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Abstract

True polar wander on convecting planets

by

Ian Robert Rose

Doctor of Philosophy in Earth and Planetary Science

University of California, Berkeley

Professor Bruce Buffett, Chair

Rotating planets are most stable when spinning around their maximum moment of inertia,
and will tend to reorient themselves to achieve this configuration. Geological activity redis-
tributes mass in the planet, making the moment of inertia a function of time. As the moment
of inertia of the planet changes, the spin axis shifts with respect to a mantle reference frame
in order to maintain rotational stability. This process is known as true polar wander (TPW).
Of the processes that contribute to a planet’s moment of inertia, convection in the mantle
generates the largest and longest-period fluctuations, with corresponding shifts in the spin
axis. True polar wander has been hypothesized to explain several physiographic features on
planets and moons in our solar system. On Earth, TPW events have been invoked in some
interpretations of paleomagnetic data. Large swings in the spin axis could have enormous
ramifications for paleogeography, paleoclimate, and the history of life.

Although the existence of TPW is well-verified, it is not known whether its rate and
magnitude have been large enough for it to be an important process in Earth history. If
true polar wander has been sluggish compared to plate tectonic speeds, then it would be
difficult to detect and its consequences would be minor. Herein I investigate rates of true
polar wander on convecting planets using scaling, numerics, and inverse problems.

I perform a scaling analysis of TPW on a convecting planet, identifying a minimal set
of nondimensional parameters which describe the problem. The primary nondimensional
numbers that control the rate of TPW are the ratio of centrifugal to gravitational forces
(m) and the Rayleigh number (Ra). The parameter m sets the size of a planet’s rotational
bulge, which determines the amount of work that needs to be done to move the spin axis.
The Rayleigh number controls the size, distribution, and rate of change of moment of inertia
anomalies, all of which affect the rate of TPW. I find that the characteristic size of moment
of inertia anomalies decreases with higher Ra, but that the characteristic response time for
TPW also decreases. These two effects approximately cancel. However, the orientation of
the principal axes of the moment of inertia becomes less stable to perturbations at high Ra,
thereby increasing the rate of TPW. Overall, I find that a more vigorously convecting planet
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(one with a higher Ra) is more likely to experience large TPW events. If early Earth had
more vigorous convection, it may have experienced more TPW than present-day Earth.

Flow induced by density anomalies in the mantle deflects free surfaces at the surface
and the CMB, and the mass anomalies due to these deflections contribute to the moment
of inertia. A full accounting of the moment of inertia anomalies must include these surface
effects. Numerical models of mantle convection with a free surface have suffered from nu-
merical sloshing instabilities. I analyze the sloshing instability by constructing a generalized
eigenvalue problem for the relaxation time spectrum. The minimum relaxation time of the
spectrum sets the maximum stable timestep. This analysis gives the first quantitative expla-
nation for why existing techniques for stabilizing geodynamic simulations with a free surface
work. I also use this perspective to construct an alternative stabilization scheme based on
nonstandard finite differences. This scheme has a single parameter, given by an estimate of
the minimum relaxation time, and allows for still larger timesteps.

Finally, I develop a new method for analyzing apparent polar wander (APW) paths de-
scribed by sequences of paleomagnetic poles. Existing techniques, such as spline fits and
running means, do not fully account for the uncertainties in the position and timing of pa-
leomagnetic pole paths. Furthermore, they impose regularization on the solution, and the
resulting uncertainties are difficult to interpret. Our technique is an extension of paleomag-
netic Euler pole (PEP) analysis. I invert for finite Euler pole rotations that can reproduce
APW paths within a Bayesian Markov chain Monte Carlo (MCMC) framework. This allows
us to naturally include uncertainties in age and position, and provides error estimates on the
resulting model parameters. Regularization can be accomplished via physically motivated
choices for the parameters’ prior probability distributions.

I applied the Bayesian PEP technique to the Mesoproterozoic Laurentian APW track,
which primarily comes from the Keweenawan Midcontinent Rift. I fit the track with one
and two Euler rotations. Both inversions did a good job of reproducing the Keweenawan
track, though the two Euler pole inversion has a closer fit. I find that the implied Laurentian
plate speeds exceeds 22.9 cm/yr at the 95% confidence level. These speeds are significantly
faster than Cenozoic plate speeds, and could be explained by either faster plate speeds in
the Proterozoic or a TPW event.
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Chapter 1

Introduction

1.1 Prelude
Two of the most foundational observations of the Earth system are (1) that the planet

is cooling off from a combination of primordial heat and the decay of radioactive elements,
and (2) that it is rotating. The cooling of the planet results in convection in Earth’s interior
and its surface expression in plate tectonics, and is thus responsible for a great deal of the
geologic activity that we experience. The rotation of the planet is a dominant factor in
the fluid dynamics of the oceans, atmosphere, and core. In this dissertation we consider
the interaction between convection in Earth’s mantle and the rotational dynamics of the
planet. We may relate the two processes through the classical angular momentum equation.
Conservation of angular momentum in a rotating reference frame for a torque free planet
requires

∂H
∂t

+ Ω×H = 0, (1.1)

where the angular momentum H is given by H = I · Ω, I is the moment of inertia tensor,
and Ω is the angular velocity vector. For geologic processes the effects of inertia are small,
so the inertial term ∂H/∂t may be neglected, and the conservation equation becomes

Ω× (I ·Ω) = 0. (1.2)

Convection in Earth’s mantle, by its very nature, involves the transfer mass of different
densities, as cold lithosphere sinks into the mantle, and buoyant plumes rise from the core
mantle boundary (CMB). This transfer of mass changes the density structure of the mantle,
thereby changing the moment of inertia. Equation (1.2) is a strong constraint on Ω: if the
moment of inertia is a function of time, then the spin axis must also be a function of time.
The change in direction of a planet’s spin axis as a response to a changing moment of inertia
is known as true polar wander (TPW), which is the primary focus of this dissertation. In
the following sections we give a brief account of the history of conceptions of TPW, as well
as an overview of the content of the dissertation.
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Figure 1.1 : Map of the world according to Macrobius Ambrosius Theodosius in De Somnio Scipi-
onis, or Dream of Scipio, ca. 430 C.E.. It shows a great southern continent, which was thought to
be very similar to the known northern lands, and fed into the legend of Terra Australis. The map
was reproduced and reinterpreted many times during the medieval period and Renaissance. This
particular print comes from a 1515 reproduction.

1.2 A short history of true polar wander
Although true polar wander as it is understood today is a relatively recent concept,

concerns about the stability of Earth and its place in the universe are quite old. Aristotle
advanced a conception of nature that relied heavily on order and symmetry. This philos-
ophy entered into the worldview of early Mediterranean cartographers, who, knowing that
they lived in the northern hemisphere, postulated that there must be a large southern con-
tinent to preserve symmetry and balance in the world (Wilford, 2001). This hypothetical
southern continent became known as Terra Incognita Australis, from which we get the name
“Australia”.

Among the earliest maps showing the southern continent was that of Macrobius Am-
brosius Theodosius, a fifth century Roman author. His map, from De Somnio Scipionis,
showed the large southern continent largely mirroring the northern continents in shape and
size (Figure 1.1). This map became hugely influential in medieval and Renaissance cartog-
raphy (Stahl, 1942). During the Renaissance, ideas about Earth’s place in the solar system
famously became entwined with Catholic theology. In the 17th century the Jesuit scholar
Athanasius Kircher published a series of treatises on geology and volcanology. In his Turris
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Babel (1679) Kircher interpreted the Biblical story of the Tower of Babel as meaning that
the tower was intended to reach the moon. He performed a series of calculations about how
much material would be needed to build such a tower, determined where the planet’s new
center of mass would be, and concluded: “. . . the motion of the earthly globe from it center
would bring the total ruin of nature below” (see Figure 1.2).

A more modern approach to Earth’s stability can be found in Newton’s Principia (1687),
where he describes the tendency of mass anomalies to move towards the equator of a spinning
object:

. . . let there be added anywhere between the pole and the equator a heap of new
matter like a mountain, and this, by its continual endeavor to recede from the
center of its motion, will disturb the motion of the globe, and cause its poles
to wander about its surface describing circles about themselves and the points
opposite them. Neither can this enormous deviation of the poles be corrected
otherwise than by placing that mountain either in one of the poles. . . or in the
equatorial regions. . .

During the 18th and 19th centuries, as the science of geology developed, catastrophic
polar wandering became a possible explanation for the puzzling paleoclimatic and paleon-
tologic findings, such as coal seams in Svalbard and low-latitude glacial deposits (Barrell,
1914). Alfred Wegener, most famous for originating the theory of continental drift, pub-
lished a paleoclimatology book with Wladimir Köppen (Köppen and Wegener, 1924) which,
in addition to providing a continental reconstruction, attempted infer a paleopole position
from their data.

The first scientist to approach polar wandering from a quantitative perspective was
George Darwin (son of Charles) in 1887. In a manuscript given before the Royal Society
(Darwin, 1887) he described what is essentially the modern concept of true polar wander:

. . . If the earth were a viscous fluid there is no doubt that the pole of the figure
would tend to displace itself towards the instantaneous axis. . . But Sir William
Thomson has shown that the earth is sensibly rigid; and in any case the earth is
not a viscous fluid, sensibly called, although it may be slightly plastic.

In other words, he concluded that if Earth were sufficiently deformable, polar wandering
would be inevitable, but he had been convinced by William Thomson (not yet Lord Kelvin)
that it was too rigid for large scale motion of the poles.

After Darwin there was little further work on the physics of polar wandering until the
1950s. At that time, the first geophysical evidence for polar wandering was emerging in the
form of paleomagnetism. In a series of papers by Ken Creer, Keith Runcorn and Ted Irving
(Creer et al., 1954; Runcorn, 1955; Creer et al., 1957) paleomagnetic data, primarily from
Britain and North America, showed that the north pole had apparently shifted significantly
since the Precambrian. They considered both continental drift and true polar wander as
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Figure 1.2 : Plate from Turris Babel (1679), by Athanasius Kircher. A fanciful thought experiment
about the consequences of building the Tower of Babel to the moon.



1.3. OVERVIEW 5

possible explanations for this wandering, with a preference for polar wander due to its sim-
plicity. However, as more paleomagnetic evidence mounted (e.g. Irving and Green, 1958),
it became clear that different continents displayed different paleomagnetic apparent polar
wander paths, and apparent polar wandering became more frequently ascribed to the new
theory of plate tectonics. This is also where the terminology of “true polar wander” begins,
in order to distinguish it from the apparent polar wander due to plate motions.

At the same time, the dynamical theory of true polar wander began to receive more
attention, as the geophysical evidence began mounting that, on geological timescales, Earth
is more plastic than rigid. Gold (1955) provided a qualitative description of true polar
wander that included the famous mixed-metaphor of a beetle crawling around on a perfectly
spherical Earth, the spin axis always trying to catch up with it, “as with the ass and the
carrot hanging from a stick held by the rider.” Munk and MacDonald (1960) established the
modern theoretical framework for TPW in their landmark book The Rotation of the Earth.
Goldreich and Toomre (1969) pointed out that in a convecting system there are many density
anomalies contributing to the moment of inertia, and they extended Gold’s beetle thought
experiment to include many beetles crawling over Earth’s surface. In this case, the principal
axes of Earth’s moment of inertia do not track any one beetle, and they may move faster
than the beetles crawl.

In more recent years there has been renewed interest in true polar wander as an important
process in Earth history. A rapid reorientation of the solid Earth would have enormous
consequences for paleoclimate (Kirschvink et al., 1997), as the poles could become tropics,
and the tropics poles. The readjustment of the rotational bulge would cause global shifts
in sea level (Mound et al., 1999). These effects could have had a profound impact on the
history of life (e.g Kirschvink and Raub, 2003). Furthermore, the melting of glaciers and polar
ice caps is the dominant cause of present-day TPW (Adhikari and Ivins, 2016), providing
important constraints for paleoclimate reconstructions (Milne and Mitrovica, 1996). Finally,
as we have explored the solar system it has become clear that TPW may be an important
process on other planetary bodies as well. TPW has been suggested as an explanation for
features on Mars (Perron et al., 2007), Enceladus (Nimmo and Pappalardo, 2006) and the
Moon (Garrick-Bethell et al., 2014).

1.3 Overview
Mass redistribution in a planet causes perturbations in its moment of inertia tensor,

which cause variations in that planet’s spin axis. This mass redistribution can arise from
many sources, including mantle convection (Spada et al., 1992), glacial loading and unloading
(Chen et al., 2013), and oceanic and atmospheric circulation (Munk and MacDonald, 1960).
This dissertation focuses on true polar wander due to mantle convection, which has the
largest and longest-period effect. We further the theory of true polar wander through scaling
analyses, numerical modeling, and the development new techniques for paleomagnetic data
analysis.
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In Chapter 2 we consider the problem of TPW from the perspective of fluid dynamics. We
present scaling analyses and numerical simulations of TPW due to mantle convection over
a range of parameter space relevant to planetary interiors. For simple rotating convection,
the most important parameters are the Rayleigh number, the rotation rate, and the size of
relative density fluctuations (i.e. thermal expansivity times the temperature variations). We
identify timescales for the growth of moment of inertia perturbations due to convection and
for their relaxation due to true polar wander. These timescales, as well as the relative sizes
of convective anomalies, control the rate and magnitude of TPW. This analysis also clarifies
the nature of so called “inertial interchange” TPW events, and when they are likely to occur.
Finally, we discuss implications for large-scale TPW in Earth’s past.

In Chapter 3 we describe the development of numerical methods for geodynamic models
with a free-surface boundary condition. Geodynamic simulations increasingly rely on sim-
ulations with a true free surface to investigate questions of dynamic topography, tectonic
deformation, and global mantle convection. In particular, gravity and moment of inertia
perturbations due to internal mantle density anomalies (crucial for TPW analyses) are mod-
ified by the deflections at a free surface. However, implementations of free surface boundary
conditions have proven challenging from a standpoint of accuracy, robustness, and stability.
In particular, time integration of a free surface tends to suffer from a numerical instability
that manifests as sloshing surface motions, also known as the “drunken sailor” instability.
This instability severely limits stable timestep sizes to those much smaller than could be
used in geodynamic simulations without a free surface. Several schemes have been proposed
in the literature to deal with these instabilities.

We analyze the problem of creeping viscous flow with a free surface and discuss the origin
of these instabilities. We demonstrate their cause and how existing stabilization schemes
work to damp them out. We also propose a new scheme for removing instabilities from free
surface calculations. It does not require modifications to the system matrix, nor additional
variables, but is instead an explicit scheme based on nonstandard finite differences. It relies
on a single stabilization parameter which may be identified with the smallest relaxation
timescale of the free surface.

We also discuss the implementation of a free surface in the open source, community based
mantle convection software ASPECT.

In Chapter 4 we develop a new Bayesian statistical approach for analyzing paleomagnetic
data. Apparent polar wander (APW) paths from paleomagnetic poles provide the most di-
rect data for reconstructing past paleogeography and plate motions for times earlier than
∼200 Ma. Many of the proposed TPW events are from interpretations of paleomagnetic
APW paths. However, it can be difficult to interpret APW paths in the presence of large
errors, age uncertainties, and the lack of paleolongitude control in traditional paleomagnetic
analysis. Approaches for dealing with the uncertainties and compiling paleomagnetic poles
into a single APW path include spline fits and running means. We propose a new approach
for interpretation of APW paths. It extends the paleomagnetic Euler pole analysis of Gor-
don et al. (1984) by placing it within the framework of a Bayesian inverse problem. This
approach allows the natural incorporation of uncertainties in both pole position and age.
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The resulting paleomagnetic Euler poles provide estimates for the total plate motions (not
just the latitudinal components) as well as their uncertainties.

We show several example inversions on simple synthetic data to demonstrate the capa-
bilities of the method. We apply this method to the Cenozoic APW path of Australia and
to the Mesozoic Keweenawan Track of cratonic North America (Laurentia). The inversion
for the Keweenawan track gives extremely rapid plate speeds, and we discuss the potential
for TPW as an explanation.



8

Chapter 2

Rates of true polar wander on
convecting planets

2.1 Introduction
A rotating, quasistatic body like a planetary mantle will tend to spin about the axis of its

maximum moment of inertia. Convection in a planetary mantle continuously redistributes
mass, which can change the moment of inertia tensor, necessitating a change in the spin axis
of the planet to conserve angular momentum, a process known as true polar wander (TPW).

TPW was first considered in detail by Darwin (1887), and the theory has been subse-
quently developed by many (e.g. Munk and MacDonald, 1960; Goldreich and Toomre, 1969;
Ricard et al., 1993). Despite this, the ability of internal mass anomalies to drive large-scale
TPW remains controversial. Paleomagnetic data have been interpreted to require up to
3◦ − 12◦/Myr rates of TPW (Mitchell et al., 2011), but the ability of the mantle to respond
at such rates has been questioned (Tsai and Stevenson, 2007).

The primary uncertainties in assigning a maximum TPW rate to a convecting planet are
the size of convective anomalies, which drive the rotational adjustment, and the viscosity
structure of the mantle, which retards it. These two uncertainties are not unrelated: they
are both expected to be functions of the geometric and material properties of the mantle.
As such, they do not vary independently, and first-order questions about the propensity for
planets to experience TPW remain: how are rates of TPW expected to vary with the vigor of
convection? Are other planetary bodies more or less likely than Earth to experience TPW?
And are these rates expected to vary through Earth history?

These questions suggest that an approach rooted in dimensional analysis and fluid dy-
namics can clarify the rates and magnitudes of TPW. Most previous studies coupling mantle
convection models to polar wander calculations have done so with prescribed density per-
turbations (e.g. Greff-Lefftz, 2004), or prescribed moment of inertia variations (e.g. Tsai and
Stevenson, 2007; Creveling et al., 2012). Richards et al. (1999) coupled thermal convection
models to a polar wander model, but did not address in detail the scaling relationships
between the two.
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Herein we perform a scaling analysis of rates of TPW for a minimal system of a rotating,
convecting mantle, which we support with numerical simulations.

2.2 Rotational dynamics

2.2.1 The Liouville equation
Conservation of angular momentum for a torque-free system in a rotating reference frame

requires

dH
dt

+ Ω×H = 0 (2.1)

where H = I ·Ω is the angular momentum vector, I is the moment of inertia tensor, and Ω is
the angular velocity vector. On a dynamic planet I may be a function of time, so to conserve
angular momentum Ω must be also vary with time. In this case, Equation (2.1) is often
called the Liouville equation (e.g. Munk and MacDonald, 1960). For a slowly convecting
fluid, such as a planetary mantle, the inertial term ∂H/∂t is negligible, so we may solve the
simplified quasistatic equations

Ω(t)× (I(t) ·Ω(t)) = 0. (2.2)

Equation (2.2) indicates that Ω and H are parallel, so a solution for Ω(t) is equivalent to
solving an eigenvalue problem for I(t), where the eigenvectors correspond to the principal axes
and the eigenvalues correspond to the principal moments (where the most stable orientation
of the planet corresponds to rotating about the largest principal axis). In practice, this
eigenvalue approach has been often used in previous studies for computing the spin axis of
a planet (e.g. Steinberger and O’Connell, 1997; Roberts and Zhong, 2007). The moment of
inertia tensor in Equation (2.2) includes all contributions to the mass structure of the planet,
including the spherically symmetric mass distribution, rotational deformation, deformation
due to self gravity, internal and surface density anomalies, and surface deflections due to
density anomalies. Here we are interested in contributions from mantle convection, so we
restrict our attention to these processes.

For mantle convection problems the moment of inertia tensor is commonly separated into
three parts (Sabadini and Peltier, 1981; Spada et al., 1992):

Iij(t) = I0δij + Jij(t) + Eij(t) (2.3)

where I0 is the spherically symmetric reference moment, Jij is the contribution due to rota-
tional deformation, and Eij is the contribution due to internal density anomalies, as well as
the surface deflections caused by them. If we plug this decomposition into Equation (2.2)
the spherically symmetric part I0δij drops out, and we are left with

Ω× (J ·Ω) = −Ω× (E ·Ω). (2.4)
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This form of the quasistatic Liouville equation makes clear that the polar wander problem
represents a balance between the mismatches of the convective part of the moment of in-
ertia (E) and the rotational deformation part of the moment of inertia (J). Our goal is to
characterize this balance from a perspective of scaling and fluid dynamics.

2.2.2 A note on reference frames
True polar wander can be described in different reference frames, and this choice is

fundamentally an arbitrary one. However, certain aspects of the physics can be made much
simpler by an appropriate choice of the reference frame. In our treatment of TPW, we will
refer to three different reference frames:

• First, there is the inertial, non-rotating frame corresponding to spatial coordinates that
are fixed in time.

• Second, there is the body-fixed (or geographic) frame. By definition, the rotation of
the body-fixed frame relative to the inertial frame is specified by Ω. A terrestrial no-
net-rotation or hotspot reference frame are common choices for the body-fixed frame.
Treatments of gravitational or rotational deformation of a planet are most naturally
expressed in the body-fixed frame, as described in Section 2.2.3.

• Finally, there is the frame described by the principal axes of convective part of the
moment of inertia E, which we will refer to as the “E-frame.” Redistribution of mantle
mass anomalies due to convection changes the principal axes of E, causing the E-
frame to slowly rotate with respect to the geographic frame. We denote this drift by a
rotation vector Ψ (see Section 2.4.2).

These reference frames and vectors are illustrated in Figure 2.1.

2.2.3 Rotational deformation
The part of the moment of inertia due to the elastic rotational deformation in the body-

fixed frame is traditionally related to the degree-two part of the gravity field via MacCullagh’s
formula (Munk and MacDonald, 1960):

Jij = ka5

3G

(
ΩiΩj −

1
3ΩqΩqδij

)
(2.5)

where k is an elastic Love number, a is the semimajor axis of the planet, and G is the gravi-
tational constant. This result may be extended to a viscoelastic rheology via the viscoelastic
correspondence principle (e.g. Peltier, 1974):

Jij = k(t)a5

3G ∗
(

ΩiΩj −
1
3ΩqΩqδij

)
(2.6)
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where k is now a time-dependent viscoelastic Love number which is convolved with the
time-dependent rotation vector.

The infinite-time limit of Equation (2.6) for a constant rotation vector around the z-axis
implies

Jzz = C =2
3
kfa

5Ω2

3G

Jxx = Jyy = A = −1
3
kfa

5Ω2

3G

(2.7)

where C and A are the polar and equatorial moments of inertia, respectively, and kf is the
fluid limit of k. We can solve for kf in terms of C − A:

kf = 3G(C − A)
Ω2a5 . (2.8)

This fluid-limit representation of the deformation does not allow for any disequilibrium
between Jij and Eij, so it does not permit TPW.

Ricard et al. (1993) obtain an approximation to Equation (2.6) which retains its long-
time behavior by entering the Laplace domain and truncating a Taylor series for k(s) to
first order. This introduces a new parameter, termed T1, which can be seen as a weighted
relaxation time for the system. This simple approximation in the Laplace domain allows for
an analytical transformation back into the time domain, and neglecting second order terms
in Ω̇ we find:

Jij = kfa
5

3G

(
ΩiΩj −

1
3ΩqΩqδij

)
− kfa

5T1

3G

(
Ω̇iΩj + ΩiΩ̇j −

2
3ΩqΩ̇qδij

)
. (2.9)

The two terms of this equation have simple interpretations. The first term corresponds to
the fluid limit of rotational deformation (in the absence of any long-term elastic strength).
The second term represents the lag in the moment of inertia due to the viscous adjustment of
the rotational bulge, where T1 is the characteristic time constant for this adjustment. Since
the first term represents the fluid limit of rotational deformation, it automatically satisfies
Equation (2.2), and hence does not contribute to the polar wander problem.

2.2.4 The convective moment of inertia
The term on the right-hand side of Equation (2.4) represents the moment of inertia due

to internal density anomalies as well as the surface deflections due to them. This part of the
moment of inertia may also be parameterized using a viscoelastic Love number approach:

E =
[
δ(t) + kL(t)

]
∗C (2.10)

where kL is an internal loading Love number representing the surface deflection due to density
anomalies, and Cij is the moment of inertia due solely to the internal load. Frequently the
simplification is made that the timescale of the surface response is quick compared to the
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true polar wander timescale, and we may use the fluid limit geoid kernels (e.g. Richards and
Hager, 1984):

Eij = (1 + kLf )Cij. (2.11)

An alternative to the Love number formalism is to calculate to surface deflections directly us-
ing mantle convection simulations with a true free surface boundary condition. In Chapter 3
we describe the implementation of a free surface boundary condition in the CIG-sponsored
mantle convection software ASPECT. permits more general treatments of mantle rheology.

2.2.5 Rate of true polar wander
We are in a position to address the rates of true polar wander for a given convective

moment E. A considerable simplification occurs if we neglect secular changes in the rotation
rate, and just consider changes in direction of the pole (dΩ2/dt = 2ΩiΩ̇i = 0) Substituting
Equation (2.9) into Equation (2.4) we find

kfa
5T1Ω2

3G Ω× Ω̇ = Ω× (E ·Ω) . (2.12)

Introducing a unit vector ω = Ω/‖Ω‖ and using Equation (2.8) for kf , we may solve this
equation for ω̇:

ω̇ = 1
(C − A)T1

[E · ω − (ω · E · ω)ω] . (2.13)

Note that the quantity in brackets is similar in form to the shear stress on a plane in classical
elastostatics. This correspondence permits useful insights (see below). Let Θ̇ = |ω̇| denote
the rate of polar wander. Evaluating the scalar product Θ̇2 = ω̇ · ω̇ gives

Θ̇2 = ω̇2 = 1
(C − A)2T 2

1

[
(E · ω)2 − (ω · E · ω)2

]
. (2.14)

Our goal is to quantify the polar wander rate Θ̇ due to a convective perturbation E in
the moment of inertia. The rate defined by Equation (2.14) is expressed in the body-fixed
geographic frame, which is also the reference frame used to measure TPW. However, the
physics of the right-hand-side of Equation (2.14) is more naturally expressed in the reference
frame of the principal axes of E. In general the E-frame rotates slowly with respect to the
geographic frame, so the time derivative of ω is different in these two frames. However,
Equation (2.14) is a scalar equation, which means it is invariant to rotations. Therefore
we can enter the coordinate system of the convective moment of inertia E with principal
moments λ1 ≤ λ2 ≤ λ3 and define the orientation of ω in the E-frame with colatitude θ and
longitude φ (see Figure 2.1). Plugging this description of ω into Equation (2.14), and after
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e1

e2

e3

ω

Ψ

ω̇

θ
β

γ

Figure 2.1 : Relevant vectors and angles for the TPW analysis. The axes e1, e2, and e3 represent
the principal axes of the convective moment of inertia E, with associated eigenvalues λ1, λ2, and
λ3, respectively. Since the choice of geographic axes is arbitrary, we assume that at this instant
the E-frame and the geographic frames are colocated (though at future times they will not be).
The angle θ represents the mismatch between the rotation axis ω and the e3-axis. For illustration,
we assume the longitude φ of the rotation axis is zero so ω lies in the e1-e3 plane. True polar
wander moves the rotation axis towards the e3-axis. We denote this motion by ω̇ in the geographic
frame. However, time-dependent convection in the mantle may cause a relative rotation between
the geographic frame and the E-frame. This relative rotation can be represented as a rotation
around the axis Ψ, which is defined by colatitude β and longitude γ. The rotation around the Ψ
axis contributes to the motion of ω as seen in the E-frame. Further discussion of the reference
frames and the relative rotation vector Ψ can be found in Sections 2.2.2 and 2.4.2
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some tedious algebra, we find

Θ̇2 = 1
4(C − A)2T 2

1
sin2 2θ

[
(λ3 − λ1)2 cos2 φ+ (λ3 − λ2)2 sin2 φ

]
+

1
4(C − A)2T 2

1
sin4 θ sin2 2φ (λ2 − λ1)2 . (2.15)

This equation is a version of what has been called the “Milankovitch theorem” (Munk and
MacDonald, 1960). Two special cases of this equation are of note. First, if Θ̇2 is evaluated
on the octahedral plane (the plane with direction cosines all 1/

√
3, or φ = 45◦, θ ≈ 55◦, cf.

Fung (1965)), then it can be expressed in terms of the second invariant (EII) of the moment
of inertia deviator (Eij − 1/3Ekkδij):

Θ̇2 = 1
9(C − A)2T 2

1

[
(λ3 − λ1)2 + (λ3 − λ2)2 + (λ2 − λ1)2

]
= EII

9(C − A)2T 2
1
.

(2.16)

The second invariant of the stress deviator is commonly used in the theories of elasticity and
plasticity as a convenient scalar approximation of the shear stress in a system. The second
invariant of the moment of inertia deviator can be similarly viewed as a scalar estimate of
the “rotational stress.”

The second special case is if the rotation vector ω lies in e1-e3 plane (φ = 0). Then
Equation (2.15) becomes significantly simpler, which is useful for scaling purposes:

|Θ̇| = 1
2(C − A)T1

sin 2θ(λ3 − λ1). (2.17)

The maximum true polar wander rate of the system is achieved when θ = 45◦ (see, e.g. Fung
(1965)).

From Equation (2.17) it is clear that the important quantities for estimating the rate of
true polar wander (Θ̇) are θ and the differences between the eigenvalues of the convective
moment E, both of which depend on the structure and dynamics of mantle convection. They
represent, respectively, the angular mismatch between the rotation axis and the principal
axis of the convective moment and the size of convective anomalies in the moment of inertia
tensor. The dynamics of mantle convection affects the rate of TPW in two ways; it controls
λi and it represents the mechanism that drives the angular mismatch. The value of θ at any
time also depends on the relaxation of the rotation axis back toward the principal axis of E.
We focus on the dynamics of the convective contribution in the next section.

2.3 Internal dynamics
Mantle convection and rotational dynamics of planetary bodies are usually considered

separately, yet the processes are based on a common set of governing equations. As such,
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some extra care must be taken to ensure that the equations we consider are self-consistent.
Furthermore, since our goal is to establish a scaling for TPW rate, we must identify a minimal
set of nondimensional numbers which describe its physics. For simplicity we consider an
isoviscous planet in a rotating reference frame with no internal heating in the incompressible
Boussinesq approximation. The equations for mass, momentum, and energy then read

∇ · u = 0 (2.18)

−∇P + η∇2u = ρg− ρΩ×Ω× r (2.19)

∂T

∂t
+ u · ∇T = κ∇2T (2.20)

where u is the velocity, P is the pressure, and T is the temperature. The vector g is the
gravitational acceleration, which defined in terms of a gravitational potential V by g = −∇V .
The gravitational potential obeys

∇2V = 4πGρ. (2.21)

where G is the gravitational constant. For the purposes of scaling, we assume that the
magnitude of the gravitational acceleration, g0, is the approximately constant (as is the case
for Earth’s mantle). In addition we use the simple equation of state

ρ = ρ0 (1− α(T − T0)) . (2.22)

to define the density. The remaining parameters are defined in Table 2.1. Note that here we
retain the centrifugal term, which is normally either neglected or absorbed into a modified
pressure (in the latter case the boundary conditions on P must be modified). The centrifugal
term, although the largest of the terms neglected in typical mantle convection models, is
generally small compared to gravitational forces (at least for Earth-like parameters), and
likely does not have a strong influence on the style of convection. However, this term is
critical for determining the size of the rotational bulge which must move relative to the
mantle, and so we must include it to establish the connection between the linear and angular
momentum equations.

Dimensional analysis of this system (cf. Barenblatt (1996)) requires four nondimensional
numbers to characterize it (a fifth one, defined by the ratio of the length of day to a diffusion
timescale, does not appear in the governing equations). Convenient choices for these numbers
are listed in Table 2.2, along with approximate Earth-like values for them.

Two dimensionless parameters have a prominent role in our scaling analysis. The first is
the Rayleigh number, which characterizes the vigor of convection. The second is the ratio of
centrifugal to gravitational forces. This nondimensional number does not have a uniformly
agreed-upon name: it has been called a Froude number in analogy with other applications of
inertial-to-gravitational effects (McKenzie, 1968), and in the geodesy community has com-
monly been termed m (e.g. Nakiboglu, 1982; Chambat et al., 2010), which we adopt here.
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Since we have begun with equations that do not have inertia or compressibility, we have im-
plicitly thrown out the dependence on the nondimensional numbers that characterize those
effects (e.g., the Prandtl and dissipation numbers). It would be straightforward to include
them, but they do not affect the overall treatment of this scaling.

In this case, the dynamics can be characterized in terms of deviations from a reference
hydrostatic state, which includes the dynamic pressure P ∗ = P − P0 and density perturba-
tions δρ = ρ − ρ0 = −ρ0α(T − T0). In addition, we expect deviations in the figure of the
planet from its hydrostatic shape, which we denote by V = VH + ∆V , where VH is the hy-
drostatic figure and ∆V is the deviation. Our rationale for this decomposition is simply that
the hydrostatic pressure is most naturally defined in the (oblate) hydrostatic configuration.
The introduction of ∆V requires another nondimensional number to characterize it, and we
find that the quantity Γ ≡ α∆T is convenient. Finally, we define Ω = Ω0ω, where ω is a
unit vector in the direction of Ω.

By definition the hydrostatic reference state is a solution to Equation (2.19) where there
is no flow:

−∇P0 = ρ0g− ρ0Ω×Ω× r. (2.23)
Nondimensionalizing with the parameters in Table 2.2 and removing the reference state we
find the nondimensional momentum equation:

−∇P ∗ + ∇2u− Ra T g + Ra m T ω × ω × r = 0. (2.24)

We can explicitly draw the connection between the angular and linear momentum equa-
tions by returning to the dimensional Equation (2.19), crossing it with r and integrating
over the volume of the mantle:

−
∫
V

r×∇P dV +
∫
V
ηr×∇2u dV −

∫
V
ρr× g dV +

∫
V
ρr×Ω×Ω× r dV = 0. (2.25)

The first three terms represent pressure, viscous torques, and gravitational torques on the
mantle. Convection in the outer core, atmospheres, and oceans is not strong enough to pro-
vide significant pressure and viscous torques over geologic timescales, and a self-gravitating
body cannot self-torque (Braginsky and Roberts, 1995). Therefore we can neglect those
terms, and we are left with ∫

V
ρr×Ω×Ω× r dV = 0

(2.26)

which may be rewritten via the Jacobi identity to find

Ω×
∫
V
ρr× (Ω× r) dV = 0. (2.27)

This equation can be directly identified with Equation (2.2), and is a statement that a
quasistatic body will rotate around the principal axis of its total moment of inertia.
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Table 2.1 : Parameters for rotating mantle convection
Symbol Definition
Ri inner radius
R outer radius
G gravitational constant
V gravitational potential
M mass of the planet
Ω0 reference rotation rate
η viscosity
κ thermal diffusivity
α thermal expansivity
g0 reference gravity
I0 reference moment of inertia
T0 reference temperature
ρ0 reference density
∆T temperature drop across mantle

We now seek to evaluate Equation (2.26) in the perturbed, convecting state. Hydrostatic
balance (Equation (2.23)) ensures that the integral over the reference shape VH vanishes
when ρ = ρ0. Nonzero contributions arise from perturbations in the density field or from
perturbations in the shape. To make this dependence explicit, we split the shape into the
reference volume VH and perturbations from it ∆V , and use Equation (2.22) to define density
perturbations. Substituting this decomposition into Equation (2.26) brings the integral into
the form ∫

VH

ρ0r×Ω×Ω× r dV +
∫
VH

ρ0α(T − T0)r×Ω×Ω× r dV+∫
∆V

ρ0r×Ω×Ω× r dV +
∫

∆V
ρ0α(T − T0)r×Ω×Ω× r dV = 0.

(2.28)

As previously noted, the first term of this equation is zero due to the hydrostatic equation.
The fourth term is negligible due to being second order in the smallness parameters ∆V/VH
and Γ ≡ α∆T . Removing these, we find∫

∆V
ρ0r×Ω×Ω× r dV = −

∫
VH

ρ0α(T − T0)r×Ω×Ω× r dV. (2.29)

This equation may be identified with Equation (2.4), where disequilibrium in the rotational
deformation (left side) is balanced by the mismatch of the convective moment of inertia with
the spin axis (right side). Our goal is to identify characteristic sizes of these quantities,
which must be functions of the nondimensional numbers identified in Table 2.2.
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Table 2.2 : Nondimensional numbers with approximate Earth-like values
Symbol Name Definition Approximate value
Ra Rayleigh ρ0g0α∆TR3/ηκ 107

m Froude Ω2
0R/g0 = Ω2

0R
3/GM 10−3

A aspect ratio Ri/R 0.54
Γ density deficit α∆T 10−2

2.4 Scaling
Having drawn the connection between the angular momentum equation (Section 2.2)

and the linear momentum equation (Section 2.3), we would like to apply the scaling of the
linear momentum equation to the problem of TPW. We would therefore like to rewrite Equa-
tion (2.17) in terms of the nondimensional numbers identified in Section 2.3. Specifically, we
will need estimates for (C − A), T1, (λ3 − λ1), and θ.

It is useful to define a nondimensional eigenvalue difference, which may also be described
as a normalized “eigengap”: Λij ≡ (λi− λj)/I0. This quantity represents the size of fluctua-
tions in the convective moment of inertia compared to the reference value. The difference in
the polar and equatorial moments of the hydrostatic planet (C − A) is proportional to the
ratio of rotational to gravitational forces (Munk and MacDonald, 1960):

(C − A) ∼ I0m. (2.30)

The time constant T1 is a viscous relaxation time of the planetary mantle. It is frequently
represented as a weighted average of the different relaxation modes (e.g. Ricard et al., 1993;
Greff-Lefftz, 2004), but for our purposes it is enough to approximate it as a single mode:

T1 ∼
η

ρ0g0R
= R2

κ

Γ
Ra . (2.31)

Plugging these scalings into Equation (2.17) we find
κ

R2 Θ̇ ∼ − Ra
ΓmΛ31 sin 2θ. (2.32)

At this point we do not have estimates for the characteristic magnitudes of Λij or θ, both
of which are crucial for predicting characteristic rates of TPW. They represent, respectively,
the size of convective anomalies in the moment of inertia tensor and the angular mismatch
between the rotation axis and the principal axis of the convective moment.

The quantity Λij should be a function of our nondimensional parameters Ra, m, and
Γ. Similarly, the convective forcing that drives changes in θ must also be a function these
nondimensional parameters. To be explicit in our discussion, we denote the angular velocity
induced by forcing by Ψ (see Figure 2.1). We consider relatively slowly rotating bodies here
(m � 1), and so make the simplifying assumption that the rotation does not significantly
affect the style of convection. In this regime, therefore, we neglect the dependence on m,
and look for scalings of the form Λij(Ra,Γ) and Ψ(Ra,Γ).
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Figure 2.2 : Left: Time series of the normalized difference between moments Λ21 = (λ2 − λ1)/I0
for convection in a 2D annulus at several different Rayleigh numbers. As the Rayleigh number
increases, the average value of the relative moment decreases due to less low-degree coherence in
the temperature structure. Right: average value of Λ21 for the different Rayleigh numbers. Also
shown is a line with slope Ra−2/3, which is predicted from the scaling analysis (the exponent is
−2/3 instead of −1 due to the reduced dimensionality of the simulations).

2.4.1 An estimate for Λij

Fluctuations in the nonhydrostatic moment of inertia are caused by density variations
due to the temperature fluctuations in the mantle and their spatial structure:

Cij =
∫
VH

ρ0α(T − T0) (rqrqδij − rirj) dV (2.33)

As discussed in Section 2.2.4, these internal density loads may be convolved with their surface
responses to get the convective moment of inertia Eij. The surface response is a function of
the viscosity structure of the planet and the wavelength and depth of the internal load. The
factor (1+kLf ) is generally an order-one parameter (strictly speaking, dynamic compensation
usually makes it less than one, (e.g. Richards and Hager, 1984)). For the purposes of scaling,
it is reasonable to neglect this multiplicative factor.

For thermal convection, the convective part of the moment of inertia Eij is directly related
to the degree-two part of the temperature field (see Appendix 2.A). Therefore, an estimate
for one specifies the other. We can expand the temperature structure of the convecting planet
with a set of orthonormal basis functions RnYlm, where Ylm are spherical harmonics, Rn are
some set of orthogonal radial polynomials, and Tnlm are the coefficients for the expansion
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which have been normalized by ∆T :

T (r, θ, φ, t) = ∆T
∞∑
n=0

∞∑
l=0

l∑
m=−l

Tlmn(t)Rn(r)Ylm(θ, φ). (2.34)

Inserting the temperature expansion (2.34) into Equation (2.33) results in a prefactor of the
nondimensional number Γ = α∆T . Orthogonality of the basis functions for the expansion
means that the integral for Cij picks out degree-two spherical harmonics in the lateral dimen-
sions, and only the lowest few radial functions Rn(r). Therefore, of the entire temperature
spectrum, only a few of the modes matter for TPW. We want to estimate the power in those
few modes, which we denote by Tdegree-two (see Appendix 2.A for more detail):

Λ31 ∼ ΓTdegree-two. (2.35)

The temperature field has been normalized by ∆T and thus goes between zero and one,
therefore the expansion in Tlmn is constrained by

max
 ∞∑
n=0

∞∑
l=0

l∑
m=−l

Tlmn(t)Rn(r)Ylm(θ, φ)
 = 1. (2.36)

This is a strong constraint, but it gives very little information about the distribution of power
across the Tlmn. We can, however, think about the power spectrum in two different regimes:
that of steady/quasisteady flow, (relatively low Ra) and that of chaotic flow (relatively high
Ra). The structure of thermal convection is primarily controlled by the Rayleigh number.
Once the Rayleigh number is sufficiently high (∼ 106) the style of convection changes from
steady/quasisteady to chaotic. Accompanying this transition to chaos is a broadening of the
spatial and temporal spectra (McLaughlin and Orszag, 1982).

At low Rayleigh number we expect the spectrum of the temperature field to be dominated
by only a few low-degree modes which are largely influenced by the aspect ratio. This
spectrum may or may not have a lot of power in the degree-two modes, and does not depend
strongly on time.

At high Rayleigh number we expect the shortest lengthscales to be limited by the effects
of thermal diffusion, which tends to wipe out thermal heterogeneity at small scales. Con-
sequently, there will be little power in modes with shorter lengthscales than that allowed
by diffusion. Therefore we expect, to a good approximation, that the infinite sum in Equa-
tion (2.34) can be truncated at some maximum wavenumber, set by the smallest lengthscale
d:

nmax, lmax,mmax ∼
R

d
. (2.37)

Strictly speaking, convective mixing can produce smaller scales, but the power in these scales
is greatly reduced by diffusion. Thus total number of modes that are accessible to the system
are

Nmodes = nmax × lmax ×mmax ∼
(
R

d

)3
. (2.38)
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The value of each Tlmn(t) will in general be some complex function of time, but for a given
style of convection we expect there to be some average value. For chaotic flow the power
should be spread out amongst the modes accessible to it. We may make the hypothesis that
each of the modes are roughly as likely as any of the others, which implies

Tdegree-two(t) ∼ 1
Nmodes

∼
(
d

R

)3

. (2.39)

Any of a number of scaling laws can provide an estimate for the characteristic length scale
of a convecting system which may depending on rheology, geometry, or density structure. The
simplest, based on boundary layer theory (Turcotte and Oxburgh, 1967), finds d/R ∼ Ra−1/3.
This scaling is roughly a measure of the diffusive lengthscale for the timescale of a convective
overturn, consistent with the cutoff in Equation (2.37). It thus furnishes us with an estimate
of the power in the degree-two part of the field as a function of Rayleigh number:

Tdegree-two(t) ∼ Ra−1. (2.40)

We performed a series of numerical simulations of mantle convection at different Rayleigh
numbers to test this scaling. We used the mantle convection software ASPECT (Kronbichler
et al., 2012), based on the finite element library deal.II (Bangerth et al., 2015a), which
allows for flexible implementation of different rheologies, geometries, and postprocessors. In
order to test a wide range of Rayleigh numbers, we ran the simulations in a 2D annulus,
tracking the eigenvalues of the moment of inertia tensor and integrating Equation (2.13) in
time. For the 2D simulations there is a reduced dimensionality when calculating the number
of modes, so Nmodes ∼ (R/d)2. This leads us to a scaling of Tdegree-two ∼ Ra−2/3, which
is shown as a dashed line in Figure 2.2. This result has a simple interpretation. As the
Rayleigh number of the system increases, the smallest lengthscale of convective features gets
smaller. The total power in the temperature field is spread across a larger spectrum, leaving
less total power for the degree-two part, which is what drives TPW.

With an estimate for the power in the degree-two part of the temperature field, we may
finally estimate Λij:

Λij ∼
Γ

Ra . (2.41)

Other power spectra for the temperature field are possible. Isoviscous models tend to be
“bluer,” (dominated by small wavelengths) and models with viscosity stratification tend to be
“redder” (dominated by long wavelengths) (Richards et al., 1999). Present day Earth seems
to have a fairly “red” spectrum, with large low-degree seismic anomalies due to Cenozoic
subduction history and the lower mantle LLSVPs (Dziewonski et al., 2010). Nevertheless,
at high Rayleigh number the expectation is that the power will be distributed across many
length scales.
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2.4.2 An estimate for the angular mismatch angle (θ)
Convection can drive both growth and decay in the mismatch angle (θ) between the

current rotation axis and the principal axis of the convective moment. This parameter is
crucial for the rate of TPW, as previously noted in Equation (2.32). Much of the debate
around the existence and magnitude of TPW on Earth comes down to the question of how
big θ can be (Kirschvink et al., 1997; Steinberger and O’Connell, 1997).

Two processes control the evolution of θ. Its growth occurs through perturbations in the
convective moment and its decay occurs by relaxation of the pole towards the maximum
moment of inertia. We can explore these two effects by converting Equation (2.13) from
the body-fixed frame to the E-frame (recall that Ω defines the rotation of the body-fixed
frame relative to inertial space in Equation (2.1)). The E-frame rotates slowly with respect
to the geographic frame, which we describe by the rotation vector Ψ. (To be explicit in our
discussion we let Ψ define the rotation of the E-frame in the geographic frame, although
this choice is arbitrary as long as we are consistent). The time derivatives of ω in the two
frames are related by

ω̇ = ω̇′ + Ψ× ω′. (2.42)
where primes are used to define quantities in the E-frame. Rearranging gives

ω̇′ = ω̇ −Ψ× ω′. (2.43)

We now substitute for ω̇ from Equation (2.13), making the additional assumption that
the geographic and E-frames are momentarily aligned. This assumption is not a serious
restriction because our goal is simply to relate the time derivatives of ω in the two frames,
rather than track the evolution of ω over time. The expression for ω̇ becomes

ω̇′ = 1
(C − A)T1

[E′ · ω′ − (ω′ · E′ · ω′)ω′]−Ψ× ω′. (2.44)

The advantage of expressing the rate of TPW in the E-frame is that the entire equation may
be written in terms of the principal moments λi and the angles from the principal axes. As in
Equation (2.17), we make the simplifying assumption that ω′ lies in e′1− e′3 plane (as shown
in Figure 2.1). In this case the orientation of ω′ is defined by colatitude θ and longitude
φ = 0. The colatitude θ is precisely the angular misalignment that specifies the rate of
TPW in Equation (2.17). We furthermore specify the orientation of Ψ using colatitude β
and longitude γ (see Figure 2.1).

The time derivative of the unit vector ω′ defines the changing orientation of the rotation
axis in the E-frame. We can express this changing orientation in terms of changes in angles
θ and φ. The change in colatitude is

θ̇ = − 1
2(C − A)T1

sin 2θ(λ3 − λ1)− |Ψ| sin β sin γ. (2.45)

where Ψ is expressed in terms of its amplitude |Ψ| and its orientation angles β and γ. Equa-
tion (2.45) captures the essential competition between growth and decay of the mismatch
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angle. The first term acts to reduce θ via TPW, while the second term can increase (or
decrease) it via relative motion between the geographic frame and the principal axes of the
E-frame. Comparison with Equation (2.17) shows that, when |Ψ| is zero, then the rate of
TPW |Θ̇| is identical to |θ̇|. Conversely, when the rate of TPW is very slow (i.e. |Θ̇| ∼ 0),
then |θ̇| ∼ |Ψ|, so the evolution of θ is driven mostly by Ψ. For the purposes of scaling we
will omit the orientation factor sin β sin γ and focus on |Ψ|. In order for the TPW rate to
be large, the growth of θ via |Ψ| must, at least occasionally, be larger than its decay.

An estimate for |Ψ| must concern the stability of the convective moment of inertia.
Convection is continuously redistributing mass throughout the mantle, which will perturb
the convective moment of inertia. If the convective moment is stable to small perturbations,
then |Ψ| should be small, so θ will never have the opportunity to grow. However, if E is not
stable to perturbations, then |Ψ| can be large and θ can grow up to 90◦. Given a random
perturbation to E, we would like to give a bound on the size of changes in the orientation of
the principle axes. This may be done by application of a theorem due to Davis and Kahan
(1970).

Let δ be the size of the perturbation to the convective moment of inertia tensor after some
time interval ∆t, and let λ3 ≥ λ2 ≥ λ1 be the eigenvalues of that tensor. The corresponding
rotation of the principal axes is defined by the angle ξ. A bound on ξ is given by

| sin(2ξ)| ≤ 2|δ|
min
i 6=j
|λi − λj|

. (2.46)

That is to say, if there is a large difference between the eigenvalues, this stabilizes axes to
perturbations. If, however, there is a small difference between the eigenvalues (i.e., they are
nearly degenerate), then perturbations can cause large rotations of the principal axes. This is
illustrated schematically in Figure 2.3. Evans (1998) described a situation where the convec-
tive moment of inertia of Earth is prolate, with the maximum and intermediate moments of
inertia nearly equal. He argued that perturbations in this case would result in TPW paths
that are approximately on the great circle path between the intermediate and maximum
axes. This behavior is a consequence of the instability described in Equation (2.46).

We may arrive at a simple estimate for |Ψ| by differentiating Equation (2.46), tentatively
holding |λi − λj| fixed:

|Ψ| ∼ |ξ̇| ≤ |δ̇|
min
i 6=j
|λi − λj|

. (2.47)

As noted previously, |Ψ| ∼ |θ̇| when the rate of TPW is small and the angular misalignment
θ is small. Consequently, we can interpret Equation (2.47) as a bound on how fast θ can
grow.

The quantity (λi − λj) which appears in the denominator of these equations is precisely
the same as the quantity which we estimated in the previous section to scale with ∼ Ra−1.
Therefore, as the Rayleigh number increases, the characteristic gap between the eigenvalues
of the convective moment becomes smaller. Additionally, the timescale of fluctuations in
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Figure 2.3 : Graphical demonstration of the sin 2ξ theorem of Davis and Kahan (1970). Two
spheroidal bodies with eigenvalues λ2 > λ1 start out with the rotation axis Ω aligned with the λ2
axis. However, on the left the eigengap ‖λ2−λ1‖ is large, while on the right it is small. A negative
mass perturbation is instantaneously added to both bodies, which effects a small rotation of the
principal axes on the left, but a large one on the right.
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these values goes down. Overall, this makes the principal axes of high Rayleigh number
systems much less stable. This is consistent with the result of Richards et al. (1999).

In the limit that the eigengap becomes zero, the rotation of the principle axes can be
arbitrary. This essentially corresponds to the hypothesized “inertial interchange true polar
wander” (Kirschvink et al., 1997), where the mismatch angle is 90◦. However, the eigengap
does not need to be zero for there to be large displacements polar wander, and if it does go
to zero, the wander does not need to be 90◦.

Figure 2.4 shows a representative timeseries for annular convection, where we track the
eigenvalues of the moment of inertia and integrate Equation (2.13) in time. Since it is a
2D model, the spin axis may be represented by a single angle. When the eigengap gets
small, the misfit angle becomes much larger, and the rate of polar wander becomes much
faster. At ∼1 Gyr into the model run the eigengap goes to zero, and the misfit angle goes to
approximately 90◦, an IITPW event. But there are several other events where the eigengap
becomes small, and there are still large TPW events associated with them. For example,
at ∼0.3 Gyr the eigengap dips, with an associated large TPW event, even though there is
technically no interchange of the axes.

We suggest, then, that 90◦ IITPW events are simply a special case of a broad class of
events which can occur when the principal moments are close to each other. Furthermore, a
more vigorously convecting planet is much more likely to experience rapid TPW events as it
has a lower characteristic gap between principal moments and the gap is much more likely
to go to zero.

Tsai and Stevenson (2007) suggested that interchanges in the principal moments are
unlikely to produce large TPW events, since (1) during an inertial interchange the total
moment of inertia anomaly is small, and (2) the TPW event can only asymptotically approach
90◦. This is true for the case of a single interchange. However, we argue that this is
overly restrictive for our generalization of IITPW. Our numerical experiments show that in a
vigorously convecting system the principal moments can interchange, or almost interchange,
quite rapidly, and the perturbation sizes can be large soon after an interchange. Furthermore,
the location of the principal axes need not stay put during a TPW event, which can lead to
extended polar wandering of distances greater than 90◦.

2.5 Discussion
The preceding results clarify the complex relationship between the Rayleigh number, m,

and the rates of TPW for a convecting planet. As mantle convection redistributes mass in
the planet’s interior, the spin axis moves around to stay aligned with the principal axes of
the convective moment of inertia. There is a constant competition between growth of the
mismatch angle θ through Equation (2.47) and its relaxation through TPW. Goldreich and
Toomre (1969) envisioned an analogy of beetles crawling on the surface of the globe, with
the spin axis trying to keep up with the instantaneous figure axis set by the beetles. Our
analysis begins to answer the questions “how big are the beetles?” and “how fast are they
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Figure 2.4 : Top: Time series of principal moments for 2D annular convection at Ra ∼ 108. Bottom:
Time series of spin axis and mismatch angle θ. When the two moments are close to each other
(small eigengap), the mismatch angle becomes large, and the rate of polar wander is significantly
larger. At ∼1 Gyr the gap goes to zero and there is a nearly 90◦ TPW event, with ∼ 80◦ degrees of
polar wander in ∼30 Myr. However, there are several other large TPW events which happen when
the eigengap is small.
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crawling?”
We may plug in the estimate for Λij (Equation (2.41)) into Equation (2.17) to find the

strikingly simple expression
κ

R2 Θ̇ ∼ − 1
m

sin 2θ. (2.48)

Surprisingly, Γ and Ra have completely dropped from the prefactor in the scaling. Response
timescales for relaxation of the mismatch angle go down at high Rayleigh numbers. At
the same time, however, coherence in the temperature structure goes down, reducing the
amount of power in the degree-two part of the field responsible for driving TPW. That these
two effects cancel is something of a coincidence due to the simple estimate of the smallest
lengthscales of the problem. Scalings for lengthscales of convection in fluids with temper-
ature dependent viscosity (e.g. Solomatov, 1995) or pseudoplastic rheology (e.g. Korenaga,
2010) have different functional dependencies on Ra or additional nondimensional parame-
ters. However, a common feature in most scalings is that typical lengthscales are still some
power-law of Rayleigh number d ∝ Ra−β. With this form, our scaling for TPW rate has the
following dependence on Ra:

κ

R2 Θ̇ ∼ −Ra1−3β

m
sin 2θ. (2.49)

In general, β is some small number between one-fourth and one-third, so we expect that
more complicated estimates for d(Ra) will still result in a weak dependence of the prefactor
in Equation (2.49) on the Rayleigh number.

We then suggest that the most important parameters are m, which acts as the brakes on
the system, and the mismatch angle θ. Whereas the prefactor Ra1−3β in Equation (2.49) has
a weak dependence on Ra, the misalignment angle θ is expected to be strongly dependent
on it.

Indeed, we can identify two endmember behaviors of Equation (2.49). When convection is
not sufficiently chaotic to create a large θ we are in the regime where the planet’s rotation axis
closely tracks that of the convective moment. This is the regime considered in Steinberger
and O’Connell (1997), Roberts and Zhong (2007), and Zhong et al. (2007), and can be
considered the “slow TPW” regime. When convection is more chaotic, however, there may
be large excursions in θ, which are driven by large values for |Ψ| when (λi − λj) is small,
according to Equation (2.47). In this case a dramatic increase in the rate of TPW is possible.
If θ = 90◦, this corresponds to IITPW (Kirschvink et al., 1997). This, however, is a special
case in the large θ, “fast TPW” regime.

As an example, we may consider the early Earth, when the mantle was presumably
hotter and less viscous, leading to a higher Rayleigh number. We would then predict that
convection was more vigorous, leading to a less stable θ(t), and thus more TPW and more
frequent “fast TPW” events.

For Cenozoic Earth we can substitute direct estimates of the important parameters into
Equation (2.17). Typical values for the time constant T1 are of order 30 kyr (Ricard et al.,
1993). Estimates of the present day non-hydrostatic moment of inertia (due to mantle
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density anomalies, corresponding to Λ31I0 in the preceding scaling) are in the neighborhood
of 10−5I0, while the hydrostatic moment of inertia (corresponding to C − A) is 3 × 10−3I0
(Chambat and Valette, 2001). A key question is whether convection is sufficiently chaotic to
enter the large θ regime. Richards et al. (1997) have argued that the convective planform of
Earth has been stable for the last few hundred million years. On the other hand, we know
that there have been large reorganizations of that planform during Earth history, so this
recent geologic stability may not hold in general (Evans, 2003). Our numerical simulations
show that large values for θ are possible in a vigorously convecting mantle. Allowing for
such a large mismatch angle (θ = 45◦) we may estimate the maximum polar wander rate

max(Θ̇) = (λ3 − λ1)
(C − A)

1
T1
∼ 6◦/Myr, (2.50)

which corresponds to about 66 cm/yr 90◦ from the TPW axis. This is similar to the rates
discussed by Cambiotti et al. (2011), (though our rate is larger since we allow for the possi-
bility of a larger mismatch angle), and is within the range suggested by some interpretations
of paleomagnetic data. The bulk viscosity of Earth’s mantle is uncertain by up to a factor
of ten (Mitrovica and Forte, 2004), which results in a corresponding uncertainty for the
relaxation time T1 and the maximum polar wander rate.

Thus far we have restricted our discussion to planets with lithospheres lacking long-term
elastic strength. For this case the long-time limit of the planetary figure is coaxial with the
convective moment of inertia. This assumption is not necessarily true in all cases. Earth’s
lithosphere is pervasively fractured and hydrated, and may not have much strength when
subjected to rotational changes on geologic timescales. However, a planet with a stagnant
lid (such as Mars) may have considerable strength, preventing the figure of the planet from
reaching the fluid limit of Equation (2.8).

The theory of TPW response for the case of elastic lithospheres has been developed in,
among other places, Matsuyama et al. (2006), Creveling et al. (2012), and Chan et al. (2014).
The formalism developed in Section 2.4 can still be applied to this case, though the response
to internal variations in the moment of inertia becomes more limited (and potentially richer,
as in the oscillatory motions suggested by Creveling et al. (2012)).

2.6 Conclusion
We have developed a framework for discussing the rates of true polar wander for a convect-

ing planet from a perspective of scaling and fluid dynamics. We identified a small number of
dimensionless parameters which describe the system, and showed how they affect the overall
dynamics of the system.

The most important parameters are the Rayleigh number and m, which acts as a damper
to TPW. The dependence on the Rayleigh number is more complicated, since it is a control
on both the forcing of TPW and the response, which act in opposite directions. Overall,
however, we expect that more vigorously convecting planets should be less rotationally sta-
ble, and experience more TPW. This perspective allows us to consider not only the polar
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wandering of Phanerozoic Earth, but also allows us to hypothesize about polar wandering
during the Archean and Proterozoic, or on other planetary bodies.

2.A Degree-two moments
There is a connection between the moment of inertia of a rotating object and the degree-

two density structure. The moment of inertia tensor may be written in index notation

Iij =
∫
V
ρ (rqrqδij − rirj) dV (2.51)

where r is the Eulerian coordinate, ρ is the density, and V is the volume of the material. It
is useful to enter the principal axes of the moment of inertia:

I = 1

λ1
λ2
λ3

 = 1


∫
V ρ(y2 + zz)dV∫
V ρ(x2 + z2)dV∫
V ρ(x2 + y2)dV

 (2.52)

where 1 is the identity matrix, and λ1, λ2, and λ3 are the principal moments. From Equa-
tion (2.15) we see that the important quantities are the differences between the principal
moments, (λ3 − λ1), (λ3 − λ2) and (λ2 − λ1). These quantities may be rewritten in terms of
degree-two real spherical harmonics (e.g. Dahlen et al., 1999). The relevant (fully normal-
ized) harmonics are, in Cartesian coordinates:

Y20 = 1
4

√
5
π

2z2 − x2 − y2

r2

Y22 = 1
4

√
15
π

x2 − y2

r2 .

(2.53)

Solving for (λi − λj) in terms of these harmonics, we find

(λ2 − λ1) = 4
√
π

15

∫
V
ρr2Y22 dV

(λ3 − λ1) = 2
√
π

15

∫
V
ρr2

(
Y22 −

√
3Y20

)
dV

(λ3 − λ2) = −2
√
π

15

∫
V
ρr2

(
Y22 +

√
3Y20

)
dV.

(2.54)

Up to the normalization constants, these expressions are identical to multipole expansions,
picking out the degree-two part of the density field laterally, and low-order polynomials
radially. When density is a function of temperature, we can insert the equation of state,
Equation (2.22), into Equation (2.54) and integrate over a reference spherical volume VS.
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This allows us to drop the terms which integrate to zero due to the orthogonality of spherical
harmonics, and we are left with:

(λ2 − λ1) = −4
√
π

15αρ0

∫
VS

Tr2Y22 dV

(λ3 − λ1) = −2
√
π

15αρ0

∫
VS

Tr2
(
Y22 −

√
3Y20

)
dV

(λ3 − λ2) = 2
√
π

15αρ0

∫
VS

Tr2
(
Y22 +

√
3Y20

)
dV.

(2.55)

We normalize the differences in eigenvalues by the reference moment I0:

I0 = 2
3

∫
VS

ρ0r
2 dV. (2.56)

Dividing Equation (2.55) by I0 and nondimensionalizing the integrals results in a factor of
Γ = α∆T and a normalized set of degree-two coefficients for the temperature field, which
we abbreviate as Tdegree-two:

Λij ∼ ΓTdegree-two. (2.57)

2.B Derivation of the polar wander rate equation
Here is the tedious algebra for deriving Equation (2.15). We begin with the scalar equa-

tion Equation (2.14). Let the prefactors 1
(C−A)T1

be denoted by A:

ω̇ · ω̇ = Θ̇2 = A2
[
(E · ω)2 − (ω · E · ω)2 .

]
(2.58)

Since this is a scalar equation, we can arbitrarily choose a coordinate system in which to
evaluate it. It is most convenient to choose the principal axes of E, where

E =

λ1 0 0
0 λ2 0
0 0 λ3

 (2.59)

ω =

sin θ cosφ
sin θ sinφ

cos θ

 . (2.60)

As a warm-up, consider the case where φ = 0, then

ω =

sin θ
0

cos θ

 (2.61)
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We can evaluate some of the terms of the scalar equation for Θ̇2:

E · ω =

λ1 sin θ
0

λ3 cos θ

 (2.62)

(E · ω)2 = λ2
1 sin2 θ + λ2

3 cos2 θ (2.63)

ω · E · ω = λ1 sin2 θ + λ3 cos2 θ (2.64)

(ω · E · ω)2 = λ2
1 sin4 θ + λ2

3 cos4 θ + 2λ1λ3 sin2 θ cos2 θ (2.65)

Therefore, plugging these into the scalar equation for ω̇2, we find:

Θ̇
A2 = (E · ω)2 − (ω · E · ω)2

= λ2
1 sin2 θ + λ2

3 cos2 θ − λ2
1 sin4 θ − λ2

3 cos4 θ − 2λ1λ3 sin2 θ cos2 θ

= λ2
1 sin2 θ(1− sin2 θ) + λ2

3 cos2 θ(1− cos2 θ)− 2λ1λ3 sin2 θ cos2 θ

= λ2
1 sin2 θ cos2 θ + λ2

3 cos2 θ sin2 θ − 2λ1λ3 sin2 θ cos2 θ

= (λ2
1 + λ2

3 − 2λ1λ3) sin2 θ cos2 θ

= 1
2(λ3 − λ1)2 sin 2θ

(2.66)

which is equivalent to Equation (2.17).
Now consider the more general case where φ 6= 0. Again, we evaluate some of the terms

of the scalar equation for ω̇2:

E · ω =

λ1 sin θ cosφ
λ2 sin θ sinφ
λ3 cos θ

 (2.67)

(E · ω)2 = λ2
1 sin2 θ cos2 φ+ λ2

2 sin2 θ sin2 φ+ λ2
3 cos2 θ (2.68)

ω · E · ω = λ1 sin2 θ cos2 φ+ λ2 sin2 θ sin2 φ+ λ3 cos2 θ (2.69)

(ω · E · ω)2 =λ2
1 sin4 θ cos4 φ+ λ2

2 sin4 θ sin4 φ+ λ2
3 cos4 θ

+ 2λ1λ2 sin4 θ cos2 φ sin2 φ

+ 2λ1λ3 sin2 θ cos2 θ cos2 φ

+ 2λ2λ3 sin2 θ cos2 θ sin2 φ

(2.70)
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Again, plugging these into the scalar equation for Θ̇2, we find:

Θ̇2

A2 = (E · ω)2 − (ω · E · ω)2

= λ2
1 sin2 θ cos2 φ+ λ2

2 sin2 θ sin2 φ+ λ2
3 cos2 θ

− λ2
1 sin4 θ cos4 φ− λ2

2 sin4 θ sin4 φ− λ2
3 cos4 θ

− 2λ1λ2 sin4 θ cos2 φ sin2 φ

− 2λ1λ3 sin2 θ cos2 θ cos2 φ

− 2λ2λ3 sin2 θ cos2 θ sin2 φ.

(2.71)

After a lot of simplification, we get

Θ̇2

A2 =1
4 sin2 2θ

[
(λ3 − λ1)2 cos2 φ+ (λ3 − λ2)2 sin2 φ

]
+

1
4 sin4 θ sin2 2φ (λ2 − λ1)2

(2.72)

which is Equation (2.15).
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Chapter 3

Time integration of free surfaces in
viscous flows

3.1 Introduction
Surface topography in simulations of mantle convection and other geodynamic processes

is an important observable, allowing insights into Earth’s internal density structure, rheology,
and geoid perturbations (e.g. Richards and Hager, 1984; Hager et al., 1985; Baumann et al.,
2014). Historically, most simulations have been performed with free-slip boundary conditions
at the surface, with dynamic topography calculated as a postprocessing step (e.g. Jarvis and
Peltier, 1982; Zhong et al., 2000).

There have been several approaches to treating real free surfaces in geodynamic simu-
lations. Zhong et al. (1996) introduced a pseudo-free-surface formulation, where the free
surface coordinate was treated as an extra variable that was integrated in time. In this
formulation, the free surface is approximated on the undeformed Eulerian grid by applying
pressure boundary conditions on the reference surface. The pressure is determined by a
first-order Taylor series approximation of the hydrostatic pressure profile predicted by the
surface topography.

A large number of studies have approximated free surfaces in the interior of the domain
by using the ‘sticky air’ approximation (see Crameri et al. (2012a) and references therein).
In this approximation there is a low-viscosity, low-density layer in the fluid (termed ‘air’,
though its viscosity is much higher) above the free surface, effectively decoupling it from the
boundary. Typically a free-slip boundary condition is used above the sticky air, though an
open boundary may be preferable (Hillebrand et al., 2014).

Finally, one can use a true free surface, where a stress-free boundary condition is applied
on the boundary of the domain. In this case, there can be flow in and out of the domain, so
the boundary must move in time. A true free surface has mathematical elegance in that the
boundary condition of the domain more closely matches the boundary conditions which one
is trying to model, but it typically requires a deformable domain with frequent remeshing to
avoid ill-conditioned cells (i.e., cells that are inverted or have large aspect ratios).
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Recently, the nature of surface boundary conditions have been shown to be important
for controlling the dynamics of subduction zone modeling. In a benchmark study Schmeling
et al. (2008) performed extensive testing on the effect of a free surface on the sinking of
a slab. They found that the nature of the free surface had a large effect on the dynamics
of the slab, affecting both the shape and the timing of sinking. Most of the participating
codes in that benchmark used the sticky air approximation. They found that the specific
properties of the sticky air layer controlled the shape and timing of the slab. Furthermore, the
viscosity averaging scheme for areas of transitional composition was extremely important,
as the simulation of the subducting slab entrained significant amounts of the sticky air.
Crameri et al. (2012a) conducted comparisons between sticky air and true free surface models,
demonstrating a range of parameters for sticky air which can mitigate some of the difficulties
that it introduces. A study by Quinquis et al. (2011) found that free surface boundary
conditions have a large effect on trench migration in a subduction zone, and Crameri et al.
(2012b) found that a free surface combined with a weak crust is important for producing
one-sided subduction zones.

All of the approaches to free surface simulations have been subject to an instability
which has been variously termed a “sloshing,” or “drunken sailor” instability (Kaus et al.,
2010; Duretz et al., 2011; Kramer et al., 2012). This instability, arising from the large density
contrast typical at a free surface (compared with the much smaller internal density contrasts),
severely limits the maximum stable timestep for free surface computations. Frequently, the
maximum stable timestep is several orders of magnitude smaller than that for an otherwise
equivalent model with free-slip boundary conditions.

Several studies have attempted to alleviate the timestepping requirements imposed by
the sloshing instability. Since the most expensive part of geodynamic simulations is typically
the Stokes solve, most free surface calculations have preferred to use explicit timestepping
methods for the free surface. Kaus et al. (2010) proposed a quasi-implicit scheme which
modifies the discretized Stokes matrix, giving it better stability properties. Popov and
Sobolev (2008), Kramer et al. (2012), and Furuichi and May (2015) explored methods for
solving the transport of the free surface implicitly.

The paper is organized as follows. After introducing the problem in Section 3.2, we derive
an approach to analyze free surface schemes based on the normal modes in Section 3.3 and
Section 3.4. In Section 3.5 we use this approach to look at the quasi-implicit stabilization
proposed in Kaus et al. (2010). Then, we propose a new time marching scheme for free
surface computations with good stability properties (Section 3.6). Finally, we describe the
implementation of a free surface in the mantle convection software ASPECT in Section 3.7,
before showing some numerical results and benchmarks in Section 3.8.



3.2. GOVERNING EQUATIONS 35

3.2 Governing equations
We begin with the incompressible momentum conservation equations for creeping incom-

pressible flow:
∇ ·T = ρg
∇ · u = 0,

(3.1)

where u is the fluid velocity, ρ is the fluid density, and g is the force due to gravity. T is the
stress tensor for a Newtonian fluid, defined by

T = 2ηε(u)− pI, (3.2)
where η is the viscosity, ε(u) = 1

2(∇u+(∇u)T ) is the strain-rate tensor, and I is the identity
tensor. Substituting the stress tensor into Equation (3.1) gets the familiar form of the Stokes
equation:

∇ · (2ηε(u))−∇p = ρg. (3.3)
For the purposes of this analysis it is useful to define a hydrostatic reference state where

the velocity u is zero:
−∇p0 = ρ0g, (3.4)

where p0 is the reference hydrostatic pressure and ρ0 is a reference density profile (which may
vary with depth). The total pressure and density can then be decomposed into variations
about their reference values: ρ = ρ0 + ρ′, p = p0 + p′. Using this, the hydrostatic reference
state (Equation (3.4)) may be subtracted from Equation (3.3).

This gives rise to the following time dependent, coupled system with unknowns u(t) and
p(t):

∇ · (2ηε(u))−∇p′ = ρ′g in Ω(t)
∇ · u = 0 in Ω(t)

(3.5)

defined on the bounded, moving domain Ω(t) ⊂ Rd with boundary ∂Ω = Γ0 ∪ ΓF split into
fixed (Dirichlet) and free surface parts Γ0 and ΓF , respectively. The boundary conditions
are given by

u = 0 on Γ0

T · n = 0 on ΓF .
(3.6)

For the sake of economy, we neglect inhomogeneous stress boundary conditions, though it
would be straightforward to include them. We also defer discussion of free slip boundary
conditions. The domain at time t is defined by advecting a reference configuration Ω0 by
the domain velocity u(t)

Ω(t) = Ω0 +
∫ t

t0
u(t) dt. (3.7)

We defer the discussion of the velocity of the discretized domain to Section 3.7.1. Finally,
we denote the displacement at time t by ζ =

∫ t
t0

usurface(t) · n dt, leading to the evolution
equation

dζ
dt = u · n on ΓF . (3.8)
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3.3 Eigenvalue analysis
In order to better understand the time evolution of the system in Equation (3.5), we will

consider the eigenvalues of a simplified homogeneous system where we neglect variations in
density (ρ′ = 0):

∇ · (2ηε(u))−∇p′ = 0
∇ · u = 0.

(3.9)

We will proceed with this analysis within a finite element framework, though similar
arguments should work for other discrete methods. We transform the governing equations
into the weak form amenable to finite elements via standard operations (e.g. Zienkiewicz and
Taylor, 1977) to get∫

Ω(t)
2ηε(w) : ε(u)−

∫
Ω(t)

p′∇ ·w−
∫

ΓF (t)
w ·T · n = 0 (3.10)

∫
Ω(t)

q∇ · u = 0, (3.11)

where w and q are suitably chosen test functions and the integrals over Ω(t) and ΓF (t) are
over the volume of the domain and the free surface, respectively. Note that since the free
surface can move, the shape of the domain is a function of time.

The integral over the surface in Equation (3.10) accounts for boundary stresses, which
should be zero when evaluated on a true free surface. Rather than analyzing finite de-
formation to the free surface (a nonlinear problem), we will make the analytically useful
approximation of small deformations about the hydrostatic reference surface and analyze
their stability. We will therefore evaluate the integrals in Equation (3.10) over the hydro-
static reference surface and introduce a temporary auxiliary variable ζ which represents the
(small) topography of the free surface relative to that reference surface. On the reference
surface the gravity vector is opposite the direction of the surface normal g = −gn. The
stress on this reference surface can be approximated by using the first order Taylor series
expansion of the hydrostatic pressure profile:

T ≈ ∂T
∂n
· nζ = −ρ0gζI. (3.12)

Equation (3.10) then becomes∫
Ω(t)

2ηε(w) : ε(u)−
∫

Ω(t)
p′∇ ·w +

∫
ΓF (t)

ρ0gζw · n = 0. (3.13)

We would like to analyze the time evolution of the normal modes of this system: each
mode corresponds to the relaxation of topography with a characteristic wavelength and
relaxation time. These times are determined by the model geometry, gravity, viscosity
structure, and density structure. We denote the normal modes by [ui, p′i, ζi]

T , with relaxation
times τi, where the subscript corresponds to the ith normal mode.
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The equations decouple for the normal modes, and Equation (3.8) then becomes

d
dtζi(x, t) = d

dtζi(x)e−t/τi = −ζi(x, t)
τi

= ui · n. (3.14)

This can then be used to eliminate ζ from the Stokes system:∫
Ω(t)

2ηε(w) : ε(ui)−
∫

Ω(t)
p′i∇ ·w = τi

∫
ΓF (t)

ρ0g(ui · n)(w · n). (3.15)

Equations (3.10), (3.11), and (3.15) are continuous forms of the governing equations
which must be discretized in space and time in order to be solved numerically. In particular,
we must decide at which timestep (or combination of timesteps) we will integrate over the
domain Ω(t). We denote discrete times by tn, where n is the timestep number, and tn+1 =
tn+∆t. It is most convenient to integrate over the domain at the current timestep Ωn ≡ Ω(tn)
instead of the unknown Ωn+1 ≡ Ω(tn+∆t). This corresponds to an explicit scheme. However,
as we will see, the implicit scheme of integrating over the (unknown) domain at the next
timestep Ωn+1 will give a stable timestepping scheme, at the cost of making the problem
nonlinear (Furuichi and May, 2015).

When these equations are spatially discretized using finite elements (see, e.g. Kronbichler
et al., 2012) we get [

A BT

B 0

] [
uhi
phi

]
= τi

[
M 0
0 0

] [
uhi
phi

]
, (3.16)

where uhi and phi are finite-dimensional representations of ui and p′i, and the domain integrals
are performed over a discrete approximation of the domain shape (such as a linear finite
element basis) which we denote by Ω̂. M is the discretization of the bilinear form on the
right-hand side of Equation (3.15). The form of Equation (3.16) does not depend on whether
we choose Ω̂n or Ω̂n+1 for the domain integration.

Equation (3.16) is a generalized eigenvalue problem for the normal modes of the system.
It has strictly positive eigenvalues (see Appendix 3.A). It is rather more difficult to solve than
a standard eigenvalue problem because the matrix on the right-hand-side is not invertible.
It may, however, be transformed into a standard eigenvalue problem. By defining

C =
[
A BT

B 0

]
D =

[
M 0
0 0

]
yi =

[
uhi
phi

]
(3.17)

and then multiplying both sides by τ−1
i C−1 we get

(C−1D)yi = τ−1
i yi. (3.18)

This eigenvalue equation can be solved for the normal modes and relaxation times of the
Stokes system with a free surface.
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3.4 Time integration of the free surface
Armed with the normal modes and relaxation times of the Stokes system, we can write

down the formal solution to Equation (3.8). Let the initial surface topography be represented
by a linear combination of its normal modes

ζ(x, t = 0) =
∑
i

aiζi(x), (3.19)

then the time evolution of the free surface is given by

ζ(x, t) =
∑
i

aiζi(x)e−t/τi . (3.20)

Of course, most finite element (or finite difference, or finite volume) geodynamic simulations
do not resolve the solution and surface topography into its normal modes and integrate
those separately. Indeed, analytical solutions for the normal modes are only known for
simple geometries and rheologies. Instead, one typically obtains a velocity solution and then
advect the free surface with the local velocity. The normal mode solution is instructive,
however. Each mode has the form of a decay equation with characteristic decay time τi.
The decay equation is the archetypical example of a stiff ordinary differential equation. If
we were to numerically integrate this in time with a forward Euler method, we would find
the timestep criterion for stability (e.g. LeVeque, 2007) to be

∆t ≤ 2τmin, (3.21)

where τmin is this minimum decay time. The maximum stable timestep is limited by the
minimum relaxation timescale. If a larger timestep than this is taken then those modes will
become unstable. The modes with the smallest relaxation times are usually those with the
largest lengthscales (Schubert et al., 2001), and so it will be those which become unstable
first, a phenomenon which has been called a “sloshing”, or “drunken sailor” instability (Kaus
et al., 2010).

3.5 Analysis of quasi-implicit stabilization
The relaxation timescales for surface topography tend to be considerably shorter than

those for convection or tectonic deformation, so the stability requirements for a forward Euler
scheme are quite onerous. On the other hand, an implicit time marching scheme requires
solving a nonlinear system for the new surface position, or assembling a larger system with
surface topography unknowns (e.g. Kramer et al., 2012).

Kaus et al. (2010) proposed a scheme whereby the body forces on the domain are evalu-
ated on a prediction of the shape of the domain at a later time. The continuous weak form
of the right-hand-side body forces in is then

fbody =
∫

Ωn+∆Ω
ρw · g. (3.22)
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We can approximate the shape prediction by time integrating the domain evolution equation
(Equation (3.7)):

∆Ω ≈ θ∆tu, (3.23)
where θ is a free parameter that corresponds to the magnitude of the correction, where zero
is no stabilization and one is fully (quasi) implicit.

One can approximately expand the integral in Equation (3.22) using Reynold’s transport
theorem to find ∫

Ωn+∆Ω
ρw · g ≈

∫
Ωn
ρw · g + θ∆t

∫
Γn

F

ρ(w · g)(u · n). (3.24)

The volume integral is the same as that of the unstabilized problem, but now we obtained
an additional surface integral. It has the form of a velocity-dependent surface stress pushing
down on the domain, and can be thought of as an artificial viscous damping of the surface.
Since the term depends on the velocity, it enters the Stokes system matrix as a stabilization
term. Empirically, it has been found to be successful at damping instabilities (Kaus et al.,
2010; Quinquis et al., 2011; Duretz et al., 2011).

The surface integral in Equation (3.24) is almost the same as that on the right hand side
of Equation (3.15), which was discretized as the matrix M . By making two approximations
we can connect it with the formalism developed in Section 3.3. First, when the current
position of the surface is near to the reference surface (i.e., the slope is not too steep) then
gravity is approximately in the direction of the surface normal: g ≈ −gn. Furthermore,
in Equation (3.15) we considered response of the surface in a homogeneous system where
there were no lateral density variations, while Equation (3.24) uses the total density. In
most geodynamic simulations lateral density variations are small compared to the total
density. For the purposes of stabilization we may approximate ρ ≈ ρ0. Inserting these two
approximations, we find that the stabilization term may be written as

−θ∆t
∫

Γn
F

ρ0g(w · n)(u · n), (3.25)

where the integral is now identical to that which discretizes to M .
If we discretize the Stokes system with the quasi-implicit stabilization term, we find a

new generalized eigenvalue problem:[
A+ θ∆tM BT

B 0

] [
uhi
phi

]
= τSi

[
M 0
0 0

] [
uhi
phi

]
, (3.26)

where τSi indicate the eigenvalues of the stabilized system. This system may be rearranged:[
A BT

B 0

] [
uhi
phi

]
=
(
τSi − θ∆t

) [M 0
0 0

] [
uhi
phi

]
. (3.27)

This is precisely the same generalized eigenvalue problem as Equation (3.16), so its
eigenvalues must be the same. This allows us to write the eigenvalues of the stabilized
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problem in terms of those of the unstabilized problem:

τSi = τi + θ∆t. (3.28)

Essentially, the stabilization term lengthens every relaxation time for the system by an
amount θ∆t. This correspondingly lengthens the maximum stable timestep for the forward
Euler method:

∆t ≤ 2
1− θτmin. (3.29)

Note that as θ goes to one this scheme should become unconditionally stable, but nonlinear
effects and discretization errors due to finite deformation of the surface could prevent that
stability.

The lengthening of relaxation times due to the quasi-implicit stabilization has an unequal
effect on the modes. They are all lengthened by the same amount, which is a much bigger
fraction of the total relaxation time for the shorter-time modes than the longer-time ones.
Therefore the shorter-time modes are effectively damped more. This can be seen as an
attractive feature of the scheme, since those are the least stable modes, though it can result
in less accurate time-marching of the longest wavelengths of the system.

3.5.1 Numerical determination of τmin

It can be useful to determine the minimum relaxation time τmin for a particular simu-
lation setup, both to determine an appropriate timestep and as a check on the eigenvalue
analysis above. As discussed in Section 3.3, the generalized eigenvalue problem given by
Equation (3.26) is difficult to solve because the matrix on the right-hand-side is not invert-
ible. However, we may convert Equation (3.26) to a standard eigenvalue problem in the
same manner as before. Introducing CS as the Stokes system matrix with the stabilization
term included, and with D and yi the same as in Equation (3.17), we find

(C−1
S D)yi = 1

τSi
yi. (3.30)

Several things are of note about this eigenvalue equation which help in solving it. The matrix
D is a mass matrix which is only nonzero on the free surface, so it is mostly empty, and, in
general, it is not necessary to explicitly form the matrix in order to apply it. Second, applying
the inverse of CS amounts to solving the Stokes system, so any existing geodynamical code
can already do this. Third, it is now an equation for the inverse of τSi , and so solving
for the minimum relaxation time is now equivalent to finding the maximum eigenvalue of
Equation (3.30).

All of these factors mean that power iteration (see, e.g., Golub and Van Loan (2012)),
which finds the dominant eigenvalue/eigenvector pair, is an attractive option for finding τmin.
We have tested the effectiveness of power iteration for finding the minimum relaxation time
on a problem for which there is an analytical solution. We also use it to confirm Equa-
tion (3.28). Following Kramer et al. (2012) we model the relaxation of surface topography in
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a two-dimensional Cartesian box with an isoviscous fluid. The setup is shown in Figure 3.1.
The eigenvectors of this system are given by infinitesimal sinusoidal perturbations to the free
surface

ζ(x, 0) = ζ0 cos (kx) , (3.31)

where k = 2πn/L, and n is a wavenumber which is an integer multiple of 1/2. For an
infinitesimal perturbation of this form, the relaxation time τ is given by

τ = Dk + sinh(Dk) cosh(Dk)
sinh2(Dk)

2kη
ρg

, (3.32)

where D is the layer depth, η is the viscosity, ρ is the density, and g is the acceleration due
to gravity.

The eigenvector with the minimum relaxation time for this system τmin corresponds to
n = 1/2 (which, as expected, has the form of the fluid sloshing back and forth). Figure 3.2
shows the results of the power iteration, where colored circles indicate the numerical solution
and black dots show the analytical solution using equation (3.28). In most cases the iteration
converges to better than ∼ 10−5 relative accuracy in about 20 iterations (and fewer with a
good initial guess).

3.6 A novel time-integration scheme
The implementation of such a scheme results in a slightly asymmetric matrix, which

can be more difficult to solve, requiring either changes to the solver/preconditioner, or sym-
metrization of the stabilization term (Kaus et al., 2010). An alternative would be to construct
a time-integration scheme that remains stable at larger timesteps. The reason that forward
Euler integration performs so badly with the decay of topography is that at larger timesteps
it overshoots its equilibrium position. This overshoot causes it to lurch back to the other
side of equilibrium, overshooting even more. We would like to construct an explicit scheme
that accounts for following properties which we know the system has:

• In the absence of forcing, topography always decreases (Appendix 3.A).

• Relaxation of small amplitude topography takes the form of exponential decay (Sec-
tion 3.3).

• The decay mode with the shortest relaxation time is the least stable (Section 3.4).

3.6.1 Nonstandard finite-differences
A general expression for the evolution of a free surface from time tn to time tn+1 is

x(tn+1) = x(tn) +
∫ tn+1

tn
u(t) dt, (3.33)
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ζ0

D

L

g

Figure 3.1 : Setup for the power iteration test (Section 3.5.1) and for the free surface relaxation
benchmark (Section 3.8.1). A 2D box with an isoviscous fluid has sinusoidal initial topography,
with amplitude ζ0 and wavenumber n. The box has depth D and length L. For our tests ρ =
η = g = D = L = 1, and n = 1/2. For the power iteration test there is no initial perturbation
(ζ0 = 0.0), and for the surface relaxation benchmark ζ0 = 0.005.
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Figure 3.2 : The effect of quasi-implicit stabilization on the minimum relaxation time of a fluid in
a 2D Cartesian box with a free surface (see Figure 3.1), as well as the result of power iteration
to find the minimum relaxation time. The x-axis shows the timestep normalized by minimum
relaxation time of the unstabilized problem τmin. The y-axis shows the stabilized relaxation time
τS , also normalized by τmin. Colored circles show the relaxation times found by numerical solution
of Equation (3.30) with different values of the stabilization parameter θ. Black dots show the
relaxation times calculated using Equation (3.28). The stabilized timescale is lengthened for larger
timesteps and for larger values of θ. For this test case, power iteration typically attains better than
1% accuracy in 5-10 iterations.
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where x is the location of the free surface. If we approximate u(t) ≈ u(tn), we of course
recover the forward Euler scheme. However, we can make another choice based on our
knowledge of the system behavior. We can approximate u(t) as

u(t) = u(tn)e−(t−tn)/τ∗
, (3.34)

where τ ∗ is some as-yet undetermined positive constant which we will refer to as the “sta-
bilization timescale”. This form of u automatically decays in time, and as we shall see, has
much better stability properties than forward Euler integration. Using Equation (3.34) in
Equation (3.33) and integrating, we find

x(tn+1) = x(tn) + u(tn)τ ∗
(
1− e−∆t/τ∗)

. (3.35)

The quantity τ ∗(1 − e−∆t/τ∗) acts as a pseudo-timestep for advecting the free-surface.
Equation (3.35) is what is known as a nonstandard finite-difference model, based on con-
structing unusual discrete models for differential equation integration. The theory has been
developed in, among others, a series of papers by Mickens (1994, 2002, 2005).

3.6.2 Stability of the scheme
The parameter τ ∗ sets how quickly u decays in Equation (3.34), and a good choice is

crucial for accuracy and stability. A shorter decay time corresponds to more stabilization,
but if it becomes too short, the surface velocity will become overdamped. In general, we will
want to choose τ ∗ so that it is as close as possible to the relaxation time of the least stable
mode, or τmin.

To investigate the stability of this scheme we consider a velocity solution comprised of a
single normal mode of the system u = aiui. This will decay exponentially with relaxation
time τi, or

dai
dt = −ai

τi
. (3.36)

Applying the nonstandard finite difference scheme, we find

an+1
i = ani

[
1− τ ∗

τi

(
1− e−∆t/τ∗)]

. (3.37)

In order for the scheme to be stable, the quantity in brackets must remain bounded as it is
repeatedly multiplied by itself, or∣∣∣∣1− τ ∗

τi

(
1− e−∆t/τ∗)∣∣∣∣ ≤ 1. (3.38)

The stability of this scheme is determined by the choice of τ ∗. It has a region of uncon-
ditional stability, where

τ ∗ ≤ 2τi. (3.39)
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Figure 3.3 : (a) Stability region for the nonstandard finite difference scheme (green, Equations (3.39)
and (3.40)). On the x-axis is the value of the stabilization timescale, in units of the minimum
relaxation time τmin. On the y-axis is the value of the timestep, also in units of the minimum
relaxation time. For τ∗ ≤ 2τmin the nonstandard finite difference scheme is unconditionally stable.
(b) Stability region for the quasi-implicit scheme (green, Equation (3.29)). Again, the y axis is in
units of the minumum relaxation time. The x-axis shows the value of the stabilization parameter
θ. For θ = 1 the quasi-implicit scheme is unconditionally stable. In both cases the stability region
for the forward Euler scheme (Equation (3.21)) is also shown in blue.

Otherwise, the scheme is conditionally stable, with the timestep limited by

∆t ≤ −τ ∗ log
(

1− 2 τi
τ ∗

)
. (3.40)

The stability region is plotted in Figure 3.3. Equations (3.39) and (3.40) are derived in
Appendix 3.B.

3.6.3 Accuracy and asymptotics of the scheme
It is important to note that even though we derived the nonstandard finite difference

scheme assuming a decaying exponential for u, it is formally a first-order accurate scheme.
As such, it is capable of capturing arbitrary motions of the free surface, while allowing larger
timesteps than the forward Euler scheme.

Again we may take one of the normal modes as an example and inspect the differ-
ence between the nonstandard finite-difference scheme and the analytical solution after one
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timestep:

ai(∆t)− a1
i = ai(0)e−∆t/τi − ai(0)

[
1− τ ∗

τi

(
1− e−∆t/τ∗)]

= ai(0)
[
e−∆t/τi − 1 + τ ∗

τi

(
1− e−∆t/τ∗)]

.

(3.41)

Note that when τi = τ ∗ the nonstandard finite difference scheme is exact. The exponentials
may be expanded to find

ai(∆t)− a1
i = ai(0)

(
∆t
τi

)2 (
1− τi

τ ∗

)
+O(∆t3). (3.42)

The local truncation error is quadratic in ∆t, similar to the forward Euler schem. Summing
this error over many timesteps results in a factor of ∆t−1, which results in a global truncation
error that is linear in ∆t (e.g. LeVeque, 2007), demonstrating the first-order accuracy. The
choice of τ ∗ controls the size of the coefficient on the truncation error for the scheme. The
error for a given mode becomes considerably smaller when τ ∗ is close to its natural relaxation
times.

It is helpful to take a closer look at the pseudo-timestep introduced in Equation (3.35):
τ ∗(1 − e−∆t/τ∗). As the timestep ∆t goes to zero, the pseudo timestep approaches ∆t,
recovering the forward Euler scheme. However, as ∆t gets larger, the pseudo-timestep does
not increase as quickly, reflecting the decaying nature of the normal modes (in fact, the
pseudo-timestep is bounded between ∆t and τ ∗). Likewise, as the stabilization timescale
τ ∗ goes to infinity, we also recover the forward Euler scheme, in what is essentially the
unstabilized problem. But as τ ∗ goes to zero, the pseudo-timestep also goes to zero. This
corresponds to over-stabilizing the problem. With too short of a stabilization timescale the
free surface is never advected at all (which is a very stable situation, if not very accurate!).

3.6.4 Choice of τ ∗

As discussed above, a full geodynamic simulation will have a spectrum of relaxation
times. For complete stability, the parameter τ ∗ should be chosen such that every mode is
stable. In practice, this means that a good choice is

τ ∗ ≈ τmin. (3.43)

Unfortunately, for many models the minimum relaxation time will not be known before-
hand. In order to use the nonstandard finite difference scheme, the value of τ ∗ would need
to be calculated or estimated first. There are several possible ways to determine this value:

• Direct solution of Equation (3.16). Solution of the whole spectrum is expensive when
only the minimum relaxation time is required, which means that power iteration on
the standard eigenvalue problem (Equation (3.18)) can be enough.
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• Analytical formulae. Several geometry and viscosity model combinations have ana-
lytical solutions for relaxation spectra. Even if the user’s model is not precisely the
same (e.g., has some lateral viscosity variations), an analytical approximation may be
sufficient.

• Scaling. In general, we expect the relaxation times to scale with τ ∼ η
ρgL

, where the
density, gravity, viscosity, and lengthscale L are all representative values. A small
amount of experimentation near this value of τ can find an appropriate relaxation
time.

The first point deserves a bit more attention, since it provides the most general method
for determining τmin. We discussed the numerical determination of τmin in Section 3.5.1 by
solving Equation (3.18) via power iteration. Each iteration requires a solution of the Stokes
system (the C matrix), and we have found that ∼10 iterations is usually enough to obtain
a reasonable estimate of τmin. This can be done during preprocessing, so over the course of
the simulation the cost of determining τmin would be negligible.

As a simulation progresses, there is the possibility that its viscosity or density structure
will change, and as such its minimum relaxation time will evolve. This, of course, means
that the best choice of τ ∗ can change over the course of a simulation. If τmin does not
change significantly, the initial estimate can be fine. Otherwise, one can periodically check
the evolution and redetermine τmin by solving Equation (3.18) during the model run.

In Section 3.8 we show examples the numerical solution of τmin and its evolution in time.

3.7 Implementation in ASPECT

We have implemented the ability to run free surface simulations in the mantle convection
software ASPECT (Bangerth et al., 2015b; Kronbichler et al., 2012). ASPECT, based on the
open source, finite element library deal.II (Bangerth et al., 2015a), is designed to be highly
flexible and modular, with the ability for user-defined rheologies, geometries, and gravity
models. The implementation of the free surface, therefore, needs to be general enough to
work for many combinations of these models, including those which may not have been
written yet. In particular, it cannot rely on assumptions regarding the shape of the domain.

Furthermore, ASPECT allows for computations in both 2D and 3D, so the implementa-
tion must be sufficiently dimension independent to work in both cases. We implement the
free surface within an arbitrary Lagrangian-Eulerian (ALE) formulation (e.g Fullsack, 1995;
Donea et al., 2004).

ASPECT is a parallelized, distributed memory code with adaptive mesh refinement (see
Bangerth et al. (2011) for details). The free surface implementation works with these fea-
tures. We store the mesh vertex positions in a fully distributed vector. This vector is
continually updated and redistributed across processes upon mesh adaptation (which is han-
dled by the adaptive octree library p4est). We also provide adaptive refinement indicators
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based on being near to the free surface or when the free surface slope is steep to allow for
accurate interface tracking.

3.7.1 Remeshing
The mesh velocity in normal direction at the free surface (with unit normal n) has to be

consistent with the velocity of the Stokes velocity solution u(t):

umesh(t) · n = u(t) · n on ΓF (3.44)

In ALE calculations the internal mesh velocity is undetermined. In general, one wants to
smoothly deform the mesh so as to preserve its regularity, avoiding inverted or otherwise
poorly conditioned cells. The mesh deformation can be calculated in many different ways,
including algebraic (e.g. Thieulot, 2011) and PDE based approaches.

We choose to implement remeshing based on solving Laplace’s equation for the mesh
velocity. We solve the equation

∇2umesh = 0 (3.45)

subject to the boundary conditions

umesh = 0 on Γ0.

umesh = (u · n)n on ΓF ,
umesh · n = 0 on ΓFS,

(3.46)

where ΓFS is the part of the boundary with free slip boundary conditions, given by

u · n = 0
T · n− (n ·T · n)n = 0 on ΓFS.

(3.47)

This scheme has the advantage of working for many different domain geometries and com-
binations of boundary conditions. For moderate mesh deformation, the mesh stays smooth
and well conditioned, though it breaks down for large deformations.

3.7.2 Surface advection
With a deformable domain there is the danger that small errors in free surface motion

can result in poor overall mass conservation in time. In some scenarios, the total volume of
the mesh can fluctuate significantly over hundreds or thousands of timesteps. Consistency
with the Stokes solution requires

umesh · n = u · n. (3.48)

Unfortunately the normal vectors are not well defined on the mesh vertices, which is where
the mesh velocity is defined. One could instead advect the mesh in the direction of the local
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vertical, or in some weighted average of the cell normals adjacent to a given vertex, but we
have found that these schemes do not necessarily have good mass conservation properties.

A better approach is to perform an L2 projection of the normal velocity u · n onto the
free surface ΓF . Multiplying the boundary conditions (Equation (3.46)) by a test function
w and integrating over the free surface part of the boundary, we find∫

ΓF

w · umesh =
∫

ΓF

(w · n) (u · n) . (3.49)

When discretized, this forms a linear system which can be solved for the mesh velocity umesh
at the free surface. A new system to solve is not ideal, but this system, being nonzero over
only the free surface, is relatively computationally inexpensive to solve.

This weak solution to the boundary conditions (Equation (3.46)) is able to borrow the
accuracy of the Stokes solve for Equation (3.11), and we have found it to conserve mass
more accurately than algebraic techniques for evaluating the mesh-normal velocity. Similar
results were found by Fullsack (1995).

3.8 Numerical results

3.8.1 Relaxation of sinusoidal topography
We demonstrate the convergence of the nonstandard finite difference model by comparison

with an analytical solution. As in Section 3.5.1 we consider the relaxation of sinusoidal
surface topography in a two-dimensional Cartesian box with an isoviscous fluid. The setup
is shown in Figure 3.1.

For an initial topography given by Equation (3.31), the relaxation time τ is given by
Equation (3.32), and the time evolution of the surface topography is given by

ζ(x, t) = ζ(x, 0)e−t/τ . (3.50)

This solution is only valid for infinitesimal topography. However, for small initial topography
ζ0 it seems to be sufficiently accurate to test convergence orders up to quadratic (Kramer
et al., 2012; Furuichi and May, 2015). We estimate the error E by time-integrating the
L2 difference between the numerical and analytical solutions at the center point of the free
surface, over a time interval T (which we choose to be 4τ):

E = 1
T

∫ T

0
‖ζnumeric(L/2, t)− ζanalytic(L/2, t)‖2 dt. (3.51)

Figure 3.4a shows the convergence of the nonstandard finite difference scheme with re-
spect to timestep size. The scheme is first order in time, with improving accuracy as the
value of τ ∗ approaches the relaxation time of the relevant mode τi. Interestingly, if τ ∗ = τi
the advection scheme becomes exact (Mickens, 2002). At this point the magnitude of the
error plummets and is no longer a strong function of the timestep. The remaining error
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Figure 3.4 : Convergence tests for the benchmark shown in Figure 3.1. (a) Convergence test with
timestep size for the nonstandard finite difference scheme. Comparison with the slope-one line
confirms that it is first-order in time. In the case that the stabilization timescale τ∗ is equal to the
analytic relaxation time the error becomes very small, as the time integration scheme becomes exact
(Mickens, 2002). (b) Convergence test with timestep size for the quasi-implicit scheme. For θ = 1
and θ = 0 the scheme is first-order accurate (though the latter is just an unstabilized forward-Euler
scheme). For θ = 0.5 the scheme appears second order accurate on this benchmark.

is likely due to error in the linear approximation for the analytical solution, the spatial
discretization, or the linear solver tolerance.

Figure 3.4b shows the convergence of the quasi-implicit scheme as a function of timestep
∆t. When θ = 0, it corresponds to the unstabilized forward Euler scheme, and is first order
in time. When θ = 1 it is also first order in time, but allows for a much larger timestep.
When θ = 0.5 the quasi-implicit guess for the body force is good enough that it actually
seems to achieve the second-order convergence of a trapezoidal scheme, though it has not
been shown that this extends to more complicated models.

Figure 3.5 shows in more detail the effects of the choice of τ ∗. In a narrow region close
to the true value of τmin the error becomes very small, but in a broader region nearby the
errors are larger. The excellent accuracy when the stabilization timescale τ ∗ is close to
one of the natural relaxation timescales allows for tuning of the scheme to track specific
long-wavelength modes, such as those due to rotational or tidal deformation.
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eter τ∗ approaches the relaxation time of the benchmark case the error reduces. The sharp cusp at
τ∗ = τmin corresponds to the almost spectral accuracy of the time marching scheme for that case.
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3.8.2 Rayleigh-Taylor test
We also consider the time evolution of the Rayleigh-Taylor benchmark described in Kaus

et al. (2010). In this benchmark a dense, viscous layer with a sinusoidal initial perturbation
drips into a less dense, less viscous mantle. The benchmark setup is shown in Figure 3.6.
In all cases we use adaptive mesh refinement with five global refinement levels and four
adaptive refinement levels, corresponding to ∼1 km cells at the most refined level. We refine
according to compositional gradients, as well as near to the free surface.

Figure 3.7 shows the maximum depth of the interface between the dense and light fluid
through time. The blue line shows the results using forward Euler timestepping with a very
small timestep of 500 yrs, and is used as a reference solution. Nonstandard finite difference
timestepping and quasi-implicit timestepping both converge to the reference solution, though
from different directions. For the nonstandard finite difference simulations we recomputed
the value of the minimum relaxation time τmin every 50 timesteps using power iteration, and
reset the value of τ ∗ to τmin.

The behavior of the two schemes is similar, though at the same CFL number quasi-
implicit timestepping is slightly more accurate. On the other hand, with our implementation
we have found that nonstandard finite difference timestepping can allow for larger timesteps
than quasi-implicit timestepping while remaining stable.

We also used the Rayleigh-Taylor benchmark to investigate the effect of making a poor
choice for τ ∗, shown in Figure 3.8. We include four cases, all using adaptive timestepping
with CFL=0.2. As a reference solution we include the case where we update τ ∗ to be equal
to τmin every 50 timesteps, allowing for time variations in the viscosity and density structure
to change the minimum relaxation time. We also show the case where we do not update τ ∗
over the course of the simulation, and two cases where we use the wrong value by a factor
of two in either direction.

Over the course of the Rayleigh-Taylor benchmark, τmin varies by about 25%, as shown in
Figure 3.8b. The case where we use the initial value of τmin for τ ∗ gives nearly identical results,
whereas the cases where we choose values ∼50% off in either direction give significantly
different (though not wildly so) results.

In many simulations we expect that the geometry, density, and viscosity structure of the
model will not change enough that the τ ∗ would need to be updated frequently (if ever).

3.8.3 Mesh adaptivity
We also investigate the advantages of combining adaptive mesh refinement with free

surface computations. Crameri et al. (2012a) performed a community benchmark of a setup
for which there is no analytic solution. In this benchmark, a buoyant blob rises beneath a
viscous lid with a free surface, deflecting the boundary upwards, reminiscent of the dynamic
topography due to a rising plume (for the full setup, see Crameri et al. (2012a)). Figure 3.9
shows the convergence of the maximum topography at 3 Myr to its value in a high resolution
simulation, both with and without adaptive mesh refinement.
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Figure 3.6 : Setup for the Rayleigh-Taylor test. A denser, more viscous layer of lies on top of the
mantle. The overlying layer has a thickness of 100 km, and a sinusoidal perturbation on its base
with and amplitude of 5 km.
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Figure 3.7 : Rayleigh-Taylor test. (a) Maximum depth of the drip. The blue line is the result using
forward Euler (FE) integration of the free surface with a small 500 yr timestep, and is used as a
reference solution. The symbols are for several different runs with different timestepping param-
eters, using both quasi-implicit (QI) and nonstandard finite difference (NSFD) schemes. As the
timestepping gets smaller, both schemes converge to the reference solution (though from different
directions). (b) Result of the small timestep forward Euler simulation after 5 Myr, including the
adaptive mesh.
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Figure 3.8 : Effect of the choice of τ∗ on the Rayleigh-Taylor test. (a) Maximum depth of the
drip. In all cases adaptive timestepping is used with CFL=0.2. The blue line serves as a reference
solution, and shows the result when the smallest relaxation timescale τmin is recalculated every 50
timesteps, and then the stabilization timescale τ∗ is set to that value. The red hexagons show the
result when we do not update τ∗, instead keeping it at the inital value of τmin. The results are
indistinguishable from those of the first case. The triangles show the results when we make a poor
choice of τ∗, by a factor of two in either direction. In these cases there is a significant difference
from the reference solution. (b) Evolution of the minimum relaxation timescale over the course
of the simulation. It does experience significant changes, but not by orders of magnitude, so it is
unsurprising that using the initial value is sufficient for this case.



3.9. CONCLUSION 56

For the uniform refinement cases each point is generated by running the benchmark
with a different global refinement level. For the adaptive case each point is generated by
allowing the mesh to be refined according to gradients in density and composition, where
the maximum refinement level is limited to the same refinement level of the corresponding
global refinement simulation. In both the uniform and the adaptive cases, the smallest cell
size in the most refined case is ∼1 km. We refine every ten timesteps according to gradients
in the density and compositional fields.

We run simulations using both quasi-implicit and nonstandard finite difference schemes
for the free surface. We use a very small timestep for this test of 500 yr (note that this is
significantly smaller than the smallest relaxation time of ∼ 14 kyr), so most timestepping
schemes should be stable and accurate, including forward Euler. We choose this step for
two reasons: (1) The primary purpose of this test is to investigate the savings due to using
adaptive mesh refinement with a free surface, and (2) Crameri et al. (2012a) found that a
timestep of several hundred years was required to achieve full convergence.

The convergence with and without adaptive mesh refinement have essentially the same
behavior, but the adaptive case requires fewer degrees of freedom by a factor of approximately
an order of magnitude. More complex models will have more detail and so we may be less
able to aggressively coarsen them, but we still expect that adaptive mesh refinement will
result in significant computational savings.

3.9 Conclusion
We have analyzed stability of free surface boundary conditions in geodynamic simulations

and demonstrated the cause of sloshing instabilities using a normal mode analysis. This
perspective on the problem allowed us to construct an explicit finite difference scheme which
is first order accurate in time and is unconditionally stable. The nonstandard finite difference
scheme is simple to implement, and requires no modifications to the system matrix.

The normal mode perspective on the problem also provides insights into the effect of
the quasi-implicit stabilization scheme proposed by Kaus et al. (2010). The relaxation time
of each mode is lengthened by an amount θ∆t, and the maximum allowable timestep is
correspondingly lengthened.

It is not clear that the non-standard finite difference scheme is superior to the quasi-
implicit scheme. For θ = 0.5 the quasi-implicit scheme is more accurate, but has a smaller
stability region. For θ = 1 the two schemes are comparably accurate, with a slight advantage
to the quasi-implicit scheme. However, we have found that the nonstandard finite difference
scheme allows for larger stable timesteps, if the modeler is willing to pay the price of reduced
accuracy for a particular simulation.

Finally, we have described the implementation of free surface boundary conditions in
the open source mantle convection software ASPECT. Both the quasi-implicit scheme and the
nonstandard finite difference scheme are available. The implementation is sufficiently general
to accommodate many different geometries, rheologies, and gravity models. Furthermore, it
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Figure 3.9 : Convergence with degrees of freedom (DoFs) for the Crameri et al. (2012a) Case 2
benchmark, for both uniform and adaptive mesh refinement. The timestep ∆t is 500 yr. We
compare the maximum topography at 3 Myr with its value at high resolution (∼398 m). For
the adaptive cases we perform mesh refinement according to the sum of density and composition
gradients. Quasi-implicit (QI) and nonstandard finite difference (NSFD) timestepping converge
similarly, but the adaptive mesh refinement simulations require significantly fewer unknowns. For
NSFD timestepping we used a τ∗ of 14.825 kyr, as determined by an analytical solution of the
long-wavelength relaxation time of the free surface for this particular model setup (Crameri et al.,
2012a).
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runs in parallel and with adaptive mesh refinement.
The improved understanding of free surface boundary conditions in geodynamic models

will allow for modelers to make more informed choices about timestepping and free sur-
face stabilization techniques for use in simulations related to dynamic topography, active
tectonics, gravity anomalies, and geomorphologic processes.

3.A The relaxation spectrum is positive definite
On physical grounds, we expect the relaxation spectrum described in Section 3.3 to have

only positive eigenvalues τi. An imaginary eigenvalue would have an oscillitory component,
which we do not expect in creeping flows (oscillation being usually due to inertia). A negative
eigenvalue would grow exponentially, which would violate conservation of energy. Here we
demonstrate the positivity of the relaxation time spectrum. We could proceed with either the
continuous or the discretized version of the governing equations, but choose the continuous
form here. We begin with the homogeneous Stokes equation (Equation (3.3)):

∇ · (2ηε(u))−∇p = ρg. (3.52)

We can transform this into the mechanical energy equation by multiplying it by u and
integrating over the domain:∫

Ω(t)
u · ∇ · (2ηε(u))−

∫
Ω(t)

u · ∇p = 0. (3.53)

Integrating by parts and applying boundary conditions yields

−
∫

Ω(t)
2ηε(u) : ε(u) +

∫
Ω(t)

p∇ · u−
∫

ΓF (t)
u ·T · n = 0. (3.54)

Where the integrals correspond to the viscous dissipation, the work done by pressure, and
the work done by boundary stresses, respectively. Since we are using the incompressible
approximation, the second integral is zero. On a true free surface the boundary stresses are
zero, but we make the same approximation used in Equation (3.12) and map the stress onto
the reference surface, finding

−
∫

Ω(t)
2ηε(u) : ε(u) +

∫
ΓF (t)

ρ0gζu · n = 0. (3.55)

We can now eliminate ζ from the equation in the same way that was used in Equation (3.15),
thereby introducing the relaxation time τi:

−
∫

Ω(t)
2ηε(u) : ε(u) + τi

∫
ΓF (t)

ρ0g(u · n)2 = 0. (3.56)

This equation may be solved for τi:

τi =
∫

Ω(t) 2ηε(u) : ε(u)∫
ΓF (t) ρ0g(u · n)2 . (3.57)



3.B. STABILITY CRITERION OF THE NSFD SCHEME 59

The top and bottom of the right hand side are both strictly positive numbers so the τi must
also be positive, demonstrating the positive definiteness of the system. A similar analysis
can be performed for the discrete system. There is the possibility for velocities which do
not move the free surface at all, in which case the bottom integral goes to zero, and the
relaxation time becomes infinite. One example of this is the case of shear flow with a free
upper surface and periodic horizontal boundary conditions. Since we are usually interested
in the smallest relaxation times, these infinite eigenvalues are not usually a problem.

3.B Stability criterion of the NSFD scheme
We begin from Equation (3.38):∣∣∣∣1− τ ∗

τi

(
1− e−∆t/τ∗)∣∣∣∣ ≤ 1. (3.58)

Timestepping involves repeated multiplication by this quantity. In order for the scheme to
be stable, this repeated multiplication must not tend to infinity. Taking the positive value
of the absolute value yields the criterion of

−τ
∗

τi

(
1− e−∆t/τ∗) ≤ 0, (3.59)

which can be rearranged to find
e−∆t/τ∗ ≤ 1, (3.60)

which is simply a statement that the timestep must be postive.
Taking the negative value of the absolute value yields

τ ∗

τi

(
1− e−∆t/τ∗) ≤ 2 (3.61)

which can be rearranged to find

1− 2 τi
τ ∗
≤ e−∆t/τ∗

. (3.62)

For positive τi and τ ∗ the left hand side is strictly less than one. If the left hand side of
Equation (3.62) is less than zero, then the stability criterion is true regardless of step size,
which occurs when

τ ∗ ≤ 2τi. (3.63)
This is Equation (3.39). If the left hand side of Equation (3.62) is between zero and one,
the expression is more complicated. Taking the log of both sides:

∆t ≤ −τ ∗ log
(

1− 2 τi
τ ∗

)
. (3.64)

This is Equation (3.40). It can be convenient to express this in terms of the dimensionless
quantities ∆t/τi and τ ∗/τi:

∆t
τi
≤ −τ

∗

τi
log

(
1− 2 τi

τ ∗

)
. (3.65)
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Chapter 4

Bayesian inversion for paleomagnetic
reconstruction and plate kinematics

4.1 Introduction
Plate tectonics is the motion of near-rigid blocks of lithosphere across the surface of

Earth, separated by narrow regions of deformation in spreading centers, transform faults,
and subduction zones. The rigidity of plates means that the motion of most of Earth’s
surface can be described by a set of Euler poles which specify the position and magnitude
of the rotation axis for a given plate (cf. Cox and Hart, 2009). Individual points on a plate
undergoing rigid rotation are described by small circle paths.

Euler poles are ubiquitous in describing current plate motions (e.g. DeMets et al., 1990;
Argus et al., 2011) due to their simplicity and compactness. Furthermore, there are good
reasons to think that plate motions remain constant, or approximately so, over millions to
tens of millions of years. This consistency of motion is most dramatically seen in the shape
of oceanic fracture zones and in hotspot tracks across the lithosphere. These features form
gently curving arcs over large portions of Earth’s surface which are well described by small
circles, consistent with finite Euler rotations of the plate for an extended period of time. As
such, the combination of an Euler pole plus a time interval for which it is active (often called
a “stage pole”) is a convenient description of plate motions through Earth history.

The stage pole description of plate motions is therefore a convenient way of reconstructing
plate tectonic history, and is widely used in both continental reconstruction (e.g. Boyden
et al., 2011) and in geodynamical modeling (e.g. McNamara and Zhong, 2005; Bull et al.,
2014; Rudolph and Zhong, 2014). Most reconstructions of plate motions over the past 200
million years rely heavily on fitting Euler pole rotations to oceanic fracture zones, hotspot
tracks, seafloor magnetic isochrons, and, to a lesser extent, paleomagnetic data (Müller
et al., 1993; Seton et al., 2012). However, as we look further back in Earth history, many of
the records on which these plate tectonic reconstructions rely largely disappear due to the
subduction of oceanic lithosphere. Before ∼200 Ma there is no record of oceanic crust, and
the paleomagnetic record from continental rocks is the dominant remaining evidence.
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It is more challenging to reconstruct past plate motions from the paleomagnetic record for
a number of reasons, including (1) the data are often sparser, (2) traditional paleomagnetic
analysis constraints paleolatitude and the orientation of the continental block but has no way
of constraining paleolongitude without additional assumptions, and (3) some paleomagnetic
poles have poor age control.

Gordon et al. (1984) noted that apparent polar wander paths (APW paths) have arcing
trajectories similar to fracture zones and hotspot tracks, which is to be expected if similar
tectonic processes are responsible for creating them. They therefore suggested fitting small
circles to paleomagnetic poles tracks, which would furnish Euler poles for the plate in question
for that time period. This model for understanding APW paths, called paleomagnetic Euler
pole (PEP) analysis, has the attractive feature of providing a complete description of the
plate motion, including paleolongitudinal changes and speeds. However, it has the drawback
of being somewhat difficult to estimate, uncertainties in the fit were not easily computed,
and it did not incorporate age uncertainties. A rigorous treatment of the uncertainties
requires significant computational effort. With a few exceptions (e.g. Beck, 1989; Tarling
and Abdeldayem, 1996; Bryan and Gordon, 1986; Beck and Housen, 2003; Smirnov and
Tarduno, 2010), PEP analysis has not seen wide adoption.

Herein we extend paleomagnetic Euler pole analysis by placing it within a Bayesian sta-
tistical framework, and demonstrate how to invert for PEPs using Markov Chain Monte
Carlo (MCMC) methods. This framework has the advantage of naturally incorporating un-
certainties in the paleomagnetic pole positions, as well as widely disparate age uncertainties
that commonly occur in APW paths. The resulting stage poles for which we invert are not a
single answer, but are instead a distribution of possible answers, furnishing uncertainties as
part of the solution process. Iaffaldano et al. (2012) employed a similar Bayesian approach to
inverting for finite plate rotations. They used seafloor data to reconstruct India’s Cenozoic
convergence with Asia, incorporating uncertainty sources into the inversion.

The paper is organized as follows: in Section 4.2 we review different approaches for
interpreting APW paths. In Section 4.3 we describe the formalism of Bayesian inversions
and Markov Chain Monte Carlo methods. In Section 4.4 we describe the statistical model
which we will be inverting. In Section 4.5 we demonstrate the inversion on several synthetic
data sets. In Sections 4.6 and 4.7 we show examples using paleomagnetic data from Australia
and Laurentia, including interpretations of plate speeds.

4.2 Interpretation of APW paths
A sequence of paleomagnetic poles from the same continental block form an APW path,

which can then be used to develop plate tectonic reconstructions and models of plate speeds
through time. Interpretation of these paths becomes difficult in the case of limited, highly
uncertain, or conflicting data, and when the age of paleomagnetic poles are poorly known.
A number of approaches to dealing with uncertainty in APW paths have been developed,
which we briefly review here by.
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Figure 4.1 : Conceptual model for a paleomagnetic Euler pole. A finite rotation of the plate around
an Euler pole (red circle) results in long, arcuate oceanic fracture zones and hotspot tracks which
describe small circles on the globe. The same finite rotation produces a small circle in the APW
path, which is illustrated by blue paleomagnetic poles. By fitting a small circle to the APW path
we may recover the Euler pole that produced the rotation. Adapted from Gordon et al. (1984)
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4.2.1 Latitudinal drift
Due to the rotational symmetry of Earth’s dominantly dipolar magnetic field, paleomag-

netic poles do not directly constrain the paleolongitude of the continental block in question
(Butler, 1992). The simplest analysis of an APW path is thus to compare the paleolatitudes
implied by successive poles. The difference in paleolatitudes gives a minimum angular dis-
tance over which the block has traveled. If the two poles are well-dated, this difference also
furnishes a rate of latitudinal motion.

It is also possible to estimate confidence bounds on the rate of latitudinal drift by boot-
strap resampling (e.g. Tarduno et al., 1990) or by taking a Monte Carlo approach. Swanson-
Hysell et al. (2014b) generated samples from Fisher distributions for a pair of poles from the
Proterozoic Midcontinent Rift of North America to estimate the range of implied latitudinal
drift rates. They also sampled from the age uncertainties, assuming Gaussian distributions
on the radiometric dates, which incorporated the age uncertainties of the poles. With sam-
ples of pole position and ages, they were able to estimate the 95% confidence estimates on
the rate of latitudinal drift.

Whether using point estimates of the latitudinal drift rate or using Monte Carlo estimates,
the latitudinal drift interpretation of APW paths remains limited as it represents a minimum
estimate. It has no control over longitudinal drift rate, nor does it naturally extend to APW
paths with more than two poles, especially if two coeval poles are not in agreement.

4.2.2 Spherical splines
When considering APW paths with many poles, it becomes more difficult to perform

latitudinal comparisons between pairs of poles. It is not always clear which pairs of poles
to compare in cases where there are many overlapping paleomagnetic poles, often of unclear
age progression and variable reliabilities.

One approach to deal with these uncertainties is to fit a spline through the set of paleo-
magnetic poles, constraining the path to lie on the surface of a sphere. This approach was
pioneered by Torsvik et al. (1992) using the spherical spline algorithm developed by Jupp
and Kent (1987). This approach has the advantage of allowing the weighting of the data
by their uncertainties. The uncertainty assigned to a paleomagnetic pole can be the 95%
confidence interval on the pole, but it can also be augmented by various quality screening
factors, such as the quality (“Q”) factor of Van der Voo (1990) (Torsvik et al., 1992). Even
with the weighting of the paleomagnetic poles by uncertainty there can be unrealistic loops
in the APW path generated by the spline fit. To combat this, the spline can also be com-
puted under tension, penalizing curvature and producing a smoother path (Torsvik et al.,
1996).

The spherical spline approach to interpreting APW paths has several attractive features.
It produces a smooth path through the data, incorporates spatial uncertainties in the data,
and may be efficiently computed. However, it does have some drawbacks. It is not easy to
determine the appropriate uncertainty weighting and spline tension parameters for the fit,



4.2. INTERPRETATION OF APW PATHS 64

and what effect those choices have on the result. Furthermore, the resulting fit does not have
an uncertainty with a physically interpretable meaning (Torsvik et al., 1996). It also does
not have a simple way of incorporating age uncertainties of the paleomagnetic poles. Finally,
by their very nature, splines cannot represent the sharp hairpin cusps that characterize the
abrupt shifts in motion that plates sometimes undergo (Irving and Park, 1972; Gordon et al.,
1984).

4.2.3 Running means
An alternative method for developing APW paths is to perform a running Fisher mean

on the poles with a moving window (Van der Voo and Torsvik, 2001; Torsvik et al., 2008).
In such an analysis, paleomagnetic poles in a compilation are averaged in steps of 1-10 Myr
with a 10-30 Myr window size. Like spherical splines, the running mean approach has the
ability to effectively damp the effect of outlier poles that could lead to spurious loops in
the APW path, with the width of the moving window controlling the amount of smoothing.
Furthermore, it enforces an age progression in the averaged poles. Torsvik et al. (2008) also
investigated the effects of combining running means with spherical splines, by first computing
a set of mean poles and then fitting a spline through those means.

The running mean approach shares many of the drawbacks of the spline approach. It is
not obvious how to best choose the window size, and different window sizes are likely appro-
priate for different data sets. It is also unclear how to interpret the resulting uncertainties
in the path that are reported as the Fisher A95 ellipse of the mean of the poles. It, too, does
not easily incorporate age uncertainties in the poles, nor the uncertainty in pole positions.

4.2.4 Paleomagnetic Euler poles
Paleomagnetic Euler poles (PEP, introduced in Section 4.1, also known as the “small

circle” method, were first described by Gordon et al. (1984). The model rests in recognizing
that plate motions are well described by finite rotations around Euler poles which are ap-
proximately steady for millions or tens of millions of years. As a result, the APW path of
the plate can also be described by Euler rotations, which produce small circles on Earth’s
surface.

By fitting a sequence of Euler poles to a small circle path, one specifies the position of the
Euler pole which produces that circle. PEP analysis has the feature that it closely conforms
to our model for how plates move. Since it specifies the Euler pole which produces a given
small circle, this allows for an estimate of the full motion of a given plate, as well as the
total plate speed (instead of just the latitudinal component of the speed).

On the other hand, PEP analysis has many of the same deficiencies that spline fits and
running means have: it is not easy to compute uncertainties, especially in the presence of
unknown ages of poles. Furthermore, one has the additional challenge and related uncertainty
of deciding how many PEPs to include for a given sequence of paleomagnetic poles. In the
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following sections we develop a Bayesian statistical approach to PEP analysis which attempts
to address some these deficiencies.

4.3 Bayesian inversion

4.3.1 A general description of inverse problems
The central question motivating inverse problems is “How probable is a particular model,

given my observations?”. We represent a vector of individual observations by the data vector
d, and a model by the vector of model parameters m, so the above question can be expressed
as the function P (m|d). Traditional frequentist approaches to an inverse problem often
proceed by maximizing the likelihood function, defined by the probability of the data given
a particular model (e.g Aster et al., 2005):

L(m|d) ≡ P (d|m). (4.1)

The likelihood function replaces something that is difficult to compute (namely, P (m|d))
with something that is less difficult to compute. To compute L(m,d) we need to have two
things: a statistical model for uncertainties in the observations d and forward model that
allows us to compute predictions. We denote the forward model by g:

dp = g(m), (4.2)

where the superscript “p” denotes a predicted value. If each of the observed data di are
described by Gaussian random variables with standard deviations σi, the likelihood function
is given by the product of the individual likelihoods of the observations:

L(d|m) =
∏
i

exp
(
−(di − dpi )2

2σ2
i

)
. (4.3)

The likelihood function L is maximized by searching over the model parameter space. If the
uncertainties in the observations are Gaussian, then maximizing the likelihood function is
equivalent to the least squares solution (Aster et al., 2005).

A standard maximum likelihood fit will frequently overfit the observations, resulting in
unrealistic solutions. In the context of APW paths, these overfit solutions may pass through
every paleomagnetic pole, including less reliable ones, resulting in loopy or jerky paths.
In order to address such overfitting, some form of regularization is usually included in the
solution of the inverse problem, such as penalizing the magnitude or curvature of the solution.
Both the running-mean and the spline under tension approaches to APW paths are a form
of regularization on the problem.
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4.3.2 Bayesian approach
The Bayesian approach to inverse problems takes a different strategy from the frequentist

one. Rather than finding point estimates of a model fit, it treats the underlying model as a set
of random variables with individual probability distributions. The probability distribution
of the model P (m|d) given the data is then found by an application of Bayes theorem (cf.
Sivia and Skilling, 2006):

P (m|d) = P (d|m)P (m)
P (d) . (4.4)

It is often unnecessary to calculate the denominator of Equation (4.4), which is just a nor-
malization constant, leaving us with

P (m|d) ∝ P (d|m)P (m) . (4.5)

The quantity P (m|d) is known as the posterior probability, and it represents our desired
knowledge about the distributions of the parameters m. The first factor on the right-hand-
side of Equation (4.5) is identical to the likelihood function described in Section 4.3.1, and
the second factor is known as the prior probability of the model.

The prior probability reflects the state of our knowledge and beliefs of the values of the
model parameters prior to the consideration of our data. It also allows us to incorporate con-
straints that are not otherwise included in the forward model. In contrast with the classical
statistical approach of regularization, the Bayesian inverse problem can (in effect) regular-
ize the problem through the choice of prior distribution, by making choices of probability
distributions that have less probability density in regions with less realistic values (Minson
et al., 2013; Sambridge et al., 2013).

4.3.3 Markov chain Monte Carlo methods
It is usually impossible to calculate the posterior probability distribution in Equation (4.4)

directly (Davidson-Pilon, 2015). It is much more tractable to generate a Markov chain which,
upon convergence, generates samples from the desired posterior (Gelman et al., 2014). This
approach defines a class of methods known as Markov chain Monte Carlo methods.

The literature on MCMC methods is extensive and we do not cover it here, but the inter-
ested reader can refer to Gelman and Rubin (1996), Sambridge et al. (2013), and Davidson-
Pilon (2015). A number of high-quality open source software packages for implementing
MCMC models exist, including WinBUGS (Lunn et al., 2000), PyMC (Patil et al., 2010),
and Stan (Carpenter et al., 2016). We make extensive use of PyMC in this work.

4.3.4 Distributions on a sphere
In order to proceed with a Bayesian description of the problem, every parameter in the

model should be described by some statistical distribution that determines the probability
that the parameter takes a specific value. Parameters like pole ages can be described by
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(a) Uniform (b) Fisher (c) Watson girdle

Figure 4.2 : Probability densities for distributions of directional data, as well as samples drawn
from them. All are plotted using an orthographic projection. (a) Uniform distribution. (b) Fisher
distribution. The center of the distribution is at 30◦N, 30◦E, with concentration parameter of
κ = 20. (c) Watson girdle distribution. The pole of symmetry is at 70◦N, 90◦E, with a concentration
parameter of κ = −5.

familiar 1D probability distributions (such as uniform or normal distributions), whereas Euler
pole locations are described by 2D distributions of directional data on the surface of a sphere.
We review several of these distributions here. For a comprehensive discussion of spherical
probability distributions, see Fisher et al. (1987). Plots of the following distributions, as well
as samples drawn from them, are shown in Figure 4.2.

Uniform distribution

The simplest probability distribution on a sphere is the spherical uniform distribution.
It has a probability density given by

ρU(φ, ψ) = 1
4π , (4.6)

where ρU is the probability density, φ is the longitude, and ψ is the latitude (we will also refer
to the Cartesian unit vector x̂ as a concise representation of φ and ψ). Most non-uniform
distributions on a sphere reduce to the uniform distribution in some limit. We will use
this distribution when we want to specify an uninformative prior distribution for directional
parameters.
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Fisher distribution

The Fisher distribution (also called the von Mises-Fisher distribution) is the analogue of
a 2D normal distribution on a sphere. The probability density ρF at a point x̂ is given by

ρF (φ, ψ;κF , µ̂) = 1
CF

exp
(
κF x̂T µ̂

)
= 1
CF

exp (κF cos θ) ,
(4.7)

where κF is the concentration of the distribution, µ̂ the unit vector for the mean direction of
the distribution, and CF is a normalization coefficient. It can be alternatively parameterized
using θ, which is the angle between x̂ and µ̂. The normalization factor is given by

CF = κF
4π sinh κF

. (4.8)

When κF goes to zero, the Fisher distribution is equivalent to the spherical uniform distri-
bution.

The uncertainty of most paleomagnetic poles are calculated assuming a Fisher distribu-
tion, and we will use this distribution to calculate the likelihood function for pole directions
in the model.

Watson girdle distribution

Whereas the Fisher distribution concentrates probability density near around a pole on
the surface of the sphere, the Watson girdle probability distribution is concentrated in a belt
orthogonal to the pole. It is useful for characterizing planar data, and is given by

ρW (φ, ψ;κW , µ̂) = 1
CW

exp
(
κW (x̂T µ̂)2

)
= 1
CW

exp
(
κW cos2 θ

)
,

(4.9)

where κW is the concentration of the girdle, CW is a normalization coefficient, and the other
parameters are identical to those in the Fisher distribution. The Watson distribution is
girdle-shaped only when κW is a negative number, which is the only case we consider here.
The normalization factor is given by

CW =
[

1F1

(1
2 ,

3
2 , κW

)]−1
, (4.10)

where 1F1() is Kummer’s confluent hypergeometric function, which is available in most soft-
ware libraries of special mathematical functions. As with the Fisher distribution, when κW
goes to zero, the Watson distribution is equivalent to the spherical uniform distribution.
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4.4 A model for PEP inversion

4.4.1 Forward model
A forward model describes how we generate predicted observations, given a set of model

parameters (Equation (4.2)). The forward model for PEP analysis in this study is essentially
unchanged from that of Gordon et al. (1984). We describe plate motions (and hence paleo-
magnetic pole motions) with a series of Euler poles. Each Euler pole has three parameters:
a latitude, a longitude, and a rotation rate.

We also must specify the ages where we switch from one Euler pole to the next (the
cusps, or “hairpins” of Irving and Park (1972)). In the context of parameter inversion these
are often known as “changepoints.”

Finally, we need a starting position on the globe, which, in practice, can be sampled from
the Fisher distribution of the oldest paleomagnetic pole in the dataset. The starting point
contributes two parameters (a latitude and a longitude).

Therefore, a model with ne Euler rotations will have 3ne parameters for the poles, (ne−1)
parameters for the changepoints, and 2 parameters for the starting location. The number
parameters for which we are inverting is then given by

N = 3ne + (ne − 1) + 2
= 4ne + 1.

(4.11)

For each Euler pole ωi the velocity v of a point p on the surface of the globe is given by

v = ωi × p. (4.12)

Finite rotations can be performed by constructing Euler angle rotation matrices (cf. Gold-
stein, 1965). We generate synthetic paleomagnetic pole positions from the forward model by
stringing together finite rotations through the stage poles until the age of the paleomagnetic
pole is reached. These positions can then be compared to the actual paleomagnetic poles in
our dataset.

4.4.2 Choice of prior distributions
Bayesian analysis requires us to specify prior probability distributions for each of the

model parameters in the inverse problem. These distributions reflect our state of belief
about the values of the parameters before we begin, and allow us the option of incorporating
information otherwise not captured by the model. To avoid biasing the results of the model
towards a specific posterior distribution, we usually try to choose prior distributions that are
as uninformative as possible. Depending upon the context, and the type of parameter, that
choice may vary. The central parameters in the paleomagnetic Euler pole problem are the
Euler pole positions, the Euler pole magnitudes, the changepoints, the starting point, and
the paleomagnetic pole ages, which we treat in turn. We use the notation x ∼ y to indicate
that the parameter x is drawn from distribution y.
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Euler pole directions: The first parameter we consider is the position of the Euler
poles, which should be drawn from a spherical probability distribution. The least informative
prior distribution for the i’th Euler pole is the uniform spherical distribution:

ω̂i ∼ ρU . (4.13)

essentially allowing the Euler pole to be anywhere on the globe with equal probability.
An interesting alternative choice is to inform our prior distribution for Euler pole position

based on current plate motions. It has long been observed that, to first order, plate mo-
tions are well explained by slab-pull torques acting along subduction zones, and to a lesser
extent, ridge push and continental keel effects (Forsyth and Uyeda, 1975; Gordon et al.,
1978; Richardson, 1992). This observation is explained by the fact that plate tectonics is the
surface expression of Earth’s convection.

We can then ask the question of whether the Euler pole for a given plate is more likely to
be on top of the plate (corresponding to a spinning motion for that plate) or far away from
that plate (corresponding to motion across the surface of Earth). Given that tectonic plates
are the surface expression of convection, we can hypothesize that the second possibility is
more likely because a spinning plate has no divergence (i.e., spreading centers and subduction
zones, (Forte and Peltier, 1987; Gable et al., 1991)). Without spreading centers or subduction
zones the plate motion does not contribute to convection.

To test this hypothesis, we generated position samples on the surface of Earth and com-
puted the angular distance between that point and the Euler pole for the plate in which that
point resides. We used the NNR-MORVEL56 model for current plate motions Argus et al.
(2011) and restricted our analysis to the fourteen largest plates. We then fit those angular
distance samples to a Watson girdle distribution (Equation (4.9)), inverting for the concen-
tration parameter κW . If an Euler pole position has no preference for being a particular
angular distance from a point on a plate, then κW should be close to zero, corresponding
to a uniform distribution. We find that the distribution is best fit with κW ≈ −0.8, which
corresponds to the Euler pole probability density being roughly twice as large 90◦ away from
a given point than on top of the point (see Figure 4.3).

Euler pole magnitudes: The magnitude of each Euler pole is a strictly positive number,
specifying the rotation rate of that pole (negative rotations can be accommodated by flipping
an Euler pole to the antipode). There are several possibilities for the prior distribution for
the rates. In order to not bias the inversion towards a particular rate, we can choose a
uniform prior distribution with large support:

|ωi| ∼ U(0, 4), (4.14)

where U(·, ·) is a uniform distribution between two values, and is specified in degrees per
Myr. Typical rotation rates for present day plate motions are under 1◦/Myr (Argus et al.,
2011), which corresponds to rates of about 11 cm/yr at a position 90◦ from the pole.

Another option is to choose a weakly informative prior distribution for the Euler pole
magnitudes informed by recent plate motions (similar to the Watson girdle prior distribution
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Figure 4.3 : Informative prior distributions for Euler poles. (a) Prior probabilities for rotation
rates. The histogram is the angular rotation rate from one thousand samples from the surface of
Earth, using the NNR-MORVEL56 model. A fit to this sample set with an exponential distribution
yields a scale parameter of λ ≈ 2.5. We also show the distribution for λ = 1.0, which imposes less
regularization on the rate, and a uniform U(0, 4) distribution, which has no preference for slower
speeds. (b) Prior probability density for the position of the Euler poles, with the north pole as the
site latitude and longitude. We again sampled one thousand points on Earth’s surface, calculating
the angular distance between that point and the Euler pole for its plate. If we model the probability
distribution as being drawn from a Watson distribution, then these angular distances correspond
to colatitudes, where the pole is the sampled point. Fitting the resulting angular distribution
to a Watson girdle distribution finds κW ≈ −0.8. Since the Watson distribution is rotationally
symmetric, longitudes do not contribute to the fit. For κW ≈ −0.8 the probability density is
roughly twice as large at the equator as at the pole.

for the directions). Zahirovic et al. (2015) found, based on Cenozoic and Mesozoic plate
reconstructions, that plate speeds much higher than 15 cm/yr were unlikely. A reasonable
choice of distribution for strictly positive numbers is the exponential distribution, given by

ρE(|ωi|) = λ exp(−λ|ωi|), (4.15)

which has higher probability density at lower values, and falls off exponentially. We sampled
the current plate rates on Earth’s surface according to NNR-MORVEL56 and fit those to
an exponential distribution. The best fitting scale parameter λ for current plate rates is
λ ≈ 2.5. Making this choice of prior distribution for Euler pole rotation rates can be seen
as a form of regularization on plate speeds.

Changepoints: Changepoints occur sequentially between the oldest (at age amax) and
youngest (at age amin) paleomagnetic poles. We choose a uniform distribution as a prior for
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these changepoints:
ci ∼ U(amin, amax), (4.16)

where ci is the i’th changepoint.
Starting position: Finally, the starting position x̂start for the set of Euler pole rota-

tions needs a prior distribution. We could choose another uniform distribution, but a more
reasonable choice is to start from near the oldest paleomagnetic pole in the dataset. We
therefore choose the Fisher distribution of the oldest paleomagnetic pole as a reasonable
prior distribution for a start point:

x̂start ∼ ρF (κF0, µ̂0), (4.17)

where κF0 and µ̂0 are the concentration parameter and mean direction of the oldest paleo-
magnetic pole in the dataset.

Pole ages: One of the major advantages of Bayesian analysis is the ability to naturally
incorporate uncertainties in as many parameters as we need. Previous approaches to mod-
eling APW paths have the drawback that they do not easily account for uncertainties in the
age of paleomagnetic poles. In our approach, we can include age uncertainty by including
the age of the poles and associated uncertainty as parameters in our model.

There are many different ways to constrain the ages of the geologic units from which we
obtain paleomagnetic poles, including radiometric dating, biostratigraphy, magnetostratig-
raphy, cross-cutting relationships, and stratigraphic relations. Here we concentrate on poles
that are either interpreted to be the age of a single radiometric date or are interpreted to
be bracketed stratigraphically between two dates (derived radiometrically or by using other
age control such as biostratigraphy). If a geologic unit has been radiometrically dated, we
can model the age of the j’th paleomagnetic pole aj as a normal distribution with mean µj
and standard deviation σj:

aj ∼ N(µj, σj), (4.18)
where N(., .) denotes a normal distribution.

Frequently, however, the geologic unit from which we obtain a paleomagnetic pole is
not well dated, but its age can be constrained to lie between those of well-dated units
stratigraphically above and below it. In this case, we argue that a uniform distribution
between those ages is a reasonable choice of prior distribution:

aj ∼ U(ayoung, aold), (4.19)

where ayoung and aold are the ages of the lower and upper age constraints, respectively.
To summarize our choices for prior distributions:

• Euler pole positions: spherical uniform distribution, or a Watson girdle distribution
with κW ≈ −0.8.

• Euler pole magnitudes: Uniform distribution between 0◦ and 4◦/Myr, or an exponential
distribution with λ ≈ 2.5.
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• Changepoints: uniform distribution between amin and amax.

• Paleomagnetic pole ages: normal or uniform distribution, depending on the type of
age control for the geologic unit.

4.4.3 Likelihood
In addition to the choice of prior distributions we need a statistical description of the

observations. This description will allow us to calculate the likelihood function, which, when
combined with the prior distributions, allows us to evaluate Bayes’ theorem (Equation (4.5)).

In the case of APW paths, our observations are paleomagnetic poles. The most com-
mon statistical distribution for describing paleomagnetic poles is the Fisher distribution
(though others are possible, such as the Kent or Bingham distributions, c.f. Tauxe et al.
(2010)). Given the set of model parameters m and the forward model g(m), described in
Section 4.4.1, we can calculate the predicted paleomagnetic pole unit vectors x̂pi . For a set
of n paleomagnetic poles, the likelihood is then given by the product of the probabilities of
each observation:

P (d|m) =
n∏
i=1

1
CF,i

exp
(
κF,ix̂pTi µ̂i

)
. (4.20)

4.5 Example inversions
Before proceeding with inversions for paleomagnetic Euler poles using real paleomagnetic

data, it is useful to consider a few examples of inversions for synthetic datasets. We have
implemented the forward model described in Section 4.4.1 in Python, and used the package
PyMC (Patil et al., 2010) to perform the Monte Carlo inversion. We use a Metropolis-
Hastings sampler, starting from a fit to the maximum a posteriori (MAP) probability. In
most cases shown here we generate 106 samples, discarding the first 20% to avoid potential
bias in the posterior due to a poor starting point. Our code for the inversions has an open-
source GPL license and may be found at https://github.com/ian-r-rose/mcplates.

In all of the inversions we show here, we choose κW = 0 for the Watson concentration
parameter in the Euler pole direction prior distribution (that is, equivalent to a uniform
distribution on a sphere), and λ = 2.5 for the scale parameter in the Euler pole magnitude
prior distribution.

4.5.1 One Euler rotation
We begin by trying to recover the Euler pole for a single rotation. We generate an

idealized synthetic APW track of four poles by starting from a pole at 0◦ N, 30◦ E, and
rotating around an Euler pole at 0◦ N, 0◦ E for 180 Myr at a rate of 1◦/Myr. We produce
paleomagnetic poles at 190 Ma, 130 Ma, 70 Ma, and 10 Ma, and prescribe A95 of 10◦ to each
pole (where A95 indicates the 95% angular confidence interval for the pole position).

https://github.com/ian-r-rose/mcplates
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Figure 4.4 : Inversion for a single paleomagnetic Euler pole. (a) Four paleomagnetic poles are
generated during a net 180◦ rotation about an Euler pole at 0◦N, 0◦E over 180 Myr, for a rotation
rate of 1◦/Myr. The red distribution is the probability density function recovered by MCMC
inversion, and the red lines are a sampling of 200 synthetic APW paths generated by the inversion.
(b) Posterior probability density for the rotation rate of the Euler pole recovered by the inversion.
The solid line shows the median of the distribution (1◦/Myr), and the dashed lines show the 95%
credible interval (0.8◦ − 1.2◦/Myr).

The results of the inversion are shown in Figure 4.4. The Bayesian approach successfully
recovers a posterior probability distribution for the position of the Euler pole that includes
the start pole, as well as a rate that is centered near the true value of 1◦/Myr (Figure 4.4).
The posterior distribution for the rate has a highest posterior density (HPD) credible interval
at 95% (which we abbreviate from here as a 95% credible interval) between 0.8◦/Myr and
1.2◦/Myr, reflecting the resolving power of the inversion for data with the given uncertainties.

4.5.2 Two Euler rotations
We next consider an inversion for an APW path with two stage poles. Unlike the example

in Section 4.5.1, this inversion also requires a changepoint. We generate five paleomagnetic
poles from a starting point at 0◦ N, 60◦ W. The first rotation is around an Euler pole at 41◦
N, 60◦ W, and rotates at 1◦/Myr for 130 Myr. The rotation rotation is around an Euler pole
at 41◦ N, 60◦ E, rotates at the same rate for the same amount of time. The “observations”
produced by the two stage model are shown in Figure 4.5. The inversion successfully recovers
the Euler pole positions and rates, and the changepoint is centered near 130 Ma.
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Figure 4.5 : Inversion for two successive paleomagnetic Euler poles. (a) Five paleomagnetic poles
are generated, beginning with a pole at 0◦N, 60◦W. The first Euler pole is located at 41◦N, 60◦W,
and rotates at 1◦/Myr for 130 Myr. The second Euler pole is located at 41◦N, 60◦E, and rotates
at the same speed and for the same duration. The red and green distributions show the location
of the first and second Euler poles (respectively) recovered by the MCMC inversion. The red and
green lines are a sampling of 200 synthetic APW paths generated by the inversion. (b) Posterior
probability density for the rotation rates of the Euler poles recovered by the inversion. The solid
lines show the median values of the distributions (∼ 0.97◦/Myr, and the dashed lines show the 95%
credible intervals (∼ 0.61◦ − 1.3◦/Myr). The two distributions are nearly identical, and centered
on the true value of the rate.
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4.5.3 Incorporating age uncertainty
A major benefit of the Bayesian approach to inverse problems is its great generality. As

long as some effect can be described statistically and incorporated into our forward model,
we can include it in the inverse problem.

In this case, we include uncertainties in the ages of the paleomagnetic poles. We use the
same test case as in Section 4.5.1, but assign uncertain prior distributions to the ages of the
poles. For the first and last poles we assume they are radiometrically dated with standard
deviations of 2 Myr. However, we assume that the middle two poles have no age control,
except that their respective rock units lie stratigraphically between the first and last poles.
We thus assign Gaussian prior distributions to the first and last poles and uniform prior
distributions to the middle two.

The primary effect of adding uncertainties to the ages of the poles is that they can help
to constrain the location of the APW path without providing an unwanted constraint on the
timing of the path. Figure 4.6 shows the prior and posterior distributions for the ages of the
poles. We can see from the posterior distribution that the inversion successfully places the
ages of the middle two poles at ∼ 70 Ma and ∼ 130 Ma, though with relatively wide 95%
credible intervals. The posterior distributions for the Euler pole position and magnitude
which we recover from this inversion are visually identical to those in Figure 4.4.

4.6 Application to Cenozoic Australian APW path
A first application of our model for PEP inversion is with the case of Cenozoic Australia.

Australia’s Cenozoic plate motions are relatively well constrained by oceanic fracture zones
and hotspot volcanism (Müller et al., 1993; Seton et al., 2012). This gives us the opportunity
to compare the results of our model to a one derived from an independent dataset.

The most reliable Cenozoic Australian paleomagnetic data comes from Idnurm (1985a)
and Idnurm (1994). Additional paleomagnetic poles were developed prior to Idnurm’s work,
but they show considerably more scatter, and there are concerns that they do not adequately
average secular variations (Idnurm, 1985a; Klootwijk, 2009). Idnurm (1985b) found that the
latitude-age progression of the paleomagnetic data was significantly faster than that given by
hotspot tracks. He proposed that the best explanation for this discrepancy was a long-lived
departure of Earth’s magnetic field from a geocentric axial dipole (GAD).

Here we reanalyze the available paleomagnetic data with our statistical model, which
allows us to incorporate more recent models for Australia’s plate motions and perform an
accounting of the uncertainties within our Bayesian framework. The pole list we use is given
in Table 4.1. We fit the paleomagnetic pole list to one and two PEPs, and compare them to
the global plate motion model from Seton et al. (2012).

Figure 4.7 shows the results for a single Euler pole plotted on the globe, as well as
modeled paleomagnetic poles drawn from the posterior distribution. Figure 4.8b shows the
single Euler pole result plotted as latitude vs. age. Both the paleomagnetic data and the
Seton et al. (2012) model show a speed-up in Australia’s motion as it approaches the present
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Figure 4.6 : Probability distributions for the ages of the paleomagnetic poles in the one-Euler pole
inversion test. Top: prior distributions. We presume the first and last poles to be radiometrically
dated with one-sigma uncertainties of 2 Myr, and are assigned Gaussian prior distributions. The
middle two poles are undated, and are only stratigraphically constrained to be between the first
and last poles. Bottom: posterior distributions after 105 MCMC samples. The distributions of
the first and last samples are largely unchanged, but the distributions for the middle two poles are
centered on their true values of 70 Ma and 130 Ma. Importantly, the middle poles help to constrain
the location of the Euler pole, but the wide prior distributions on their ages do little to constrain
the rotation rates.
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Pole ψp φp A95 Reference Lower
age
(Ma)

Upper
age
(Ma)

Werriko Limestone,
Newer Volcanics

83.2 283.6 6.2 Idnurm
(1985a)

2 4

Port Campbell Lime-
stone, Glenample For-
mation

77.2 303.5 4.2 Idnurm
(1985a)

10 14

Point Addis Lime-
stone

68.4 298.7 4.8 Idnurm
(1985a)

23 28

Browns Creek Forma-
tion

65.5 292.5 2.5 Idnurm
(1994)

34 39

North Rankin 1 Drill-
core

61.7 298.4 5.1 Idnurm
(1985a)

58 62

Table 4.1 : Paleomagnetic poles used for the Australia inversion, as well as references. ψp and φp
give the latitude and longitude of the mean pole position, and A95 gives the 95% angular confidence
interval for that position. The paleomagnetic poles come primarily from sedimentary successions
with biostratigraphic age control (with the exception of the Newer Volcanics, which erupted from
∼ 2− 4 Ma). Upper and lower age bounds come from estimates from Idnurm (1985a) and version
4.6 of the Global paleomagnetic database (GPMDB).
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(a)
North Rankin 1 Drillcore
Browns Creek Formation
Point Addis Limestone
Port Campbell Limestone,
Glenample Formation
Werriko Limestone,
Newer Volcanics

(b)

Figure 4.7 : Australian Cenozoic APW path fit to one Euler rotation. (a) Euler pole position and
sample tracks. The blue distribution shows the posterior distribution of Euler pole positions, and
the blue paths show a sampling of paths drawn from the posterior. The red line shows the polar
wander path derived from the global plate motion model of Seton et al. (2012), and the red star
shows the average Euler pole from 0-60 Ma defined by the Seton et al. (2012) path. We calculate
plate speeds referenced to Uluru, shown by the black star. (b) Paleomagnetic pole positions for
draws from the posterior distribution of the inversion superimposed on observed pole positions and
their uncertainty.

day, though the paleomagnetic data has systematically higher recent latitudes, implying
faster plate speeds. While the single Euler pole fit does a reasonable job of fitting the
azimuth of the plate motion model (Figure 4.7), it cannot fit a change in speed, and does
not pass through all the paleomagnetic poles in Figure 4.8b.

The two-Euler pole inversion, shown in Figures 4.9-4.10 does a better job of fitting the
paleomagnetic poles, preferring a change in speed at ∼ 23 Ma. It shares some features with
the Seton et al. (2012) model, including the overall azimuth and an increase in plate speed
midway through the track. However, the ∼ 23 − 0 Ma speeds are significantly faster than
those from the global plate motion model, consistent with the conclusions of Idnurm (1985b).
We conclude that the discrepancy between the Australian paleomagnetic data and Cenozoic
plate motion models remains.
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Figure 4.8 : Results for Australian Cenozoic APW path with one Euler rotation. (a) Posterior
distribution for plate speed. The solid line shows the median plate speed (6.2 cm/yr) and the dashed
lines show the 95% credible interval (5.4-8.1 cm/yr). (b) Latitude vs. age. The paleomagnetic poles
are shown as data points, with age and latitude uncertainty. The blue lines show a sampling of
the posterior path distribution, and the red line shows the Seton et al. (2012) plate motion model.
Note that the paleomagnetic poles are systematically above the Seton et al. (2012) model, and that
the single Euler rotation path is not able to pass through all the data points. (c) Prior distributions
for the ages of paleomagnetic poles. (d) Posterior distributions for the ages of paleomagnetic poles.
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(a)
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Browns Creek Formation
Point Addis Limestone
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Glenample Formation
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Newer Volcanics

(b)

Figure 4.9 : Australian Cenozoic APW path fit to two Euler rotations. (a) Euler pole locations
and sample tracks. The blue distribution shows the posterior of positions for the first Euler pole,
and the red distribution shows the posterior for the second Euler pole. The distribution of the first
Euler pole is quite broad, reflecting the short length of the portion of the path that it is trying to
fit (shorter paths provide less of a constraint on the position). The blue paths show a sampling of
paths drawn from the posterior. As in Figure 4.7, the red line shows the polar wander path derived
from the global plate motion model of Seton et al. (2012), and the red star shows the average Euler
pole from 0-60 Ma defined by the Seton et al. (2012) path. (b) Paleomagnetic pole positions for
draws from the posterior distribution of the inversion superimposed on observed pole positions and
their uncertainty.
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Figure 4.10 : Results for Australian Cenozoic APW path with two Euler rotations. (a) Posterior
distributions for plate speeds. The blue distribution shows the plate speeds for the first rotation,
which occurs from approximately 60-23 Ma. The red distribution shows the plate speeds for the
second rotation, which occurs from approximately 23-0 Ma. The changepoint is approximate, since
it is also a random variable with its own posterior distribution. This inversion prefers a slow first
rotation (2.2 cm/yr with a 95% credible interval of 0-7.3 cm/yr) and a fast second rotation (11.8
cm/yr with a 95% credible interval of 7.1-19 cm/yr). (b) Latitude vs. age. The paleomagnetic poles
are shown as data points, with age and latitude uncertainty. The blue lines show a sampling of
the posterior path distribution, and the red line shows the Seton et al. (2012) plate motion model.
Compared to the single Euler pole fits (Figure 4.8b), the two Euler pole fit does a much better job of
passing through the paleomagnetic poles. However, while the modeled APW paths are qualitatively
similar to the Seton et al. (2012) path in shape, the 0-23 Ma segment rotates significantly faster
(c) Prior distributions for the ages of paleomagnetic poles. (d) Posterior distributions for the ages
of paleomagnetic poles.
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4.7 Application to the Keweenawan track

4.7.1 Geologic context
The Keweenawan province is a Mesoproterozoic succession of volcanic and sedimentary

rocks which outcrops in the region around Lake Superior, including on the Keweenaw Penin-
sula. The province represents the products of a failed rift zone in the middle of Laurentia
which was active from about 1110 to 1080 Ma (Swanson-Hysell et al., 2014a; Fairchild et al.,
2016). Geochronology and paleomagnetism from the Keweenawan province has been central
to reconstructions of paleogeography and dynamics of the Mesoproterozoic Earth (e.g. Li
et al., 2008; Evans, 2009).

Paleomagnetic studies of the Keweenawan province have long shown asymmetry between
normal and reverse polarities of the magnetization, which has been interpreted to be a re-
sult of significant non-dipole behavior of Earth’s magnetic field during the Mesoproterozoic
(Pesonen and Nevanlinna, 1981; Nevanlinna and Pesonen, 1983; Pesonen and Halls, 1983).
More recent high-resolution paleomagnetism has shown that the apparent reversal asymme-
try is an artifact of temporal gaps in sampling (Swanson-Hysell et al., 2009; Kulakov et al.,
2013). Instead, the paleomagnetic poles are symmetric with respect to polarity, but the
paleomagnetic directions rapidly shallow over the course of the rifting period, corresponding
to equatorward motion of Laurentia.

A consequence of this reinterpretation of the paleomagnetic data is that Laurentia’s
apparent polar wander rate, and thus its implied plate motion, is quite fast. A Monte Carlo
approach (described in Section 4.2.1) by Swanson-Hysell et al. (2014b) found an implied
latitudinal drift rate of ∼24 cm/yr, with a 95% confidence interval of 15.2-44.4 cm/yr.
These rates are significantly faster than the fastest Cenozoic plate speeds (Zahirovic et al.,
2015). Possible explanations for such fast rates include faster plate speeds in the Proterozoic
(possibly due to decreased mantle viscosity in a hotter, younger Earth) or true polar wander
(Swanson-Hysell et al., 2009).

Finally, there is some evidence from combined paleomagnetic/geochonologic studies that
the APW rate during the Keweenawan rifting slowed down. Davis and Green (1997) inferred
a change in minimum plate speed from ∼22 cm/yr to ∼8 cm/yr at around 1095 Ma. Similar
conclusions were reached by Swanson-Hysell et al. (2009). However, more recent geochronol-
ogy and paleomagnetism from the late stage volcanics of the Midcontinent Rift. Fairchild
et al. (2016) have suggested that such a slowdown is not required, and that Laurentia’s APW
path had high rates throughout rifting.

4.7.2 Inversion for paleomagnetic Euler poles
We apply our Bayesian PEP analysis to the ∼1110-1080 Keweenawan paleomagnetic

track. We would like to determine allowable plate speeds (not just the latitudinal compo-
nents), while incorporating the highly variable uncertainties in the ages of the paleomagnetic
poles. Furthermore, we want to test whether an abrupt slowdown in the APW path is re-
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quired by the data, and if so, when it might have happened. The paleomagnetic poles we
use, along with uncertainties and age constraints are given in Table 4.2.
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Pole ψp φp A95 Pole reference Age (Ma) Lower
age (Ma)

Upper
age (Ma)

Age reference

Osler reverse (lower) 40.9 218.6 4.8 Swanson-Hysell et al. (2014b) 1105.15 1110 Swanson-Hysell et al. (2016)
Osler reverse (upper) 42.5 201.6 3.7 Swanson-Hysell et al. (2014b);

Halls (1974)
1105.15± 0.33 Swanson-Hysell et al. (2016)

Mamainse lower re-
versed 1

49.5 227.0 5.3 Swanson-Hysell et al. (2009,
2014a)

1106 1112 Swanson-Hysell et al. (2014a)

Mamainse lower re-
versed 2

37.5 205.2 4.5 Swanson-Hysell et al. (2009,
2014a)

1102 1108 Swanson-Hysell et al. (2014a)

Mamainse lower nor-
mal and upper reversed

36.1 189.7 4.9 Swanson-Hysell et al. (2009,
2014a)

1100.36± 0.25 Swanson-Hysell et al. (2014a)

Mamainse upper nor-
mal

31.2 183.2 2.5 Swanson-Hysell et al. (2009,
2014a)

1092 1098 Swanson-Hysell et al. (2014a)

Grand Portage Basalts 46.6 201.5 6.8 Books (1968); Tauxe and Ko-
dama (2009)

1105.28 1108 Swanson-Hysell et al. (2016)

North Shore Volcanic
Group

35.8 182.1 3.1 Tauxe and Kodama (2009) 1094.2 1095.8 Schoene et al. (2006);
Swanson-Hysell et al. (2016)

Portage Lake Volcanics 25.6 185.9 2.9 Books (1972); Hnat et al.
(2006)

1091.67 1093.36 Swanson-Hysell et al. (2016)

Schroeder Lutsen
Basalts

27.1 187.8 3.0 Tauxe and Kodama (2009);
Fairchild et al. (2016)

1085 1091.5 Fairchild et al. (2016)

Lake Shore Traps 23.1 186.4 4.0 Diehl and Haig (1994); Ku-
lakov et al. (2013)

1084 1091 Fairchild et al. (2016)

Michipicoten Island
Formation

17.0 174.7 4.4 Palmer and Davis (1987);
Fairchild et al. (2016)

1083.9± 0.4 Fairchild et al. (2016)

Freda 2.2 179.0 4.2 Henry et al. (1977) 1070 1085.5 Fairchild et al. (2016)

Table 4.2 : Paleomagnetic poles used for the Keweenawan inversion, as well as references for their positions and ages. ψp and φp
give the latitude and longitude of the mean pole position, and A95 gives the 95% angular confidence interval for that position.
For poles with an associated radiometric date we give the age with 2σ error bars. For poles with stratigraphic age control we
give upper and lower bounds on the age.
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We invert the Keweenawan APW track for one, two, and three paleomagnetic Euler
poles. Adding a third PEP did not improve the fit, and it left one Euler pole completely
unconstrained. We interpret this as meaning that three PEPs is unnecessary given the data.
Therefore we focus on the results with one and two PEPs.

The fit with a single PEP is shown in Figure 4.11. The posterior distribution of the Euler
pole position is shown in in blue, and a sampling of the small-circle paths generated from the
posterior distribution are plotted over the paleomagnetic poles. Figure 4.12(c) and 4.12(d)
show the prior and posterior distributions for the ages of the poles, and Figure 4.12(a) shows
the posterior distribution of the plate speed for Laurentia, calculated with respect to Duluth,
MN (46.8◦N, 92.1◦W). The median plate speed for the one-Euler pole inversion is 26.5 cm/yr,
with a 95% credible interval of 23.1-30.4 cm/yr.

The fit with two PEPs is shown in Figure 4.13. The posterior distribution of the position
for the first Euler pole is shown in blue, and the posterior distribution of the position for the
second Euler pole is shown in red. Figure 4.14(c) and 4.14(d) show the prior and posterior
distributions for the ages of the poles, and Figure 4.14 shows the posterior distribution of
the plate speeds for the two rotations. The inversion places the changepoint between the
two Euler rotations at roughly 1098 Ma. Before the changepoint the inverted plate motion
is much faster, with median at 30.0 cm/yr and a 95% credible interval of 22.9-39.1 cm/yr.
After the changepoint the plate motion has a median of 13.9 cm/yr with a 95% credible
interval of 9.9-22.5 cm/yr.

4.7.3 Plate speeds for Mesoproterozoic Laurentia
Both the one Euler pole and the two Euler pole fits are able to do a good job of fitting

the APW path, with a few caveats. The one Euler pole inversion does least well fitting the
Mamainse lower normal and upper reversed pole, and the North Shore Volcanic Group pole,
with the recovered paths skirting the edges of those poles. Furthermore, neither inversion
does has a great fit with the Michipicoten Island Formation pole. The two Euler pole case
finds a well-constrained changepoint (see Figure 4.14b) at ∼1098 Ma. This slowdown in
plate speed is consistent with the conclusions of Davis and Green (1997) and Swanson-
Hysell et al. (2009), though the speeds in our model reflect overall plate speeds (rather than
just latitudinal speeds) and naturally incorporate age uncertainties.

In both cases implied plate speeds from the early rift magmatism into the main stage are
well over 20 cm/yr. These speeds are much higher than any plate speeds for the Cenozoic
(Zahirovic et al., 2015), which could be explained by faster average plate motions in the
Proterozoic. Alternatively, it could be due to a true polar wander (TPW) event (Evans,
2003; Swanson-Hysell et al., 2009), which can move the solid earth at faster rates than
those taken be be the maximum for differential plate motions (Cambiotti et al., 2011). In
Chapter 2 we performed a scaling analysis for rates of true polar wander and found that in
a younger, more vigorously convecting planet, TPW becomes more likely. If we regard such
high plate velocities as unlikely, then TPW becomes a good alternative explanation.

TPW is a difficult signal to disentangle from plate motions, since any given APW path
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(a) (b)

Figure 4.11 : Inversion of the Keweenawan track for a single Euler rotation. See Figure 4.12b for
pole labels. (a) Euler pole location and sample tracks. The posterior probability distribution is
shown in blue, and a representative sample of the tracks generated by the inversion are drawn
over the paleomagnetic poles. Also shown is the outline of Laurentia, with the location of Duluth
drawn as a star. (b) Paleomagnetic pole positions for draws from the posterior distribution of the
inversion superimposed on observed pole positions and their uncertainty.
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Figure 4.12 : Keweenawan results for a single Euler pole inversion. (a) Laurentian plate speed
distribution. The solid line shows the median plate speed (26.5 cm/yr) and the dashed lines
show the 95% credible interval (23.1-30.4 cm/yr). (b) Legend for the poles used in the inversion.
(c) Prior probability distributions for the ages of the Keweenawan paleomagnetic poles. Poles
with radiometric ages are given Gaussian prior distributions. Poles with stratigraphic age control
are given uniform prior distributions between their bracketing ages. (d) Posterior probability
distributions for the ages.



4.7. APPLICATION TO THE KEWEENAWAN TRACK 89

(a) (b)

Figure 4.13 : Inversion of the Keweenawan track for two Euler rotations. See Figure 4.12b for pole
labels. (a) Euler pole locations and sample tracks. The posterior probability distribution of the
first rotation is shown in blue, and the distribution for the second rotation is shown in red. A
representative sample of the tracks generated by the inversion are drawn over the paleomagnetic
poles. Also shown is the outline of Laurentia, with the location of Duluth drawn as a star. (b)
Paleomagnetic pole positions for draws from the posterior distribution of the inversion superimposed
on observed pole positions and their uncertainty.
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Figure 4.14 : Keweenawan results for a two Euler pole inversion. (a) Laurentian plate speed
distributions for a two-Euler pole inversion. The blue distribution shows the plate speeds for the
first rotation, which occurs from approximately 1109-1098 Ma. The red distribution shows the plate
speeds for the second rotation, which occurs from approximately 1098-1080 Ma. The changepoint is
approximate, since it is also a random variable with its own posterior distribution. This inversion
prefers a fast first rotation and a slower second rotation, though there is some overlap of the
distributions. (b) Posterior probability distribution of the changepoint between the first and second
rotations. Is median is 1099 Ma with a 95% credible interval of 1096-1102 Ma. (c) Prior probability
distributions for the ages of the Keweenawan paleomagnetic poles. Poles with radiometric ages are
given Gaussian prior distributions. Poles with stratigraphic age control are given uniform prior
distributions between their bracketing ages. (d) Posterior probability distributions for the ages.
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can be the result of TPW, plate tectonics, or some combination of the two. An Euler pole
that describes true polar wander must be 90◦ from the spin axis, and if we assume that GAD
holds, then the PEP for a true polar wander event must be 90◦ from the paleomagnetic poles.
The PEP for which we invert in the single Euler pole case is well short of 90◦ from the poles,
so it is unlikely to be due to TPW only. It can, however, be caused by a combination of
plate motion and TPW.

The PEPs in the two Euler pole inversion do allow for Euler poles that are 90◦ from
the paleomagnetic poles, and thus could be interpreted as primarily due to TPW. The first
rotation is 2◦ − 4◦/Myr, and the second is 1◦ − 2◦/Myr. These TPW rates are well within
the maximum rate estimate of 6◦/Myr from Section 2.5, and only moderately higher than
the Pleistocene estimates from Cambiotti et al. (2011).

4.8 Conclusions
We have extended the paleomagnetic Euler pole analysis of Gordon et al. (1984) by

placing it within a Bayesian framework. This framework is sufficiently flexible so as to include
any number of PEP rotations, and allows for appropriate uncertainties in the paleomagnetic
pole positions and ages. The resulting posterior distributions provide rigorous uncertainties
for the model parameters, and allow for estimates of the full plate motion (not just latitudinal
changes). Regularization of the inversions is not accomplished by smoothing parameters,
but is instead accomplished by choice of prior probability distributions for the Euler pole
parameters, which have clear physical interpretations.

We have implemented the Bayesian inverse problem using Markov-chain Monte Carlo
methods. Our code for this implementation is freely available online under an open source
license.

We applied our method to two data sets. First, we considered the case of Cenozoic
Australia, for which we have detailed plate motion models based on hotspot tracks and
fracture zones. Our analysis successfully locates a region of allowable PEP positions which
includes the average Euler pole from 0-60 Ma of Seton et al. (2012). However, the discrepancy
in the rate of polar motion described by Idnurm (1985b) remains.

Second, we considered the Keweenawan APW track. Our inversions allow for, but do
not require, a slowdown in the polar wander path at ∼ 1098 Ma. In both cases, the implied
Laurentian plate speed during rifting reaches values significantly greater than 20 cm/yr.
Such a fast plate speed can be explained by faster Proterozoic plate speeds, or by a TPW
event, or a combination of the two.

Future models for the inversion of past plate motions could include TPW as an explicit
model parameter. Since TPW and plate motions are both described by finite rotations
around Euler poles, it is very difficult to distinguish them, and there should be significant
tradeoffs between the APW path being explained mostly by plate motions and mostly by
TPW. There is hope for distinguishing them, however, by regularization via the prior distri-
butions, and by the inclusion of more continental blocks in the inversion.
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Chapter 5

Conclusion and outlook

The work in this dissertation has approached the topic of true polar wander from several
directions, including scaling, numerics, and data analysis.

In Chapter 2 we analyzed TPW from the perspective of fluid dynamics. The rotating
planet is most stable when the spin axis coincides with the axis of the largest moment of
inertia. TPW is primarily a balance between the generation of anomalies in the moment
of inertia tensor via convection and their decay via movement of the spin axis. Our scaling
showed that the primary nondimensional numbers controlling TPW are the Rayleigh number
Ra, and the Froude number m, defined by the ratio of centrifugal to gravitational forces.

The Froude number sets the size of the rotational bulge, which acts as the brakes on TPW.
The dependence on the Rayleigh number is more complicated: at high Ra the flow becomes
more chaotic, and the total power in the degree-two part of the density field (which is the
part that controls TPW) goes down. However, at high Ra the characteristic response time
for TPW also goes down, and these two effects largely cancel. Additionally, at higher Ra,
the perturbations to the moment of inertia can produce larger angular differences between
the axis of the maximum moment of inertia and the spin axis, which results in faster rates
of TPW. The net effect of higher Ra, and the correspondingly more vigorous convection, is
that TPW events become more likely. Gold (1955), and later Goldreich and Toomre (1969),
used a metaphor of beetles crawling around on the surface of the globe, thereby shifting
the moment of inertia and causing TPW. Within this metaphor, our analysis addresses the
number, speed, and size of the beetles. As the Rayleigh number increases, we predict more
beetles, which move more quickly, but are smaller.

In Chapter 3 we analyzed numerical methods for simulating viscous flows with a free
surface boundary condition. Free surface boundary conditions are needed for simulating
many tectonic and geomorphologic settings, and allow for the computation of gravity and
moment of inertia perturbations in models with arbitrary viscosity structures. We explained
the so-called “drunken sailor” numerical instability that has afflicted numerical models with
free surfaces in terms of the spectrum of relaxation times for the system. This relaxation time
spectrum can be found by solving a generalized eigenvalue problem. Using this framework,
we showed that the commonly used quasi-implicit stabilization scheme works by lengthening
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the relaxation times, allowing for longer timesteps.
Our spectral analysis also allowed for the construction of a new timestepping scheme that

is rooted in nonstandard finite differences. It is first order accurate, and allows for much
larger timestep sizes than the forward Euler scheme (if the numerical analyst is willing to
forgo accuracy in the shortest timescales of the system).

In Chapter 4 we proposed a new method for analyzing paleomagnetic apparent polar
wander paths. Commonly used methods such as spline fits and running means provide
smooth, age progressive APW paths from paleomagnetic poles, but it is difficult to know
what smoothing parameters are appropriate, or how to incorporate uncertainties in age and
position of the poles. We proposed an extension of the paleomagnetic Euler pole method
which uses Bayesian Markov chain Monte Carlo methods to address these difficulties. This
approach naturally allows for the incorporation of uncertainties in the input data, and auto-
matically provides uncertainties in the model parameters for which we invert. Furthermore,
the forward model is rooted in the kinematic model used for the description of plate motions,
allowing us to estimate past plate speeds and their uncertainties.

We applied our Bayesian PEP method to paleomagnetic poles from the Mesoproterozoic
Keweenawan Midcontinent Rift zone, which has been interpreted to imply extremely fast
plate speeds. Our inversions find that the implied plate speeds for Laurentia exceeded 22.9
cm/yr at a 95% credible interval. This speed is significantly faster than the highest plate
speeds in models of Cenozoic plate motions. True polar wander, which has the potential to
be much faster than plate speeds, is one possible explanation for such high rates.
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