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Abstract

A solution algorithm for solving the local equations of state in a coupled damage
and plasticity model is investigated and applied to the specific problem of concrete.
The proposed algorithm algorithm is based on a quasi-Newton method that decou-
ples the damage from the plasticity. This technique avoids problems associated with
the coupling terms and produces a robust local constitutive integration methodol-
ogy. Numerical examples are provided to illustrate the behavior of the proposed
method.
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1 Introduction

The analysis of concrete behavior through the use of continuum models has been treated
extensively in the literature. The vast majority of modeling approaches, whether moti-
vated by direct consideration of micromechanical mechanisms (e.g. Ortiz [8]), dissipative
energy based approaches (e.g. Ju [2], Govindjee et. al. [1]), or direct observation of macro-
scopic test results, invariably include both damage and plasticity. More often than not,
these mechanisms are postulated to be coupled (e.g. Han and Chen [6]) based on both
theoretical and observed behaviors. Such coupling gives rise to a set of equations similar
to those of multisurface plasticity, with the additional complication that the surfaces may
evolve even when inactive.

The basic computational methodology for treating multisurface plasticity was laid out
by Simo et. al. [18]. This methodology, however, while formally correct often produces a
local return map problem that is virtually intractable for general strain time histories. For
this reason researchers have sought alternative numerical methods such as the “operator
split” method for explicit calculations of Ju and Simo [20]. However, such methodologies
can show pathological behavior in general implicit computations and further often lead
to unsymmetric tangents. The primary goal of the present work is to develop a robust
local integration methodology for combined plasticity and damage that is applicable to
implicit computations and retains symmetric tangent operators when appropriate. The
important and difficult issue of global integration methodologies for damage systems is
not addressed.

To provide a specific context for the work, we look at the model of Govindjee et. al. [1]
and augment it with a Drucker-Prager plasticity constraint. The base model is a smeared
crack type model (Rashid [16]) that utilizes the stiffness/compliance of the system as an
internal variable, similar to Ortiz’s model [8]. Energy regularization is achieved through
a modification of Oliver’s technique [15]. History variables in the model keep track of
crack orientation and intensity. The crack orientation is initialized by introducing crack
surfaces in stress space when a tensile cut-off is exceeded (see Figure 1). Each crack may
be interpreted as five constraint surfaces in stress space; one representing tension across
the crack, and four representing reduced shear capacity across the crack surface. The
evolution of these surfaces are related to the material compliance through the postulate
of maximum dissipation.

An outline of the paper is as follows: In Section 2 the constitutive equations of the
model are briefly reviewed, followed in Section 3 by a presentation of the proposed al-
gorithm. Section 4 discusses several pertinent algorithmic issues and Section 5 provides
several illustrative examples.




2 Summary of the Model

Consider a body occupying the region Q@ C R* comprised of the material of interest.
Restricting the strain tensor to be that of the infinitesimal theory (see Remark 3.3), each
point in the continuum is assumed to obey the relation:

oc=C:(e—¢g,) (1)

where o is the stress, € is the strain, e, is the plastic strain, and C is the rank four stiffness
tensor. For later use we define the compliance D = C™!. The space of admissible stress
states are constrained by the functions ¢, € ®

¢ = Hito—fi4+kqa<0 (2)
¢ = Hyio|— fo+ksqa<0 (3)
¢s = Hs:o|—fi+kqa<0 (4)
¢s = |[Pro||+P0:1+¢ <0 (5)

thereby restricting the elastic domain to
EUZ{TESIQbk(Taqdv%?)SO (k:l,...,4)} (6)

Here, g4 and g, are “hardening” functions of the internal variables oy and «, which are
related to the evolution of brittle damage and plasticity, respectively. S is the set of all
symmetric rank two tensors, P is the deviatoric projector, I is the rank two identity, and
the terms H; are defined as

1

H2:§m®m+m®m (8)
1

H; = §(n®l+l®n) (9)

This formulation is based upon a crack orientation with n as a normal, and m, I forming an
orthonormal basis in the plane of the crack. With this construction, the double contraction
H, : o determines the normal stress across the crack, while H, and Hj single out shear
stresses acting across the crack plane. The parameters f,, and f, denote critical normal
and shear stress values. k, and k, are coupling constants linking degradation between
shear and tensile surfaces, and § is the pressure coefficient for the plasticity surface.




The evolution of the internal variables governing both damage and plasticity are dic-
tated by flow rules derived from a dissipation argument:

aa¢1 ® 8a¢1 + 8a¢2 ® 80¢2 + 50’¢3 ® 8a¢8

o 1
D= e T g0 T a0 (10)
€ = V10,94 (11)
| 91 Ody  Ods

_ 94 0% Ods 12
Qyq 71 B4, + Y2 B4s + vs 5, ‘ ( )
by = 12 , (13)
H 8qp

These flow rules simply correspond to associated damage and plasticity. The consistency
parameters v, (k = 1,...4) are determined from loading and unloading conditions of the
Kuhn-Tucker type; viz.

Pk (0,92,8) <0, %20, % (0,4q4,6) 7% =0 (14)
to which the consistency condition is added:
i (0,4, Gp) Y& = 0 (15)
Reasonable choices for the functions g4 and g, are:
g = fu(l—exp[—gad]) (16)
G = —oy—kay (17)

where g, 0y, and k are additional constitutive parameters.

We next consider a time integrated form of the continuous equations presented above.
To integrate the constitution from a time ¢, to a time t,1; = ¢, + At, At > 0, we apply
a backward Euler method to flow rules (10) through (13). Denoting by Ayx = v At, we

have

: 0o it ® 0,45

Dl — pry gA’yk Faf e (18)
eyttt = &) + Av0,, 5t (19)
aftt = e+ A0y, b + A0y, 85t + Ayady, 5t (20)
o™ = ol + Aya0,, 85T (21)

where superscripts “n” and “n+41” indicate functions evaluated at time ¢, and ¢,,;. The
stress at time t"*! can be expressed as

3
o™ = C e — el — Y Ando i) (22)
k=1




Remark 2.1 The above discrete equations are viewed as strain driven; i.e. it is assumed
that e"*! is known and the objective is to solve these algebraic equations for o™*!,
Ccrtl = (D) eg“, a;""l, and !, Further, the Kuhn Tucker conditions are assumed
to be enforced at time ¢, during this process.

Remark 2.2 The incompatibility between dissipation per unit volume, as implied above,
and the physical mechanism of crack growth is treated by introduction of a length scale;
see [1] for details.

Remark 2.3 Rate dependency may be incorporated into the evolution by replacing each
A~ with 59—’27—72—‘&. This requires no modifications to the solution algorithm shown below;

see [1] or [18]for further discussion on this point.

Remark 2.4- With the framework outlined above, this multisurface problem is compli-
cated by the fact that the damage equations are coupled via oy (Eq. 12), and thus
evolution occurs on surfaces which are not currently active. This, combined with the
softening/hardening rules, makes it difficult to determine apriori the active set of con-
straints which are consistent with the model; see [18]. The algorithmic treatment in the
following section is motivated by this difficulty.

3 Solution Methodology

3.1 Solution of Coupled Evolution Equations

The fundamental difficulty in solving the set of nonlinear algebraic time discretized equa-
tions presented in the previous section lies in the determination of the correct set of active
surfaces. Although this problem exists and has been treated in general multisurface plas-
ticity [18], here it is complicated by the fact that even inactive surfaces may evolve due
to coupling with active surfaces. Analysis of a similar problem has been presented in the
work of Ju and Simo [20], where an algorithm is derived from the successive solution of
subproblems arrived at by an additive split of the stress tensor into damage and plasticity
parts. Although this algorithm had the computational disadvantage of an unsymmetric
tangent, later work by Ju [2] amended the approach based on a three part strain operator
split consisting of elastic, plastic and damage components which when added are consis-
tent with the full problem. This approach had the advantage that although the tangent
modulus was in general unsymmetric, for typical models (e.g. J; plasticity) a symmetric
tangent was recovered.




The method presented in this paper, although it does not employ an explicit split of the
stress or strain tensors, is similar in that solutions of the damage and plasticity surfaces
remain uncoupled within the algorithm, thereby resulting in a simplified implementation.
This is achieved through the use of a quasi-Newton iteration which not only maximizes
code reuse, but is nearly as efficient as a full iteration in this particular application.
Further, the full set of algebraic equations are simultaneously satisfied at the end of the
time step; this does not occur in the “operator split” methods mentioned above. With
the handling of pathological cases which may arise (Section 4), the method is shown in
Section 5 to be a reasonable approach to solving the local constitutive equations for what
are traditionally difficult analysis problems.

In all of what follows, it is assumed that the model is to be implemented within
the traditional strain driven finite element framework. As such, the constitutive model
discussed herein may be envisaged to exist at a single Gauss point within an unspecified
array of integration points. Further consideration of a specific global problem is not
necessary at this point.

3.2 Return Mapping Algorithm

Given the model outlined thus far, we begin by considering a solution strategy based on
classical return mapping algorithms comprised of an elastic predictor, and in this case,
both damage and plasticity correctors. A summary flow chart of the entire algorithm is
shown in Figure 2. The algorithm is initialized with a trial stress based on the assumption
that the incremental strain is fully elastic.

ortl =C": {emt! — e} =0"+C": Ae” (23)

The remaining variables are initialized based on previous values.

Gl = 4G = qa(al) (24)
G = @ =g(a}) (25)

After initialization, a check is made of all ¢, surfaces to determine if the stress is in the
elastic domain. If this is so, the final stress is the correct solution, and all evolution
variables are updated to t"*!. However, if any of the surfaces have been violated, they
are assumed for the time being to belong to the active set of equations, and a solution of
these equations must be pursued. These steps are summarized in Algorithm Part 1.

Algorithm Part 1 Return Mapping Algorithm Set Up:




1. Given strain at time t*t!;

e"tl =¢" + Ae (26)
2. Compute trial stress:
ol =" +C": Ae (27)

3. Compute trial surface functional values:

e = i (o7t dl ) (28)

4. Determine active surface list:
s, = s o 29
i = {a€{1,2,3} | ¢a (o0th,q}) > 0} (30)
s;ri“l = {a€{4}| ¢a (U?rﬂz,qg) > 0} (31)

5. IF sgetive = @ THEN

o™t = ot} (32)
| gt o= ¢ (34)
" = q (35)
(36)

ELSE GOTO Algorithm Part 2
6. Update history: END

3.3 Determination and Solution of Active Equations

We now consider finding a solution when $s4ctive # 0. The procedure, which is outlined
below, first solves for the consistency parameters of the current active set syctive. This
is done using a quasi-Newton algorithm whereby the stress state is updated after each
subsequent solution involving either the coupled damage surfaces or the plasticity surface.
During this part of the solution, it is possible to determine if a surface should be dropped
from the active set by the sign of its associated consistency parameter. As discussed
in [18], the equations which have a negative consistency parameter do not belong to the

7




active set (as dictated by the loading/unloading conditions) and must be removed from
Sgetive and the return map equations solved again, i.e. one must iterate in general.

Once convergence is achieved on S,ctive With a corresponding set of positive A~y, the
yield functions must be checked against this final state to determine if any surfaces, during
the evolution of the elastic domain, were violated. Should this occur, it indicates that
the currently active set is incomplete, and the solution is iterated upon again with the
necessary equations flagged as active. The process repeats until the active set of equations
satisfies all of the loading and consistency conditions. This procedure is summarized in

Algorithm Part 2.

Algorithm Part 2 Multi-Surface Algorithm

1. Initialize active set and trial stress; the iteration counter is initialized to one (7 = 1).

‘Sflctive = Sfi + 3; (37)
ot = oty (38)
q(iz = qgjtlrial (39)
q; = q;iimz ‘ (40)

2. IF s4 # 0 AND s, = 0; solve damage equations with a full newton method to
produce new iterate; see [1],

q; - qf;rl | . (41)
of — ol =0"-C": A0, VEkE sy (42)

ELSE IF s, # 0 AND s4 = (; solve plasticity using a full newton method to produce
new iterate; see [7]

@ — ¢ | (43)
o' = ot =g —C": Ap0,0r VkES, (44)

ELSE IF s # 0 AND s} # 0: GOTO Algorithm 3
3. Update active surface list:

st = {a| Ay, > 0} (45)

active

4. TP sitl L  THENi=1i+1,GOTO 2 and resolve with new active set.

active
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5. Check inactive surfaces:
st = {C‘ ¢ szctive l P <0i+17q(§+1’ ;-H) 2 O}

6. IF s* # ¢ THEN

sztttlive = {8:101,‘1'1/57 S*}
i = 141
GOTO 2 and resolve with new active set.

7. Converged solution, update and return:

a,n+1 — o,i+1
n+l1 i+1

4y = 4y
n41 i+1

9 = 9%

The procedure outlined in Algorithm 3 below treats the case when damage and plas-
ticity surfaces are simultaneously active. By uncoupling damage and plasticity iterations,
the same code that is employed in Step 2 Algorithm Part 2 may be reused. The behavior

of this iteration technique is discussed in Section 4.

Algorithm Part 3 Algorithm for Simultaneous Damage and Plasticity

1. Initialize given active set and current iterate; the sub-iteration counter is initialized

to one (j = 1). :

i — :
Sactive = 5S4 + 'Sp

o = o'

Joo_

4 = 4qq

i )

&% = 49

2. Solve damage equations with full newton assuming fixed plasticity:

' +1
@ = a
o) = ot =0’ -C": An0,6r VkE S




3. Solve plasticity equations with full newton assuming fixed damage:

¢ - gt (38)
o't = o =0t —C" Ay0,¢r VEE S, (59)

4. IF | | |
1A = |Avf]| < toli Vh € 85y (60)

THEN Update and RETURN

G = gt (61)
@' = " (62)
ot = ot (63)

ELSE GOTO 2 and resolve.

Remark 3.1 Since the solution for the consistency variables A+, occurs exclusively on
either the plasticity or damage surfaces at any one time, solution techniques which have
been presented previously in the literature (see [1] and [7]) may be used. This approach
reduces the problem to a root finding exercise for the scalar damage parameters. The
details of this procedure have been left out and are indicated by an arrow (—) in the
algorithms given above.

Remark 3.2 The pressure dependence of the plastic yield function combined with the
anisotropic nature of the compliance tensor following crack development complicates the
solution for the plastic consistency variable. In contrast to classical J; plasticity with
linear hardening and a constant isotropic linear elasticity compliance, the scalar equation
for the consistency variable can not be reduced to a linear form. Rather, the resulting
scalar equation is nonlinear in Ay and admits the possibility that no real solution may
exist. Such instances are discussed in Section 4.5. ‘

Remark 3.3 While the modeling of brittle materials does not generally require a large
strain model, it may be desirable to remove stresses induced by large rigid deformations.
The current model may be modified for this possibility by replacing & with the Green-
Lagrange strain measure E and o with the Second Piola-Kirchhoff stress measure S. The
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pertinent modifications are then given by:

E = %{Vu + Vul + VuTVu} (64)
S=C:{E-E,} (65)

Oliver’s length scale is computed in the reference domain and the only other modifications
required are to add geometric terms to the tangent.

Remark 3.4 In typical finite element applications it is advantageous to have the algorith-
mic tangent of the material model available as opposed to the continuum tangent [19].
For completeness, the consistent tangent for the general case (including rate dependent
damage surfaces) is included in Appendix A.

4 Computational Issues

In this section a number of small examples are examined which demonstrate specific
behavioral aspects of the proposed algorithm. This endeavor is aided by a graphical
interpretation which provides insight into the physical behavior of the model under con-
sideration.

4.1 State Determination: Graphical Interpretation

As mentioned in [18], yield functions based on stress or strain may be considered as
surfaces in a rank two tensor space. Symmetry of these tensors reduces the number of
independent dimensions to six. However, considering the “hardening” parameters as evo-
lution variables, additional dimensions are gained (g, g4). Figure 3 shows the nonsmooth
surface intersections in a subspace of these multiple dimensions.

If one considers multisurface perfect plasticity, it is known that for two surfaces to be
simultaneously active, the trial state must lie in the cone formed by the normals to the
two surfaces. For the equations considered here, the possibility of a solution based solely
on a geometric construction is clouded by the coupling through the hardening/softening
terms. This coupling can reduce the requirement that the trial state lie in a normal cone
from a necessary condition to a sufficient one for activation of the surfaces forming the
cone. To demonstrate, a specific problem is considered next.

By reducing the dimensions of the problem through consideration of a purely planar
stress state, the advantages of simplicity are gained without loss of generality. To this

11




end, a typical problem involving two surfaces may be defined by the equations

¢ = Hy:o— fn + knfn(l - eXp(_gad))

¢y = |Pro||+po:1-0,—ka,
where

fo = 400
k, ~ 1

g = 1632

8 = 0.1
o, = 1000

k = -—500000

A graphical representation is given in Figure 4; the normals to each surface have been
indicated at one of the points where they intersect. As is apparent from the illustration,
a large portion of the plasticity surface is separated from the elastic domain by the tensile
limit of the material. This creates the interesting problem of state determination in the
six regions surrounding the intersection (where four of these regions indicate activation
of at least one constraint). In the following subsections, load paths are considered which
drive the stress state through the different regions. This serves as a means to illustrate
the behavior of the proposed algorithm.

4.2 Reduction of Active Set

We first consider two examples of how surfaces may be removed from the active set. For
this purpose, consider st = {¢1, ¢4} where both surfaces exhibit softening (the specific
regions of interest are two and four as labeled in Figure 4). The simultaneous solution for
the active set, as arrived at by Algorithm Part 3 is given by the dashed lines in Figures 5
and 6. In both cases, the final value of one of the consistency variables is less than zero
in violation of the Kuhn-Tucker conditions. From the plots it is apparent that these
solutions correspond to physically unrealistic behavior. By removing the corresponding ¢
from Sgetive, the correct solution involving only a single surface is subsequently obtained.
Note that since these two surfaces are not coupled, the active set may have been inferred

apriori based on the normals (see [18]).
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4.3 Corner Solution

Again referring to Figure 4, assume the trial stress state is now in the normal cone
formed by ¢; and ¢4. In this case the initial active set is the correct one, and a solution
satisfying both the damage and plasticity equations is readily obtained; see Figure 7.
The convergence behavior for this quasi-Newton iteration, specifically when damage and
plasticity surfaces are both active, is observed to be linear. Remark 4.1 discusses the
frequency with which such solutions are actually observed.

4.4 Evolution of Inactive Surfaces

Demonstration of the need for Step 7 in Algorithm 2, which checks the condition of
inactive surfaces at a potential solution point, is given graphically in Figures 8 (a) and
8 (b). The first figure shows the trial state in relation to the elastic domain defined by
surfaces ¢, and ¢, where it is clear that the active set would be initialized as ¢, only.
The next graphic shows the return map path (+) and the final surfaces with softening
(dashed lines) resulting in violation of ¢; at the proposed solution. By adding surface
two into the active set, the correct solution is found. This portion of the algorithm plays
a significant role in the analysis of the plain notched concrete beam of Section 5.1.

4.5 Pathological Cases

To improve the stability of the algorithm in the presence of poor conditioning (which,
as an example, may arise after significant material degradation due to cracking), the
handling of certain pathological cases has been included in the subroutines solving for
the consistency parameters. More specifically, the determination of a lack of solution in
any subroutine is not considered as cause for failure, rather, the corresponding surface
is dropped from the active set, and a solution is pursued with the remaining surfaces.
This is equivalent to setting the consistency variable of a surface which did not converge
locally to a negative value and continuing as normal. If a solution is then found which
satisfies all of the loading/unloading/consistency conditions for every surface, the standard
solution continues. Note that after sufficient damage has occurred in the material, the
elastic domain becomes severely restricted and the system as a whole becomes more nearly
singular. In such cases, it has been observed that it is possible to reach a state to which
no solution to the local constitutive equations can be found algorithmically.

Remark 4.1 The frequency with which various solution branches are called upon during
a solution is necessarily affected by the physics of the problem being solved as well as
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the shapes of the surfaces themselves. However, for any given set of yield functions and
problem, the step size (i.e. load increment) has a significant affect on the number of
iterations spent trying to determine the active set. The further a given trial state is
from the elastic domain, the less likely the initial set will bear any resemblance to the
final active set. At the other end of the spectrum, very small load steps recover what is
essentially an event to event algorithm where the initial set is (in the limit) always the
correct set. In this case the likelihood of the load path going exactly through one of the
non-smooth intersection points of the elastic domain surface is extremely small.

Remark 4.2 The previous examples have linear convergence when both damage and plas-
ticity surfaces belong to the active set. This is to be expected, considering the uncoupled
approach which has been taken. Based on the examples in the final section, and in light
of Remark 4.1, this slight loss in numerical efficiency is acceptable given the adaptability
of the algorithm.

5 Applications

This final section demonstrates the utility of the model presented herein by comparing
the model against experimental data involving plain concrete as well as steel reinforced
concrete. All calculations were performed using the finite element code FEAP developed
at the University of California.

5.1 Numerical Examples

The following examples are drawn from [1] with the intention of testing the local consti-
tutive algorithm in realistic problems.

Plain Notched Concrete Beam

The first problem considered is that of a plain notched concrete beam in three point
bending. The original experiment was performed by Malvar [17] on a beam measuring
four by four by 31 inches (depth, width and height). The mesh used in the analysis
presented here employed quarter symmetry with a notch of one half inch extending halfway
through the depth of the beam. The constitutive parameters for the concrete were set to
E = 3.15 x 10%psi, f, = 449.6psi, G; = .436lbs/in, v = 0.2, f, = 2103psi, B, = 0.03,
n = 0.001psi — sec, f. = 4206psi, B, = 0.1, and k = —1/2 x 10%. The centerline of the
beam was driven to a displacement of 0.035in, with the results shown in Figure 9.
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This particular example is relevant in that following the attainment of peak strength,
the activation of shear surfaces which were not initially in s, occurred regularly (through
the coupling terms on the shear and tensile surfaces, as illustrated in Figure 8). This con-
tinued until the material had shed approximately half its maximum load, at which point
the elastic region had shrunk (thereby increasing the size of the normal cone) sufficiently
to avoid this behavior. Towards the end of the run, the poor bending behavior of the
eight node bricks becomes apparent.

Reinforced Concrete Beam

The second example is a moderately reinforced concrete beam in three point bending.
The beam measures 20 by 8 by 144 inches (depth, width and height), although it was
modeled in one quarter symmetry. The tension steel is located 5 inches apart (centered)
with two inch cover. It was modeled using classical one dimensional plasticity with the
parameters E = 29.5 x 10%psi, o, = 44.9 x 10%psi, A = 0.785in?, and H = 27.0 x 10%psi.
The constitutive parameters for the concrete were set to £ = 3.5 x 108psi, f, = 350pst,
Gy = 1.0lbs/in, v = 0.2, f, = 1750psi, Bs = 0.05, n = 0.001psi — sec, f, = 4820psi,
B, =0.1, and k = —1 x 10°. The original experiment data is from Burns and Seiss [3].

With the inclusion of reinforcing steel, all parts of the algorithm presented in Section 3
were tested, with the results shown in Figure 10. Also shown is the contribution of the
shear surfaces to the material degradation, where it can be seen that without activation
of the shear surfaces, the response is grossly overestimated. Despite extensive damage in
the concrete, the local algorithm encountered no difficulty in obtaining a solution to the
constitutive equations at every iteration.

Heavily Reinforced Concrete Beam

The final problem produced the most diffuse damage pattern of the calculations, and
thus serves as an extreme test of the local integration algorithm. In this case, the beam
measures 21.75 by 12 by 144 inches (depth, width and height). The two layers of tension
steel (two #9 bars in each layer) are located with 2.5 and 5 inch covers and are centered
at 7 inches apart. The compression steel (two #4 bars) line up above the tension steel
with a cover of two inches from the top of the beam. The material model used for each
type of steel is shown in Figure 11. The concrete parameters were set to £ = 3.4 x 10®psz,
fn = 350psi, Gy = 4.0lbs/in, v = 0.167, f, = 1750psi, B, = 0.05, n = 0.001psi — sec,
f. = 3490psi, B, = 0.01, and k& = —1 x 10°. The original experiment data shown in
Figures 11 and 12 is from [9].

The overall response turns out to be controlled by bond slip between the rebar and
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the concrete, which explains the calculation’s divergence from the experimental data be-
yond the point shown. Regardless, the problem provides a significant test for the local
constitutive algorithm, which never failed to converge.

6 Closure

An integration algorithm for the solution of the local constitutive equations in a coupled
damage and plasticity model has been presented and tested in a number of numerical
examples which demonstrate its behavior. The algorithm, when embedded in the con-
crete model presented herein, has been shown to be adequately robust at the local level.
However, it is noted that the local convergence is unrelated to the well known difficulty
of achieving global convergence for this class of problems.
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A Consistent Tangent

Due to the length of the expressions, a simplified notation is adopted. First, define

E_l =D" + A74¢4,a’0’

Then, using matrix notation define g and d:

©
-
©

o B d1e — P14y + 2 1,0 E: P2,0 — F1,49 $1,0 1 Z i P30 — 1,73 b1,0 1 E: G40
g = $2,0 i E: Pl,0 = P2,y; P2,0 1 E: P20 = 2,45 T 3?7 92,0 { Z: P3,0 — $2,43 $2,0 1 E 1 ¢4,0
93,0 1 E: ¢1,0 — 93,45 3,0 1 E: 92,0 — $3,v, ba,0  E: P30 — $3,y5 T AT $3,0 ' E P4,0
P40 1 E 1 P10 b4,0 12 P20 $4,0 12 P3,0 P4,0 12 Pa,0 — Pa,vy
¢ = [Zituo =020 Eidse Tidso |

With these definitions the algorithmic tangent is given by:

Cite = E—{d}gI™{d}"
where it is implied that the stress and consistency parameters used to compute the tangent

are the converged values at time t"*1. When not all surfaces are active one merely deletes
~ the inactive rows and columns to obtain the appropriate expression.
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Figure 1: Crack plane orientation. The vectors m and [ form the basis for the shear plane;
n defines the crack normal or direction of opening.
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Figure 2: Schematic of the Solution Algorithm.
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Figure 3: Stress subspace showing the non-smooth intersection between plasticity and
damage surfaces following crack formation. The axis of the plasticity cone is a measure
of hydrostatic pressure, while distances in the orthogonal plane indicate changes in shear
stress. The elastic domain is contained in the boxed off region to the left (from this

particular vantage point in stress space).
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Figure 4: Projection of plasticity surface and tensile damage surface on biaxial stress plane
following crack formation. By considering the surface normals, shown by the arrows, six
distinct regions in this subplane are created, and four different initial sets of active surfaces

(Sactive) are possible.
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Figure 5: Convergence if the proposed algorithm in region two of Figure 4. The initial
starting point is marked by e and labeled as ot} The ending point and final surfaces
are located by the symbol *, while the initial surfaces are unmarked. After determining a

negative Avy, the correct solution consisting of only the plasticity surface is found next.
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25




18

18

16
16

14
14

12
12

10
10

Plasticity Consistency
Parameter vs Iteration
Parameter vs Iteration

Damage Consistency

43107
3 x10-5

n+l

qrial !

=3
45
<

172}

-
2
s a
=]
£
2™
o
>

n 8

£ g g g & & £ 3 ¢

Figure 7: Convergence to a state in which the correct active set includes damage and
plasticity surfaces. The initial starting point is marked by e and labeled as o}f). The
ending point and final surfaces are located by the symbol *, while the initial surfaces are
unmarked. The initial stress state was in region three of Figure 4.

26




~~
.............. B o
N
:
1]
:
H
: o
: aa|
:
[gN]
=
™~ —
+ 3
=2 &
e ©
~
=
.\\\' A \\\ ~, @
N
N
o
™\
N 64
N
I\

Figure 8: Evolution of the “inactive” surface ¢,. This simple example illustrates how a
surface may be added to the active set.

27




T 1 I T 1 l

*2,2* * %  Experimental Data
Calculation

2001

| l !

I | I |
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Displacement  (in)

Figure 9: Beam 1B calculation results.
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