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ARTICLE

Phylogenomics of 10,575 genomes reveals
evolutionary proximity between domains
Bacteria and Archaea
Qiyun Zhu 1,19, Uyen Mai2,19, Wayne Pfeiffer3, Stefan Janssen 1,4, Francesco Asnicar 5, Jon G. Sanders 1,

Pedro Belda-Ferre 1, Gabriel A. Al-Ghalith 6, Evguenia Kopylova1, Daniel McDonald1, Tomasz Kosciolek 1,7,

John B. Yin8,9, Shi Huang1,10, Nimaichand Salam11, Jian-Yu Jiao11, Zijun Wu1,12, Zhenjiang Z. Xu1, Kalen Cantrell6,

Yimeng Yang 6, Erfan Sayyari8, Maryam Rabiee2, James T. Morton1,2, Sheila Podell 13, Dan Knights6,

Wen-Jun Li 11, Curtis Huttenhower 14,15, Nicola Segata 5, Larry Smarr2,16,17, Siavash Mirarab 7 &

Rob Knight 1,2,16,18*

Rapid growth of genome data provides opportunities for updating microbial evolutionary

relationships, but this is challenged by the discordant evolution of individual genes. Here we

build a reference phylogeny of 10,575 evenly-sampled bacterial and archaeal genomes, based

on a comprehensive set of 381 markers, using multiple strategies. Our trees indicate

remarkably closer evolutionary proximity between Archaea and Bacteria than previous

estimates that were limited to fewer “core” genes, such as the ribosomal proteins. The

robustness of the results was tested with respect to several variables, including taxon and site

sampling, amino acid substitution heterogeneity and saturation, non-vertical evolution, and

the impact of exclusion of candidate phyla radiation (CPR) taxa. Our results provide an

updated view of domain-level relationships.

https://doi.org/10.1038/s41467-019-13443-4 OPEN

1 Department of Pediatrics, University of California San Diego, La Jolla, CA, USA. 2Department of Computer Science and Engineering, University of California
San Diego, La Jolla, CA, USA. 3 San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA. 4 Algorithmic Bioinformatics,
Department of Biology and Chemistry, Justus Liebig University Gießen, Giessen, Germany. 5 Department CIBIO, University of Trento, Trento, Italy.
6 Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA. 7Malopolska Centre of Biotechnology, Jagiellonian
University, Krakow, Poland. 8 Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA. 9 Department of
Mathematics, University of California San Diego, La Jolla, CA, USA. 10 Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese
Academy of Sciences, Qingdao, Shandong, China. 11 State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life
Sciences, Sun Yat-sen University, Guangzhou, China. 12 Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA. 13 Scripps
Institution of Oceanography, University of California San Diego, La Jolla, CA, USA. 14 Department of Biostatistics, Harvard T. H. Chan School of Public Health,
Boston, MA, USA. 15 The Broad Institute of MIT and Harvard, Cambridge, MA, USA. 16 Center for Microbiome Innovation, University of California San Diego,
La Jolla, CA, USA. 17 California Institute for Telecommunications and Information Technology, University of California San Diego, La Jolla, CA, USA.
18Department of Bioengineering, University of California San Diego, La Jolla, CA, USA. 19These authors contributed equally: Qiyun Zhu, Uyen Mai.
*email: robknight@ucsd.edu

NATURE COMMUNICATIONS |         (2019) 10:5477 | https://doi.org/10.1038/s41467-019-13443-4 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-3568-6271
http://orcid.org/0000-0002-3568-6271
http://orcid.org/0000-0002-3568-6271
http://orcid.org/0000-0002-3568-6271
http://orcid.org/0000-0002-3568-6271
http://orcid.org/0000-0003-0955-0589
http://orcid.org/0000-0003-0955-0589
http://orcid.org/0000-0003-0955-0589
http://orcid.org/0000-0003-0955-0589
http://orcid.org/0000-0003-0955-0589
http://orcid.org/0000-0003-3732-1468
http://orcid.org/0000-0003-3732-1468
http://orcid.org/0000-0003-3732-1468
http://orcid.org/0000-0003-3732-1468
http://orcid.org/0000-0003-3732-1468
http://orcid.org/0000-0001-6077-4014
http://orcid.org/0000-0001-6077-4014
http://orcid.org/0000-0001-6077-4014
http://orcid.org/0000-0001-6077-4014
http://orcid.org/0000-0001-6077-4014
http://orcid.org/0000-0001-6532-1161
http://orcid.org/0000-0001-6532-1161
http://orcid.org/0000-0001-6532-1161
http://orcid.org/0000-0001-6532-1161
http://orcid.org/0000-0001-6532-1161
http://orcid.org/0000-0002-6953-6319
http://orcid.org/0000-0002-6953-6319
http://orcid.org/0000-0002-6953-6319
http://orcid.org/0000-0002-6953-6319
http://orcid.org/0000-0002-6953-6319
http://orcid.org/0000-0002-9915-7387
http://orcid.org/0000-0002-9915-7387
http://orcid.org/0000-0002-9915-7387
http://orcid.org/0000-0002-9915-7387
http://orcid.org/0000-0002-9915-7387
http://orcid.org/0000-0003-4819-1005
http://orcid.org/0000-0003-4819-1005
http://orcid.org/0000-0003-4819-1005
http://orcid.org/0000-0003-4819-1005
http://orcid.org/0000-0003-4819-1005
http://orcid.org/0000-0001-7073-5190
http://orcid.org/0000-0001-7073-5190
http://orcid.org/0000-0001-7073-5190
http://orcid.org/0000-0001-7073-5190
http://orcid.org/0000-0001-7073-5190
http://orcid.org/0000-0002-1233-736X
http://orcid.org/0000-0002-1233-736X
http://orcid.org/0000-0002-1233-736X
http://orcid.org/0000-0002-1233-736X
http://orcid.org/0000-0002-1233-736X
http://orcid.org/0000-0002-1110-0096
http://orcid.org/0000-0002-1110-0096
http://orcid.org/0000-0002-1110-0096
http://orcid.org/0000-0002-1110-0096
http://orcid.org/0000-0002-1110-0096
http://orcid.org/0000-0002-1583-5794
http://orcid.org/0000-0002-1583-5794
http://orcid.org/0000-0002-1583-5794
http://orcid.org/0000-0002-1583-5794
http://orcid.org/0000-0002-1583-5794
http://orcid.org/0000-0001-5410-1518
http://orcid.org/0000-0001-5410-1518
http://orcid.org/0000-0001-5410-1518
http://orcid.org/0000-0001-5410-1518
http://orcid.org/0000-0001-5410-1518
http://orcid.org/0000-0002-0975-9019
http://orcid.org/0000-0002-0975-9019
http://orcid.org/0000-0002-0975-9019
http://orcid.org/0000-0002-0975-9019
http://orcid.org/0000-0002-0975-9019
mailto:robknight@ucsd.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The metaphor of a “tree of life” was used by Darwin in his
On the Origin of Species in 1859. It came into its modern
form when Carl Woese and co-workers used the new

ability to genetically sequence the small subunit (SSU) ribosomal
RNA gene from multiple different organisms to create a phylo-
genetic tree1, thereby showing a scenario of three domains of life:
Bacteria, Archaea, and Eukaryota2,3. Recent years have seen dis-
coveries of novel microbial groups enabled by culture-based and
metagenomic methods4–7, many of which represent previously
unknown biodiversity4,8,9, and keep updating our knowledge of
the extent and relationships among domains as indicated by
phylogenetics10–13. Among these new discoveries is the candidate
phyla radiation (CPR, also referred to as Patescibacteria)4,8, a
highly diversified clade of mainly uncultivated microorganisms
that may subdivide the domain of Bacteria11, although this sce-
nario remains controversial14. Meanwhile, the discovery and
analysis of multiple novel archaeal lineages have suggested an
archaeal origin for eukaryotes, pointing to a two-domain
scenario15,16. The currently representative view of the tree of
life, inferred based on the concatenation of ribosomal proteins,
illustrated a bipartite pattern with distinct separation between
Bacteria (including CPR) and Archaea (plus Eukaryota)11,13.
More comprehensive work in both taxon and locus sampling
exists14, but the inter-domain relationships were not explored.

Reconstructing phylogenies typically relies on comparing
homologous features. Although closely related organisms often
share obvious genome-level homologies, building higher-level,
especially cross-domain phylogenies has been challenging due to
the rarity of clearly defined homologies17. To date, many efforts
rely on one, or a few, universal “core” genes that are usually
involved in fundamental translation machinery15,18. Examples
include the SSU rRNA19–21 and several dozens ribosomal pro-
teins22. The choice of these “marker genes” is based on their
universality, conservation, and the observation that they suffer
from less frequent horizontal gene transfer (HGT)17. However,
HGT is widespread across the domains19–21, affecting even the
most conserved “housekeeping” genes23, and cannot be ruled out
even for these markers. Furthermore, the reliance on a few
marker genes limits the information (i.e., phylogenetic signal)
available for resolving all relationships in the tree of life. Finally, it
reduces applicability in metagenomics—increasingly the main
source of novel genome data—where assembled genomes are
frequently incomplete and error-prone6. Maximizing the included
number of loci, thus, is desirable. However, when dealing with
many loci, reconciling discordant evolutionary histories among
different parts of the genome can become challenging. Moreover,
a practical dilemma is imposed by computational limitations:
adding breadth across the phylogenetic space requires more
computing effort, which leads to compromises with either the
quantity of genes analyzed11 or the robustness of tree-building
algorithms14.

In this work, we build a reference phylogeny of 10,575 bacterial
and archaeal genomes (Fig. 1). They are sampled from all 86,200
nonredundant genomes available from NCBI GenBank and
RefSeq24 as of March 7, 2017 (Fig. 2), using a statistical approach
that maximizes the covered biodiversity. Our phylogenetic
reconstruction uses 381 marker genes, selected from whole gen-
omes solely by sufficient sequence conservation to identify
homology. The whole data set totals 1.16 trillion non-gap amino
acids, making it among the largest single data sets upon which de
novo phylogenetic trees have been built (Supplementary Table 1).
To infer species trees, we use both a summary approach that
accounts for discrepancy among the evolutionary histories of
individual genes, and the conventional gene alignment con-
catenation approach. The resulting species trees provide high
resolution of the basal relationships among microbial clades,

which show that Bacteria and Archaea are in closer proximity
compared with previous estimations (Fig. 1). The phylogeny also
enable us to evaluate and revise previously established taxonomic
hierarchies. We have made our data and protocols publicly
available at https://biocore.github.io/wol/.

Results
Comprehensive sampling of biodiversity and genes. By using a
purpose-built “prototype selection” algorithm to maximize
evenness of genome sampling (Supplementary Fig. 1, detailed in
Supplementary Note 1) and by incorporating multiple additional
criteria, including marker gene presence, genome quality, and
taxonomy, we selected 10,575 genomes, covering 146 of 153 phyla
defined by NCBI, plus all 89 classes, 196 of 199 orders, 422 of 429
families, 2081 of 2117 genera, and 9105 of 20,779 species (Fig. 2a).
A total of 2852 genomes (27.0%) are metagenome-assembled
genomes (MAGs), while the remaining are from isolates and
other sources (Fig. 2c). Meanwhile, 2267 genomes (21.4%) are
complete genomes or chromosomes, while the remaining are
scaffolds or contigs (Fig. 2d). Overall, the selected genomes are of
high completeness and low contamination as evaluated based on
known lineage-specific marker gene sets (Fig. 2b). By testing
against the MAG quality standard established by Bowers et al.6,
only 10.4% MAGs or 3.7% of all genomes fall within the low-
quality draft category, while the remaining meet the criteria of
either high- or medium-quality drafts (Fig. 2e). This balanced
representation of known bacterial and archaeal diversity ensured
the comprehensiveness and evenness of the resulting phylogeny.

Our phylogenomic analysis was based on the 400 marker genes
originally proposed in PhyloPhlAn25 (Supplementary Fig. 2). The
taxon sampling protocol ensured that all selected genomes
contain at least 100 marker genes each. In the resulting data
matrix, each marker gene is present in 7565 ± 1730 (mean and
std. dev.) genomes (Supplementary Fig. 2a), while each genome
contains 286.14 ± 80.23 (mean and std. dev.) marker genes
(Supplementary Fig. 2b). These marker genes were further filtered
down to 381, based on metrics of alignment quality (see the
Methods section) across the sampled genomes (Supplementary
Fig. 2d).

Assessing deep phylogeny using multiple strategies. We
explored multiple tree inference methods (detailed in Supple-
mentary Note 2, with selected ones compared in Fig. 3 and
Supplementary Fig. 3), but will mostly focus on two strategies:
CONCAT and ASTRAL. CONCAT concatenates gene alignments
and infers a single tree using maximum likelihood (ML) per-
formed using the robust implementation in RAxML26. Compu-
tational limitations forced us (Supplementary Table 2) to use at
most 100 sites per gene, selected either randomly (“concat.rand”)
or based on maximum conservation (“concat.cons”). However,
we also tested analyzing all sites, using the faster but less accurate
ML program, FastTree27 (referred to as “fasttree”). In contrast,
the ASTRAL tree (“astral”) is based on first inferring 381 gene
trees and then summarizing them using the ASTRAL method28.
ASTRAL accounts for gene tree discordance due to divergent
coalescent histories and has been shown in simulations to be
more accurate than concatenation in the presence of highly fre-
quent HGTs29. Due to its inherent scalability, ASTRAL analyses
were able to use all the data (i.e., all sites of every gene). For
comparison with previous studies11, a CONCAT tree was also
built using 30 ribosomal proteins (“concat.rpls”). We used ML to
estimate branch lengths for the ASTRAL tree based on the same
data used to infer the CONCAT tree.

Overall, ASTRAL (Fig. 1; Supplementary Fig. 4) and CONCAT
trees (Supplementary Figs. 5, 6) show congruence in topology
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(Fig. 3a, b; Supplementary Note 2) when compared with trees
derived from implicit (e.g., distance-based) analyses (Supplemen-
tary Fig. 7, Supplementary Note 2). The congruence is higher at
shallow branches, but generally decreases as phylogenetic depth
increases (Supplementary Fig. 8). The ASTRAL tree, in particular,
has high support among the early branching clades (Supplemen-
tary Figs. 3, 9, also see Supplementary Figs. 4–6). This high
resolution is directly related to the large number of gene trees
used in the inference, as using fewer loci notably decreased the
branch support of the species tree (Supplementary Fig. 10,
Supplementary Note 2). On the other hand, the evolutionary
relationships recovered by CONCAT are impacted by the breadth
of site sampling (Supplementary Fig. 11, Supplementary Note 2)

and the robustness of method (Supplementary Fig. 12, Supple-
mentary Note 2).

To further evaluate the impact of taxon sampling, we tested a
series of subsampled sets of taxa, selected so that they maximize
the representation of large and deep-branching clades (see the
Methods section). Reducing taxon sampling changed the overall
topology (Supplementary Fig. 13, Supplementary Note 2) and the
inferred relationship between large groups (e.g., placement of
Chloroflexi and Chlamydiae) (Supplementary Fig. 14), further
highlighting the importance of our dense sampling of genomes.

Phylogenetic trees built by both strategies recapitulated clear
separation between Archaea (669 taxa) and Bacteria (9906 taxa)
at the root (Figs. 1, 3, Supplementary Figs. 4–6). Meanwhile, CPR
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Fig. 1 A new view of the bacterial and archaeal tree of life. The tree contains 10,575 evenly distributed bacterial and archaeal genomes, with topology
reconstructed using ASTRAL based on individual trees of 381 globally sampled marker genes, and branch lengths estimated based on 100 most conserved
sites per gene. Branches with effective number of genes (en)≤ 5 and local posterior probability (lpp)≤ 0.5 were collapsed into polytomies. Taxonomic
labels at internal nodes and tips reflect the tax2tree curation result. Color codes were assigned to above-phylum groups and phyla with 100 or more
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(1454 taxa) forms a monophyletic group located at the base of the
bacterial lineage in the ASTRAL tree and the CONCAT trees that
use global markers (Figs. 3c, 4a). Considering the potential
impact of long-branch attraction, this placement will require
further validation using more robust substitution models and
controlled tests. The ASTRAL tree shows high consistency and
moderate-to-high branch support for several taxonomic units
recently defined above the phylum level, including TACK,
Microgenomates, Parcubacteria, FCB, PVC, and Terrabacteria4

(Fig. 3c, d). These groups were also supported in the CONCAT
trees, with the exception of Terrabacteria in one analysis (Fig. 3c,
d). With reference to the trees, we systematically evaluated and
curated NCBI taxonomy, showing frequent incongruences
(Supplementary Fig. 15a, c, Supplementary Table 3), especially
in metagenome-derived genomes (detailed in Supplementary
Note 3). We further compared our trees with the recently
developed GTDB taxonomy and trees14, and observed overall
high congruence, though with a few exceptions at deep branches
(Fig. 3a–d; Supplementary Figs. 15b, d, 16, elaborated in
Supplementary Note 4). A detailed interpretation of our

phylogeny in reference to taxonomy and multiple previous works
is provided in Supplementary Note 5.

Evolutionary proximity between Archaea and Bacteria.
ASTRAL and CONCAT trees both reveal a relatively short
branch connecting the most recent common ancestors of
Archaea and Bacteria (Figs. 1, 4a, c; Supplementary Fig. 17). Its
length is fractional comparing with the dimensions of both
clades (appr. 0.13–0.14 by conserved sites, 0.09–0.11 by random
sites) (Fig. 4c, e; Supplementary Table 4). This pattern is in
contrast to previous trees built using fewer marker genes, all or
most of which are ribosomal proteins formerly considered to be
effective markers for assessing global microbial evolution22

(e.g.13,19,30). To further test how the choice of marker genes
affects the inter-domain distance, we estimated branch lengths
of the ASTRAL tree using 30 ribosomal proteins extracted from
the genomes. Consistent with previous studies, we observed an
elongated branch connecting Bacteria and Archaea. Its length
relative to clade dimensions (1.0–1.6) is about ten times the
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estimate using the 381 global marker genes (Fig. 4b, d, e;
Supplementary Table 4). We also calculated the overall phylo-
genetic distance between taxa of the two domains, as relative to
the intra-domain distances. This relative distance based on the
ribosomal proteins (4.5–5.0) is around three times that of the
distance by the global marker genes (1.5–1.6) (Fig. 4f; Supple-
mentary Table 4).

Considering the special status of CPR, we performed an
independent test with the 1454 CPR genomes removed from the
data set prior to de novo phylogenetic inference, and we
compared the results to the main results (Fig. 4e, f) with the
CPR clade pruned from the tree. These trees continued to reveal
the substantially shorter branch and tip-to-tip distances between
the two domains as recovered by using the 381 global marker
genes as compared with using the 30 ribosomal proteins
(Supplementary Fig. 18, Supplementary Table 5).

We tested whether the potential saturation of amino acid
substitution could cause an underestimation of the domain
separation. The ratio between phylogenetic distance and sequence
distance is similar between pairs of taxa selected both from
Bacteria, both from Archaea, or one from each domain
(Supplementary Fig. 19). This indicates that the relative length
of the branch connecting the two domains compared with the
intra-domain branches is not substantially impacted by
saturation.

We further evaluated how individual gene trees impact the
observed proximity between Bacteria and Archaea. Except for a
few outliers, which include several “core” genes like rpoC (RNA
polymerase subunit β’, 18.27), tuf (elongation factor Tu, 12.18),
and fusA1 (elongation factor G, 9.54), most gene trees have
relative Archaea–Bacteria distances between 1 and 3 (mean: 2.00)
(Fig. 5a, b), which is consistent with that of the species tree
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summarizing the global marker genes, and in contrast to that
obtained using only the ribosomal proteins (Fig. 5a).

Heterogeneity among individual genes’ evolutionary histories.
Because microbial genomes are highly dynamic and prone to
HGTs, it is important to investigate the discrepancies among the
evolutionary paths of individual gene families to better under-
stand the evolution of genomes20. To measure the topological
concordance between two trees, we used the quartet score31,
which correlates well with the traditional Robinson–Foulds (RF)
metric (Supplementary Fig. 20c)32, resulting in a distribution of
gene trees tightly centered around the species tree (Fig. 5d;
Supplementary Figs. 20a, 21).

The discordance between the 381 single-gene trees and the
species tree varied widely (Fig. 5c). The quartet scores (larger is
more similar, with identical trees scoring 1.0) ranged from 0.372
(cmpD) to 0.943 (hslU), with the mean and standard deviation

being 0.653 ± 0.136. Many of the individual trees with high
similarity to the species tree belong to genes involved in the core
machinery of genetic information processing, such as those
encoding DNA/RNA polymerase subunits, ribosomal proteins,
and elongation factors, while genes involved in peripheral
functions such as membrane transport are frequently more
distant from the species tree (Fig. 5c, d). This pattern is generally
consistent with a previous study on a small taxon set20. While
determining the cause of discordance for individual genes is
beyond the scope of this study, the pattern we observed is
consistent with a reduced rate of HGT for fundamental genes
compared with those with less conserved functional signifi-
cance33. There was no apparent correlation between a gene tree’s
concordance with the species tree and the prevalence of the gene
in the sampled genomes (Supplementary Fig. 20d, e), suggesting
that universality is not necessarily indicative of fidelity.

To further test the impact of gene tree discordance on the
species tree, we sequentially removed genes from the low end of
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the quartet score rank (Supplementary Note 2). ASTRAL
produced stable topologies in this test (Supplementary Fig. 22a–c).
We next tested the impact on phylogenetic distances. There was a
weak positive correlation (Pearson correlation R2= 0.157, p=
1.88e-07) between the quartet score and the relative
Archaea–Bacteria distance (Fig. 5e). When the branch lengths
of the species tree were estimated using genes with high quartet
scores only, the distance moderately increased, yet remained far
from the result by using the ribosomal proteins (Supplementary
Table 6). This suggests that non-vertical transmission of genetic
information has only a limited impact on our updated estimates
of the inter-domain distance.

Heterogeneity across sites. Inferring phylogenetic trees at deep
time scales, beyond the heterogeneity of gene histories, requires
paying attention to the heterogeneity of substitution processes
across the genome34,35. As recently as 2015, Gouy et al. declared
the jury to still be out on the root of the tree of life36, partially due
to difficulties in modeling heterogeneity of sequence evolution
across sites. In particular, changes in amino acid frequency across

sites of the same gene can exacerbate long-branch attraction37. To
account for these difficulties, we tested whether our main con-
clusions stand if the data are analyzed with a recently developed
model, PMSF, which considers heterogeneity in the amino acid
substitution process38 (Fig. 3: “pmsf.cons” and “pmsf.rand”).
Because of the computational complexity of this approach, we
had to limit these analyses to 1000 taxa. At this sampling depth,
we were also able to build a tree using all sites and the CONCAT
method for comparison (“concat.al1k”).

The topology of PMSF trees largely resembled the RAxML trees
with the same taxon sampling (Fig. 3a, b). The impact of using the
PMSF model instead of site homogeneous models on the topology
and branch lengths was small compared with the impact of taxon,
locus, and site sampling (Supplementary Fig. 23, Supplementary
Note 2). The PMSF trees continued to support a large portion of
relationships among deep branches recovered by the full-scale trees
(Fig. 3c, d; Supplementary Fig. 3). The evolutionary proximity
between Bacteria and Archaea continued to hold with the PMSF
trees. Meanwhile, the PMSF tree based on ribosomal proteins
(“pmsf.rpls”) also resembled the corresponding full-scale tree in
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suggesting a long distance between Bacteria and Archaea (Fig. 4e, f;
Supplementary Fig. 24, Supplementary Table 7). Taken together,
this shows that our phylogenies and main conclusions are robust
when considering site heterogeneity.

Discussion
The origin and evolution of life have been among the most
intriguing scientific questions, with the current widely adopted
notion being the three-domain system: Bacteria, Archaea, and
Eukaryota2. Recent phylogenomics studies typically indicated a
long distance between Bacteria and Archaea, with Eukaryota as
an ingroup of the Archaea clade10,11. In this work, we built a
reference phylogeny of over 10,000 bacterial and archaeal gen-
omes, covering a significant proportion of the known biodiversity
with available genome data. The result provides an updated view
of microbial evolution, showing that Bacteria and Archaea, the
two microbial domains conventionally but controversially
grouped by the term “prokaryotes”39, are much closer in evolu-
tionary proximity than estimates using a smaller number of
“core” genes, such as the ribosomal proteins. This observation
was further supported by extensive analyses using multiple tree-
building methods, with consideration of taxon and site sampling,
amino acid substitution heterogeneity and saturation, and non-
vertical evolution, and was robust against the exclusion of CPR
taxa. Interestingly, applying a simple universal molecular clock as
well as relaxed clock rates to date, our trees resulted in divergence
time estimates of major lineages that are compatible with geo-
logical timeline only when using the global markers, but not when
trees are restricted to ribosomal proteins (Fig. 6; Supplementary
Figs. 25, 26, Supplementary Tables 8-10, see full details in Sup-
plementary Note 6). These comparisons suggest accelerated
evolution in ribosomal proteins during the separation between
Bacteria and Archaea. They show the limitation of using core

genes alone to model the evolution of the entire genome, and
highlight the value in using a more diverse marker gene set.

Our work highlights the value of even taxon sampling, a global
marker gene set representing the larger average of genome con-
tent, and comparative phylogenetic analyses. These procedures
largely reduced the bias of gene choice in exploring genome
evolution, and allowed us to characterize the evolutionary dis-
crepancies of individual gene families. Despite these efforts, some
lineages are still underrepresented in our sampling, such as
DPANN4, which has genomes that are often missing many of the
381 marker genes (detailed in Supplementary Note 5). Moreover,
the rapid growth of genomic data has led to the absence of some
newly discovered groups from our tree. While it is impractical to
repeat all of our analyses to include all new genomes, it is of
interest to assess whether the newly discovered microbial diver-
sity may impact our results. Prior to submission of this article, we
updated the genome collection from NCBI on May 23, 2019, and
selected 187 new genomes representing phyla as defined by the
newest NCBI and GTDB taxonomies that are absent or under-
represented in the current set of 10,575 genomes (see the
Methods section). Phylogenetic trees built using the extended
genome set continued to support the domain-level relationships
in both topology and evolutionary distance as recovered by the
main analysis (Supplementary Fig. 27, Supplementary Table 11,
see Supplementary Note 7 for full details). Finally, we note that
the inclusion of eukaryotes is challenging with the current marker
gene set due to the overall sparsity of detectable homology.
Further improvements in methodology are important in order to
deliver a robust phylogeny that encompasses all forms of life.

Methods
High-performance computing. Analyses of the genome data sets in this study
were computationally intensive. Heavy computations used the “Comet” super-
computer located at the San Diego Supercomputer Center (SDSC). Each standard
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node is equipped with 24 Intel Haswell CPU cores and 128 GB of DDR3 memory,
while each GPU node is equipped with four NVIDIA P100 GPUs, plus 28
Broadwell CPU cores and 128 GB memory. A small proportion of the computa-
tions used the “Barnacle” computer system operated by the Knight Lab, each node
of which has 32 Haswell CPU cores and 256 GB DDR3 memory. Whenever pos-
sible, all CPU cores were used in a typical multi-processing task to minimize run
time. Tasks that required >128 or 256 GB memory used the large-memory nodes of
Comet, featuring 64 CPU cores and 1.5 TB memory per node. Benchmarking of the
prototype selection algorithms and some local developments were performed on
the “WarpDrv” workstation, equipped with 32 Intel Sandy Bridge CPU cores and
256 GB of DDR3 memory.

Retrieval of genome data and metadata. Microbial genomes were downloaded
from the NCBI genome database (GenBank and RefSeq) as of March 7, 2017. We
used and provided updates related to this work to the automated workflow
RepoPhlAn (https://bitbucket.org/nsegata/repophlan, commit 03f614c) to down-
load genomes from the NCBI server. Each genome was given a unique identifier,
which was derived from the NCBI accession of the corresponding assembly, but
without version number. For example, a genome with assembly accession
“GCF_000123456.1” was identified as “G000123456” in this study. In cases when
the same genome was present in both GenBank (accession starting with “GCA_”)
and RefSeq (accession starting with “GCF_”), only the RefSeq version was kept.

Annotation and classification of marker genes. The functional annotation of the
400 PhyloPhlAn marker genes25 was performed by aligning the protein sequences
of the 400 marker genes (inferred from 2887 bacterial and archeal genomes as
described in Segata et al.25) against the UniRef50 database (March 2018 release)
using BLASTp. The best hit for each gene was taken and queried against the
UniProt database for gene and protein names. To categorize genes by function, the
UniProt entries were translated into Gene Ontology (GO) terms40 with the “sub-
set_prokaryote” tag (March 2018 release). Because not all UniProt entries have
corresponding GO terms, manual curation was involved to pick the most appro-
priate GO terms for those cases by examining the BLAST hit table. GO terms were
further translated into GO slim terms to obtain higher-level functional categories.
Note that this analysis is independent from the phylogenetic analysis of the current
genome data set, and the result can be used as a reference for PhyloPhlAn users.

Analyses of genome sequences and identification of marker genes. The DNA
sequences of the 86,200 bacterial and archaeal genomes were subjected to the
following analyses:

1. The quality scores for DNA, protein, tRNA, and rRNA were calculated
following Land et al.41.

2. A MinHash sketch was built for each genome using Mash 1.1.142, with
default settings (sketch size= 1000, k-mer size= 21), based on which a
pairwise distance matrix was built for the entire genome pool. In brief,
MinHash is a k-mer hashing technique that enables the quantification of
genome-to-genome distance. It is efficient for very large genome sets, and it
correlates well with the conventionally used average nucleotide identity
(ANI)42.

3. Although NCBI provides genome annotations, we chose to re-annotate the
genomes using a uniform protocol to ensure consistency. Specifically, open-
reading frames (ORFs) were predicted using Prodigal 2.6.343, in the single-
genome mode, and allowing ORFs to runoff edges of scaffolds.

4. Based on the predicted ORFs, the 400 marker genes were inferred and
extracted using the phylogenomics pipeline PhyloPhlAn (commit 2c0e61a)25,
in which the 400 marker genes were originally introduced. In brief, we used
USEARCH v9.1.13 to align ORFs against the reference marker gene
sequences (see above) at an E-value threshold of 1e-40. It then selected the
highest bit score hit of each ORF. Should more than one hit per marker per
genome was observed, the highest bit score hit was selected as the
representative of that marker gene.

5. The completeness, contamination, and strain heterogeneity scores were
computed using CheckM 1.0.744 with the default protocol (“lineage_wf”).

Prototype selection and genome sampling. Proper taxon sampling is a key
prerequisite to inferring an unbiased view of organism evolution45,46. Beyond
computational challenges in robust tree-building, the highly uneven distribution of
known biodiversity (e.g., 40.0% of all genomes (34,507) belong to the nine most-
sequenced species) requires deliberate subsampling to reduce the bias from the
resulting phylogeny in representing a global view of evolution. We therefore
applied the data-reduction strategy of “prototype selection”47, which subsamples
genomes from the pool such that they represent the largest possible biodiversity—
in terms of maximized sum of pairwise distances as defined by k-mer signatures
(Supplementary Fig. 1a). We developed a heuristic (detailed in Supplementary
Note 1), capable of handling the size of the current genome pool, with results
comparable with or better than published alternatives (Supplementary Fig. 1b–e).

Using this algorithm and by applying multiple criteria, we downsampled the
86,200 bacterial and archaeal genomes to 11,079. The procedures are detailed
below.

1. Excluded genomes with marker gene count < 100 or contamination > 10%.
The marker gene count threshold 100 was chosen because it is sufficiently
large to yield high resolution of the tree using ASTRAL (Supplementary
Fig. 10a, c). The contamination threshold 10% is inline with the medium-
and low-quality draft genome standards proposed by Bowers et al.6.
Nevertheless, we did not adopt the completeness and tRNA/rRNA coverage
thresholds6, because the 400 protein-coding marker genes are more relevant
for phylogenetic reconstruction.

2. Included the NCBI-defined reference and representative genomes
(https://www.ncbi.nlm.nih.gov/refseq/about/prokaryotes/).

3. Included genomes that are the only representative of each taxonomic group
from phylum to genus.

4. Included genomes that are the only representative of each species without
defined lineage (no classification other than species).

5. Executed the prototype selection algorithm developed in this work:
“destructive_maxdist” (see Supplementary Note 1) based on the distance
matrix defined by MinHash signatures, with the already included genomes
as seeds, to obtain a total of 11,000 genomes.

6. For each phylum to genus, and species without classification from phylum
to genus, selected one with the highest marker gene count. This added 79
genomes to the selection.

These 11,079 genomes were subjected to our phylogenetics protocol, during
which further filtering was performed based on sequence alignment quality (see
below). Eventually, 10,575 genomes were retained.

Impact of alternative genetic codes. We chose to uniformly apply the standard
archaeal and bacterial genetic code table 11 to all genomes in order to minimize
bias. Reports have shown that several lineages, such as Mycoplasma/Spiroplasma48,
Hodgkinia49, and Absconditabacteria50, use alternative genetic code tables 4, 25
and others, in most of which a stop codon is repurposed to encode for an amino
acid, resulting in ORF elongation. We did not incorporate alternative genetic codes,
however, because there is no accurate way to associate each of the 86,200 genomes
with its true genetic code. Incorrect truncation of ORFs may unnecessarily exclude
genes and taxa, whereas incorrect elongation of ORFs could result in artificially
long branches, because the amino acid sequence after a true stop codon is likely
relaxed from selective pressure. Considering our goal of inferring phylogenetic
topology and distances, we decided to only use the standard genetic code.

However, we did test the impact of using alternative genetic code on the gene
and taxon sampling. We ran Prodigal 3.0.0-rc1, which automatically switches from
genetic code 11 to 4 if the average ORF length is too short. This resulted in altered
gene calling results in 453 out of the 86,200 genomes, of which 63 had overly short
ORF lengths even when using genetic code 4. PhyloPhlAn marker gene discovery
on the other 390 genomes with genetic code 4 suggested marginal increase in the
extracted number of the 400 marker genes per genome (1.23 ± 5.28, mean and std.
dev.). Only seven additional genomes which had <100 marker genes managed to
pass this threshold (see above) after switching to genetic code 4. Therefore,
omitting alternative genetic code has little impact on the inclusion of genomes.

Metric multidimensional scaling (mMDS) of genome distances. The effect of
prototype selection was visualized using the mMDS technique, which renders a
low-dimensional plot that minimizes the loss of information when transforming
from the high-dimensional data. We performed mMDS using the “mds” function
implemented in scikit-learn 0.19.251 on the genome distance matrix, using the
default setting, to compute the coordinates at the top five axes. The resulting
coordinates were visualized with the interactive tool Emperor52 as bundled in
QIIME 2 release 2017.1253.

Protein sequence alignment and filtering. Protein sequences of each of the 400
marker gene families were aligned using UPP v2.054, a phylogeny-based and
fragmentary-aware alignment tool. UPP consists of several sequentially connected
modules. It first identifies suspected fragmentary sequences, then calls PASTA
v1.8.055 to align the remaining sequences and build a phylogeny (backbone tree)
based on them. Then it builds an ensemble of HMMs using HMMER56 based on
the phylogeny. Finally, it aligns the fragmentary sequences to the HMMs and
selects the one with the best match. Sequences that are 25% longer or shorter than
the median sequences were considered as fragments and excluded from the
backbone. More specifically, PASTA first builds a starting tree, performs a tree-
based clustering of the sequences, and builds a spanning tree from these clusters.
Then it calls MAFFT v7.149b57 to align the sequences in each cluster, and calls
OPAL58 to merge the alignments of adjacent clusters according to the spanning
tree, and finally uses transitivity to perform the subsequent merging.

To ensure the quality of the alignment, we filtered out extremely gappy sites and
sequences: sites with >90% gaps were deleted from the alignments, followed by the
dropping of sequences with >66% gaps.
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Filtering of marker genes. To ensure the quality of the species tree built upon
these marker genes59, we filtered out the genes that were not aligned reliably by
UPP. As such, the marker genes with >75% gaps in the aforementioned alignments
were excluded from the pool, leaving 381 marker genes in total. The threshold 75%
was chosen based on the distribution pattern of per-gene alignment quality
(Supplementary Fig. 2d).

Filtering of outlier taxa from gene trees. We removed suspected outliers by
detecting the taxa on disproportional long branches and filtering them out from the
phylogeny inferred by FastTree27. To do this, we applied TreeShrink60 v1.1.0, a
method that simultaneously detects long branches on a set of gene trees by iden-
tifying a set of taxa that could be removed from each gene so that the gene trees are
maximally reduced in diameter. We used FastTree 2.1.9 to infer preliminary gene
trees of the 381 selected genes, then ran TreeShrink to detect outlier long branches
in these trees, with the per-species test with α= 0.05 (5% false-positive tolerance).
Finally, we dropped genomes that contained <100 marker genes post gene tree
filtering.

Gene tree reconstruction. Gene tree topologies were reconstructed using the
maximum likelihood (ML) method as implemented in the state-of-the-art phylo-
genetic inference program RAxML 8.2.1026. The best amino acid substitution
model for each of the 381 universal marker genes was inferred using RAxML’s
built-in script ProteinModelSelection.pl. Three phylogenetic trees were recon-
structed for each gene family: one using a starting tree computed by the fast ML
approach implemented in FastTree) and the other two using parsimony trees built
with random seeds 12345 and 23456. RAxML was executed with the ML search
convergence criterion (-D) and the CAT rate heterogeneity model without final
optimization (-F) to reduce the execution time.

For each of the 1143 topologies (3 × 381), another RAxML run was executed to
optimize branch lengths and to compute likelihood scores under the robust, but
expensive Gamma rate heterogeneity model. Because of numerical instability, at
least one of the RAxML runs failed for 39 of the 381 gene families. For those cases,
IQ-TREE 1.6.161, an alternative and faster maximum likelihood program, was used
instead to optimize branch lengths using the same model (G4). The tree with the
highest likelihood score among the three runs was retained for downstream
applications. In 161 gene families, this tree was from the run with the FastTree
starting tree, while in the remaining gene families the best tree was from either one
of the random seeds.

Species tree reconstruction by summarizing gene trees (ASTRAL). A species
tree was reconstructed by summarizing the 381 gene trees, using ASTRAL-MP62

(implementing ASTRAL-III algorithm28) 5.12.6a. This analysis was run on the
Comet supercomputing cluster using 24 cores and 4 GPU acceleration. In the
resulting tree, the branch lengths represent the units of coalescence. Each branch
has three support values: (1) effective number of genes (EN): the number of gene
trees that contain some quartets around that branch; (2) quartet score (QT):
proportion of the quartets in the gene trees that support this branch; (3) local
posterior probability (LPP): the probability this branch is the true branch given the
set of gene trees (computed based on the quartet score and assuming incomplete
lineage sorting (ILS))31.

Branch length estimation for the ASTRAL tree. The branch lengths of a sum-
mary tree generated by ASTRAL are in coalescent units and only for internal
branches. In order to obtain “conventional” branch lengths, i.e., the expected
number of amino acid substitutions per site, we ran IQ-TREE using the con-
catenated alignment (most conserved or randomly selected sites as described
below) as input, the ASTRAL tree as the topological constraint, and the LG+
Gamma model. Branch lengths obtained using both site categories were highly
correlated (Supplementary Note 2).

Species tree reconstruction based on the concatenated alignment (CONCAT).
The alignments of the 381 marker genes were concatenated into a supermatrix.
Due to the computational challenge in running classical maximum likelihood tree
reconstruction on the full-scale data set, we had to downsample it to around 38 k
amino acid sites. In order to explore the impact of site sampling on tree topology
and branch lengths, we separately adopted two strategies for site sampling: (1)
selected up to 100 most conserved sites per gene. The degree of conservation was
estimated using the “trident” metric63, which is a weighted composition of three
functions: symbol diversity, stereochemical diversity, and gap distribution. The
PFASUM60 substitution matrix was used for computing the stereochemical
diversity64. (2) randomly selected 100 sites per gene from sites with <50% gaps.

For the downsampled supermatrix, a maximum likelihood tree was first built
using FastTree, with LG model for amino acid substitution and Gamma model for
rate heterogeneity. Using this FastTree tree as the starting tree, plus two maximum
parsimony trees generated from random seeds (12345 and 23456), we performed
three independent runs using RAxML, with the LG+ CAT models
(PROTCATLG), with rapid hillclimbing (-f D) and without final Gamma
optimization (-F). With the resulting topologies, we performed branch length
optimization and likelihood score calculation using IQ-TREE, with the LG+

Gamma models (LG+G4). We further performed 100 rapid bootstraps using
RAxML to provide branch support values.

Species tree reconstruction based on ribosomal proteins. To test the impact of
choice of marker gene set on the topology and relative distances among major
taxonomic groups, we conducted a separate analysis in which the species tree was
built using ribosomal protein sequences. We identified and extracted 30 ribosomal
protein families using the program PhyloSift 1.0.165 with its marker database
released on August 8, 2017. If more than one copy of a marker protein was detected
in a genome, all copies were discarded. After this filtering, genomes with fewer than
25 marker proteins were dropped from the data set, resulting in a total of 9814
genomes out of the original 10,575. Sequences of each ribosomal protein family
were aligned using UPP as described above. The resulting alignments were con-
catenated and subjected to RAxML tree reconstruction using the LG model for
amino acid substitution66 (which is the best model for 304 out of the 381 genes
based on RAxML’s model selection) and the CAT model for rate heterogeneity
(PROTCATLG). The resulting tree was then fed into IQ-TREE for branch length
optimization, with the Gamma model for rate heterogeneity. One hundred rapid
bootstraps were executed in RAxML to provide branch support.

The same concatenated alignment was also used to estimate the branch lengths
for the ASTRAL tree based on the 381 marker gene trees. Because the quality of an
ASTRAL tree improves as the number of gene trees increases (Supplementary
Fig. 10a, c), running ASTRAL on only 30 trees of structurally and functionally
highly related genes is of limited value. Thus we decided not to run ASTRAL de
novo, but only to assess the impact of ribosomal proteins on the branch lengths of
the existing ASTRAL tree.

Species tree reconstruction and branch length estimation with CPR taxa
excluded. We followed the same protocol as stated above to reconstructed species
trees and estimate branch lengths based on the protein sequence alignments with
the 1454 CPR taxa removed, leaving 9121 taxa. Only one modification was made to
the main protocol in order to reduce the computational expense for reconstructing
the 381 gene trees: Instead of running RAxML three times per gene and selecting
one tree with the highest Gamma likelihood, we ran RAxML once per gene using
the random seed 12345. The two alternative site sampling schemes: most conserved
(“cons”) and randomly selected (“rand”) as demonstrated in the main result were
both tested, using the same amino acid sites as in the main protocol in each
scheme.

Species tree reconstruction using site heterogeneous models (PMSF). We
built alternative CONCAT trees using the posterior mean site frequency (PMSF)
method38 implemented in IQ-TREE, which considers mixture classes of rates and
substitution models (here the LG model) across sites. Because this method is
computationally expensive, we downsampled the 10,575 taxa to 1000 (see below for
the taxon downsampling strategy). ModelFinder (which is part of IQ-TREE)67 was
used to select an optimal model among the empirical profile mixture models C10 to
C6068, plus the site homogenous model (with Gamma rate across sites) as a
control. This analysis consistently chose C60 as the optimal model for all tests.
Therefore, we used the LG+ C60 model for PMSF phylogenetic reconstruction.
PMSF requires a guide tree, which we obtained from ModelFinder results. Com-
putational challenge limited this analysis to at most 1000 taxa (which consumed
1.43 TB memory, close to the 1.5 TB physical memory equipped in our high-
memory nodes). Branch support values were computed using the ultrafast boot-
strap (UFBoot)69 method implemented in IQ-TREE. In parallel to this analysis, we
performed phylogenetic inference using the Gamma model (+G) or the Free-
Rate70 model (+R) on the same 1000-taxon input data for comparison purpose.

Species tree reconstruction using implicit methods. We applied two implicit
strategies for inferring the evolutionary relationships among the sampled genomes.
They are not based on the alignment of homologous features across multiple
genomes, but instead are based on the predefined distances among genomes.
Specifically, they are the Jaccard distances defined by the MinHash signature (see
above), and by the presence/absence of the 400 marker genes (see above). The
conventional neighbor joining (NJ) method as implemented in ClearCut 1.0.971

was used to reconstruct phylogenetic trees from the two distance matrices,
respectively.

Rooting and post-manipulation of species trees. We rooted the species tree at
the branch connecting the Archaea clade and Bacteria clade, according to the
widely adopted hypothesis of life evolution72–74. The absence of Eukaryota does
not impact the placement of root, since Eukaryota is considered derived, as a sister
group or ingroup of Archaea in this hypothesis. We want to remind readers that
this hypothesis is not without controversy75,76. The discovery and study of CPR
and other divergent or transitional groups may provide materials for a second
examination of this hypothesis, although this is beyond the scope of this study.

Internal nodes were flipped to follow the descending order (i.e., child nodes are
sorted from less descendants to more descendants). Incremental numbers were
assigned to internal node IDs in a pre-order traversal of the tree starting from the
root (i.e., root=N1, LCA of Archaea=N2, LCA of Bacteria=N3, etc.). These
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node IDs can be used as unique identifiers in downstream analyses and
applications.

Phylogeny-based downsampling of taxa. We designed a protocol to downsample
taxa from the 10,575 genomes for further phylogenetic analyses. We adopted the
relative evolutionary divergence (RED) metric14, as the core of our subsampling
strategy. This metric allowed us to select large clades that best represent the deep
phylogeny. Specifically, we calculated RED for all nodes (terminal and internal) of
the ASTRAL tree (i.e., the tree shown in Fig. 1) using TreeNode functions
implemented in scikit-bio 0.5.277. Nodes were selected iteratively from the low end
of the RED list, with ancestral nodes (if any) of the current node dropped from the
selection at each iteration, until the desired number of clades n was achieved.

Within each selected clade, four criteria were sequentially applied to the
descendants until one taxon was selected: (1) contains the most marker genes; (2)
contamination level is the lowest; (3) DNA quality score is the highest; (4) random
selection (if there were still more than one taxon after applying the other three
criteria). This protocol guaranteed the selection of n taxa, which maximize the
representation of deep phylogeny.

Visualization and annotation of trees. Unique colors were assigned to selected
NCBI-defined taxonomic groups above phylum, and phyla with 100 or more
representatives in the sampled genomes. Colors of taxa were directly assigned based
on their NCBI taxonomy assignment. Colors of clades and branches were deter-
mined based on the tax2tree decoration. The trees were rendered using iTOL v478

(unrooted or circular layouts) or FigTree 1.4.379 (rectangular layout).

Comparison of multiple trees. We used both the classical Robinson–Foulds (RF)
metric80 (calculated using scikit-bio’s “compare_rfd” function) and the quartet
score (calculated using ASTRAL) to quantify the topological concordance between
a pair of trees. Furthermore, we used the “tip distance” (TT), calculated using
scikit-bio’s “compare_tip_distances” function, to measure the correlation of the
phylogenetic distances among taxa in a pair of trees. It equals (1− r)/2, where r is
the Pearson correlation efficient between the tip-to-tip distance (i.e., total length of
branches connecting two tips) matrices of the two trees. Because the two trees
might have different sets of taxa, we first truncated them using the “shear” function
implemented in scikit-bio so that they both only contained the shared taxa. This
enabled the subsequent computation of the three metrics.

For a set of multiple trees (species trees or gene trees), a matrix of the pairwise
RF distance, quartet distance (1−quartet score) or tip distance was constructed,
based on which subsequent statistical analyses were performed to assess the
clustering pattern of trees, as stated below.

Clustering analysis of multiple trees. We used several statistical approaches to
assess the clustering pattern of multiple trees based on the RF, tip or quartet
distance matrices built as stated above:

1. Hierarchical clustering, using the “linkage” function implemented in SciPy
1.1.081.

2. mMDS, as detailed above.
3. Principal coordinate analysis (PCoA), performed using QIIME 2’s “pcoa”

command, and visualized using Emperor. This method aims to visualize the
biggest variance in a few dimensions, as compared with mMDS as
explained above.

4. Permutational multivariate analysis of variance (PERMANOVA)82, per-
formed using QIIME 2’s “beta-group-significance” command, with 999
permutations (the default setting). This method evaluates the statistical
significance of grouping of trees by a certain variable such as method, site
sampling and taxon sampling.

Cross-comparison of the ASTRAL and CONCAT trees. The first challenge for
this comparison was that the branch support values were estimated using com-
pletely different methods (local posterior probability vs. rapid bootstrap) and so are
not directly comparable. We manipulated the trees so that they have the same
overall resolution: First, we collapsed the low-supported branches in the CONCAT
tree (by conserved sites), using the commonly accepted bootstrap threshold: 50.
This left 9595 internal nodes. Then we performed branch collapsing to the
ASTRAL tree, from the low end of the range of local posterior probability (lpp),
until it reached 0.68057, also leaving 9595 internal nodes.

The second challenge was that large-scale trees are difficult to align and to
display. We collapsed the two trees so that they have 50 paired clades with at least
50 descendants each. For each pair of clades, the descendants are identical. The
remaining tips were pruned. This operation left 7764 taxa in each tree. The sizes of
the 50 chosen clades are 155.3 ± 106.9 (mean and standard deviation).

A tanglegram of the resulting collapsed trees was reconstructed using
Dendroscope 3.5.983. In our case, the clades were fully aligned. The tanglegram was
then rendered back-to-back without the need for displaying the connector lines.

Calculation of the relative Archaea–Bacteria distance. We calculated the phy-
logenetic distance (sum of branch lengths) between every pair of taxa in a tree
using scikit-bio’s “tip_tip_distances” function. The pairs were divided into three
groups: A–A, A–B, and B–B (A and B are abbreviations for Archaea and Bacteria).
Within each group, the mean distance was calculated. Then the overall relative A–B
distance was calculated as: mean (A–B)2/(mean (A–A) ×mean (B–B)). Note that
due to HGT and other reasons, archaeal and bacterial taxa are rarely perfectly
separated in individual gene trees. Therefore, the calculated distance should be
interpreted as the average evolutionary distance between archaeal and bacterial
genomes, instead of the distance between the two clades.

Test for amino acid substitution saturation. We followed the principle intro-
duced by Jeffroy et al.84 to test for the saturation. Specifically, we wanted to test
whether the degree of saturation on inter-domain taxon pairs (Bacteria vs.
Archaea) is larger than that on intra-domain pairs. For each domain, 100 taxa were
randomly sampled for this analysis. We plotted the phylogenetic distance, i.e., the
sum of branch lengths between two tips, as the x-axis, versus the Hamming dis-
tance of gap-free sites per each alignment between a pair of sequences, as the y-axis
(Supplementary Fig. 19a–d). Because the three categories of taxon pairs have dif-
ferential distribution on the x-axis, we further binned on the x-axis and performed
comparison within each bin (Supplementary Fig. 19e, f).

Phylogenetic analysis with latest genome availability. We made several mod-
ifications to the main protocol to reduce the computational expense for this rapid
test of the extended set of 10,762 (10,575+ 187) genomes: UPP was called in
“insertion” mode to update the existing amino acid sequence alignments. In-house
scripts were used to locate the same set of sites instead of performing de novo site
sampling. Both ASTRAL and CONCAT methods were used to build species trees.
For CONCAT, we used IQ-TREE in “fast” mode to build de novo species trees
from concatenated alignments without using a predefined starting tree. For
ASTRAL, we kept the same analysis parameters to build a species tree from the 381
gene trees, whereas the gene trees were built as follows to save computation while
maintaining high quality:

First, we used the previous gene trees as topological constraints (-g) to
incorporate the new taxa using RAxML. Then we used those trees as starting trees
(-t) to perform de novo ML searches using RAxML. This way, we only did de novo
ML search once instead of three as previously, but we argued that the generated
gene trees would have comparable ML score as in the previous procedure. To test
this hypothesis, we randomly selected ten genes to generate four trees each: (1)
RAxML with FastTree tree as starting tree; (2) & (3) RAxML with random starting
trees with two different random seeds; (4) RAxML tree generated using the
described procedure. Note that the tree having highest likelihood score among (1),
(2), and (3) defines the ML tree in the previous procedure. Our results showed that
the gene trees generated by (4) have higher likelihood scores than the best of (1),
(2), and (3) in six of ten of the tested genes. Besides, we use a χ2 test to show that
the trees (4) have higher chance to be the best tree than (1), (2), and (3). In this test,
the null hypothesis H0 is that (4) has the same chance to be the best tree among
the four trees. Applying the test on the ten selected genes, we rejected H0 with
p-value= 0.011.

Divergence time estimation using maximum likelihood. We used the maximum
likelihood tool r8s 1.8185 to estimate the divergence times based on the species
trees. Specifically, we used the Langley–Fitch (LF) method86, which assumes a
universal molecular clock (substitution rate) for the entire tree, with the truncated-
Newton (TN) method for optimizing the likelihoods of branch lengths87. A recent
study showed that this method has comparable estimation accuracy when
benchmarked against the more sophisticated Bayesian framework, but its com-
putation is significantly faster88, thus suitable for the size of our data set. Near-zero
branches were collapsed to avoid numerical errors. Ten replicates with random
initial conditions were performed for each setting. In each replicate, three restarts
were executed after the initial optimization with a random perturbation factor of
5%. Replicates that failed to pass the gradient check were discarded. The divergence
times estimated by the run with the highest likelihood score, and the mean and
standard deviation of those by all successful runs were reported.

Divergence time estimation using Bayesian inference. We used the Bayesian
tool BEAST 1.10.489 to estimate divergence times. Considering the computational
expense, we randomly selected 5000 amino acid sites from the full-length align-
ment, and downsampled the original 10,575 taxa to 100. Taxon sampling was
performed using the same RED-guided protocol (see above), but was manually
modified afterwards to ensure sufficient sampling around the calibration point.
Two alternative molecular clock models were used: the strict clock model, or the
uncorrelated relaxed clock model with a lognormal distribution (UCLD)90. The
species tree was modeled using a Yule process91, with topology fixed to the
ASTRAL tree. Logs of MCMC runs were examined using Tracer 1.7.192. Burn-ins
were set to be at least 10% of iterations, or higher depending on the manual
observation of traces. Sufficient MCMC iterations were executed to ensure that the
effective sample size (ESS) of the reported parameters was at least 150.
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Tree-based taxonomic curation and annotation. We used the program tax2tree
(commit 99f19be)93 to curate the original NCBI taxonomy94 assignment of gen-
omes based on the phylogenetic trees and to annotate the internal nodes of the tree
using most appropriate taxonomic labels. The same program was used to curate
multiple databases, such as the classical Greengenes93 and the recent GTDB14. The
program took as input the species tree and the original NCBI taxonomy and
inferred the most plausible taxonomic annotation at every node of the tree, as
determined using an F-measure scoring system across candidate taxonomic terms.
In scenarios where one term was estimated to be the best candidate for multiple,
independent clades (i.e., para/polyphyly), a numeric suffix was appended to the
term to indicate the grouping and order (from more descendants to less) of those
clades. For example, Firmicutes_1 is the largest clade assigned to the paraphyletic
phylum Firmicutes, followed by Firmicutes_2, Firmicutes_3, etc. Based on the
decorated tree, correct taxonomic names were re-generated for unclassified and
mis-annotated genomes. Taxonomic groups represented by only one genome in
this work were back-filled post tax2tree annotation.

Assessment of cladistic properties of taxon sets. The cladistic property of a
taxonomic group (or an arbitrarily defined taxon set) with reference to a species
tree was evaluated using three methods:

1. The strict definition of “monophyly”: when a clade contains all genomes
assigned to a single taxonomic group and no other genomes, this taxonomic
group is considered monophyletic. Further, we identified “relaxed”
monophyletic groups compared to the aforementioned “strict” scenario.
In the “relaxed” scenario, if a clade consists of genomes assigned to a
taxonomic group, and genomes without assignments at the same taxonomic
rank (i.e., unclassified), this taxonomic group is still considered
monophyletic.

2. tax2tree’s classification consistency score, representing the fraction of tips
within that clade relative to the total number of tips in the tree which are of
that taxon. Consistency= 1 is equivalent to strict monophyly.

3. The ASTRAL-computed quartet score of this taxonomic group, i.e., the
fraction of quartets in the tree that supports this taxonomic group as
monophyletic, i.e., separates this taxonomic group from the others.

4. An approach introduced in DiscoVista95 which evaluates and visualizes the
compatibility between a given taxon set and a tree with branch support
values. It computes a “support” or “rejection” degree as follows: If the taxon
set constitutes a monophyletic clade in the tree, it is supported; and the
support degree (green) is the support value of the branch connecting the
lowest common ancestor of the clade to its parent. On the other hand, if it is
not a monophyletic group in the original tree, but after contracting branches
with support values below a threshold, the monophyly can no longer be
rejected due to polytomy, the lowest threshold is considered the rejection
degree (with a negative sign) (magenta).

Evaluation of GTDB taxonomic groups. We downloaded GTDB14 release: 86.1
from http://gtdb.ecogenomic.org/. The format of genome identifier in GTDB was
matched to that of our work (e.g., GB_GCA_000123456.1 was translated into
G000123456). Following the protocols described above, we evaluated the GTDB
phylogeny and taxonomic units, and annotated our species trees using the GTDB
taxonomy.

Statistics. Statistical analyses and plotting were performed using Python 3.6 and
QIIME 2 release 2017.12. Specifically, PERMANOVA test was performed using
QIIME 2’s “beta-group-significance” command. Independent or paired two-sample
t test was performed using scipy 1.1.0’s “ttest_ind” and “ttest_rel” commands,
respectively. Fisher’s exact test was performed using scipy’s “fisher_exact” function.
Linear regressions were performed using scipy’s “linregress” function. The p-value
was computed using a two-sided Wald test, in which the null hypothesis was slope
= 0. Gaussian kernel density estimations were performed using seaborn 0.9.0’s
“distplot” function. Hierarchical clustering was performed using scipy’s “linkage”
function. Quantile–quantile (Q–Q) plot was computed using scipy’s “probplot”
command. Redundancy analysis (RDA) was performed using vegan 2.4.4’s “rda”
and “ordiR2step” commands. Dimension reductions were performed using mMDS
implemented in scikit-learn 0.19.2, or PCoA implemented in QIIME 2 (both
detailed above). Pairwise distances based on k-mer signatures and on marker gene
presence/absence were computed using the Jaccard index (see above). Branch
supports in the phylogenetic trees were computed using rapid bootstrap imple-
mented in RAxML 8.2.10, and ultrafast bootstrap implemented in IQ-TREE 1.6.1,
and local posterior probability implemented in ASTRAL 5.12.6a (detailed above).
Robinson–Foulds (RF) distance and “tip distance” were calculated using scikit-bio
0.5.2. Quartet scores were calculated using ASTRAL.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data sets generated and analyzed during the current study are publicly available at
GitHub (https://github.com/biocore/wol) and Zenodo (https://doi.org/10.5281/
zenodo.3524546), under the BSD 3-Clause license. The source data underlying Figs. 1–6
and Supplementary Figs. 1–27 are provided as a Source Data file. All relevant data are
available from the corresponding author.

Code availability
The Python implementations of the prototype selection algorithms for genome
subsampling are publicly available at GitHub (https://github.com/biocore/wol) and
Zenodo (https://doi.org/10.5281/zenodo.3524546), under the BSD 3-Clause license. A
copy of the code is provided in Supplementary Software.
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