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Abstract

Flexible Bayesian Nonparametric Modeling for Time-to-event Data

by

Yunzhe Li

This dissertation presents the development of innovative Bayesian nonparamet-

ric models tailored for the complex demands of analyzing time-to-event data, specifically

for problems in survival analysis. These models offer flexibility and computational ef-

ficiency in estimating various functionals of the survival distribution. The first thesis

component introduces a flexible Erlang mixture model for survival analysis, structured

on a weighted combination of Erlang densities with integer shape parameters, and a

common scale parameter. The mixture weights are constructed through increments

of a distribution function on the positive real line, which is assigned a Dirichlet pro-

cess prior. The model balances general inference for survival functionals with efficient

posterior simulation. The modeling approach is extended to accommodate multiple ex-

perimental groups through a dependent Dirichlet process prior. Moving to the second

part of the dissertation, a Dirichlet process mixture model with a log-logistic kernel is

proposed. The model incorporates covariates through a density regression framework,

allowing variations in mixture weights and mixing parameters as functions of covari-

ates. The model yields flexible inference for density, survival, and hazard functions

across the covariate space. The final dissertation component explores a joint modeling

approach for recurrent events and survival time, relevant for medical studies where the

xiv



recurrent events process and the risk of death are related. Here, the density functions

for the survival times and the gap times of recurrent events are modeled by dependent

Dirichlet process mixtures with a log-logistic kernel. This modeling approach builds

dependence between survival times and recurrent events through bivariate random ef-

fects. The joint modeling framework aims to provide flexibility in inferring marginal and

conditional functionals of survival and gap times. For all proposed models, we discuss

model properties, prior specification, and posterior simulation techniques, illustrating

their effectiveness through synthetic and real data examples.

xv



Acknowledgments

The research presented in this thesis, portions of which have been previously

published in Computational Statistics & Data Analysis (2024), would not have been

possible without the support and guidance of many individuals. I would like to extend

my sincere thanks to the National Science Foundation (NSF) for their financial support

under award DMS 2015428, which played a crucial role in enabling this research. The

published work is as follows: Li, Y., Lee, J., and Kottas, A. (2024), ”Bayesian Non-

parametric Erlang Mixture Modeling for Survival Analysis,” Computational Statistics

& Data Analysis, 191, 107874.

First and foremost, I would like to express my deepest gratitude to my ad-

visors, Athanasios Kottas and Juhee Lee, for their unwavering support, guidance, and

encouragement throughout my research and the writing of this thesis. Their insightful

feedback and dedication have been invaluable to my academic growth.

I am also incredibly grateful to the members of my thesis committee, Bruno
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Chapter 1

Introduction

Time-to-event data, also known as survival data or failure time data, arise in

many fields of study, including medicine, biology, engineering, public health, epidemiol-

ogy, and economics. The focus is on the time duration until the occurrence of an event

of interest, which could range from death and disease recurrence to equipment failure

or any event signifying a change in status or outcome. From a frequentist standpoint,

Klein & Moeschberger (1997) provide a comprehensive review of survival analysis meth-

ods. Ibrahim et al. (2001) offer a detailed review of Bayesian modeling and inference

approaches to survival data.

A more complex scenario in survival analysis involves recurrent events, where

subjects may experience multiple non-fatal events within a certain period before a ter-

minal event occurs. Cook & Lawless (2007) discuss such scenarios, emphasizing the

importance of jointly modeling terminal and recurrent events to accurately capture the

dependencies and provide meaningful insights.
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This dissertation is focused on developing flexible Bayesian methods for estima-

tion of functionals in survival analysis, including density, survival, and hazard functions.

Section 1.1 provides an introduction to survival analysis and joint analysis of survival

times and recurrent events. Subsequently, Section 1.2 outlines our research objectives

and provides an overview of this dissertation.

1.1 Background

1.1.1 Survival analysis

Let T be a continuous random variable representing survival time, defined on

R+. The probability density function is denoted by f(t). The survival function, denoted

as S(t), represents the probability that the time to an event exceeds t and is defined as

S(t) = Pr(T > t) =

∫ ∞

t
f(u)du.

Additionally, the hazard function, denoted by h(t), describes the instantaneous failure

rate and is defined as

h(t) = lim∆t→0P (t < T ≤ t+∆t | T > t),

and it can be calculated by the ratio of density to survival function, h(t) = f(t)/S(t).

Conversely, the survival function can also be derived from a hazard function by S(t) =

exp
(
−
∫ t
0 h(u)du

)
.

A common challenge in survival analysis is right censoring, where survival times

are observed for only a subset of the subjects under study, while for others, survival
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times are only known to exceed certain values. Specifically, an observation is considered

right-censored at c if it is only known that the survival time is greater than c.

Let n denote the total number of subjects under study. For the ith subject,

let ti be its survival time, and ci be the right censored time. Thus, the final follow-up

time is defined as τi = min(ti, ci). Let νi be a binary indicator, where νi = 1 indicates

an observed survival time.

Assume ti’s are independent and identically distributed (i.i.d.) with density

f(t) and survival function S(t), then the likelihood function for all subjects is given by

L =
n∏
i=1

{f(ti)}νi {S(ti)}1−νi .

The observed survival times and censored times contribute to the likelihood through

the density and survival function, respectively.

Survival data are often collected along with covariates that provide additional

information about the subjects. These covariates might include demographic details,

treatment types, genetic markers, or other relevant factors that can influence the time-

to-event outcome. Incorporating covariates into survival analysis allows for more nu-

anced and precise modeling, leading to better inference and prediction of survival times.

Two popular regression model formulations for survival data are the proportional haz-

ards (PH) model and the accelerated failure time model (AFT).

The PH model assumes that the hazard function h(t | x) for a subject with

covariate vector x is given by:

h(t | x) = h0(t) exp(β
′x),
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where h0(t) is a baseline hazard function, which can be modeled through parametric or

nonparametric approaches. And exp(β′x) is a multiplicative effect on baseline hazard

function. As the name indicates, for two different covariate vectors x1 and x2, the

hazards ratio is expressed as

h(t | x1)

h(t | x2)
= exp(β′(x1 − x2)),

which is constant, in time, meaning crossing hazards are not allowed in the PH model.

As an useful alternation to the PH model, the AFT model assume that the

log-transformed survival time is linearly related to the covariates. For survival times t,

i = 1, . . . , N , the basic form of the AFT model might be written as:

log(t) = β′xi + ϵi,

where ϵi are i.i.d. random variables with a unspecified common distribution function

F , which can be modeled through parametric or nonparametric approaches. The AFT

model indicates that the survival function of a subject with covariate x at time t is

S(t | x) = S0(t exp(β
′x)),

where S0 is the baseline survival function. However, the crossing survival functions over

the covariate space is unavailable.

Both the PH and AFT models impose a parametric linear component in the

model formulations, which can be too restrictive under certain circumstances. For

instance, the hazard and survival functions for two different covariates might not main-

tain a consistent stochastic ordering over time. Covariates effects might be negative
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at the beginning of the study and positive by the end. Specifically, for two different

covariates, x1 and x2 with x1 < x2, it is possible to have h(t | x1) < h(t | x2) and

S(t | x1) < S(t | x2), for small t, but h(t | x1) > h(t | x2) and S(t | x1) > S(t | x2) for

large t. Thus, a more sophisticated model is needed.

The first two projects in this dissertation aim to provide new statistical tools

for analyzing survival times, both with and without covariates, under the Bayesian

nonparametric modeling framework, which allows for flexibility regarding the survival

response distribution and the regression relationship.

1.1.2 Joint analysis for survival times and recurrent events

In more complex scenarios, survival times are often observed alongside a se-

ries of recurrent events. Subjects may experience multiple non-fatal events repeatedly

within a certain time frame until a terminal event occurs. In this context, recurrent

events and terminal events are considered two different types of events. One example

is in medical studies where patients might have multiple hospital readmission before an

eventual death. For more more detailed reviews, we refer to Cook & Lawless (2007) for

a discussion of general framework and Sinha et al. (2008) for a more recent review of

Bayesian methodologies.

When modeling recurrent events, two primary types of point processes are often

considered: the Poisson process and the renewal process. The Poisson process describes

situations where events occur randomly, with the number of events in nonoverlapping

time intervals being statistically independent. It is defined through its intensity function,
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λ(t), for t > 0, a nonnegative integrable function. In this case, the Poisson process,

where intensity function is constant over time, is referred as the homogeneous Poisson

process. In this case, the gap times between successive events follow an exponential

distribution. When the intensity function varies over time, the process is known as a

nonhomogeneous Poisson process, which is suitable when the event rate changes over

time. Based on the intensity function, the likelihood for the Poisson process model

observed in time window (0, t) with point pattern {0 < y1 < y2 < · · · < yN < t} is

proportional to
∏N
i=1 λ(yi) exp(−

∫ t
0 λ(u)du).

The renewal process is another extension to the homogeneous Poisson process,

but instead of focusing on the intensity function, it models the distribution of gap

times between events. In a renewal process, these gap times are assumed to be i.i.d.

Let wi = yi − yi−1 (i = 1, 2, . . . ) with y0 defined as 0, and let {w1, w2, . . . , wN} be

a collection of gap times within a time window (0, t). The likelihood function can be

written as
∏N
i=1 fR(wi)SR(t −

∑N
j=1wj), where fR and SR are density and survival

functions of gap times. This formulation accounts for the observed gap times and the

gap between the last observed event and the upper bound of the time window.

The joint modeling of survival times and recurrent events typically employs

a random effects framework to establish the dependence between these two types of

events. For subject i, let ϵi and ξi be positive-valued random effects associated with

survival times and recurrent events, respectively. Suppose that, conditional on (ϵi, ξi)

and covariate vector xi, survival times are independent of recurrent events and have a

density function fS(· | ϵi,xi), which is typically modeled by either PH or AFT models.
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For recurrent events under the Poisson-process assumption, the intensity function is

modified to λi(t | ξi,xi), where random effects and covariates term exp(β′xi) are usually

modeled as multiplicative effects on a baseline intensity function. Alternatively, under

renewal-process assumption, recurrent events are modeled through the density function

of the gap times. Similar to the survival analysis, the gap times conditional on random

effects and covariates are modeled through PH or AFT models.

1.2 Research Objectives

Bayesian nonparametric (BNP) models are known for their remarkable flexibil-

ity and have been studied in many fields. Unlike traditional parametric models, which

rely on a fixed number of parameters, BNP models employ priors that are probability

models for infinite-dimensional parameters. This approach allows BNP models to adapt

to the complexity of the data without being constrained by predetermined functional

forms.

For a comprehensive overview of BNP inference and computational strategies,

Müller et al. (2015) provide details discussions on practical implementation. On the

theoretical perspective, Ghosal & Vaart (2016) cover the foundational aspects of BNP

models.

This dissertation introduces new Bayesian nonparametric models designed to

meet the complex demands of analyzing time-to-event data. These models offer flexi-

bility and computational efficiency in estimating various statistical functionals.
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In Chapter 2, we construct a flexible Erlang mixture model for survival anal-

ysis. This model is composed of Erlang densities with common scale parameter and

integer-valued shape parameters. The mixture weights are defined by increments of a

distribution function on the positive real line R+. By assigning it a Dirichlet process

(DP) prior, the model allows for flexible estimation for density, survival, and hazard

functions. The model can be viewed as a basis representation through Erlang densi-

ties, with the number of basis densities being random. A key feature of this model

is its ability to enable efficient posterior computation via Markov chain Monte Carlo

(MCMC) methods. The model is then extended to accommodate multiple experimental

groups through a dependent Dirichlet process (DDP), with a focus on control-treatment

groups. This model extension retains the flexibility for the time-to-event distributions,

avoiding specific parametric assumptions, such as those in proportional hazards (PH)

and accelerated failure times models.

Moving to the second part of the dissertation in Chapter 3, we propose a

Dirichlet process mixture (DPM) model with a log-logistic density kernel, referred by

DPM-LL. Similar to Erlang mixture models, this model is able to flexibly capture a

wide range of functional shapes for density, survival, and hazard functions. A major

advantage of the DPM-LL model is that it allows a relatively straightforward extension

to accommodate multiple covariates through a density regression framework. Unlike the

model in Chapter 3 with the basis representation, this approach is constructed through

traditional mixture model setting, allowing both mixture weights and locations to vary

as functions of covariates.
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In Chapter 4, we develop a joint model for survival times and gap times of re-

current events. This model integrates Bayesian nonparametric mixture models for both

survival and gap times. By employing the DDP mixture model with a log-logistic kernel

for the mixing distributions across the covariate space, we incorporate covariates into

both the mixture atoms and weights. This model connects nonparametric mixture mod-

els for survival and gap times through bivariate random effects, allowing it to capture

non-standard density and survival functions across various covariates and to estimate

conditional survival probabilities given no occurrence of recurrent events. We explore

the model properties and posterior simulation, illustrating the methodology with real

data. The model’s efficacy is assessed through out-of-sample predictions, validating its

practical applicability and flexibility.
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Chapter 2

Bayesian Nonparametric Erlang

Mixture Modeling for Survival Analysis

2.1 Introduction

The Erlang mixture model is defined as a weighted combination of M Erlang

densities f(t | M, θ,ω) =
∑M

m=1 ωm Er(t | m, θ), for t ∈ R+, where Er(t | m, θ) repre-

sents the Erlang densities with integer shape parameters, m, and scale parameter, θ,

shared by all densities. In the formulation, M and ω = (ω1, . . . , ωM ) are the number

of mixture components and the mixing weights, respectively. The model is completely

specified by M , ω and θ. Hence, in contrast to traditional mixture models, Erlang mix-

tures comprise identifiable mixture components and a parsimonious model formulation

built from kernels that involve a single parameter that needs to be estimated. Indeed, it

is more natural to view the model as a basis representation for densities on R+, where
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the Er(t | m, θ) densities play the role of the basis densities and the ωm provide the

corresponding weights. Erlang mixtures are flexible, making them particularly useful

in providing approximations for general densities on R+. For example, Venturini et al.

(2008) used the Erlang mixture model for density estimation, with fixed M and with a

Dirichlet prior distribution for ω. Another example is Ayala et al. (2022) that developed

a Dirichlet process mixture model (Antoniak 1974) with Erlang kernels for phase-type

distributions of a Markov process. The resulting model can be expressed as a mixture

of Erlang distributions in a form similar to f(t |M, θ,ω).

Different from the aforementioned approaches, the weights ω in Erlang mix-

tures can be constructed as increments of a distribution function G onR+. In particular,

we let ωm = G(mθ)−G((m− 1)θ), for m = 1, . . . ,M − 1, and ωM = 1−G((M − 1)θ).

This formulation yields an important theoretical result for Erlang mixtures: asM → ∞

and θ → 0, the Erlang mixture density converges pointwise to the density of G (e.g.,

Butzer 1954, Lee & Lin 2010).

The Erlang mixture structure, in conjunction with the theoretical support

from the convergence result, provides an appealing setting for nonparametric Bayesian

modeling and inference. The key ingredient for such modeling is a nonparametric prior

for distribution G, which, along with priors for θ andM , yields the full Bayesian model.

Regarding relevant existing approaches, we are only aware of Xiao et al. (2021) where

the Erlang mixture is used as a prior model for inter-arrival densities of homogeneous

renewal processes. Also related is the prior model for Poisson process intensities in Kim

& Kottas (2022), although for that model the weights are defined as increments of a
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cumulative intensity function.

To our knowledge, Erlang mixtures have not been explored as a general method-

ological tool for nonparametric Bayesian survival analysis, and this is our motivation

for the work in this article. The nonparametric Bayesian model is built from a Dirich-

let process (DP) prior (Ferguson 1973) for distribution G, which defines the mixture

weights, and from parametric priors for θ and M , which control the effective support

and smoothness in the shape of the Erlang mixture density. The modeling approach is

sufficiently flexible to handle non-standard shapes for important functionals of the time

to event distribution, including the survival function and the hazard function. We dis-

cuss prior specification for the model hyperparameters, and design an efficient posterior

simulation method that draws from well-established techniques for DP mixture models.

The model is extended to incorporate survival responses from multiple experimental

groups, using a dependent Dirichlet process prior (MacEachern 2000, Quintana, Müller,

Jara & MacEachern 2022) for the group-specific distributions that define the mixture

weights. The model extension retains the flexibility in the group-specific survival densi-

ties, and it also allows for general relationships between groups that bypass restrictive

assumptions, such as proportional hazards.

Survival analysis is among the earliest application areas of Bayesian nonpara-

metrics. The literature includes modeling and inference methods based on priors on the

space of survival functions, survival densities, cumulative hazard functions, or hazard

functions. Reviews can be found, for instance, in Ibrahim et al. (2001), Phadia (2013),

Müller et al. (2015), and Mitra & Müller (2015). The part of this literature that is more
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closely related to our proposed methodology involves DP mixture models for the sur-

vival density. Such mixture models have been developed using kernels that include the

Weibull distribution (e.g., Kottas 2006), log-normal distribution (e.g., De Iorio, John-

son, Müller & Rosner 2009), and gamma distribution (e.g., Hanson 2006, Poynor &

Kottas 2019). The convergence property for Erlang mixtures is the only mathematical

result we are aware of that supports the choice of a particular parametric kernel in

mixture modeling for densities on R+.

Our main objective is to add a new practical tool to the collection of nonpara-

metric Bayesian survival analysis methods. The DP-based Erlang mixture model may

be attractive for its modeling perspective that involves a representation of basis den-

sities, its parsimonious mixture structure, and efficient posterior simulation algorithms

(comparable to the ones for standard DP mixtures).

The rest of the article is organized as follows. Section 2 introduces the method-

ology, including approaches to prior specification and posterior simulation (with details

for the latter given in the Appendixes). Sections 3 and Section 4 present results from

synthetic and real data examples, respectively. Finally, Section 5 concludes with a

summary.
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2.2 Methodology

2.2.1 The modeling approach

Erlang Mixture Model We propose a structured mixture model of Erlang densities

for the density, f(t), of the time to event distribution, aiming at more general infer-

ence for survival functionals than what specific parametric distributions can provide.

Specifically, let

f(t) ≡ f(t |M, θ,ω) =

M∑
m=1

ωm Er(t | m, θ), t ∈ R+, (2.1)

where ω = {ωm : m = 1, . . . ,M} denotes the vector of mixture weights, and Er(· | m, θ)

the density of the Erlang distribution, that is, the gamma distribution with integer

shape parameter m and scale parameter θ, such that the mean is mθ and the variance

mθ2. Given the number of the Erlang mixture components, M , the kernel densities in

(2.1) are fully specified up to the common scale parameter θ. Hence, compared with

standard mixture models, for which the number of unknown parameters increases with

M , the model in (2.1) offers a parsimonious mixture representation.

A key component of the model specification revolves around the mixture

weights. These are defined through increments of a distribution function G with sup-

port on R+, such that ωm = G(mθ) − G((m − 1)θ), for m = 1, . . . ,M − 1, and ωM =

1 − G((M − 1)θ). This formulation for the mixture weights provides appealing theo-

retical results for the Erlang mixture model in (2.1). In particular, as M → ∞ and

θ → 0, f(t |M, θ,ω) converges pointwise to the density function of G. The convergence

property for the density can be derived from more general probabilistic results (e.g.,
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Butzer 1954); a proof of the convergence of the distribution function of f(t | M, θ,ω)

to G can be found in Lee & Lin (2010). This result highlights that using a prior with

wide support for G is crucial to achieve the generality of the model in (2.1) required

to capture non-standard shapes for the time to event distribution. We provide details

below on the nonparametric prior for G, as well as on the priors for parameters θ and

M .

The model in (2.1) also offers a flexible, albeit parsimonious mixture represen-

tation for the survival function, S(t | M, θ,G), and the hazard function, h(t | M, θ,G).

Note that, having defined the mixture weights ω through distribution G, we use the

latter in the notation for model parameters. Denote by SEr(· | m, θ) and hEr(· | m, θ) the

survival and hazard function, respectively, of the Erlang distribution with parameters

m and θ. Then, the survival function associated with the model in (2.1) is given by

S(t |M, θ,G) =
M∑
m=1

ωm SEr(t | m, θ), (2.2)

that is, it has the same weighted combination representation as the density, replacing

the Erlang basis densities by the corresponding survival functions. Moreover, the hazard

function under the Erlang mixture model can be expressed as

h(t |M, θ,G) =
M∑
m=1

ω⋆m(t)hEr(t | m, θ), (2.3)

where ω⋆m(t) = ωmSEr(t | m, θ)/{
∑M

m′=1 ωm′ SEr(t | m′, θ)}. The hazard function is a

weighted combination of the hazard functions associated with the Erlang basis densities,

and, importantly, the mixture weights in (2.3) vary with t. Such time-dependent weights

allow for local adjustment, and thus h(t | M, θ,G) can achieve general shapes, despite
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the fact that the basis hazard functions, hEr(t | m, θ), are non-decreasing in t (constant

for m = 1, and increasing for m ≥ 2).

We note that Erlang mixtures can be viewed as extensions of Bernstein poly-

nomial densities, defined on the unit interval to R+. The Bernstein polynomial density

is given by f∗(y | K, q) =
∑K

k=1 qk Be(y | k,K − k + 1), where Be(· | a, b) is the beta

density with mean a/(a+ b). The mixture weights are defined through increments of a

distribution function G∗ on the unit interval, such that qk = G∗(k/K)−G∗((k−1)/K),

for k = 1, . . . ,K, where G∗ is a probability distribution over the unit interval. Here, as

K → ∞, f∗(y | K, q) converges uniformly to the density of G∗. Bernstein polynomials

have been explored for density estimation on compact sets following the work of Petrone

(1999a,b). Applications and extensions of the basic model include density estimation on

higher dimensional spaces (Zheng et al. 2010), density estimation with multiscale mix-

tures of Bernstein polynomials (Canale & Dunson 2016), density regression (Barrientos

et al. 2017), and modeling for bivariate stable distributions (Richardson et al. 2020).

Dirichlet Process Prior for G As previously discussed, a key model component is

distribution G as it defines the mixture weights ωm through discretization of its distri-

bution function on intervals Bm = ((m − 1)θ,mθ], for m = 1, . . . ,M − 1, and BM =

((M − 1)θ,∞). We place a DP prior on G, i.e., G | α,G0 ∼ DP(α,G0), where α > 0

is the total mass parameter and G0 the centering distribution (Ferguson 1973). We

work with an exponential distribution, Exp(ζ), for G0, with random mean ζ assigned

an inverse-gamma hyperprior, ζ ∼ inv-Ga(aζ , bζ). We further assume a gamma hy-
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perprior for the total mass parameter, α ∼ Ga(aα, bα). Given M , the DP prior for G

implies a Dirichlet prior distribution for the vector of mixture weights, ω | M,α, ζ ∼

Dir(αG0(B1), . . . , αG0(BM )).

The nonparametric prior for G is of primary importance. The DP prior allows

the corresponding distribution function realizations to admit general shapes that can

concentrate probability mass on different time intervals Bm, thus favoring different

Erlang basis densities through the associated ωm. The key parameter in this respect is

α, as it controls the extent of discreteness for realizations of G and the variability of

such realizations around G0. As an illustration, Figure 2.1 plots prior realizations for

the mixture weights and the corresponding Erlang mixture density under three values

of α (α = 1, 10 or 100), using in all cases M = 50, θ = 0.5, and G0 = Exp(5). The

smaller α gets, the smaller the number of effective mixture weights becomes. Also, for

larger α the Erlang mixture density becomes similar to the density of G0, which is to be

expected from the pointwise convergence result and the fact that larger α values imply

smaller variability of G around G0.

Priors for θ and M Under the model construction for the mixture weights, θ controls

the step size of the increments and thus how fine the discretization of G is. Moreover,

θ controls the location and dispersion of the Erlang basis densities in (2.1). With

smaller θ, the Erlang densities are more concentrated around their mean mθ, and the

discretization of G becomes finer. Hence, as the pointwise convergence result suggests,

smaller θ values may be needed to accommodate non-standard density shapes. Also,
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Figure 2.1: Prior realizations of the mixture weights ω (top row) and the corresponding

densities f(t | M, θ,G) given by the red solid lines (bottom row), under α = 1, 10, 100

(left, middle, right columns). In all cases, M = 50, θ = 0.5, and G0 = Exp(5). The

black dotted line in the bottom row panels is the density of G0.

the last component in (2.1) has mean Mθ (with variance Mθ2), and thus the effective

support of f(t |M, θ,G) is jointly determined byM and θ; with smaller θ, a greater value

of M is needed to achieve the same effective support. Figure 1 in the Supplementary

Material plots prior realizations of the Erlang mixture density for different combinations

of (M, θ) to illustrate how M and θ jointly affect f(t |M, θ,G).

We work with a joint prior for θ and M , p(θ,M) = p(θ)p(M | θ). We assume

θ ∼ Ga(aθ, bθ), and conditional on θ, assign to M a discrete uniform distribution,
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M | θ ∼ Unif(⌈M1/θ⌉, . . . , ⌈M2/θ⌉), where ⌈a⌉ is the smallest integer that is larger or

equal to a. To specify the hyperparameters aθ, bθ, M1 and M2, we use a relatively

conservative approach, based on the range of the data. For M1, we choose a value

greater than the largest value in the data, and set M2 = cM1 for a relatively small

integer c. The motivation for this choice is to ensure that the effective support of the

Erlang mixture model is sufficiently large for the particular data application. To specify

the prior hyperparameters for θ, we notice that M1/θ ∼ inv-Ga(aθ,M1/bθ), based on

which we recommend selecting values for aθ and bθ such that E(M1/θ) is between 10 and

50. Also, we use c = 3 or 4 that imply E(M2/θ) is between 20 and 150 or between 40

and 200, for the simulation studies in Section 3 and the real data analyses in Section 4.

This specification provides an adequate number of basis densities a priori for sufficient

flexibility for the examples.

Posterior Simulation The data point for the ith subject is recorded as yi =min(ti, ci),

where ti is the survival time and ci the (independent) administrative censoring time,

for i = 1, . . . , n. The data set can be represented through D = {(yi, νi) : i = 1, . . . , n},

where the νi are binary censoring indicators such that νi = 1 if ti is observed, and νi = 0

otherwise. Then, the likelihood function can be written as

L(M, θ,G;D) =

n∏
i=1

{f(yi |M, θ,G)}νi {S(yi |M, θ,G)}1−νi , (2.4)

where f(· | M, θ,G) ≡ f(· | M, θ,ω) and S(· | M, θ,G) are given in (2.1) and (2.2),

respectively.

We implement posterior inference via Markov chain Monte Carlo (MCMC)
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simulation, using standard posterior simulation methods for DP mixture models (e.g.,

Escobar & West 1995, Neal 2000). The Erlang mixture density in (2.1) can be expressed

as a DP mixture by exploiting the definition of the weights ωm through distribution G,

resulting in the following alternative mixture representation:

f(t |M, θ,G) =

M∑
m=1

ωm Er(t | m, θ) =

∫ ∞

0

{
M∑
m=1

1Bm(ϕ) Er(t | m, θ)

}
dG(ϕ).

Here, 1B(·) is the indicator function for set B, and, as before, Bm = ((m− 1)θ,mθ], for

m = 1, . . . ,M − 1, and BM = ((M − 1)θ,∞).

For posterior simulation, we augment the likelihood in (2.4) with subject-

specific latent variables, ϕi | G
i.i.d.∼ G, which indicate the mixture component for the

associated observations. In particular, if ϕi falls into interval Bm, the i
th observation

corresponds to the mth Erlang basis density. The posterior distribution involves G, M ,

θ, the set of latent variables ϕ = {ϕi : i = 1, ..., n}, and the DP hyperparameters (α, ζ).

We marginalize G over its DP prior and work with the prior full conditionals for the ϕi,

implied by the DP Pólya urn representation (Blackwell & MacQueen 1973a), to sample

from the marginal posterior distribution for all model parameters except G. To this

end, we employ the MCMC method in Escobar & West (1995); the details are given in

Appendix A.

Although we do not sample the mixture weights ω during the MCMC simu-

lation, it is straightforward to obtain posterior samples for ω, using their definition in

terms of distribution G.

The conditional posterior distribution for G, given (α, ζ) and ϕ, is character-
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ized by a DP with updated total mass parameter α⋆ = α+n, and centering distribution

G⋆0 = α(α+n)−1Exp(ζ) + (α+n)−1
∑n

i=1 δϕi . Hence, using the DP definition, the con-

ditional posterior distribution for ω, given M , (α, ζ), and ϕ, is a Dirichlet distribution

with parameter vector (α⋆G⋆0(B1), . . . , α
⋆G⋆0(BM )).

Two points about the posterior simulation method are worth making. First,

note that the model parameters do not explicitly contain the vector of mixture weights.

The mixture weights are estimated through the posterior distribution of G, which plays

the role of the relevant parameter. This is practically important in that the dimension of

the parameter space does not change withM , and we thus do not need to resort to more

complex trans-dimensional MCMC algorithms. Second, the DP-based Erlang mixture

model offers an interesting example where full posterior inference can be obtained from

a DP mixture model without the need to truncate or approximate the DP prior. This is

a result of the use of a marginal MCMC method, as well as of the fact that distribution

G enters the model only through increments of its distribution function, which define

the mixture weights.

2.2.2 Model extension for control-treatment studies

A practically relevant scenario in studies where survival responses are collected

involves data from multiple experimental groups, typically associated with different

treatments. Evidently, it is of interest in these settings to compare time to event distri-

butions across different groups. We develop an extension of the Erlang mixture model

in this direction, focusing on the case of two groups for, say, a generic control-treatment

21



study. Our objective is to retain the flexible modeling approach for the time to event

distributions, avoiding restrictions to specific parametric shapes or rigid relationships,

such as proportional hazards. We also seek a prior probability model that allows for

dependence, and thus borrowing of information, between the two distributions.

We use the dependent DP (DDP) prior structure (MacEachern 2000) that

extends the DP prior for distribution G to a prior model for a collection of covariate-

dependent distributions, Gx, where x indexes the distributions in terms of values in the

covariate space. Our context involves a binary covariate x ∈ X = {ctr, trt}, where ctr

and trt represent control and treatment groups, respectively. The DDP prior builds

from the DP stick-breaking representation (Sethuraman 1994) by utilizing covariate-

dependent weights and/or atoms. We work with a common-weights DDP prior model:

Gx =
∞∑
ℓ=1

pℓ δφ∗
xℓ
, for x ∈ X , (2.5)

with p1 = v1, pℓ = vℓ
∏ℓ−1
r=1(1 − vr), for ℓ ≥ 2, where the vℓ are i.i.d. from a Beta(1, α)

distribution, and the atoms φ⋆ℓ = (φ⋆ctrℓ, φ
⋆
trtℓ) arise i.i.d. from a bivariate distribution

G0; moreover, {vℓ} and {φ⋆ℓ} are independent sequences of random variables. Note

that, under this construction, Gx follows marginally a DP(α,G0x) prior, where G0x, for

x ∈ X , are the marginals of G0 associated with the control and treatment groups. For

G0, we consider a bivariate log-normal distribution, such that φ⋆ℓ | µ,Σ
i.i.d.∼ LN2(µ,Σ).

We place a bivariate normal, N2(µ̄,Σ0), hyperprior on µ, with µ̄ and Σ0 fixed, an

inverse-Wishart, inv-Wishart(r,R), hyperprior on Σ, with r and R fixed, and a gamma

hyperprior on the total mass parameter α.
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Allowing also for group-specific number of Erlang basis densities, Mx, as well

as group-specific Erlang scale parameter, θx, the extension of the Erlang mixture model

in (2.1) can be expressed as

fx(t) ≡ f(t |Mx, θx, Gx) =

Mx∑
m=1

ωxm Er(t | m, θx), t ∈ R+, (2.6)

where ωxm = Gx(mθx)−Gx((m− 1)θx), m = 1, . . . ,Mx− 1, and ωxMx = 1−Gx((Mx−

1)θx). Similar to the model in (2.1), the group-specific Erlang basis densities are fully

specified given Mx and θx. The prior probability model in (2.6) induces dependence

between the control and treatment group densities through the dependent distributions

Gctr and Gtrt in (2.5). These random discrete distributions have common weights and

dependent group-specific atoms. The effect of the common weights (total mass param-

eter α) and of the dependent atoms (parameters of distribution G0) can be studied, for

instance, through the covariance between random probabilities under the time to event

distributions associated with (2.6). The mathematical derivation of this covariance is

given in the Supplementary Material.

The survival functions, Sx(t), and hazard functions, hx(t), under the extended

model have a mixture representation similar to (2.2) and (2.3),

Sx(t) =

Mx∑
m=1

ωxm SEr(t | m, θx) and hx(t) =

Mx∑
m=1

ω⋆xm(t)hEr(t | m, θx), (2.7)

where ω⋆xm(t) = ωxm SEr(t | m, θx)/{
∑Mx

m′=1 ωxm′ SEr(t | m′, θx)}. Note that both the

mixture components and weights are indexed by x. Again, the time-dependent weights

in the hazard mixture form allow for local adjustment, and thus for flexible group-

specific hazard rate shapes. Importantly, the prior model allows for general relationships
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between the control and treatment group hazard functions. In particular, inference is

not restricted by the proportional hazards assumption, implied by several commonly

used parametric or semiparametric survival regression models.

To complete the full Bayesian model, we place priors on θx andMx, using again

the role of these parameters (discussed in Section 2.2.1). More specifically, for each x,

the joint prior, p(θx,Mx) = p(θx)p(Mx | θx). We further assume θx
ind∼ Ga(axθ, bxθ),

and Mx | θx
ind.∼ Unif (⌈Mx1/θx⌉, . . . , ⌈Mx2/θx⌉). We use an approach similar to the one

described in Section 2.2.1 to specify Mx1 and Mx2, and the hyperparameters for θx.

Posterior simulation for the DDP-based Erlang mixture model proceeds with a

relatively straightforward extension of the MCMC simulation method in Section 2.2.1.

The details are provided in Appendix B.

The primary focus of this paper is on the DP-based Erlang mixture model for

survival analysis and its extension for the control-treatment setting. We note however

that the DDP-based Erlang mixture model can be further extended to accommodate

a general p-variate covariate vector x. For example, we may consider a linear-DDP

structure (De Iorio, Johnson, Müller & Rosner 2009) to extend Gx in (2.5) to Gx =∑∞
ℓ=1 pℓ δψ⋆

ℓ (x)
, where ψ⋆ℓ (x) = exp((1,x′)βℓ) with the βℓ i.i.d. from a baseline distribu-

tion. The structured DDP prior for Gx yields covariate-dependent mixture weights, and

thus a nonparametric prior model for covariate-dependent survival densities and hazard

functions. A regression model may also be used for M and/or θ. Different from the

linear-DDP mixture of log-normal distributions in De Iorio, Johnson, Müller & Rosner

(2009), the extended model retains the parsimonious Erlang mixture structure.

24



2.3 Simulation Study

We use three simulation scenarios to illustrate the models developed in Section

2.2. For the Erlang mixture model for a single distribution, we consider simulated

data from: a two-component log-normal mixture to demonstrate the model’s capacity

to estimate non-standard density and hazard function shapes (Section 2.3.1); and a

log-normal distribution sampled with different levels of censoring (Section 2.3.2). The

DDP-based extension of the model is illustrated in Section 2.3.3 with a synthetic data

example based on a log-normal control distribution and a two-component log-normal

mixture treatment distribution, specified such that the corresponding hazard functions

cross each other.

For all data examples considered here and in Section 2.4, we used the approach

discussed in Section 2.2 to specify the prior hyperparameters. Consistent with inference

results obtained from DP mixture models, we have observed some sensitivity to the

prior choice for α. The effect on the posterior distribution for α is more noticeable

for the small cell lung cancer data of Section 2.4.2 (involving the smallest sample size

among our data examples). However, posterior inference results for survival functionals

are largely unaffected even under fairly different priors for α. When the sample size is

relatively small for each group, we recommend applying the DDP-based Erlang mixture

model with a prior for α that supports small to moderate values, such as the Ga(5, 1)

prior used in Sections 2.3.3 and 2.4.2.

We examined convergence and mixing of the MCMC algorithms using standard
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diagnostic techniques. In our experiments, we observed that parameters θ and M are

highly correlated, and moderate thinning was used to improve efficiency. A general

approach we take is to run the MCMC chain for 100,000 iterations, then discard the

first 25% posterior samples and keep every 38th iteration for posterior inference.

2.3.1 Example 1: Bimodal density

We simulate n = 200 survival times from a mixture of two log-normal dis-

tributions, 0.4LN(1, 0.4) + 0.6LN(2, 0.2), which yields a bimodal density and a non-

monotonic hazard function. The true underlying functions f(t), S(t) and h(t) are plot-

ted with solid lines in Figure 2.2. Regarding prior specification, we used: α ∼ Ga(2, 1);

ζ ∼ inv-Ga(3, 4); θ ∼ Ga(1, 1); and, M | θ ∼ Unif (⌈M1/θ⌉, . . . , ⌈M2/θ⌉), with M1 = 13

and M2 = 3×M1.

Posterior inference is summarized in Figure 2.2. The complex features of the

underlying survival functionals are captured well by the model. In particular, the infer-

ence results for the hazard function demonstrate the effectiveness of the model structure

in (2.3) with the time-dependent weights allowing for local adjustment and estimation

of a non-standard hazard function shape.

The posterior distribution for the common scale parameter θ is substantially

concentrated on smaller values relative to its prior, in particular, the posterior mean and

95% credible interval estimates for θ are 0.28 and (0.13, 0.39). Recalling the definition

of the mixture weights, this indicates the level of partitioning needed to accommodate

the non-standard, bimodal shape of the underlying density. The posterior mean and
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(a) Density function (b) Survival function (c) Hazard function

Figure 2.2: Simulation Example 1. Posterior mean (dashed lines) and 95% interval

estimates (shaded regions) for the density function (left panel), survival function (middle

panel) and hazard function (right panel). The red solid line in each panel corresponds

to the true underlying function. The black marks on the x-axis in the left panel show

the observed survival times.

95% credible interval estimates of the number M of mixture components are 101 and

(44, 223). However, the number of effective mixture components (i.e., effective basis

densities) is considerably smaller than M . As an informal rule, we identify an effec-

tive Erlang basis density through its corresponding mixture weight taking value greater

than a threshold of 0.01. Then, the number of effective mixture components is about

4 (on average across posterior samples). For a graphical illustration, Figure 2.3 plots

three randomly selected posterior realizations of f(t | M, θ,G). The associated poste-

rior draws for (θ,M) are (0.2, 153), (0.33, 78), and (0.25, 54), whereas the number of

effective Erlang basis densities is only 4, 2, and 5, respectively. The weighted effective

basis densities (i.e., ωm × Er(t | m, θ) for m such that ωm > 0.01) are also plotted in
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(a) θ = 0.20, M = 153 (b) θ = 0.33, M = 78 (c) θ = 0.25, M = 54

Figure 2.3: Simulation Example 1. Plots (a)-(c) show the posterior realization of f(t |

M, θ,G) (red solid line), based on three randomly chosen posterior samples. Each dashed

line represents the Erlang basis density Er(t | m, θ) for components with ωm > 0.01,

multiplied by its corresponding weight. The black solid line is the true underlying

density.

Figure 2.3. This example highlights the critical importance of the nonparametric prior

for distribution G that defines the weights for the Erlang mixture model.

2.3.2 Example 2: Unimodal density with censoring

For the second synthetic data example, we generate survival times from a

log-normal distribution, ti
i.i.d.∼ LN(5, 0.6), i = 1, . . . , n with n = 200. The priors for

the model parameters are: α ∼ Ga(2, 1); ζ ∼ inv-Ga(3, 1000); θ ∼ Ga(2, 25); and

M | θ ∼ Unif (⌈1000/θ⌉, . . . , ⌈3000/θ⌉).

As shown in Figure 2.4(a)-(c), the model estimates well the density, survival

and hazard function. The point estimate for the hazard function is less accurate beyond

t = 400, which is to be expected given the very few observations that are greater than
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(a) Density, no censoring (b) Survival, no censoring (c) Hazard, no censoring

(d) Density, g = 12% (e) Survival, g = 12% (f) Hazard, g = 12%

(g) Density, g = 33.5% (h) Survival, g = 33.5% (i) Hazard, g = 33.5%

Figure 2.4: Simulation Example 2. Posterior mean (dashed lines) and 95% interval

estimates (shaded regions) for the density function (left panel), survival function (middle

panel) and hazard function (right panel). The red solid line in each panel corresponds

to the true underlying function, and the black and red rugs in the left panel show the

survival and censoring times, respectively. For the results in the first row, the survival

times are fully observed, whereas 12% and 33.5% of the observations are censored for

those in the second and third rows, respectively.

29



that time point, although the interval estimate contains the true function throughout

the observation time window.

In addition, we examine the model’s performance for data with censored ob-

servations. We simulate censoring times ci from an exponential distribution with mean

parameter κ, and define the observed times as yi = min(ti, ci), with binary censoring

indicators νi = 1(yi ≤ ci). We generate the ci under two different values of κ, result-

ing in two datasets with different proportions of censored observations, g = 12% and

33.5%. Figure 2.4(d)-(i) plot posterior mean and 95% interval estimates for the density,

survival and hazard functionals. We note that censoring does not substantially affect

the quality of the inference results, with the true function contained in all cases within

the posterior interval estimates. The width of the posterior uncertainty bands increases

with the larger censoring proportion. The increase is more noticeable for the hazard

function estimates.

2.3.3 Example 3: A control-treatment synthetic data set

Here, we examine the performance of the DDP-based Erlang mixture model

of Section 2.2.2. We consider a binary covariate, xi = ctr or trt, with 100 responses

in each group, such that n = 200. We generate ti
i.i.d.∼ LN(5, 0.6) for subjects with

xi = C, and ti
i.i.d.∼ 0.4LN(5, 0.4) + 0.6LN(6, 0.2) for subjects with xi = T . The

true density, survival and hazard functions are shown in Figure 2.5. The control group

density is unimodal, whereas the treatment group has a bimodal density and a non-

standard, non-monotonic hazard function. The truth is specified such that we have
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(a) Density (control group) (b) Density (treatment group)

(c) Survival function (d) Hazard function

Figure 2.5: Simulation Example 3. Panels (a) and (b) plot the estimates for the control

and treatment group density, respectively (the rug plots show the corresponding survival

times). Panels (c) and (d) compare the estimates for the survival and hazard function,

respectively. In each panel, the dashed lines denote the posterior mean estimates, the

solid line the true underlying function, and the shaded regions indicate the 95% credible

intervals. Red and blue color is used for the control and treatment group, respectively.

crossing hazard functions for the two groups, a scenario that traditional proportional

hazards models cannot accommodate.

Regarding the prior hyperparameters, we set: α ∼ Ga(2, 1); µ ∼ N2((5, 5.5)
′, 10 I2);
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Σ ∼ inv-Wishart(4, 3 I2); θx
ind.∼ Ga(2, 20); andMx | θx

ind.∼ Unif (⌈1000/θx⌉, . . . , ⌈3000/θx⌉).

As shown in Figure 2.5, the model captures effectively the shape of the survival func-

tionals, despite the fact that the functions vary greatly across the two groups, and

it successfully recovers the non-proportional hazards relationship between the groups.

Again, with respect to hazard estimation, the point estimates are generally less accurate

and the interval bands are wider for larger time points where data is scarce.

For comparison, we apply the linear-DDP (LDDP) model with log-normal

kernels in De Iorio, Johnson, Müller & Rosner (2009). R package DPpackage (Jara et al.

2011) is used to fit the LDDP model to the dataset. While the LDDP model estimates

of fx(t) are generally reasonable, they show relatively poor performance, especially for

t < 300, where both conditions have a reasonable number of observations. This misfit

may be attributed to the linear-DDP model structure, which assumes shared weights

for the conditions and linearity for the locations. Note that the Erlang-DDP model in

(2.6) has condition-specific weights and does not assume any particular structure on the

locations. More details are provided in Section 3 of the Supplementary Material.

For additional sensitivity analysis, we explore different specifications of the

fixed hyperparameters for the priors of µ and Σ and refit the data. In particular, we

change the specification of Σ0, r and R. We observe that these changes had a minimal

impact on the posterior inference. Details are given in Section 4 of the Supplementary

Material.
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2.4 Data Examples

2.4.1 Liver metastases data

We consider data on survival times (in months) from 622 patients with liver

metastases from a colorectal primary tumor without other distant metastases, available

from the R package “locfit”. The censoring proportion is high, with 259 censored

responses. The data set has been used in earlier work to illustrate classical and Bayesian

nonparametric methods for density and hazard estimation; see, e.g., Antoniadis et al.

(1999) and Kottas (2006).

To apply the DP-based Erlang mixture model, we set the priors as follows:

α ∼ Ga(5, 1); ζ ∼ inv-Ga(3, 80); θ ∼ Ga(2, 2); and, M | θ ∼ Unif(⌈100/θ⌉, . . . , ⌈300/θ⌉).

Inference results for the density, survival, and hazard function are reported in Figure 2.6.

The model estimates a unimodal survival density (with mode at about 13 months), with

a non-standard, skewed right tail. The hazard rate estimate increases up to about 17

months, stays roughly constant between 17 to 35 months, and then decreases. The

width of the posterior uncertainty bands for the hazard function increases considerably

beyond 40 months, which is consistent with the fact that there are very few responses

beyond that time point, and almost all of them are censored. Density and hazard rate

estimates with similar shapes were obtained from the previous analyses in Antoniadis

et al. (1999) and Kottas (2006). Overall, this example supports the findings from the

simulation study regarding the Erlang mixture model’s capacity to effectively estimate

non-standard density and hazard function shapes.
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(a) Density function (b) Survival function (c) Hazard function

Figure 2.6: Liver metastases data. Panels (a), (b) and (c) plot posterior mean (dashed

lines) and 95% interval estimates (shaded regions) for the density, survival and hazard

function, respectively. The rug plot in panel (a) shows observed (black) and censored

(red) survival times.

2.4.2 Small cell lung cancer data

To illustrate the DDP-based Erlang mixture model with real data, we consider

the data set from Ying et al. (1995) on survival times (in days) of patients with small

cell lung cancer. The data correspond to a study designed to evaluate two treatment

regimens of drugs, etoposide (E) and cisplatin (P), given with a different sequence, with

Arm A denoting the regimen where P is followed by E, and Arm B the regimen where E

is followed by P. A total of 121 patients were randomly assigned to one of the treatment

arms, resulting in 62 patients in Arm A, and 59 in Arm B. The survival times of 23

patients (15 in Arm A and 8 in Arm B) are administratively right censored.

The DDP-based Erlang mixture model is applied with x ∈ X = {A,B}. The

priors are set as follows: θx
ind.∼ Ga(50, 2); Mx | θx

ind.∼ Unif (⌈2500/θx⌉, . . . , ⌈10000/θx⌉);
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(a) Density function (Arm A) (b) Density function (Arm B)

(c) Survival functions (d) Hazard functions

Figure 2.7: Small cell lung cancer data. Panels (a) and (b) plot estimates for the Arm

A and Arm B density; the rug plots show observed (black) and censored (red) survival

times. Panels (c) and (d) compare the estimates for the survival and hazard function.

In each panel, the dashed lines denote the posterior mean estimates, and the shaded

regions indicate the 95% credible intervals. Red and blue color is used for the Arm A

and Arm B group, respectively.
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(a) SB(t)− SA(t)

(b) hB(t)− hA(t)

Figure 2.8: Small cell lung cancer data. Panels (a) and (b) show, through violin plots,

the posterior distributions of the difference between the two treatment survival and

hazard functions at six specific time points, t = 100, 300, 500, 700, 1000, and 1500 days.

The short black solid lines within each violin plot indicate the 95% posterior credible

interval.

α ∼ Ga(2, 1); µ ∼ N2((6.7, 6.3)
′, 10 I2); and Σ ∼ inv-Wishart(13, 30 I2).

Posterior mean and interval estimates for the density, survival, and hazard

function are compared across the two treatments in Figure 2.7. The Arm B density

estimate is more peaked, and the mode under Arm B is estimated to be smaller than

that under Arm A. The posterior mean estimates for the survival functions indicate that
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survival time under Arm B is stochastically smaller than that under Arm A. However,

we note the overlap in the interval estimates for the two treatment survival functions for

smaller time points and, more emphatically, for time points beyond about t = 700 days.

Based on the hazard function posterior mean estimates, the hazard rate under arm B is

larger than that under arm A, with the exception of the time interval from about 700

to 1100 days that corresponds to a crossing of the estimated hazard functions. In this

case, there is even more substantial overlap of the interval estimates, driven by the large

posterior uncertainty for the arm B hazard rate estimate. Nonetheless, the estimates

strongly suggest that the proportional hazards assumption is not suitable for this study.

For a more focused comparison of the two treatments, Figure 2.8 plots the

entire posterior distribution for the difference between the survival and hazard functions

at six specific time points, t = 100, 300, 500, 700, 1000, and 1500 days. The lines

within each violin plot indicate the 95% posterior credible interval for SB(t) − SA(t)

and hB(t) − hA(t), and can thus be contrasted with the horizontal reference line at 0.

Based on the 95% interval estimate, treatment A outperforms treatment B at t = 300,

500 and 700 days with respect to survival probability, and at t = 300 days according to

hazard rate.

2.5 Summary

We have developed a parsimonious Erlang mixture model as a general method-

ological tool for nonparametric Bayesian survival analysis. The model is built from a
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basis representation for the survival density, using Erlang basis densities with a com-

mon scale parameter. The weights are defined through increments of a random dis-

tribution function, which is flexibly modeled with a Dirichlet process prior. Utilizing

a common-weights dependent Dirichlet process prior, the model has been extended to

accommodate a categorical covariate associated with a generic control-treatment set-

ting. The proposed methodology provides a useful balance between model flexibility

and computational efficiency. The models were illustrated with synthetic and real data

examples.
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Chapter 3

Bayesian Nonparametric Survival

Regression Model using Log-logistic

kernel

3.1 Introduction

The log-logistic model, a distribution that belongs to the family of general-

ized linear models, has become increasingly relevant for analyzing time-to-event data.

Originating from life data analysis, its application has spanned various disciplines, in-

cluding medical studies, engineering, and social sciences. Historically, the log-logistic

distribution was regarded as an alternative to the more frequently used Weibull and

log-normal distributions, particularly in the realm of survival analysis. The log-logistic

model offers certain benefits, such as its flexible shape for the hazard function, a closed-

form expression for both survival and hazard functions, and heavier tails (Cox & Oakes
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1984; Bennett 1983). Over time, numerous studies have focused on the applications

and extensions of the log-logistic model. For example, Collett (2003) highlighted its

implementation in medical research, while Klein & Moeschberger (1997) emphasized

the model’s suitability for censored and truncated data.

In this study, we present an innovative approach that combines the log-logistic

model with the BNP methods. The aim is to augment existing survival analysis tools

by enhancing both their flexibility and computational efficiency. While parametric and

semi-parametric methodologies have predominantly filled the literature, the BNP tech-

niques introduced here stand out for their minimal reliance on distributional assump-

tions. Historically linked with survival analysis, extensive literature exists on BNP,

delving into topics like survival densities, functions, and hazard mechanisms. For an

in-depth exploration of these core methodologies, readers can consult seminal works

such as those by Ibrahim et al. (2001), Phadia (2013), Müller et al. (2015), and Mitra

& Müller (2015).

DPM models occupy a significant position in the BNP literature. These models

serve as bridges between traditional parametric distributions and the more expansive

world of BNP. In essence, they form a countable mixtures of parametric distributions,

enabling greater flexibility from a modeling perspective and efficient computation via

Markov chain Monte Carlo (MCMC) approaches (Escobar & West 1995; Neal, 2000).

In particular, if G is a DP (α,G0) with total mass parameter α and baseline distribution

40



G0, the DPM models can be represented as (Sethuraman 1994),

f(t | G) =
∞∑
l=1

plk(t | θl),

where k(·) and θl are generic notations for kernel function and mixing parameters. pl

are mixture weights follow a stick-breaking process, pl = vh
∏
r<l(1 − vr), with vr

i.i.d.∼

Be(1, α), and atoms θl are i.i.d. from the baseline distribution. Our investigation is

specifically on combining a log-logistic kernel with DPM.

The DPM models allow a straightforward extension to incorporate covariates

through either atoms or mixture weights, or both, in the DP prior, referred as dependent

DP (DDP) (MacEachern 2000). Specifically, the density function is written as:

f(t | G, x) =
∞∑
l=1

pl(x)k(t | θl(x)),

where x is a generic notation for covariates. Various methods have been explored in

the literature to introduce covariates through atoms or weights. Pioneering work of

covariates-dependent mixture weights has been introduced by Müller et al. (1996) where

a joint framework modeling both response and covariates via a mixture of multivariate

normals under DPM. This methodology has since been expanded upon by researchers

as Taddy & Kottas (2010), Wade et al. (2014), DeYoreo & Kottas (2018), and has

found applications across various disciplines. Product partition models (PPM) share

much in common with the joint modeling methodologies, which were first studied by

Hartigan (1990) and Barry & Hartigan, and later extended by Müller et al. (2011)

and Park & Dunson (2010) to account for covariates. This congruence is particularly

evident when the PPM-based response partition aligns with a DP-induced model and
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the covariate model is probabilistic in nature. Another branch of extensions in atoms

has been explored by De Iorio, Müller, Rosner & MacEachern (2004) and De Iorio,

Johnson, Müller & Rosner (2009), where a linear combination of covariates replaces the

mean parameter in the normal kernel, thus referred as the linear DDP (LDDP) model.

These methodologies have also been studied in the work of Shi et al. (2021), which

built upon the DPM model with a Weibull kernel (Kottas 2006), for competing risks

regression. In this study, we extend the DPM-based log-logistic model by combing the

response-covariates joint modeling approach with LDDP.

The remainder of this article is structured as follows: Section 2 details the

methodology, encompassing approaches to prior specification and posterior computation

(with the appendix offering in-depth simulation details). Sections 3 and 4 present results

from synthetic and real data examples, respectively. We conclude with a summary in

Section 5.

3.2 Methodology

This section begins by presenting the intrinsic characteristics of the log-logistic

distribution in Section 3.2.1 followed by a discussion of its central role as a kernel

function under the DPM framework for survival analysis in Section 3.2.2. Then we

describe the prior specification mechanism and posterior computation in Section 3.2.3.
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3.2.1 Log-logistic kernel

The log-logistic distribution has demonstrated its value in the field of survival

analysis (Bennett 1983). This distributions is similar with the log-normal density in

shape but has a heavier tail. Under specific parameter conditions, its form can decrease

monotonically. Moreover, there are closed-form expression for its density, survival, and

hazard functions.

The functions for the log-logistic distribution are as follows:

fLL(t | θ, ϕ) =
ϕ
θ

(
t
θ

)ϕ−1{
1 + ( tθ )

ϕ
}2 and SLL(t | θ, ϕ) =

1

1 +
(
t
θ

)ϕ and hLL(t | θ, ϕ) =
ϕ
θ

(
t
θ

)ϕ−1

1 + ( tθ )
ϕ
,

where fLL(· | θ, ϕ), SLL(· | θ, ϕ) and hLL(· | θ, ϕ) respectively represent density, survival,

and hazard functions, parameterized by a scale parameter θ and a shape parameter ϕ.

The median of the log-logistic model is equivalent to the model’s scale parameter.

The density and hazard function exhibit a unimodal shape when the shape

parameter ϕ is greater than 1; otherwise, the density decreases monotonically. The

shape parameter is also associated with the model’s dispersion in that a larger value of

ϕ indicates a more tightly concentrated model.

Besides the similarities in shape between the log-logistic and log-normal distri-

butions, there’s a deeper relationship between them. Our research reveals a log-normal

scale mixture representation for the log-logistic model.

Remark 1 Let fLL(t | θ, ϕ) denote the density of a log-logistic distribution with scale

parameter θ > 0 and shape parameter ϕ > 0, and let fLN(t | µ, σ2) denote the density
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of a log-normal distribution with parameters µ ∈ R and σ2 > 0. Consequently, the log-

logistic distribution can be represented as a scale mixture of log-normal distributions:

fLL(t | θ, ϕ) =
∫ ∞

0
fLN

(
t | log(θ), (uϕ2)−1

)
p(u) du,

where p(u) is an alternating-sign sum of inverse-Gamma densities given by

p(u) =

∞∑
n=1

2(−1)nfinv-Ga

(
u | 1, (n+ 1)2

2

)
,

and finv-Ga(u | α, β) represents the density of an Inverse-Gamma distribution with shape

parameter α > 0 and scale parameter β > 0.

This finding mirrors the work of Stafanski (1991), who convincingly showed

that a standard logistic distribution can be represented as a scale mixture of the standard

normal distribution, intricately linked with a Kolmogorov-Smirnov-related distribution.

3.2.2 Model for Survival Analysis

We now advance our discussion to the integration of the log-logistic kernel

within the DPM framework for survival analysis, referred as the DPM-LL model. The

proposed model has the following formulation,

f(t | G) =
∫
fLL(t | θ, ϕ)dG(θ, ϕ) and G ∼ DP (α,G0),

where α is the DP total mass parameter and G0 represents the baseline distribution.

The versatility of this model arises from the mixing on both scale and shape parameters

of the log-logistic distribution, thereby enabling the modeling of a wide spectrum of

44



distributional shapes on R+. The density function and survival function have an almost

sure representation as discussed in Sethuraman (1994), using the stick-breaking process

definition. They are expressed as follows:

f(t | G) =
∞∑
l=1

plfLL(t | θ∗l , ϕ∗l ) and S(t | G) =
∞∑
l=1

plSLL(t | θ∗l , ϕ∗l ), (3.1)

where stick-breaking weights (p1, p2, . . . ) are generated through latent i.i.d. random

variables vr
i.i.d.∼ Be(1, α), with p1 = v1, pl = vl

∏l−1
r=1(1 − vr) for l = 1, 2, . . . . The

distinct values (θ∗l , ϕ
∗
l ) are independently generated from the baseline distribution.

In survival analysis, the hazard function is a fundamental quantity. It is defined

as the instantaneous failure rate for an event (such as death) to occur, given that

the event has not yet happened up to that time. Under the stick-breaking process

construction, we can the hazard function of the DPM-LL model as a time-dependent

mixture of log-logistic hazard functions:

h(t | G) =

∞∑
l=1

p̃l(t)hLL(t | θ∗l , ϕ∗l ), (3.2)

where p̃l(t) = plSLL(t | θ∗l , ϕ∗l )/
∑∞

r=1 prSLL(t | θ∗r , ϕ∗r). This mixture representation

with time-varying weights facilitates local adjustment for capturing various shapes of

the hazard function, thus overcoming the shape restriction of individual log-logistic

hazard functions.

A vital component of this DPM-LL model is the baseline distribution G0. It

determines the expected distribution of the proposed model as E(f(· | G)) =
∫
fLL(· |

θ, ϕ)dG0(θ, ϕ). The choice of the baseline distribution aims to enable efficient compu-

tation, allow model’s flexibility, and incorporate prior information through its hyper-
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parameters. To achieve conditional conjugacy with the hyperparameters, we place the

prior base measure on log(θ) and ϕ2 as:

G0(θ, ϕ | µθ, σ2θ , aϕ, bϕ) = N(log(θ) | µθ, σ2θ)Ga(ϕ2 | aϕ, bϕ),

where Ga(· | a, b) denotes the Gamma distribution with a mean of ab. In the following

section, the prior specification and posterior computation method will be discussed.

3.2.3 Prior specification and posterior computation

The DP prior for random mixing distribution G, given by DP (α,G0), is crucial

in the context of our proposed model construction. The total mass parameter α of the

DP determines the variability of the generated realizations from a prior distribution. As

recommended by Escobar & West (1995), we assign a Gamma prior distribution to α,

denoted as α ∼ Ga(aα, bα). In our experience in simulation studies, letting aα = 2 and

bα = 1 is sufficient for functional estimations tasks. The prior density function given

the choice of the baseline distribution is affected by four hyperparameters, including µθ,

σ2θ , aϕ and bϕ. Each of the hyperparameter could be assigned a hyper prior to enhance

the model’s effectiveness.

For simplicity, σ2θ and aϕ can be pre-fixed. Let µθ have a N(sθ, Sθ) prior with

mean sθ and variance Sθ, and bϕ have a inv-Ga(rϕ, Rϕ) prior.

This results in a marginal prior base measure of log(θ) following a normal

distribution, N(sθ, Sθ + σ2θ), and the marginal prior base measure of ϕ2 is proportional

to (ϕ2)aϕ−1(ϕ2 + Rϕ)
−(aϕ+rϕ) with mean value equal to aϕRϕ/(rϕ − 1). When Rϕ = 1,
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the distribution is a Beta prime. In practice, the hyperparameter rϕ can be set as the

smallest integer value (3) that produces and an inverse-gamma distribution with finite

mean and finite but largest variance. The selection of values for aϕ, rϕ and Rϕ allows

incorporation of prior information about the density function’s shape and dispersion.

Specifically, smaller values of ϕ2 correspond to more decreasing mixture components

with large dispersion.

To validate the hyperparameter setting, it is helpful to visualize prior estimates.

Under a given set of hyperparameters, the prior estimates for the density, survival, and

hazard functions can be approximated using the truncated version of Equations (3.1)

and (3.2) at level of N where N is chosen large enough to ensure that
∑N

l=1 pl ≈ 1.

Our method to posterior computation is founded on an augmentation model

that enables a Gibbs sampler. Each subject is assigned a membership indicator, Li,

which takes values in 1, . . . , k. Here, k represents the total number of distinct atoms

arising from the DP prior, and ti denotes the survival times of the n subjects. As such,

the following hierarchical model can be structured:

P(L1, . . . , Ln | α) = αk
∏k
l=1 Γ(nl)∏n

i=1(α+ i− 1)
,

log(θ∗l ) | µθ, σ2θ
i.i.d.∼ N(µθ, σ

2
θ) for l = 1, . . . , k,

ϕ2l | aϕ, bϕ
i.i.d.∼ Ga(aϕ, bϕ) for l = 1, . . . , k,

ti | Li,θ∗,ϕ∗ ind.∼ LL(θ∗Li
, ϕ∗Li

) for i = 1, . . . , n,

where θ∗ = (θ∗l : l = 1, . . . , k), and ϕ∗ = (ϕ∗l : l = 1, . . . , k).

Survival analysis often contends with right censoring, a common issue where
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observations of study participants are curtailed due to non-informative reasons such

as administrative constraints. Generally, data are recorded as yi = min(ti, ci) for i =

1, . . . , n, where ti indicates survival time and ci indicates the right censoring time. Given

this, the entire dataset can be expressed asD = (yi, νi) : i = 1, . . . , n, where νi is a binary

censoring indicator, with νi = 1 if ti is observed and νi = 0 if ti is right-censored.

Then the likelihood function of the augmented model can be written as

L(Φ;D) =
n∑
i=1

{fLL(yi | θ∗Li
, ϕ∗Li

)}νi{SLL(yi | θ∗Li
, ϕ∗Li

)}1−νi ,

where Φ indicates all parameters.

We implement posterior inference via Markov chain Monte Carlo (MCMC)

simulation, using standard posterior simulation methods for DPM models (e.g., Escobar

& West (1995), Neal (2000)). The computational details can be found in Appendix B.

3.3 Model extension for regression

In survival analysis, survival responses are often collected with covariates.

There might be a complex relationship between responses and covariates. To address

this challenge, we extend the DPM-LL model to incorporate with covariates and add it

to the regression toolkit. In practical applications, there are cases where certain covari-

ates should not be treated as random variables. An example would be in a controlled

experiment where group assignments are predetermined, not random. Suppose we have

a p-dimensional covariate vector, x, which is random, and a q-dimensional covariate

vector, z, which we consider as fixed. As discussed, we proposed a regression model
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combing the response-covariates joint model and LDDP in the following way:

f(t,x | G, z) =
∞∑
l=1

plfLL(t | θ∗l exp{(x′, z′)β∗
l }, ϕ∗l )f(x | Ω∗

l ),

where f(x | Ω) is a general representation for the joint probability density/mass function

of covariates. {pl, l = 1, 2, . . . } are stick-breaking weights and {(θ∗l ,β∗
l , ϕ

∗
l ,Ω

∗
l ) : l =

1, . . . } are i.i.d. from the baseline distribution G0, where β
∗
l is p+ q dimensional. The

resulting conditional density function of t is then

f(t | x, G,z) =
∞∑
l=1

ωl(x)fLL(t | θ∗l exp((x′, z′)β∗
l ), ϕ

∗
l ), (3.3)

where ωl(x) = plf(x | Ω∗
l )/
∑∞

r=1 prf(x | Ω∗
r). The conditional survival and hazard

functions can also be obtained in the same manner, expressed as,

S(t | x, G,z) =
∞∑
l=1

ωl(x)SLL(t | θ∗l exp((x′, z′)β∗
l ), ϕ

∗
l ), (3.4)

and

h(t | x, G,z) =
∞∑
l=1

ω̃l(t,x)hLL(t | θ∗l exp((x′, z′)β∗
l ), ϕ

∗
l ), (3.5)

where

ω̃l(t,x) = ωl(x)SLL(t | θ∗l exp((x′, z′)β∗
l ), ϕ

∗
l )∑∞

r=1 ωr(x)SLL(t | θ∗r exp((x′, z′)β∗
r ), ϕ

∗
r)

.

The choice of covariates kernel functions, f(x | Ω), and their correspond-

ing baseline distribution, G0(Ω), depends on the nature of the covariates, which may

be continuous, count, or categorical. Considering the computational ease, we assume

conditional independence between covariates, as, f(x | Ω) =
∏p
j=1 f(xj | Ωj) and

G0(x) =
∏p
j=1G

(j)
0 (Ωj). Suitable conjugate models are selected for each type: a
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normal-normal model for continuous covariates, a Poisson-Gamma for a count-type,

and Beta-Binomial for categorical ones,

Recall from Section 3.2.2 that prior base measures for log(θ) and ϕ2 are defined

as N(µθ, σ
2
θ) and Ga(ϕ2 | aϕ, bϕ), respectively. We extend these to include independent

baseline distributions for the mixing parameter β as a product of normal distributions,∏p+q
j=1 N(βj | µβj , σ2βj). This configuration ensures the capability of dealing with various

types of covariates while retaining the desired computational efficiency.

To complete the Bayesian framework, we begin by fixing σ2βj , for j = 1, . . . , p+

q, and assign independent normal hyper prior distributions to each µβj
ind.∼ N(sβj , Sβj ),

which yields a marginal multivariate normal baseline distribution of β, expressed as

Np+q(sβ,Sβ + Σβ), where sβ = (sβ1 , . . . , sβp+q)
′, Sβ = Diag(Sβ1 , . . . , Sβp+q), Σβ =

Diag(σ2β1 , . . . , σ
2
βp+q

). As for parameter settings, we suggest a sβ = (0, . . . , 0)′, based on

our experiences with synthetic data. Also σ2βj and Sβj are recommended to be set to a

small number between 0.5 and 1.5, although the specific selection may vary depending

on the context.

Similar to DPM-LL model, prior estimates can be used to validate hyperpa-

rameter specification. For a specified set of hyperparameters and covariates x, the prior

estimates of the conditional density (3.3), survival (3.4), hazard (3.5) functions can be

approximated through truncation.

The implementation of posterior simulation for the BNP log-logistic regression

model is based on its DPM representation of the model for both survival responses

and covariates. Thus, the computation extends naturally from the previous algorithm.
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Detailed procedures are provided in Appendix C.

3.4 Simulation study

In this section, we demonstrate the application of the proposed model, detailed

in Section 3.2.2 through synthetic data examples. This first dataset is constructed from

a mixture of three Gamma distributions, manifesting in a non-standard unimodal shape

for its density function. We further examine the model’s performance in the presence

of right-censored observations due to independent censoring.

In addition, we will illustrate the extension of the model in Section 3.4.2,

using synthetic data with one binary and one continuous covariate. The goal here is to

exhibit how our model can be adeptly adapted as a tool for quantile regression, thereby

demonstrating its multifaceted utility.

For all data examples considered in Sections 3.4 and 3.5, we specify the prior

hyperparameters using the approach described in Sections 3.2 and 3.3. Standard di-

agnostic techniques are employed to examine convergence and mixing of the MCMC

algorithms. We run the MCMC chain for 20,000 iterations, then discard the first 5,000

samples, and use every seventh sample from the remaining iterations for the posterior

inference.

3.4.1 Simulation example 1: survival times without covariate

In this example, 400 survival times are simulated from a mixture of three

Gamma distributions, given by 0.3Ga(6, 2) + 0.4Ga(2, 8) + 0.3Ga(10, 3), which yields
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(a) Density, no censoring (b) Survival, no censoring (c) Hazard, no censoring

(d) Density, 21.5% censoring (e) Survival, 21.5% censoring (f) Hazard, 21.5% censoring

(g) Density, 40% censoring (h) Survival, 40% censoring (i) Hazard, 40% censoring

Figure 3.1: Synthetic data example 1. Each row presents functional estimates on

datasets with varying degrees of censoring (0%, 21.5%, and 40%). Each column cor-

responds to different functional estimates: density, survival, and hazard function, re-

spectively. Each subfigure shows the posterior mean estimates (dashed lines), the 95%

pointwise posterior credible intervals (dark shaded regions), the 95% prior pointwise

credible intervals (light shaded regions), and simulation truth (solid lines). Rug plots

in the first column display observed (black) and censored (red) survival times.
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a complex unimodal density. With respect to the hazard function, a subtle decline is

observable from t = 10 to t = 20. The true underlying functions for density, survival,

and hazard are displayed as solid lines in Figure 3.1(a)-(c). The prior distributions are

designed as follows: α ∼ Ga(2, 1), µθ ∼ N(2, 0.5), bϕ ∼ inv-Ga(3, 20), while aϕ and σ2θ

are fixed at 4 and 1 respectively. The corresponding 95% pointwise prior credible interval

estimates are also illustrated with light shaded regions. With these hyperparameter

values, the prior interval estimates exhibit wide uncertainty bands over the range of

observed survival times, as illustrated by the rug plot in black in each subfigure.

Figures 3.1(a)-(c) present the posterior point and interval estimates as dashed

lines and dark shaded regions, respectively. The non-standard unimodal shape of the

true underlying functions is effectively captured by the model. The model’s substan-

tial learning from the data is visibly represented through the transition from light to

dark regions in each panel. In particular, the inference results for the hazard function

demonstrate the local adjustment, where the decreasing hazards from t = 10 to 20 is

captured.

To examine the model’s performance with censored data, we employed a ran-

dom censoring mechanism and generated 400 censoring times from a Gamma distribu-

tion, denoted by ci for i = 1, . . . , n. As discussed, we defined yi as min(ti, ci), and νi

as 1 if ci > ti, and 0 otherwise. By changing the parameter in the Gamma distribution

for censoring times, we obtained two separate sets of data that contain 21.5% and 40%

censoring, respectively. The same set of priors and the same MCMC implementation

were employed for each of these censored datasets.
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As visualized in panels (d)-(i) of Figure 3.1, censoring does not substantially

impact the inference. This is evidenced by the consistent containment of the true

function within the posterior interval estimates across in all instances, particularly for

density and survival functions. Notably, the hazard function is well captured given a

sufficient data, in these particular data examples, t < 40. As the proportion of censoring

expands, the posterior uncertainty bands concurrently widen, a trend especially evident

in the estimates for the hazard function.

3.4.2 Simulation example 2: survival times with two covariates

Here, we evaluate the performance of the extended model for handling non-

linear regression problems. Consider a case with one binary (z) covariate indicating

experimental group assignments and one continuous (x) covariate. Let zi = 0, for

i = 1, . . . , 300, and zi = 1 for i = 301, . . . , 600. And let xi ∼ N(0, 1) for i = 1, . . . , 600.

Conditional on z and x, we simulate survival times from a log-normal distribution,

LN(µz(x), σ
2
z), where its median, exp(µz(x)), is a nonlinear function of x for each value

of z, in detail, 4 exp(−0.3(x + 0.5)2) + 0.5 and 4 exp(−0.2x2) + 2.5, and σ2z is set as

σ20 = 0.62 and σ21 = 0.82.

In line with our previous discussion, we used a normal kernel for the continuous

covariate x. A hierarchical representation can be constructed with the use of a latent

variable, such as x | µ ∼ N(µ, τ2), µ ∼ N(µ | sµ, Sµ). τ2, sµ, and Sµ are fixed at

prespecified values. The marginal normal model is obtained for µ as N(µ | sµ, Sµ + τ2).

If no further prior knowledge is provided for value assignments for τ2, sµ, and Sµ, we

54



recommend the standard approach that sets sµ = 0, and τ2 to be comparably smaller

than the sample variance of x, and let Sµ be large to increase prior variance. In this

example, we let sµ = 0, Sµ = 10, and τ2 = 0.5.

The hyper priors that are related to responses are set in the following way,

aϕ = 10, rϕ = 3, Rϕ = 20, sθ = 0.5, Sθ = 0.5, σ2θ = 1, sβ = 0, Sβ = 0.5, and σ2β = 1. In

addition, we let aα = 2 and bα = 1. The pointwise prior 95% credible interval estimates

are illustrated in Figure 3.2 in light gray shades providing large support for all the

density, survival, and hazard functions.

Posterior inferences are summarized in Figure 3.2, with dark gray shades in-

dicating 95% pointwise posterior estimates and dashed lines denoting posterior mean

estimates, illustrating the model’s success in capturing the true underlying function

(solid lines) across the range of covariates. The transition from the prior to posterior

estimates clearly demonstrates the model’s substantial learning from the data. Our

extended model can be readily adopted to a quantile regression model for any cho-

sen percentile of survival times. Given covariates x0, z0, and one draw of posterior

samples Θ(b), the posterior P th percentile survival time Q can be obtained through

equation 0.01P = 1 − S(Q | x0,Θ(b), z0) by searching through the discretization of

S(Q | x0,Θ(b), z0), the details for functional evaluation are described at the end of Ap-

pendix C. Figure 3.2 displays estimated median and 75th percentile of survival times

over grids of the continuous covariate x for z = 0 (in red) and z = 1 (in blue). The

extended model is capable of capturing the nonlinear shape of two different percentiles

of survival times over the grid of x, alongside the correct stochastic order of for z = 0
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and 1, with its point estimates enclosing the true values within the 95% uncertainty

bands.

3.5 Real data example

In this section, we examine the model on a real dateset comprising survival

times (measured in days) of 121 patients diagnosed with small cell lung cancer, as de-

tailed in Ying et al. (1995). These patients were randomly allocated to one of two

treatments regimes, denoted as Arm A and Arm B. Arm A’s protocol involved adminis-

tering cisplatin (P), followed by etoposide (E), to the patients, while Arm B’s treatment

plan involved reversing this order, with etoposide (E) given first, followed by cisplatin

(P). Of the 62 patients under Arm A’s treatment, 15 experienced right censored survival

times, and similarly, of the 59 patients in Arm B, 8 experienced right censored survival

times. Additionally, patient age at the time of study entry is provided, which, for the

purpose of this analysis, we have standardized to have a mean of zero and a variance of

one.

For the purpose of demonstrating our model, we represent treatment assign-

ments as z, and the standardized age as x. Similar to the simulation example 2

(in Section 3.4.2), we assume a normal kernel for x, thus x | µ, τ2 ∼ N(µ, τ2), and

µ ∼ N(sµ, Sµ). The hyperparameters are specified as follows: we assign bϕ an inverse

Gamma distribution, inv-Ga(3, 10), and µθ a normal distribution, N(6, 0.5). Similarly,

µβ is assigned a normal distribution, N((0, 0)′, 0.5I2), and α is assigned a Gamma dis-
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tribution, Ga(2, 1). In addition, aϕ, σ
2
θ , σ

2
β, sµ, Sµ, and τ2 are fixed at 10, 1, 1, 0,

10, and 0.5, respectively. The 95% pointwise prior interval estimates for density given

different covariates are displayed in Figure 3.4 with light gray shades with reasonable

wide coverage.

Figure 3.4 also showcases the model’s adaptability in capturing the conditional

density estimates, where pointwise posterior point and interval estimates are shown

in dark gray shades and dashed lines. The model consistently implies a unimodal

shape for the conditional density across different values of the covariate. Notably, the

conditional density for Arm A exhibits more discrepancy than Arm B at the same age.

In Figure 3.5(a) and 3.5(b), posterior point estimates for the conditional survival and

hazard functions are presented. For a given age, Arm A exhibits a higher survival curve

and lower hazard curve than the Arm B. Within the same treatment group, there is

a stochastic order of hazards and survival probabilities for ages 54, 62, and 70 groups,

however, this order doesn’t hold for age 45. In Arm A group, age 45 has crossing hazards

with age 62 at t = 1800 and crossing survival probabilities with age 62 at t = 1000. The

crossing hazards and survival probabilities also appear in Arm B group. This finding

indicates a nonlinear relation between survival times and age given a treatment group.

To reveal the nonlinearity between age and survival times, we represent Fig-

ure 3.6 where the median and 75th percentile regression functions over the grids of age,

separately for Arm A and Arm B are displayed. Both pointwise posterior median and

50% credible interval estimates are shown. The model infers a nonlinear relationship be-

tween survival times and age for both treatment arms, pointing the peak of the median
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and 75th percentile survival times when age falls between (55, 60). For both median

and 75th percentile survival times, Arm A consistently exhibits higher survival times

than Arm B across all ages.

3.6 Summary

In summary, this research presents an advanced Bayesian nonparametric method

tailored for comprehensive inference in survival data analysis. By integrating a Dirich-

let process mixture model with a log-logistic kernel, which is a well-established tool

in survival analysis but underrepresented in Bayesian nonparametric studies, we offer

a nuanced understanding of the complexities inherent in survival data. Our approach

is computationally efficient, facilitated by the use of Markov chain Monte Carlo tech-

niques and Pólya-gamma data augmentation method for posterior computations. We

also revealed a log-normal scale mixture representation of a log-logistic model.

A key innovation in our study is the extension of the core model to incor-

porate covariates via a density regression framework. This is achieved through core

components.

This novel approach allows local adjustment in mixture weights of covariates

which can be considered random variables. Moreover, in randomized experimental stud-

ies, experimental group assignments may not be considered random. The extended

model consider those covariates as a part of the log-linear model. First, we introduce

a log-linear model for the scale parameter of the log-logistic kernel, following the linear
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dependent Dirichlet process model as outlined by De Iorio, Johnson, Müller & Rosner

(2009). Second, we extend the model to include a joint kernel function that simulta-

neously models covariates and responses, building on the foundational work by Müller

et al. (1996).

In conclusion, this study enriches toolkit available for advanced and flexible

survival analysis approaches.
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(a) Density, z = 1, x = −1 (b) Survival, z = 1, x = −1 (c) Hazard, z = 1, x = −1

(d) Density, z = 0, x = 0 (e) Survival, z = 0, x = 0 (f) Hazard, z = 0, x = 0

(g) Density, z = 1, x = 0 (h) Survival, z = 1, x = 0 (i) Hazard, z = 1, x = 0

Figure 3.2: Simulation 2. Each row presents functional estimates with varying values

of covariate (z, x) ((1,-1), (0,0), (1,0)). Each column corresponds to different functional

estimates: density, survival, and hazard function, respectively. Each subfigure shows the

posterior mean estimates (dashed lines), the 95% pointwise posterior credible intervals

(dark shaded regions), the 95% pointwise prior credible intervals (light shaded regions),

and the simulation truth (solid lines).
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(a) Median regression (b) 75th percentile regression

Figure 3.3: Simulation 2. The Figure displays pointwise posterior estimates for the

median (panel a), and 75th percentile (panel b) of survival times across the continuous

covariate x range (-1.64, 1.64). Point estimates are represented by dashed lines and

95% credible intervals are highlighted with shaded regions. The red color denotes z = 0

while the blue color indicates z = 1. The underlying truth is represented by solid lines.
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(a) (A, 45) (b) (A, 54) (c) (A, 62) (d) (A, 70) (e) (A, 79)

(f) (B, 45) (g) (B, 54) (h) (B, 62) (i) (B, 70) (j) (B, 79)

Figure 3.4: Small cells lung data. Each row presents survival estimates with different

treatment Arm (A and B). Each column corresponds to different values of age (45,

54, 62, 70, 79). Each subfigure shows the posterior mean estimates (dashed lines),

95% pointwise posterior credible intervals (dark shaded regions), and 95% prior interval

estimates (light shaded regions).
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(a) Survival, Arm A (b) Survival, Arm B

(a) Hazard, Arm A (b) Hazard, Arm B

Figure 3.5: Small cells lung data. The first row shows the posterior mean estimates of

the conditional survival function, while the second panel displays posterior estimates of

the conditional hazard function. The left and right columns are corresponding to Arm

A and Arm B, respectively. Each color corresponds to a distinct age of patients.
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(a) Median regression (b) 75th percentile regression

Figure 3.6: Small cells lung data. The left panel shows the pointwise posterior mean

estimates (dashed lines) and the 50% pointwise posterior credible intervals for the me-

dian survival times over the range of the standardized age. The right panel shows the

posterior point and interval estimates for the 75th percentile of survival times. The

treatment groups are color-coded, with Arm A represented in red and Arm B in blue.
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Chapter 4

Bayesian Nonparametric Regression

Model for Joint Modeling of Recurrent

Events and Survival Times

4.1 Introduction

Recurrent events commonly arise in clinical trials, reliability studies, and other

fields, for instances, recurrent infections, rehospitalizations, and machine repairs. These

sequences of events can often be terminated by some fatal events, such as death or a

critical system failure. It is possible that the frequency of recurrent events and timing

of termination events (survival times) are related. Thus, the development of a nuance

understanding of the dependence between recurrent events and survival times is crucial.

Addressing this need effectively requires a sophisticated and flexible joint modeling

framework that can intricately model the dependencies between recurrent and terminal
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events.

Historically, the statistical modeling of recurrent events has been approached

by two primary frameworks, as reviewed by Cook & Lawless (2007). The first frame-

work assumes a continuous intensity function, typically employing various Poisson-type

processes to model for recurrent events. Alternatively, the second framework makes a

renewal-process assumption. This modeling approach concentrates on the density func-

tion of the gap (interval-arrival) times between events, offering a different perspective

on the temporal structure of the data.

Survival analysis is a well-studied topic in statistics, with proportional hazards

(PH) models being the most well-known for survival regression, where covariates con-

tribute multiplicatively to the hazard rate. Accelerated failure time (AFT) models offer

an alternative approach, assuming a probabilistic model for log-transformed survival

times. Comprehensive reviews of both frequentist and Bayesian methods can be found

in Klein & Moeschberger (1997) and Ibrahim et al. (2001).

Under the context of the joint analysis of recurrent events and survival times,

a commonly used modeling approach for establishing dependency is through the use

of random effects. Conditional on the random effects, recurrent events and survival

times are assumed to be independent. Typically, recurrent events are modeled using

a nonhomogeneous Poisson process (NHPP) regression model, while survival times are

often approached with PH or AFT models. This method has been widely adopted

across various studies, including those by Liu et al. (2004), Rondeau et al. (2007), and

Ye et al. (2007), with a notable focus on Bayesian implementations by Sinha et al.
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(2008), Ouyang et al. (2013), and Lee et al. (2019). Specifically, in the studies by Sinha

et al. (2008) and Ouyang et al. (2013), a PH approach is used. Both studies assume a

shared Gamma random effects model, where the NHPP model and survival model share

the same effects. On the other hand, Lee et al. (2019) employs an AFT approach and

enhances model flexibility by placing a Dirichlet process (DP) prior on random effects

model.

An alternative strategy is to utilize the second approach for recurrent events

under the joint modeling framework. For instance, Huang & Liu (2007) applied PH

models for both gap and survival times within a frequentist framework. This model was

further enhanced by Yu & Liu (2011) who incorporated a nonlinear covariate function

via penalized splines within the recurrent events component. Tawiah et al. (2019)

incorporated a cure fraction into their model development, expanding its applicability.

From a Bayesian perspective, Paulon et al. (2020) adopted AFT models for

conditional survival and gap times. Instead of modeling the density function of gap

times directly, Boom et al. (2022) chose to model the number of recurrent events, then

implemented an autoregressive model to relax the independence assumption among

gap times. Both studies employed a DP prior on random effects. In a more specialized

context, Wen et al. (2016) addressed the complexity of having multiple types of recurrent

events (local and distant) by using three PH models to simultaneously model these

recurrent events along with survival times, incorporating a bivariate random effects

model for each type of recurrent event and a combination of two random effects for

survival times. Similar to these approaches, we assume subject-specific random effects
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to introduce dependencies between survival times and recurrent events. Additionally,

we relax the PH and AFT assumptions and model the density functions of survival and

gap times within a Bayesian nonparametric framework.

The main novel methodological contribution of this work is to model con-

ditional densities of gap and survival times using Bayesian nonparametric regression

models. We place dependent Dirichlet process (DDP) mixture priors on the density

functions of survival and gap times. The DDP, as initially conceptualized by MacEach-

ern (2000), provides flexibility in modeling a collection of distributions varying across

covariate space. In the DDP, each set of random measures is configured to be marginally

a DP-distributed random measure for any given covariate value x ∈ χ. This is achieved

by adapting the stick-breaking process construction (Sethuraman 1994) of a DP, which

can be expressed as:

Gx(·) =

∞∑
l=1

{
Vl(x)

∏
r<l

[1− Vr(x)]

}
δθl(x)(·),

where Vl(x) are independent stochastic processes across the covariate space χ with

Beta marginal distributions. The θl(x) are also independent stochastic processes with

index set χ and Gx0 marginal distributions. This Bayesian nonparametric regression

modeling approach extends traditional joint models to accommodate more complex data

structures across the covariates space.

The rest of the article is structured to in the following way. In Section 4.2,

we briefly reviews the joint modeling framework with survival and gap times. The

detailed description of methodological development is introduced in Section 4.3. The
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model is then illustrated with an Esophageal cancer patients dataset in Section 4.4. We

summarize the paper in Section 4.5

4.2 Joint Model for Gap and Survival Times

Consider a dataset comprising n individuals, where Yi0 := 0 marks the initia-

tion of recurrent events. The observation endpoint τi represents either the survival time

Ti or an independent right-censored time Ci, hence τi = min(Ci, Ti). The censoring

status is indicated by a binary variable νi, with 0 for censored observations and 1 for

recorded deaths.

Denote Ni ≥ 0 as the count of recurrent events observed within (0, τi] at times

Yi0 = 0 < Yi1 < · · · < YiNi < τi. The intervals between recurrent events, termed gap

times, are defined as Wij = Yij −Yi,j−1 for j = 1, . . . , Ni. It is noteworthy that the final

gap time for each subject is censored by their survival or censored time, τi − Yi,Ni .

As mentioned, our approach for modeling the dependency between survival

and gap times involves subject-specific random effects. This framework generally posits

conditional independence between survival and gap times given random effects. Unlike

the popular shared random effects, we assume correlated random effects, (ϵi, ξi), for

ith subject. This model enhances flexibility by enabling simultaneous control over the

magnitude of individual random effects and the degree of dependency between them.

A similar random effects model has been used in Tawiah et al. (2019). Suppose x is a

covariates vector. The models for survival times and gap times are formulated as follows
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for i = 1, . . . , n:

Ti | ϵi,xi
ind.∼ fS(ti | ϵi,xi),

Wij | ξi,xi
i.i.d.∼ fR(wij | ξi,xi), j = 1, . . . , Ni,

where fS and fR denote regression models for survival and gap times, respectively. The

likelihood function for all observations is written as,

L =

n∏
i=1

{fS(τi | ϵi,xi)}νi {SS(τi | ϵi,xi)}1−νi
Ni∏
j=1

fR(wij | ξi,xi)SR(τi − wi,Ni | ξi,xi),

where SS and SR denote the survival functions corresponding to survival and gap times,

respectively. This formulation accounts for censored observations through their survival

function, ensuring that the likelihood function incorporates both the observed events

and the censored information.

In the existing literature, the functions fS and fR are commonly modeled

using the PH models (Huang & Liu 2007, Yu & Liu 2011) or AFT models (Paulon et al.

2020). These models impose constraints that prevent the hazard or survival functions

from crossing. To address the need for greater modeling flexibility across the covariate

space, we introduce DDP mixture models in the subsequent section.

4.3 Joint Model with Bayesian Nonparametric Mixtures

4.3.1 Model formulation

In this work, we introduce a novel framework for the joint analysis of sur-

vival and gap times, expanding upon existing methodologies by employing a Bayesian
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nonparametric approach. This approach allows for the modeling of general shapes of

density and survival functions within and across the covariate space.

We employ DDP mixture models to articulate the conditional density of sur-

vival and gap times as follows:

fS(t | Gx, ϵ) =

∫
k(t | θ(x), ϵ)dGx, Gx ∼ DDP (Φ, G0x),

fR(w | Hx, ξ) =

∫
k(w | λ(x), ξ)dHx, Hx ∼ DDP (Λ, H0x),

where k(·) represents a generic mixture kernel density function, Gx and Hx are mixing

distributions, Φ and Λ are parameters associated with mixture weights of Gx and Hx.

And G0x and H0x are dependent baseline distributions.

As mentioned, the DDP defines the set of random distributions that are

marginally DP-distributed measures. Gx has a stick-breaking representation (Sethura-

man 1994) as: Gx(·) =
∑∞

l=1 pl(x)δθl(x)(·). We start to build the model from extending

atoms by imposing a linear model with covariates on point masses, θl(x) = βl0 + β
′
lx,

as in De Iorio, Johnson, Müller & Rosner (2009). Developing covariate-dependent mix-

ture weights that maintain marginal Beta distributions poses a significant challenge.

Our modeling approach simplifies this by focusing on a binary component in x, typ-

ically representing group assignments in control-treatment studies. The groups are

denoted by the variable z, with ctr indicating control group and trt for the treat-

ment group. This leads to dependent mixture weights for each group, formulated as

pl(x) ≡ pzl = Vzl
∏l−1
r=1(1− Vzr). Here, we incorporate a latent bivariate Beta distribu-

tion for the generation of paired mixture weights, a methodological choice that preserves
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the marginal distribution as Beta.

We construct the dependent weights of mixing distribution through a bivariate

Beta distribution introduced by Olkin & Trikalinos (2015), which is built upon a Dirich-

let distribution and can provide correlation in (−1, 1). Specifically, (∆11,∆10,∆01,∆00) ∼

Dir(α11, α10, α01, α00), then define Vtrt = ∆11+∆10 and Vctr = ∆11+∆01. Thus, the bi-

variate distribution, (Vctr, Vtrt) ∼ Bi-Be(∆00,∆01,∆10,∆11), results two marginal Beta

distributions, Vtrt ∼ Be(α11 + α10, α01 + α00) and Vctr ∼ Be(α11 + α01, α10 + α00).

The desired marginals are obtained by setting α11 = 1 − α0, α10 = α01 = α0, and

α00 = α − α0, such that the random mixing distributions have the same marginal DP

prior. As outlined by Olkin & Trikalinos (2015), this construction for the bivariate beta

distribution can be extended to q > 2 dimensions. However, such extensions necessitate

a complex setup involving 2q − 1 latent variables.

The level of dependence between survival times and recurrent events may vary

across treatment groups. To address this, we assume group-dependent random effects

and choose to use a bivariate lognormal distribution, formulated as (ϵiz, ξiz)
′ | Σez

i.i.d.∼

LN2((0, 0)
′,Σez), where the median of the distribution is fixed at (0, 0)′ for avoiding iden-

tifiability issue. The structure of Σez, with its diagonal elements quantifying the random

effects’ magnitude and the off-diagonal elements introducing dependency between sur-

vival and gap times, is pivotal in capturing the complexity interrelations inherent in the

data.

For the kernel of our mixture models, we select the log-logistic distribution for

its proficiency in accurately modeling the density and survival functions as described in
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Chapter 3. Under our joint modeling framework, both survival and gap times share the

same formulation, which is expressed as:

f(ti | Gz, ϵz,xi) =

∞∑
l=1

{
Vzl
∏
r<l

(1− Vzr)

}
fLL(ti | θ∗l exp(x′

iβ
∗
l )/ϵiz, ϕ

∗
l )

f(wij | Hx, ξz,xi) =
∞∑
l=1

{
πzl
∏
r<l

(1− πzr)

}
fLL(wij | λ∗l exp(x′

iγ
∗
l )/ξiz, η

∗
l ),

for i = 1, . . . , n, and for j = 1, . . . , Ni, where fLL(a, b) denotes the log-logistic density

with scale parameter a and shape parameter b. Atoms (θ∗l ,β
∗
l , ϕ

∗
l ) and (λ∗l ,γ

∗
l , η

∗
l )

are i.i.d. arising from G0 and H0, mixture weights are constructed through bivariate

latent variables (Vctr,l, Vtrt,l)
i.i.d.∼ Bi-Be(1 − α0, α0, α0, α − α0) and (πctr,l, πtrt,l)

i.i.d.∼

Bi-Be(1 − ζ0, ζ0, ζ0, ζ − ζ0). This model formulation incorporates dependent atoms as

well as dependent weights to allow extra dependency through a log-linear component

to the kernel distribution.

4.3.2 Prior specification

In the context of DDP models, the selection of the baseline distribution is piv-

otal, balancing computational efficiency and the model’s adaptability. For G0, we opt

for a composite baseline distribution encompassing N(log(θ∗) | µθ, σ2θ), N(β∗ | µβ,Σβ),

and Ga(ϕ∗2 | aϕ, bϕ). A similar approach is adopted for H0, utilizing N(log(λ∗) | µλ, σ2λ),

N(γ∗ | µγ ,Σγ), and Ga(η∗2 | aη, bη). This selection offers extensive support and incorpo-

rates hyperpriors for the parameters, facilitating swift parameter updates via the Gibbs

sampler. In practice, parameters such as σθ, Σβ, aϕ, σλ, Σγ , and aη can be fixed, with

priors assigned as µθ ∼ N(sθ, Sθ), µβ ∼ N(sβ, Sβ), bϕ ∼ inv-Ga(rϕ, Rϕ), µλ ∼ N(sλ, Sλ),
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µγ ∼ N(sγ , Sγ), and bη ∼ inv-Ga(rη, Rη). This setup results in a marginal prior base

measure of log(θ∗) following a normal distribution, N(sθ, Sθ + σ2θ), and the marginal

prior base measure of ϕ∗2 is proportional to (ϕ∗2)aϕ−1(ϕ∗2 + Rϕ)
−(aϕ+rϕ) with mean

value equal to aϕRϕ/(rϕ−1). When Rϕ = 1, the distribution is a Beta prime. For prac-

tical implementation, the hyperparameter rϕ can be set as the smallest integer value (3)

that yields an inverse-gamma distribution with finite mean and finite but largest vari-

ance. The selection of values for aϕ, rϕ and Rϕ allows incorporation of prior information

about the density function’s shape and dispersion. Specifically, smaller values of ϕ∗2

correspond to more widely dispersed mixture components. This approach is similarly

applied to µλ, µγ , and bη.

For the bivariate Beta prior applied to the paired latent stick-breaking weights,

(Vctr,l, Vtrt,l), which follows Bi-Be(1 − α0, α0, α0, α − α0) with 0 < α0 < 1 and α > α0,

we adopt a joint prior distribution for α0 and α as p(α0, α) = p(α0)p(α | α0). Here,

α0 is subject to a Beta prior Be(a0, b0), and conditional on α0, α has a Pareto prior

Pa(c0, α0), characterized by shape parameter c0 and scale parameter α0. For the gap

times baseline distribution H0, a similar structure is applied: ζ0 ∼ Be(a1, b1) and ζ |

ζ0 ∼ Pa(c1, ζ0). We then assign independent inverse-Wishart priors for Σez, denoted as

Σez
i.i.d.∼ inv-Wish(ce, Ce) for each group. These priors are characterized by a mean of

Ce/(ce − 3). Given a set of hyperparameters, we visualize prior estimates of marginal

and conditional density and survival functions to validate values of hyperparameters.
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4.3.3 Posterior computation

We obtain samples from the posterior distribution of the DDP mixture model

using the blocked Gibbs sampler (Ishwaran & James 2001). Our Markov chain Monte

Carlo (MCMC) posterior simulation method utilizes a truncated approximation to the

mixing distribution, denoted by GzB and HzB for survival and gap times, with trunca-

tion levels BG and BH , respectively. These approximations are defined as:

GzB ≈
BG∑
l=1

pzlδ(θ∗l ,β
∗
l ,ϕ

∗
l )
, (θ∗l ,β

∗
l , ϕ

∗
l )

i.i.d.∼ G0,

HzB ≈
BH∑
l=1

ωzlδ(λ∗l ,γ
∗
l ,η

∗
l )
, (λ∗l ,γ

∗
l , η

∗
l )

i.i.d.∼ H0,

with the construction of mixture weights pzl and ωzl designed to reflect the dependency

across treatment groups. By introducing configuration variables Liz ∈ {1, . . . , BG} for

survival times, Uijz ∈ {1, . . . , BH} for gap times, where i = 1, . . . , n, j = 1, . . . , Ni,

z ∈ {ctr, trt}, the joint model can be expressed in a hierarchical representation,

Ti | Liz,θ∗,β∗,ϕ∗, ϵiz,xi
ind.∼ LL(θ∗Liz

exp(β∗
Liz
xi)/ϵiz, ϕ

∗
Liz

),

Liz | plz
ind.∼ plzδl(Liz), for l = 1, . . . , BG,

Wij | Uijz,λ∗,γ∗,η∗, ξiz,xi
i.i.d.∼ LL(λ∗Uijz

exp(γ∗
Uijz

xi)/ξiz, η
∗
Uijz

),

Uijz | ωlz
ind.∼ ωlzδl(Uijz), for l = 1, . . . , BH ,
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where survival and gap times, and covariates are rearranged to corresponding groups.

Thus, the likelihood function of augmented model can be written as

L =

n∏
i=1


Ni∏
j=1

fLL(wij | λ∗Uijz
exp(γ∗

Uijz
xi)/ξiz, η

∗
Uijz

)


×SLL(τi − yi,Ni | λ∗Ui,Ni,z

exp(γ∗
Ui,Ni,z

xi)/ξiz, η
∗
Ui,Ni,z

)

×
{
fLL(τi | θ∗Liz

exp(β∗
Liz
xi)/ϵiz, ϕ

∗
Liz

}νi
×
{
SLL(τi | θ∗Liz

exp(β∗
Liz
xi)/ϵiz, ϕ

∗
Liz

)
}1−νi .

The detailed MCMC algorithm is elaborated in the Supplementary Materials.

Given the conditional independence of survival and gap times, marginal den-

sity, survival functions are readily derived by marginalizing over the random effects

distribution. This process is facilitated at any time t and for covariates x, through the

following expressions:

fS(t | ΘS ,x) =

∫
fS(t | GB, ϵz,x)fLN(ϵz | 0,Σez,1,1)dϵz,

SS(t | ΘS ,x) =

∫
SS(t | GB, ϵz,x)fLN(ϵz | 0,Σez,1,1)dϵz,

fR(w | ΘR,x) =

∫
fR(t | HB, ξz,x)fLN(ξz | 0,Σez,2,2)dξz,

SR(w | ΘR,x) =

∫
SR(t | HB, ξz,x)fLN(ξz | 0,Σez,2,2)dξz,

where ΘS and ΘR represent the parameters corresponding to survival times and recur-

rent events. Although direct integration does not yield closed-form expressions, we can
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obtain posterior estimates through Monte Carlo approximations:

fS(t | Θ(b)
S ,x) ≈ 1

nr

nr∑
ir=1

BG∑
l=1

p
(b)
zl fLL(t | θ

(b)
l exp(x′β

(b)
l )/ϵir,(b)z , ϕ

(b)
l ),

SS(t | Θ(b)
S ,x) ≈ 1

nr

nr∑
ir=1

BG∑
l=1

p
(b)
zl SLL(t | θ

(b)
l exp(x′β

(b)
l )/ϵir,(b)z , ϕ

(b)
l ),

fR(w | Θ(b)
R ,x) ≈ 1

nr

nr∑
ir=1

BH∑
l=1

ω
(b)
zl fLL(w | λ(b)l exp(x′γ

(b)
l )/ξir,(b)z , η

(b)
l ),

SR(w | Θ(b)
R , z) ≈ 1

nr

nr∑
ir=1

BH∑
l=1

ω
(b)
zl SLL(t | λ

(b)
l exp(x′γ

(b)
l )/ξir,(b)z , η

(b)
l ),

where (ϵ
ir,(b)
z , ξ

ir,(b)
z )′

ind.∼ LL((0, 0)′,Σ
(b)
ez ), for ir = 1, . . . , nr, and superscript (b) repre-

sents bth posterior sample from the MCMC. This approach enables the acquisition of

point-wise functional estimates over a grid of time.

In exploring the interplay between recurrent events and survival times, our

focus lies on the conditional survival probability, given no recurrent event occurrence

up to time t0, Pr(T ≥ t | T > t0, N = 0,x,ΘS ,ΘR), which implies that the first

gap time exceeds t0. Under our joint model, the conditional survival probability is

formulated as:

Pr(T ≥ t | T > t0,W1 > t0,ΘS ,ΘR,x) =
Ee {SS(t | ϵz,ΘS ,x)SR(t0 | ξz,ΘR,x)}
Ee {SS(t0 | ϵz,ΘS ,x)SS(t0 | ξz,ΘR,x)}

,

where the expectation is with respect to the bivariate random effects model. Its posterior

estimates can be approximated by:

1
nr

∑nr
ir=1

{∑BG
l=1 p̂

(b)
zl SLL(t | θ̂

(b)
l exp(x′β̂

(b)
l )/ϵ

ir,(b)
z , ϕ̂

(b)
l )

∑BH
l=1 ω̂

(b)
zl SLL(t0 | λ̂(b)l exp(x′γ̂

(b)
l )/ξ

ir,(b)
z , η̂

(b)
l )

}
1
nr

∑nr
ir=1

{∑BG
l=1 p̂

(b)
zl SLL(t0 | θ̂(b)l exp(x′β̂

(b)
l )/ϵ

ir,(b)
o , ϕ̂

(b)
l )

∑BH
l=1 ω̂

(b)
zl SLL(t0 | λ̂(b)l exp(x′γ̂

(b)
l )/ξ

ir,(b)
z , η̂

(b)
l )

} .

The posterior functional estimates can provide valuable insights into subjects’ condi-

tions under various scenarios. The posterior marginal density estimates can reveal the
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distribution’s shape, highlighting features such as multi-modality, skewness, and heavy

tails. Additionally, the posterior marginal and conditional survival probabilities can be

utilized to compare the effectiveness of control versus treatment groups.

The fully specified stochastic Bayesian joint models for survival times and

recurrent events can be used to predict future outcomes. For a hypothetical patient

given a covariate vector x0, which contains the group assignment z0, we can jointly

predict a survival time t′ and realization of recurrent events y′1, . . . , y
′
N ′ upto t′. For bth

posterior sample, we can generate predictive survival and gap times as follows:

• Draw (ϵ
(b)
z0 , ξ

(b)
z0 ) from LN((0, 0)′,Σ

(b)
ez0).

• Conditional on ϵ
(b)
z0 , generate a predictive survival time t′ from the truncated mix-

ture survival model,
∑BG

l=1 p
(b)
z0l

LL(t | θ(b)l exp(x0β
(b)
l )/ϵ

(b)
z0 , ϕ

(b)
l ).

• Conditional on ξ
(b)
z0 , take N

′ + 1 independent draws {w′
j : j = 1, . . . , N ′ + 1} from

its posterior distribution,
∑BH

l=1 ω
(b)
z0l

LL(w | λ(b)l exp(x0γ
(b)
l )/ξ

(b)
z0 , η̂

(b)
l ), such that∑N ′

j=1w
′
j < t′ <

∑N ′+1
j=1 w′

j .

We demonstrate the utility of our model through out-of-sample predictions. The model

performance is evaluated by comparing observed and predicted survival times and num-

ber of recurrent events. Additionally, we calculate conditional predictive probabilities

for prediction matching observation in leave-one-out cross-validation. Finally, we com-

pare the predictive accuracy of several other joint models with our proposed model.
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4.4 Esophageal cancer data example

(a) Survival function (b) # of effusions, 3DCRT (c) # of effusions, IMRT

(d) t0 = 0.5 (e) t0 = 2.5 (f) t0 = 5

Figure 4.1: EC Data. Panel (a) displays Kaplan-Meier survival curves for patients.

Panels (b)-(c) illustrate histograms of effusions counts for each treatment group. And

panels (d)-(f) present empirical estimates of the conditional survival probabilities given

no occurrence of effusion upto t0, Pr(T > t | T > t0, N(t0) = 0), , where t0 =0.5, 2.5,

and 5.0. We depict 3DCRT group in red and IMRT group in blue.

We applied the proposed methodology to a dataset of esophageal cancer (EC),

consisting 466 patients who underwent either three-dimensional conformal radiotherapy

(3DCRT) or intensity-modulated radiotherapy (IMRT). The dataset records from the

initiation of treatment to death or administrative censoring, with 29 censored observa-
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tions in the 3DCRT group and 84 in the IMRT group. Some patients also experienced

recurrent effusions around heart or lungs. In addition to treatment type, the dataset

includes prognostic covariates such as age, body mass index (BMI), performance status

(KPS score), tumor histology, and cancer stage. Continuous variables, age and BMI,

were standardized to have a mean of 0 and variance of 1. Binary covariates were coded

as follows: KPS score = 1 for good, histology = 1 for adenocarcinoma, and cancer stage

= 1 for advanced stages (3-4). Treatment types were coded with 3DCRT as 0 (control)

and IMRT as 1 (treatment), since the IMRT is a more modern approach. This dataset

has been studied by He et al. (2016) utilizing a semi-competing risks model to investi-

gate time-to-effusion and survival post-effusion. Subsequent enhancements by Chapple

et al. (2017) introduced Bayesian variable selection, and Lee et al. (2019) extended the

analysis to accommodate all effusion events per patient via a semi-parametric Bayesian

joint model with a Poisson process assumption on recurrent events. The previous stud-

ies revealed that IMRT decreased modalities relative to 3DCRT. However, the models

for survival times in these studies are based on either PH or AFT assumptions.

Kaplan-Meier survival curves depicted in Figure 4.1(a) suggest that the IMRT

group generally exhibits better survival than the 3DCRT group throughout the observa-

tion period. Intriguingly, the conditional survival probabilities illustrated in subfigures

(d) and (e) reveal a dynamic interplay between the two treatments. With an increase

in the reference time t0, the point at which conditional survival probabilities for the two

groups intersect shifts to earlier times as t0 progresses from six months to five years.

Additionally, Panels (b) and (c) highlight the infrequent occurrence of effusions, peaking
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at seven incidents, with a significant proportion of patients experiencing no effusions at

all.

4.4.1 Analysis with only treatment variable

We implement the joint model on the dataset, incorporating solely the treat-

ment assignment covariate. For the prior hyperparameters, we set the values as follows:

a0 = b0 = a1 = b1 = 2, c0 = c1 = 4, indicating a balanced initial belief in the distri-

bution of the treatment effects. The scale parameters σ2θ and σ2λ are assigned a value

of 2, reflecting moderate variability in the log-transformed scale parameters for survival

and gap times, respectively. The mean parameters for the log-transformed scale, sθ

and sλ, are set to 0.45 and 0, with corresponding variances Sθ = Sλ = 1, suggesting

a central tendency with a reasonable spread. For parameters β∗ and γ∗, we assume a

mean of 0 (sβ = sγ = 0) with variances Σβ = Σγ = 2 and Sβ = Sγ = 2, capturing

the uncertainty in the treatment effect size. The shape parameters for the log-logistic

distribution, aϕ and aη, are set to 3, with the inverse-Gamma parameters for the scale,

rϕ = rη = 6 and Rϕ = Rη = 30, chosen to reflect a belief in the variability of the shape

parameters. Lastly, for the covariance matrix of the random effects, Σeo, we employ an

inverse-Wishart prior with ce = 18 and Ce set to a diagonal matrix with elements (4, 4),

resulting prior predictive random effects remained within a plausible range. This hy-

perparameter configuration in the prior models allows for substantial uncertainty across

different functionals. We present their pointwise interval estimates based on the prior

models in Figures 4.2 and 4.3.
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(a) f(t) (b) S(t)

(c) f(w) (d) S(w)

Figure 4.2: EC Data with Treatment Assignments Only. This figure presents posterior

mean estimates (dashed lines) and 95% pointwise credible intervals for posterior (dark

shaded regions) and prior (light shaded regions) estimates. Panels (a) and (b) display the

survival times density and survival function, respectively, while panels (c) and (d) show

the gap times density and survival function. All estimates are derived after marginalizing

over the posterior and prior random effects models. The 3DCRT group is represented

in red and the IMRT group in blue.

We examined convergence and mixing of the MCMC algorithms using standard

diagnostic techniques. We ran the MCMC chain for 100,000 iterations, then discarded

the first 25% posterior samples and keep every 38th iteration for posterior inference.
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(1) t0 = 0.5 (2) t0 = 2.5 (3) t0 = 5

Figure 4.3: EC Data with Treatment Assignments Only. This figure presents posterior

mean estimates (dashed lines) and 95% pointwise credible intervals for posterior (dark

shaded regions) and prior (light shaded regions) estimates. Panels (a)-(c) depict condi-

tional survival probability given no occurrence of effusion up to t0 years, progressively

displaying time points at t0 = 0.5, 2.5, and 5 years from left to right. All estimates

are derived after marginalizing over the posterior and prior random effects models. The

3DCRT group is represented in red and the IMRT group in blue.

The posterior estimates for survival and gap times density, along with survival functions

presented in Figure 4.2, suggest that IMRT is associated with higher survival probabil-

ities and less frequent effusions. This includes longer gap time between effusions in the

lungs and heart and longer survival times. However, in Figure 4.3, the posterior mean

estimates of conditional survival probabilities, given no occurrence of effusions up to

t0 years, demonstrate a gradually reversing stochastic order between the 3DCRT and

IMRT groups as t0 increases. A similar trend is observed by using Kaplan-Meier curve,

as shown in Figure 4.1 (d)-(e). Notably, our posterior estimates provide smoothed point
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(a) 3DRT (b) IMRT

Figure 4.4: EC Data with Treatment Assignments Only. This figure presents generated

random effects from posterior (black) and prior (blue) random effects models. Panel (a)

focuses on the 3DCRT group, while panel (b) presents for the IMRT group.

estimates along with quantification of uncertainty, enhancing their interpretative value.

The posterior predictive random effects for the 3DCRT and IMRT groups

are illustrated in Figure 4.4. These effects show varying levels of association between

survival and gap times across the groups, highlighting the importance of employing

distinct random effects models for each treatment group.

Model Assessment To evaluate the model’s accuracy, we conducted out-of-sample

prediction by randomly selecting 25% of the dataset (117 patients) as the test set,

with the remaining 349 patients used for training. The model focused solely on the

treatment covariate, employing the same hyperparameters outlined in the previous part.

The model was used to predict recurrent effusion events up to the last observed time

(survival or censored time) for each patient in the test set, as outlined in Section 4.3.3.

We evaluated the accuracy of effusion predictions by comparing the predicted number of
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(a) Pr(Ñi = Ni), 3DCRT (b) Pr(Ñi = Ni), IMRT

(c) Pr(Ni − 1 ≤ Ñi ≤ Ni + 1), 3DCRT (d) Pr(Ni − 1 ≤ Ñi ≤ Ni + 1), IMRT

Figure 4.5: Out-of-Sample Prediction Accuracy for the EC Data with Treatment Assign-

ments only. The top row presents histograms of the probabilities for exact effusion count

matches (Pr(Ñi = Ni)), while the bottom row depicts the probabilities of predicted effu-

sion counts falling within one of the actual observed counts (Pr(Ni−1 ≤ Ñi ≤ Ni+1)).

effusions, Ñi, against the actual observed counts. Our metrics included the probability

of exact matches, Pr(Ñi = Ni | xi), and the probability of predictions within one count

of actual observations, Pr(Ni − 1 ≤ Ñi ≤ Ni + 1 | xi). Figure 4.5 showcases the

model’s proficient capability in forecasting effusion events, where the predicted counts

are generally within a one-event margin of the actual observations.
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4.4.2 Analysis with additional covariates

(a) Baseline (b) Age+, BMI- (c) Age+, BMI+

(d) KPS+ (e) Histology+ (f) Cancer+

Figure 4.6: EC Data with All Covariates. This figure presents posterior mean esti-

mates (dashed lines) and 95% pointwise credible intervals for the density estimates

after marginalizing over the posterior random effect model given different values of x∗
0.

The configurations in panels (a)-(f) are as follows: (0, 0, 0, 0, 0) serving as the base-

line, (1,−1, 0, 0, 0) representing older age and lower BMI, (1, 1, 0, 0, 0) for older age and

higher BMI, (0, 0, 1, 0, 0) indicating good performance status, (0, 0, 0, 1, 0) for a history

of adenocarcinoma, and (0, 0, 0, 0, 1) reflecting cancer stages 3-4. The 3DCRT group is

represented in red and the IMRT group in blue.

The analysis was extended to include previously discussed prognostic covari-
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(a) 3DCRT (b) IMRT

Figure 4.7: EC Data with All Covariates. This figure displays posterior mean estimates

for survival functions with the left panel showcasing the 3DCRT group and the right

panel displaying the IMRT group. Each color within the panels represents a specific

fixed covariate.

ates: age, BMI, performance status, tumor histology, and cancer stage, all alongside

treatment types. These covariates, standardized and coded appropriately as discussed,

were incorporated into the model to evaluate their impact on both survival times and

effusion events.

The same hyperparameters are applied here for the following parameters as

detailed in the previous section, a0, b0, a1, b1, c0, c1, σ
2
θ , σ

2
λ, sθ, sλ, Sθ, Sλ, aϕ, aη, rϕ,

rη, Rϕ, Rη, ce and Ce. The adjustments is is needed for accommodating the increased

dimensionality of the covariates. We set Σβ = 2I6, Σγ = 2I6, where I6 denotes an

identity matrix. This adjustment ensures that the covariates are appropriately scaled.

Additionally, the mean vectors for these coefficients are set to zero, sβ = 06 and sγ = 06.
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(a) Baseline (b) Age+, BMI- (c) Age+, BMI+

(d) KPS+ (e) Histology+ (f) Cancer+

Figure 4.8: EC Data with All Covariates. This figure displays posterior mean (dashed

lines) and 95% pointwise credible intervals illustrating the differences in survival prob-

abilities between IMRT and 3DCRT groups. The red solid lines serves as a reference

indicating no difference between the groups.

The scale matrices for the prior distributions of these coefficients are also adjusted to I6,

ensuring that Sβ = 2I6 and Sγ = 2I6, which matches the dimensionality and maintains

consistency across the model parameters.

The posterior inferences for marginal density and survival functions across var-

ious covariates are displayed in Figure 4.6. We selected specific values for the covariate

vector components, including age, BMI, KPS score, histology, and cancer stage. The
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(1) t0 = 0.5 (2) t0 = 2.5 (3) t0 = 5

Figure 4.9: EC Data with All Covariates. This figure displays the posterior mean

estimates of the differences in conditional survival probability up to t0 years between

IMRT and 3DCRT groups. Each color within the panels represents a specific fixed

covariate.

binary covariates—KPS score, histology, and cancer stage—are each set to 1. The con-

tinuous covariates—age and BMI—are standardized and fixed at 1 for high values and

-1 for lower values. Across these covariates, the density of the 3DCRT group exhibits

greater concentration in the early years compared to the IMRT group. Notably, subfig-

ures (c) and (d) underscore the IMRT group’s nonstandard density shapes, displaying

a small bump at early times. Subfigure (f) reveals a sharp mode in the 3DCRT group’s

density for small values of t.

The posterior mean estimates of survival function for both the 3DCRT and

IMRT groups, presented in Figure 4.7, vary across different covariates. Patients with a

good performance status (KPS+) in each group show markedly higher survival probabil-

ities, whereas those in advanced cancer stages (3-4) have the lowest survival probabilities

early on. The differences in their posterior estimates of survival functions between the
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IMRT and 3DCRT groups, expressed as SS(t | ΘS , (trt,x
∗
0)) − SS(t | ΘS , (ctr,x

∗
0))

where x∗
0 represents covariates excluding treatment assignments, are further detailed

in Figure 4.8. This figure includes posterior point estimates and 95% pointwise credi-

ble intervals highlighting significant early discrepancies across most covariates. These

differences lessen and become more uncertain as time progresses.

Figure 4.9 explores the differences in posterior estimates of conditional survival

probabilities between the two treatment groups, given no occurrence of effusions up to

t0 years, formulated as Pr(T ≥ t | T > t0, N = 0,ΘS ,ΘR, ctr,x
∗
0) − Pr(T ≥ t | T >

t0, N = 0,ΘS ,ΘR, trt,x
∗
0). Early on, at t0 = 0.5 years, the IMRT group shows lower

conditional survival probabilities for patients in advanced cancer stages (3-4), but higher

for other covariates. As t0 increases, the conditional survival probabilities for the IMRT

group consistently exceed those of the 3DCRT group. This suggests that, despite initial

disadvantages in later-stage cancer, IMRT may pose higher mortality risks among older

patients when effusions are absent.

Survival times Effusion counts Joint

joint-DDP -1610.9244 -493.3734 -2074.0173
joint-parametric-renewal -1628.1498 -513.6613 -2122.3151
joint-parametric-Poisson -1672.2402 -473.1304 -2164.2198

Table 4.1: Sum of log conditional predictive probabilities under different models for the

EC data.

Comparison with other models We compare our joint model against two paramet-

ric alternatives, 1) a parametric version of our proposed model using log-logistic median
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(a) Joint-DDP (b) Joint-Poisson (c) log ratio

Figure 4.10: EC Data with All Covariates Leave-one-out Cross-validation. This figure

illustrates the conditional predictive probabilities for survival times. Panels (a) and (b)

display results from our joint-DDP and a joint-parametric-Poisson models, respectively.

Panel (c) presents the log-transformed ratio of conditional predictive survival probabil-

ities between the joint-DDP and joint-parametric-Poisson models.

(a) Joint-DDP (b) Joint-Poisson (c) log ratio

Figure 4.11: EC Data with All Covariates Leave-one-out Cross-validation. This figure

illustrates the conditional predictive probabilities for the number of effusions. Pan-

els (a) and (b) display results from our joint-DDP and joint-parametric-Poisson models,

respectively. Panel (c) presents the log-transformed ratio of conditional predictive prob-

abilities of the number of effusions between the joint-DDP and joint-parametric-Poisson

models.
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regression for both survival and gap times, referred as joint-parametric-renewal model,

and 2) a parametric model that integrates a Weibull AFT model for survival times and a

non-homogeneous Poisson process with a Weibull intensity function for modeling recur-

rent events, referred as joint-parametric-Poisson model. Both models are conditioned

on the random effects generated from a bivariate lognormal distribution.

The models are compared through leave-one-out cross-validation method. For

subject i, we fit the model on the leave-one-out dataset D−i and collect B posterior

samples, then generate predictive survival times {t̃b : b = 1, . . . , B} and gap times

{w̃bj : j = 1, . . . , Ñb, b = 1, . . . , B} jointly, where Ñb is the number of predictive effusion

events using bth saved posterior sample, as described in 4.3.3. The parametric-joint-

renewal model employs the same prediction algorithm. For the parametric-joint-Poisson

model, a slight modification is implemented: predictive survival times are generated

along with the counts of effusion events instead of gap times. The prior specification

for each parametric joint is given in the Supplementary material.

We calculate three types of cross-validated posterior predictive probabilities

for model comparison with respect to predicting survival times, count of effusions, and

both jointly. Three probabilities are defined as follows:

• For survival times, given the covariate vector xi, the cross-validated posterior

predictive probability (CPP) is calculated depending on whether the observation
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is censored:

CPPSi =


Pr(ti − 1/24 ≤ t̃ ≤ ti + 1/24 | xi,D−i), if νi = 1,

Pr(ti ≤ t̃ | xi,D−i), if νi = 0.

This measures the probability that the predicted survival time t̃ is within two

weeks of the observed survival time or after the censored time.

• For recurrent events, we compute the conditional predictive probabilities of the

count of effusions for subject i:

CPPRi =


Pr(Ni = Ñi | xi,D−i), if νi = 1,

Pr(Ni ≤ Ñi | xi,D−i), if νi = 0.

This measures the probability that the count of predicted effusions equals the

observed effusion counts if the death is observed, and the probability that the

predicted count exceeds the observed count when the observation is censored.

• Joint probability for survival and recurrent events:

CPPi =


Pr(ti − 1/24 ≤ t̃ ≤ ti + 1/24, Ni = Ñi | xi,D−i), if νi = 1,

Pr(ti ≤ t̃, Ni ≤ Ñi | xi,D−i), if νi = 0.

This assesses the joint accuracy of the model in forecasting both the timing of

survival and the count of recurrent events.

A higher conditional predictive probability suggests a better model fit. Fig-

ures 4.10 and 4.11 show the values for our DDP-based joint model (joint-DDP) with a

93



renewal process assumption (panel (a)) and a parametric joint model based on a Poisson

process assumption (joint-Poisson) (panel (b)), along with their log-scaled ratios (panel

(c)). Overall, our model demonstrates superior predictive performance for patients with

survival times ranging from 0 to 2 years and beyond 5 years, particularly excelling for

patients with censored survival times. Regarding the predicted number of effusions, our

model generally performs better for patients who did not experience any effusion events.

Similar to the log-pseudo marginal likelihood statistics (LPML), we compute

the sum of the log conditional predictive probabilities as a summary score for model

comparison. Table 4.1 reveals that models with a renewal process assumption generally

perform better in predicting survival times but are less effective at predicting the count

of effusions. Both renewal-process-based models yield lower scores for joint predictions.

Among these, the proposed joint model with a Bayesian nonparametric regression ap-

proach outperforms the parametric counterpart across all three assessment types.

4.5 Summary

We have developed a comprehensive joint modeling framework for recurrent

events with informative terminations. This framework utilizes a conditional renewal-

process model for recurrent events and models survival and gap times using DDP mix-

tures, incorporating bivariate random effects. A particular focus is placed on control-

treatment groups by making the DDP mixture weights dependent on treatment assign-

ments and integrating a log-linear model with all covariates into the mixture atoms.
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This approach significantly enhances the model’s flexibility in representing complex

functional shapes, including densities, survival functions, and conditional survival prob-

abilities.

The model is demonstrated using a real data example with a binary covariate

indicating treatment assignment. In this example, we presented marginal posterior es-

timates for density, survival functions, as well as conditional survival probability given

no occurrence of recurrent events. The model is assessed through out-of-sample pre-

dictions, using 75% of the data for training and 25% for testing. We compared the

predicted and observed number of recurrent events. Furthermore, we applied the model

on the same dataset, including additional covariates, both binary and continuous. The

proposed model is compared against two parametric joint models: one based on a re-

newal process and another on a Poisson process. Model performance is evaluated using

leave-one-out prediction techniques, focusing on the conditional predictive probability.

Overall, both renewal-process-based models perform more effectively in joint prediction

tasks. Moreover, the proposed model, utilizing a Bayesian nonparametric regression

approach, outperforms its parametric counterparts in predicting survival times, the

number of recurrent events, and joint prediction tasks.
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Chapter 5

Conclusion

This dissertation contributes to the field of survival analysis through the de-

velopment of Bayesian nonparametric models. These model enhance flexibility, improve

computational efficiency, and better handle complex data structures.

We first introduced a parsimonious Erlang mixture model, designed as a robust

methodological tool for nonparametric Bayesian survival analysis. The model is built

on a basis representation using Erlang densities with a common scale parameter. The

mixture weights are derived from increments of a random distribution function, flexi-

bly modeled with a Dirichlet process prior. By extending this model to accommodate

binary covariates in a control-treatment setting through a common-weights dependent

Dirichlet process prior, we achieved a balance between model flexibility and computa-

tional efficiency. This approach was demonstrated using both synthetic and real data

examples, illustrating its practical applicability in various survival analysis scenarios.

We further developed a Bayesian nonparametric method that integrates a
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Dirichlet process mixture model with a log-logistic kernel. The model’s computational

efficiency is enhanced by employing MCMC techniques and the Pólya-gamma data aug-

mentation method for posterior computations. An extension of the core model is to in-

corporate covariates via a density regression framework. This extension allows for local

adjustments in mixture weights, treating covariates as random variables. Additionally,

the model integrates covariates into the log-linear model for the scale parameter of the

log-logistic kernel. We illustrated the model on both synthetic and real data examples.

The final component of this dissertation is the development of a comprehensive

joint modeling framework for survival times and gap times of recurrent events. This

framework utilizes the DDP mixture models with log-logistic kernel for survival and gap

times. The model is particularly focused on control-treatment groups, making the DDP

mixture weights dependent on treatment assignments and integrating a log-linear model

with covariates into the mixture atoms. We connected the Bayesian nonparametric

mixtures with survival and gap times via bivariate random effects. This approach

enhances the model’s flexibility in representing complex functional shapes, including

densities, survival functions, and conditional survival probabilities, particularly when

there are no recurrent events.

The effectiveness of this model was demonstrated using a real dataset, com-

paring the outcomes of patients receiving two different treatments. The model’s per-

formance was validated through out-of-sample predictions, splitting the dataset into

training and testing sets for modeling fitting and model assessment, respectively. It was

compared against two parametric joint models based on renewal and Poisson processes,
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respectively. Evaluations using leave-one-out prediction showed that the Bayesian non-

parametric regression approach consistently outperformed its parametric counterparts,

demonstrating superior performance in joint prediction tasks.

Overall, Bayesian nonparametric models are highly suitable for survival anal-

ysis and the joint analysis of survival times and gap times of recurrent events. These

model can accommodate complex dependencies and provide robust performance across

various applications. The methodologies developed here not only enhance current an-

alytical capabilities but also pave the way for future research in survival analysis and

related fields. Additionally, exploring fully nonparametric Bayesian model to jointly

analyze survival times and recurrent events would be an interesting direction for future

research.
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Pólya trees’, Journal of the American Statistical Association 97, 1020–1033.

Hartigan, J. A. (1990), ‘Partition models’, Communications in Statistics - Theory and

Methods 19(8), 2745–2756.

Haupt, G. & Mansmann, U. (1995), ‘Survcart: S and c code for classification and

regression trees analysis with survival data’.

He, L., Chapple, A., Liao, Z., Komaki, R., Thall, P. F. & H., L. S. (2016), ‘Bayesian

Regression Analyses of Radiation Modality Effects on Pericardial and Pleural Effusion

and Survival in Esophageal Cancer’, Radiother Oncology 121, 70 – 74.

Hjort, N. (1990), ‘Nonparametric Bayes estimators based on Beta processes in models

for life history data’, The Annals of Statistics 18, 1259–1294.

Huang, C. & Wang, M. (2004), ‘Joint modeling and estimation for recurrent event

processes and failure time data’, Journal of the American Statistical Association

99(468), 1153–1165.

104



Huang, X. & Liu, L. (2007), ‘A Joint Frailty Model for Survival and Gap Times Between

Recurrent Events’, Biometrics 63(2), 389–397.

Huang, Y. & Wang, M. (2003), ‘Frequency of recurrent events at failure time: Modeling

and inference’, Journal of the American Statistical Association 98(463), 663–670.

Ibrahim, J. G., Chen, M. & Sinha, D. (2001), Bayesian Survival Analysis, Springer,

New York, NY.

Ishwaran, H. & James, L. F. (2001), ‘Gibbs sampling methods for stick-breaking priors’,

Journal of the American Statistical Association 96(453), 161–173.

Ishwaran, H. & Zarepour, M. (2000), ‘Markov chain monte carlo in approximate dirichlet

and beta two-parameter process hierarchical models’, Biometrika 87(2), 371–390.

Jara, A., Hanson, T., Quintana, F. A., Müller, P. & Rosner, G. L. (2011), ‘DPpackage:

Bayesian Semi- and Nonparametric Modeling in R’, Journal of Statistical Software

40(5), 1 – 30.

Kalbfleisch, J. (1978), ‘Nonparametric Bayesian Analysis of Survival Time Data’, Jour-

nal of the Royal Statistical Society: Series B (Methodological) 40, 214–221.

Kalbfleisch, J. D., Schaubel, D. E., Ye, Y. & Gong, Q. (2013), ‘Estimating Function

Approach to the Analysis of Recurrent and Terminal Events’, Biometrics 69(2), 366–

374.

Kim, H. & Kottas, A. (2022), ‘Erlang mixture modeling for Poisson process intensities’,

Statistics and Computing 32, 3.

105



Klein, J. P. & Moeschberger, M. L. (1997), Survival Analysis: Techniques for Censored

and Truncated Data, Statistics for Biology and Health, Springer.

Kottas, A. (2006), ‘Nonparametric Bayesian survival analysis using mixtures of Weibull

distributions’, Journal of Statistical Planning and Inference 136, 578–596.

Koul, H., Susarla, V. & V., R. J. (1981a), ‘Regression analysis with randomly right-

censored data’, The Annals of Statistics 9, 1276 – 1288.

Koul, H., Susarla, V. & V., R. J. (1981b), ‘Regression analysis with randomly right-

censored data’, The Annals of Statistics 9(6), 1276 – 1288.

Lancaster, T. & Intrator, O. (1998), ‘Panel data with survival: Hospitalization of hiv-

positive patients’, Journal of the American Statistical Association 93(441), 46–53.
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Appendix A

Supplementary Material: Bayesian

Nonparametric Erlang Mixture

Modeling for Survival Analysis

A.1 MCMC algorithm for the DP-based Erlang mixture

model

In this section, we provide details of posterior simulation for the DP-based

Erlang mixture model in Section 2.2.1. Recall that we have the augmented model using
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latent variables ϕi,

ti | ϕi, θ,M
ind.∼

M∑
m=1

1Bm(ϕi)Er(t | m, θ),

(ϕ1, . . . , ϕn) | α, ζ ∼ Exp(ϕ1 | ζ)
n∏
i=2

 α

α+ i− 1
Exp(ϕi | ζ) +

1

α+ i− 1

i−1∑
j=1

δϕj (ϕi)

 ,

ζ ∼ inv-Ga(aζ , bζ),

θ ∼ Ga(aθ, bθ),

M | θ ∼ Unif(⌈M1/θ⌉, . . . , ⌈M2/θ⌉),

α ∼ Ga(aα, bα),

where Bm = ((m − 1)θ,mθ] for m = 1, . . . ,M − 1, and BM = ((M − 1)θ,∞). Here,

Er(t | a, b) denotes the density of the gamma distribution with shape parameter a

and scale parameter b evaluated at t, and Exp(ϕ | a) the density of the exponential

distribution with mean parameter a evaluated at ϕ. The likelihood function under the

augmented model can be written as

L(M, θ,ϕ;D) =

n∏
i=1

M∑
m=1

{1Bm(ϕi)Er(yi | m, θ)}
νi {1Bm(ϕi)SEr(yi | m, θ)}

1−νi , (A.1)

where SEr(yi | m, θ) =
∫∞
yi

Er(u | m, θ)du, ϕ = (ϕ1, . . . , ϕn), and D = {(yi, νi), i =

1, . . . , n}. The joint posterior distribution of the random parameters, ϕ, θ,M, ζ, and α

is

p(ϕ, θ,M, ζ, α | D) ∝
n∏
i=1

M∑
m=1

{1Bm(ϕi)Er(yi | m, θ)}
νi {1Bm(ϕi)SEr(yi | m, θ)}

1−νi

× p(ϕ | α, ζ)p(ζ)p(θ)p(M | θ)p(α).

We use a Metropolis-within-Gibbs algorithm for posterior simulation if direct sampling

is not available. The parameters in the proposal distributions for Metropolis-Hastings
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update are automatically tuned by adaptive Metropolis-Hastings algorithms in Roberts

& Rosenthal (2009a) for fast convergence and improved mixing. We checked mixing and

convergence of the Markov chain and did not find any evidence indicating those issues.

The full conditionals are given below.

1. M and θ

• Sample M from the following categorical distribution,

p(M = jM | −) =
L(M = jM , θ,ϕ;D)∑⌈

M2
θ

⌉
iM=

⌈
M1
θ

⌉ L(M = iM , θ,ϕ;D)

,

where jM =

⌈
M1

θ

⌉
, . . . ,

⌈
M2

θ

⌉
,

where L(jM , θ,ϕ;D) is the likelihood function of the augmented model in

(A.1) evaluated with M = jM and the current values of ϕ and θ.

• The full conditional of θ is

p(θ | −) ∝ Ga(θ | aθ, bθ)L(M, θ,ϕ;D).

We update θ using a random walk Metropolis-Hasting algorithm.

• We also jointly update (M, θ) via a Metropolis-Hasting algorithm. Given the

current values (M (t−1), θ(t−1)) at iteration t, we first generate a proposal, θ⋆

of θ; log(θ∗) ∼ N(log(θ(t−1)), ϵ), where ϵ is an adaptive step size, and generate
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M⋆ from

q(M⋆ = jM |M (t−1), θ⋆) =
{(jM −M (t−1))2 + 1}−1∑⌈

M2
θ

⌉
iM=

⌈
M1
θ

⌉{(iM −M (t−1))2 + 1}−1

,

where jM =

⌈
M1

θ∗

⌉
, . . . ,

⌈
M2

θ∗

⌉
.

We then accept (θ⋆,M⋆) with probability min(1, r⋆), where

r⋆ =
θ⋆p(θ⋆)p(M⋆ | θ⋆)L(M⋆, θ⋆,ϕ;D)q(M (t−1) | θ(t−1),M⋆)

θ(t−1)p(θ(t−1))p(M (t−1) | θ(t−1))L(M (t−1), θ(t−1),ϕ;D)q(M⋆ | θ⋆,M (t−1))
.

2. ζ

Let ϕ⋆ = (ϕ⋆1, . . . , ϕ
⋆
n⋆) the set of all distinct values in (ϕ1, . . . , ϕn) and n⋆ the

number of elements in ϕ⋆. The full conditional of ζ is

inv-Ga

aζ + n⋆, bζ +
n⋆∑
j=1

ϕ⋆j

 .

3. α

We use the augmentation method in (Escobar & West 1995) to update α. We

first introduce an auxiliary variable η, η | α, n ∼ Be(α+ 1, n), and sample α from

a mixture of two gamma distributions;

α | − ∼ aα + n⋆ − 1

n(b−1
α − log(η)) + aα + n⋆ − 1

Ga(aα + n⋆, (b−1
α − log(η))−1)

+
n(b−1

α − log(η))

n(b−1
α − log(η)) + aα + n⋆ − 1

Ga(aα + n⋆ − 1, (b−1
α − log(η))−1).

4. ϕ

Let ϕ⋆−i = (ϕ⋆−1 , . . . , ϕ⋆−
n⋆−) be the set of distinct values in ϕ−i, where ϕ−i =

(ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn) and n
⋆− is the number of elements in ϕ⋆−i . Let n−j be
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the number of elements in ϕ−i that equal ϕ
⋆−
j . The full conditional of ϕi is

ϕi | ϕ−i, yi, α, ζ, θ,M ∼ αq0

αq0 +
∑n∗−

j=1 n
−
j qj

h(ϕi | yi, θ,M, ζ)

+
n⋆−∑
j=1

n−j qj

αq0 +
∑n⋆−

k=1 n
−
k qk

δϕ∗−j
(ϕi),

where

q0 =

M−1∑
m=1

{GExp(mθ | ζ)−GExp((m− 1)θ | ζ)} {Er(yi | m, θ)}νi{SEr(yi | m, θ)}1−νi

+ {1−GExp((M − 1)θ | ζ)} {Er(yi | m, θ)}νi{SEr(yi | m, θ)}1−νi ,

qj =

M−1∑
m=1

1((m−1)θ,mθ](ϕ
∗−
j ){Er(yi | m, θ)}νi{SEr(yi | m, θ)}1−νi

+ 1((M−1)θ,∞)(ϕ
∗−
j ){Er(yi | m, θ)}νi{SEr(yi | m, θ)}1−νi ,

with GExp(· | ζ) denoting the exponential distribution function with mean ζ, and

h(ϕi | yi, θ,M, ζ) =
M∑
m=1

ΩmT-Expm(ϕi | ζ),

with

Ωm = {Er(yi | m, θ)}νi{SEr(yi | m, θ)}1−νi

×(GExp(mθ | ζ)−GExp((m− 1)θ | ζ))q−1
0 ,m = 1, . . . ,M − 1,

ΩM = {Er(yi |M, θ)}νi{SEr(yi |M, θ)}1−νi

×(1−GExp((M − 1)θ | ζ))q−1
0 .

Here, h(ϕi | yi, θ,M, ζ) is a mixture of truncated exponential distributions, and

T-Expm(ϕ | ζ) is the density function of the truncated exponential distribution

with mean parameter ζ with the support ((m− 1)θ,mθ]. ϕi is equal to ϕ
⋆−
j with

probability n−j qj/A, where A = αq0 +
∑n⋆−

h=1 n
−
h qh; or it is drawn from h(ϕi |
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ti, θ,M, ζ). The inverse-cdf sampling method can be used to draw a sample from

h(ϕi | ti, θ,M, ζ).

A.2 MCMC algorithm for the DDP mixture model

We present here the posterior simulation details for the model developed in

Section 2.2.2. The augmented model using latent variables φi = (φCi, φT i) is written

as

ti |Mxi , θxi , φxi

ind.∼
Mxi∑
m=1

1Bxim
(φxi,i)Er(t | m, θxi), i = 1, . . . , n, and xi ∈ {C, T},

(φ1, . . . ,φn) | α,µ ∼ LN2(φ1 | µ,Σ)
n∏

i=2

{
α

α+ i− 1
LN2(φi | µ,Σ) +

1

α+ i− 1

i−1∑
j=1

δφj (φi)

}
,

θx
ind.∼ Ga(axθ, bxθ),

Mx | θx
ind.∼ Unif(⌈Mx1/θx⌉, . . . , ⌈Mx2/θx⌉),

α ∼ Ga(aα, bα),

µ ∼ N2(µ̄,Σ0),

Σ ∼ inv-Wish(r,R),

where Bxim = ((m−1)θxi ,mθxi ] form = 1, . . . ,Mxi−1, and BxiMxi
= ((Mxi−1)θxi ,∞).

The likelihood function for the augmented model for observation i is

Li(Mxi , θxi , φxi,i;D) =

Mxi∑
m=1

1Bxim
(φxi,i)Er(yi | m, θxi)

νi
Mxi∑

m=1

1Bxim
(φxi,i)SEr(yi | m, θxi)

1−νi

.

where D = {(yi, νi, xi), i = 1, . . . , n} denotes data. Similar to the algorithm in Ap-

pendix A, we use an adaptive Metropolis-within-Gibbs algorithm in Roberts & Rosen-

thal (2009a) for the Metropolis-Hastings updates. Mixing and convergence of Markov

chain are checked, and no evidence indicating those issues is found. The full conditionals
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are given below.

1. M = (MC ,MT )

Sample MC from the following categorical distribution,

p(MC = jM | −) =
LC(jM , θC ,φ;D)∑⌈

MC2
θC

⌉
iM=

⌈
MC1
θC

⌉ LC(iM , θC ,φ;D)

, jM =

⌈
MC1

θC

⌉
, . . . ,

⌈
MC2

θC

⌉
,

where LC(jM , θC ,φ;D) =
∏
i:xi=C

Li(jM , θC , φCi;D). We then draw MT in a

similar way.

2. θ = (θC , θT )

The full conditional of θ is

p(θ | −) ∝ Ga(θC | aCθ, bCθ)Ga(θT | aTθ, bTθ)
n∏
i=1

Li(Mxi , θxi , φxi,i;D).

We use the algorithm in Roberts & Rosenthal (2009a) to sample θ. Let θ(t−1) =

(θ
(t−1)
C , θ

(t−1)
T ) the current values of θ. A proposal of θ is generated from

log(θ⋆) ∼0.95N(log(θ(t−1)), 2.382/2Σn) + 0.05N(log(θ(t−1)), 0.01/2I2),

where Σn is the empirical covariance matrix of log(θ) based on the run so far.

Then we accept θ⋆ with probability min(1, r⋆), where

r⋆ =
θ⋆Cθ

⋆
TGa(θ⋆C |aCθ, bCθ)Ga(θ⋆T | aTθ, bTθ)

∏n
i=1 Li(Mxi

, θ⋆xi
, φxi,i;D)

θ
(t−1)
C θ

(t−1)
T Ga(θ

(t−1)
C | aCθ, bCθ)Ga(θ

(t−1)
T | aTθ, bTθ)

∏n
i=1 Li(Mxi

, θ
(t−1)
xi , φxi,i;D)

.

3. µ

Let φ⋆ = (φ⋆1, . . . ,φ
⋆
n⋆) be the set of distinct values in φ, where n⋆ is the number

of elements in φ⋆. The full conditional of µ is

N2(µ1,Σ1),

121



where

Σ1 =
[
Σ−1
0 + n⋆Σ−1

]−1
and µ1 = Σ1

[
Σ−1
0 µ̄+Σ−1

n⋆∑
i=1

log(φ⋆i )

]
.

4. Σ

The full conditional of Σ is,

inv-Wishart(r∗, R∗),

where

r∗ = r + n∗ and R∗ = R+

n∗∑
i=1

(log(φ∗
i )− µ)(log(φ∗

i )− µ)′.

5. α

We use the augmentation method in Escobar & West (1995) to update α. We

first introduce an auxiliary variable η, η | α, n ∼ Be(α+ 1, n), and sample α from

a mixture of two gamma distributions;

α | − ∼ aα + n⋆ − 1

n(b−1
α − log(η)) + aα + n⋆ − 1

Ga(aα + n⋆, (b−1
α − log(η))−1)

+
n(b−1

α − log(η))

n(b−1
α − log(η)) + aα + n⋆ − 1

Ga(aα + n⋆ − 1, (b−1
α − log(η))−1).

6. φ

Let φ⋆−i = (φ⋆−1 , . . . ,φ⋆−
n⋆−) be the set of distinct values in φ−i = (φ1, . . . ,φi−1,

φi+1, . . . ,φn), where n
⋆− is the number of elements in φ⋆−i . Let n−j be number of

elements in φ−i that is equal to φ
⋆−
j . The full conditional of φi is

φi | φ−i,µ,Σ,θ,M ,D ∼ αq0

αq0 +
∑n∗−

j=1 n
−
j qj

h(φi | yi,µ,Σ,θ,M)

+

n⋆−∑
j=1

n−j qj

αq0 +
∑n∗−

j=1 n
−
j qj

δφ∗−
j
(φi),
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where, for xi = C,

q0 =

MC−1∑
m=1

{Er(yi | m, θC)}νi{SEr(yi | m, θC)}1−νi

× {GLN(mθC | µC|T ,ΣC|T )− (GLN((m− 1)θC | µC|T ,ΣC|T )}

+ {Er(yi |MC , θC)}νi{SEr(yi |MC , θC)}1−νi{1−GLN((MC − 1)θC | µC|T ,ΣC|T )},

qj =

MC−1∑
m=1

1((m−1)θC ,mθC ](φ
⋆−
Ci ){Er(yi|m, θC)}νi{SEr(yi|m, θC)}1−νi

+ 1((MC−1)θC ,∞)(φ
⋆−
Ci ){Er(yi|MC , θC)}νi{SEr(yi|MC , θC)}1−νi ,

µC|T = µ1 +Σ12/Σ22(φTi − µ2),

ΣC|T = Σ11 − Σ12Σ21/Σ22

with GLN(· | µC|T ,ΣC|T ) denoting a lognormal distribution function with mean

µC|T and variance ΣC|T , and

h(φi | yi,µ,Σ,θ,M) = LN(φT i | µ1,Σ11)×
MC∑
m=1

ΩmT-LNm(φCi | µC|T ,ΣC|T )

with

Ωm = {Er(yi | m, θC)}νi{SEr(yi | m, θC)}1−νi

× {GLN(mθC | µC|T ,ΣC|T )−GLN((m− 1)θC | µC|T ,ΣC|T )}q−1
0 ,

for m = 1, . . . ,MC − 1,

ΩMC
= {Er(yi |MC , θC)}νi{SEr(yi |MC , θC)}1−νi

× {1−GLN((MC − 1)θC | µC|T ,ΣC|T )}q−1
0 .

Similar to the algorithm of updating φi for the DP-based Erlang mixture model,

we let φi = φ
⋆−
j with probability n−j qj/A, where A = αq0 +

∑n⋆−

h=1 n
−
h qh, or draw

a new φi from h(φi | yi,µ,Σ,θ,M) with probability αq0/A. To draw a sample

from h(φi | yi,µ,Σ,θ,M), we first draw φT i from LN(µ1,Σ11) and then, condi-

tional on φT i, draw φCi from a mixture of truncated lognormal distributions using
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an inverse-cdf sampling method, where each component, T-LNm is a lognormal

distribution with support of ((m − 1)θC ,mθC ]. The same method is applied for

the observations with xi = T by simply switching C with T .

A.3 Prior realizations from DP-based Erlang mixture

model

To illustrate the impact of (M, θ) on f(t | M, θ,ω) in (1) of the main text, five

prior realizations of the Erlang mixture density are shown by varying the values

of (M, θ) in Figure A.1. Three combinations of (M, θ) are considered, and in all

cases α = 10, and an Exp(5) distribution for G0 are used. For panels (a) and

(b), Mθ = 20. The resulting density realizations have similar effective support,

although the ones in panel (b) involve more variable shapes, as expected since the

value of θ is smaller than that in panel (a). For panel (c), Mθ = 5, resulting in

noticeably smaller effective support for the realized densities relative to panels (a)

and (b).

A.4 Dependence structure under DDP-based Erlang

mixture model

Here, we examine the dependence structure between the control and treatment

time to event distributions under the DDP-based Erlang mixture model. In this
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(a) (M, θ) = (10, 2) (b) (M, θ) = (40, 0.5) (c) (M, θ) = (10, 0.5)

Figure A.1: Prior realizations for f(t | M, θ,G), under (M, θ) = (10, 2), (40, 0.5), and

(10, 0.5). In all cases, α = 10 and G0 = Exp(5). The black dashed line denotes the

density of G0.

respect, we follow the standard approach for DDP prior models, that is, we study

the covariance (given prior hyperparameters) induced by the DDP prior across

the relevant random distributions. In our context (refer to Section 2.2 of the

main text), the random distributions are Fx(·), for x ∈ {C, T}, with associated

densities,

fx(t) ≡ f(t |Mx, θx, Gx) =

Mx∑
m=1

ωxm Er(t | m, θx), t ∈ R+,

where ωxm = Gx(Bxm), with Bxm = ((m− 1)θx,mθx], for m = 1, . . . ,Mx− 1, and

BxMx = ((Mx − 1)θx,∞). Moreover, recall that

Gx =

∞∑
ℓ=1

pℓ δφ⋆
xℓ
, x ∈ {C, T}

with p1 = v1, pℓ = vℓ
∏ℓ−1
r=1(1 − vr), for ℓ ≥ 2, where vℓ | α i.i.d.∼ Beta(1, α),

φ⋆ℓ = (φ⋆Cℓ, φ
⋆
Tℓ) | µ,Σ

i.i.d.∼ G0 = LN2(µ,Σ), and {vℓ} and {φ⋆ℓ} are independent

sequences of random variables.
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Denote by FEr(· | m, θx) the Erlang distribution with parameters m and θx, and

by ψ the vector that comprises parameters (θC , θT ,MC ,MT ) as well as the DDP

prior hyperparameters (α,µ,Σ). Then, for any (measurable) set A ⊂ R+, we can

write the associated random probabilities as

Fx(A) =

Mx∑
m=1

Gx(Bxm)FEr(A | m, θx)

and, therefore, the (conditional) prior expectation for the control-treatment ran-

dom probability is given by

E(Fx(A) | ψ) =

Mx∑
m=1

E(Gx(Bxm) | ψ)FEr(A | m, θx) =

Mx∑
m=1

G0x(Bxm)FEr(A | m, θx). (A.2)

Here, we have used the fact that, for each x ∈ {C, T}, Gx follows marginally a

DP(α,G0x) prior, where G0C and G0T are the marginals of the DDP centering dis-

tribution G0 associated with the control and treatment group, respectively. Note

that the prior expectation in (A.2) does not depend on the total mass parameter

α.

To develop the expression for the covariance between FC(A) and FT (A), we also

need

E(FC(A)FT (A) | ψ) =

MC∑
m=1

MT∑
k=1

E(GC(BCm)GT (BTk) | ψ)FEr(A | m, θC)FEr(A | k, θT ). (A.3)

The product of the mixture weights can be written as

GC(BCm)GT (BTk) =

{ ∞∑
ℓ=1

pℓ 1(φ
⋆
Cℓ ∈ BCm)

} { ∞∑
s=1

ps 1(φ
⋆
Ts ∈ BTk)

}

=

∞∑
ℓ=1

p2ℓ 1{(φ⋆Cℓ, φ⋆Tℓ) ∈ BCm ×BTk}

+

∞∑
ℓ=1

∞∑
s=1

ℓ̸=s

pℓ ps 1(φ
⋆
Cℓ ∈ BCm)1(φ

⋆
Ts ∈ BTk).
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Hence, taking the expectation (conditional on ψ) and using the DDP prior defi-

nition, we obtain

E(GC(BCm)GT (BTk) | ψ) = G0(BCm ×BTk)

∞∑
ℓ=1

E(p2ℓ | α)

+ G0C(BCm)G0T (BTk)

∞∑
ℓ=1

∞∑
s=1

ℓ̸=s

E(pℓ ps | α).

Now, we can use the definition of the DDP weights pℓ through the underlying i.i.d.

Beta(1, α) random variables to obtain E(p2ℓ | α) = 2αℓ−1/{(α + 1)(α + 2)ℓ}, and

thus
∑∞

ℓ=1E(p
2
ℓ | α) = (α+ 1)−1. Moreover, for ℓ < s,

E(pℓ ps | α) =
αs−1

(α+ 1)s−ℓ+1 (α+ 2)ℓ

and, since the vℓ are i.i.d., the expression is the same for ℓ > s. Therefore,

E(GC(BCm)GT (BTk) | ψ) = 2G0C(BCm)G0T (BTk)

∞∑
ℓ=1

∞∑
s=1

ℓ<s

αs−1

(α+ 1)s−ℓ+1 (α+ 2)ℓ

+
1

α+ 1
G0(BCm ×BTk) (A.4)

Finally, the expression for Cov(FC(A), FT (A) | ψ) can be obtained by combining

(A.4) with (A.3), and using also (A.2). An interesting special case for set A

is (t,∞), resulting in the covariance between the control and treatment group

survival functions at any specified time point t ∈ R+. The derivation can be

easily extended to different sets for the control and treatment group distributions.

Although the covariance expression is complicated, its various components can

be used to study the effect of the DDP prior common weights (through the total

mass parameter) as well as of the parameters of the centering distribution G0 for

the dependent atoms.
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A.5 Additional results for Simulation 3: Comparison

with a Linear-DDP Model

We use Simulation Example 3 in Section 3.3 of the main text and compare the

DDP-based Erlang mixture model with the linear-DDP (LDDP) model with log-

normal kernels in De Iorio, Johnson, Müller & Rosner (2009). The LDDP model

assumes

p(ti | xi, G) =
1

ti

∫
N(log(ti) | xiβ, σ2)dG(β, σ2),

G | α,G0 ∼ DP (α,G0).

A conditional conjugate base measure is assumed; G0 = N(β | µb, Sb)Ga(σ−2 |

τ1/2, τ2/2). Conjugate hyperpriors are assumed for µb, Sb and τ2; µb ∼ N(m0, S0),

Sb ∼ inv-Wishart(v, ψ) and τ2 ∼ Ga(τs1, τs2). A gamma prior is assumed for

α; α ∼ Ga(aα, bα). The hyperparameters are specified as follows; m0 = (5, 0.5),

S0 = 0.5I2, v = 4, Ψ−1 = 2I2, τ1 = 6, τs1 = 6, τs2 = 2, aα = 3, and bα = 2. We

use a R package DPpackage in Jara et al. (2011) to fit the LDDP model.

Posterior inference results for survival functionals under the LDDP model are

illustrated in Figures A.2 and A.3. Panels (a) and (b) of Figure A.2 show the pos-

terior estimates under the DDP-based Erlang mixture model for easy comparison.

From panels (c) and (d), the posterior estimates of the density functions under the

LDDP model capture the overall shapes of the true density functions, but the esti-

mate for the control group has misfit for t < 300. Figure A.3 shows the estimates

128



of the survival functions and hazard functions under the LDDP model. Compar-

ing the inferences under the LDDP model to those under the DDP-based Erlang

mixture model, the DDP-based Erlang mixture model yields better estimates for

all survival functionals with improved accuracy for this simulation example.

A.6 Additional results for Simulation 3: Sensitivity

Analysis

In this section, we show sensitivity analysis for DDP-based Erlang mixture model

by varying the values of some fixed hyperparameters using Simulation 3 in Sec-

tion 3.3 of the main text. We first set α ∼ Ga(2, 1), θx
ind.∼ Ga(2, 10), Mx |

θx
ind.∼ Unif(⌈1000⌉θx, . . . , ⌈4000⌉θx). Then let µ ∼ N2((5.0, 5.5)

′, 0.5I2), and Σ ∼

inv-Wishart(8, 0.5I2). Figure A.4 illustrates the posterior inferences. In addition,

we assume θx
ind.∼ Ga(2, 50), µ ∼ N2((5.0, 5.5)

′, 10I2), and Σ ∼ inv-Wishart(8, 50I2),

while keeping the other fixed hyperparameter values the same. The posterior in-

ferences are shown in Figure A.5. Comparison of the inferences in Figures A.4

and A.5 to those in Figure 5 of the main text shows that the posterior inferences

are not sensitive to specification of axθ, bxθ, Σ0, r and R.
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(a) DDP-Erlang (control) (b) DDP-Erlang (treatment)

(c) LDDP (control) (d) LDDP (treatment)

Figure A.2: LDDP model in Simulation Example 3. Each panel plots the density

estimates for control (left panels) and treatment (right panels) groups. The results in

panels (a) and (b) are estimated by the DDP-based Erlang mixture model, and the

results in panels (c) and (d) are estimated by the LDDP model. In each panel, the

dashed lines denote the posterior mean estimates, the solid line represents the true

underlying function, and the shaded regions indicate the 95% credible intervals. Red

and blue colors are used for the control and treatment groups, respectively.
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(a) Survival (control) (b) Survival (treatment)

(c) Hazard (control) (d) Hazard (treatment)

Figure A.3: LDDPmodel in Simulation Example 3. Panels (a) and (b) plot the estimates

for the control and treatment group survival functions, respectively. Panels (c) and (d)

plot the hazard function estimates for control and treatment group, respectively. In each

panel, the dashed lines denote the posterior mean estimates, the solid line represents

the true underlying function, and the shaded regions indicate the 95% credible intervals.

Red and blue colors are used for the control and treatment groups, respectively.
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!ht

(a) Density, x = C (b) Density, x = T

(c) Survival (d) Hazard

Figure A.4: Simulation Example 3 for Sensitivity Analysis - I. θx
ind.∼ Ga(2, 10), µ ∼

N2((5.0, 5.5)
′, 0.5I2), and Σ ∼ inv-Wishart(8, 0.5I2) are used. Panels (a) and (b) plot

the estimates for the control and treatment group density, respectively (the rug plots

show the corresponding survival times). Panels (c) and (d) compare the estimates for

the survival and hazard function, respectively. In each panel, the dashed lines denote

the posterior mean estimates, the solid line the true underlying function, and the shaded

regions indicate the 95% credible intervals. Red and blue colors are used for the control

and treatment groups, respectively.
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(a) Density, x = C (b) Density, x = T

(c) Survival (d) Hazard

Figure A.5: Simulation Example 3 for Sensitivity Analysis - II. θx
ind.∼ Ga(2, 50), µ ∼

N2((5.0, 5.5)
′, 10I2), and Σ ∼ inv-Wishart(8, 50I2) are used. Panels (a) and (b) plot the

estimates for the control and treatment group density, respectively (the rug plots show

the corresponding survival times). Panels (c) and (d) compare the estimates for the

survival and hazard function, respectively. In each panel, the dashed lines denote the

posterior mean estimates, the solid line the true underlying function, and the shaded

regions indicate the 95% credible intervals. Red and blue colors are used for the control

and treatment groups, respectively.
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Appendix B

Supplementary material to Bayesian

Nonparametric Survival Regression

Model using Log-logistic kernel

B.1 Proof of lemma 1

To start, the log-logistic density function, fLL(t | θ, ϕ), is given by:

fLL(t | θ, ϕ) =
ϕ

t

exp{ϕ(log(t)− log(θ))}
[1 + exp{ϕ(log(t)− log(θ))}]2

,

which can be equivalently expressed in terms of the Polya-Gamma density, fPG(· | a, b),

as per equation (7) from Polson et al. (2013), yielding:

fLL(t | θ, ϕ) =
ϕ

4t

∫ ∞

0
exp

{
−(log(t)− log(θ))2

2(uϕ2)−1

}
fPG(u | 2, 0)du.
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In this expression, we identify the kernel of the log-normal distribution within the inte-

gral. By further completing the log-normal density representation, we obtain:

fLL(t | θ, ϕ) =

√
2π

4

∫ ∞

0
fLN(t | log(θ), (uϕ2)−1)u−1/2fPG(u | 2, 0)du.

Moreover, the density representation of fPG(u | 2, 0) is given by:

fPG(u | 2, 0) =
∞∑
n=1

(−1)n
4(n+ 1)2√

2πu3
exp

{
−(n+ 1)2

2u

}
.

which leads the density representation:

fLL(t | θ, ϕ) =

∫ ∞

0
fLN(t | log(θ), (uϕ2)−1)

∞∑
n=1

(−1)n
(n+ 1)2

u2
exp

{
−(n+ 1)2

2u

}
du.

Finally, recognizing an inverse Gamma kernel within the summation, we obtain:

fLL(t | θ, ϕ) =

∫ ∞

0
fLN(t | log(θ), (uϕ2)−1)

∞∑
n=1

2(−1)nfinv-Ga

(
u | 1, (n+ 1)2/2

)
du.

B.2 MCMC details - DPM-LL

We present here the posterior simulation details for the DPM-LL model. Con-

sidering configuration variable Li for each subject, where Li is a membership indicator.
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The augmented model is written as

ti | Li,θ∗,ϕ∗ ind.∼ LL(θ∗Li
, ϕ∗Li

) for i = 1, . . . , n,

P (Li = l | L1, . . . , Li−1, α) =


ni,l

α+i−1 if ∃Lj = l for j < i

α
α+i−1 otherwise

,

log(θ∗l ) | µθ, σ2θ
i.i.d.∼ N(µθ, σ

2
θ) for l = 1, . . . , k,

ϕ2l | bϕ
i.i.d.∼ Ga(aϕ, bϕ) for l = 1, . . . , k,

µθ ∼ N(sθ, Sθ),

bϕ ∼ inv-Ga(rϕ, Rϕ),

α ∼ Ga(aα, bα),

where ni,l represents the number of elements in the set {Lj = l : j < i}. The likelihood

function for the augmented model for all observations is

L(θ∗,ϕ∗,L;D) =
n∏
i=1

{fLL(yi | θ∗Li
, ϕ∗Li

)}νi{SLL(yi | θ∗Li
, ϕ∗Li

)}1−νi ,

where D = {(ti, νi) : i = 1, . . . , n} denotes data. The detailed posterior computation

algorithm based on the Algorithm 8 in Neal (2000) is presented as follows.

Updating membership indicators The algorithm keeps track of four sets of vari-

ables, cluster membership indicators L, number of clusters k, cluster sizes (n1, . . . , nk),

and distinct mixing parameters (θ∗l , ϕ
∗
l ) for l = 1, . . . , k.

For i in 1, . . . .n, each cluster membership indicator Li is updated iteratively

depending on all other parameters. Let superscript ’-’ denote notations after removing

Li. Assume Li = l′,
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• if cluster l′ is not a singleton in L, let L−i = (L−
1 , . . . , L

−
i−1, L

−
i+1, . . . , L

−
n ) where

L−
j = Lj for j ̸= i and L−

i is left blank. And let k− = k. For l = 1, . . . , k−, let

n−l =


nl, if l ̸= l′

nl − 1, if l = l′

and let (θ∗−l , ϕ∗−l ) = (θ∗l , ϕ
∗
l ).

• If cluster l′ is a singleton, i.e. nl′ = 1, let k− = k − 1, then we let L−
j =

Lj , if Lj < l′

Lj − 1, if Lj > l′

for j ̸= i. Moreover, for l = 1, . . . , k−, if l < l′, let n−l = nl

and (θ∗−l , ϕ∗−l ) = (θ∗l , ϕ
∗
l ); otherwise, n

−
l = nl+1 and (θ∗−l , ϕ∗−l ) = (θ∗l+1, ϕ

∗
l+1).

Then draw m auxiliary variables from the baseline distribution function independently,

(θ∗−l , ϕ∗−l )
i.i.d.∼ G0, for l = k− + 1, . . . , k− + m. A new value for Li is drawn from

{1, . . . , k− +m} with the following probabilities,

P (Li = l | L−i,−) ∝


n−
l

{
fLL(yi | θ∗−l , ϕ∗−

l )
}νi

{
SLL(yi | θ∗−l , ϕ∗−

l )
}1−νi for 1 ≤ l ≤ k−

α
m

{
fLL(yi | θ∗−l , ϕ∗−

l )
}νi

{
SLL(yi | θ∗−l , ϕ∗−

l )
}1−νi for k− + 1 ≤ l ≤ k− +m

.

• If Li is joining in an existing cluster, Li ≤ k−, then let k = k−, and for l = 1, . . . , k, let

(θ∗l , ϕ
∗
l ) = (θ∗−l , ϕ∗−

l ), and nl =


n−
l , if l ̸= Li

n−
l + 1, o.w.

, and for j = 1, . . . , n, let Lj = L−
j for

j ̸= i.

• If Li is a new cluster, Li ≥ k−+1, then let k = k−+1, for l = 1, . . . , k−1, let (θ∗l , ϕ
∗
l ) = (θ∗−l , ϕ∗−

l ),

nl = n−
l , for j = 1, . . . , n, let Lj = L−

j for j ̸= i. Finally, let nk = 1, (θ∗k, ϕ
∗
k) = (θ∗−Li

, ϕ∗−
Li

), and

Li = k.
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Updating distinct mixing parameters Given all other parameters, the posterior

full conditional of (θ∗l , ϕ
∗
l ) is upto a proportion,

p((θ∗l , ϕ
∗
l ) | −) ∝ N(log(θ∗l ) | µθ, σ2θ)Ga(ϕ∗2l | aϕ, bϕ)

n∏
i:Li=l

{fLL(yi | θ∗l , ϕ∗l )}
νi {SLL(yi | θ∗l , ϕ∗l )}

1−νi .

A efficient sampling algorithm can be derived by using a Pólya-Gamma (PG) data

augmentation technique introduced by Polson et al. (2013). We reorganize the above

expression can be rewritten in the following way

p((θ∗l , ϕ
∗
l ) | −) ∝ N(log(θ∗l )|µθ,σ

2
θ)Ga(ϕ∗2l |aϕ,bϕ)

∏n
i:Li=l

(
ϕ∗l
ti

)νi [exp{ϕ∗l (log(ti)−log(θ∗l ))}]νi

(1+exp(ϕ∗
l
(log(ti)−log(θ∗

l
))))

νi+1

∝ N(log(θ∗l ) | µβ, σ2β)Ga(ϕ∗2l | aϕ, bϕ)
n∏

i:Li=l

(
ϕ∗l
ti

)νi ∫
exp (0.5(νi − 1)ψil) exp(−0.5ϵiψ

2
il)p(ϵi)dϵi,

where ψil = ϕ∗l (log(yi)−log(θ∗l )) and p(ϵi) is a density function of PG(1+νi, 0) evaluated

at ϵi. By introducing latent variables (ϵ1, . . . , ϵn) for each observation, we first sample

latent variables (ϵ1, . . . , ϵn) from PG(1+νi, ϕ
∗
Li
(log(yi)− log(θLi))) independently. Then

conditional on (ϵ1, . . . , ϵn), draw (θ∗l , ϕ
∗
l ), for l = 1, . . . , k from

log(θ∗l ) | ϵ,− ∼ N(µ̃θl, σ̃
2
θl),

where σ̃2
θl=

(
1

σ2
θ

+ϕ∗2l
∑

i:Li=l ϵi

)−1

, and 5µ̃θl=σ̃
2
θl

(
µθ
σ2
θ

+ϕ∗2l
∑

i:Li=l ϵi log(yi)+0.5ϕ∗l
∑

i:Li=l(1−νi)
)
,
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and

p(ϕ∗l | −) ∝ Ga(ãϕ, b̃ϕ)×A,

where ãϕ = 0.5
∑
i:Li=l

νi + aϕ, b̃ϕ =

0.5
∑
i:Li=l

ϵi(log(yi)− log(θ∗l ))
2 +

1

bϕ

−1

,

and A = exp

0.5
∑
i:Li=l

(νi − 1)ϕ∗l (log(yi)− log(θ∗l ))

 .

If νi = 1 for all i such that Li = l, draw ϕ∗l from Ga(ãϕ, b̃ϕ) directly, otherwise, a

Metropolis Random-Walk algorithm can be applied.

Updating hyperparameters

p(bϕ, µθ, σ
2
θ | −) ∝ N(µθ | sθ, Sθ)inv-Ga(σ2θ | cθ, Cθ)inv-Ga(bϕ | rϕ, Rϕ)

k∏
l=1

N(log(θ∗l ) | µθ, σ2θ)Ga(ϕ∗2l | aϕ, bϕ).

We thus have

µθ | − ∼ N

((
1

Sθ
+

k

σ2θ

)−1
(
sθ
Sθ

+

∑k
l=1 log(θ

∗
l )

σ2θ

)
,

(
1

Sθ
+

k

σ2θ

)−1
)
,

σ2θ | − ∼ inv-Ga

(
cθ +

k

2
, Cθ +

1

2

k∑
l=1

(log(θ∗l )− µθ)
2

)
,

and bϕ | − ∼ inv-Ga

(
rϕ + kaϕ, Rϕ +

k∑
l=1

ϕ∗2l

)
.

Updating DP total mass parameter The full conditional of α is only related to

its prior, the number of observations, and the number of distinct clusters. Upto a

proportionality, it is written as

p(α | −) ∝ Ga(α | aα, bα)αkΓ(α)/Γ(α+ n).
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Using the data augmentation method proposed by Escobar & West (1995), we could

update it in the following way,

η|α,− ∼ Be(α+ 1, n)

α|η, k,− ∼ aα + k − 1

n( 1
bα

− log(η)) + aα + k − 1
Ga(aα + k,

1
1
bα

− log(η)
)

+
n( 1

bα
− log(η))

n( 1
bα

− log(η)) + aα + k − 1
Ga(aα + k − 1,

1
1
bα

− log(η)
).

Posterior functional estimation To evaluate different functional estimations such

as density and survival functions, we use a truncation approximation through the fol-

lowing representation (Pitman 1996),

G | (k,L,θ∗,ϕ∗), α, (µθ, σ
2
θ , bϕ)

D
= qk+1G

∗ +

k∑
l=1

qlδ(θ∗l ,ϕ
∗
l )
,

where G∗ ∼ DP (α,G0(µθ, σ
2
θ , bϕ)) and (q1, . . . , qk, qk+1) ∼ Dir(n1, . . . , nk, α). Using

DP’s constructive definition (Sethuraman 1994) for G∗, we obtain

G∗ =

∞∑
l=1

plδ(θ̃l,ϕ̃l)(·),

where (θ̃l, ϕ̃l)
i.i.d.∼ G0(µθ, σ

2
θ , bϕ), vl

i.i.d.∼ Be(1, α), and p1 = v1, pl = vl
∏l−1
r=1(1 −

vl) for l > 1. With an appropriate truncation level N , we can obtain an approximated

G∗, through

G∗
N =

N∑
l=1

plδ(θ̃l,ϕ̃l)(·),

where pN = 1 −
∑N−1

l=1 pl. The approximation level is related to both N and α, for a

fixed α, E(
∑N

l=1 pl | α) = 1−
(

α
α+1

)N
. If α = 1, the approximation level is then 0.999
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for N = 10. Then the posterior G is approximated by

qk+1

N∑
l=1

plδ(θ̃l,ϕ̃l)(·) +
k∑
r=1

qrδ(θ∗r ,ϕ∗r)(·).

In each MCMC iteration b, we can obtain a set of parameters Θ(b) = (α(b),θ∗(b),

ϕ∗(b), b
(b)
ϕ , µ

(b)
θ , σ

2(b)
θ , L(b), k(b), n(b)). Based on Θ(b), we first draw a weight vec-

tor (q
(b)
1 , . . . , q

(b)
k+1) ∼ Dir(n

(b)
1 , . . . , n

(b)
k , α(b)), and then obtain an approximated G

∗(b)
N =

{(p(b)l , θ̃
(b)
l , ϕ̃

(b)
l ) : l = 1, . . . , N}, where (θ̃

(b)
l , ϕ̃

(b)
l )

i.i.d.∼ G0((θ
∗, ϕ∗) | b(b)ϕ , µ

(b)
θ , σ

2(b)
θ ) and

p
(b)
1 = v

(b)
1 , p

(b)
l = v

(b)
l

∏l−2
r=1(1 − v

(b)
l ) for l > 1 with v

(b)
l

i.i.d.∼ Be(1, α) for l < N , and

p
(b)
N = 1−

∑N−1
l=1 p

(b)
l . Evatually, density and survival functions can be evaluated in the

following way,

f(· | Θ(b)) ≈ q
(b)
k+1

N∑
l=1

p
(b)
l fLL(· | θ̃(b)l , ϕ̃

(b)
l ) +

k∑
r=1

q(b)r fLL(· | θ∗(b)r , ϕ∗(b)r )

and S(· | Θ(b)) ≈ q
(b)
k+1

N∑
l=1

p
(b)
l SLL(· | θ̃(b)l , ϕ̃

(b)
l ) +

k∑
r=1

q(b)r SLL(· | θ∗(b)r , ϕ∗(b)r ).

Thus the posterior functionals can be evaluated on a grid of t.

B.3 MCMC details - Density Regression model

Here, we illustrate a generic method, although the specific computational de-

tails may vary across different scenarios, where different types of covariates are included.

The algorithm is a straightforward extension of the algorithm described in Appendix B.
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The augmented model is written as

ti | Li, xi,θ∗,β∗,ϕ∗ ind.∼ LL(θ∗Li
exp(x′

iβ
∗
Li
), ϕ∗Li

),

x | Li,Ω∗ ind.∼ f(x | Ω∗
Li
),

P (L1, . . . , Ln | α) = αk
∏k
l=1 Γ(nl)∏n

i=1(α+ i− 1)
,

log(θ∗l ) | µ∗θ, σ2θ
i.i.d.∼ N(µθ, σ

2
θ),

ϕ∗2l | bϕ
i.i.d.∼ inv-Ga(aϕ, bϕ),

β∗
l | µβ, σ2β

i.i.d.∼ N(µβ1p, σ
2
βIp),

Ω∗
l

i.i.d.∼
p∏
j=1

G
(j)
0 (Ω∗

l,j),

α ∼ Ga(aα, bα).

For the rest parameters, we assume the following hyper priors, bϕ ∼ inv-Ga(rϕ, Rϕ),

µθ ∼ N(sθ, Sθ), σ
2
θ ∼ inv-Ga(cθ, Cθ), µβ ∼ N(sβ, Sβ), and σ2β ∼ inv-Ga(cβ, Cβ). In

subsequent sections, we will outline the updating algorithm for each parameter.

Update distinct mixing parameter For each l ∈ {1, . . . , k}, the full conditional of

(θ∗l , β
∗
l , ϕ

∗
l ,Ω

∗
l ) upto a proportionality is

p(θ∗l , β
∗
l , ϕ

∗
l ,Ω

∗
l ) ∝ N(log(θ∗l ) | µθ, σ2θ)Ga(ϕ∗2l | aϕ, bϕ)N(β∗l | µβ1p, σ2βIp)g0(Ω∗

l )∏
i:Li=l

(
fLL(yi | θ∗l exp(x′β∗

l ), ϕ
∗
l )
)νi (SLL(yi | θ∗l exp(xiβ∗

l ), ϕ
∗
l ))

1−νi .

Using the Pólya-Gamma data augmentation trick the same way as in previous sections,

we design the following sampling mechanisam,

• (a) sample Ω∗
l for l = 1, . . . , k from its posterior full conditional, the actual sam-
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pling function depends on the choice of the kernel function and its prior base

measure.

• (b) Sample Pólya-Gamma latent variables,

ϵi | −
ind.∼ PG(1 + νi, ϕ

∗
Li
(log(yi)− log(θ∗Li

)− x′
iβ

∗
Li
)).

• (c) Sample log(θ∗l ) from N(µ̃θl, σ̃
2
θl), where

σ̃2θl =

 1

σ2θ
+ ϕ∗l

∑
i:Li=l

ϵi

−1

,

µ̃θl = σ̃2θl

µθ
σ2θ

+ ϕ∗2l
∑
i:Li=l

ϵi(log(yi)− x′
iβ

∗
l ) + 0.5ϕ∗l

∑
i:Li=l

(1− νi)

 .

• (d) Sample β∗
l from N(µ̃βl, Σ̃βl), where

Σ̃βl =

 1

σ2β
I2 + ϕ∗2l

∑
i:Li=l

ϵixix
′
i

−1

and

µ̃βl = Σ̃βl

µβ
σ2β

12 + ϕ∗2l
∑
i:Li=l

ϵi(log(yi)− log(θ∗l ))xi + 0.5ϕ∗l
∑
i:Li=l

(1− νi)xi

 .

• (e) For l = 1, . . . , k, the full conditional for ϕ∗l is proportional to Ga(ãϕ, b̃ϕ) × A,

where

ãϕ = 0.5
∑
i:Li=l

νi + aϕ, b̃ϕ =

0.5
∑
i:Li=l

ϵi(log(yi)− log(θ∗l )− x′
iβ

∗
l )

2 +
1

bϕ

−1

,

and

A = exp

0.5
∑
i:Li=l

(νi − 1)ϕ∗l (log(yi)− log(θ∗l )− x′
iβ

∗
l )

 .
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Updating membership indicators The updating precedure is adpated from the

previous algorithm directly. We keep tracking membership indicators L, number of

clusters k, cluster sizes (n1, . . . , nk), and all distinct mixing parameters Ψ∗
l = (θ∗l , θ

∗
l ,Ω

∗
l )

for l = 1, . . . , k. Recall that the superscript ’-’ denotes notations with Li removed. For

i = 1, . . . , n, assume Li = l′,

• if cluster l′ is not a singleton in L, let k− = k, and L− = (L−
1 , . . . , L

−
n ), where L

−
j =

Lj for j ̸= i and L−
i is left blank. For l = 1, . . . , k−, let n−l =


nl, if l ̸= l′

nl − 1, if l = l′

and let Ψ∗−
l = Ψ∗

l .

• If cluster l′ is a singleton, i.e. nl′ = 1, k− = k−1, and let L−
j =


Lj , if Lj < l′

Lj − 1, if Lj > l′

for j ̸= i. Moreover, for l = 1, . . . , k−, if l < l′, let n−l = nl and Ψ∗−
l = Ψ∗

l ; other-

wise, n−l = nl+1 and Ψ∗−
l = Ψ∗

l+1.

Then draw m auxiliary variables from the baseline distribution function independently,

Ψ∗−
l

i.i.d.∼ G0, for l = k−+1, . . . , k−+m. A new value for Li is drawn from {1, . . . , k−+m}

with the following probabilities, P (Li = l | L−i,−) ∝

• n−l
{
fLL(yi | θ∗−l , ϕ∗−l )

}νi{SLL(yi | θ∗−l , ϕ∗−l )
}1−νif(xi | Ω∗−

l ) for 1 ≤ l ≤ k−,

• α/m
{
fLL(yi | θ∗−l , ϕ∗−l )

}νi{SLL(yi | θ∗−l , ϕ∗−l )
}1−νif(xi | Ω∗

l ) for k− + 1 ≤ l ≤

k− +m,

where f(xi | Ω∗
l ) is the joint distribution of covariates.
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• If Li is joining in an existing cluster, Li ≤ k−, then let k = k−, and for l =

1, . . . , k, let (θ∗l , ϕ
∗
l ,Ω

∗
l ) = (θ∗−l , ϕ∗−l ,Ω∗−), and nl =


n−l , if l ̸= Li

n−l + 1, o.w.

, and

for j = 1, . . . , n, let Lj = L−
j for j ̸= i.

• If Li is a new cluster, Li ≥ k− + 1, then let k = k− + 1, for l = 1, . . . , k − 1, let

Ψ∗
l = Ψ∗−

l , nl = n−l , for j = 1, . . . , n, let Lj = L−
j for j ̸= i. Finally, let nk = 1,

Ψ∗
k = Ψ∗−

Li
, and Li = k.

Updating hyperparameters

p(bϕ, µθ, σ
2
θ | −) ∝ N(µθ | sθ, Sθ)inv-Ga(σ2θ | cθ, Cθ)inv-Ga(bϕ | rϕ, Rϕ)

k∏
l=1

N(log(θ∗l ) | µθ, σ2θ)Ga(ϕ∗2l | aϕ, bϕ)

We thus have

µθ | − ∼ N

((
1

Sθ
+

k

σ2θ

)−1
(
sθ
Sθ

+

∑k
l=1 log(θ

∗
l )

σ2θ

)
,

(
1

Sθ
+

k

σ2θ

)−1
)
,

µβ | − ∼ N

( 1

Sβ
+

2k

σ2β

)−1(
sβ
Sβ

+

∑k
l=1

∑p
j=1 β

∗
jl

σ2β

)
,

(
1

Sβ
+

2k

σ2β

)−1
 ,

and bϕ | − ∼ inv-Ga

(
rϕ + kaϕ, Rϕ +

k∑
l=1

ϕ∗2l

)

Functional estimations It is the same method obtaining the posterior mixing dis-

tribution G,

G | k,L,Ψ∗, α, (µθ, σ
2
θ , bϕ)

D
= qk+1G

∗ +
k∑
l=1

qlδ(Ψ∗
l )
,

145



where G∗ ∼ DP (α,G0(µθ, σ
2
θ , bϕ)) and (q1, . . . , qk, qk+1) ∼ Dir(n1, . . . , nk, α). Using

DP’s constructive definition (Sethuraman 1994) for G∗, we obtain

G∗ =

∞∑
l=1

plδΨ̃l
(·),

where Ψ̃l
i.i.d.∼ G0(µθ, σ

2
θ , bϕ), vl

i.i.d.∼ Be(1, α), and p1 = v1, pl = vl
∏l−1
r=1(1− vl) for l > 1.

With an appropriate truncation level N , we can obtain an approximated G∗, through

G∗
N =

N∑
l=1

plδΨ̃l
(·),

where pN = 1 −
∑N−1

l=1 pl. The approximation level is related to both N and α, for a

fixed α, E(
∑N

l=1 pl | α) = 1−
(

α
α+1

)N
. Then the posterior G is approximated by

qk+1

N∑
l=1

plδΨ̃l
(·) +

k∑
r=1

qrδΨ∗
r
(·).

In each MCMC iteration b, we can obtain a set of parameters Θ(b) = (Ψ∗(b), b
(b)
ϕ , µ

(b)
θ ,

σ
2(b)
θ , L(b), k(b), n(b)). Based on Θ(b), we first draw a weight vector (q

(b)
1 , . . . , q

(b)
k+1) ∼

Dir(n
(b)
1 , . . . , n

(b)
k , α), then obtain an approximated G∗

b = {(p(b)l , Ψ̃
(b)
l ) : l = 1, . . . , N},

where Ψ̃
(b)
l

i.i.d.∼ G0(Ψ
∗ | b(b)ϕ , µ

(b)
θ , σ

2(b)
θ ) and p

(b)
1 = v

(b)
1 , p

(b)
l = v

(b)
l

∏l−2
r=1(1 − v

(b)
l ) for

l > 1 with v
(b)
l

i.i.d.∼ Be(1, α) for l < N , and p
(b)
N = 1 −

∑N−1
l=1 p

(b)
l . Evatually, for given

covariates x = x0 and z = z0, we can estimate the conditional density and survival
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functions on grids of time,

f(· | x0, H(b)) ≈ q
(b)
k+1

∑N
l=1 p̃

(b)
l fLL(·|θ̃

(b)
l exp(x′

0β̃
(b)
l ),ϕ̃

(b)
l )+

∑k
r=1 q̃

(b)
r fLL(·|θ

∗(b)
r exp(x′

0β
∗(b)
r ),ϕ

∗(b)
r ),

where p̃
(b)
l =

p
(b)
l f(x0 | Ω̃(b)

l )

q
(b)
k+1

∑N
l=1 p

(b)
l f(x0 | Ω̃(b)

l ) +
∑k

r=1 q
(b)
r f(x0 | Ω̃∗(b)

r )

and q̃(b)r =
q
(b)
r f(x0 | Ω̃(b)

l )

q
(b)
k+1

∑N
l=1 p

(b)
l f(x0 | Ω̃(b)

l ) +
∑k

r=1 q
(b)
r f(x0 | Ω̃∗(b)

r )

S(· | x0, H(b)) ≈ q
(b)
k+1

∑N
l=1 p̃

(b)
l SLL(·|θ̃

(b)
l exp(x′

0β̃
(b)
l ),ϕ̃

(b)
l )+

∑k
r=1 q̃

(b)
r SLL(·|θ

∗(b)
r exp(x′

0β
∗(b)
r ),ϕ

∗(b)
r ),

h(· | x0, H(b)) =
f(· | x0, H(b))

S(· | x0, H(b))
.

B.4 Additional results with censored data

In Section 3.2, we demonstrated the application of the DPM-LLx model to

a dataset featuring both a binary and a continuous covariate in a complex scenario.

Additionally, we evaluated the model’s performance in handling censored data by im-

plementation a random censoring mechanism, as outlined in Section 3.1. Utilizing the

synthetic dataset from Section 3.2, we crafted two datasets featuring distinct propor-

tions of censored observations, namely, 24.2% and 44.2%. The prior hyperparameters

were set consistently across analyses, and the ensuing posterior inferences are depicted

in panels (d)-(i) of Figures B.1, B.2, and B.3. The prior 95% pointwise credible intervals

are represented by light gray shaded areas, encompassing a broad spectrum of values.

Dashed lines indicate posterior mean estimates, while posterior 95% pointwise credi-

ble intervals are marked by dark gray shaded regions. These findings demonstrate the

model’s proficiency in accurately capturing the underlying functions (depicted as solid
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lines) across varying covariate values, even in scenarios of light to moderate censoring.

B.5 Additional results of the small cells lung data anlaysis

In Section 3.5, we analyzed the small cells lung dataset with the DMP-LLx

model. We illustrate the additional results for survival and hazard estimates in Fig-

ures B.6 and B.8. The dashed lines show the posterior mean estimates with 95% pos-

terior and prior credible intervals are represented by dark and light shaded regions,

respectively.

In addition, we performed prior sensitivity analysis by change hyperparam-

eters. Let bϕ ∼ inv-Ga(5, 20), and µθ ∼ N(5.5, 1), and µβ ∼ N((0, 0)′, I2), and α ∼

Ga(5, 1). For other parameters, we let aϕ, σ
2
θ , σ

2
β, sµ, Sµ, and τ

2 be fixed at 5, 2, 1.5I2,

and 0.6. The posterior inferences for the density, survival, and hazard functions, across

a range of covariate values, are showcased in Figures B.5, B.7, and B.9. The results

indicate that the inferences remain relatively stable, even with moderate adjustments

to the prior hyperparameters.
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(a) z = 1, x = −1 (b) z = 0, x = 0 (c) z = 1, x = 0

(d) z = 1, x = −1, g = 24.2% (b) z = 0, x = 0, g = 24.2% (c) z = 1, x = 0, g = 24.2%

(g) z = 1, x = −1, g = 44.2% (h) z = 0, x = 0, g = 44.2% (i) z = 1, x = 0, g = 44.2%

Figure B.1: Simulation 2. The three rows have density estimates on datasets with vary-

ing proportion of censored survival times (0%, 24.2%, and 44.2%). The three columns

present density estimates with different values of covariates (z, x). In each panel, poste-

rior mean estimates (dashed lines), 95% pointwise posterior credible interval estimates

(dark shaded regions), 95% pointwise prior credible interval estimates (light shaded re-

gions), and the simulation truth (solid lines) are shown.
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(a) z = 1, x = −1 (b) z = 0, x = 0 (c) z = 1, x = 0

(d) z = 1, x = −1, g = 24.2% (b) z = 0, x = 0, g = 44.2% (c) z = 1, x = 0, g = 24.2%

(g) z = 1, x = −1, g = 44.2% (h) z = 0, x = 1, g = 44.2% (i) z = 1, x = 0, g = 44.2%

Figure B.2: Simulation 2. The three rows have survival function estimates on datasets

with varying proportion of censored survival times (0%, 24.2%, and 44.2%). The three

columns present survival function estimates with different values of covariates (z, x). In

each panel, posterior mean estimates (dashed lines), 95% pointwise posterior credible

interval estimates (dark shaded regions), 95% pointwise prior credible interval estimates

(light shaded regions), and the simulation truth (solid lines) are shown.
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(a) z = 1, x = −1, (b) z = 0, x = 1, (c) z = 1, x = 0,

(d) z = 1, x = −1, g = 24.2% (e) z = 0, x = 1, g = 24.2% (f) z = 1, x = 0, g = 24.2%

(g) z = 1, x = −1, g = 44.2% (h) z = 0, x = 1, g = 44.2% (i) z = 1, x = 0, g = 44.2%

Figure B.3: Simulation 2. The three rows have hazard estimates on datasets with vary-

ing proportion of censored survival times (0%, 24.2%, and 44.2%). The three columns

present hazard estimates with different values of covariates (z, x). In each panel, poste-

rior mean estimates (dashed lines), 95% pointwise posterior credible interval estimates

(dark shaded regions), 95% pointwise prior credible interval estimates (light shaded re-

gions), and the simulation truth (solid lines) are shown.
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(a) (A, 45) (b) (A, 54) (c) (A, 62) (d) (A, 70) (e) (A, 79)

(f) (B, 45) (g) (B, 54) (h) (B, 62) (i) (B, 70) (j) (B, 79)

Figure B.4: Small cells lung cancer data. Each row presents density function estimates

with different treatment Arm (A and B). Each column corresponds to different values

of age (45, 54, 62, 70, 79).

(a) (A, 45) (b) (A, 54) (c) (A, 62) (d) (A, 70) (e) (A, 79)

(f) (B, 45) (g) (B, 54) (h) (B, 62) (i) (B, 70) (j) (B, 79)

Figure B.5: Small cells lung cancer data. Sensitivity analysis. Each row presents density

function estimates with different treatment Arm (A and B).
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(a) (A, 45) (b) (A, 54) (c) (A, 62) (d) (A, 70) (e) (A, 79)

(f) (B, 45) (g) (B, 54) (h) (B, 62) (i) (B, 70) (j) (B, 79)

Figure B.6: Small cells lung cancer data. Each row presents survival function estimates

with different treatment Arm (A and B). Each column corresponds to different values

of age (45, 54, 62, 70, 79).

(a) (A, 45) (b) (A, 54) (c) (A, 62) (d) (A, 70) (e) (A, 79)

(f) (B, 45) (g) (B, 54) (h) (B, 62) (i) (B, 70) (j) (B, 79)

Figure B.7: Small cells lung cancer data. Sensitivity analysis. Each row presents survival

function estimates with different treatment Arm (A and B). Each column corresponds

to different values of age (45, 54, 62, 70, 79).
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(a) (A, 45) (b) (A, 54) (c) (A, 62) (d) (A, 70) (e) (A, 79)

(f) (B, 45) (g) (B, 54) (h) (B, 62) (i) (B, 70) (j) (B, 79)

Figure B.8: Small cells lung cancer data. Each row presents hazard estimates with

different treatment Arm (A and B). Each column corresponds to different values of age

(45, 54, 62, 70, 79).

(a) (A, 45) (b) (A, 54) (c) (A, 62) (d) (A, 70) (e) (A, 79)

(f) (B, 45) (g) (B, 54) (h) (B, 62) (i) (B, 70) (j) (B, 79)

Figure B.9: Small cells lung cancer data. Sensitivity analysis. Each row presents hazard

estimates with different treatment Arm (A and B). Each column corresponds to different

values of age (45, 54, 62, 70, 79).
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B.6 Model Comparison with parametric Weibull AFT model

In addition, we compare the DPM-LLx model with a parametric AFT Weibull

model using the small cell lung cancer dataset. TheWeibull density function, conditional

on covariate x, is given by

f(t | x) = ϕwt
ϕ−1θ−ϕww exp(−ϕwβwx′) exp

{
−t−ϕwθ−ϕww exp(−ϕwβx′)

}
,

where the scale parameter is θw exp(x′βw) and the shape parameter is ϕw. Notably, the

Weibull AFT model can also be expressed within a PH framework. Thus, the hazards

ratio given covariate vectors x1 and x2 is exp(−ϕwβw(x1 − x2)
′).

The prior distributions for the parameters are specified as follows: θw ∼

Ga(aθ, bθ), βw ∼ N(µβ,Σβ), and ϕw ∼ Ga(aϕ, bϕ). For this dataset, the hyperpa-

rameters are set as follows: aθ = 1 and bθ = 1000, aϕ = 1, and bϕ = 1, µβ is fixed at

(0, 0)′, and Σβ is taken as I2.

The hyperparameters for the parametric survival regression model are chosen

to ensure that the prior uncertainty is sufficiently broad over range of observed survival

times. The 95% prior interval estimates for density and survival function are demon-

strated by the light gray regions in Figures B.10 and B.11, respectively. Alongside the

prior interval estimates, we demonstrate the posterior point estimates as solid lines and

posterior 95% pointwise credible interval in dark gray regions.

Furthermore, the posterior mean estimates of survival and hazard functions

given different values of covariates are displayed in Figure B.12. The parametric as-

sumptions of the model result in hazard functions that are monotonically increasing.
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The analysis indicates that as age increases, the survival probability decreases while the

hazard increases. However, unlike the DPM-LLx model, the parametric model imposes

constraints that prevent the crossing of survival curves for different covariate values.

This limitation reduces the model’s flexibility in capturing more complex relationships

within the data.

The log-pseudo marginal likelihood statistic (LPML) is a metric that mea-

sures model performance based on cross-validated posterior predictive probability. It is

defined as the sum of the log conditional predictive ordinates (CPO). Specifically, the

CPO is calculated as f(ti | t−i,x−i) for observed survival times and S(ti | t−i,x−i) for

censored time, where subscript −i represents all subjects except the ith one. When

comparing the AFT Weibull model and the DPM-LLx model using LPML scores, we

observe a difference in their predictive performance. The LPML score for the AFT

Weibull model is -746.39, whereas the DPM-LLx model achieves a higher LPML score

of -735.56. This difference indicates that the DPM-LLx model provides a better fit

to the data, offering more accurate predictions and demonstrating greater flexibility in

capturing the underlying structure of the data compared to the parametric AFTWeibull

model.
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(a) (A, 45) (b) (A, 54) (c) (A, 62) (d) (A, 70) (e) (A, 79)

(f) (B, 45) (g) (B, 54) (h) (B, 62) (i) (B, 70) (j) (B, 79)

Figure B.10: Small cells lung cancer data using parametric Weibull AFT model. Each

row presents density function estimates with a different treatment arm (A and B). Each

column corresponds to different values of age (45, 54, 62, 70, 79).

(a) (A, 45) (b) (A, 54) (c) (A, 62) (d) (A, 70) (e) (A, 79)

(f) (B, 45) (g) (B, 54) (h) (B, 62) (i) (B, 70) (j) (B, 79)

Figure B.11: Small cells lung cancer data using parametric Weibull AFT model. Each

row presents survival function estimates with different treatment Arm (A and B). Each

column corresponds to different values of age (45, 54, 62, 70, 79).
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(a) Survival, Arm A (b) Survival, Arm B

(a) Hazard, Arm A (b) Hazard, Arm B

Figure B.12: Small cells lung cancer data using parametric Weibull AFT model. The

first row shows the posterior mean estimates of the conditional survival function, while

the second panel displays posterior estimates of the conditional hazard function. The

left and right columns are corresponding to Arm A and Arm B, respectively. Each color

corresponds to a distinct age of patients.
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Appendix C

Supplementary material - Bayesian

Nonparametric Joint Model for

recurrent events and survival data

C.1 MCMC details - Blocked Gibbs sampler

The posterior computation is based on the Blocked Gibbs sampler, where the

mixing distributions Gz and Hz are approximated by its truncated version at level of BG

and BH , GzB and HzB, as GzB =
∑BG

l=1 pzlδ(θl,βl,ϕl)(·) and HzB =
∑BH

l=1 ωzlδ(λl,γl,ηl)(·).

The mixing parameters are denoted by (θ∗l ,β
∗
l , ϕ

∗
l ) and (λ∗l ,γ

∗
l , η

∗
l ) for l =

1, . . . , N , respectively. For each survival and gap times, we introduce an indicator

variable as in the previous section. Lz = {Lzi : i = 1, . . . , nz}, for z = ctr, trt. Thus,
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for j = 1, . . . , Niz, i = 1, . . . , nz, z = ctr, trt, the full hierarchical model is written as,

Tiz | Liz ,θ
∗,β∗,ϕ∗, ϵis, xis

ind.∼ LL(θ∗Liz
exp(β∗

Liz
xis)/ϵis, ϕ

∗
Liz

),

Liz | plz
ind.∼ plzδl(Liz), for l = 1, . . . , BG

plz = Vlz

l−1∏
r=1

(1− Vro),

(VlC , VlT ) | α0, α
i.i.d.∼ Bi-Be(1− α0, α0, α0, α− α0),

(log(θ∗l ),β
∗
l , ϕ

∗2
l ) | µθ, σ2

θ , µβ ,Σβ , aϕ, bϕ
i.i.d.∼ N(log(θ∗l ) | µθ, σ

2
θ)N(β∗

l | µβ ,Σβ)inv-Ga(ϕ∗2l | aϕ, bϕ),

α0 | a0, b0 ∼ Be(a0, b0)

α | α0, c0 ∼ Pa(c0, α0)

(µθ, µβ , bϕ) | sθ, Sθ, sβ , Sβ , rϕ, Rϕ ∼ N(sθ, Sθ)N(sβ , Sβ)inv-Ga(rϕ, Rϕ)

Wijz | Uijz ,λ
∗,γ∗,η∗, ξiz , ziz

i.i.d.∼ LL(λ∗Uijz
exp(γ∗

Uijz
ziz)/ξiz , η

∗
Uijz

), for l = 1, . . . , BH

Uijz | ωlz
ind.∼ ωlzδl(Uijz),

ωlz = πlz

l−1∏
r=1

(1− πro),

(πlC , πlT ) | ζ0, ζ
i.i.d.∼ Bi-Be(1− ζ0, ζ0, ζ0, ζ − ζ0),

(log(λ∗l ),γ
∗
l , η

∗2
l ) | µλ, σ2

λ, µγ ,Σγ , aη , bη
i.i.d.∼ N(log(λ∗l ) | µλ, σ

2
λ)N(γ∗

l | µγ ,Σγ)inv-Ga(η∗2l | aη , bη),

ζ0 | a1, b1 ∼ Be(a1, b1)

ζ | ζ0, c0 ∼ Pa(c1, ζ0)

(µλ, µγ , bη) | sλ, Sλ, sγ , Sγ , rη , Rη ∼ N(sλ, Sλ)N(sγ , Sγ)inv-Ga(rη , Rη)

(ϵiz , ξiz)
′ | Σez

i.i.d.∼ LN((ϵiz , ξiz)
′ | (0, 0)′,Σez),

Σez | ce, Ce ∼ inv-Wish(ce, Ce).

Update survival model indicators

The posterior computation algorithm starts from the survival times. The latent

indicator functions {Liz : i = 1, . . . , nz, z = ctr, trt} are updated

p(Liz = l | −) ∝ plz
{
fLL(τiz | θ∗−l /ϵiz, ϕ

∗−
l )
}νiz {SLL(τiz | θ∗−l /ϵiz, ϕ

∗−
l )
}1−νiz .
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Update survival model mixture weights

The mixture weights are updated through the latent constructive variables.

For l = 1, . . . , BG− 1,

p(u11l, u10l, u01l, u00l | −) ∝ u1−α0−1
11l uα0−1

10l uα0−1
01l uα−α0−1

00l (u11l + u10l)
nlC (1− u11l − u10l)

∑B
r=1 nrC

×(u11l + u01l)
nlT (1− u11l − u01l)

∑B
r=1 nrT

∝ u1−α0−1
11l uα0−1

10l uα0−1
01l uα−α0−1

00l (u11l + u10l)
nlC (u01l + u00l)

∑B
r=1 nrC

×(u11l + u01l)
nlT (u10l + u00l)

∑B
r=1 nrT ,

where nlz represents the cardinality of the set {Liz = l : i = 1, . . . , nz, z = ctr, trt}.

Here, a Metropolis-hasting algorithm is applied here to sample (u11l, u10l, u01l, u00l).

Let the current state be u
(t)
l = (u

(t)
11l, u

(t)
10l, u

(t)
01l, u

(t)
00l), and the proposing state be u∗

l =

(u∗11l, u
∗
10l, u

∗
01l, u

∗
00l). Let Q denote the proposal distribution, Q(u∗ | u(t)

l ) = Dir(u∗ |

a∗u
(t)
l ), with E(u∗

l | u
(t)
l ) = u

(t)
l , and a∗ controls the variance, in practice, we recommend

to set it at 100. The acceptance rate is

min

(
1,
Q(u

(t)
l | u∗

l )P (u
∗
l )

Q(u∗
l | u

(t)
l )P (u

(t)
l )

)
,

where

P (u∗
l ) = u1−α0−1

11l uα0−1
10l uα0−1

01l uα−α0−1
00l

×(u11l + u10l)
nlC (u01l + u00l)

∑BG
r=l+1 nrC (u11l + u01l)

nlT (u10l + u00l)
∑BG

r=l+1 nrT .

The related hyperparameters α and α0 are updated as

p(α, α0 | −) ∝ p(α | α0)p(α0)

BG∏
l=1

u−α0
11l u

α0−1
10l uα0−1

01l uα−α0−1
00l .

There is no closed form, thus Metropolis-hasting algorithm is applied here. Conditional

on α
(t)
0 , α∗

0 is proposed from Be(α
(t)
0 , 1 − α

(t)
0 ) with mean α

(t)
0 . α∗ | α∗

0 is proposed

161



from Pa(2, α∗
0). The proposing distribution is written as Q(α∗

0, α
∗ | α(t)

0 , α(t)) = Be(α∗
0 |

α
(t)
0 , 1− α(t))Pa(α∗ | 2, α∗

0).

Update mixing parameters in survival model The mixing parameters (θ∗l ,β
∗
l , ϕl) for l =

1, . . . , BG, are updated in the following way. For each l, if l /∈ {Lzi : i = 1, . . . , nz, z =

ctr, trt}, draw each parameter from their prior base measure. Otherwise, we sample

them in the following way.

p(θ∗l ,β
∗
l , ϕ

∗
l | −) ∝ N(log(θ∗l ) | µθ, σ

2
θ)N(β∗

l | µβ ,Σβ)Ga(ϕ∗2
l | aϕ, bϕ)

×
∏

z=ctr,trt

∏
i:Liz=l

(
ϕ∗
l

τiz

)νiz [exp{ϕ∗
l (log(τiz) + log(ϵiz)− log(θ∗l ))}]νiz

[1 + exp{ϕ∗
l (log(τiz) + log(ϵiz)− log(θ∗l ))}]

νiz+1

∝ N(log(θ∗l ) | µθ, σ
2
θ)N(β∗

l | µβ ,Σβ)Ga(ϕ∗2
l | aϕ, bϕ)

×
∏

z=ctr,trt

∏
i:Liz=l

(
ϕ∗
l

τiz

)νiz ∫
exp (0.5(νiz − 1)ψzil) exp(−0.5uizψ

2
il)p(uiz)duiz,

where ψzil = ϕ∗l (log(τiz)− x′izβ
∗
l + log(ϵzi) + log(uzi)− log(θ∗l )), and p(uiz) is a density

function of PG(1 + νiz, 0) evaluated at uiz. We first sample latent variables {uiz : i =

1, . . . , nz, z = ctr, trt} from PG(1 + νiz, ϕ
∗
Liz

(log(τiz) − β∗
l xiz + log(ϵiz) − log(θ∗Liz

)))

independently. Then conditional on {uiz : i = 1, . . . , nz, z = ctr, trt}, draw (θ∗l ,β
∗
l , ϕ

∗
l ),

for l = 1, . . . , BG from

log(θ∗l ) | u,−
ind.∼ N(µ̃θl, σ̃

2
θl),

where σ̃2θl =

 1

σ2θ
+ ϕ∗2l

∑
z=ctr,trt

∑
i:Liz=l

uiz

−1

,

and µ̃θl = σ̃2θl

(
µθ
σ2θ

+ ϕ∗2l
∑

z=ctr,trt

∑
i:Liz

uiz(log(τiz)− β∗
Liz
xiz + log(ϵiz))

+0.5ϕ∗l
∑

z=ctr,trt

∑
i:Liz

(1− νiz)

)
,
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and

β∗
l | u,−

ind.∼ N(µ̃βl, Σ̃βl),

where Σ̃µ =

Σ−1
β + ϕ∗2l

∑
z=ctr,trt

∑
i:Liz

uizxizx
′
iz

−1

and µ̃βl = Σ̃βl

(
µβΣ

−1
β + ϕ∗2l

∑
z=ctr,trt

∑
i:Liz

uiz(log(τiz) + log(ϵiz)− log(θ∗l ))xiz

+0.5ϕ∗l
∑

z=ctr,trt

∑
i:Liz

(1− νiz)xiz

)
,

and

p(ϕ∗l | −) ∝ Ga(ãϕ, b̃ϕ)×A,

where ãϕ = 0.5
∑

z=ctr,trt

∑
i:Liz

νiz + aϕ,

b̃ϕ =

0.5
∑

z=ctr,trt

∑
i:Liz

uiz(log(τiz)− β∗
l xiz + log(ϵiz)− log(θ∗l ))

2 +
1

bϕ

−1

,

and A = exp

0.5
∑

z=ctr,trt

∑
i:Liz

(νiz − 1)ϕ∗l (log(τiz)− β∗
l xiz + log(ϵiz)− log(θ∗l ))

 .

If νiz = 1 for all i such that Liz = l, draw ϕ∗l from Ga(ãϕ, b̃ϕ) directly, otherwise, a

Metropolis Random-Walk algorithm can be applied.

Updating hyperparameters in survival model

p(bϕ, µθ, µβ | −) ∝ N(µθ | sθ, Sθ)inv-Ga(bϕ | rϕ, Rϕ)N(µβ | sβ, Sβ)

×
BG∏
l=1

N(log(θ∗l ) | µθ, σ2θ)Ga(ϕ∗2l | aϕ, bϕ)N(β∗
l | µβ,Σβ).
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We thus have

µθ | − ∼ N

((
1

Sθ
+

k

σ2θ

)−1
(
sθ
Sθ

+

∑BG
l=1 log(θ

∗
l )

σ2θ

)
,

(
1

Sθ
+
BG
σ2θ

)−1
)
,

bϕ | − ∼ inv-Ga

(
rϕ + kaϕ, Rϕ +

BG∑
l=1

ϕ∗2l

)
,

and µβ | − ∼ N

((
S−1
β +BGΣ

−1
β

)−1
(
S−1
β sβ +Σ−1

β

BG∑
l=1

β∗
l

)
,
(
S−1
β +BGΣ

−1
β

)−1
)
.

Updating gap membership indicators Let the indicators for gap times be {Uijz : j =

1, . . . , Niz, i = 1, . . . , nz, o = C, T}, and their equivalent notations {Ũhz : h = 1, . . . , Nz+

nz, z = ctr, trt}. Each cluster membership indicator Ũhz is updated

p(Ũhz = l | −) ∝ ωlz{fLL(wijz | λ∗Ũhz
exp(γ∗

Ũhz
ziz)/ϵi, η

∗
Ũhz

)}ιhz

×{SLL(wijz | λ∗Ũhz
exp(γ∗

Ũhz
ziz)/ϵi, η

∗
Ũhz

)}1−ιhz ,

where wijz = τiz − yi,Niz ,z for j > Ni. The stick-breaking weights are updated through

the bivariate Beta latent variables in the same method for survival times.

Updating distinct mixing parameters in gap times model Given all other parameters, the

posterior full conditional of (θ∗l , ϕ
∗
l ) is upto a proportion,

p(λ∗l ,γ
∗
l , η

∗
l | −) ∝ N(log(λ∗l ) | µλ, σ2λ)N(γ∗

l | µγ ,Σγ)Ga(η∗2l | aη, bη)

×
∑
z:C,T

Nz+nz∏
h:Ũhz=l

{fLL(wijz | λ∗l exp(γ∗
l ziz)/ξiz, η

∗
l )}

ιhz

×{SLL(wijz | λ∗l exp(γ∗
l ziz)/ξi, η

∗
l )}

1−ιhz ,

where ιhz is an indicator if j = Niz. A similar Pólya-Gamma augmentation algorithm
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is applied here. p(λ∗l ,γ
∗
l , η

∗
l | −) is proportional to

N(log(λ∗l ) | µλ, σ
2
λ)N(γ∗

l | µγ ,Σγ)Ga(η∗2l | aη, bη)

×
∑

z=ctr,trt

∏
h:Ũhz=l

(
λ∗l
wijz

)ιhz [exp{η∗l (log(wijz)− γ∗
l ziz + log(ξiz)− log(λ∗l )))}]ιhz

[1 + exp{η∗l (log(wijz)− γ∗
l ziz + log(ξiz)− log(λ∗l )))}]ιhz+1

∝ N(log(η∗l ) | µλ, σ
2
λ)N(log(λ∗l ) | µλ, σ

2
λ)Ga(η∗2l | aη, bη)

×
∏

h:Ũhz=l

(
λ∗l
wijz

)ιhz
∫

exp(−0.5(ιhz − 1)φhlo) exp(−0.5ςhzφ
2
hlo)p(ςhz)dςhz,

where φhlo = η∗l (log(wijz) + log(ξiz) + log(ςhz) − log(λ∗l ) − γ∗
l ziz)), and p(ςhz) is a

density function of PG(1 + ιhz, 0) evaluated at ςhz. By introducing latent variables

(ς1o, . . . , ςNz+nz ,o) for each gap time, we then first sample latent variables (ς1o, . . . , ςNz+nz ,o)

from PG(1 + ιhz, η
∗
Ũhz

(log(wijz) + log(ξzi)− log(λ∗
Ũhz

)− γ∗
Ũhz

ziz)) independently. Then

the conditional on (ς1o, . . . , ςNz+nz ,o), draw (λ∗l ,γ
∗
l , η

∗
l ), for l = 1, . . . , BH from

log(λ∗l ) | ςz,− ∼ N(µ̃λl, η̃
2
λl)

where σ̃2
λl =

 1

σ2
λ

+ η∗2l
∑

z=ctr,trt

∑
h:Ũhz=l

ςhz

−1

,

and µ̃λl = σ̃2
λl

(
µλ

σ2
λ

+ η∗2l
∑

z=ctr,trt

∑
h:Ũhz=l

ςhz(log(wijz)− γ∗
l ziz + log(ξiz))

+0.5η∗l
∑

z=ctr,trt

∑
h:Ũhz=l

(1− ιhz))

)
,

and

γ∗
l | ς,− ind.∼ N(µ̃γl, Σ̃γl),

where Σ̃γ =

Σ−1
γ + η∗2l

∑
z=ctr,trt

∑
h:Ũhz

ςhzzizz
′
iz

−1

and µ̃γl = Σ̃γl

(
µγΣ

−1
γ + η∗2l

∑
z=ctr,trt

∑
h:Ũhz

uiz(log(wijz)− γ∗
l ziz + log(ξiz)− log(λ∗l ))ziz

+0.5η∗l
∑

z=ctr,trt

∑
h:Ũhz

(1− ιhz)ziz

)
,
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and

p(η∗l | −) ∝ Ga(ãη, b̃η)×Aη

where ãη = 0.5
∑

z=ctr,trt

∑
h:Ũhz=l

ιhz + aη,

b̃η =

0.5
∑

z=ctr,trt

∑
h:Ũhz=l

ςhz(log(wijz) + log(ξiz)− log(λ∗l ))
2 +

1

bη

−1

,

and Aη = exp

0.5η∗l
∑

z=ctr,trt

∑
h:Ũhz=l

(ιhz − 1)η∗l (log(wijz) + log(ξiz)− log(λ∗l )− γ∗
l ziz)

 .

If ιhz = 1 for all h and all o such that Ũhz = l, draw η∗l from Ga(ãη, b̃η) directly,

otherwise, a Metropolis random-walk algorithm is used.

Updating hyperparameters in gap times model

p(bη, µλ, µγ | −) ∝ N(µλ | sλ, Sλ)N(µγ | sγ , Sγ inv-Ga(bη | rη, Rη)

×
BH∏
l=1

N(log(λ∗l ) | µλ, σ2λ)N(γ∗
l | µγ ,Σγ)Ga(η∗2l | aη, bη).

We thus have

µλ | − ∼ N

((
1

Sλ
+
BH
σ2λ

)−1
(
sλ
Sλ

+

∑BH
l=1 log(λ

∗
l )

σ2λ

)
,

(
1

Sλ
+
BH
σ2λ

)−1
)
,

andµγ | − ∼ N

((
S−1
γ +BHΣ

−1
γ

)−1

(
S−1
γ sγ +Σ−1

γ

BH∑
l=1

γ∗
l

)
,
(
S−1
γ +BHΣ

−1
γ

)−1

)

and bη | − ∼ inv-Ga

(
rη +BHaη, Rη +

BH∑
l=1

η∗2l

)
.

Updating random effects The posterior distribution of random effect (ϵiz, ξiz) is propor-
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tional to

p(ϵiz, ξiz | −) ∝
{
fLL(τiz | θ∗Liz

exp(βLizxiz)/ϵiz, ϕ
∗
Liz

)
}νiz

×
{
SLL(τiz | θ∗Liz

exp(βLizxiz)/ϵiz, ϕ
∗
Liz

)
}1−νiz

×
Niz∏
j=1

fLL(wijz | λ∗Uijz
exp(γUijzziz)/ξiz, ϕ

∗
Uijz

)

×SLL(wijz | λ∗Uijz
exp(γUijzziz)/ξiz, ϕ

∗
Uijz

)

×fLN((ϵiz, ξiz)′ | (0, 0),Σez).

Updating hyperparameter in random effects model We sample Σe from

inv-Wish

(
ce + nz, Ce +

nz∑
i=1

(log(ϵiz), log(ξiz))(log(ϵiz), log(ξiz))
′

)
.

C.2 Sensitivity analysis

In Section 4.4, we analyzed the Esophageal cancer dataset with only treatment

assignment. Here, we provide the sensitivity analysis to demonstrate the robustness of

the model. The hyperparameters are adjusted as follows:

• Sensitivity 1. In the first scenario, we set a0 = b0 = c0 = a1 = b1 = c1 = 3,

with scale parameters σ2θ = σ2λ = 1, mean parameters sθ = 0.45, sλ = −0.1,

and their corresponding variances Sθ = Sλ = 0.5. The variance for regression

coefficients Σβ = Σγ = 1 is accompanied by zero means and unit variances for the

beta distributions. The shape parameters for the log-logistic distribution are set

as aϕ = aη = 4, with inverse-Gamma parameters rϕ = rη = 3 and Rϕ = Rη = 20.
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The covariance matrix Σez is defined by an inverse-Wishart prior with ce = 18

and Ce = ((3, 0)′, (0, 0.5)′).

• Sensitivity 2. In the second setup, the hyperparameters are symmetrically set

to 4 (a0 = b0 = c0 = a1 = b1 = c1 = 4), with scale parameters reduced to

σ2θ = σ2λ = 0.75. The mean parameters sθ = 0.45, sλ = 0, and their variances

Sθ = Sλ = 0.75 are adjusted accordingly. Variance for regression coefficients

Σβ = Σγ = 0.75 is set with zero means. The shape parameters for the log-logistic

distribution are aϕ = aη = 3, with inverse-Gamma parameters rϕ = rη = 2 and

Rϕ = Rη = 25. The covariance matrix Σez follows an inverse-Wishart prior with

ce = 18 and Ce = ((3.5, 0)′, (0, 0.7)′).

These setups aim to explore the model’s behavior under varying prior beliefs

and parameter configurations.

C.3 Prior specification for parametric joint models and

additional model comparison results

In Section 4.4, we compared proposed the proposed model with two parametric

joint models. The first one is based on the renewal process assumption of the recurrent

events while the second one makes a Poisson process assumption. Here, we give details

on their prior specifications.
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(a) fS (b) SS (c) fR (d) SR

(e) fS (f) SS (g) fR (g) SR

Figure C.1: The sensitivity analysis of the EC dataset is illustrated in this figure,

presenting posterior mean estimates (dashed lines) and 95% pointwise credible intervals

for posterior (dark shaded regions) and prior (light shaded regions) estimates. The

first and second columns display the density and survival function for survival times,

respectively, while the third and fourth columns show the density and survival function

for gap times. The figures in the first and second rows are based on priors from sensitivity

analyses 1 and 2, respectively. All estimates are derived after marginalizing over the

posterior and prior random effects models. The 3DCRT group is represented in red and

the IMRT group in blue.

Parametric joint model with renewal process assumption For the joint model

with a renewal process recurrent events assumption, the model is formulated in the

following way. Conditional on random effects, both models for survival and gap times

are univariate log-logistic distributions. For i = 1, . . . , n, the hierarchical representation

169



(1) t0 = 0.5 (2) t0 = 1 (3) t0 = 2

(7) t0 = 0.5 (8) t0 = 1 (9) t0 = 2

Figure C.2: The sensitivity analysis of the EC dataset is illustrated in this figure,

presenting posterior mean estimates (dashed lines) and 95% pointwise credible intervals

for posterior (dark shaded regions) and prior (light shaded regions) estimates. From left

to right, each column displays the conditional survival probability given no occurrence of

effusions with t0 = 0.5, 1, 2, respectively. All estimates are derived after marginalizing

over the posterior and prior random effects models. The 3DCRT group is represented

in red and the IMRT group in blue.

of the model is written as:

Ti | ϵixi, θ,β, ϕ
ind.∼ LL(θ exp(βxi)/ϵi, ϕ),

Wij | ξi,xi, λ,γ, η
i.i.d.∼ LL(λ exp(γxi)/ξi, η), for j = 1, . . . , Ni,

(ϵi, ξi) | Σe
i.i.d.∼ LN((0, 0)′,Σe)
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(a) survival times (b) number of effusions

Figure C.3: EC data with All Covariates Leave-one-out Cross-validation. This figure

presents the log-transformed ratio of conditional predictive probabilities of survival times

and the number of effusions between the joint-DDP and joint-Poisson models in panels

(a) and (b), respectively.

We assign prior distributions to each parameter as θ ∼ LN(sθ, Sθ), β ∼ N(sβ, Sβ),

ϕ ∼ Ga(aϕ, bϕ), λ ∼ LN(sλ, Sλ), η ∼ Ga(aη, bη), and Σe ∼ inv-Wish(ce, Ce).

Applying the model to the Esophageal cancer dataset, we specify the prior

hyperparameter values are following, sθ = 0, Sθ = 100, sβ = 06, Sβ = 100I6, aϕ = 1,

Bϕ = 1, sλ = 0, Sλ = 100I6, aη = 1, bη = 1, and ce = 18, and Ce = 4I2.

Parametric joint model with Poisson process assumption Conditional on bi-

variate random effects, the joint model can be constructed in the following hierarchical

way, for i = 1, . . . , n,

Ti | ϵi,xi,β, ϕ
ind.∼ Weib(βxi/ϵi, ϕ),

where the survival function of the Weibull distribution is exp(−tiϵi/ exp(βxi))ϕ). We

use a parametric Poisson process intensity function as ξiηy
(
ijη − 1) exp(βxi)), for j =
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1, . . . , Ni. Thus, the likelihood function for all subjects under the parametric joint model

with Poisson process assumption is then,

L =
n∏
i=1

 Ni∏
j=1

ξi exp(γxi)ηy
η−1
ij

 exp(−ξiλ exp(γxi)tηi )

{fWeib(ti | θ exp(βxi)/ϵi), phi)}νi {SWeib(ti | θ exp(βxi)/ϵi), phi)}1−νi ,

where fWeib and SWeib are density and survival functions of a Weibull distribution,

respectively.

The prior distributions for each parameter are follows, θ ∼ LN(sθ, Sθ), β ∼

N(sβ, Sβ), ϕ ∼ Ga(aϕ, bϕ), λ ∼ LN(aη, bη), and Σe ∼ inv-Wish(ce, Ce). The prior

hyperparameters are set as aϕ = 2, bϕ = 1, sθ = 07, Sθ = 100, sβ = 07, Sβ = 100I7,

aη = 2, bη = 1, sλ = 0, Sγ = 100I7, ce = 18, and Ce = 4I2.

Figure C.3 illustrates log-transformed ratio of conditional predictive proba-

bilities between joint-DDP and joint-parametric-renewal models for survival times and

count of effusion events in panels (a) and (b), respectively. Overall, the joint-DDP

model outperformed the joint-parametric-renewal model for both survival times and

effusion counts predictions. Specifically, the joint-DDP model has higher CPPS values

for censored times and higher values of CPPR values for instances with more than one

effusion event.

C.4 Additional results with survival regression model

In Section 4.2, we presented a joint modeling framework that integrates sur-

vival times with the gap times of recurrent events, utilizing bivariate random effects to
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account for the dependence between these two processes. Here, we focus specifically

on the submodel for survival times. This involves removing the components related to

recurrent events and random effects, resulting in a standalone model that we refer to

as the survival-DDP model. By comparing the performance of the survival-DDP model

with the full joint-DDP model, we aim to underscore the distinct advantages that joint

modeling offers in the context of survival analysis, particularly in its ability to leverage

additional information from recurrent events to improve predictive accuracy.

The hyperparameters are set to be the same with the corresponding ones in

the joint model. Specifically, we let aϕ = 3, bϕ = 6, Rϕ = 30, σ2θ = 2, sθ = 0.45, Sθ = 1,

Σβ = 2I5, sβ = 05, Sβ = 2I5, along with a0 = 2, b0 = 2, and c0 = 2.

As discussed in Section 4.4.2, we computed the sum of the log conditional

predictive probabilities for survival times to assess model performance. The results for

the various joint models are presented in Table 4.1. A larger sum indicates better model

performance. The survival-DDP model achieves a value of -1621.07, outperforming

the parametric joint models, which scored -1628.1498 and -1672.2402, respectively, in

predicting survival times. However, our joint-DDP model, with a score of -1610.9244,

demonstrated the best performance. This result highlights the joint model’s ability to

effectively incorporate information from the recurrent events data, leading to enhanced

predictive power.
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