing
an expectation-maximization algorithm for estimating
the model parameters, which reweighs the individuals
to correct for the ascertainment bias. We demonstrate the
increase in statistical power of our approach utilizing both
simulated and real datasets. Using simulations, we show
that modeling a correlated environmental effect, which
impacts both the case–control status and the clinical cova-
riate, significantly increases power compared to traditional
approaches. We also show the utility of our results by an-
alyzing multiple phenotypes from the Northern Finland
Birth Cohort.

Methods

Liability threshold model

Consider the liability threshold framework for modeling dis-
ease status. Denote Yd a discrete random variable that takes a
one for cases and a zero for controls. Assume that the distri-
bution of Yd is Bernoulli with PrðYd ¼ 1Þ ¼ IðY . tÞ; where
IðxÞ ¼ 1 if x is true and IðxÞ ¼ 0 if x is false and Y is a latent
(unobserved) random variable representing disease liability.
Given a vector of covariates X (including genetic factors), a
vector b of the covariate effect sizes, error e � Nð0; 1Þ; and a

mean liability m, we assume Y ¼ mþ XTbþ e: Therefore, the
liability Y is normally distributed with a mean equal to
mþ XTb and variance equal to one. Even though XTb can
include covariates other than genotypes, for simplicity, we
assume that there is only one covariate, the genotype.

Following Zaitlen et al. (2012), we assume that the dis-
ease prevalence in the population f is known, for example
from a prior epidemiological study of the disease. We de-
termine the liability threshold t using t ¼ 2F21ð12 fÞ;
where FðxÞ is the standard normal cumulative density
function.

We can now write the log-likelihood of the observed and
latent variables, the so-called complete log-likelihood, as:

log LðbjY;XÞ ¼ log

 Qn
j¼1

IðYj . 0ÞYd
j ð12IðYj . 0ÞÞ12Yd

j

3 1=ð ffiffiffiffiffiffi
2p

p Þe21
2ðYj2m2XjbÞ2

!

¼ log

 Qn
j¼1

1ffiffiffiffiffiffi
2p

p e2
1
2ðYj2m2XjbÞ2

!
:

To assess the association of the genetic variant with the dis-
ease, we perform a likelihood ratio test (LRT) in which the
null hypothesis, H0 : b ¼ 0 assumes no association while the
alternative hypothesis H1 : b 6¼ 0 assumes that the associa-
tion is different from zero, where b is the genetic effect in the
threshold liability model.

The LRT under the null hypothesis has chi-squared distri-
bution with one degree of freedom and is calculated as
follows:

2

 
logL

�
b ¼ b̂jŶ;X

�
2 logL

�
b ¼ 0jŶ;X

�!
� x21: (1)

In this model the expected liability and the parameters of the
model areestimatedusinganexpectation-maximization (EM)
algorithm.

Multiple phenotype model for two
continuous phenotypes

Let Y1; Y2 be two phenotypes represented as N3 1 continu-
ous-valued column vectors. The values of Y1 and Y2 for each
individual j are denoted Y1j and Y2j; respectively. Let the true
effect size of X on Y1 be b1 and the true effect size on Y2 be b2:

Let m1 and m2 be the true means of Y1 and Y2; respectively.
Then we can represent the two phenotypes as follows:

Y1 ¼ m1 þ
Pm
i¼1

Xb1i þ e1

Y2 ¼ m2 þ
Pm
i¼1

Xb2i þ e2
(2)

The distribution of the errors, e1 and e2; is a bivariate normal
distribution with mean zero, variance equal to s2

1 and s2
2,

respectively, and covariance equal to rs1s2:
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�
e1j
e2j

�
� N

��
0
0

�
;

�
s2
1 r
r s2

2

��
(3)

We can express the log-likelihood of the data in the following
way:

logLðb1;b2;m1;m2; rjY1; Y2;XÞ
¼ 2

m
2
log
�
ð2pÞ2s2

1s
2
2
�
12 r2

��

2
Xm
j¼1

"
1
2

�
Y1j2Xjb12m1

Y2j2Xjb22m2

�T 
s2
1 r

r s2
2

!21

3

�
Y1j2Xjb1 2m1

Y2j2Xjb2 2m2

�	
ð4Þ

Consider again an LRT to assess the association of
genetic variants with the continuous phenotypes. The
likelihood of the model under the null hypothesis
H0 : b1 ¼ 0;b2 ¼ 0 is compared with the likelihood of the
model under the alternative hypothesisH1 : b1 ¼ b̂1;b2 ¼ b̂2;

by calculating:

2ðlogLðb1 ¼ b̂1;m1 ¼ m̂1;b2 ¼ b̂2;m2

¼ m̂2; r ¼ r̂jY1; Y2;XÞ2 logLðb1 ¼ 0;m1

¼ m̂1;b2 ¼ 0;m2 ¼ m̂2; r ¼ r̂jY1; Y2;XÞ�Þ � x22

(5)

which asymptotically distributes as x2
2 under the null

hypothesis.

Extending the liability threshold framework to model
discrete and continuous phenotypes simultaneously:
the BinCont model

In this study, we assume Y1 is an observed continuous
phenotype and Y2 is a latent (unobserved) disease liabil-
ity. For each individual (indexed by j), instead of observ-
ing the continuous-valued Y2j; we observe case–control
status Yd

2j: As before, we denote cases as Yd
2j ¼ 1 and

controls as Yd
2j ¼ 0: Each individual’s case–control status

depends on their liability Y2j and a liability threshold
value t:

Yd
2j ¼



1 if   Y2j. t
0 if   Y2j# t (6)

In other words, Yd
2j has Bernoulli distributionwith parameters

equal to PrðYd
2j ¼ 1Þ ¼ IðY2j . tÞ where I() is an indicator

function.
For each individual j, the joint distribution of Y2j and Y1j is

a bivariate normal defined by:

�
Y1j
Y2j

�
� N

 �
m1 þ Xjb1
m2 þ Xjb2

�
;

�
1 r
r 1

�!
(7)

The log-likelihood of this model is given by

logLðb1;b2;m1;m2; rjY1; Y2;XÞ

¼ log
�Yn

j¼1

IðY2j .0ÞYd
2jð12IðY2j. 0ÞÞ12Yd

2j

3 f ðY1j; Y2jjb1;b2;m1;m2; r;XjÞ
�

¼ log
�Yn

j¼1

f ðY1j; Y2jjb1;b2;m1;m2; r;XjÞ
�

where f ðY1j; Y2jjXb1;Xb2;m1;m2; rÞ is the same bivariate nor-
mal distribution of Equation 4. An LRT is considered again to
assess the null hypothesis H0 : b1 SNP ¼ 0;b2 SNP ¼ 0 of no
association between any of the phenotypes and the genetic
variant vs. the alternative hypothesis H1 : b1 6¼ 0 or b2 6¼ 0:
The LRT is expressed as:

2ðlogLðb1 ¼ b̂1;m1 ¼ m̂1;b2 ¼ b̂2;m2

¼ m̂2; r ¼ r̂jY1; Y2;XÞ2 logLðb1 ¼ 0;m1

¼ m̂1;b2 ¼ 0;m2 ¼ m̂2; r ¼ r̂jY1; Y2;XÞ�Þ � x22

(8)

which asymptotically distributes as x2
2 under the null

hypothesis.

Extending the BinCont model to overcome selection
bias: the BinContSelection model

In order to correct for selection bias, we reweigh the individ-
uals. Theweight of each control individual is set to 2ð12 fÞ; and
theweight of each case individual is set to 2f : Note that since the
controls are undersampled, their weights are bigger than 1while
the opposite is true of the cases, and the sum of theweights of all
the n=2 controls plus all the n=2 cases is n, the total sample size.
We then use the weights when estimating the parameters in the
model. A graphical description of thismodel is shown in Figure 1.

Inferring model parameters using
expectation maximization

We estimate the parameters of our BinContSelection model
using the EM algorithm. The EM algorithm is an iterative
algorithm for finding maximum likelihood estimators in the
presence of missing data. The algorithm alternates between
two steps until convergence: the expectation step (or E-step)
and themaximization step (orM-step). In the E-stepwe compute
the conditional expectation of the complete log-likelihood
of the model given the observed data. In the M-step the
parameters are estimated using maximum likelihood.

Initial conditions:Weinitialize theparameterof themodel to
be equal to zero, b1 ¼ b2 ¼ 0; and the expected liability Ŷ

ð0Þ
2

is initialized with the conditional expectation given the ob-
served disease status (i.e., EðY2jjYd

2jÞ; obtained from the uni-
variate liability threshold model.

E-step: The E-step consists of computing the expected value
of the complete log-likelihood (i.e., the log-likelihood of the
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observed and latent random variables) of the model given
the observed data and the current estimates of the para-
meters. From Equations 4 and 8, and a bit of algebra,
all that remains to be estimated in this step is:
E½Y2jY1; Yd

2 ;b
ðtÞ
1 ;b

ðtÞ
2 ; rðtÞ� ¼ Ŷ

ðtþ1Þ
2 : Therefore, in the t þ 1 it-

eration we estimate:

Ŷ
ðtþ1Þ
2j ¼ Xb̂

ðtÞ
2

þ

1

F2

�
2N; Y1 2 Xb̂1; 2 Xb̂

ðtÞ
2 ;N

� hf�2Xb̂
ðtÞ
2

�
F
�mðtÞ

1*

s
ðtÞ
*

�
2

r̂ðtÞfðY1 2Xb̂1Þ
�
12F

�
2m

ðtÞ
2*

.
s
ðtÞ
*

��i
if Yd

2j ¼ 1

21

F2

�
2N; Y1 2 Xb̂1; 2N; 2Xb̂

ðtÞ
2

� hf�2Xb̂
ðtÞ
2

�
F
�
m
ðtÞ
1*

.
s
ðtÞ
*

�
þ

r̂ðtÞfðY1 2Xb̂1ÞF
�
2m

ðtÞ
2*

.
s
ðtÞ
*

�i
if Yd

2j ¼ 0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(9)

Here, f is the standard normal probability density function,F2

is the standard bivariate normal cumulative distribution function

m
ðtÞ
1* ¼ ðY1 2Xb̂1Þ þ r̂ðtÞXb̂

ðtÞ
2 : m

ðtÞ
2* ¼ Xb̂

ðtÞ
2 þ r̂ðtÞðY1 2Xb̂1Þ

and s
ðtÞ
* ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ðr̂ðtÞÞ2

q
:

M-Step: In the t þ 1-th iteration of theM-step, we compute the
maximum likelihood estimator of b

ðtþ1Þ
1 b̂

ðtþ1Þ
2 and r̂ðtþ1Þ;

using Ŷ
ðtþ1Þ
2 ; and the known weights for cases and controls.

Convergence: We alternate the E- and M-steps until the es-
timates for b1;b2; and r converge.

We consider that the estimates converged if:
b̂1

ðtÞ
2 b̂1

ðtþ1Þ

b̂1
ðtÞ , 1023; b̂2

ðtÞ
2 b̂2

ðtþ1Þ

b̂2
ðtÞ , 1023; r̂

ðtÞ 2 r̂ðtþ1Þ

r̂ðtÞ
, 1023:

National Finland Birth Cohort data

The National Finland Birth Cohort 1966 enrolled almost
everyone born in 1966 in Finland’s two most northern prov-
inces. The North Finland Birth Cohort (NFBC) dataset con-
sists of 10 phenotypes and genotypes at 331,476 genetic
variants measured in 5327 individuals. The phenotypes in-
clude LDL cholesterol and triglyceride levels (TG), which are
used in the analysis.

Data availability

Thesoftware implementingthemethodsdescribed in thispaper
is available at http://genetics.cs.ucla.edu/multipheno/ and
https://github.com/facrespo/BivariateProbitContinueEM.

Results

Overview of the method

We propose a novel approach for incorporating clinical phe-
notypes into case–control studies where we assume that the
genetic variant (X) can affect both the clinical phenotype (Y1)
and the disease status (Yd

2 ). We assume the liability threshold
model. Each individual has an underlying liability (Y2) and
the disease status is a deterministic function of this liability
(i.e., if the liability is greater than a threshold (t) depending
on the disease prevalence then the individual has the disease
(Yd

2 ¼ 1)). Specifically, we assume the underlying model of
Figure 1. In our approach, we assume that the genetic variant
can have an effect on both the clinical phenotype (b1) and the
disease liability (b2). We also assume that the clinical phe-
notype and disease liability have a correlation of r.

Given this model and the observed data for a set of indi-
viduals, we apply amaximum likelihood approach to estimate
the parameters and perform a statistical test of the hypothesis
b1 ¼ b2 ¼ 0: If we reject this hypothesis, then we declare the
genetic variant associated with the clinical phenotype and/or
the disease status.

Multivariate analysis significantly improves power in
genome-wide association in simulation studies

We compare the performance of our method to traditional
approaches through simulations. In our approach, we simu-
late the casewhere anSNPaffects both the case–control status
and a covariate. We simulated studies of 5000 individuals
evenly split between cases and controls. We assumed two
different prevalences of disease status, 40 and 0.1%, and
generated the individuals by sampling from a liability thresh-
old model (see Methods). We simulated a single SNP
with minor allele frequency 0.2. The effect size of the SNP
on the liability (referred to as b2) was chosen such that a
univariate association between the SNP and case–control sta-
tus would have 50% power. Along with disease status, we
simulated a clinical phenotype correlated to the liability as

Figure 1 Graphical representation of our model.
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described in the Methods. The goal of our simulation is to
measure the effect of analyzing both the case–control status
and the covariate. Therefore, in each simulation we fixed the
effect size of the variant on the case–control status (b2) so
that the univariate test of the case–control status will have a
power of 0.5.We then vary the effect of the genetic variant on
the clinical covariate (b1).

Weevaluate theperformanceofourmethodandcompare it
with three other approaches. The first method is the single
univariate test applied to the disease status. The second is a
multivariate approach applied to the disease status and clin-
ical phenotypemodeled as amultivariate normal distribution.
We note that the data clearly violate the assumptions of the
multivariate model, because the disease status is discrete and
does not follow the normal distribution. The third method is
the Zaitlen et al. (2012) liability threshold model treating the
clinical phenotype as a covariate. We show the results of the
simulated data in Figure 2. In each plot, the x axis corre-
sponds to the effect size of the clinical covariant and the
y-axis corresponds to the estimated statistical power, as mea-
sured by the fraction of 10; 000 simulations that achieve a
statistically significant association.

The power of a single univariate test on the case–control
status is shown in red in Figure 2. The power of amultivariate
test using the case–control status and the clinical trait is
shown in blue. The Zaitlen et al. (2012) liability threshold-

basedmodel implemented in the software package LTSOFT is
shown as a black line. The power of our method is shown as a
gold line. It is also important to note the role of the correla-
tion between the clinical phenotype and the SNP (r), which
varies among the columns of the figure.

As expected, when the effect of the genetic variant on the
clinical covariate is very low, the univariate method outper-
forms all of the other methods. However, even for modest
levels of genetic effects on the clinical covariate, all of the
multivariatemethods increase the overall power. Ourmethod
has the highest power in all scenarios. The advantage of our
method is greater when there are substantial amounts of
selectionbias (D,E,F) compared to loweramountsof selection
bias (A, B, C). Similarly, the advantage of our method is more
substantial when the correlation between the clinical cova-
riate and the disease liability is lower (A and D vs. C and F).
This is because the advantage of our method is that we ex-
plicitly estimate the underlying liability using all of the data.
However, when the correlation is high, the covariate itself is a
good approximation for the underlying liability. In this sce-
nario, the multivariate method and our method provide very
similar results. We further perform simulations to measure
the false-positive rate of the methods by performing simula-
tions where the SNP has no effect on the trait (b1 ¼ b2 ¼ 0).
In this simulation, since we are exactly simulating the null
distribution, we verify that our likelihood ratio statistics

Figure 2 (A–C) Low selection bias (f ¼ 40%); (D–F) high selection bias (f ¼ 0:1%). In A and D, r ¼ :2; r ¼ 0:5 in B and E; r ¼ 0:8 in C and F. The
power of each test at each value of b1 is shown as a line.

Simultaneous Modeling in GWAS 1045



follow the x2 distribution as expected by theory and the false-
positive rate is controlled.

Analysis of the NFBC dataset

Wedemonstrate the utility of ourmethod using data from the
NFBC dataset by showing that multiple phenotype analysis
can increase power compared to single phenotype analysis in
some cases. The idea behind our evaluation strategy is thatwe
will analyze a subset of the NFBC data using both univariate
and multivariate strategies and compare what we discover to
what was discovered in the full NFBC dataset, which we treat
as the gold standard.We evaluate our performance by assess-
ing ifwe can recoverwhatwasdiscovered in the full dataset by
only analyzing a subset of the samples from the NFBC using
multiple phenotypes.

In particular, we transformed LDL measurements to case–
control data by dichotomizing the top 10% as LDL cases and
sampling at random an equal number of individuals from the
bottom 90% of LDL as LDL controls. This scheme is in line
with the liability threshold model. We used TG as the clinical

phenotype. In our subset, we are only considering 20% of the
individuals of the full dataset and also have dichotomized the
data, both of which reduce the statistical power to discover
loci associated with LDL. We first perform univariate associ-
ation analysis only on the dichotomized LDL data and report
the P-value. As expected, the P-value is much less significant
than the same locus in the full NFBC dataset. We then in-
corporate the TG phenotype into our analysis using both the
standard multivariate analysis and our liability threshold
modeling approach.

Table 1 reports the three SNPs that are associated with
LDL and also have a signal for TG. The univariate test reports
the P-value when associating the SNP with the dichotomized
LDL phenotype. As expected, the P-values are much weaker
thanwhat was observed in the full dataset. However, running
the multivariate approaches incorporating the TG phenotype
increased power as evidenced with more significant P-values
to those SNPs.

Discussion

In this paper we presented a method for incorporating a
clinical phenotype into case–control studies under the as-
sumption that the genetic variant can affect both. We apply
our method in tandem with a method that incorporates the
clinical phenotype as a covariate, such as the method of
Zaitlen et al. (2012). Intuitively, our method will have higher
power to detect genetic variants that affect both phenotypes,
while a traditional method would have higher power to de-
tect genetic variants that only affect the disease status.

Table 1 P-value comparison of methods in Sabatti et al. (2009) and
this paper on LDL

Sabatti et al. Univariate Multivariate EM

rs646776 2:19310212 8:0831028 1:1731028 1:1131029

rs4844614 2:3831027 8:8931027 1:6131027 1:0231028

rs673548 - 6:5031025 5:0731025 7:6031027

For significantly associated SNPs, EM adds power. rs673548 was not reported for
LDL in Sabatti et al. (2009) but reported a nearby SNP (rs693) which is in high LD
and has a P-value of 2:99211: rs673548 was reported for TG.

Figure 3 An illustration of the
distribution of liability in a case–
control study under selection bias.
In the figure, the disease has an
incidence of 10% in the popula-
tion. (A and B) Twenty percent of
the sample contains individuals
with the disease. (C and D) Fifty
percent of the sample contains in-
dividuals with the disease result-
ing in a large oversampling of
individuals with liability values just
over the threshold. In A and C,
the SNP does not have an effect
on the disease and the frequency
of the SNP is the same in each
group. In B and D, the SNP affects
the disease and a change in fre-
quencies of the SNPs between the
cases and controls is observed.
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Whenwemodel the correlationbetween thephenotypes, it
is critically important to remove the effect of ascertainment or
selection bias. The oversampling in case–control studies
greatly distorts the distribution of the underlying liability as
shown in Figure 3.

We compare our method to a standard multivariate regres-
sion approach, which treats the clinical phenotype and the
diseasestatusas followingthemultivariatenormaldistribution.
In the genetics literature, methods that assume continuous
traits are often applied to case–control data ignoring this as-
sumption (Price et al. 2006; Kang et al. 2010). Therefore, we
include this comparison method even though the multivariate
normal assumptions are clearly violated by the discrete disease
status.
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