
UCLA
UCLA Previously Published Works

Title
Spatiotemporal architecture of immune cells and cancer-associated fibroblasts in high-
grade serous ovarian carcinoma

Permalink
https://escholarship.org/uc/item/9mp1k91m

Journal
Science Advances, 10(16)

ISSN
2375-2548

Authors
Xu, Alexander M
Haro, Marcela
Walts, Ann E
et al.

Publication Date
2024-04-19

DOI
10.1126/sciadv.adk8805
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9mp1k91m
https://escholarship.org/uc/item/9mp1k91m#author
https://escholarship.org
http://www.cdlib.org/


Xu et al., Sci. Adv. 10, eadk8805 (2024)     17 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

1 of 17

C A N C E R

Spatiotemporal architecture of immune cells and 
cancer-associated fibroblasts in high-grade serous 
ovarian carcinoma
Alexander M. Xu1,2*, Marcela Haro3, Ann E. Walts4, Ye Hu5, Joshi John6,7, Beth Y. Karlan5,8,  
Akil Merchant1,2†, Sandra Orsulic5,6,8†*

High-grade serous ovarian carcinoma (HGSOC), the deadliest form of ovarian cancer, is typically diagnosed after it 
has metastasized and often relapses after standard-of-care platinum-based chemotherapy, likely due to advanced 
tumor stage, heterogeneity, and immune evasion and tumor-promoting signaling from the tumor microenviron-
ment. To understand how spatial heterogeneity contributes to HGSOC progression and early relapse, we profiled 
an HGSOC tissue microarray of patient-matched longitudinal samples from 42 patients. We found spatial patterns 
associated with early relapse, including changes in T cell localization, malformed tertiary lymphoid structure 
(TLS)–like aggregates, and increased podoplanin-positive cancer-associated fibroblasts (CAFs). Using spatial fea-
tures to compartmentalize the tissue, we found that plasma cells distribute in two different compartments associ-
ated with TLS-like aggregates and CAFs, and these distinct microenvironments may account for the conflicting 
reports about the role of plasma cells in HGSOC prognosis.

INTRODUCTION
The most common and most lethal subtype of ovarian cancer is high-
grade serous ovarian carcinoma (HGSOC) (1). Standard treatment 
for HGSOC combines surgical cytoreduction with platinum-based 
chemotherapy. Typically, this treatment is initially successful in 
achieving remission, but cancer recurs in the vast majority of cases. 
Although these patients with recurrent disease might respond to ad-
ditional cycles of chemotherapy, most ultimately develop resistance. 
To modulate resistance, immune cells can promote and/or inhibit tu-
mor progression depending on signals received from the tumor mi-
croenvironment. In particular, cancer-associated fibroblasts (CAFs) 
are emerging as critical regulators of immune cell activity and tumor 
development, mediated by proteins such as fibroblast activation pro-
tein (FAP) (2–4) and podoplanin (PDPN) (5, 6). Multiple studies have 
reported an uneven distribution of different immune cell types and/or 
different maturation stages of the same cell type across different tu-
mors and even within the same tumor. These observations provided 
the basis for the development of “immunoscores” as predictors of sur-
vival, metastasis, and therapeutic response (7–15).

In primary HGSOC, longer survival has been associated with 
tumor-infiltrating CD8+ T cells (16–18) and plasma cells in ter-
tiary lymphoid structures (TLSs). On the basis of the presence 

and distribution of CD8+ T cells in ovarian cancer, three main 
spatial patterns have been described: infiltrated, excluded, and 
desert (19, 20). While desert tumors consist primarily of epithe-
lial cells and are largely devoid of immune cells, infiltrated tumors 
have abundant immune infiltrates evenly distributed in cancer 
and stromal areas. Excluded tumors typically exhibit a higher 
CAF content than the infiltrated and desert tumors and the ma-
jority of T cells present are not in direct contact with cancer cells. 
Excluded tumors are associated with poor survival although it is 
unclear if this is due to dysfunctional T cells sequestered in the 
tumor stroma or limited access to chemotherapy due to the dense 
extracellular matrix (ECM) secreted by CAFs (20). While im-
mune cell distribution and function have been extensively studied 
in primary tumors, less is known about the distribution of im-
mune cell subsets during tumor progression and chemotherapy 
resistance. In a mouse model of ovarian cancer, it has been shown 
that cancer progression is primarily driven by a switch from im-
munoproficient to immunosuppressive immune cell types rather 
than by a loss of tumor immunogenicity (21). It is currently un-
known how this equilibrium is established and how the ratios and 
spatial distribution of different stromal cell types affect tumor 
progression and response to therapy.

Ratios between different cell types in a tumor, including cancer 
cells, fibroblasts, and immune cells, can be studied in detail with 
single-cell RNA sequencing (RNA-seq) analyses. Single-cell tran-
scriptomic studies in ovarian cancer have contributed much to our 
understanding of HGSOC; however, most of the studies were done 
using samples from a small number of patients. Olalekan et al. (22) 
analyzed omental metastases from six patients with ovarian cancer, 
of which four were HGSOC. Izar et al. (23) analyzed single-cell tran-
scriptomes in ascites from 11 patients with HGSOC. Although 
Pietilä et al. (24) conducted RNA-seq expression analysis of primary, 
metastatic, and recurrent ovarian cancer from 32 patients, they fo-
cused on genes involved in ECM remodeling. Using RNA-seq analy-
sis, Kreuzinger et al. (25) compared patient-matched primary and 
recurrent fresh-frozen tissue samples from 66 patients with HGSOC 
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and found that the tumor microenvironment was a major contribu-
tor to the differential gene expression. Using gene expression profiles 
and immunohistochemistry (IHC) analyses of formalin-fixed 
paraffin-embedded (FFPE) samples, Westergaard et al. (26) investi-
gated the molecular features of matched primary and recurrent 
HGSOC from nine patients and found that gene signatures of fibroblasts 
and immune cells were often expressed at higher levels in recurrent 
tumors. While these studies showed the heterogeneity of HGSOC, 
they did not focus on the spatial relationships between cell types and 
tissue architecture.

More recently, spatial resolution has been added to single-cell 
analysis. Commercially available tools for highly multiplexed spatial 
protein analysis include imaging mass cytometry (IMC) (27), multi-
plexed ion beam imaging (28), and CO-Detection by indEXing (CO-
DEX) (29). When applied to tumor studies, these spatially resolved 
methods can provide an added layer of spatial context by describing 
the microenvironmental niches where each cell type can be found (29, 
30). This is essential for clinical translation, as molecular analysis (e.g., 
RNA-seq) is relatively costly and imaging remains the most common 
modality for biomarkers and clinical decision-making. Whereas typi-
cal biomarkers focus on cellular composition as percentages and 
qualitative expression levels (31), automated quantification of more 
complex cell patterns within tissue, such as tissue interfaces and cell-
cell interactions, is still in its infancy in pathology. These spatial pat-
terns represent the dynamic biology of tumors (16, 32) and have 
shown promise as more accurate biomarkers, but spatial analysis has 
not yet been widely applied in ovarian cancer and the studies pub-
lished to date were conducted on small numbers of samples. An IMC 
analysis of pre- and on-treatment immune therapy biopsy samples 
from six patients showed that treatment response correlated with an 
increase in CD8+ T cells and FoxP3+ cells (33). In addition, an IMC 
study of primary HGSOC from 20 short-term [overall survival (OS), 
≤20 months] and 21 long-term (OS, ≥80 months) patients showed 
different densities of Granzyme+ CD8+ cytotoxic T cells, CD45RO+ 
CD4+ memory T cells, B7+H4+ Keratin+ tumor cells, two subtypes of 
CD73+ fibroblasts, and a subset of CD31+ endothelial cells in tumors 
from the two patient groups (34). A spatially resolved transcriptomic 
analysis of 12 patients with HGSOC with different responses to neo-
adjuvant chemotherapy emphasized the importance of stromal sig-
naling and immune cell localization (35).

Currently, the costs associated with advanced spatial imaging tools 
and computational methods, including machine infrastructure, com-
putational power, and bioinformatics expertise, stifle clinical transla-
tion (36). Bridging the gap between developing technologies such as 
IMC and traditional methods of clinical oncology presents a major 
challenge in the modern single-cell omics era (37). The clinical ana-
logs to IMC are IHC, which is limited to a few markers but can be 
performed quickly and inexpensively, and hematoxylin and eosin 
(H&E), which capture a wide range of interpretable histological fea-
tures. In ovarian cancer, multiplex IHC has been used to correlate 
patient outcomes and tumor molecular characteristics with the distri-
bution of major immune cell subtypes, including T cells, B cells, and 
plasma cells (38). Here, we show that IMC not only reproduces equiv-
alent histologic analyses but also generates deeper insights using the 
additional protein markers available. We used IMC to perform deep 
phenotyping and spatial analysis of patient-matched primary, syn-
chronous metastatic, and post-platinum–based chemotherapy HG-
SOC recurrence samples from 42 patients. This study represents the 
largest collection of highly multiplexed, spatially resolved imaging 

data in HGSOC to date. We identified quantifiable spatial protein fea-
tures of lymphocytes and fibroblasts associated with early relapse 
(≤15 months after primary optimal debulking), including architec-
tural changes between primary, recurrent, and metastatic sites. Fur-
ther genetic and protein spatial analysis found that B cells and plasma 
cells are spatially segregated with respect to PDPN-expressing CAFs 
in early relapse patients, and we propose a hypothetical mechanism 
driving this spatial prognostic biomarker.

RESULTS
Imaging mass cytometry reveals single-cell heterogeneity of 
ovarian cancer
We generated a tissue microarray (TMA) with de-identified FFPE 
patient tissue samples comprising up to triplicate 1-mm cores of 
patient-matched primary HGSOC, synchronous pretreatment me-
tastasis, and metachronous posttreatment/recurrent metastasis sam-
ples (hereafter referred to as “primary,” “synchronous metastasis,” 
and “recurrence,” respectively) from 42 optimally debulked patients 
with HGSOC who recurred during or after platinum-based chemo-
therapy (Fig. 1A and table S1). The time to recurrence ranged from 
5.5 to 51.7 months after primary debulking surgery. Of the 42 pa-
tients, 16 recurred within 15 months following optimal primary deb-
ulking surgery, which we categorized as “early relapse.” The remaining 
26 patients were categorized as “late relapse” (Fig. 1A). We used IMC 
analysis of the TMA to study the temporal evolution of spatial tumor 
architecture.

We performed IMC using an immune-centric panel of 38 mark-
ers (Fig. 1B and table S2), finding cell heterogeneity across all regions 
of interest (ROIs) analyzed. Initially, major cell phenotyping markers 
were identified and used for PhenoGraph clustering (Fig. 1C), iden-
tifying three primary cell categories: immune cells (combined lym-
phoid and myeloid immune cell lineages), fibroblasts, and epithelial 
cancer cells. In addition to interpatient heterogeneity in cell compo-
sition (fig.  S1A), we observed heterogeneity across tumor sample 
types—primary, synchronous metastatic, and recurrent (Fig.  1D; 
stacked bar plot to show summation to 1, error bars denote SD; 
fig. S1B shows the underlying distribution). We observed more epi-
thelial cells and fewer immune cells in primary than synchronous 
metastatic and recurrent tumors, but the difference was not statisti-
cally significant. A significant increase in immune cells was observed 
in tumors collected from lymph nodes, suggesting that the surround-
ing tissue influenced the analysis (Fig. 1E and fig. S1C). We observed 
more fibroblasts and fewer cancer epithelial and immune cells in 
ROIs from patients with early relapse (n = 16) than those from pa-
tients with late relapse (n = 26), but these differences were not statis-
tically significant (Fig. 1F and fig. S1D). No significant differences in 
cell proportions were observed by age, stage, grade, ethnicity, or 
BRCA1/2 mutation status.

Highly multiplexed IMC performs phenotyping of immune 
and fibroblast subsets
Next, we performed fine-grained phenotyping of immune cells, iden-
tifying B cells (CD19+ or CD20+), plasma cells (CD138+/CD27+/
CD38+), T cells (CD3+/CD4+ or CD8+), and macrophages and my-
eloid cells (CD68+ and CD11b+) (Fig. 2, A and B). T cells were further 
subdivided into CD4+, CD8+, and regulatory T (Treg) (CD4+/FoxP3+) 
cells (fig. S2, A to C; error bars denote SD). Fibroblasts were further 
subdivided by PhenoGraph and labeled by expression of FAP, 
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α–smooth muscle actin (α-SMA), and PDPN, or any combination of 
the three markers, to represent different fibroblast subtypes (Fig. 2C). 
Clustering of ROIs by their cell proportions identified an immune-
dominant cluster (cluster 7) and a range of fibroblast- to epithelial-
dominated clusters (fig. S2D).

Within the immune compartment, macrophages comprised ~45% 
of all immune cells, while other myeloid cells comprised ~21% 
(Fig. 2D; error bars denote SD). Different T cell subtypes were identi-
fied, including CD4+, CD8+, Treg, CD4/CD8 double-positive, and 
CD20+ T cells (39, 40). CD4/CD8 double-positive and CD20+ T cells 
(fig. S2E) may represent densely packed T and B cells that were not 
separated by segmentation, although both CD4/CD8 double-positive 
and CD20+ T cells have been implicated in various cancers including 
ovarian (40–45). Plasma cells were difficult to define due to high 
CD138 expression in non-immune cells, such as epithelial tumor cells 
(41). Clusters were manually curated and validated by H&E. We re-
classified a subset of CD11b+ cells from immune to epithelial cells as 
CD11b was expressed at high levels in a subset of epithelial cancer 

cells (fig.  S2F) as previously observed by immunofluorescence and 
flow cytometry (42). The most common fibroblast cluster expressed 
FAP, α-SMA, and PDPN, and fibroblasts expressing each combination 
of these markers were recorded (Fig. 2E; error bars denote SD). Ki67, 
a marker of proliferation, was expressed at high levels in epithelial 
cells; moderate levels in T and B lymphocytes; and low levels in mac-
rophages, myeloid cells, and fibroblasts (fig. S2G).

Patients presented a diversity of immune and fibroblast cell type 
distributions depending on the cell and tumor type (fig. S2H). Con-
sidering all cells, the proportion of T cells significantly increased 
from primary to recurrence samples (P = 0.0038, Tukey’s HSD) but 
not primary to metastasis (P = 0.33), confirming previously reported 
results (26, 43). As expected, tumors collected from lymph nodes had 
elevated lymphocyte numbers due to the tumor-surrounding tissue 
(fig. S2C). Among fibroblasts, metastatic tumors had fewer α-SMA+ 
fibroblasts (metastasis to primary/recurrence, P = 0.045/0.028), and 
recurrent tumors had fewer triple-positive fibroblasts (metastasis to 
recurrence, P = 0.0024). Immune proportions were heterogeneous 
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among patients, due in part to concentrated lymphocyte-rich areas 
(lymphoid aggregates; fig. S2H).

Spatial analysis elucidates microenvironmental 
heterogeneity of HGSOC
To better characterize the spatial heterogeneity, we first analyzed the 
spatial distribution of major cell types—immune cells, fibroblasts, 
and epithelial cancer cells—across entire ROIs. We used a method 
called ΔGcross analysis, which is used to study how cell types spa-
tially colocalize (44–46). Here, positive ΔGcross indicates that two 
cell types are separated and negative ΔGcross indicates close contact 
and mixing (fig. S3A). For example, in a representative ROI, well-
separated epithelial and fibroblast regions create a distinctive pattern 
of ΔGcross measurements (Fig. 3A). After clustering using the aver-
age ΔGcross values for each ROI between immune cell, fibroblast, 
and epithelial cell distances, nine clusters of spatial organization were 
observed (Fig. 3B). Tissue patterns emerge from this clustering, such 
as ROIs with isolated immune or epithelial areas, or periodic pat-
terns. Primary tumors were enriched in fibroblast-isolated ROIs, and 
recurrent tumors were enriched in periodic structures and depleted 
in dispersed tumors (fig. S3B). Immune-isolated ROIs were rare but 

enriched in samples of lymph node metastases (fig. S3C). These spa-
tially informed clusters are distinct from the clusters generated by 
cell type proportions only (fig. S3D) which demonstrates that tissue 
morphology can be quantified and that cell type proportions alone 
are insufficient to capture morphology. We followed this sample-
level ΔGcross analysis with finer-grained single-cell level spatial 
analyses to resolve details of spatial heterogeneity.

We used spatial analysis to identify TLS-like lymphoid aggregates, 
which have been associated with improved survival in ovarian cancer 
(47). Histologically, a TLS is defined as a lymphoid aggregate that 
contains a germinal center and high endothelial venules (48); how-
ever, these criteria may be absent in thin histologic slices used for 
IMC. Since lymphoid aggregates are known to be enriched for T and 
B cells and depleted of epithelial cancer cells, we defined lymphoid 
aggregates by a spatial analysis strategy that calculates a spatial en-
richment score that reflects local cell concentrations or “density” at 
the single-cell level (Fig. 3C) (49). A lymphoid aggregate was defined 
by first identifying cells with combined T and B cell enrichment 
scores >1 and epithelial enrichment scores <0.8 (Fig. 3D). All cells 
satisfying these conditions were passed through a connectivity and 
size filter (>50 cells less than 15 μm apart from each other) resulting 
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in the detection of 93 lymphoid aggregates containing 569 ± 1409 
cells on average.

Using the spatial enrichment scores, we explored the composition 
of immune cells in different areas of the tumors with more emphasis 
on the local microenvironment than the ΔGcross analysis. Lymphoid 
aggregates were the most prominent, well-defined collections of cells. 
Primarily composed of T cells and B cells, lymphoid aggregates had 
similar macrophage density to other stromal tissue, and lower tumor 

and fibroblast density (fig. S3E). The immune composition in either 
epithelial-enriched or fibroblast-enriched areas was similar (fig. S3F). 
We compared the relative spatial enrichment of macrophages versus 
T cells relative to epithelial cells, finding that epithelial cells in meta-
static tumors were relatively enriched in T cells versus macrophages, 
despite the lower proportion of T cells than in recurrence tumors (pri-
mary to metastasis and recurrence to metastasis, P < 1 × 10−16, pri-
mary to recurrence, P = 8.7 × 10−5, Tukey’s test; Fig. 3E).
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Spatially defined cell patterns associate with early relapse
We studied whether the severity of the disease, as measured by time to 
relapse (<15 or >15 months), was significantly associated with tissue 
composition. Considering different tumor types independently (pri-
mary, metastatic, and recurrent), no differences in cell percentages of 
fibroblasts, immune cells, epithelial cells, or immune cell subtypes 
were significantly associated with early relapse (fig. S4A). By propor-
tion of cell composition clusters (fig. S2D), early relapse ROIs were 
statistically different than late relapse ROIs (P = 0.023, chi-square test; 
fig. S4B), with an increase in an FAP/α-SMA/PDPN-enriched fibro-
blast cluster. No ΔGcross spatial clusters were associated with early 
relapse (P = 0.72; fig. S4C). Modeling the relationship of cell propor-
tion measurements in entire ROIs with early relapse yielded two 
significant results associated with early relapse—the proportion of fi-
broblasts that were PDPN+, and the proportion of FAP+ α-SMA+ 
PDPN+ triple-positive fibroblasts (q < 0.05; fig. S4D). When primary, 
metastasis, and recurrence samples were analyzed individually, the 
fibroblast populations were found to be most significantly different in 
recurrence samples, while CD4+ T cells were significantly associated 
with early relapse in primary tumors only (fig. S4E).

We hypothesized that the spatial heterogeneity of tissue was con-
flated with cell proportion measurements and that spatially informed 
analysis of immune, fibroblast, and epithelial cancer cell composition 
would provide more relevant or significant relationships with early re-
lapse status. We first observed that in early relapse patients, epithelial 
cells were more spatially enriched for macrophages versus T cells 
(P <  1 × 10−16, t test; fig. S4F), suggesting that cellular-level spatial 
analysis reveals differences where the overall composition of tissue 
does not. Then, we used the same spatial metrics used to define lym-
phoid aggregates to perform a “digital cell biopsy” by selecting subsets 
of tissue to compare between patients, specifically the immune-, fibro-
blast-, and epithelial-enriched zones. This allows for more effective 
“like versus like” comparisons between each ROI and addresses poten-
tial biases introduced by sampling tissue for TMA construction. 
Isolation of immune-, fibroblast-, and epithelial-enriched zones was 
performed using either a nearest neighbor or spatial enrichment 
threshold (Fig. 4A, epithelial example), with the nearest neighbor strat-
egy used to separate regions surrounding isolated epithelial tumor cells 
versus dense tumor areas (Fig. 4B). Among all cell proportions mea-
sured in either immune-, fibroblast-, or epithelial-enriched digital cell 
biopsies, fibroblast-related metrics were the most significant terms af-
ter multi-test correction (Fig. 4C). A significant reduction in epithelial 
cancer cells and increases in fibroblasts in fibroblast-enriched zones 
were observed in early relapse patients (Fig. 4D). Compared to previ-
ous ROI-level metrics (fig. S4D), the spatial biopsy method identified 
the specific areas of the tissue where the most changes were observed 
between patients with early and late relapse.

Fewer lymphoid aggregates were detected in early relapse patients, 
with an average of 1.56 lymphoid aggregates in early relapse ROIs and 
1.91 in late relapse ROIs. Lymphoid aggregates also appeared to be 
smaller in early relapse patients (418 ± 619 versus. 635 ± 1636 cells). 
Overall, lymphoid aggregates appeared in 52 out of 262 ROIs. After 
removing samples taken from lymph node metastases, lymphoid ag-
gregates were detected in 38 of the remaining ROIs. ROIs from pa-
tients with early relapse averaged 1.42 aggregates (240 ±  191 cells) 
while ROIs from patients with late relapse averaged 1.83 (300 ± 634 
cells). Since the lymphoid aggregates encompassed 73% of all B cells 
and 26% of all T cells, we analyzed the immune composition of ROIs 
outside of lymphoid aggregates to explore the contributions of more 

isolated, infiltrating immune cells. After comparing the significance 
of cell proportion comparisons with and without lymphoid aggre-
gates, the fibroblast-associated significant associations remained sig-
nificant, while other immune-related terms increased in significance 
but remained below the q < 0.05 threshold (fig. S4G).

We next considered the change in cellular composition between 
tumor types within patients to explore the spatiotemporal dimen-
sion of ovarian cancers. We hypothesized that the composition of 
different tumor types from the same patient could change by early 
relapse status. After measuring the change in each patient’s tumor 
composition between tumor types (primary, synchronous metasta-
sis, and recurrence) with whole ROI-level metrics such as the total 
T cell percentage, we observed no significant changes. However, in 
all three digital biopsies, immune-enriched, fibroblast-enriched, 
and epithelial-enriched, we observed immune and fibroblast popu-
lations that were significantly associated with early relapse (Fig. 4E). 
These populations changed between tumor types within each pa-
tient according to the relapse status. For example, B cell percent-
ages in fibroblast-enriched areas were greater in recurrent than 
primary tumors for late relapse patients, but the reverse trend was 
observed in early relapse patients (Fig. 4F).

PDPN+ CAFs are associated with malformed lymphoid 
aggregates enriched in plasma cells
The digital biopsies in IMC unveiled a significant correlation be-
tween early recurrence in HGSOC and the aberrant spatial organiza-
tion of TLS-like lymphoid aggregates and CAFs. Building upon this 
finding, we used IHC and digital spatial profiling techniques to dif-
ferentiate immune cell infiltrates between TLS-like lymphoid aggre-
gates and CAFs. We focused on PDPN+ CAFs, which have been 
associated with poor outcomes in multiple cancer types, including 
ovarian cancer (50–53). Consistent with previous reports, IHC stain-
ing of the TMA showed PDPN expression in endothelial cells of lym-
phatic vessels (50), fibroblastic reticular cells (FRCs) (fig. S5A, inset) 
(6, 51), and CAFs (52–58). PDPN+ CAFs were frequently associated 
with partially organized immune cells that resembled TLS but lacked 
germinal centers (fig. S5B, inset). These malformed lymphoid aggre-
gates had sparse CD20+ B cells yet abundant CD79A+ BOB.1+ CD-
19weak CD38+ B cells, which likely represent plasma cells.

To elucidate the molecular features of lymphoid infiltrates, GeoMx 
digital spatial profiling with whole genome RNA-seq to measure 
the differential spatial expression of 11,470 genes. We selected seven 
ROIs adjacent to immune infiltrates in PDPN-negative areas (total, 
5781 nuclei; ROI range, 183 to 1413 nuclei) and seven ROIs in immune 
infiltrates in PDPN-positive areas (total, 2346 nuclei; ROI range, 200 
to 655 nuclei) (Fig. 5A). Selection criteria for ROIs included the pres-
ence of more than 150 nuclei in a polygonal selection, the existence of 
an immune infiltrate, and the presence or absence of PDPN expres-
sion in an adjacent slide stained via multiplex immunofluorescence 
(mIF) with PDPN, CD19, CD20, and CD38 antibodies. We deter-
mined first that B cell– and plasma cell–related genes were spatially 
differentially expressed. Among significant genes with at least 25% 
differential expression between PDPN-positive or -negative areas, 
functional annotation with the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID) (59) revealed enrichment of 
the Gene Ontology term for IgG immunoglobulin complex (genes: 
IGHG4, IGHG1, IGKC, q = 7 × 10−4, Fisher’s exact test, Benjamini-
Hochberg correction; tables S3 and S4). Possibly due to limited ROIs 
and sample heterogeneity, PDPN was expressed at higher levels in 
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PDPN-positive areas but not significantly after the Benjamini-
Hochberg multi-test correction.

By overlaying human plasma cell and B cell gene signatures defined 
by Zilionis et al. (60) onto the heatmap of differentially expressed 
genes, we noted plasma cell marker (IGKC, MZB1, JCHAIN, XBP1, 
and IGHG1–4) enrichment in PDPN-positive ROIs, and B cell marker 
(PAX5 and BANK1) enrichment in PDPN-negative ROIs (fig. S5C). 
Further exploration of spatial gene expression using Visium digital 
spatial profiling defined PDPN-positive and PDPN-negative areas in a 
patient sample. After removal of areas with tumor or endothelial pres-
ence leaving 45 PDPN-positive and 18 PDPN-negative 55-μm-diameter 
immune-infiltrated CAF areas (fig. S5D), we found that plasma cells 
identified were enriched in PDPN-positive ROIs and that the immune 
infiltrates in PDPN-positive ROIs were enriched in genes associated 
with plasma cell differentiation and/or recruitment (JCHAIN, CD38, 
IGHG3, CD79A, SLAMF7, IGKC, PRDM1, and XBP1; fig. S5E), while 
the immune infiltrates in PDPN-negative ROIs were enriched in genes 
typically associated with T and B cells in mature TLSs (CXCL13, 
MS4A1, CD8A, CD3D, CD3E, CCL19, TRBC1, CD2, CXCL9, and 
CCR7) (61). As an independent validation method for the expression 
of different cytokines and chemokines and their receptors in 

PDPN-positive and TLS-positive areas, we stratified patients with 
ovarian cancer in The Cancer Genome Atlas (TCGA) into PDPNHigh 
TLSLow and PDPNLow TLSHigh based on the expression of PDPN and 
the TLS gene signature (62). The two groups of patients were com-
pared [analysis of variance (ANOVA), Benjamini-Hochberg, q < 0.01] 
to identify differentially expressed CellPhoneDB ligands and receptors 
(table S5) (63). We confirmed that the PDPNLow TLSHigh tumors were 
enriched for the chemokine ligands CCL19 and CCL21 and their 
receptor CCR7 as well as the B cell attractant CXCL13, while the 
PDPNHigh TLSLow tumors were enriched for the ligand-receptor pair 
CCL26-CX3CR1 as well as the plasma cell attractant CXCL12 (Fig. 5B 
and fig. S5F).

To directly assess potential differences in the spatial organization of 
CAFs, plasma cells, and B cells between patients experiencing early re-
lapse and late relapse, we performed a targeted spatial analysis of the 
TMA stained with antibodies against PDPN (predominantly expressed 
in activated CAFs), CD19 (strongly expressed in B cells and weakly 
in plasma cells), CD20 (expressed in B cells), and CD38 (expressed in 
plasma cells). Using QuPath annotation software, we delineated 
plasma cells and B cells associated with either PDPN-positive or 
PDPN-negative areas within each sample (Fig. 5C) and calculated the 
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proportions of each cell subtype relative to all segmented cells in each 
sample. Samples containing lymph node metastases and those with 
fewer than five cells of any of the four annotated cell subtypes were ex-
cluded from the analysis. By comparing the ratios of the proportions of 
different cell types (Fig. 5D and fig. S5G), we found that tumors from 
early relapse patients (<15 months) were significantly more likely to 
display a higher ratio of plasma cells to B cells (q = 0.026), and a higher 
ratio of plasma cells in PDPN-positive areas compared to PDPN-
negative areas (q = 0.0071). Collectively, these findings suggest that in 
early relapse patients, it is more likely that plasma cells are sequestered 
by CAFs, potentially impeding their contact with cancer cells and other 
immune cells necessary for an effective immune response.

IMC and H&E measurements are concordant
Next, we compared IMC analysis to standard tools for pathology. Im-
mune cells, fibroblasts, and epithelial cancer cells were phenotyped 
by morphology in H&E-stained slides using QuPath (fig. S6, A to D). 

We then compared IMC phenotyping to cell morphology phenotyp-
ing. Two H&E sections were phenotyped by morphology, one proxi-
mal (~20 μm away from the IMC section) and one distal (~0.8 mm 
away from the IMC section) (Fig. 6A). We verified that our broad cell 
types were identified in each of the H&E sections and the IMC sec-
tion. We found that cell composition in IMC was significantly cor-
related with the morphology-defined composition (Fig. 6, B to D). 
This was true for both proximal and distal H&E sections, suggesting 
that the cell composition was relatively consistent across the tumor. 
At low cell densities, IMC counts for fibroblasts were lower than 
H&E morphology counts, and vice versa for epithelial cells (fig. S7A). 
One challenge in phenotyping by morphology is that immune cells 
were defined by small round cell morphology, which likely misclassi-
fied most macrophages as fibroblasts.

We compared the IHC analysis of whole slides to IMC using a 
CD8-specific stain to measure the percentage of immune cells that 
were CD8-positive (Fig.  6E). Generally, the whole slide count was 
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similar to the counts for individual ROIs, and no statistical differences 
were observed, although one core from patient 3 proved to be an ex-
ception. We further analyzed CD8 T cell composition using multiple 
methods for a subset of the cohort for which we had transcriptomic 
data. Using IMC, mIF (analyzed by TissueFAX), IHC (analyzed by 
QuPath), and spatial gene expression (64), we found a high level of 
correlation across the different methodologies (fig. S7, B to D).

DISCUSSION
Treatment of HGSOC presents a difficult challenge due to the high 
frequency of late-stage disease at initial diagnosis and the high rate of 
relapse with platinum-resistant disease following initial tumor deb-
ulking surgery and platinum-based chemotherapy. Patients might 
experience multiple relapses, but despite additional chemotherapy 
and/or surgery, the remissions typically become progressively shorter, 
ultimately resulting in treatment-resistant disease. The time to first 
relapse is a good indicator of tumor aggressiveness and OS (65). Using 
quantitative spatial protein technology, we first confirmed published 
data about the relevance of immune cells, particularly lymphocytes in 
TLS-like structures, to patient outcomes (16, 47, 66). We also per-
formed external validations of our findings, which is essential for 
highly multiplexed studies, which are processed by automated meth-
ods that may be prone to systemic errors. Furthermore, among our 
observations, we focused on the finding that PDPN+ CAFs were en-
riched in primary, synchronous metastasis, and recurrence samples 
from early relapse patients with HGSOC. PDPN+ CAFs have been 
described as facilitators of immunosuppression and cancer invasion 
in a variety of solid malignancies [reviewed in (53)] and have been 
associated with disease progression and metastasis in ovarian cancer 
(50, 52). Here, we used both protein and gene expression spatial anal-
ysis to propose that PDPN+ CAFs are more influential and predictive 
of early relapse in the context of other fibroblasts, as well as B cells and 
plasma cells.

While single-cell RNA-seq analyses of ovarian carcinomas (19, 
22, 23, 67–75) have confirmed the existence of transcriptomic signa-
tures that define the major cell types previously inferred by bulk tran-
scriptome analyses, those methods have not been able to capture the 
spatial context of the major cell types within ovarian cancer. Spatial 
communication between heterogeneous cell types in the tumor mi-
croenvironment could affect the efficacy of chemotherapy and im-
munotherapy, which can be seen in spatial transcriptomic analysis at 
50-μm spatial resolution (35). Our results show that early relapse is 
associated with a significant reduction in epithelial cancer cells and 
increases in fibroblasts in fibroblast-enriched zones. While the ob-
servation of a diminished proportion of cancer cells amidst an in-
creased fibroblast population may initially appear paradoxical, it 
aligns consistently with findings derived from numerous investiga-
tions using whole-slide images in large cohorts of patients with ovar-
ian cancer (76–81). A plausible interpretation of the correlation 
between early relapse and a lower cancer-fibroblast ratio is that cyto-
toxic chemotherapy and/or cytotoxic immune cells cannot access 
cancer cells embedded within the stromal matrix. In preclinical 
models of solid malignancies, CAFs and CAF-secreted ECM have 
been shown to reduce immune activity by limiting T cell migration 
into the tumor area (19, 26, 82–86). In patients with HGSOC treated 
with standard platinum-based chemotherapy, the immune-excluded 
phenotype tumors (in which T cells are accumulated in the stroma 
rather than in the tumor epithelium) had worse survival than the 

immune-desert phenotype tumors (in which T cells are absent or 
present in very low numbers), suggesting that the tumor ecosystem 
and communication between fibroblasts and immune cells are key 
determinants of clinical outcome (20). Our analysis has shown that 
optimally debulked patients with HGSOC with early and late relapse 
on standard platinum-based chemotherapy exhibit a distinct spatial 
configuration of epithelial cancer cells, fibroblasts, and immune cells 
without significant differences in the overall frequency of the indi-
vidual cell types. This finding illustrates the advantages spatial analy-
sis of the tumor microenvironment brings to understanding possible 
causes of early relapse.

As the number of single-cell methodologies has grown, a healthy 
skepticism has emerged regarding how well single-cell spatial methods 
can reproduce expert pathology analysis. A major advantage of IMC is 
the ability to discover cell types expressing combinations of biomark-
ers due to its information content, which is only possible with highly 
multiplexed spatial methods. High multiplexity also enables pheno-
typing via negative selection, where low-expressing cells such as mac-
rophages and myeloid cells are identified by the lack of other marker 
expression and process of elimination. However, a basic limitation to 
multiplexed image analysis is that segmentation of single cells remains 
a challenge, to precisely define cell boundaries without mixing mem-
brane signals from neighboring cells. We encountered this challenge 
when quantifying CD4/CD8 double-positive and CD20+ T cells, 
which are increasingly being studied in cancer contexts (40–45) but 
may be mistakenly identified in dense-packed tissue. We demonstrat-
ed that IMC reproduced many of the features that would be described 
by a pathologist examining H&E slides and that the IMC-H&E mor-
phology agreement in defining major cell types held true for FFPE tis-
sue section levels up to 1 mm from each other. Thus, the characteristic 
spatial features of each tumor were relatively consistent over the dis-
tance studied (87).

Currently, H&E or IHC biomarker assays interpreted by patholo-
gists are the norm in clinical settings, providing the pathologist with a 
whole-slide perspective and the discretion to isolate or exclude re-
gions based on their relevance to the diagnosis. Because of tumor het-
erogeneity, using TMA core-sized ROIs (~1 mm2) instead of whole 
slides raises concerns of spatial bias that adds uncertainty to statistical 
correlations between patients and conditions. We used our digital cell 
biopsies to compare relevant subareas of tissue to mitigate this con-
cern. The spatial analysis revealed that localized immune-epithelial-
fibroblast associations have significant associations with early relapse, 
but the same bulk ROI-wide comparisons do not. The spatial tech-
niques introduced here can be used to add context to the analysis of 
other studies, for instance, by isolating the tumor cell region of meta-
static and recurrent tumors from the host tissue for more accurate 
deconvolution (88). While both the digital biopsies introduced here 
and spatial niche analysis used broadly in the field (37) can be used to 
identify spatial compartments in tissue, the digital biopsies are math-
ematically consistent across tissues and experiments, while spatial 
niches are defined by clustering and are thus less reproducible.

Our study represents a substantial advancement compared to the 
HGSOC IMC analysis published by Zhu et al. (34) with respect to the 
number of patient samples (110 versus 41) and the number of ROIs 
analyzed (up to triplicates, 257 versus 41). In addition, our patient 
cohort was relatively homogenous, which allowed for robust com-
parison of longitudinally collected tumor samples. All 42 patients 
were optimally debulked (absence of visible residual disease after 
surgery) and later relapsed with HGSOC. All primary tumors and 
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synchronous metastases were collected before chemotherapy while 
all metachronous recurrent metastases were collected after three 
to six cycles of platinum-based chemotherapy. Notably, our study 
should not be directly compared to the study by Zhu et al. (34) due to 
the different cell subpopulations and different groups of patients ana-
lyzed. While the study by Zhu et al. (34) compared cell densities in 
primary HGSOC samples from short-term survivors (OS, ≤20 months) 
and long-term survivors (OS, ≥60 months), we focused on relapse 
time as the primary clinical endpoint to better characterize patients 
who should be monitored for signs of relapse and receive more ag-
gressive treatments.

Our findings suggest that B cells and plasma cells are clinically im-
portant factors determining a patient’s time to relapse. Previous re-
ports have shown conflicting associations between plasma cells and 
prognosis even within the same cancer type (89). In HGSOC, tumor-
infiltrating plasma cells were shown to be associated with TLS and 
better prognosis (47, 90). However, a recent analysis of HGSOC 
showed that plasma cells correlated with the density of mesenchymal 
cells and that patients with more plasma cells in their tumors had a 
significantly shorter survival time than those with fewer plasma cells 
(91). We have developed a unified hypothesis (Fig. 7A) to explain the 
varying impact of plasma cells on the prognosis of HGSOC. We found 
that plasma cells were present in two distinct microenvironments, 
TLS-like lymphoid aggregates and CAFs, within the tumor, which are 
associated with different prognostic outcomes. In cases where lym-
phoid aggregates were abundant, plasma cells were linked to a good 
prognosis possibly because plasma cells were integrated into an orga-
nized immunogenic structure that facilitates functional communica-
tion between B cells and T cells. Conversely, in cases where CAFs 
were prevalent, plasma cells were associated with a poor prognosis 
(91), possibly due to the lack of contact with other immune cells.

A hypothesis outlining the mechanism underlying the recruit-
ment of plasma cells by CAFs is depicted in Fig. 7B. TLS FRCs and 
CAFs share similar expression profiles, including high expression of 
PDPN (92). Lymphoid tissue organization is primarily regulated by 
the chemotactic activities of chemokines (93, 94), which differ in 
FRCs and CAFs. The main chemokines associated with FRCs and 
CAFs are CXCL13 and CXCL12, respectively (3, 94). These chemo-
kines have a selective attraction for B cells and plasma cells, respec-
tively (95). Phenotypically, PDPN+ CAFs resemble medullary FRCs, 
which express PDPN and CXCL12 but not CXCL13 and are involved 
in plasma cell recruitment and survival (96). Studies in genetically 
modified mice showed that CXCL12 was capable of recruiting lym-
phoid infiltrates but the infiltrates were malformed, contained few T 
cells, and were enriched in plasma cells (95), which is consistent with 
independent studies showing that CXCL12 repels T cells (97) and 
attracts plasma cells (98). While CXCL13 was included in our panel, 
the staining did not pass quality control, and further analysis will 
require optimization of the probes for these chemokines. Generally, 
the ECM has not been thoroughly profiled using highly multiplexed 
spatial analyses, making it a prime target for future studies of im-
mune exclusion, nutrient access, and pharmacokinetics in stroma-
rich tumors such as HGSOC.

This study emphasizes the need for precise characterization of 
plasma cell spatial distribution to understand their role in tumor 
biology, and future studies will analyze larger panels of proteins and 
more diverse analytes in larger tissue samples as the economics of 
highly multiplexed analysis becomes more favorable. We hypothe-
size that bortezomib, an agent that targets plasma cells, may be an 

effective antitumor therapy in cases where plasma cells are primarily 
associated with CAFs. Preclinical experimental evidence showed 
that the depletion of plasma cells by bortezomib reversed the mes-
enchymal characteristics of ovarian cancer and inhibited in vivo tu-
mor growth (91). At present, ClinicalTrials.gov lists a total of eight 
phase 1 or phase 2 clinical trials in which bortezomib is used in 
conjunction with various therapeutic approaches for the treatment 
of patients with HGSOC. The early results from these clinical trials 
show that only a small subset of patients exhibit partial or complete 
treatment response, suggesting that further stratification may be 
needed to improve response rates. The results of our spatial TME 
analyses indicate that bortezomib has the potential to perturb the 
spatial arrangement of plasma cells and CAFs, thereby facilitating 
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plasma cells. (C) Preclinical experiments have shown that depleting plasma cells 
with bortezomib can reverse the mesenchymal characteristics of ovarian cancer 
and inhibit tumor growth. Targeting plasma cells with bortezomib has the poten-
tial to disrupt the arrangement of CAFs, which could enhance the accessibility of 
chemotherapy agents to the tumor site.

http://ClinicalTrials.gov
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improved accessibility of chemotherapy agents to the tumor site 
(Fig. 7C).

MATERIALS AND METHODS
Sample selection
This study was approved by the Cedars-Sinai Institutional Review 
Board (IRB; Pro44852). All the samples included in this study 
were obtained from patients who granted their consent for the uti-
lization of their tissue for research purposes. Three types of tumors 
were collected from 42 patients—primary, synchronous metastat-
ic, and metachronous recurrent tumors. Primary and synchronous 
metastatic tumors were acquired during primary debulking sur-
gery (pre-chemotherapy), while metachronous/recurrent metasta-
ses were acquired during second-look surgery (post-chemotherapy). 
Primary ovarian tumors were collected from sites including the 
ovary, fallopian tube, or peritoneum, and synchronous and meta-
chronous/recurrent metastases were collected from various intra-
peritoneal sites including the omentum, gastrointestinal organs, 
peritoneum, or lymph node. A histologic diagnosis of HGSOC was 
confirmed in all tumor samples by pathology. After recovery from 
primary debulking, surgery all patients were treated with three to 
six cycles of platinum-based chemotherapy; some were also treat-
ed with PARP1 inhibitors after recurrence. All patients in this 
study relapsed with HGSOC. Some patients had multiple remis-
sions and recurrences. Metadata collected for each patient includ-
ed the time to first recurrence, OS, age/stage/grade at diagnosis, 
race, and BRCA mutation status. Clinical and demographic infor-
mation for the 42 patients is shown in table S1. The average age at 
diagnosis was 55.4 (range, 45.3 to 62.1) years. Four patients had a 
prior history of cancer (two breast, one uterine, and one leuke-
mia). The median disease-free interval was 19.6 (range, 5.5 to 51.7) 
months. Early relapse is heterogeneously defined in the literature 
(99–101), we selected 15 months as a cutoff due to the natural dis-
tribution of relapse times observed (Fig. 1A). Median OS was 65.9 
(range, 15.8 to 156.5) months. Four of 42 patients were alive at the 
last follow-up (79.6, 91.2, 150.3, and 156.5 months). Forty of the 
42 patients were diagnosed with stage III or stage IV disease. Of 
the two patients diagnosed with stage IIC disease, one was a 
BRCA1 mutation carrier and one was a BRCA1 and BRCA2 muta-
tion carrier with previous history of breast cancer. Both patients 
had an aggressive course of the disease. All tumors, except one, 
were grade 3 serous papillary carcinomas. One patient was diag-
nosed with stage III, grade 1 to 2 papillary carcinoma arising from 
a borderline tumor. This patient had four recurrences with the first 
recurrence at 6.8 months of diagnosis, suggesting rapid differenti-
ation into HGSOC.

Tissue microarray
We define “sample” as tumor tissue obtained from a particular pa-
tient’s primary, synchronous metastatic, or recurrent metastatic tu-
mor, and “core” as a small circular area excised from a “sample” for 
further analysis. We generated a TMA with de-identified FFPE pa-
tient tissue samples comprising triplicate 1-mm cores of patient-
matched primary HGSOC, synchronous pretreatment metastasis, 
and metachronous posttreatment/recurrent metastasis samples (re-
ferred to as primary, synchronous metastasis, and recurrence, respec-
tively) from 42 patients (102). Cores were extracted and assembled 
onto the TMA by manual selection by a histopathologist, comprising 

representative, tumor cell-rich areas of the samples. Each core was 
analyzed in full using IMC as a single ROI. Not every patient and time 
point was analyzed in triplicate due to ROIs either lost from the TMA 
or without tumor tissue. Manually generated masks were used to ex-
clude folded and/or necrotic tissue areas and staining artifacts. In to-
tal, 110 tumor samples (36 primaries, 36 synchronous metastases, and 
38 recurrences) and 267 total ROIs were analyzed, for an average of 
2.42 ROIs per patient and time point available.

H&E cell morphology phenotyping 
and immunohistochemistry
H&E-stained TMA slides were digitized (40×) using the Aperio 
AT Turbo slide scanner from Leica Biosystems. Epithelial cancer 
cells, fibroblasts, and immune cells were phenotyped by morphol-
ogy in digitized H&E-stained TMA slides using QuPath software 
for TMA analysis (TMA DeArrayer) and random trees (RTrees)–
trained classifiers (103). IHC using the CD8 antibody (clone 
JCB117, Ventana) was performed by the Cedars-Sinai Medical 
Center Biobank and Translational Research Core as previously 
described (104). CD8 staining was assessed under the microscope 
by assigning scores: 0 (absent), 1 (1 to 10%), 2 (11 to 30%), or 3 
(>30%) as previously described (105) and by QuPath analysis us-
ing the positive cell detection tool (103). mIF staining was per-
formed by the UCLA Translational Pathology Core Laboratory 
using tyramide signal amplification. The Opal Polaris 7-Color Au-
tomation IHC Kit (catalog no. NEL871001KT, Akoya Biosciences) 
was used with ER2 30-min retrieval and 1-hour room temperature 
incubation. Staining was performed consecutively using the fol-
lowing antibodies and dilutions: CD19 [Dako/Agilent, M7296 (1 
to 100)], PDPN [Sigma, HPA007534 (1 to 500)], CD38 [Leica, 
NCL-L-Cd38 (1 to 100)], CD20 [Dako/Agilent, M0755 (1 to 200)], 
and 4′,6-diamidino-2-phenylindole (Akoya Biosciences, catalog 
no. SKU FP1490). The slides were scanned at 20× with the Vectra 
Polaris scanner (Akoya Biosciences) and data from the multispec-
tral camera were analyzed using QuPath software TMA DeArray-
er. RTrees was used to train an object classifier to identify five 
different cell types: CAF-expressing cells, B cells in the PDPN-
positive area, plasma cells in the PDPN-positive area, B cells in the 
PDPN-negative area, and plasma cells in the PDPN-negative area. 
At least 20 examples were provided to train the classifier. The indi-
vidual cell types were enumerated and divided by the total number 
of segmented cells.

IMC sample preparation
De-identified human tonsils and human tumor samples were used to 
optimize the immunostaining conditions. Antibodies were conju-
gated using MaxPar kits (Fluidigm/Standard BioTools) or directly 
purchased in conjugated form. FFPE slides were heated at 60°C for 
90 min and then immersed in xylene for 20 min. The slides were then 
subjected to 100, 95, 80, and 70% ethanol washing steps for 5 min 
each. After washing with the alcohol gradient, the slides were im-
mersed in tris-EDTA antigen retrieval solution for 30 min at 95°C 
and then left in the solution for 30 min at room temperature. After 
the antigen retrieval step, the slides were blocked with 3% bovine 
serum albumin for 45 min and then stained overnight at 4°C. The 
next day, the slides were washed twice with PBS with 0.1% Triton X-
100 solution and 1× PBS for 8 min each, incubated with 191 iridium 
(a nuclear stain) for 40 min, washed with distilled water, and then 
dried before ablation.
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Data acquisition and processing
Data were acquired on the Hyperion/Helios Imaging Mass Cytome-
try platform (Fluidigm/Standard BioTools) at the Cedars Sinai Spa-
tial Molecular Profiling Shared Resource. IMC data were acquired at 
an acquisition speed of 200 Hz. Single cells were identified using the 
ilastik random forest pixel classification program. Multiple markers 
for cell nuclei and membrane/cytosol were used to add redundancy 
to the classification, and single-cell masks were verified by visual in-
spection. Artifacts and defects in segmentation, such as folded tis-
sues or necrotic areas, were identified and manually excised from 
each ROI. Antibodies with poor or nonspecific staining were exclud-
ed from the final analysis. Cells were filtered for size and those with 
an area <15 or >500 μm2 were removed. The signal for each protein 
was arcsinh transformed, censored at the 99th percentile, and scaled 
from 0 to 1. ROIs with fewer than 500 cells total were removed from 
the analysis, leaving a total of 1,578,369 cells from 267 ROIs for anal-
ysis, not including control tissues. Cell phenotypes were obtained us-
ing PhenoGraph clustering (k  =  15) (106) followed by manual 
annotation.

GeoMx digital spatial profiling analysis
GeoMx (Nanostring, Seattle, WA) digital spatial profiling on the 
TMA was conducted by the UCLA Technology Center for Genomics 
& Bioinformatics TCGB. As a guide for ROI selection, nuclei and epi-
thelial cells were labeled using Syto13 and PanCK-AF532 antibodies, 
respectively. Seven PDPN-positive and seven PDPN-negative areas 
were selected. The RNA in the ROIs was quantified using NovaSeq SP 
sequencing (325 to 400 M per lane, Illumina). The counts were 
mapped to the location in the tissue, resulting in a spatially resolved 
digital profile of mRNA. Geometric means were used to compare 
PDPN-positive and PDPN-negative expression ratios.

Visium digital spatial profiling analysis
Publicly available dataset 10X Genomics, Human Ovarian Cancer, 
11 mm Capture Area (FFPE), v2, Space Ranger, Visium CytAssist 
(www.10xgenomics.com/resources/datasets/human-ovarian-
cancer-11-mm-capture-area-ffpe-2-standard) and the 10X Genom-
ics Loupe browser were used for the analysis of differential gene 
expression between PDPN-positive and PDPN-negative Visium 
ROIs with immune cell infiltrates. ROIs that contained tumor cells 
or endothelial cells were excluded from the analysis.

Spatial analysis
Multitype nearest neighbor distribution (Gcross) analysis was per-
formed using the spatstat R package. Actual observed and expected 
nearest neighbor distances between two cell types were calculated, 
distances were normalized to 50 μm, and the difference between the 
expected and observed distances was obtained. In a Gcross differen-
tial plot between two different cell types A and B, a positive value for 
the Gcross differential indicates that there are fewer B cells close to A 
cells than would be expected in a random distribution; thus, the two 
cell types are segregated in space. A negative differential indicates 
that the cell types A and B are more intermixed or paired together 
than a random distribution would predict. A negative A-B differen-
tial (B cells are intermixed with A cells) does not necessarily result in 
a negative B-A differential based on the cell proportions and distri-
bution. For a Gcross differential plot within a single-cell type, A to A, 
a negative differential denotes cell clustering and a positive differen-
tial denotes more regular, distant spacing between cells of type A.

The “digital cell biopsy” method is defined as preselecting 
specific cells for analysis by a spatial condition. To perform spa-
tial analysis using digital biopsies and to identify lymphoid ag-
gregates, we performed a modified nearest-neighbor analysis. 
For every cell in each ROI, we calculated an enrichment score 
based on that cell’s proximity to each of the three cell subtypes 
of interest (immune, epithelial, and fibroblast). The score is cal-
culated by measuring the average distance of each cell to its five 
nearest neighbors of the specified cell type, capped at 100 μm. 
The average of these distances is scaled from 0 to 1 by dividing 
by 100 μm and subtracting from 1, such that 0 indicates minimal 
interaction between the two cell types. Three primary cell inter-
action scores—an immune spatial, cancer epithelial spatial, and 
fibroblast spatial score—are calculated for each cell, as well as 
interaction scores with immune subtypes such as T cells and 
macrophages.

TCGA data analysis
The values of the plasma cell gene signature (60) and the TLS gene 
signature (62) in the ovarian TCGA dataset were defined as the 
average z-score of all genes within the signature. Patients with 
plasma cell signature z-score > 0 (n = 242 patients) were included 
in the downstream analyses. Two groups of patients were identi-
fied based on PDPN expression and TLS z-score: PDPNHighTLSLow 
(PDPN-positive expression value and TLS signature negative z-
score, n = 28 patients) and PDPNLow TLSHigh (PDPN-negative ex-
pression value and TLS signature positive z-score, n = 75 patients). 
Differential gene expression analysis (ANOVA, false discovery 
rate, q <= 0.01) identified 642 genes differentially expressed genes 
between the two groups, including 230 receptor-ligand genes list-
ed in CellPhoneDB (63).

Modeling and statistics
To test for statistical significance in Gcross differences by early and 
late relapse status, the glm.cluster function in the R miceadds pack-
age was used. For each type of comparison (immune-immune, 
immune-fibroblast, etc.), the ΔGcross data consisted of the differ-
ence between the observed nearest neighbor and the actual differ-
ence (y-axis data), measured by the distance from each cell at 
increments of 1 up to 50 μm (x-axis data). Using the x-axis distance 
as the clustering variable, we calculated the significance of refractori-
ness using a generalized linear model to determine whether the spa-
tial tissue composition was significantly associated with refractoriness 
when considering the tumor type (primary, synchronous metastasis, 
and recurrence). Multi-test correction using the Benjamini-Hochberg 
procedure was performed to test the significance of cell proportions 
toward predicting early relapse. For comparisons within patients 
across time points, the absolute difference in cell proportions was 
used and not the relative change, and multi-test correction was not 
applied due to high variability in the scale of absolute cell differences. 
All patients were women, and the average age at diagnosis of early 
and late relapse patients was 56.0 ± 10.8 years and 55.3 ± 8.9 years, 
respectively. GeoMx terms were filtered for genes with PDPN-
positive to PDPN-negative gene expression ratios >1.25 or <0.8, be-
fore applying Welch’s t test with Benjamini-Hochberg correction. For 
spatial analysis of mIF, Welch’s t test was applied to cell percentage 
comparisons between ROIs, and the Wilcoxon signed-rank test was 
applied to cell ratio comparisons, before the Benjamini-Hochberg 
correction.

http://www.10xgenomics.com/resources/datasets/human-ovarian-cancer-11-mm-capture-area-ffpe-2-standard
http://www.10xgenomics.com/resources/datasets/human-ovarian-cancer-11-mm-capture-area-ffpe-2-standard
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