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As robots become more common in our daily lives, they will be expected to

interact with and work with teams of people. If a robot has an understanding of the

underlying dynamics of a team, then it can recognize, anticipate, and adapt to human

motion to be a more effective teammate.

To enable robots to understand team dynamics, I developed a new, non-linear

method to detect group synchronization, which takes multiple types of discrete, task-level

events into consideration. I explored this method within the context of coordinated action

and validated it by applying it to both human-only and mixed human-robot teams. The

results suggest that our method is more accurate in estimating group synchronization

xix



than other methods from the literature.

Building on this work, I designed a new method for robots to perceive human

group behavior in real-time, anticipate future actions, and synthesize their motion accord-

ingly. I validated this approach within a human-robot interaction scenario, where a robot

successfully and contingently coordinated with people in real-time. We found that robots

perform better when they have an understanding of team dynamics than they do not.

Moreover, I investigated how the presence and behavior of robots affect group

coordination in multi-human, multi-robot teams. The results suggested that group co-

ordination was significantly degraded when a robot joined a human-only group, and

was further degraded when a second robot joined the team and employed a different

anticipation algorithm from the other robot. These findings suggest that heterogeneous be-

havior of robots in a multi-human group can play a major role in how group coordination

dynamics change.

Furthermore, I designed and implemented algorithms for robots to coordinate

with people in tempo-changing environments. These algorithms leveraged a human-like

understanding of temporal anticipation and adaptation during the coordination process. I

validated the algorithms by applying them in a human-robot drumming scenario. The

results suggest that an adaptation process alone enables a robot to achieve human-level

performance. Moreover, by combining anticipatory knowledge (anticipation algorithm),

along with an adaptation process, a robot can be even better than people in both uniform

and single tempo-changing conditions.

My research will enable robots to recognize, anticipate, and adapt to human

groups. This work will help enable others in the robotics community to build more fluent

and adaptable robots in the future, and provide a necessary understanding for how we

design future human-robot teams.
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Chapter 1

Introduction

As technology advances, autonomous robots are becoming more involved in

human society in a variety of roles. Robotic systems have long been involved in assembly

lines automating and increasing efficiency of dexterous factory procedures [223]. Their

involvement is becoming prominent in other situations, like assistive living, surgery,

physical therapy etc [44, 123, 20]. In recent years, assistive robots are becoming more

common in healthcare situations, like robotic wheelchairs to aid people with physical

mobility [52], robotic exoskeletons to help body control [97], and rehabilitation robots to

provide physical therapy after stroke [112].

However, as robots leave controlled spaces and begin to work alongside people,

many things taken for granted in robotics concerning perception and action do not apply,

as people act unpredictably, e.g., they “break the rules” when it comes to what a robot

can expect a priori. In order for robots to effectively perform their tasks and integrate

into Human Social Environments (HSEs), they must be able to comprehend high-level

social signals of the group and respond appropriately [176]. While recent advances in the

field have improved robot perception in general (c.f., [17]), it is still difficult for a robot

to recognize each human action in the real world, and use that information in a timely

1
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fashion to make informed decisions about their own actions [229].

As robots are becoming prominent in society, they are expected to interact with

humans in teams. For example, a robot might encounter people in a group performing

various social actions, such as engaging in social games or synchronized movements.

It can be difficult for a robot to perceive and understand all of the different movements

of the humans to make effective decisions as a team mate. If a robot could make better

sense of how humans interact among themselves in a group, its interactions with humans

would reach a higher level of coordination, resulting in a fluent meshing of actions

[180, 74, 75, 64, 18].

Group interaction is an important aspect of human social interaction, and is an

active area of research [19, 91, 14, 10, 49, 47]. In group interaction, the activities of each

member continually influence the activities of other group members. Most groups create

a state of interdependence, where each member’s outcomes and actions are determined

in part by other members of the group [47]. This process of influence can result in

coordinated group activity over time, which can be described as the synchronization of

the group.

In many group interaction scenarios, humans coordinate their activities with the

rest of the group members, and the group eventually reaches to a synchronous state.

Synchronous activity, or synchronous joint action, can be described as the spatiotemporal

coordination of signals, which results from rhythmic responsiveness to a perceived

rhythmic signal [159]. This is a form of social interaction where two or more participants

coordinate their actions in space and time while making changes to their environment

[201]. Synchronous joint action is an important behavioral indicator of group-level

cohesiveness, and also important for accurately understanding the affective behavior

of a group [172, 218]. It is also a key component of human audio-visual attention and

direction, and of social learning and cognitive development [185, 163].
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Synchronous joint action can occur in many group contexts, such as dance, music,

and games, and can be a result of both intentional and unintentional motor coupling

during social interaction. Intentional entrainment occurs in cooperative group tasks,

such as rowing a boat with a team. In contrast, an example of unintentional entrainment

would be a group of friends spontaneously coordinating their movements when walking

together [217, 172]. In general, humans are skilled at coordinating their movements in

group situations.

In a group setting, the synchronization phenomenon can be observed not only

based on the coordinated movements of the group members, but also on how the group

members perform activities. If a group task is cooperative and rhythmic (e.g., synchronous

swimming), then synchronization can also be found in the activity performed by each

member of the group. Thus, systemic approaches are proposed in the literature to model

the synchronization of a group, both at the individual-level and group-level.

Understanding human team dynamics is not trivial. One of the main challenges is

the unpredictability in human behavior, little of which can be known in advance. Another

major challenge is accurately detecting human activities “in the wild” [209], e.g., in

ecologically realistic settings.

However, if a robot has some ability to model team dynamics, then it can an-

ticipate future actions in a team, and adapt to those actions in order to be an effective

teammate. Synchronous joint action is a kind of a high-level behavior that robots will

encounter in a group while teaming with humans. Recognizing synchronous joint action

and adapting to it will help the robots be more fluent during interaction, and thus be more

acceptable by human counterparts.
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1.1 Motivation and scope

Researchers in the fields of psychology, cognitive science, kinesiology, dance

and music have explored how humans interact among themselves within a group [150,

198, 102, 125, 12, 115, 172]. However, there is a lack of an automatic tool to model and

understand coordination from the task-level events of the group members. Having such

an automatic tool will be beneficial for all these fields, as well as it will push the science

forward.

In robotics, understanding human group interaction and joint action has recently

surged in interest in the field of human-robot interaction (HRI) [116, 138, 149, 133, 162,

58, 67, 42, 137, 94, 139]. Understanding group dynamics will be helpful for robots to

synthesize their own movements in teams.

Typically, human-robot teaming research has been more geared toward dyadic

HRI (one human, one robot), and has focused more on manipulation tasks. In contrast,

the goal of this work is to enable robots to interact fluidly within groups of people by

understanding team dynamics from the gross action rather than dexterous manipulation

[74, 75]. This is an important gap to address, as a large amount of human activity takes

place in groups, and within groups there is a higher likelihood of synchronous activity

occurring [172]. Thus, robots that can be aware of such activity and determine how best

to engage are more likely to work successfully and contingently with humans, as well as

be more accepted by humans [176].

There are many dimensions to this problem, and this dissertation explores the

following aspects of them:

1. How to measure the degree of synchronization in a group

2. How to validate this measure, both in the context of human-human, and human-

robot team scenarios
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3. How a robot can use this understanding to anticipate future activities of the group

members and inform its own movements accordingly

4. How a robot can anticipate and adapt to a tempo-changing rhythm during a syn-

chronous group activity

5. What the effects are of varying the number of robots with different behaviors in

multi-human multi-robot teams

6. How robots can leverage a human-like understanding of temporal anticipation and

adaptation when coordinating with people

1.2 Contributions

The contributions of this work are as follows:

• Developed a new non-linear method to measure the synchronization of a

group. Our method takes multiple types of discrete, task-level events into con-

sideration, to automatically detect the degree of synchronization of a group. It is

capable of modeling synchronous and asynchronous behavior of the group, and is

well-matched to the group members’ perception about synchrony. Our method is

more accurate in estimating synchrony than other methods from the literature that

depend on a single event type [82].

• Validated the new method by applying it to a human-human team. We vali-

dated the method by applying it to a human-human team, where the group played

a multiple event-based rhythmic game. During this game each player performed

a periodic psychomotor activity within the group, and each player’s movements

influenced all others’ movements. The results suggest that the method successfully
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measured the degree of synchronization of the group in 100% of cases, which

matches with the collective perception of the group members [82].

• Validated the new method by applying to a human-robot team. We validated

our method using it to study people engaging in synchronous and asynchronous

marching tasks while being followed by autonomous mobile robots. We again

found that our method is accurate in measuring group synchrony [76].

• Designed a new approach for robots to anticipate and synthesize coordinated

actions. We have designed a new approach to enable robots to perceive human

group motion in real-time, anticipate future actions, and synthesize their own

motion accordingly. We explore this within the context of joint action, where

humans and robots move together synchronously. We validate the method within

a human-robot interaction scenario, where an autonomous mobile robot observes

a team of human dancers, and then successfully and contingently coordinates its

movements to “join the dance”. We compared the results of our anticipation method

to move the robot with another method which did not rely on team dynamics, and

found our method performed better both in terms of more closely synchronizing the

robot’s motion to the team, and also exhibiting more contingent and fluent motion.

These findings suggest that the robot performs better when it has an understanding

of team dynamics than when it does not [79].

• Investigated how the presence and behavior of robots affect group coordina-

tion in multi-human multi-robot teams. I have investigated how the presence

of robots affect group coordination when both the anticipation algorithms they

employ and their number (single robot or multiple robots) vary. The results of this

study suggest that heterogeneous behavior of robots in a multi-human group can

play a major role in how group coordination dynamics stabilize (or fail) [77].



7

• Developed human-inspired adaptation and anticipation models for robots. I

designed and implemented algorithms for robots to coordinate with the other mem-

bers of a team in tempo-changing environments, inspired by the neuroscience

literature. These algorithms leveraged a human-like understanding of temporal

anticipation and adaptation during the coordination process. I validated the algo-

rithms by applying them in a human-robot synchronous drumming scenario. The

results suggested that an adaptation algorithm alone enabled a robot to achieve

human-level performance in a synchronous drumming scenario. By combining

an anticipatory knowledge along with an adaptation process, a robot can perform

even better than people during many tempo-changing situations [77].

• Developed a time-synchronous multi-modal data capture system. I have iden-

tified many of the aspects and challenges of building a time-synchronous data

capture system, which is an essential element to investigate group interactions

precisely. Based on those findings, I have designed and implemented a time-

synchronous, multi-modal data capture system based on client-server architecture

to detect high-level human activities [74].

1.3 Publications

Some of the work presented in this dissertation is based on the following publica-

tions. In addition to these publications, some of the work in this dissertation is also based

on papers that have yet to be published.

1. Iqbal, T. and Riek, L. D. (2017). Coordination Dynamics in Multi-human Multi-

robot Teams. IEEE Robotics and Automation Letters (RA-L), vol. 2, no. 3,

pp. 1712-1717 (Also appears in IEEE International Conference on Robotics and

Automation (ICRA)).
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2. Iqbal, T. and Riek, L. D. (2017). Human Robot Teaming: Approaches from Joint

Action and Dynamical Systems. Humanoid Robotics: A Reference (In review).

3. Iqbal, T. and Riek, L. D. (2017). Can robots synchronize with humans in tempo

changing environments?. In Proc. of the 6th Annual Joint Action Meeting (JAM).

4. Iqbal, T., Rack, S., and Riek, L. D. (2016). Movement Coordination in Human

Robot Teams: A Dynamical Systems Approach. IEEE Transactions on Robotics

(T-RO), vol. 32, no. 4, pp. 909-919.

5. Iqbal, T., Moosaei, M., and Riek, L. D. (2016). Tempo Adaptation and Anticipa-

tion Methods for Human-Robot Teams. In Proc. of the Robotics: Science and

Systems (RSS), Planning for Human-Robot Interaction: Shared Autonomy and

Collaborative Robotics Workshop.

6. Iqbal, T. and Riek, L. D. (2016). Human Coordination Dynamics with Heteroge-

neous Robots in a Team. In Proc. of the ACM/IEEE International Conference on

Human Robot Interaction (HRI) Extended Abstract, pp. 619-620.

7. Iqbal, T. and Riek, L. D. (2016). Leveraging Coordination Dynamics to Enable

Human Robot Teams. In Proc. of the Midwest Robotics Workshop (MWRW).

8. Iqbal, T. and Riek, L. D. (2015). A Method for Automatic Detection of Psychomo-

tor Entrainment. IEEE Transactions on Affective Computing, vol. 7, no. 1, pp.

3-16.

9. Iqbal, T. , Gonzales, M. J., and Riek, L. D. (2015). Joint Action Perception to

Enable Fluent Human-Robot Teamwork. IEEE International Symposium on Robot

and Human Interactive Communication (RO-MAN), pp. 400-406.
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Action in Human-Robot Teams. ACM International Conference on Multimodal

Interaction (ICMI), pp. 581-585.

11. Iqbal, T., Rack, S., and Riek, L. D. (2015). Will You Join The Dance? Toward

Synchronous Joint Action in Human Robot Teams. In Proc. of the 6th Annual

Joint Action Meeting (JAM).
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on Human-Robot Interaction (HRI) Extended Abstract, pp. 153-154.
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14. Iqbal, T. and Riek, L. D. (2014). Role Distribution in Synchronous Human-Robot

Joint Action. IEEE International Symposium on Robot and Human Interactive

Communication (RO-MAN), Towards a Framework for Joint Action Workshop.
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Social Activity: A Systemic Approach. Conference of the International Society for
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1.4 Ethical procedures

Human subjects experiments described in this dissertation were formally reviewed

by the Institutional Review Board at the University of Notre Dame. The board found the

experiments straightforward to review as they did not involve minors, cause any harm to

participants, or result in non-identifiable data being disclosed.

Informed consent was collected from all participants in all experiments. Partici-

pants for in-person experiments were compensated for their participation. All participant

data was stored securely and was appropriately anonymized.

1.5 Dissertation overview

This dissertation is organized as follows:

• Chapter 2: Background - a brief overview of robotics, human-robot interaction,

and methods to measure the degree of coordination and their relationship in the

context of human-robot teaming.

• Chapter 3: A time-synchronous data capture system - presents development and

validation of a time-synchronous multi-modal data capture system.

• Chapter 4: A new method to measure team coordination - presents a novel event-

based method to measure the degree of synchronization of a group.

• Chapter 5: Validation of the method with a human team - presents validation

of the method by applying it to a human group during a rhythmic activity, and

discusses a comparison with two other state of the art methods.

• Chapter 6: Validation of the method with a human-robot team - presents a vali-

dation of the method by applying it to a human-robot team while both the robots
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and co-present humans are moving, and explores the application of this method on

detecting asynchronous conditions.

• Chapter 7: An anticipation method for robot control - presents a new anticipation

method that relies on team dynamics to enable a robot to predict events during a

human-robot interaction scenario.

• Chapter 8: Movement coordination in human-robot teams - presents a study

involving an investigation of the movement coordination in human-robot teams by

employing the presented anticipation methods on a robot, and discusses the finding

of the study.

• Chapter 9: Coordination dynamics in multi-human multi-robot teams - investi-

gates the effect of multiple robots (varied by their number and behavior) on the

coordination dynamics in multi-human, multi-robot teams.

• Chapter 10: Adaptation and anticipation models for robots - presents new algo-

rithms for robots to coordinate with people in tempo-changing environments.

• Chapter 11: Conclusion - presents the main contributions of this research, future

work, and open questions for the HRI community.



Chapter 2

Background

2.1 Overview of human-robot teaming

Robotic systems have long been involved in assembly lines automating and

increasing efficiency of monotonous or dangerous factory procedures [223, 20]. As

technology advances, autonomous robots are becoming more involved in human society

in a variety of roles. They are now working alongside humans in teams in many situations,

and their presence will be more pronounced in the near future [88].

Similar to human-human teams, robots and humans work together as a team

to achieve a common goal in a human-robot team [13]. Based on the goal of the task,

a human-robot team may be involved in a task that can be categorized as one of the

followings: collaborative, cooperative, or competitive [89, 90].

In a collaborative task, both humans and robots work as equal partners towards

a common goal. In a cooperative task, the workload is not equally distributed among

human and robot participants. Lastly, in the competitive task, the human and the robot

participate in the task as opponents.

In a cooperative human-robot interaction scenario, Ong et al. ([154, 153]) de-

12
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fined five possible role distributions between human and robots to achieve cooperation,

and explained it in the context of a telerobotics system. The possible role distribu-

tions are master-slave, supervisor-subordinate, partner-partner, teacher-learner, and fully

autonomous. To describe high-level interactions between humans and robots, this frame-

work is useful, however it might not be suitable for detailed analysis [90].

In a master-slave model, the human always controls the activities of the robots

[154, 153]. The robots only can perform the tasks assigned to it, but the human makes

the decision to accomplish the goal.

In the case of the supervisor-subordinate role distribution model, the human acts

as a supervisor. The responsibility of the supervisor includes dividing the tasks in smaller

subtasks and assigning them to the subordinates. The robots act as subordinates in this

model, and have freedom to plan and execute to finish the assigned subtask. If a task

goes wrong, it is the responsibility of the supervisor to step in and find a solution of that

problem.

Both humans and robots are viewed as partners in the partner-partner role distri-

bution. Here both humans and robots are assigned with some specific tasks, and both can

help each other make necessary decisions and actions in the case when a task oriented

problem arises. In this scenario, humans and robots have the same level of authority.

In a teacher-learner role distribution, a human acts as the teacher and teaches the

robot. It is assumed that the learners will have the ability to understand and learn from the

human. A special case of the teacher-learner model is the ‘learning from demonstration’

(LfD) model. In LfD, a learner observes the actions of the teacher, and tries to replicate

the actions with or without taking any direct guidance from the teacher [7]. The robots

have the ability to take decisions and accomplish tasks without any intervention of human

in a fully autonomous role distribution.

Another commonly used role distribution is the ‘leader-follower’ model. In
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this model, only the follower adjusts its actions based on the action of the leader [89].

Typically, the human acts as the leader and the robots act as the follower. For example,

Stuckler [208] employed a leader-follower based role distribution in their work. In their

work, the human and the robot worked together to lift and lower a table. The leader (the

human) showed his/her intention of lifting or lowering a table to the follower (the robot).

After interpreting the intention of the leader, the follower took appropriate actions to help

the leader to lift or lower the table together.

While working alongside humans, a robot might encounter people performing

various social actions, such as engaging in social activities, or performing synchronous

movements [166]. For example, Ros et al. ([187]) used a humanoid robot to play the role

of a dance instructor with children, and Fasola et al. ([44]) designed a socially assistive

robot to engage older adults in physical exercise. Others have used robots to dance and

play cooperatively with children in therapeutic settings [133, 155]. Koenemann et al.

([104]) demonstrated a system which enabled humanoid robots to imitate complex human

whole-body motion.

The following subsections will outline a couple of main application areas where

robots cooperatively perform joint action tasks with humans.

2.1.1 Activity recognition from robots

To perform contingently with humans in a team, a robot needs the ability to under-

stand the tasks that copresent humans are doing. To address this challenge, researchers

from the activity recognition, robotics, and neuroscience communities generally consider

psychomotor tasks to be comprised of motor primitives (also referred as motor schemas,

control modules, and prototypes) [92, 45, 144, 196, 197]. The idea is that psychomotor

tasks are comprised of “building blocks at different levels of the motor hierarchy” [144].

Stored primitives are syntactically combined to enable a wide range of complex actions.
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While there are theoretical debates in the aforementioned communities about the optimal

way to model both primitives and higher-order tasks [194, 11], for practical purposes,

researchers have successfully built working systems over the past few decades [3].

Kinematically-defined primitives is another approach for understanding human

activities, which relate to sequences of movements made by the limbs in 3D space.

Many successful approaches have been employed for detecting these primitives [3], with

strong results realized for detecting a range of human behaviors from gross motor motion

(walking, lifting) to manipulation (stacking objects, brushing teeth) [227, 229, 145, 107,

152, 5, 26].

Ryoo et al. ([193, 192]) discussed various challenges of recognizing interaction-

level human activities from a first person view-point. This is very important from robot’s

point of view, as a robot needs to understand what activity others are performing to it.

The authors proposed a new approach to detect interactional activities from continuous

videos from a robot, or wearable camera.

Collective activity recognition is another approach to representing the interaction

of people in groups. Collective activity refers to coordinated group actions such as

queuing in a line. Choi et al. [29, 28] presented a unified framework for tracking multiple

people in a crowd while estimating their collective activities. They divided the problem

into three parts: detecting individual activities, detecting interactions between pairs, and

measuring the collective activities of a group. Chang et al. [24] addressed this problem

with a learning-based approach, in which each class of collective activities is modeled

based on person-person interaction patterns.

Recently, Neural Networks have been widely used for human activity recognition

[93, 40, 96]. Karpathy et al. ([95]) provided an extensive empirical evaluation of

Convolutional Neural Networks (CNNs) on large scale video classification using a

dataset of 1 million videos. Donahue et al. ([40]) proposed a Long-term Recurrent
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Convolutional Networks (LRCNs) architecture, which can take variable length input

(e.g., video frames) and can produce a variable length output (e.g., natural language text).

2.1.2 Proximate Human-Robot Teaming

In many interactions, robots and humans need to share a common physical space

to interact. Various methods are employed on robots to work efficiently in close proximi-

ties by avoiding collisions, such as models from a human demonstration, anticipatory

action planning, etc. [211].

To build policies for robots to share a space with humans, many approaches in

the literature first built models from human demonstrations. After training, robots then

use these trained models to collaborate with people. For example, Ben Amor et al. [6]

collected human motion trajectories as Dynamic Movement Primitives (DMP) from a

human-human task. After that, the authors used dynamic time warping to estimate the

robot’s DMP parameters. Using these parameters, they modelled human-robot joint

physical activities using a new representation, called Interaction Primitives (IP). Their

experimental results suggested that a robot successfully completed a joint physical task

with a person when IPs were used.

Nikolaidis et al. [148] proposed a two-phase framework to fit a robot’s collabora-

tive policy to fit with a human collaborator. They first grouped the human activities into

clusters and then learned a reward function for each cluster using an inverse reinforce-

ment learning. This learned model was incorporated with a Mixed Observability Markov

Decision Process (MOMDP) policy with the human type as the partially observable

variable. After that, they used this model for a robot to infer the human type and to

generate the appropriate policies.

Many researchers try to achieve successful human-robot collaboration in a shared

space by modeling human activities and use that knowledge as an input to a robot’s
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anticipatory action planning mechanism [211]. This approach enables robots to generate

movement strategies to efficiently collaborate with people.

For instance, Hoffman and Weinberg [70, 68] developed an autonomous robotic

jazz-improvising robot, Simon, which played the marimba. To play in real-time with a

person, the robot needed an anticipatory action plan. The authors divided the actions into

preparation and follow-through steps. Based on the anticipatory plans, their robot could

simultaneously perform and react to shared activities with people.

Koppula et al. [108] also developed a method to anticipate a person’s future

actions. Anticipated actions were then used to plan appropriate actions for a robot

to perform collaborative tasks in a shared environment. In their method, they model

humans through low-level kinematics and high-level intent, as well as using contextual

information. Then, they modeled the human’s and robot’s behavior through a Markov

Decision Process (MDP). Their results suggested that this approach performed better

than various baseline methods for collaborative planning.

Mainprice and Berenson [127] presented a framework to allow a human and

a robot to perform a manipulation task together in close proximity. This framework

used early prediction of the human motion to generate a prediction of human workspace

occupancy. Then, they used a motion planner to generate robot trajectories by minimizing

a penetration cost in the human workspace occupancy. They validated their framework

via simulation of a human-robot collaboration scenario.

Along these lines, Pérez-D’Arpino et al. [157] proposed a data-driven approach

which used human motions to predict a target during a reaching-motion task. Unhelkar

et al. [214] extended this concept for a human-robot co-navigation task. This model used

“human turn signals” during walking as anticipatory indicators of human motion. These

indicators were then used to plan motion trajectories for a robot.
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2.1.3 Human-Robot Handovers

A particular kind of activity often conducted in the proximate human-robot

interaction space is a handover. It is an active application space in robotics research [211].

Most of the work on handovers focuses on designing algorithms for robots to successfully

hand objects to people, as well as receive objects from them. The researchers working in

this area use many methods to achieve their goals, including: nonverbal signal analysis,

human-human handover models, and legible trajectory analysis.

Many researchers used non-verbal signals of people to facilitate fluent object

handover during human-robot interaction [211]. These signals included eye gaze, body

pose, head orientation, etc. For example, Shi et al. [205] focused on building a model

for a robot to handover leaflets in a public space, looking specifically at the relationship

between gaze, arm extension, and approach. They used a pedestrian detector in their

implementation on a small humanoid robot. Their results showed that pedestrians

accepted more leaflets from the robot when their approach was employed than another

state of the art approach.

Similarly, Grigore et al. [54] demonstrated that the integration of an understanding

of joint action into human-robot interaction can significantly improve the success rate of

robot-to-human handover tasks. The authors introduced a higher-level cognitive layer

which models human behavior in a handover situation. They particularly focused on the

inclusion of eye gaze and head orientation into the robot’s decision making.

Other researchers also investigated human-human handover scenarios to get

inspiration to build models for human-robot handover scenarios [211]. Along this line

of research, Huang et al. [73] analyzed data from human dyads performing a common

household handover task - unloading a dish rack. They identified two coordination

strategies that enabled givers to adapt to receivers’ task demands, namely proactive and

reactive methods, and implemented these strategies on a robot to perform the same task
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in a human-robot team. Their results suggested that neither proactive nor reactive strategy

can achieve both better team performance and better user experience. To address this

challenge, they developed an adaptive method to achieve a better user experience with an

improved team performance compared to the other methods.

To improve the fluency of a robot’s actions during a handover task, Cakmak et al.

[18] found that the failure to convey an intention of a robot to handover an object causes

delay during the handover process. To address this challenge and to achieve fluency, the

authors tested two separate approaches on a robot: performing distinct handover poses

and performing unambiguous transitions between poses during the handover task. They

performed an experiment where a robot used these two approaches while handing over an

object to a person. Their findings suggested that unambiguous transition between poses

reduced human waiting times, resulted in a smoother object handover. However, distinct

handover poses did not have any effect on that.

Other researchers work on perform trajectory analysis to achieve smooth handover

of objects. For example, Strabala et al. [207] proposed a coordination structure for human-

robot handovers based on human-human handover. The authors first studied how people

perform handovers with their partners. From this study, the authors structured how people

approach, move their hands, and transfer objects. Taking inspiration from this structure,

the authors then developed a similar handover structure for human-robot handover. This

human-robot handover structure concerned about what, when and where aspects of

handovers. They experimentally validated this design structure.

2.1.4 Fluent Human-Robot Teaming

Many researchers in the robotics community try to build fluent human-robot

teams. To achieve this goal, many approaches have been taken, including: insights from

human-human teams, cognitive modeling for robots, understanding the coordination
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dynamics of teams, and adaptive future prediction methods [211].

To achieve fluency in human-robot teams, many researchers investigated how

people achieve fluent interaction in human-only teams. This knowledge is used to develop

strategies for robots to achieve fluent interaction while interacting with people.

Taking insights from human-human teaming, Shah et al. [203, 204] developed a

robot plan execution system, called Chaski, to use in human-robot teams. This system

enables a robot to collaboratively execute a shared plan with a person. This system can

schedule a robot’s action, and adapt to the human teammate to minimize the human’s

idle time. Through a human-robot teaming experiment, the authors validated that Chaski

can reduce a person’s idle time by 85%.

To build cognitive models for robots, researchers build on many other fields,

including cognitive science, neuroscience, and psychology. For example, Hoffman and

Breazeal [63] address the issue of planning and execution through a framework for

collaborative activity in human-robot groups by building on the various notions from

cognitive science and psychology literature. They presented a hierarchical goal-oriented

task execution system. This system integrated human verbal and nonverbal actions, as

well as robot nonverbal actions to support the shared activity requirements.

Building adaptive models based on a prediction of future actions is another

approach to achieve fluent human-robot collaboration. Hoffman and Breazeal [66]

developed a cognitive architecture for robots, taking inspiration from neuropsychological

principles of anticipation and perceptual simulation. In this architecture, the fluency

in joint action achieved through two processes: 1) anticipation based on a model of

repetitive past events, and 2) the modeling of the resulting anticipatory expectation as

perceptual simulation. They implemented this architecture on a non-anthropomorphic

robotic lamp, which performed a human-robot collaborative task. Their results suggested

that the sense of team fluency and the robot’s contribution to the fluency significantly
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increased when the robotic lamp used their developed architecture.

In other work, Hoffman and Breazeal [65] proposed an adaptive action selection

mechanism for a robot in the context of human-robot joint action. This model made

anticipatory decisions based on the confidence of their validity and relative risk. They

validated their model through a study involving human subjects working with a simulated

robot. They used two versions of robotic behaviors during this study, one was fully

reactive, and another one used their proposed anticipation model. Their results suggested

a significant improvement in best-case task efficiency and significant difference in the

perceived commitment of the robot to the team and its contribution to the team’s fluency

and success.

2.1.5 Capabilities that promote robot partnership

There are still many open areas regarding social interactional capabilities that a

robot should have before it can fluently and naturally interact with people as a partner.

Many researchers have tried to tackle these open questions by building models for robots

to understand and to act appropriately as a partner in social situations.

For example, Leite et al. [120] conducted an ethnographic study to investigate

how a robot’s capability of recognizing and responding empathically can influence an

interaction. The authors performed the study in an elementary school where children

interacted with a social robot. That robot had the capability of recognizing and responding

empathically to some of the children’s affective states. The results suggested that the

robot’s empathic behavior had a positive effect on how children perceived the robot.

Many researchers also explored how a robot’s explicit behavior can influence its

interaction with people. For example, Riek et al. [178, 181] investigated how imitation

by a robot affects human-robot teaming. They designed a study where a robot performed

three head gestures while interacting with a person: full head gesture mimicking, partial
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mimicking, and no mimicking. The authors found that in many cases people nodded back

in response to the robot’s nodding during interactions. They suggested incorporating

more gestures, along with head nods, while studying affective human-robot teaming.

In another study, Riek et al. [173] explored the effect of cooperative gestures

performed by a humanoid robot in a teaming scenario. The authors performed an

experiment where they manipulated the gesture type, the gesture style, and the gesture

orientation performed by the robot while interacting with people. Their results suggested

that people cooperate more quickly when the robot performed abrupt (“robot-like”)

gestures, and when the robot performed front-oriented gestures. Moreover, the speed

of people’s ability to decode robot gestures is strongly correlated with their ability to

decode human gestures.

In HRI, eye gaze can provide important non-verbal information [211]. For

example, Moon et al. [135] performed an experiment where a robot performed human-

like gaze behavior during a handover task. In their experiment, a PR2 robot performed

three different gaze behaviors while handing over a water bottle to a person. The results

indicated that the timing of handover and the perceived quality of the handover event

were improved when the robot showed a human-like gaze behavior.

Admoni et al. [1] explored whether a deviation from a robot’s standard behavior

can influence the interaction. The authors claimed that people often times overlooked

robot’s standard non-verbal signals (e.g., eye gaze) if they were not related to the primary

task. In their experiment, the authors manipulated the handover behavior of a robot

to deviate a little from the standard expected behavior. The results of this experiment

suggested that a simple manipulation on standard handover timing of a robot made people

be more aware of other nonverbal behaviors of the robot, such as eye gaze behavior.

Another well-investigated approach in the field is to teach a robot appropriate

behaviors by teaching it through demonstration, i.e., learning from demonstration (LfD)
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[7]. For instance, Niekum et al. [146] developed a method to discover semantically

grounded primitives during a demonstrated task. From these primitives, the authors

then built a finite-state representation of the task. The authors used a Beta Process

Autoregressive Hidden Markov Model to automatically segment demonstrations into

motion categories. These categories were then further divided into motion grounded

stated in a finite automaton. From many demonstrated examples, this model was trained

on a robot.

Hayes [60] looked at mutual feedback as an implicit learning mechanism during

an LfD scenario. The authors explored grounding sequences as a feedback channel for

mutual understanding. In their study, both a person and a robot provided nonverbal

feedback to communicate their mutual understanding. The results from the experiments

showed that people provided implicit positive and negative feedback to the robot during

the interaction, such as by smiling or by averting their gaze from the robot. The results

of this work can help us to build adaptable robot policies in the future.

Brys et al. [16] explored how to merge reinforcement learning and LfD ap-

proaches together to achieve a better and faster learning phase. One key limitation of

reinforcement learning is that it often requires a huge amount of training data to achieve

a desirable level of performance. For a LfD approach, there is no guarantee about the

quality of the demonstration, which can have many errors. Brys et al. investigated the

intersection between these two approaches and tried to speed up the learning phase of RL

methods using an approach called reward shaping.

2.2 Understanding group interaction dynamics

However, sometimes it can be difficult for a robot to perceive and understand

all of the different types of events involved during these activities to make effective
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decisions, due to sensor occlusion, unanticipated motion, narrow field of view, etc. On

the other hand, if a robot is able to make better sense of its environment and understand

the interaction dynamics, then it can make effective decisions about its actions. If the

robot has these understandings, then its interactions within the team might reach to a

higher-level of coordination, resulting in a fluent meshing of actions [180, 76, 64, 18].

Many disciplines have investigated interaction dynamics within teams, which

include sociology, psychology, biology, music and dance [140, 141, 121, 122, 30, 198,

156, 100, 111, 62, 114, 61]. For example, Nagy et al. ([140, 141]) investigated collective

behavior on animals, and developed automated methods for assessing social dominance

and leadership in domestic pigeons. Their investigation explored the effect of social hier-

archical structure on dominance and leadership. Their results indicated that dominance

and leadership hierarchical structures were independent from each other.

Inspired from bird flocks and fish schools, Leonard et al. ([121, 122]) investigated

how collective group motion emerges when basic animal flocking rules (i.e., cohesive and

repulsive element) are applied on a group of human dancers. Using tracked trajectories of

head positions of individual dancers, the authors developed a time-varying graph-based

method to infer conditions under which certain dancers emerged as the leaders of the

group.

Khalil et al. [101] explored whether there exists any relationship between a

person’s ability to synchronize in a group with his/her ability to attend. To investigate that,

they designed a musical study where a group of students played five-keyed metallophones

while following a leader. During the study, they measured each person’s ability to

synchronize with the group. After the study, they measured their attention behavior using

standard questionnaires. Their results suggested that a child’s ability to synchronize with

others in a group is an indicator of his/her attention behavior.

Synchronous motion, or joint action, is a common type of high-level behavior
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encountered in human-human interaction. It is a naturally present social interaction that

occurs when two or more participants coordinate their actions in space and time to make

changes to the environment [201]. Understanding synchronous joint action is important,

as it helps to accurately understand the affective behavior of a team, and also provides

information regarding the group level cohesiveness [172, 218].

Thus, if a robot has the ability to understand the presence of synchronous joint

action in a team, then it can use that information to inform its own actions to enable

coordinated movement with the team. It also might learn advanced adaptive coordination

techniques the human teams use, such as tempo adaptation or cross-training [216]. In next

Section, we will describe various methods used in the literature to measure synchrony

between systems.

2.3 Measuring the degree of synchronization among sys-

tems

Synchrony, or entrainment, is described as the spatiotemporal coordination of

signals, which results from rhythmic responsiveness to a perceived rhythmic signal [159].

It can occur in many group contexts, such as dance, music, and games, and can be a

result of both intentional and unintentional motor coupling during social interaction.

Intentional synchrony occurs in cooperative group tasks, such as rowing a boat with a

team. In contrast, an example of unintentional synchrony would be a group of friends

spontaneously coordinating their movements when walking together [172].

Clayton et al. ([30]) describe the entrainment phenomena as “the process whereby

two rhythmic processes interact with each other in such a way that they adjust towards

and eventually ‘lock in’ to a common phase and/or periodicity”, and suggest that two

basic components must be involved. First, there must be two or more autonomous
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rhythmic processes or oscillators. And second, the rhythmic processes or oscillators must

interact. According to Clayton et al., the interaction between the rhythmic processes can

be described as entrainment if the system re-establishes the synchronization after any

perturbation.

2.3.1 Methods for measuring synchrony

Many disciplines have approached the problem of how to assess synchrony, or

coordination in a system. These include: physics, neuroscience, psychology, dance, and

music [150, 198, 156, 102, 100, 111, 110, 113, 62, 30, 125, 114, 115, 33, 37]. Recently,

researchers in computational fields such as social signal processing and robotics have

also become interested in this problem [38, 220, 67].

Across all fields, two types of measurement methods exist. The first is best suited

for continuous time series data, e.g., recurrence analysis, correlation-based methods, and

phase-based approaches. The second type is well-suited for discrete events in time series

data, e.g., event-based methods. We will now describe each of these methods.

2.3.2 Measuring synchrony in continuous time series data

Recurrence analysis is one of the most widely used methods to measure synchrony

[34, 125, 226, 186]. This approach is based on trajectory similarities in phase space.

First proposed in physics, this analysis method was inspired by coupled dynamic systems.

Recurrence analysis assesses how many times the state of a system visits close to a

previous state [129].

The graphical representation of recurrence in dynamical systems is called a

recurrence plot (RP) [43]. Its central idea is to plot a dot when a state is sufficiently

close to any of its previous states. It is also a useful diagnostic tool to quantitatively
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analyze recurrences in a dynamic system. Structures and patterns found in an RP are

closely linked to the dynamics of the underlying system [129]. The cross-recurrence plot

(CRP) is the non-linear bivariate extension of the recurrence plot [129, 130]. Recurrence

quantification analysis (RQA) is used to assess and diagnosis complex dynamic systems

using RP and CRP [222, 228].

Varni et al. ([218]) used the RP and RQA measures, and presented a system for

real-time analysis of nonverbal affective social interaction in a small group. In their

experiments, several pairs of violin players were asked to perform while conveying four

different emotions. RQA measured the synchronization of the performers’ affective

behavior. Konvalinka et al. ([106]) also used RQA for measuring the synchronous

arousal between performers and observers during a Spanish fire-walking ritual. This

synchronous arousal was derived from heart rate dynamics of the active participants and

the audience.

Correlation is another approach used to evaluate synchrony among continuous

time series data [105]. Typically a time-lagged cross-correlation is applied between

two time series using a time-window. For example, Boker et al. ([12]) used the cross-

correlation method to determine the symmetry building and breaking of body movements

in synchronized dancing, and Quian Quiroga et al. ([164]) used it to measure the

synchronization between left and right hemisphere rat electroencephalographic (EEG)

channels.

Phase differences are another well-explored approach in the literature. Typically,

phases are defined by Hilbert or wavelet transforms. For example, Richardson et al.

([172]) proposed a method to assess group synchrony by analyzing the phase synchro-

nization of rocking chair movements. A group of six participants rocked in their chairs

with their eyes either open or closed, and they used a cluster-phase method to quantify

phase synchronization. Néda et al. ([143]) investigated the development of synchronized
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clapping in a naturalistic environment. They quantitatively described the phenomena

of how asynchronous group applause starts suddenly, and transforms into synchronized

clapping.

2.3.3 Measuring synchrony in categorical time series data

While the aforementioned methods work well for measuring synchrony in contin-

uous data, there are instances where it may be useful to have methods that work across

categorical time series data, which may define discrete events.

Quian Quiroga et al. ([165]) proposed an event synchronization (ES) method for

discrete events which can be used for any time series where events can be defined. This

method is simple and fast, and the notion of phase is not required. As ES is based on the

relative timing of events, it can also determine a leader-follower relationship between

two time series, if one exists. The authors applied their method across two sets of time

series data - EEG signals from a rat, and intracranial human EEG recordings taken during

an epileptic seizure. In both cases, only singular types of events (i.e., local maxima of

input signals) were taken into consideration.

Varni et al. ([219]) proposed an extension of this work to measure group synchro-

nization. They authors described a system called I-DJ, which is capable of retrieving

music content based on the interaction patterns (i.e., synchronous motion) in a group of

dancers. The synchronization of the group, as well as a possible dominant person or a

clique in that group, were measured using their proposed method from the dancers’ body

motion. However, they too only consider a single type of event when measuring group

synchronization.

Dale et al. ([35]) presented a cross-recurrence analysis type method for quantify-

ing the relationship between two time series of categorical data (CRQA), and Coco et

al. ([31]) recently released an R package which provides an implementation of this and
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similar methods.

2.4 Chapter summary

This chapter provided a brief introduction to human-robot teaming, team in-

teraction dynamics, methods to detect synchronization of a group, and the motivation

behind my work. Robots are expected to become more involved within teams in the

future; however, in order to ensure fluent human-robot teaming, they need to be able to

understand various aspects of team dynamics, such as synchronous joint action. The next

chapter presents a new method to measure the degree of synchronization in a team.



Chapter 3

A time-synchronous data capture

system

For humans and robots to work together effectively, it is important that both robots

understand people and people understand robots. To address this, the concepts of fluency

and legibility have become important topics in robotics research [64, 67, 206, 25, 41].

Fluency means that robots convey their motion in a way that is legible (understandable),

enabling humans to predict robots’ actions, intentions, and goals, and interact fluently

with them [64, 41, 103, 18, 36].

One of the most critical elements for achieving fluency is timing. Timing is used

as a measure of efficiency for communicating intent and instructions to a robot [32].

Applications such as situated dialogue, music and entertainment, performance charac-

teristics, and expressive gestures, use timing as a measure for efficiency of interaction,

influence how users perceive and respond to robots. Similar to the concept of feedback

in human computer interaction (HCI) [158, 191], if robots do not act, react, or provide

feedback in accordance with human expectations, the interaction has failed.

Synchronizing the actions of a robotic system is particularly important considering

30
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a robot’s actions may act as cues for humans. For example, a sociable robotic aide for

medical adherence may make some cue to a human so that they take their medicine

at a specific time [53], or an entertainment robot may play music and move so that a

participant will dance. Similarly, the actions of people may be affected when a robot

stops performing one action, and begins performing another.

Timing of actions play a significant role in various social activities performed in

human environments, including turn taking, engagement in group tasks, among others

[212, 25, 179, 59, 180, 80, 175, 174, 182].

To act accordingly and in a timely fashion with humans, it is important for robotic

systems to be able to sense human activities on time using the data received from its

attached sensors. Generally a single sensor can only provide limited information about

the environment to a robot, whereas multiple sensors can provide information from

different viewpoints [225]. As a result, some research has focused on incorporating data

from multiple sensors together in order to improve the perception of the environment of

a robot [99, 55].

One crucial problem related to timing of robotic systems focuses on temporally

synchronizing actions of the system so that appropriate actions and responses occur at

the right time. If a human makes a cue that will alter the actions of a robot, all parts of

that robot, including its sensors, movement, and activities, should appropriately follow

the same timing scheme so that it may perform the next set of actions in a synchronized

manner. Otherwise, a robot’s actions may occur at the wrong time, data captured using

various sensors may represent mismatched timing patterns, and the robot’s interaction

with a human might be affected.

One challenge, however, is that incorporating this data in a time-synchronized

manner may not always be easy. In the case that these sensors are attached directly to

the robot, it is likely that such data will be time-synchronous. However, in the case of
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Figure 3.1: DJ Rob

a decentralized system of sensors, sensor data are fused locally within a set of local

systems, rather than by a central unit, i.e, in a robot [225]. The coordination of sensor

data is achieved by communication between the local systems.

Due to the fact that integration of time-synchronous data may directly affect

robotic actions, the issue of synchronous data plays a crucial role in the context of HRI.

Moreover, in HRI, socially-interactive robots need to operate at a rate at which humans

interact, in real-time, in addition to managing synchrony between sensors and data [46].

This makes the issue of time-synchronized data capture and processing much more

difficult to manage in HRI.
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Figure 3.2: Two participants performing in a dance-off

In order to address these issues, we designed a simple client-server based timing

model for a robotic system which can handle time-synchronous data in real-time. Our

timing model is designed to handle real-time data capture and processing, and to ensure

the occurrence of all the actions across our system in a time-synchronous fashion. In

addition, our model is not limited to any specific type of sensors, but rather a wide variety

of sensors, including video sensors, audio sensors, accelerometers, among others.

We evaluated our model using an entertainment robot, called a DJ Rob, which

interacted with dancing participants and measured their expressiveness in real-time (See

Figures 3.1 and 3.2). This measure of expressiveness, along with timing, was used to

direct our robot to perform specific actions and to provide user feedback. Our results

suggest that our model was successful and effective in synchronizing all sensor data,

actions, and activities in our system.
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3.1 System model

Our timing model is designed using a client-server architecture (See Figure 3.3).

The server node was responsible for communicating with all client nodes. Each client

node was an independent system, and may or may not be connected with its own sensors.

A client node may respond to server messages, capture data using its own sensors, process

the captured data, and return the processed result to the server. The server node controlled

the duration of the data capture and processing of each client system.

We implemented the model using the Robot Operating System (ROS) publisher-

subscriber architecture [184]. ROS is an open source platform which provides libraries

and tools to develop robotics applications. All nodes in our system run the Electric

version of ROS.

In our model, different parts of the model communicate with each other via ROS

topics [188]. An ROS topic is a standard unidirectional message passing protocol and

uses a publisher/subscriber based model. A publisher can publish messages via an ROS

topic, and any number of subscribers can subscribe to that topic. Different parts of the

model can communicate with each other by publishing or subscribing to a specific topic.

The server node of our system consists of two modules: the control module (CM),

and the decision module (DM). The main task of the CM is to communicate and control

the client nodes. This module also communicates with other modules of the server, and

is responsible for synchronous data capture and processing in all client nodes. After

capturing and processing the sensor data, all client nodes communicate with the DM

of the server, and send the processed result to the DM. The decision module can make

decisions based on the processed data received from the clients. The decision module

may also communicate with robots, controlling their movement.

Each client node consists of a client process module (CPM) and a data capturing
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Figure 3.3: The architecture of our proposed timing model.

and process module (DPM). The CM of the server node communicates with the CPM

module of the client nodes. Based on the message received from the CM, the client

process module is responsible for synchronizing the local machine time to a global

time server. After synchronizing the time, the CPM is responsible for sending an

acknowledgement (ACK) message to let the CM know that the time-synchronization is

complete.

These processes also subscribe to the ROS topic broadcasted by the CM. If

the CM sends a message to start capturing and processing sensor data, then the CPM

communicates with the DPM to make sure that the data capture and processing starts

and ends on time. After getting specific message from its own CPM, the DPM starts

capturing and processing data for a specific period of time. Following data capture,

the DPM publishes the processed data. The DM of the server node and robot nodes
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Figure 3.4: Implementation of our system. Using our model, each client may either
connect to various sensors or robotic agents to perform specific actions.

subscribe to this broadcasted topic from the DPM. The overall system model is presented

in Figure 3.3. The arrow represents the direction of communication between modules.

One of the main challenges in synchronized data acquisition is capturing and

processing data in a time-synchronized manner. All events that occur at the same time

should have the same time stamp in the captured data among all clients. If the events

do not represent captured data from each sensor for the same period of time, then it is

difficult to make a proper global decision based on the processed data. For example, if

event data captured from different sensors are reported from different periods of time,

then the decision taken based on the time stamps represents an erroneous result.

In addition, in the case of sensors connected via wired/wireless connections,

we encounter the issue of network latency. Depending on the proximity and network

congestion, different nodes will receive the broadcasted message at different times.
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To overcome these difficulties, we implemented a simple message passing pro-

tocol using ROS topics, presented in Figure 3.5. In our protocol, the CM broadcasts a

‘sync time’ message. All CPMs of the client nodes and robot nodes subscribe to this topic.

Depending on network traffic, different client nodes receive this message at different

times.

When a CPM of a client node receives this message, it synchronizes its local time

to a global time server using the Network Time Protocol (NTP) [134]. At the same time,

the server also synchronizes its time to the global server. Following time synchronization,

all CPMs broadcasted an acknowledgement message via an ROS topic. The CM in the

server node subscribes to this message and listens for an ACK message from all client

nodes to indicate synchronized time in all nodes.

When all client nodes are time-synchronized, the control module of the server

broadcasts a ‘capture data’ message. This topic consists of three fields. The first field

is the ‘CR T’ field, which represents the current time of the server system. The second

field is the ‘STR AFT’ field, which represents a time value in seconds. This field tells

the CPM of the client systems to start data capturing and processing after STR AFT

seconds from the CR T time. Finally, the last field ‘DUR’ represents the duration for

data processing in seconds.

Depending on network traffic, different nodes may receive the ‘capture data’

message in different times. The client process module of a client node tells its DPM

to start capturing and processing data. All DPMs will wait for a global time to occur,

calculated by adding STR AFT with the CR T value. As all client nodes are synced with

the same global time, all clients begin capturing sensor data at the same time. STR AFT

value should be chosen carefully based on the network congestion, so that all the clients

receive the ‘capture data’ message within STR AFT seconds after broadcasted from the

server. After the ‘DUR’ period is over, the DCP module broadcasts the processed result
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Figure 3.5: Message passing protocol of our system

via an ROS topic.

After receiving the processed results from the clients, the DM can make a global

decision. Depending on the decision, the DM may instruct the robot connected to the

server to act accordingly based on its surroundings, or perform an action.

3.2 Model validation

To validate our model, we implemented a system to capture and process RGB-D

data from sensors, as well as control robot movements and music in a time-synchronous

fashion. This system is composed of three clients and a server: two Microsoft Kinect

sensors each connected to a separate computer, a mobile Turtlebot robot (called DJ Rob,

who is decorated to look like a dance jockey) [213] who performed specific actions based

on pre-defined events, and a stationary system which handled music playback and system

actions.
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We developed a game in which two participants performed in a dance-off. This

dance-off consisted of participants dancing to music for a 60 second duration. During

this time, DJ Rob danced along with participants by moving forward and back, allowing

his head to bobble, and turning between each participant to simulate judging their dance

moves. Figure 3.2 shows two participants performing in a dance-off.

During the dance-off, we measured expressiveness using the Kinect sensors, and

processed that data in real-time using our clients. Based on the processed data, the server

makes a decision and causes a DJ Rob to perform a specific set of actions based on timing

information and RGB-D data (see Figure 3.1). Figure 3.4 shows different parts of our

implemented system.

We defined expressiveness as the enthusiasm in the body movements during our

study. According to Barakova et al. ([9]), and Lourens et al. ([124]), amplitude and

acceleration of the movements of the body joints are sufficient to estimate expressiveness

in game settings. Based on these findings, Tetteroo et al. ([210]) used an area of

movement per time unit as a measure of expressiveness. To assess quantitatively, we

used a similar measure of expressiveness used by Tetteroo et al. ([210]) in our study. We

calculated expressiveness by taking the average of the product of speed and distance of

body joint movements over time.

Expressiveness is thus defined as:

expressiveness =
T

∑
time=1

Joints

∑
joint=1

(speed×distance) joint/T ;

Based on the skeletal information, the DPM module of our system calculates the

measure of expressivity. For body joint tracking, we used the OpenNI-based PI tracker

package to perform skeletal tracking of participants using the Kinect sensors. This tracker

gives us coordinates and orientations of 15 body joints. Each client node tracked the
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skeletal joint position of a participant standing in front of its sensor.

Following each session, each client published their respective expressiveness

measure to the decision module of the server node through an ROS topic. Based on the

value of expressiveness, the DM determined the more expressive person based on the

largest calculated value of expressiveness. The DM then broadcasts the more expressive

participant’s number, which is processed by DJ Rob, causing it to perform a gesture

toward the more expressive participant.

To assess our system model, we conducted a controlled pilot, followed by a

real-world experiment with 70 participants (in pairs of two) at a National Robotics Week

event held on campus at the University of Notre Dame [142]. Our experiment allowed us

to assess the effectiveness of our system model in a real-world environment. For these

sessions, all actions made by our robot, as well as music, data capture, and processing

are all controlled using our time-synchronous model. These actions are designed to begin

at the same time, such that any actions made by dancers are not missed while measuring

expressiveness. We captured all data in real-time and processed the result at the end of a

one-minute duration to determine the winning action made by DJ Rob.

3.3 Results

In general, our overall system model correctly handled all data capture, processing,

and actions for our system in a time synchronous manner. In our pilot experiments, we

first validated that the robot determined ‘no winner’ in the case no expressiveness was

measured from either client while the music was playing. As the robot determined

‘no winner’, it did not perform any predefined actions with the participants. We then

validated that our robot could determine a winner in the case that a participant only made

a small number of movements, while the other did not move. We alternated this level of
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expressiveness between the first and second user to ensure that our system successfully

captured, processed, and synchronized data with the server, so that the robot could

successfully determine the more expressive person. In each of these cases, our robot was

successful in performing the correct action.

In addition, our system performed as expected in our real-world experiment. We

performed 35 tests, where a pair of participants performed in a dance scenario. During

all the tests with our participants, our robot was successful in determining a winner based

on the expressiveness measure. To verify that the robot performed the correct action, we

manually reviewed each log file. In all cases, our robot correctly moved toward the more

expressive person with the higher value of expressiveness reported to the server.

While both clients began capturing data at the same time, we found a small

difference in timing between the corresponding frames captured from each device. This

is due to the fact that the frames captured from each device may have some small offset

from each other due to the device’s sampling rate and when it is first powered on. For

example, while both clients may start capturing data at time zero and each Kinect has a

20 frames per second (FPS) frame rate, the first Kinect might record its first frame at a

slight offset from the second. See Figure 3.6 for an example of this issue.

Considering the frame rate for both Kinects is 20 FPS, each frame is captured

on average every 0.05s. Based on our data, the computed average difference between

the captured time of the first frames for our two clients across all of our experimental

sessions was 0.017 seconds, which is significantly smaller than the time between two

consecutive frames.

While we did see a small difference on the millisecond level in our data capture,

such a difference will always occur in devices depending on when the first frame occurs,

and is negligible. This difference is a result of each sensor’s sampling rate, without

respect to the time of the client itself. In audio recording devices, for example, such a
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Figure 3.6: Capturing data in two clients

difference will be much smaller considering a higher sampling rate, and should not affect

synchronization when capturing data. Thus, our results suggest that all data was captured

and processed in a time synchronous way across all parts of our system.

3.4 Discussion

Timing of actions by both the human and robot is an important factor in HRI.

It is important in HRI for robots to perceive human actions and act accordingly in a

timely manner. To achieve appropriate action synchronization, it is essential that sensor

data and the entire robotic system is time-synchronized. Our proposed simple timing

model addresses these issues of real-time data capture and processing from multiple

sensors. Our model also ensures the occurrence of all the actions across the system in a

time-synchronous fashion.

We anticipate that our model will be useful and beneficial to a number of domains.

For example, capturing data from multiple sensors around a room will help a robot have

an accurate and up to date picture of the environment around it. In addition, multiple

robots could be synchronized in this way to send data from their own respective sensors

to a main server to process for a specific time-sensitive task.
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Such a model may also be beneficial for researchers in the fields of surveillance or

computer vision. Our model may provide an efficient way to keep a global synchronous

time space across different parts of a surveillance network. In addition, many computer

vision algorithms may take advantage of incorporating data from multiple sensors with

camera data for better results using our model.

Furthermore, our model is not limited to specific cameras or sensors. A wide

variety of sensors, including audio sensors, accelerometers, among others can be used.

Our work gives researchers flexibility in capturing various types of data from a number of

sources and fusing them together to obtain a more accurate picture of their surroundings

in real-time. Based on this work, we are currently in the process of developing a portable

and reusable Robot Operating System (ROS) stack to handle time synchronous actions

across all parts of our system interacting with humans.

3.5 Chapter summary

In this chapter, I described a simple client-server based timing model to capture

multimodal data streams from multiple sensors. This model also included a module to

communicate with robots in a time-synchronous manner. I also validated this model

with a dance-off scenario, where a robot captured human motion and performed specific

actions based on the human’s’ movements. Since then, I have used this system as a

foundation for much of my subsequent work. The next chapter will focus on designing

models to understand group behavior from the task-level activities performed by the group

members, which later will be extended to implement human-robot teaming scenarios.
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Chapter 4

A new method to measure team

coordination

During a group activity, multiple discrete, task-level events occur, and the outcome

and timing of each event depends on the events preceding it. The overall synchronization

of the system depends on all these events. Thus, to measure the overall synchronization

of a group, we need to model the whole group as a system by incorporating multiple

types of events together.

This leads us to explore several research questions. First, can we automatically

measure the overall synchronization of a group while taking multiple types of task-level

events into account simultaneously? Second, will such an automatic synchronization

measure be comparable to group members’ own perceptions of synchrony? Third, can

such a measure also be used to estimate asynchronous behavior? In this chapter, we seek

to address the first research question.

The event based methods proposed in the literature (e.g., CRQA, or event syn-

chronization type methods) work adequately for consecutive, categorical data. However,

when the data are sparsely distributed across time (i.e. non-periodic), there are often

45



46

instances when no synchronous activity occurs. For example, CRQA includes instances

of these “non-events” as actual events while measuring synchrony, which can artificially

inflate the true synchrony. Event synchronization type methods do not have this prob-

lem; however, they are only able to incorporate a single type of event while assessing

synchrony, which is limiting the inherent multimodality of events within human social

interaction [109].

Thus, there is a significant gap in this space: there are cases where it may be

important to detect synchrony across multiple types of events, and those events may be

sparsely distributed. To address this gap, we developed a novel event-based method which

can successfully take multiple types of discrete, task-level events into consideration, and

successfully ignore the “non-events” while measuring the synchrony of the system. To

achieve this goal, we extend the ES method proposed by Quian Quiroga et al. ([165]), as

well as the follow-on work by Varni et al. ([219]).

Below, we describe the method to compute each group member’s synchronicity

to the group as well as the group’s overall synchronization, while taking multiple types

of events into consideration. First, we will describe the event synchronization method

between two time series for one event Later we will extend this method for more than

two time series and multiple events.

4.1 An event-based synchronization detection method

As described by Quian Quiroga et al. ([165]), suppose xn and yn are two time

series, where n = 1, . . . ,N, and each time series has N samples. Suppose mx and my are

the number of events occurring in time series x and y respectively, and E is the set of all

events.

The events of both series are denoted by ex(i) ∈ E and ey( j) ∈ E, where, i =
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1, . . . ,mx, j = 1, . . . ,my. The event timings on both time series are tx
i and ty

j (i = 1, . . . ,mx,

j = 1, . . . ,my) respectively. If the events are synchronous in both time series, then the

same event will appear in both more or less simultaneously. Two events are synchronous

if the same event appears within a time lag (±τ) on both time series.

4.1.1 Measuring synchronization of a single type of event across two

time series

Now, suppose cτ(x|y) denotes the number of times a single type of event e ∈ E

appears in time series x shortly after (within a time lag τ) it appears in time series y. Here,

cτ(x|y) =
mx

∑
i

my

∑
j

Jτ
i j (4.1)

Where,

Jτ
i j =


1 if 0 < tx

i − ty
j < τ

1
2 if tx

i = ty
j

0 otherwise

(4.2)

Similarly, cτ(y|x) denotes the number of times a single type of event e∈E appears

in time series y shortly after it appears (within a time lag τ) in time series x.

cτ(y|x) =
my

∑
j

mx

∑
i

Jτ
ji (4.3)

Where,

Jτ
ji =


1 if 0 < ty

j − tx
i < τ

1
2 if ty

j = tx
i

0 otherwise

(4.4)

From cτ(x|y) and cτ(y|x), we can calculate the synchronization of events in two
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time series as,

Qτ(e) =
cτ(x|y)+ cτ(y|x)
√mxmy

(4.5)

Qτ(e) represents the synchronization of events in two time series, where we are

only considering a single type of event e in both time series. We normalized the value of

Qτ(e) by the number of events in both time series to get a value between 0 and 1. Thus

the value of Qτ(e) should be 0≤ Qτ(e)≤ 1. Qτ(e) = 1 means that all the events of both

time series are fully synchronized. On the other hand, Qτ(e) = 0 means that the events

are not synchronized at all.

cτ(x|y) and cτ(y|x) values also give us the leader-follower pattern in two time se-

ries, if there exists any [165]. This relationship can be incorporated during the calculation

of Qτ(e) for situations where this pattern might be important.

4.1.2 Measuring synchronization of multiple types of events across

two time series

Qτ(e) gives us the synchronization of events in two time series when only one

type of event is considered. In this section, we extend the notion of synchronization of

events in two time series for more than one type of event.

Suppose we have n types of events {e1,e2, . . . ,en} ∈ E(n), where E(n) is the set

of all types of events. First, we calculate Qτ(ei) for each event type ei ∈ E(n). While

calculating Qτ(ei), we will not consider any other event types, except ei. Now, let mx(ei)

be the number of events of type ei occurring in time series x, and my(ei) is the number

of events of type ei occurring in time series y. To measure synchronization of multiple

types of events between two time series, we take the average of Qτ(ei), weighted by the

number of events of that type. We will call it the synchronization index of that pair. So,

the overall synchronization of all events in time series x and time series y is:
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∀ei ∈ E(n) : Qxy
τ =

∑ [Qτ(ei)× [mx(ei)+my(ei)]]

∑ [mx(ei)+my(ei)]
(4.6)

4.1.3 Measuring the individual and overall synchronization index

of the group

Using the described method, we will calculate the pair-wise synchronization

index for each pair. Suppose we have H number of time series. The time series data are

represented as s1,s2, . . . ,sH . First, we calculate the pair-wise event synchronization index

for each pair. So, we have the value of Qs1s2
τ ,Qs1s3

τ , . . . ,Q
s(H−1)sH
τ .

Building on the work of Varni et al. ([219]), after calculating the pair-wise

synchronization index, we build an undirected weighted graph from these indices, where

each time series is represented by a vertex. So, if the time series are s1,s2, . . . ,sH , then

there is a vertex in the graph which will correspond to a time series. We connect a pair of

vertices with a weighted edge, based on their synchronization index value.

There exists an edge connecting two vertices in the graph if the pair-wise syn-

chronization index of the corresponding time series is greater than or equal to a threshold

value Qthresh. Otherwise, there will be no edge connecting that pair of vertices in the

graph. The value of Qthresh should be chosen based on the group task as well as the

physical configuration of the group. The weight of that edge will be this pair-wise

synchronization index of that pair of vertices. We will refer to this graph as the group

topology graph (GTG).

The individual synchronization index depends on both the group composition as

well as the size of the group. The size of the group influences the nature of the group in

many ways [47]. In some group tasks, an individual may be influenced only by his/her

neighbors, whereas in other tasks an individual can be influenced by any member of the

group regardless of the group’s configuration.
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Moreover, the amount of influence may vary based on the size of the group and

orientation of the setup. In the case of a very large group, the possibility for each member

to be connected with all other members of the group becomes very small [47]. Other

group members may have some direct or indirect influences in developing synchrony.

If the group size is small (e.g., four people), we can assume that an individual is

influenced directly by all other group members. The individual synchronization index

of an individual is measured as the average of the weight of the edges connected to the

corresponding vertex in the topology graph. So, the individual synchronization index of

series si is:

Iτ(si) =
∑ j=1,...,H, j 6=i Qsis j

τ × f (si,s j)

∑ j=1,...,H, j 6=i f (si,s j)
(4.7)

Where,

f (si,s j) =

 1 iff edge(si,s j) ∈ GT G

0 otherwise
(4.8)

After calculating the individual synchronization index for each member, the

overall group synchronization index is calculated. We take both the individual synchro-

nization index as well as the member’s connectivity to the group into consideration while

calculating the overall group synchronization index. In a small group, we also consider

that each individual is supposed to connect to all other group members in the topology

graph when the group is well-synchronized.

For a given vertex in the GTG, the ratio of the number of edges connecting to it,

and the number of maximum possible edges in a very synchronized condition for that

vertex, is called the connectivity value (CV ). Thus we can define CV of series si as:

CV (si) =
∑ j=1,...,H, j 6=i f (si,s j)

H−1
(4.9)
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The CV represents how well an individual is synchronized with the rest of the

group. If an individual is well-synchronized with all other members of the group, then

their CV value will be 1. On the other hand, if they are not synchronized with any other

group members, then their CV value will be 0.

While calculating the overall group synchronization index, both the individual

synchronization index and the CV are taken into account. First, we calculate each

individual’s synchronization index and multiply it by their CV . Then, the overall group

synchronization index is computed by taking the average of this product. So, the overall

group synchronization index, Gτ, is computed by:

Gτ =
∑i=1,...,H Iτ(si)×CV (si)

H
(4.10)

4.2 Chapter summary

In this chapter, I discussed the development process of our new event-based

method to measure the synchronization of a group by taking multiple types of task-level

events into account. This method provides us a basis to measure the synchronization

of human-human and human-robot groups when the group members are involved in

a synchronization task. In next chapter, we will validate our method by applying to a

human-human study. We will also compare the results with two other existing methods

from the literature during this validation process.
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Chapter 5

Validation of the method with a human

team

In the previous chapter, we presented a new method to measure the overall

synchronization of a group while taking multiple types of task-level events together.

Now, in this chapter, we are interested to explore whether the synchronization measure

described in Chapter 4 will be comparable to group members’ own perceptions of

synchrony.

We explore this research question by validating the method in three ways. First,

in Section 5.1, we validated the method by applying it to a multiple event-based rhythmic

game, where each player performs a periodic psychomotor activity within the group,

and each player’s movements influence all others’ movements. Our method was able

to model both synchronous and asynchronous activity, and was well-matched to the

players’ perceptions of synchrony. Second, in Section 5.2, we compared our results to

another method from the literature that uses single event types, and found our multiple

event-based method to be more accurate in estimating synchrony. Third, in Section 5.3,

we compared our results to the cross-recurrence quantification analysis (CRQA) method.

53
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Figure 5.1: Game phases during one iteration of the cup game1. Game phases are: c -
clapping, t - tapping, h - holding, m - moving, and p - passing the cup. The game is in
sequence from left to right, and top to bottom.

The results again suggested that our multiple event-based method is more accurate in

estimating synchrony.

In this chapter, we aim to address this research question by validating our method.

5.1 Validation of our method applied to a synchronous

psychomotor task

To validate our method and address our research questions, we first sought to

analyze a group event where every member participateed in a collective task, thus

contributing to the overall group synchrony. Thus, we began by analyzing participants

playing a tabletop game called “the cup game”. This is a cooperative, rhythmic game,

played by multiple players who are situated in a circle, and consists of clapping, tapping,

moving and passing cups (See Fig. 5.1). It was recently popularized in the Hollywood

film Pitch Perfect.

In the cup game, each player must exhibit coordinated psychomotor skills, con-

duct a specific activity at a specific time, and synchronize his/her activity with the group.

Therefore, this game serves as a strong testbed for validating our method, and also enables

us to explore how group synchronization emerges over time.

In terms of setup, each player stands or sits at a table (or on the floor), and plays

the game with their hands and a cup. During every iteration of the game, each player
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performs a sequential and rhythmic activity with the cup, and ends the iteration by passing

their cup to their neighbor. To maintain the overall rhythm of the game, all participants

need to perform their tasks more or less synchronously over time. We will consider all of

these activities performed by each player as the events of the game.

From a high level, different events during the game can be classified into five

categories: clapping (c), tapping the cup (t), holding the cup (h), moving the cup (m),

and passing the cup (p). Fig. 5.1 shows a single iteration of the game; all players perform

the following tasks in sequential order: c−c− t− t− t−c−h−m;c−h−m−m−m−

h− p− p.

We ran a series of experiments where participants played two games in groups

of four, for approximately two minutes per game. Two synchronized Kinect sensors

recorded RGB and skeletal joint information of the participants during a game[74]. After

the games, each participant rated on a discrete visual analog scale how well-synchronized

they felt each game was, and which game was more synchronous.

In a highly synchronized game, all game events will happen more synchronously

over time. On the other hand, in non-synchronous games, events may happen less

synchronously. We hypothesized that each player’s perception of game synchrony would

be based on the relative timing of game events. (i.e., for games where events are

well-timed, players would perceive the game to be more synchronous than those with

poorly-timed events). We were also interested to see whether our system’s automatic

measurement of group synchrony would match player’s perceptions.

Thus, in this work, we took players’ post-game assessments to be the ground

truth upon which our later validations are based. While measuring ground truth using

external observers is a reasonable approach in other affective labeling work we do (c.f.

[59, 177]), on this project, synchrony seemed better measured using a self-assessment

approach. This was both to enable capturing immediacy of playing the cup game, as
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the tactile and auditory sensations, which help players feel “in-sync” are challenging if

not impossible to replicate for external observers. Furthermore, the literature suggests

self-assessment is reliable for data collected over short time periods, as this data was

[189].

5.1.1 Participants

A total of 22 people participated in our experiment, 50% female. Their average

age was 24.8 years old (s.d. = 3.97), and the majority were undergraduate and graduate

students. In total, there were six experimental sessions consisting of four players each.

Participants were randomly categorized into six groups (two people participated twice).

Participants were trained in how to play the game before the experiment began,

including playing one practice game as a group. They then played two games that were

recorded. Following the experiment, participants completed a short questionnaire asking

them to rate which of the two games they felt was more sychronous.

5.1.2 Data collection

Fig. 5.2-A shows the data collection setup. Four players stood around a table to

play the game, two on each side. Two Kinect sensors were positioned approximately 86

inches above the ground and 28 inches from the table edge. The sensors tracked RGB

and depth information, which afforded the ability to track the body joints of all players

and the red-colored cups.

Before the game began, participants performed a brief sensor calibration process.

The players stood in front of the Kinect for around 5 seconds to calibrate the sensor.

After the calibration process, each Kinect tracked 15 body joint positions for two players.

Fig. 5.2-C shows an overview of the system architecture.
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Figure 5.2: A) Block diagram of the setup. P1, P2, P3, and P4 refer to Players 1, 2, 3,
and 4 respectively, B) Four players playing the cup game. The players’ movements are
tracked by two synchronized Kinect sensors. The small solid circles represent the center
of the cup, and the large solid circles represent the projected 3-D hand joint positions
on the RGB image plane. C) High level system architecture.

The sensors were connected to two computers running Ubuntu. Both machines

ran the Robot Operating System (ROS) Electric release. ROS is an open source platform,

which provides libraries and tools to develop robotics applications. Before data recording

began, both systems were synchronized with an Ubuntu time-server to ensure they were

accurately keeping time. Data were stored in the rosbag file format, which includes

timestamps for sensor readings.

5.1.3 High level event detection

After completing the data collection, we labeled different steps of the game as the

aforementioned high level events (c, m, and p). If any of the hand positions of a player

were poorly tracked in a given frame, then we excluded that frame from analysis for that

player.

Exclusion was based on the tracking accuracy of the Kinect sensors. Due to

hand occlusion at some stages of cup game, the Kinect sensor can not track hand joint

positions with full confidence. Therefore, we excluded these frames while performing

event detection. On average, we excluded around 35% of frames for a session across
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the whole group; in the best case we excluded 12% of frames. However, this frame

exclusion rarely interfered with our event detection as it was well-distributed across the

sessions. Furthermore, we manually validated the accuracy of each event class before

employing our event detection methods. This was performed via human labeling using a

representative sample of each event class.

Cup tracking

Cups were tracked using standard blob tracking techniques in each frame. As

only red color cups were used, the red blobs were tracked from the RGB image using the

ROS cmvision package. After discarding very small blobs as noise, the rest of the blobs

were considered as candidates for the cup’s position. An undirected graph was generated

using each blob center as a vertex. Two vertices were connected in the graph if they were

closer than a threshold value.

From this resultant graph, we then calculated the connected components. All of

the blobs in a connected component were clustered together. The center of each cluster

was calculated as the mean position of the blob centers of that cluster, weighted by the

area of each blob. Each cluster center was a cup center candidate, and those closer to the

hands of the players were considered as the cup positions during the game.

Clap (c) event detection

A clap event was detected when the hand joints from the skeletal data were closer

to one another than a threshold distance. While calculating the distance between hand

joint positions, only the x and y coordinates from the 3D skeletal position were used.

A clap event happened when: 1) the hand joints’ distance was within a threshold,

2) the distance between hand joints reached a local minima, and, 3) none of the hand

joints were closer to the cup position in the RGB image, as calculated by projecting each

3D hand joint position on the RGB image plane. This helped distinguish clapping events
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from tapping events. Thus, clap events only lasted for one frame.

Move (m) and Pass (p) event detection

Cups move at several points during a game iteration, note the m or p steps in

Fig. 5.1. If a player moved the cup with their right hand, this was denoted as a move

event (m in Fig. 5.1), and with their left hand, a pass event (p in Fig. 5.1).

If a cup position was changed from the previous frame, then it meant that the cup

had been moved by a player. In this case, our system assumed that the player closest

to the cup’s position moved the cup. To determine the hand positions of each player

in the RGB image, the 3-dimensional hand joint positions from the skeletal data were

projected into the RGB image plane. Then, in RGB coordinates, our system calculated

the distances of the hand positions from the cup’s center. If the player’s right hand was

closer to the moving cup than their left hand, then our system assumed that the player

was moving the cup with his/her right hand, and the event was denoted as a move event

(m) for that player, but if their left hand was closer, we assumed they passed the cup (p).

As move and pass events may last for several frames in the data, instead of

denoting a move or pass event for every frame, we considered the starting and the ending

frame of each event sequence as a new event. The frame when a move event started was

denoted as a ‘move start’ (ms) event, and when the move ended, that frame was denoted

as a ‘move end’ (me) event for that player. Similarly, for pass event sequences, two events

were generated, a ‘pass start’ (ps) and a ‘pass end’ (pe) event.

To demonstrate what that looks like, suppose for a few frames our event detector

detected move events as follows:

Time stamps : 1.1s 1.2s 1.3s 1.4s 1.5s

Events : - m m m -
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This means that a move event started at timestamp 1.2 s, continued for one frame,

and ended at timestamp 1.4 s. From this move event sequence, our system will generate

two new events, ms and me. A move start event happened when the move sequence

started. When the move sequence ended, our system will label that as a move end event.

Thus, our processed events would be:

Time stamps : 1.1s 1.2s 1.3s 1.4s 1.5s

Raw events : - m m m -

Processed events : - ms - me -

5.1.4 Overall synchrony detection

After detecting the high level events for each player, each player’s data were

represented by a time series. Frames received from both Kinects were adjusted to

represent the same frame across all time series data. This yielded four time series, each

of which represented the high level events associated per player.

For these time series data, the individual and overall synchronization indices of

the system were calculated using our method. For an example calculation, suppose the

time series were s1, s2, s3, and s4. From these time series, pair-wise synchronization

indices (Qs1s2
τ ,Qs1s3

τ , . . .Qs3s4
τ ) were calculated.

The pair-wise synchronization indices measure the degree to which the events

are happening synchronously in both time series. In this case, these two time series are

isolated from the rest of the time series of that system. Thus, this measure gives us the

notion of how synchronous two players are among themselves when they are isolated

from the rest of the group. For example, a higher pair-wise synchronization index may

be observed if two players have the continuous tendency to synchronize their events to

each other over time. We may observe a higher pair-wise synchronization index value
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Table 5.1: Individual and Group Synchronization Indices for All Sessions

Sessions Games
Indi. Sync. Indices∗ Group Sync. Index MoP� Agreement(%)§

P1 P2 P3 P4 GSI value† s.d.‡

Session1
1 0.51 0.53 0.50 0.52 0.51 0.05

6.72 100%
2 0.48 0.53 0.47 0.51 0.49 0.04

Session2
1 0.56 0.55 0.53 0.54 0.54 0.03

22.38 75%
2 0.51 0.55 0.48 0.51 0.49 0.04

Session3
1 0.43 0.49 0.48 0.48 0.44 0.18

-4.79 100%
2 0.52 0.50 0.50 0.48 0.48 0.05

Session4
1 0.32 0.40 0.38 0.44 0.29 0.13

-41.94 75%
2 0.49 0.57 0.52 0.56 0.54 0.03

Session5
1 0.46 0.55 0.48 0.56 0.47 0.05

-19.19 100%
2 0.45 0.56 0.51 0.57 0.52 0.03

Session6
1 0.49 0.53 0.45 0.54 0.47 0.07

-7.80 75%
2 0.49 0.54 0.46 0.55 0.50 0.05

∗ Mean value of individual synchronization indices of four players (P1 to P4).
† Mean value of group synchronization indices. For each session, the higher group synchronization index value of the game is

highlighted in bold.
‡ Standard deviation (s.d.) of group synchronization indices for each game. A lower s.d. value reflects stronger, or more stable,

synchrony, and a higher value reflects weaker, or less stable, synchrony.
� Measurement of precision for each Session in standard deviations.
§ Percentage of players in each session for which our automated measure produced a match with the players’ perception about

both games. For example, in Session1 our method produced group sync. indices of 0.51 and 0.49 for Games 1 and 2 respec-
tively. For this session, all four players agreed that Game 1 was more synchronous than Game 2.

if the participants previously played the game together, and they may synchronize with

each other more easily.

After calculating these values, the topology graph was generated from the pair-

wise synchronization indices. From the topology graph, each player’s synchronization

index Iτ(si) was calculated. This individual synchronization index yielded how well each

player was synchronized with rest of the group.

As the group size was small and all of the players were in close proximity, all

players influenced one another. If a player made a mistake at any stage of the game, not

only did it affect the overall synchrony of the group, but it also affected other individuals’

synchrony with the group. From the individual synchronization indices, the overall

synchronization of the group was calculated using Equation 8.2.
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Figure 5.3: A) Time vs. Individual Synchronization Indices of four players of Session2,
Game1. B) Time vs. Connectivity to Other Players of Session2, Game1 (Player 1 to
Player 4, from top to bottom). A Connectivity value of 3 suggests the group was well
connected; 0 means no connectivity. C) Time vs. Group Synchronization Indices of
both games of Session2.

5.1.5 Results

We conducted a total of ten experimental sessions. However, four sessions were

excluded due to technical malfunctions (calibration or tracking errors), so here we report
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the results from six sessions. A session is defined as a group of four players participating

in two games, where each game lasts approximately two minutes. We used a sliding

window of 20 s for calculating the pair-wise, individual, and group synchronization

indices, as this is approximately how long it took to complete one iteration of the game.

Table 5.1 shows the individual and group synchronization indices from all sessions

and games. Here, the values of the synchronization indices are averaged over the duration

of each game. The last column of the table represents the concordance between players’

perception and our method’s perception of which game was more synchronous. For

example, for Session3, the group synchronization indices produced by our method are

0.44 and 0.48 respectively for Game1 and Game2, and all players rated Game2 as more

synchronous; thus indicating 100% agreement.

Rather than go into depth for each game, we will now focus on one game in detail,

Session2,Game1. This analysis method is identical for each game, and all games showed

similar characters, so the following results reporting is generalizable to all games.

We present the individual synchronization index of four players of one game in

Fig. 5.3-A. As we used a sliding window of 20s, the values present at time 0s actually

represent the values calculated from the time window 0s to 20s. We used τ = 0.21s for

our calculation, and Qthresh = 0.35 as the threshold of synchronization index to generate

the topology graph. Based on the data from our representative sample, we found that two

people were not synchronous when their pair-wise synchronization index fell below 0.35.

Thus, we used this as the threshold in our experiment.

An example of the connectivity of the nodes in the topology graph is shown in

Fig. 5.3-B. This contains four sub-graphs, each showing the connectivity of a player over

time to other nodes (players) in the graph. Each sub-graph shows the connectivity of one

player, with all other players in the topology graph. Time is plotted along the x-axis, and

the number of connected nodes are plotted along the y-axis.
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Each individual synchronization index depends on that player’s connectivity with

others in the topology graph, i.e., the player’s synchrony with the other players. From

Fig. 5.3-B, one can see that Player 2 is connected with two more nodes in the topology

graph in-between the time window of 45 s to 50 s. This means that one of the pair-wise

synchronization index values of P1−P2, P2−P3, or P2−P4 was less than the threshold

value. This is also the case for Player 3. This observation means that the pair-wise

synchronization index of Player 2 and Player 3 (P2−P3) had fallen below the threshold

during that period. Thus, there was no edge between that pair in the topology graph

during that time window.

As a result, in Fig. 5.3-A, one can see that the individual synchronization index

for Player 2 and Player 3 was decreasing before they became disconnected in the topology

graph. However, after they were disconnected in the topology graph, their individual

synchronization index started to increase. We can explain this situation using an example.

Suppose a time window pair-wise synchronization indices of P1−P2, P1−P3, and P1−P4

are 0.5, 0.5, and 0.4 respectively. As the Qthresh = 0.35, P1 is connected with all other

players in the topology graph.

Given this scenario, P1’s individual synchronization index is (0.5+0.5+0.4)/3=

0.47. Now, assume that in the next time window these values have been changed to 0.5,

0.5, and 0.3 respectively. In the changed scenario, the pair-wise synchronization index

value of P1−P4 is less than the threshold. Thus, there will not be any edge connecting

these nodes in the topology graph. For this window, the individual synchronization index

of P1 will be (0.5+0.5)/2 = 0.5. Although it is not synchronous with respect to each

player in the group, for ones with which it is synchronous, the level of synchrony is

relatively higher in degree. One can see this phenomenon in Fig. 5.3-A, just after the

connectivity between P2−P3 was lost, the individual synchronization indices of both P2

and P3 increased.
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For each game of a session, the group synchronization index is calculated. For

example, we display group synchronization indices of this session (both games of

Session2) in Fig. 5.3-C. In this figure, time in seconds is shown along the x-axis, and group

synchronization index is shown along the y-axis. We calculate group synchronization

index for each time window of size 20 s. This graph also presents the mean value of

group synchronization indices.

The group synchronization index depends on the individual synchronization

index and the topology graph. One can see from Fig. 5.3-C, the group synchronization

index of Game1 drops between the time window of 45 s to 50 s. During the calculation

of the group synchronization from the individual synchronization index, we also take

each node’s ‘connectivity value’ into consideration. This also supports the fact that

the individual synchrony drops and pair-wise synchrony breaks during that period, see

Fig. 5.3-A and B.

5.1.6 Discussion

From Table 5.1, one can find the percentage of the players’ perception for which

our measure produced a match for each session. For example, from the table one can see

that the majority of participants agreed as a group that Game1 was more synchronous

than Game2 in Session1. On the other hand, for Session4, the majority of participants

agreed as a group that Game2 was more synchronous than Game1. For all of the sessions,

the group synchronization indices produced by our method agreed with the perception of

the majority of participants in 100% of the sessions (6 out of 6 sessions).

From the participants’ perception, and from our automated method, one can see

that the Game2 is more synchronous than Game1 for the last four sessions. One might

suspect that this pattern may be attributable to learning effects. After the first game, the

players may become used to the rhythm of the game, and learned how to be synchronous
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Table 5.2: Group Synchronization Indices for All Sessions Computed Using The Three Compari-
son Methods

Sessions Games
Our method By Varni et al. CRQA

GSI † s.d.‡ GSI s.d. GSI

Session1
1 0.51 0.05 0.72 0.02 0.19
2 0.49 0.04 0.70 0.03 0.17

Session2
1 0.54 0.03 0.74 0.03 0.18
2 0.49 0.04 0.74 0.03 0.17

Session3
1 0.44 0.18 0.70 0.03 0.17
2 0.48 0.05 0.67 0.03 0.18

Session4
1 0.29 0.13 0.61 0.04 0.15
2 0.54 0.03 0.68 0.02 0.20

Session5
1 0.47 0.05 0.69 0.03 0.18
2 0.52 0.03 0.72 0.02 0.19

Session6
1 0.47 0.07 0.69 0.03 0.18
2 0.50 0.05 0.64 0.04 0.17

† Mean value of group synchronization indices. For each session, the higher group synchronization index value of the game is
highlighted in bold.

‡ Standard deviation of group synchronization indices for each game. A lower s.d. value reflects stronger, or more stable,
synchrony, and a higher value reflects weaker, or less stable, synchrony.

as a team. Therefore, they showed a higher degree of entrainment during the second

game. One also can see that most of the individual synchronization indices show higher

values during the second game.

From the results, however, one can see that the first two sessions do not agree with

this assumption. This may be due to the fact that most of the participants of the first two

sessions had prior experience playing the game. This may explain why a learning effect

was not visible during these sessions. Regardless, our automatic method still successfully

measured synchrony of these two sessions, which matched with the perception of the

players.

Table 5.1 also presents the standard deviation (s.d.) for the group synchronization

indices for every game. A lower s.d. value reflects stronger or more stable synchrony,

and a higher value reflects weaker or less stable synchrony. For example, the s.d. of the
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group synchronization index is less for Game1 than Game2 during Session2. During the

other five sessions, the s.d. values of Game2 are less than the values of Game1. This

means that Game1 exhibits more stable synchrony than Game2 for Session2. During the

other five sessions, Game2 exhibits more stable group synchrony than Game1. These s.d.

indices are also aligned with the answers of the participants as a group in 83.33% cases

(5 out of 6 sessions).

Table 5.1 also presents the measurement of precision calculation for each Session.

The measures produced by our method for two games of a session are different by at least

an order of magnitude of the standard deviation. Although it appears that the two games

only differ slightly in their synchronization indices, the differences are in fact significant.

In Fig 5.4-left, we present the confusion matrix for our method. The actual game

is identified from the perception of the majority of the participants for each session. The

predicted game for each session is the more synchronous game of that session measured

by our method. From this matrix, one can see the the accuracy of our method is 1 (which

is presented as 100% in the matrix), precision value for Game1 is 1, precision value for

Game2 is 1, recall value for Game1 is 1, and recall value for Game2 is 1.

Measurement of Precision Calculation

As the participants played two games during a Session, it is important to measure

whether the difference in the group synchronization indices measured by our method is

within the measurement precision. In this Section, we describe this measurement process

in detail.

To calculate the group synchronization index (GSI), we used a sliding window of

20 s during each game. We calculated the GSI for each window, and presented the mean

value of all windows in Column GSI in Table 5.1. We moved the window by increments

of 0.2 s.

Now, suppose we have n number of windows during a game, and let us assume
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Figure 5.4: Confusion matrices for three validation methods. During a session, actual
game is identified based on group members’ agreement, and the more synchronous
game is represented as the predicted game.

that the time series is second order stationary. Let, Xi be a GSI value for a window i.

When, X1,X2, . . . ,Xn are independent with a common mean and a variance, µX and σ2

respectively, then, X̄n will have mean µX and variance (σ2)/n.

As we are using overlapping windows, Xi is the same as an ’overlapping batch

mean’ described in Alexopoulos et al. [4]. Here, S2 is approximately the same as the

overlapping batch means estimator (O(b,m)). Thus, S2 is a slightly biased but good

estimator of σ2, the variance of each observed GSI presented in Table 5.1. Now,
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S2 =
1

n−1

n

∑
i=1

(Xi− X̄n) (5.1)

S2/n is used to estimate Var(X̄) = σ2/n. Using the plug-in principle, we have:

Var(X̄n)≈ S2/n (5.2)

Suppose, for the other game in the session, we have a mean synchronization index

value, Ȳn. Now, there will be a significant difference between the quantity X̄n and Ȳn,

if they are different beyond the precision of measurement. Thus, here, the precision of

measurement is (X̄n− Ȳn)/
√

Var(X̄n− Ȳn).

Now, we know,

Var(X̄n− Ȳn) =Var(X̄n)+Var(Ȳn)−2Cov(X̄n,Ȳn) (5.3)

If it is assumed that X̄n and Ȳn are uncorrelated, then,

Var(X̄n− Ȳn) =Var(X̄n)+Var(Ȳn) (5.4)

This assumption might be conservative, as it is possible that Cov(X̄n,Ȳn)> 0. For

example, since we shifted each window 0.2 s each time, we have a total of 501 overlapping

windows for each game in Session6 (recall that each game lasted approximately 120 s).

Now, if we consider X̄n represents Game1 and Ȳn represents Game2, then for

Session6, then,

√
Var(X̄n− Ȳn)≤

√
(0.07)2

501
+

(0.05)2

501
= 0.0038.

Thus, the measurement of precision of this session is:
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(X̄n− Ȳn)√
Var(X̄n− Ȳn)

≈ (0.47−0.50)
0.0038

=
−0.03
0.0038

=−7.8s.d.s

This implies that it is highly unlikely that µX > µY . We present the measurement of

precision for each Session in Table 5.1.

From these values, one can see that the measures produced by our method for two

games of a session are different at least by an order of magnitude of the standard deviation.

Although two games of a session show a small difference in their synchronization index

values, actually the differences are significant.

5.2 Validation of our method through comparison with

an alternative ES method

Our method takes multiple task level events into account to measure the synchro-

nization of the group. One may wonder if this approach is comparable or more accurate

than singular event-based methods in the literature. Thus, we first validated our approach

by comparing it to the method proposed by Varni et al. ([219]). As discussed in Section

4.1.3, this is a singular event-based synchronization detection method and represents a

reasonable point of comparison.

5.2.1 Data collection

To measure group synchrony using the method by Varni et al. ([219]), we used

the same data as described in Section 5.1.2. We considered the same six experimental

sessions, consisting of two games in each session for the comparison. Here, we incorpo-

rated the skeletal data of the participants, which is aligned with the approach Varni et al.

employ in their paper.
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5.2.2 Method description and event detection

To employ the method by Varni et al. ([219]), one first measures the pair-wise

synchronization index of two participants from a single type of event. From these indices,

a connectivity graph is generated and then the group synchronization index is calculated.

In their work, Varni et al. ([219]) measured the class of events from participants’

body motion features. As described in Varni and Camurri [218], these body motion

features might include the contraction index, fluidity index, etc; however, in their recent

work they used motion index (MI). The authors reported calculating MI by performing

silhouette-based background subtraction; however, for our comparison study we extracted

MI using upper-joint skeletal data, as this was a more robust measure given the overall

background illumination of our dataset.

To calculate MI, we first projected the 3D skeletal coordinates to the 2D image

plane. Then, from two consecutive frames, we calculated the distance each upper body

joint moved for each participant during the game. If any joint position was poorly

tracked due to occlusion, we discarded that joint movement from the calculation, using a

comprable exclusion method as described in Section 5.1.3.

During the next available well-tracked position of that joint, we measured the

distance moved from the previously well-tracked frame by that joint and divided the

value by the number of consecutive poorly-tracked frames for the calculation. We took

the local maxima of the sum of the distances of all the upper body joints’ movements in

a sliding window of n frames as our event class.

Here, we used a window size of 3 (n = 3). We removed local maximas with a

value less than 200 pixels as noise. To calculate the group synchronization indices, we

used the same time window (20s), τ = 0.21s and Qthresh = 0.35 as used with our method.

These events represent when a participant moves their upper body the most

within a time window. It can approximate any abrupt body movements, or even pulsing
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Figure 5.5: Agreement between players in each session and the synchrony measures
(our measure, the measure by Varni et al. ([218]), and the CRQA measure). One can
see that the majority of the participants (at least 75%) agreed with the measurement
produced by our method in 100% cases (6 out of 6 sessions).

movements made in synchronous rhythm with the game. Thus, this class of events was

similar to the class of events generated using the MI by Varni et al. ([219]) in their

original experiment.

5.2.3 Results

Table 5.2 shows the group synchronization indices measured using the method

proposed by Varni et al., as well as our method for all six experimental sessions. The

table shows the values of the synchronization indices averaged over the duration of each

game, as well as the standard deviation (s.d.) for the group synchronization indices for

every game.

In Fig. 5.5, we present the percentage of players in each session for which the

synchrony detection measures produced a match with the players’ perception. For

example, for Session3, the group synchronization indices produced by our method are
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0.44 and 0.48 respectively for Game1 and Game2, and all players rated Game2 as more

synchronous; thus indicating 100% agreement. In contrast, the group synchronization

indices produced by Varni el al.’s method are 0.70 for Game1 and 0.67 for Game2;

indicating 0% agreement with players’ perceptions.

5.2.4 Discussion

From the group synchronization indices presented in Table 5.2, one can see

that the values measured using the Varni et al. method are higher in degree than the

values produced by our method for all the games. These higher values might indicate

an overestimation of the synchronization indices, as only a singular type of event is

considered in the Varni et al. method. Also, as our method considers multiple types of

task-level events, it may be more conservative in nature.

As one can see from the data presented in Fig. 5.5, the group synchronization

indices produced by the method proposed by Varni et al. agreed with the perceptions of

the majority of participants in only 66.67% of the sessions (4 out of 6 sessions), whereas

our method agrees with participants’ perceptions in 100% of the sessions (6 out of 6

sessions).

Moreover, the standard deviation values in Table 5.2 also suggest that our method

was more accurate in assessing group synchrony stability than the method proposed by

Varni et al. (As a reminder, a lower s.d. value reflects more stable synchrony, and a

higher s.d. value reflects weaker synchrony). If the s.d. values are equal for both games

(e.g., see Session2), we consider them to be aligned with the perceptions of participants

as a group. The s.d. values for the method by Varni et al. are aligned with participants

as a group only in 50% of cases (3 out of 6 sessions), whereas our results are aligned in

83.33% of cases (5 out of 6 sessions).
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5.3 Validation of our method through a comparison with

CRQA

Dale et al. ([35]) used the cross-recurrence analysis method for quantifying the

relationship between two categorical time series data through use of a contingency table.

Recently, Coco et al. ([31]) released a package in R that implements CRQA and other

methods. In this section, we use this package to perform a comparison between CRQA

and our method.

5.3.1 Data collection

We used the same cup game data as described in Section 5.1.2. We considered

the same six experimental sessions, consisting of two games per session.

However, the data contains instances where none of the synchronous events we

were measuring occurred during a given moment in time. This “non-event” condition

may have happened in between existing events, such as between clapping or tapping

events. Our method is capable of supporting non-events, however, were we to use

these data within CRQA, there is a chance these data will overestimate the recurrence

profile of the time series. (i.e., both the pair-wise and group synchrony indices would be

artificially inflated). To avoid this potential chance for overestimation, we performed a

pre-processing step on each time series pair to remove any instances where “non-events”

occurred both both players.

5.3.2 Description of the analysis

The ’crqa’ R package by [31] contains a function named CTcrqa which uses

contingency tables (CT) to perform a cross-recurrence analysis on categorical data. First,
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it finds all the categories from both time series. In our data, different categories are

different event types. Then it calculates all the co-occurrences of different sets of events

between those two time series to build a CT. After that, the recurrence profile is computed

along the diagonal of the CT [31]. Different delays can be used to generate different

recurrence profiles for the time series.

We used CTcrqa to compute the cross-recurrence profile for our data. Two delays

were used to compute the recurrence profile. First, we used a delay of 0, which means

the package computed the co-occurrences of the same event types for both time series.

Then, we used a delay of 1, as we also wanted to count events as synchronous if they

appeared consecutively in the time series.

For each time series pair, we first calculated the cross-recurrence of the pair for

each delay. Then, we took the average of these values for the two delay patterns (0 and

1) as the measure of the pair-wise synchrony between these two time series. We used the

same procedure for all of the pairs to calculate the pair-wise synchronization index.

After computing the pair-wise synchronization indices, we computed the individ-

ual and group synchronization indices for each game by following the method described

in Section 4.1.3. First, we built group topology graph to calculate the individual syn-

chronization indices. Then, from the connectivity value and individual synchronization

indices, we computed the group synchronization index of that group. Based of the values

produced by CRQA, we used Qthres = 0.1 to generate the group topology graph. We did

not use any sliding windows during these calculations.

5.3.3 Results

Table 5.2 also shows the group synchronization indices measured using CRQA

for all six experimental sessions. In Fig. 5.5, we present the percentage of players in each

session for which the synchrony detection measures produced a match with the players’
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perception.

For example, for Session6, the group synchronization indices produced by our

method are 0.47 and 0.50 respectively for Game1 and Game2, and all players rated

Game2 as more synchronous, thus indicating 100% agreement. In contrast, the group

synchronization indices produced by CRQA are 0.18 and 0.17 respectively for Game1

and Game2, thus indicating 0% agreement with players’ perceptions.

5.3.4 Discussion

CRQA was slightly more accurate than Varni et al.’s method in assessing group

synchrony, as it reached agreement with participants in 5 of 6 sessions. However, one can

see in Table 5.1, there was a significant difference between the two games in Session6

and players’ perceptions (which we take as ground truth), suggesting that Game2 was

more synchronous than Game1. Our method concurred with players on this assessment,

suggesting it is more accurate than the other two methods.

One also may observe that the synchronization indices produced by the CRQA

method are fairly low. This might happen as we used the relative ordering of the events

during CRQA, instead of an equally sampled time series (which is what the CRQA

measure assumes). Thus, there might be cases when the same events occurred in both

time series slightly apart in the event order, but not as co-occurent or consecutive events.

These events might be considered as non co-occurent events, which might be the cause

of the CRQA synchronization index to be lower.

5.4 General discussion

In this chapter, we described three experimental validations of the method. First,

we successfully applied it to a synchronous tabletop game using fixed sensors to detect
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both individual and group synchronization indices. Our method closely matched players’

own perceptions of the group synchrony across multiple games.

Then, using the same data, we compared our method to a single-task level method

in the literature, and showed our approach was more accurate overall. As our method

incorporates multiple task level events, it is more conservative than the comparison

method. In general, the synchronization indices measured using the comparison method

were larger in value than ours, and were less likely to match players’ perceptions of

synchrony.

We also compared our method to a categorical approach from the literature, cross-

recurrence quantification analysis (CRQA), and again demonstrated our approach yields

more accurate results. Furthermore, unlike CRQA, our method is capable of dealing with

“non-events”, i.e., events that occur between synchronous events, and is thus also provides

a more conservative estimation of synchrony than CRQA. Indeed, failing to conduct a

pre-processing step on the types of data we work with (psychomotor synchrony), CRQA

is likely to overestimate both the pair-wise and group synchronization.

Our method presents several advantages. First, it is simple, fast, and suitable for

online implementation. In our lab, we have recently implemented this method to work

on an autonomous mobile robot to measure group synchrony, and move in synchrony

with others in real time [166]. We plan to release this software as open source in the near

future.

Second, new types of events can be easily added without requiring any changes

to the algorithm. This enables great flexibility, should a researcher wish to explore

increasing the granularity of synchronous events, or want to incorporate new types of

social and/or affective behaviors.

Third, the method is robust, and works successfully with data from both fixed

and mobile sensors. It also works using data from unimodal or multimodal sensors. This
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robustness is particularly advantageous if a researcher is fusing synchronous data from

sensors with varying frame rates.

In addition to group synchrony detection, our method can also be used to measure

each participant’s individual synchrony. Some group members may be more likely to be

“team players”, tending to synchronize more readily than others, and it could be useful to

detect their role in how group synchrony emerges. This may particularly prove useful in

the field of psychiatry, where researchers are interested in assessing how individuals with

schizophrenia physically interact in groups of matched controls, and how they experience

non-verbal social exclusion [118, 119]. It also is useful to researchers in psychology,

who often seek methods to study rapport building, social encounter smoothing, and

cooperation efficiency, all of which depend on how well one can synchronize to others

[38].

Our method can be helpful for other researchers in the affective computing

community in several ways. First, our method can enable the next generation of human-

machine systems to estimate the affective behavior of a group as a whole, as well as

individual group members, by assessing how well-entrained they are to one another. This

has broad applications across the field - such as in dominance detection in groups [183]),

the affective behavior of crowds [132], assessing the emergence of group roles [167].

Second, it is robust to include many different types of events from multimodal

data sources; few methods exist in the field to allow for this. The field in general has

been trending toward multimodal affect modeling and social scene understanding (c.f.

[21, 39, 221]; this work provides both a theoretical and practical contribution in this area.

Finally, our method could be used to detect engagement and skill acquisition in

affective learning contexts. Many researchers in this community seek to ensure ecological

validity in their work [2]; for most students the naturalistic learning context involves

relationships with peers [57]. The ability to model the behavior of a student within the



79

context of group learning could be useful to those who work in this space.

5.5 Chapter summary

In this chapter, we validated our method in three ways. Through these validations,

we tried to address our second research question. The results suggest that our method can

successfully measure group synchrony, and is more accurate compared to other methods

from the literature. In next chapter, we will validate our method through a human-robot

teamwork scenario. We also will explore whether such a measure can be used to estimate

asynchronous behavior.
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Chapter 6

Validation of the Method with a

Human-Robot Team

In order for robots to competently and contingently collaborate with humans, they

need to be able to solve the challenge of sensing high-level human activities occurring in

their surroundings. This is particularly important when both the robots and people are

moving [27, 176].

Researchers from the activity recognition and robotics communities generally

combine motor primitives to understand a wide range of complex actions [92, 45, 144,

196, 197]. While this work is useful for some perceptual situations, from a human-robot

teamwork perspective, it may not tell robots much information about the context of how

humans are interacting within the environment and with one another. This makes it

challenging for robots to respond appropriately, and even more so when both the robots

and co-present humans are moving [176].

If robots are to obtain this capability, however, they must first be able to accurately

sense synchronous action occurring around them, ideally while in motion. To enable this,

we present a method to automatically measure synchronous joint action between people

80
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as observed from mobile robots.

In this chapter, we aim to address our third research question described in Chap-

ter 4, by validating our method against a rhythmic group activity (marching), as observed

by two autonomous mobile robots (see Section 6.1). In Section 6.2 we present the

results from this validation, and in Section 8.5 discuss their implications for the research

community.

6.1 Method validation through a human-robot interac-

tion scenario

In previous chapters, we validated our method by observing groups of people

performing a synchronized psychomotor activity (“the cup game”) using fixed sensors.

Here, we wanted to extend this work to explore how well our method worked with mobile

sensors (robots) and mobile people. We were also interested in exploring asynchronous

conditions. Thus, we analyzed the synchrony of people marching as followed by two

mobile robots.

Marching is a group activity that is both dynamic as well as rhythmic in nature

[126]. We conducted a set of controlled experiments where we had two individuals

perform four different sets of marching actions (see Fig. 6.2). In each experiment, a

mobile robot followed each performer to detect different events while the person was

marching (see Fig. 6.1).

We used two Turtlebot robots as mobile platforms in our experiment, and used

their attached Kinect sensors for capturing data. The Turtlebot is an open-hardware

and software platform comprised of an iRobot Create platform, a Microsoft Kinect, and

an ASUS laptop running the Groovy version of the Robot Operating System (ROS) on

Ubuntu Linux [184, 175].
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Figure 6.1: A) First validation measured people performing synchronous joint action
in a static setup [82]. B) Current validation method has autonomous mobile robots
following humans moving synchronously. P1 and P2 are the performers, and B1 and B2
are the robots.

Prior to our experiments, we adjusted the Kinect sensors on our Turtlebots so that

they could track the performer’s feet when they stepped and raised each foot. We used

the TurtleBot’s “Follower” program so that our robots could follow people autonomously

while recording data, and stored the data in the ROS bag format.

We recruited two naive performers by word-of-mouth for our validation experi-

ments. We gave both performers instructions for marching, and conducted one practice

session before each of our four marching scenarios. We recorded two sessions for each

of our four scenarios for analysis to account for noise.

In each scenario, we instructed each person to perform a “high-march”, which

constitutes picking up their knees and feet to an exaggerated degree. The first performer

led the march, and was situated on the left side of the hallway. We situated the second

performer behind and to the right of the first marcher as they moved down the hallway so

that they could adjust their actions based on those of the first performer (see Fig. 6.1).

All scenarios lasted approximately 35 seconds, and was timed using a stopwatch. We

gave the first performer an mp3 player with a set of noise-cancelling headphones playing
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Figure 6.2: A comparison of synchronous and asynchronous events captured by the
mobile robots. Dots represent the tracked positions of the feet.

John Philip Sousa’s “Stars and Stripes Forever” march to keep tempo and prevent any

noise-related distractions. Since the second performer follows the first performer from

behind, the marching pace or pattern of the second performer did not affect the marching

pace or pattern of the first performer.

In the first experimental scenario, the performers marched down a hallway in a

synchronized manner. During this scenario, the second marcher followed the steps of

the first marcher. In the second scenario, the second marcher followed the steps of the

first marcher, but did so in the opposite order. For example, when the first marcher raised

their left foot, the second marcher raised their right.

For our third scenario, both performers started out marching in a synchronous

fashion, became asynchronous after 12 seconds, then synchronous again after 24 seconds.

The fourth scenario reversed the actions of the third scenario, where both marchers began
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Figure 6.3: A decomposition of events one through four that are used in event synchrony
measurement. Overall, all events occur in two seconds.

unsynchronized, became synchronized after 12 seconds, and unsynchronized after 24

seconds. We verbally instructed the second performer when to switch their steps to after

these time periods by saying “switch”. Fig. 6.2 shows the synchronous and asynchronous

marching patterns.

6.1.1 Data collection

Before recording data, both systems were synchronized with an Ubuntu time-

server to ensure that both systems kept accurate timing. The videos of each performer

were time-synchronized, and analyzed using our model to determine the group synchrony

based on the occurrence of events.

To measure the overall group synchrony, we had to first determine the different

task-level events of this group activity (i.e., a leg raise, or a leg leaving the ground) from

the recorded videos. For this experimental setup, we defined two types of events to

measure overall group synchrony. The first type of event was when a person begins to
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raise his/her a leg from the ground. The second type of event was when a leg reaches

its maximum height. As a result, a total of four types of events occur when a person is

marching (one of the aforementioned events for each leg). See Fig. 6.3 for an example of

these events.

To track each performer’s feet, we used a standard blob tracking technique. We

used the ROS cmvision package to track color blobs in RGB images. We attached four

unique small squares of colored paper (orange, yellow, green, and red) to the performers’

left and right feet, while each robot followed behind each performer at a distance of two

feet to track each performer’s actions.

Fig. 6.5-A shows the expected synchrony for these four scenarios. We expected

to see a high value for a synchronization index for the entire duration of a session for

Scenario 1, and a value of zero for Scenario 2. For Scenario 3, we expected to see our

measured synchronization index decrease beginning around seven seconds to a value of

zero at 12 seconds, and increase again at about 20 seconds. For Scenario 4, we expected

similar results, however in reverse order.

6.1.2 Data analysis

From all detected blob positions, we first discarded very small blobs as noise.

The remaining blob positions were considered candidates for a foot position. From these

candidate blob positions, we generated an undirected graph by treating each blob center

as a vertex of that graph. Two vertices were connected in this graph with an edge if they

were closer to each other than a threshold distance.

From the resultant graph, we calculated the connected components. We then

clustered all connected components together, and measured the total area of all blobs in

each cluster. The cluster of blobs with the largest area was defined as the location of the

foot in the RGB image. The center of that cluster, calculated by taking the mean position



86

Figure 6.4: This figure shows the detection of each event for one foot to show when a
person’s foot is leaving the ground, and when their foot reaches its maximum height.

of each blob of that cluster weighted by each blob’s area, is considered the foot position.

We then detected the high-level events in this rhythmic activity from the move-

ments of each performer’s feet. While marching, the foot position begins to move in an

upward direction when the foot leaves the ground and eventually reaches its maxima

before descending back downward [128, 72]. From the recorded video from the mobile

robots, we found that this phenomenon also holds.

In our recorded video, the position of each foot changes significantly along the

vertical axis of the RGB image plane while marching. Since the robot is also moving,

we must extract the movements of the feet without regard to the robot’s movement. Due

to the ego-motion of the mobile robot and the attached camera, the position of the feet

changed in every frame along both axes, although the feet were stationary in the real

world. However, in the case of marching (raising the feet from the ground up), the change

of the position of the feet along the vertical direction is significantly larger than the

changes in position in the RGB image caused by the ego-motion.

To detect high-level events, we calculated the local extrema (maxima and minima)

of the positions of the feet along the vertical axis. While calculating the local extrema,
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we use an additional condition that discarded any extrema that occurred within a specific

period of time. This additional condition helps remove noise due to poor tracking or

drastic movement caused by the robot’s motion.

Due to the robot’s ego-motion, the changes of the feet positions along the vertical

axis were less than when they performed marching steps. An example of this effect can

be seen between 3.2 and 4.6 seconds in Fig. 6.4. Our measure also accounts for this

effect.

Our local minima and maxima are used to give us the time when a foot starts to

leave the ground and when it reaches its maximum height. From these values, we are

able to define that an event occurred during that time. This measure is independent to the

ego-motion of the robot in our setup, as well as the height and pacing of each performer’s

movement. Fig. 6.4 describes this event detection model.

From the recorded video, we detected the events for both performers. We then

measured the overall group synchrony using the model described in Chapter 4.

6.2 Results

To sufficiently measure synchrony, we found a five second window to be ideal.

This is due to the fact that each performer needed about one second to complete one

step, and around two seconds for all four events to occur (one for each foot leaving the

ground, and one for each foot reaching its maximum height, as shown in Fig. 6.3). We

used τ = 0.21s and a sliding window of 5s for the calculation.

Each march session lasted about 35 seconds. Fig. 6.5 shows the synchronization

index of each session over time. Here, four sessions are presented in four different graphs.

As we used a sliding window size of five seconds, the synchronization index value for the

zeroth second actually represents the synchronization index value on the window from



88

zero to five seconds.

In Fig. 6.5, one can see that the synchronization index of the group is approxi-

mately 0.7 for the first experimental scenario, where the second performer was instructed

to synchronously follow the steps of the first performer. In the case that the performers

are asynchronous in their movements, then the synchronization index will be zero. On

the other hand, if movement is very synchronous, then their synchronization index will

be close to one.

The synchronization index of the second scenario is also presented in Fig. 6.5,

which shows that the synchronization index is zero across the entire session. This

indicates that during the time that our performers were marching, no event occurred

in-sync over the entire session.

For the third experimental scenario, one can see that for the start of the session,

the synchronization index was approximately 0.7 for the first few seconds, as shown

in Fig. 6.5. This is due to the fact that we instructed performers to begin this session

by marching in a synchronous manner. After 12 seconds, we verbally instructed the

second performer to switch their steps and become asynchronous with the first performer,

causing the synchronization index to decrease. After 24 seconds, we again verbally

instructed the second performer to change their synchrony with the first performer using

the term “switch”. This caused an increase in the synchronization index.

From Fig. 6.5, we can also see that the synchronization index became zero around

the 12th second, which shows that the synchronization index for the five second window

starting at the 12th second was zero. As we are using a sliding window of five seconds,

the synchronization index began to decrease after approximately seven seconds. Similarly,

when the second performer became synchronous with the first performer at the 24 second

mark, we see a increasing synchronization index value starting at the 19th second mark.

For the fourth experimental scenario, one can see that the synchronization index
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Figure 6.5: A) The expected synchronization indices of our experimental scenarios. B)
Actual synchronization indices of our experimental scenarios.

was zero at the start of the session. This is because the performers began marching

asynchronously until approximately the 12 second mark, where they became synchronous.

After about the 24th second, marchers became asynchronous again. From the graph, we

also see that the synchronization index is higher in the case of synchronous movements,

which started to increase around the seventh second in the graph due to the sliding

window algorithm. The synchronization index starts to decrease after the 20th second

mark when movements are asynchronous after the 24th second, thereby dropping the

synchronization index to zero.

We present the mean value of the synchronization indices of the sliding windows
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Table 6.1: Mean Synchronization Indices During Each Interval of Marching

Time Mean Synchronization Index

Scenario 1 Scenario 2 Scenario 3 Scenario 4

0-12s 0.67 0 0.8 0
12-24s 0.68 0 0.18 0.55
24-35s 0.79 0 0.68 0

in Table 6.1. In the first row, we present the average value of the synchronization indices

of the sliding windows starting from zero to seven seconds. These sliding windows

originally cover all of the events that occur between zero to 12 seconds. The second row

shows the values of the sliding windows from the seventh to the 19th, and the last row

presents from the 19th to the 30th second. The last two intervals represent the events

occurring from the 12th to 24th second, and 24th to 35th second in real-time, respectively.

We use these intervals because we instructed our second marcher to switch the marching

pattern at the 12th and the 24th second during the third and fourth scenarios.

From Table 6.1 one can see that the mean value of synchronization indices does

not change much for Scenario 1 and 2, since the marching pattern did not change during

these cases. For Scenario 1, the mean synchronization indices are high for all three

time intervals. On the other hand, for all three intervals, we see the values are zero for

Scenario 2. We see changes of the synchronization index value for Scenario 3 and 4 in

different intervals. For Scenario 3, we observe lower values for the middle interval when

the performers were asynchronous, and higher values for first and last interval when the

performers were synchronous. We observe the opposite pattern for Scenario 4, with a

higher value in the middle interval when the performers were synchronous, and lower in

the first and the last interval where the performers were asynchronous.
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6.3 Discussion

As shown in Fig. 6.5, the synchronization indices for the four scenarios matched

our expectations. The first scenario (synchronized) showed a high synchronization index

(0.67) for the entire duration of the session. The second scenario (unsynchronized)

similarly matched our expectations, with a value of zero for the entirety of the session.

The third scenario (mixed, with a synchronized start) showed high values for time-frames

that the second performer was instructed to be synchronized, and a value of zero for the

time frame they were instructed to be unsynchronized. Scenario four (mixed, with an

unsynchronized start) also matched these expectations.

Our results suggest that our method is effective in capturing and processing

synchronized joint action occurring with both robots and people in motion. The results

also suggest that our method can successfully measure asynchronous conditions (scenario

2, 3, and 4).

This work is encouraging for future work in understanding team dynamics in

real-time for robotic systems. This work will also help in the design of robot behavior

that generates synchronous joint action. Considering motion may distort sensing, our

results show that our method was capable of detecting synchronized events and measuring

synchronous joint action between two individuals in motion, independent of the height

and pacing of steps.

While we expected a higher synchronization index value for Scenario 1, this

could be due to a variety of reasons. Lighting and illumination variation may have an

effect on blob tracking, especially since the robot and person are constantly in motion.

Such changes may affect color calibration and tracking, causing the algorithm to miss a

correct event or detect an incorrect event.
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6.4 Chapter summary

In this chapter, we validated our method by applying it to a human-robot syn-

chronous marching task. Through this validation study, we explored whether our syn-

chronization detection measure can be used to estimate asynchronous behavior, The

results suggest that our method can successfully estimate asynchronous behavior in a

team, even when all the group members are in motion. In the next chapter, we will extend

our method to introduce an anticipation method for robot control, which will take team

dynamics into account.
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Chapter 7

An anticipation method for robot

control

In the previous chapters, I described a new method that enables a robot to under-

stand team dynamics. Based on its understanding, if a robot can make predictions about

the future actions of its human counterparts, then the robot will be able to interact more

fluently within a group [65].

Recent work in robotics has focused on developing predictive methods for im-

proving the fluency of joint interaction between a robot and one or more humans. For

example, Hoffman et al. ([64]) proposed an adaptive action selection mechanism for a

robot, which could make anticipatory decisions based on confidence of their validity and

their relative risks. Additionally, Pérez-D’Arpino et al. ([157]) proposed a data-driven

approach to synthesize anticipatory knowledge of human motion, which they used to

predict target objects during reaching motions. Unhelkar et al. ([214]) extended this

concept for a human-robot co-navigation task. This model used “human turn signals”

during walking as anticipatory indicators, in order to predict human motion trajectories.

While this work will improve the ability of robots to have fluent interactions
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within HSEs, most of these methods are best-suited for dyadic interaction and dexterous

manipulation contexts. In contrast, we seek to explore methods for robots that will work

robustly in groups, and also for tasks involving gross motion with mobile robots.

In the previous chapters, we explored the problem of automatically modelling

and detecting synchronous joint action (SJA) in human teams, using both fixed and

mobile sensors. We introduced and validated a new, nonlinear dynamical method which

performed more accurately and robustly than existing methods.

Now, we explore how a robot can use these models to synthesize SJA in order to

coordinate its movements with a human team. The main contribution of this work is the

introduction of a new anticipation method for robot motion to predict events and the time

that they occur during a human-robot interaction scenario.

7.1 Event synchronization methods

For this work, we created two anticipation methods for robot motion. The first

method, synchronization-index based anticipation (SIA), is inspired by our prior SJA

detection work described in Chapter 4. It calculates the synchronicity of the group in

real-time, determines who the most synchronous person is, and uses that information to

move the robot.

The second method, event cluster based anticipation (ECA), we created to es-

tablish a reasonable comparison anticipation method for SIA that does not rely on team

dynamics. ECA is a straightforward method that involves averaging the times participants

moved during a previous iteration of the dance. Figure 7.1 gives a visual comparison of

how the two methods work in practice, and they are described textually below.

In order to explain the application of the methods, we considered a synchronous

dance scenario In this scenario, a team of humans and a robot coordinate their motion in
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real-time. The dance is iterative, and performed cyclically in a counter-clockwise manner.

There are four iterations in a dance session. In this chapter, we describe the methods in

detail, and explain how we can use these methods in the testbed scenario.

7.2 Synchronization index based anticipation (SIA)

The Synchronization Index Based Anticipation (SIA) method takes a team’s

internal dynamics into account when generating robot movements. The main idea is

that for a given iteration, the participant who moves the most synchronously with the

other members of the group is a good model for the robot to follow in order to be well-

coordinated with the team. Furthermore, the method will adjust its identification of the

most synchronous person after each iteration. Figure 7.1-B explains this method visually.

Thus, to generate future actions for the robot, at the beginning of each iteration

we measured the most synchronous person of the group using our method described in

Chapter 4. We will briefly describe the method in Sections 7.2.1, and then discuss in

Section 7.2.2 how we used it to assess the most synchronous person to inform how the

robot should move.

7.2.1 Measuring the individual synchronization index

As described in Chapter 4, we can express the task-level events associated with

each dancer as a time series. Suppose xn and yn are two time series, where n = 1 . . .N.

Here, each time series has N samples. Suppose, mx and my are the number of events that

occur in time series x and y respectively, and E is the set of all events [82].

Now, as described in Equation 4.5, we first calculate Qτ(e), which represents the

synchronization of events in two time series, where we only consider a single type of

event e in both time series.
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Figure 7.1: A visualization of the two anticipation methods. Left: Synchronization
Index Based Anticipation (SIA), Right: Event Cluster Based Anticipation (ECA). The
upper portion of the graph represents one iteration of the dance session, and the lower
portion represents the next iteration of the same session.

The value of Qτ(e) should be between 0 and 1 (0 ≤ Qτ(e) ≤ 1), as we normalize

it by the number of events that appear in both time series. Qτ(e) = 1 shows that all the

events of both time series are fully synchronized, and appeared within a time lag ±τ on

both time series. On the other hand, Qτ(e) = 0 shows us that the events are asynchronous

[82].

Now, we measure the synchronization of events in two time series for multiple

types of events, as described in Equation 4.6. So, the overall synchronization of events in

time series x and y of that pair is:

∀ei ∈ E(n) : Qxy
τ =

∑ [Qτ(ei)× [mx(ei)+my(ei)]]

∑ [mx(ei)+my(ei)]
(7.1)

If all events are synchronous in both time series, then the value of Qxy
τ will be 1.

If they are asynchronous, the value of Qxy
τ will be 0 [82].

We calculated the pairwise synchronization index for each pair. Suppose we have

H number of time series. The time series data are represented as s1,s2, . . . ,sH . First, we

calculate the pairwise event synchronization index for each pair. So, we have the value
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of Qs1s2
τ ,Qs1s3

τ , . . . ,Q
s(H−1)sH
τ .

We modified our process slightly from that described in Chapter 4. After calculat-

ing the pairwise synchronization index, we built a directed weighted graph from these

indices, where each time series is represented by a vertex. However, in Chapter 4, after

calculating the pairwise synchronization index, an undirected weighted graph was built.

In a fully connected situation, the directed and the undirected graphs represent the same

connectivity.

So, if the time series are s1,s2, . . . ,sH , then there is a vertex in the graph which

will correspond to a time series. We connect a pair of vertices with a weighted edge,

based on their synchronization index value. In this case, there will be an incoming and an

outgoing edge for each pair of vertices. We will refer to this graph as the group topology

graph (GTG), which is the same as the graph described in Chapter 4.

The individual synchronization index (Iτ(si)) depends on both the group com-

position and the size of the group. We assumed that during this dance performance,

each human participant may have some direct or indirect influences on the other human

participants of the group. Iτ(si) for a participant is measured as the average of the weight

of the outgoing edges to the corresponding vertex in the topology graph. So, the Iτ(si) of

series si is:

Iτ(si) =
∑ j=1,...,H, j 6=i Qsis j

τ × f (si,s j)

∑ j=1,...,H, j 6=i f (si,s j)
(7.2)

Where,

f (si,s j) =

 1 iff edge(si,s j) ∈ GT G

0 otherwise
(7.3)
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7.2.2 Determining the most synchronous dancer and anticipating

their next movement

The person with the highest individual synchronization index during an iteration

is considered the most synchronous person of the group. This is because a high individual

synchronization index indicates close synchronization with the other group members.

Thus, let this person be MSP.

Suppose, during itri, we determine MSP(itri) as the most synchronous dancer of

the group. Now, assuming that a similar timing pattern of events will occur during the

next iteration (itr(i+1)), if the robot follows the events of the MSP(itri), then the group

will become more synchronous.

We can describe this concept mathematically. To reach a synchronous state, all

events must occur very closely in time, i.e., within a time lag ±τ. Thus, we want to

minimize the difference between event timings for each pair of agents. Now, if ∆ti j

represents the time difference of one event between agent i and j, then our goal is:

∀i, j ∈ H : minimize (∑∆ti j) (7.4)

Now for our scenario, as shown in Figure 7.2, suppose Dancer 2 was the most

synchronous person during one iteration (itri) of the dance session, i.e., MSP(itri) was

Dancer 2. Now, during itr(i+1), a similar timing pattern holds, and the timing of one

particular event of the three dancers and the robot are t1, t2, t3, and tR respectively. To

reach a synchronous state, the following is required:

minimize (∑∆t12 +∆t23 +∆t1R

+∆tR3 +∆t13 +∆tR2)

(7.5)
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Figure 7.2: Example timings from a single type of event during two consecutive
iterations.

As Dancer 2 is the MSP, from Fig. 7.2, one can see ∆t12 +∆t23 = ∆t13, and

∆t1R +∆tR3 = ∆t13. Thus, Eq. 7.5 becomes:

minimize (∑∆t13 +∆t13 +∆t13 +∆tR2) (7.6)

As only the term ∆tR2 depends on the robot’s movement in Equation 7.6, by

minimizing ∆tR2 we can minimize the equation. Thus, if the robot and the Dancer 2 (in

this case, the MSP) perform the same event at the same time, then ∆tR2 will become 0,

which will minimize Equation 7.6. This implies that if the robot can perform the events

close to the timings of the most synchronous person, then the whole group will reach a

more synchronous state.

Thus, for a given iteration, itr ∈ ∀ iterations, the robot will determine MSP(itri).

As we know the timing of the events during the previous iteration of the dance itr(i−1),

our anticipation method assumes that the similar event will happen more or less at the

same time during this iteration itri. Therefore, when it is close to the timing of events of

MSP(itr(i−1)) during itri, and the robot receives any indication to the start of an event

(we will describe this step in detail in Chapter 8) associated with MSP(itr(i−1)), then the

robot will anticipate those events as the indicator of the start of an event. The robot will
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then perform the appropriate movement.

7.3 Event cluster-based anticipation method (ECA)

We created the Event Cluster-Based Anticipation Method (ECA) method to

establish a reasonable comparison anticipation method for SIA that does not rely on team

dynamics. ECA is theoretically simple, but powerful in nature. During a rhythmic and

iterative task scenario, the timings of the events for one iteration are similar to events

that happened in the previous iteration. Thus, we averaged the events timing during one

iteration to predict the timing of those same events for the next iteration. Figure 7.1-A

depicts this method visually.

First, for one iteration, we present all the events associated with the dancers by a

time series. Then, we cluster all the similar types of events together that occur within

a time threshold, ε. For example, for a single event e, we calculate the timing of the

event performed by three group members, i.e., t(dancer1(itri),e), t(dancer2(itri),e),

t(dancer3(itri),e). Here, t represents the timing of an event, and itri represents the

iteration i.

After that for each cluster of similar events, we calculate the average time of all

the events and use that time as the timing of the event for the next iteration. These events

and the times are the predicted events and timing for the robot during the next iteration

of this scenario. Thus, t(robot(itr(i+1)),e) = (t(dancer1(itri),e)+ t(dancer2(itri),e)+

t(dancer3(itri),e))/3. Based on all the events for next iteration, the robot generates

appropriate actions.
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7.4 Chapter summary

In this chapter, I discussed a new anticipation method (SIA) for a robot to

predict events, and their timings, during a rhythmic, iterative human-robot interaction

scenario. This method relies on team coordination dynamics for event anticipation. I

also introduced a comparison method (ECA), which does not rely on team dynamics.

In the next chapter, we will employ these methods on a human-robot synchronous

dancing scenario, and will investigate the effects of these methods on the overall group

coordination.
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Chapter 8

Movement coordination in

human-robot teams

In the previous chapter, I presented a new anticipation method (SIA) for a robot

to predict the events and their timings during a rhythmic and iterative human-robot

interaction scenario. This method relies on the team coordination dynamics for event

anticipation. I also introduced another event anticipation method (ECA) which does not

rely on team dynamics.

Now, in this chapter, we validate the SIA method on a task where an autonomous

mobile robot observes a team of human dancers, and successfully and contingently

coordinates its movements to “join the dance”. We compare the results of the SIA method

to move the robot with the ECA method.

I describe the system architecture and the experimental testbed in detail in Sec-

tion 8.1. I then describe the experimental procedure, and the result analysis in Section 8.2

and 8.4.

103
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Figure 8.1: A) Data acquisition setup. B) Three participants are dancing along with a
Turtlebot robot.

8.1 System architecture and experimental testbed

In order to explore how a robot can use human team dynamics to synthesize

synchronous joint (SJA) action with a mixed team, we needed an experimental testbed

where a robot could perform tasks synchronously with humans. We also required a group

activity where each member’s actions would have impact on others’ actions, as well as

have impact on the dynamics of the team overall.

Therefore, we designed a movement task where a team of humans and a robot

could coordinate their motion in real-time. Specifically, we explored SJA within the

context of synchronous dance. In concert with an experienced dancer, we choreographed

a routine to the song Smooth Criminal by Michael Jackson, which is in 4/4 time. The

dance is iterative, and performed cyclically in a counter-clockwise manner (see Figure 8.1-

A). There are four iterations in a dance session, corresponding to each of the cardinal

directions (North, West, South, and East). Each iteration includes the dancers taking

the following steps in order: move forward and backward twice, then, clap, and turn

90-degrees (see Figure 8.2) [166].
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8.1.1 Data acquisition process

Figure 8.1-A shows the data acquisition setup. Three human participants and a

Turtlebot v.2 robot were arranged in two rows. Four Microsoft Kinect v.2 sensors were

positioned approximately three feet above the ground at each of the cardinal directions.

Each sensor was connected to a computer (client) to capture and process the depth,

infrared, and skeletal data from the Kinect. All four clients and the server ran Windows 8

on an Intel Core i5 processor at 1.70Hz with 12GB of RAM.

As we are studying synchronous activity, it was critical all clients and the robot

maintained a consistent time reference. Thus, we created a server to manage communica-

tion and global time synchronization. Synchronization architecture details can be found

in Iqbal et al. ([74]).

Each client performed real-time processing of the raw data in order to detect

dance events (e.g., move forward, stop, etc), which it sent to the server with a timestamp.

When the server received data from the clients, it generated predictions for how the robot

should move using one of two anticipation methods, which are described in Section 9.1.

The server was also responsible for determining the active client, which refers to which

of the four sensors the dancers were facing during a given iteration.

In order to allow for offline analysis, the clients also recorded time-synchronized

depth, infrared, audio, and skeletal data using at automated interface with Kinect Studio.

The server and robot also kept detailed logs of all communication, odometry information,

events received from the active client, and information about the dancers.

8.1.2 Client-side data processing

We extracted five high-level events from the participants’ movements during the

dance: start moving forward, stop moving forward, start moving backward, stop moving
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Figure 8.2: Five high-level were detected during the dance using skeletal data from
participants. One iteration of the dance consists of two passes of the start moving
forward, stop moving forward, start moving backward, stop moving backward events,
and a clap event in order.

backward, and clap. The start moving forward event is detected when a participant begins

approaching the Kinect, and stop moving forward when they stop moving. Similarly,

as a participant moves away from the sensor (backward), that is identified as a start

moving backward event, and when they stop, stop moving backward. We also detected

participants’ clap events, which occurred at the end of each iteration. See Figure 8.2.

To detect these events from participants’ body movements, clients used the

skeletal positions provided by the Kinect. Clients calculated forward and backward

motion onsets along the z-axis primarily using the spine base body joint position, as it is

the most stable and reliable joint position when participants are in motion.

However, there were times when participants did not move their spine base, but

did move their mid-spine, shoulders, or neck, to signal the onset of motion. Therefore,

clients also used these positions, again along the z-axis, to detect four additional events:

early start moving forward, early stop moving forward, early start moving backward,

and early stop moving backward. For these early events, clients calculated joint change

positions by comparing the current and previous frame. If at least half of the joint

positions changed, then it indicated the participant had started moving. To detect clap

events, clients used the x and y coordinates from the 3D skeletal position of the left and

right hand and shoulder joints. Claps occurred when the ratio of the distance between the

hands and the distance between the shoulder joints was less than a threshold (0.6), and

when this ratio value reaches a local minima.
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8.1.3 Robot command generation and execution

After the server determines which movement the robot should make, which it

does using an anticipation methods described in 9.1, it sends a movement command to

the robot. These commands include: move forward, move backward, stop, and turn. The

server translated the clap commands into rotation commands while sending it to the robot,

since the robot can’t clap.

For example, suppose Dancer 2 was the most synchronous person during iteration

1, i.e., MSP(itr1) was Dancer 2. Dancer 2 performed a start moving forward event

three seconds from the start of itr1. So, during itr2, it was assumed that the start moving

forward would happen three seconds from the iteration’s start. Thus, if the server received

a sufficient number of early start moving forward events around t3, then it notified the

robot command generator to generate commands to execute forward movement. This

process was similar for all other regular events, excluding the clap event.

The robot, which ran the Robot Operating System (ROS) version Hydro on

Ubuntu version 12.04, accepted commands from the server, parsed the commands, and

used an ROS publisher to send movement commands to the controller. The robot is

capable of forward and backward movement, and can rotate on its vertical axis in either

direction.

8.2 Experiments

8.2.1 Pilot studies

Before performing the main experiment to compare performance between the two

anticipation methods, we performed a series of pilot studies to test the setup of the system,

and set various parameters for the two anticipation methods. We conducted two sets of
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pilot studies, with a total of seven participants (three women, four men). Participants

were opportunistically recruited, and compensated with a $5 gift card for participating

[166].

During the first set of pilots, a sole participant danced with the robot. Here, we

sought to measure two things: how fast the robot received action messages, and how

accurately the robot performed with the human participant.

During the second set of pilot studies, a group of three participants danced with

the robot. Here, we sought to establish appropriate parameters for the anticipation

methods. To acquire these measurements, we recorded events generated from server logs

as well as from odometry data from the robot. We compared the two, noting differences

in velocity, distance, and event timings [166].

8.2.2 Main experiment

We recruited a total of nine groups (27 participants in total, 3 persons per group)

for our main experiment. 14 participants were women, 13 were men. Their average age

was 22.93 years (s.d. = 3.98 years), and the majority were undergraduate and graduate

students. Only 3 participants had prior dancing experience, 24 did not. Participants

were recruited via mailing list and campus advertisement. Upon scheduling a timeslot,

participants were randomly assigned to join a group with two others. Each participant

was compensated with an $8 gift card for their time.

After giving informed consent, participants viewed an instructional video of the

choreographed dance and the experimenters explained the different movements. The

participants then had time to practice the dance movements as a group as many times as

they wanted. During this practice session, the robot did not dance with them.

Following the practice session, the group participated in three dance sessions.

During the first session, only humans participated in the dance. During the last two
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sessions, the robot joined the group. In Sessions 2 and 3, the robot moved using either

ECA then SIA, or SIA then ECA. (The order was counter-balanced to avoid bias).

Participants were blind as to which method was in use.

During the last two sessions, the four clients recorded depth, infrared, and skeletal

data of the participants, and the server logged all event and timing data. A single camera

mounted on a tripod recorded standard video of the experiment for manual analysis

purposes only.

Following the experiment, participants completed a short questionnaire asking

them to rate which of the two dance sessions they felt was more synchronous, a measure

we have used in prior work [82]. Participants also reported which session they felt they

were more synchronous with the rest of the group.

8.3 Robot data pre-processing

The server provided the human movement data logs and the clients raw data

during the experiment, as detailed in Sections 8.1 and 9.1.1. However, to conduct a

complete comparison between the two anticipation methods, it is also necessary to

determine how and when the robot actually moved during the two experimental sessions.

To do this, we used the timestamped odometric data from the robot (x and y pose and

angular− z orientation), as well as the server-side robot command logs.

We calculated the same events for the robot as for the humans (forward, backward,

stop, turn). Based on the changes in two consecutive x or y pose values and the robot’s

heading, we calculated whether the robot was moving forward or backward. For example,

when the robot faced the first Kinect sensor and moved forward, then the changes in two

consecutive pose values would be positive, if moving backward, negative. We detected

turn events using changes greater than 0.4 in the z heading value of the Turtlebot’s
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angular twist message. (Note, turn events are considered equivalent to the humans’ clap

events in our analysis.).

Stop events were determined when a difference less than 0.002 was detected

between two consecutive poses. These stop events were classified as forward or backward

depending on the heading of the robot.

After detecting all events for the robot, we manually checked the data files for

any errors. During this process, we determined a 7% missing event rate. These missing

events were evenly distributed across both of the anticipation methods. We manually

checked the recorded video and odometric logs from the robot, and determined the robot

actually moved correctly during the majority of those instances, so manually inserted the

missing events into the files. There were a few instances (about 3.7% overall) when the

robot did not perform the activity that it was instructed to perform, which was mostly

due to network latency. We discarded those data from the analysis.

8.4 Data analysis and results

To compare the performance and accuracy of the two anticipation methods, we

first measured how synchronously the entire group, including the robot, coordinated their

movements during both sessions. We then measured how appropriately timed the robot’s

motion was with its human counterparts.

8.4.1 Measuring synchronization of the group

Using the method described in [82] and discussed in Section 7.2, we measured

the degree of synchronization of the group for each iteration of the dance. First, we

created individual time series for each of the dancers and the robot. Events in the time

series were start moving forward, stop moving forward, start moving backward, stop
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moving backward, and clap). Then, we calculated the pairwise synchronization index for

each pair using the method described in Section 7.2.1.

From the pairwise synchronization index, we built a group topology graph (GT G)

and calculated the individual synchronization index for each human dancer, as described

in Section 7.2. As the humans physically stood very close in proximity, we assumed that

each of the group members was influenced by all other members of the group across the

course of an entire dance session. (Every iteration, participants rotated their position, so

a person in the front at itri will end up in the back by itr(i+2).) Thus, in the analysis every

human was connected in the graph with all other members of the group, including the

robot.

When calculating the robot’s individual synchronization index, we employed

slightly different analyses between ECA and SIA. For ECA, because the robot’s motion

was based on the average of all dancers’ motions in the previous iteration, when building

the GT G all edges from the robot connected to all other human group members. However,

for SIA, at any given itri the robot was only ever following MSP(itr(i−1)) in real time.

Thus, during itri the robot was only influenced by that person, not by the other group

members. Thus, it is logical to take only the pairwise synchronization index between the

robot and that person into account while calculating the individual synchronization index

of the robot and building the GT G for that iteration. Therefore, we only considered an

outgoing edge from the robot to MSP(itr(i−1)) in the GT G.

After measuring the individual synchronization index, we calculated the group

synchronization index for each group using the method described in [82]. Here, we

describe the method very briefly.

While calculating the group synchronization index, both the individual syn-

chronization index as well as the members’ connectivity to the group was taken into

consideration. For a given vertex in the GT G, the ratio of the number of outgoing edges
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Figure 8.3: Timing appropriateness calculation for the robot’s movement.

connecting to it, and the number of maximum possible edges in a very synchronized

condition for that vertex, is called the connectivity value (CV ). Thus we can define CV of

series si as:

CV (si) =
∑ j=1,...,H, j 6=i f (si,s j)

H−1
(8.1)

The CV represents how well an individual is synchronized with the rest of the

group. First, we calculate each individual’s synchronization index multiplied by their CV .

Then, the overall group synchronization index is computed by taking the average of this

product [82]. So, the overall group synchronization index, Gτ, is computed by:

Gτ =
∑i=1,...,H Iτ(si)×CV (si)

H
(8.2)

While calculating the group synchronization index, we used τ = 0.25s. This value

means we considered two events synchronous when the same types of events in two time

series occurred within 0.25 seconds of one another.

Table 8.1 presents the group synchronization indices (GSI) for each group (three

humans and one robot), across both anticipation methods (ECA and SIA), and across the

four iterations per session). The table also presents the average GSI for each group in

the rightmost column. Boldface is used to indicate which of the two methods yielded a
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Figure 8.4: Timing appropriateness measure for the robot with 95% confidence interval
for both methods, SIA and ECA.

higher GSI, and this is indicated for both the per-iteration GSI and the average GSI per

group.

For 22 out of 36 total individual dance iterations, the SIA method yielded a higher

GSI than the ECA method. And in 7 out of 9 trials, the SIA method yielded a higher GSI

than the ECA method.1

Using a discrete analogue scale, we asked participants to rate on a scale from 1-5

how synchronous they thought the robot was with the other humans during the sessions.

Based on their responses, we measured the more synchronous session of that trial, for

which 2 out of 3 dancers agreed on their rating. For 7 / 9 trials, this collective rating

matched with the more synchronous session of the trials determined by our method (See

Table 8.1, last two columns.)
1Note, due to a small sample size (n = 36), it would be dubious to run statistical means comparisons,

and one should not accept a p-value with certainty [51]. Instead, we agree with Gelman [51] that reliable
patterns can be found by averaging, as reported here.
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Table 8.1: Group Synchronization Indices (GSI) for All Groups. Each group includes
three people and one robot.

Group No. Iteration No. GSI Mean GSI
ECA SIA ECA SIA

1
1 0.39 0.40

0.29 0.452 0.30 0.26
3 0.15 0.63
4 0.33 0.52

2
1 0.28 0.66

0.46 0.562 0.39 0.37
3 0.63 0.51
4 0.54 0.71

3
1 0.37 0.40

0.45 0.522 0.48 0.52
3 0.59 0.62
4 0.37 0.55

4
1 0.30 0.20

0.33 0.292 0.37 0.38
3 0.37 0.30
4 0.28 0.28

5
1 0.31 0.24

0.38 0.432 0.39 0.44
3 0.52 0.59
4 0.30 0.46

6
1 0.50 0.43

0.41 0.412 0.41 0.45
3 0.40 0.32
4 0.33 0.46

7
1 0.41 0.25

0.42 0.472 0.42 0.29
3 0.35 0.66
4 0.52 0.68

8
1 0.78 0.32

0.50 0.522 0.40 0.48
3 0.41 0.72
4 0.41 0.56

9
1 0.56 0.35

0.45 0.442 0.35 0.34
3 0.42 0.46
4 0.46 0.59
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8.4.2 Measuring robot timing appropriateness

For both anticipation methods, we aimed to have the robot perform its actions

(events) as close as possible in time to its human counterparts. Thus, we measured how

close the robot’s actual movement was to what the humans were doing at that time.

Thus, as a measure of timing appropriateness of the robot, we calculated the

absolute time difference between the time when the robot performed an event, and the

ideal timing of that event. As a measure of the ideal timing of an event, we took the

average timing of an event performed by the humans. This measure is similar to the

absolute offset measure used in [69], however, the timing appropriateness measure used

here is within the context of a group.

First, we represented all events associated with the humans during an iteration

by a time series. Then, we clustered all the similar types of events together with those

that were performed by the dancers within a time threshold, ε. For example, for a single

event e, we calculated the timing of the event performed by three human participants

within ε, i.e., t(dancer1,e), t(dancer2,e), t(dancer2,e). We also calculated the timing of

that event performed by the robot, t(robot,e). Then, to calculate the ideal timing for the

robot, we take the average of these times of this event performed by the humans. Thus,

t(robotideal,e) = (t(dancer1,e)+ t(dancer2,e)+ t(dancer3,e))/3. Then, we calculated

the timing appropriateness (TA) of that event performed by the robot as, TA(e) =

|(t(robot,e)− t(robotideal,e))|. Figure 8.3 presents an example calculation of TA for

event e.

After calculating TA for each event during all the trials, we created two histograms,

one for each anticipation method. We used a bin size of 0.1 seconds, starting at 0s and

going to 2.5s. Then, we calculated the frequency of the events for which the TA falls

within that time span.

In Figures 8.5-A and B, we present histograms representing the timing appropri-
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Figure 8.5: Event frequency distribution and the cumulative percentage distribution of
the timing appropriateness measure for the two anticipation methods. SIA (left) and
ECA (right). The rightmost graph shows the distribution of the timing appropriateness
measure for both methods.

ateness measure, and the cumulative percentage of event frequencies, for the ECA and

SIA methods respectively. Figure 8.5-A (ECA), shows that the robot was able to perform

81.88% of its events within 1.2s, and 90% of its events within 1.6s of the appropriate

timing. Figure 8.5-B (SIA) shows that the robot performed 81.65% of the events within

0.8s, and 90.82% of the events within 1.2s of the appropriate timing.

Figure 8.5-C presents the cumulative percentage of events for both methods

together. One can find that the robot performed the events more appropriately during the

SIA method, than compared to the ECA method.

For the SIA method, the mean for the timing appropriateness measure was 0.54s

(s.d. = 0.59s) (See Figure 8.4). For the ECA method, the mean timing appropriateness

measure was 0.70s (s.d. = 0.50s) (See Figure 8.4). While these data did not have a

normal distribution, as is visible from the graph and a normality test, they did have a

sufficient number of means to compare statistically. We conducted a Wicoxon Signed

Rank Test, and found that the timing appropriateness values for the ECA method were

significantly larger than for the SIA method, z = −4.399, p < 0.05,r = −0.18. This

means that when using the SIA method, the robot moved more appropriately in time than

when using the ECA method.
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8.5 Discussion and future work

The results suggest that the human-robot team was more synchronous using

SIA than using the ECA method. Moreover, when SIA was used, the robot was able

to perform its actions significantly closer to the appropriate timing of the event. This

supports the idea that SIA is well-suited to provide movement coordination information

to a robot during an SJA scenario.

Additionally, these results might support the robustness of the SIA method over

the ECA method, as the SIA method is more dynamic and adaptable to change within the

group. In our study, the SIA method chose the most synchronous dancer in the group,

and used that to inform the robot’s actions in real-time. However, relying on a method

like ECA would mean that if a dancer was moving asynchronously within the group, the

robot’s motion could be adversely affected (as it is following everyone). SIA is robust to

handle this phenomenon, as a person who performed asynchronous movements within

the group is unlikely to ever be chosen as the most synchronous person.

This work shows that taking team dynamics into account can be useful for robots

when conducting coordinated activities with teammates. This work can lead others in

the robotics community towards further investigating the role of a group on behavior,

rather than just focusing on individuals. This has implications not only for human-robot

interaction, but also for multi-robot systems research. We are currently exploring the

effect of different anticipation methods in multi-human multi-robot scenarios [83, 77].

One limitation of this work is how event detection is calculated. In the current

setup, a predefined set of human activities were detected by the system to understand the

team dynamics. Building on this foundation, our future work will include incorporating

human gross motion directly to the synchronization measurement step, instead of using

pre-labelled events. Moreover, we are also planning to incorporate a decision module for
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robots, which will use the perceived knowledge to select the best decision from a set of

options, based on the context [147, 151].

Another limitation of the current method is how it uses team metrics, and task-

related information. For example, the method does not yet incorporate dancer expertise,

nor does it factor in the tempo or dynamics of the music. In the future, we plan to

incorporate an understanding of these factors. For example, in a team of novice dancers,

a robot could perhaps keep a team on tempo.

Movement coordination is an important, emerging research area in robotics,

neuroscience, biology, and many other fields [50, 8, 229, 107, 152, 195]. Our work helps

enable robots to have a better understanding of how to coordinate with the environment.

This can be useful both for solving problems in robotics, and perhaps also in fields

beyond.

8.6 Chapter summary

In this chapter, we validated the two anticipation methods within a human-robot

synchronous dance scenario. We compared the results of the SIA method with the ECA

method which did not rely on team dynamics. The results suggest that the SIA method

performed better both in terms of more closely synchronizing the robot’s motion to the

team, and also exhibiting more contingent and fluent motion. These findings suggest

that the robot performs better when it has an understanding of team dynamics than when

it does not. In the next chapter, we will investigate how the presence of robots affects

group coordination when both the anticipation algorithms they employ and their number

(single robot or multi-robot) vary.
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Chapter 9

Coordination dynamics in

multi-human multi-robot teams

In Chapters 7 and 8, we explored human-human and human-robot team dynamics

within the context of robots sensing and responding to human teammates. We also

compared the two anticipation algorithms (SIA and ECA) on several dimensions, such as

how appropriate the timing of events were by the robot. We found that when the robot

took team dynamics into account, it performed more appropriately with the rest of the

group.

In this Chapter, we want to explore how both the human and overall team dynam-

ics change within multi-robot scenarios. We are motivated to explore several research

questions in the context of team dynamics.. The first two questions concern the introduc-

tion of robots into a human-human teamwork scenario - what are the effects of adding one

or two robots to a group of humans, both on their coordination with each other and the

group as whole? The next two questions ask, how do different anticipation algorithms on

robots affect human behavior? Might algorithms more sensitive to human team dynamics

affect motion differently?

120
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To address these research questions, we have extended the experiment described

in Chapter 8, and designed a human-robot interaction scenario, where one or two au-

tonomous mobile robots observes a group of human dancers, and then successfully

and contingently coordinates their movements to “join the dance” based on different

scenarios. We employed the two methods (described in Chapter 7) in order for the robots

to coordinate their movements with the human group. One method is a synchronous joint

action based anticipation method (SIA) which takes team dynamics into account, while

the other method (ECA) did not rely on team dynamics.

We conducted an experiment with four conditions: 1) only three humans per-

formed a synchronous dance in a group, 2) one robot joined a group of humans to perform

a synchronous dance, 3) two robots joined the group of humans, and the same movement

anticipation and generation method was used for the both robots, and 4) two robots joined

the humans, however, different movement anticipation and generation methods were

used by the robots. During all the interaction scenarios, the humans could either directly

see or overhear the sound of the robot’s movements.

9.1 Experimental setup

As the testbed for this experiment, we used the same synchronous dance scenario

that we used in Chapter 8. However, based on different the experimental scenarios, during

this experiment a group of robots coordinated their motion with a group of humans.

Just to recall, in concert with an experienced dancer, we choreographed an

iterative dance routine to the song Smooth Criminal by Michael Jackson, which is in

4/4 time. There are four iterations in a dance session, and is performed cyclically in a

counter-clockwise manner. The group performs this dance facing each of the cardinal

directions (North, West, South, and East) during an iteration. Each iteration includes the
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Figure 9.1: In the study, three participants danced together across three conditions, A)
humans alone, B) humans with one robot, and C) humans with two robots. In B) and
C), there were two variations, where different anticipation algorithms were executed on
the robot.

dancers taking the following steps in order: move forward and backward twice, clap, and

a 90-degree turn.

The client-side data processing was the same that we used in Chapter 8. However,

if there were two robots in the group, then the server generated movement commands for

both of the robots based on the experimental scenarios.

9.1.1 Main experiment

To explore the effects of visual and auditory feedback from the robots during an

intentional coordination task, we physically incorporated robot(s) in the group in such

a way that participants were able to hear the robot’s motors at all times, and view a

robot during some iterations (See Fig 9.1). This scenario provided the opportunity to

investigate the effect of robot motion (including auditory, and visual feedback) on the

group’s coordination.

We also provided an external rhythmic signal to participants to help them to

maintain a consistent, synchronized tempo during during the dance. Participants were

instructed to maintain awareness of the other participants’ and robots’ movements, and
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to dance synchronously as a group.

We recruited a total of seven groups for our main study, with three people per

group. Data of one group were excluded due to the robot losing connectivity with

the server, so here we report the results from six groups (18 participants in total). 11

participants were women, 7 were men. Their average age was 24.7 years (s.d. = 4.5

years), and the majority were undergraduate and graduate students. Participants were

recruited by word-of-mouth. Upon scheduling a time slot, participants were randomly

assigned to join a group with two others. Each participant was compensated with an $10

gift card.

After giving informed consent, participants viewed an instructional video of the

choreographed dance and the experimenters explained the different movements. The

participants then had time to practice the dance movements as a group as many times as

they wanted. During the practice session, the robot did not dance with them. Following

the practice session, the group participated in six dance sessions, in four phases.

1. Phase 0: During the first phase of the dance sessions, only the humans participated

in the dance.

2. Phase 1: During the second phase of the dance sessions, one robot joined the

group. The dancers participated in two dance sessions during this phase, where

the robot moved using either ECA then SIA, or SIA then ECA. The order was

counterbalanced to avoid bias within this phase.

3. Phase 2: During this phase, two robots joined the dance with the humans. The

dancers also participated in two dance sessions during this phase, with either SIA or

ECA methods controlling the robot’s movements. The order was counterbalanced

to avoid bias within this phase.

4. Phase 3: During the last phase, two robots moved with the humans. However,

movements of one robot were generated using ECA, and movements of the other
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robot were generated using SIA. The anticipation methods for the robots were

counterbalanced to avoid bias.

We controlled for several factors relating to how participants altered their be-

haviors relative to the robots’ motion in several ways. First, we provided an external

rhythmic signal to the human participants to help them maintain a consistent tempo.

Second, we deliberately choreographed an easy dance (walking, turning, and clapping),

and gave substantial practice time before the experiment began. This enabled participants

to develop their muscle memory, so that they would not be easily distracted during the

experiment. Third, because we had six counterbalanced conditions (i.e., random ordering

per phase for each participant group), any effects relating to the robots being distracting

will be greatly lessened.

During all sessions, the clients recorded depth, infrared, and skeletal data of the

participants, and the server logged all event and timing data. A single camera mounted

on a tripod recorded standard RGB video of the experiment for manual analysis purposes

only. Following each session, participants completed a short questionnaire asking them

to rate in a discrete visual scale how well-synchronized the group was during that dance

session.

9.2 Analysis and results

To address the first two research questions, we need to measure how well coordi-

nated the human participants’ movements are when we consider them separate from the

group, without the robots. In order to address the research questions three and four, we

need to measure how well coordinated the whole group are including both the humans

and the robots. To measure the synchronization of the group, we used the same method

described in Chapter 8.
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Figure 9.2: The group synchronization index (GSI) values for different group conditions
along x-axis, where 3H means 3 humans, 1R means 1 robot, 2R means 2 robots, SIA
means synchronization index based anticipation, and ECA means event cluster based
anticipation. The graphs on the left shows the GSI values of the human group, and the
right shows the GSI values of the whole group. The significant difference in GSI values
between groups are shown in * (* = p < 0.05, ** = p < 0.01, and *** = p < 0.001)

To address our research questions, we measured both the group synchronization

index only considering the human participants (GSI(H)) across all experimental sessions,

as well as the group synchronization index of the whole group (GSI(G)). First, we analyze

the effect on the group synchronization index only considering the human participants

for different experimental scenarios. Then, we analyze the effect on the whole group

synchronization index for different experimental scenarios.

9.2.1 Effect on the GSI(H) values

We conducted an one-way repeated-measures ANOVA with the Bonferroni cor-

rection on the human group synchronization index (GSI(H)) values of all six experimental

sessions, consisting of one session of Phase 0, two sessions of Phase 1, two sessions of

Phase 2, and one session of Phase 3.

Mauchly’s test indicated that the assumption of sphericity had been met, χ2(14) =
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9.38,p > 0.05. One-way repeated-measures ANOVA with the Bonferroni correction

indicated that the human group synchronization indices were not significantly different

across all experimental conditions, F(5,115) = 1.37,p > 0.05,ω2 = 0.03. These results

suggest that the human group synchronization index was not affected by adding one

or more robot as a performer to the group, irrespective of the anticipation algorithms.

Fig 9.2 shows errors bars of GSI(H) values across all experimental conditions.

9.2.2 Effect on the GSI(G) values

We conducted an one-way repeated-measures ANOVA with the Bonferroni cor-

rection on the whole group synchronization index (GSI(G)) values of all six experimental

sessions, consisting of one session of Phase 0, two sessions of Phase 1, two sessions of

Phase 2, and one session of Phase 3.

Mauchly’s test indicated that the assumption of sphericity had been met, χ2(14) =

18.56,p > 0.05. One-way repeated-measures ANOVA with the Bonferroni correction

indicated that the group synchronization indices (GSI(G)) across the experimental condi-

tions were significantly different, F(5,115) = 22.59,p < 0.05,ω2 = 0.21.

These results also suggest that the GSI(G) values of the Session1 were signifi-

cantly different than all other experimental conditions (for all conditions p < 0.001). This

result indicates that there is a change in the degree of the group synchronization when

we added one or more robots to the group, regardless of the anticipation algorithms.

The results also indicate that the GSI(G) values of the sessions of Phase1 were

not significantly different than the sessions of Phase2 (for all conditions p > 0.05). It

suggests that there is no significant effect on the GSI values when we add an additional

robot to a three human and one robot group of the same robot behavior, regardless of the

robot anticipation algorithms.

However, the results also indicate that the GSI(G) values of the sessions of
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Phase1 were significantly different than the session of Phase3 (p < 0.05 for SIA method

of Phase1 and Phase3, and p < 0.001 for ECA method of Phase1 and Phase3). This

suggests that there is a significant effect on the GSI values when we add an additional

robot with different behavior to the group, regardless of the robot anticipation algorithms.

Our results also indicate that the GSI(G) values of the session of Phase2 when the

SIA algorithm was used were not significantly different than the session of Phase3 (p >

0.05). However, the GSI(G) values of the session of Phase2 when the ECA algorithm was

used were significantly different than the GSI values of the session of Phase3 (p < 0.01).

This suggests that there is no significant effect on the GSI values when the both robots

were performing SIA and when the robots performed a mixed behavior. On the other

hand, there is a significant effect on the GSI values when the both of the robots were

performing ECA and when the robots performed a mixed behavior. Fig 9.2 shows the

errors bars of GSI(G) values across all experimental conditions.

9.3 Discussion

To our knowledge, intentional coordination tasks have not been explored in the

context of multi-human, multi-robot group interaction scenarios. Our study explored

how robots might change this dynamic in intentional group coordination. Our results

indicate that heteronegenous behavior of robots in a multi-human multi-robot group have

a significant impact on the overall group coordination. This is an important finding,

because this indicates that the way the robots move in a multi-human multi-robot group

may directly impact the dynamics of the whole group, which raises an important concern

about how we must design robots to perform along with humans in coordination to

achieve common goals.

Our statistical analysis indicates that the addition of a second robot with heteroge-
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neous behavior (Phase 3) significantly reduces the group coordination over a single robot

condition (Phase 1). Similarly, the analysis suggests that an addition of a robot to the

human-only group also significantly reduces the group coordination over the human-only

group (Phase 1 vs. Phase 0). This is an important finding, because the addition of a

robot with same behavior does not change the group coordination significantly (Phase

1 vs Phase 2, for both algorithms). These results might suggest that an addition of a

robot with heterogeneous behavior to a group significantly reduces the overall group

coordination, and might be an important indicator of human-robot group dynamics.

Overall, these results indicate that the group coordination is significantly affected

when a robot joins a human-only group, and is further affected when a second robot joins

the group and employs a different anticipation algorithm from the other robot. However,

these effects were not found to be significant when the two robots employed the same

anticipation algorithm.

Although participants were overall more synchronous by themselves than with

the entire human-robot team, this does not imply that the team was grossly asynchronous,

and the robot did not have influence on the human movements. For example, suppose

that a robot moved sooner than the participants due to physical factors, such as sensor

noise or actuator issues. When this happens, it may still influence the human team

members to start moving earlier as well. However, the humans do not have this issue

and are able to maintain consistent, real-time temporal adaptation among themselves (c.f.

[215]), although the whole human group was deviated from the original rhythm. This is

something we plan to explore in depth in our future work.

We can also extend our method to work beyond synchronous activities, such as

timed but varied collaborative tasks. For example, a human-robot team working in an

industrial setting has specific sequences of activities to perform over time, some of which

might be independent, and might not happen synchronously. However, the events must
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happen contingently; so we can extend our methods to these scenarios.

This research may be helpful for others in the robotics community in exploring

novel concepts that affect group dynamics beyond dyad groups. As a whole, humans have

complex social structures, and it is necessary for robots to understand these underlying

concepts if they are to become widely accepted. This work also has implications not

only for human-robot interaction, but also for multi-robot systems research, such as robot

swarms.

Building on this foundation, we want to explore the effect of including multiple

types of robots with different expertise levels in a human-robot group to perform both

intentional and unintentional coordinated movements. We are also interested to explore

how different robot morphologies (like humanoids) might affect group synchrony.

9.4 Chapter summary

In this Chapter, I described a study exploring the effect of incorporating one,

or more robots with a human group while performing an intentional synchronous task

together. With the technological advancements in future, humans will encounter more

robots working along with them in the same group. This work will help to make informed

decisions while designing tasks where there will be involvements of human and robot

together. Building on this foundation, in next Chapter, I will present my proposed work

on building models for robots to anticipate and adapt to a group, and validating the

models within a human-robot teaming context.
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Chapter 10

Adaptation and Anticipation Models

for Robots

My research up to this point, along with other research in HRI, helps robots to

recognize the activities around them, understand team dynamics, anticipate future actions

of other team members, and synthesize their motions accordingly. However, there exist

many group interaction scenarios where the activities performed by the team members

are not only synchronous but also change their tempo over time. People are very efficient

in these kind of situations, but robots are not. We want to build robots that can leverage

these human skills to interact with people in dynamically changing environments.

Many researchers in the fields of psychology and neuroscience investigated how

people effectively time their coordinated actions with others, especially in constantly

changing environments [170, 117]. One important aspect of successful coordination

is precise motor timing. Sensorimotor synchronization is one of the skills that people

employ to achieve this [215, 216].

Sensorimotor synchronization is considered to be a fundamental human skill,

which is described as the temporal coordination of an action with events in a predictable

131
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external rhythm. People are skilled at sensorimotor synchronization even with sequences

that contain tempo changes [215].

Researchers have investigated the sensory motor synchronization process of

people [215, 98, 169, 224, 68, 71, 15]. Many of these investigations included joint finger

tapping with external rhythmic signals or with virtual characters. These studies also

included joint drumming or joint dancing with other people, or robots.

Researchers have found two main concepts that people employ during coordina-

tion with other external rhythms: temporal adaptation and temporal anticipation. While

synchronizing with a regular-paced or tempo-changing external rhythm, biological noise

(i.e., motor variance associated with central vs. peripheral processing) can cause variabil-

ity in the movement timing of humans, and thus can lead to temporal errors [215, 216].

People use temporal adaptation mechanisms to compensate for temporal errors.

Moreover, when people synchronize their movements with an external rhythm,

an important step is for them to anticipate the onset of external events, so that they can

start their task early enough to coordinate with that event [215]. During this process,

the human brain can extract structural regularities in external rhythmic patterns and

predict future event timing based on that pattern [199]. This process helps people to

make predictions from the regularity or variation in the tempo of the external signal.

Combining these two concepts together, van der Steen and Keller [215] intro-

duced ADAM, an Adaptation and Anticipation Model. Inspired from computational

neuroscience, ADAM combines both adaptation (temporal error correction) and anticipa-

tion (predictive temporal extrapolation) together. Using computer simulations and model

fitting to human behavioral data, the authors found that both adaptation and anticipation

play a major role during sensorimotor synchronization.

Understanding tempo-changing behavior will enable us to build adaptable robots

across a range of fields, from manufacturing to aid skilled human workers in assembly
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processes, to assistive technologies to help people with disabilities. If robots can make

sense of these tempo changes as people do, then it will be possible for them to adapt

and adjust their motions while working with people. This will help robots to become

functional teammates to people.

Despite the fact that people can perform temporal adaptation and anticipation

during the synchronization of their movements, robots still do not know how to take

advantage of this concept. In this work, we are interested in exploring how robots can

leverage these mechanisms to coordinate with others in a team. We seek to enable more

fluent human-robot teaming by developing robust algorithms for robots that are sensitive

to tempo changes during group activities.

To achieve this, we developed models for robots inspired by the temporal adapta-

tion and anticipation models proposed by [215] to facilitate human-robot team coordina-

tion. We extended these models to work in dyads as well as to work with multiple people

in teams. We also experimentally validated each of the algorithms through a rhythmic

task. These validation studies will enable robots to fluently coordinate with others.

10.1 Adaptation and anticipation algorithm for robots

Drawing inspiration from the processes that people employ during a coordination

process, the goal of this work is to build adaptive algorithms to enable robots to coordinate

with people, both in dyads and in groups. This goal also includes a validation of these

algorithms implemented on a live robot.

Thus, building on the ADAM framework [215, 216], we developed an adaptable

module for robots to work in human-robot team. It has four parts: an adaptation module,

an anticipation module, a combined module for dyads, and a combined module for

groups.
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We explain how a robot can use these modules in the following subsections. We

then describe how a robot can combine these modules to work with multiple people.

Finally, we describe a validation of these modules through a human-robot teaming study.

10.1.1 Adaptation module

People use temporal adaptation mechanisms to compensate their temporal errors

that occur while synchronizing with an external rhythm [171]. These errors are mostly

caused by the variability in movement timings. By employing these mechanisms, people

try to change their movement timings to be coordinated with an external rhythm.

The adaptive module is based on an information processing approach [215, 216].

This approach uses a linear timekeeper to model this error correction process, and

compensates the timing error correction on a cycle-by-cycle basis. In the timekeeper

models, the error correction process can be described as a linear autoregressive process.

Two separate adaptive processes have been proposed in information-processing

theory [131, 202]. These adaptive processes are phase correction and period correction.

In phase correction, only the timing of the next action is adjusted to compensate the

asynchrony with a perceived rhythmic signal, but the timekeeper interval remains the

same. In the period correction process, the next action timing is adjusted, and the

internal timekeeper setting is changed to compensate for the perceived asynchrony. Both

processes independently modify the timing of the next action based on a percentage of

asynchrony [171]. These processes are described in Figure 10.1.

The timing of the next event (tn + 1) is based on the current action time (tn)

and a timekeeper (Tn). The current action time (tn) is compensated with the phase (α)

and the period (β) correction by the most recent asynchrony (asynn). The asynchrony

(asynn) is measured by taking the difference between the timings of the recent action

and the perceived rhythmic signal [215]. Thus, the most recent asynchrony (asynn) is
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Figure 10.1: A schematic representation of conventional sensorimotor synchronization
variables and the effect of phase (α) and period (β) correction. Here, a robot event is
the tap event and the external rhythmic signal is the tone event. (Adapted from [216])

first multiplied by the sum of the phase correction parameter (α) and period correction

parameter (β) [215]. Then, the result is subtracted from the current timekeeper period

(Tn), and added to the timing of the most recent event (tn) to determine the timing of the

next event (tn +1) (See Equation 10.1) [215].

t(n+1) = t(n)+T(n)− (α+β)∗asyn(n) (10.1)

In addition, the timekeeper period is compensated for the recent asynchrony and

the period correction parameter (See Equation 10.2)

T(n+1) = T(n)−β∗asyn(n) (10.2)

Equation 10.1 and Equation 10.2 represent the adaptation process to a perceived rhythmic

signal [215].

To implement the adaptation module on robots, the robots need to keep an internal

timekeeper. For this purpose, robots observe the activities performed by a person, or

the interaction between people, to understand the dynamics in that human-robot team.

After detecting the tasks carried out by the participants, the robots measure the average
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of inter-onset intervals from the tasks of the participant(s). This value is then set as the

initial values of the timekeeper variable. As the interaction progresses, the robots update

their timekeeper variables based on the rhythm of the task by using Equation 10.2.

This adaptation module is the reflection of the robot’s “self” model. This module

only corrects the timing of the next action based on its perceived asynchrony from the

rhythmic signal. It does not include a model of perceived rhythmic signals or an internal

model of “others.”

10.1.2 Anticipation module

The anticipation module of the ADAM framework generates a prediction about

the timing of the next action so that it coincides with the timing of the next external

rhythmic signal [215]. Unlike the adaptation module, the anticipation module makes a

prediction of the internal model of “others.”

This algorithm utilizes a temporal extrapolation process to generate a prediction

about the next timing of an event in the external rhythmic signal. This extrapolation is

performed on the inter-event interval of the external signal [215].

Thus, the timing of the next event in the external signal (Sig(n+1)) is predicted

by adding the extrapolated inter-event interval (Int(n+1)) of the rhythmic signal with the

timing of the current event (Sig(n)). The linear-extrapolation is performed based on the

k previous inter-event intervals. Equation 10.3 and Equation 10.4 describe this process

[215].

Sig(n+1) = Sign + Int(n+1) (10.3)

Int(n+1) = a+b∗ (n+1) (10.4)
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Here, the parameters a and b are the y-intercepts and the slope of the line best

fitted on the inter-event intervals, respectively .

The predicted behavior (Predn+1) can be represented as the difference between

the anticipated timing and the current timing of external events. Thus,

Pred(n+1) = Sig(n+1)−Sig(n) (10.5)

On the other hand, the tracking behavior (Trackn+1) represents the interval

between the current and the previous external events. Thus,

Track(n+1) = Sig(n)−Sig(n−1) (10.6)

Now, combining the tracking and the predicted behavior, a robot can anticipate the

future timing of an event from Equation 10.7. Here, m represents the prediction-tracking

ratio. If m = 0, then the anticipation is based only on tracking behavior. On the other

hand, if m = 1, then the anticipated event timing is totally based on predicted timing.

Sig(n+1)(ant) = Sig(n)+(m∗Pred(n+1)+(1−m)∗Track(n+1)) (10.7)

To anticipate timings of future events, a robot detects the actions or events per-

formed by the other team members during an activity following the steps described

above. The robot then needs to combine the “others” (anticipation) and the “self” (adap-

tation) together to predict the future timings of an event. We describe this process in

Section 10.1.3.
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Figure 10.2: A schematic representation of the anticipation process. (Adapted from
[216])

10.1.3 Combined Module: Dyadic

Now, the robot needs to combine the adaptation module and the anticipation

module into a predicted timing of the next event. To predict the future timing of an event,

the robot needs to measure the asynchrony between the time received from the adaptation

module and the time received from the anticipation module. Finally, the next event time

is measured by adding this asynchrony with the error corrected time (adaptation) of the

event. Here, γ represents the anticipatory correction gain.

async′(n+1) = t(n+1)(adapt)−Sig(n+1)(ant) (10.8)

t(n+1) = t(n+1)(adapt)− ((1− γ)∗async′(n+1)) (10.9)

Thus, t(n+1) is the predicted timing of next event, which combines the robot’s
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“self” and “others” models together. However, this module predicts the event timings of a

single human. Now, if the robot needs to interact with multiple people (multiple external

rhythms), then the robot needs to combine multiple rhythms together. In the following

Section, we described an approach for enabling a robot to accomplish this.

10.1.4 Combined Module: Group

The adaptation module corrects the timing of the next action based on its perceived

asynchrony from a rhythmic signal. Similarly, the anticipation process can predict only a

single external signal. However, in a group setting, the robot might encounter multiple

rhythmic signals together.

For example, if a robot is performing a rhythmic coordination task along with

people, such as synchronous dancing or drumming, then it perceives different rhythm

signals based on how each person performs his/her actions. Thus, a robot needs to

combine its knowledge about the perceived signals to inform its decision. We then need

to combine the adaptation and the anticipation timings together for the robot to make a

decision.

Now suppose that a robot perceives H separate rhythmic signals. Each of these

signals can be the timing of the actions performed by each human. For each action,

the robot will first need to measure the asynchrony from each perceived rhythm. Then,

the robot can combine all these asynchronies by taking an average of these values, as a

combined asynchrony. Thus,

async(n)(combined) =
∑

H
i=1 async(n)[i]

H
(10.10)

Therefore, for the group condition we can update Equations 10.1 and 10.2 as:
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t(n+1) = t(n)+T(n)− (α+β)∗asyn(n)(combined) (10.11)

T(n+1) = T(n)−β∗asyn(n)(combined) (10.12)

Similarly, a robot can anticipate the next event timing of a signal using the process

described in Section 10.1.2. If we have H participants, the robot also perceives a total of

H external rhythmic signals.

Using a similar approach to what we have taken in the adaptation process, we can

combine all the anticipation timings by taking an average of the external signal timings.

Sig(n+1)(combined) =
∑

H
i=1 Sig(n+1)[i]

H
(10.13)

Then we can combine the timmings from the adaptation and the anticipation

together by using Equations 10.8 and 10.9.

However, a robot can take different approaches to combining multiple signals

together during the adaptation and anticipation module. A more sophisticated approach

would be to take a weighted average of the asynchronies (for adaptation) or of the

anticipated timings of each signal (for anticipation) based on how synchronous they were

in previous events.

First, our method will measure the asynchrony among the signals for the last p

events. Based on the asynchronies, it will rank the signals for each event. The most

synchronous signal will be given the highest rank (H), and the least synchronous signal

will be given the lowest rank (1). Then, we will accumulate the rank values for each

signal and denote that as the rank value for that signal.

Therefore, the unified asynchronies can be calculated by taking the average of

the perceived asynchronies from the external signals, weighted by their rank values. So,
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async(n)(combined) =
∑

H
i=1 (rank[i]∗async(n)[i])

∑
H
i=1 rank[i]

(10.14)

Similarly, the unified anticipation timing can be calculated by taking the average

of the anticipated timing of signals, weighted by their rank values. Thus,

Sig(n+1)(ant) =
∑

H
i=1 (rank[i]∗Sig(n+1)[i])

∑
H
i=1 rank[i]

(10.15)

Another ranking approach would be to rank each rhythmic signal by its stability

score. Stability of a signal can be measured by the standard deviation of inter-event

intervals. The lower the standard deviation value, the more stable the signal will be.

Thus, we can also use this value to rank the rhythmic signals, and this can be used in

Equations 10.14 and 10.15.

10.2 Validation of the Modules

In this work, we are interested in exploring whether the methods that people

employ to being synchronous with others are also applicable to robots. To explore

this, we implemented the algorithms explained in Section 10.1 to enable a robot to

perform synchronous actions with people. As we are particularly interested in testing

the validity of these algorithms on a robot, we focused on the implementation of the

adaptation module, anticipation module, and combined dyadic module. However, we left

the validation of the combined group module (described in Section 10.1.4) for our future

work.

We are interested in investigating whether a robot can be coordinated with a

person in a tempo-changing environment, at least as good as a person can coordinate

his/her actions with another person in that condition.
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Figure 10.3: Experimental setup. The participants and the robot were situated in
separate places. There were barriers between them that blocked the vision of each
other’s drumming. Both participants had sound-blocking headphones on, and could
not see the other participants. Person 1 (P1) was listening to an external tempo, Person
2 (P2) was listening to an audio of P1’s drumming (via a microphone), and the robot
performed following P1.

10.2.1 Experimental Testbed

As an experimental testbed, we developed a human-robot drumming scenario.

Figure 10.3 shows the experimental setup. In this setup, two people drummed to-

gether synchronously. Additionally, a robot observed the participants and joined by

synchronously drumming with them.

In this experiment, we were particularly interested to investigate whether a robot

can drum synchronously at least as good as a person, when that person only relies on an

audible signal to perceive the rhythm.
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In this testbed, both participants wore sound-blocking headphones. These re-

duced the outside noise (such as the drumming sound of other participants), and helped

participants concentrate on their primary rhythm.

During the experiment, Person 1 listened to an external rhythm through his/her

headphones. This external rhythm was a metronomic signal. Person 1 was instructed to

follow that rhythm and drum on the beats. This metronomic signal changed tempo based

on experimental conditions.

Person 2 needed to drum synchronously with Person 1, only by listening to the

drumming of Person 1. We placed a microphone underneath Person 1’s drum, and this

microphone was directly connected to Person 2’s headphones. Although Person 2 could

hear other noises, he/she was instructed to ignore other sounds and to drum only by

listening to the drumming of Person 1 on their headphones.

At the same time, a robot drummed synchronously with Person 1. Neither of the

participants could see the robot drumming. The robot observed the drumming events of

Person 1 from sensors attached to the drum, and drummed synchronously by employing

the algorithms described in Section 10.1. We also reduced the sound of robot’s drumming

by using soft cloths on the robot’s drum.

Figure 10.3 shows an experimental condition where the participants are drumming

with a robot. Here, two people stood near two tables, and a barrier visually blocked

them. There was a drum pad and a drumstick in front of each participant. From each of

their respective locations, they could not see the other participant or the robot drumming.

Their sound-blocking headphones also reduced any distraction from their assigned task.

10.2.2 Robot

We built a robot capable of drumming with a human group (see Figure 10.4).

This robot can move a drumstick up and down at a rate of 4-5 Hz to hit a drum pad.
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Figure 10.4: The first prototype of the drumming robot. It has an Arduino Mega
microcontroller, a Renbotic Servo Shield, and servo motor attached to the drumstick.

This rate is very close to how fast an average person (non-drummer) generally can drum,

which is at 5-7 Hz [48]). Thus, this robot was well-suited to our experiment.

The robotic arm (the drumstick) was attached to a servo motor. The servo motor

was attached to a base for stability. Also, the servo motor was connected to an Arduino

Mega and a Renbotic Servo Shield. This Arduino communicated with a computer via

rosserial, and was used as an ROS node [136]. We called this node ArduinoNode (See

Figure 10.5).

The adaptation, anticipation, and combined dyadic module were implemented on

ROS. We called this node AlgoNode. These ROS nodes communicated to the Arduino

via ROS message passing protocol (i.e., rostopic).

Whenever a person or a robot hit a drum pad, the piezoelectric sensor generated

a hit event. Based on the event timing associated with the hit events, the AlgoNode

generated appropriate timings for the robot to drum. This generated time was sent to the

ArduinoNode. After receiving this message, the ArduinoNode generated the drumming
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Figure 10.5: Different ROS nodes of the system. The arrows denote the connectivity
and the ROS message passing direction.

at the exact time.

Figure 10.5 presents the connectivity and the ROS message passing direction-

ality among various components of the system. We discuss this process in detail in

Section 10.2.2.

Drumming Activity Detection

To track the human and robot drumming events precisely, we attached a piezoelec-

tric sensor under each drum pad. These sensors were attached to an Arduino microcon-

troller. Whenever the participants or the robot hit the drum pad, the Arduino generated a

hit event. We implemented an Arduino ROS node, which published a hit event with this
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event time, as well as the drum corresponding to the participant instantaneously. These

event times were used by the robot to decide its timing for drumming.

Robot Action Generation

After receiving the events from the drums, the AlgoNode generated the next

action time for the robot. Based on different experimental conditions, we used different

algorithms. The AlgoNode used that algorithm to generate the timing of the next hit for

the robot.

At the beginning of each experimental session, Person 1 drummed for eight beats.

During this time, the robot generated the timekeeper (Tn) intervals from the human

events; then the robot started to perform with the group.

For next five beats, the robot performed along with Person 1 using only the

anticipation’ model. The robot started performing using different algorithms starting

from the 18th beat of the metronome signal.

After receiving the timing to hit the drum, the ArduinoNode started early enough

to perform the drumming action on time. We define this time as earlyStartTime et. From

pilot experiments, we found that for our setup, the robot needs approximately 70 ms to

perform a drumming action. Thus, we initialized the et at 70 ms. However, we updated it

as a first order autoregressive variable, depending on the time difference between when

the robot was supposed to hit and when it hit the drum.

For example, suppose a robot needs to hit the drum at time t(n+1) predicted by

our algorithms (in the AlgoNode). After generating a prediction, the AlgoNode sends

this timing to the ArduinoNode to execute the hit at t(n+1). The ArduinoNode starts the

drumming action at time t(n+1)− et. Due to physical noise, the robotic arm may hit the

drum a little earlier or later than t(n+1). Suppose that the robotic arm hits the drum at

time thit . We update et for the next hit event based on the difference between t(n+1) and
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thit , and a movement alignment factor f . We describe this process in Equation 10.16. For

our robot, we set f = 0.2.

et(i+1) = eti + f ∗ (t(n+1)− thit) (10.16)

10.2.3 Methodology

We performed a 3 x 3, within-subjects study to explore our research goals. We

used three different algorithms for the robot to drum with people in three different

rhythmic conditions: 1) adaptation only, 2) anticipation only, and 3) combined dyadic

algorithms. (See Section 10.2.3). Also, we employed three tempo-changing rhythmic

signals, which we describe in detail in Section 10.2.3.

Experimental Conditions

Person 1 was instructed to simply observe the first four beats of the rhythm and to

start drumming from the fifth beat. These four beats served to help the person to perceive

the tempo.

During each session, one person acted as Person 1, and the other person acted as

Person 2 for all nine experimental conditions. These sessions were then repeated once

more, with each of the participants swapping roles. The experimental conditions were

counter-balanced. The whole set of experiments per group took about 40-50 minutes in

total.

During the experiments, we used a phase correction parameter α = 0.3, a period

correction parameter β = 0.5, an anticipation parameter k = 3, a prediction-tracking ratio

m = 0.8, and an anticipatory correction gain γ = 0.4. The α and β values were selected

based on the recommendation by Van Der Steen el al. [216]. The other parameter values

were selected from pilot experiments.
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Rhythms

We used three rhythmic tempos for this experiment. Each rhythm had 76 beats in

total.

The first rhythm was a uniform tempo. The signal had a tempo of 80 BPM (beats

per minute) and lasted for 76 beats. Person 1 skipped the first four beats and drummed

for the next 72 beats. Each metronome beat lasted for 5 ms.

The second rhythm started with a tempo of 80 BPM for first 20 beats. It slowed

down gradually (ritardando) starting from the 21st beat for next 24 beats to reach 60

BPM. After reaching 60 BPM, the tempo sped up (accelerando) from the 45th beat for

24 beats to reach 80 BPM again. The rhythm then ended in 80 BPM for the last 8 beats.

The third rhythm also had a similar tempo change like rhythm 2. It started with a

tempo of 80 BPM. However, this rhythm had two ritardando and accelerando phases,

and each phase lasted for 12 beats. During the ritardando and accelerando phases, the

tempo changed from 80 BPM to 60 BPM and returned to 80 BPM again. Figure 10.6

shows the tempo changes.

We used a sigmoid function to generate the ritardando and accelerando phases,

similar to one used by Van Der Steen et al. [216]. Equations 10.17 and 10.18 define

the sigmoid function. Here, IOI represents inter-onset interval. For example, during the

ritardando step, the IOIstart was 750 ms (80 BPM) and IOIgoal was 1000 ms (60 BPM).

Nsteps represents the number of steps it will take to complete the tempo change. For our

single tempo change phase, it was set to 24.

IOIi = IOIgoal +(IOIstart− IOIgoal)∗ f r (10.17)

f r =
1
2
[1+ cos

i−1
Nsteps−1

π] (10.18)
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Procedure

After giving informed consent, both participants were instructed about the experi-

mental procedure. The participants then had time to practice the drumming session as a

group. During this practice session, the robot did not drum with them.

The participants practice for two rounds, first as P1 and then as P2. We used

a uniform tempo condition (60 BPM) for these rounds, which was different than the

uniform tempo that we used for the experimental conditions (80 BPM).

Participants

For our main experiment, we recruited a total of eight groups (16 participants in

total, two persons per group). 4 participants were women, 12 were men. Their average

age was 24 years (s.d. = 2.38 years), and the majority were undergraduate and graduate

students. Only 3 participants had prior drumming experience of two years, and 13 did not

have any drumming experience. Participants were recruited via word-of-mouth. Upon

scheduling a time slot, participants were randomly assigned to join a group with another

participant. Each participant was compensated with a 5 gift card for their time.

10.3 Data Analysis and Results

To compare the performance of the algorithms, we first measured how closely

the robot drummed to Person 1. We also measured how closely Person 2 drummed to

Person 1. Then we performed a non-inferiority trial on these two measures. This trial

enables us to investigate whether the robot’s performance was at least as good as the

human performance.
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Figure 10.6: Three tempo conditions for our experiments. A) Uniform tempo condition,
B) Single tempo change condition, and C) Double tempo change condition.
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10.3.1 Data Processing

During our experiments, we logged all the timing of events for both participants

and the robot. We first time-aligned the data. Next, we only took the events that occurred

starting from the 18th beat of the metronome signal. Recall that Person 1 observed the

first four beats of the metronome signal, and then started drumming on the fifth beat.

The robot observed Person 1 for next eight beats, and joined in the drumming on 13th

beat. For next five beats, the robot drummed by using only anticipation’ algorithm. The

robot began performing using different algorithms starting from the 18th beat of the

metronome signal based on the experimental condition. Thus, we used beats 18 through

76 (a total of 59 beats) for our calculation.

We excluded all data that did not capture drum events from the robot or the

participants from our calculation. Thus we excluded about 5.13

We then calculated the timing of all drumming events performed by Person 1

(P1), Person 2 (P2) and the robot (R). For example, for a single drumming event e, we

calculated the timing of the event performed by P1 and P2, and the robot respectively

as t(P1,e), t(P2,e), and t(R,2). Then, we measured the absolute difference between

the timing of each event performed by P1 and P2, and P1 and R. Thus, we computed

abs(t(P1,e)− t(P2,e)) and abs(t(P1,e)− t(R,e)).

After measuring the offset of each event for P2 and R from P1, we averaged it

over each session. For example, if a session has a total of a E number of drumming

events, where e ∈ E, then we measured the mean difference of timings (dt) as:

dt(P1,P2) =
∑

E
e=1 abs(t(P1,e)− t(P2,e))

E
(10.19)

dt(P1,R) =
∑

E
e=1 abs(t(P1,e)− t(R,e))

E
(10.20)
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This data (dt(P1,P2) and dt(P1,R)) provide us the information about how closely

P2 and R matched their rhythms to P1. We then performed a non-inferiority trial over

these data, which I describe in the next Section.

10.3.2 Analysis Method

We performed a non-inferiority trial, which enabled us to investigate whether the

robot’s performance was at least as good as the human performance. The non-inferiority

trial is a widely used analysis technique, particularly used in the healthcare domain. In

those domains, non-inferiority trials are usually used to test whether a new treatment is

not unacceptably worse than an active treatment that is already in use [190, 160, 56, 200].

Researchers in the robotics community are usually interested in testing whether a

new method is better than an existing method. These are called superiority trials.

In contrast, a non-inferiority trial tries to show that a new method is not inferior to

an existing method [190, 200]. In other words, a new method is not unacceptably worse

than an existing method. The new method is used as the experimental condition, and the

existing method is used a the control condition.

A non-inferiority trial allows a limit on the amount an experimental condition

is permitted to be inferior to a control condition [190]. This also guarantees a similar

benefit and efficacy from the experimental condition.

The acceptable amount for which an experimental condition may be worse than

a control condition is called a non-inferiority margin. It is usually denoted by δ. If

an experimental condition is within the non-inferiority margin of the control condition,

the experimental condition is considered as non-inferior to the control condition and is

considered as beneficial as the control condition [190, 56].

This margin may represent a threshold for the difference in effects of the experi-

mental condition and the control condition [190]. It also may represent a threshold for
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Figure 10.7: Different conclusions for non-inferiority trials. (Adapted from [160])

the relative size of the effects. However, in practice, this margin is usually subjective.

Typically, this margin is chosen based on a review of the effect of the control condition,

so that the experimental condition would be regarded as beneficial and effective as the

control condition.

For a non-inferiority trial, the difference between the effect of the experimental

condition and the control condition is calculated. To calculate this, the effect of the

control condition is subtracted from the effect of the experimental condition. Then from

the distribution of these values (i.e., 2-sided 95% confidence intervals), the non-inferiority

is tested. Figure 10.7 shows various conditions for determining non-inferiority [160].
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10.3.3 Results

In our case, we considered the time difference between P1 and P2 as our control

condition. We want to test whether the robot performed the drumming actions at least as

close as the human (P2). Thus, the time difference between P1 and R is our experimental

condition.

For our non-inferiority trials, we subtracted the effect (in our case, the closeness

of drumming times to P1) of the control condition from the experimental condition. Thus,

we calculated dt(P1,R)−dt(P1,P2) for each condition. These values are represented in

milliseconds (ms). The negative values represent that the robot performed closer to P1 in

times than P2. On the other hand, a positive value represents that P2 performed closer to

P1 in times than the robot.

We show the results on the non-inferiority test in Table 10.1. Here, we present

dt(P1,R)− dt(P1,P2) for all our experimental conditions. We also present the 95%

confidence interval of dt(P1,R)−dt(P1,P2) in last two columns of this table.

To perform a non-inferiority trial, we needed to choose a non-inferiority margin

(δ). We choose δ = 70 ms. We choose this value for δ, as this is an approximate time

that our robot takes to hit the drum pad after receiving a command. If we choose a value

larger than this, then a reactive robot (which can react and can start drumming after

listening to a person hit) would be better than our algorithms. On the other hand, being

closer than this margin indicates that the algorithms are better than by chance (reactive

controls). Therefore, this the margin (δ = 70 ms) was chosen.

In Figure 10.8, we present the the 95% confidence interval of dt(P1,R)−

dt(P1,P2). Here, we present this value for all 9 conditions of our experiments (3

robot algorithms X 3 rhythms). We marked the 0-th line and the 70-th line (our δ).

Figure 10.8 and Table 10.1 indicate that for uniform tempo condition, the anticipa-

tion algorithm performed non-inferior to the control condition (95 % confidence interval,



155

Figure 10.8: The results of the non-inferiority trials. The algorithms are presented
along x-axis, and three tempo conditions are presented in separate boxes along y-axis.
95% confidence interval of dt(P1,R)− dt(P1,P2) in ms are presented along y-axis.
The dashed line represents the non-inferiority margin (δ = 70ms).
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Table 10.1: Presents dt(P1,R)−dt(P1,P2) for all nine experimental conditions.

dt(P1 , R) - dt(P1 , P2)

Robot Algorithms Rhythms Mean s.d.
95% CI

Lower Upper

Anticipation Uniform Tempo -4.82 12.92 -11.70 2.07

Anticipation Single Tempo -9.74 25.59 -23.38 3.89

Anticipation Double Tempo 80.62 316.78 -88.17 249.43

Adaptation Uniform Tempo -8.09 6.86 -11.75 -4.43

Adaptation Single Tempo -14.47 28.53 -29.68 0.73

Adaptation Double Tempo -58.04 213.78 -171.96 55.87

Combined Dyadic Uniform Tempo -10.26 10.79 -16.01 -4.51

Combined Dyadic Single Tempo -18.47 25.18 -31.89 -5.06

Combined Dyadic Double Tempo 111.26 464.64 -136.33 358.85

−11.70 to 2.07), the adaptation algorithm performed non-inferior and also superior to

the control condition (95 % confidence interval, −11.75 to −4.43), and the combined

dyadic algorithm performed non-inferior and also superior to the control condition (95 %

confidence interval, −16.01 to −4.51).

For the single tempo-changing condition, the anticipation algorithm performed

non-inferior to the control condition (95 % confidence interval, −23.37 to 3.88), the

adaptation algorithm performed non-inferior to the control condition (95 % confidence

interval, −29.68 to 0.73), and the combined dyadic algorithm performed non-inferior

and also superior to the control condition (95 % confidence interval, −31.89 to −5.07).

For the double tempo-changing condition, the performance of the anticipation

and the algorithm were inconclusive compared to the control condition (Anticipation:

95 % confidence interval, −88.17 to 249.43, and Combined dyadic: 95 % confidence

interval, −136.33 to 358.85). However, the adaptation algorithm performed non-inferior
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Table 10.2: Presents the summary of the findings of the non-inferiority trials. Non-
inferior means that the robot was as good as an average human drummer, Superior
means that the robot was better than an average human drummer, and Inconclusive
means that we are unable to determine the difference between the two.

Robot

Algorithms

Rhythms

Uniform Tempo
Single Tempo

Change

Double Tempo

Change

Anticipation Non-inferior Non-inferior Inconclusive

Adaptation Superior Non-inferior Non-inferior

Combined Dyadic Superior Superior Inconclusive

to the control condition (95 % confidence interval, −171.97 to 55.87).

We summarized these findings in Table 10.2.

10.4 Discussion

The results suggest that the adaptation algorithm was non-inferior to the control

condition in all three rhythmic conditions, even was superior in uniform tempo condition.

Similarly, the combined dyadic algorithm was superior to the control condition (compared

to human timing) in the uniform tempo and the single tempo-changing conditions. The

anticipation algorithm was non-inferior to the control condition in the uniform tempo

and the single tempo-changing condition.

We cannot conclude that the combined dyadic algorithm and the anticipation

algorithm were non-inferior to the control condition in the double tempo-changing

condition. This is because the upper limits of the 95% CI of dt(P1,R)−dt(P1,P2) are

greater than δ (70) and the lower limits are less than 0.

Overall, the results suggest that the adaptation algorithm alone enables a robot to

achieve a human-level performance when that person drums synchronously with another
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person only by relying on auditory signals. By combining anticipatory knowledge

(anticipation algorithm), along with an adaptation process, a robot can be even better

than people for the uniform and single tempo-changing conditions.

Although the anticipation algorithm was non-inferior to human performers during

the uniform and single tempo-changing conditions, we cannot draw the same conclusion

for the double tempo-changing condition. We believe that this may be because there were

faster tempo changes during the double tempo change condition than in the other two

conditions.

For example, the ritardando and the accelerando phases lasted for 24 beats during

the single tempo-changing condition to change the tempo from 80 BPM to 60 BPM.

In other words, the inter-tone-interval changed from 750 ms to 1000 ms in 24 beats.

These phases lasted only for 12 beats in the double tempo-changing condition. Thus, the

inter-tone-interval changed from 750 ms to 1000 ms in 12 beats, which is faster than the

single tempo-changing condition.

One possible reason why some effects were inconclusive in the double-tempo

changing condition may be due to the fact that the anticipation algorithm only uses linear

extrapolation to calculate events. This may be insufficient to predict future event timings.

The main contribution of this work is the development of models for robots to

better understand tempo-changing behavior, and to evaluate their effects while coordinat-

ing with people. The results suggest that a robot can adapt to rhythmic changes at least

as well as an average person, and even better in many cases. This work allows us to build

adaptive algorithms for robots to better understand group coordination, even when the

team dynamics changes.

In the future, we plan to explore the effect of these adaptation and anticipation

algorithms in a group context (described in Section 10.1.4). This exploration will give us

an opportunity to investigate many dimensions of the problem that will need attention
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during future robot algorithm development and human-robot interaction design.

Moreover, as people will encounter various kinds of robots with different capabil-

ities while working in teams in the future, it is necessary to investigate the effects of the

presence of multiple robots with varying levels of adaptability in teams. We further want

to explore the effect of these algorithms while coordinating in the context of multi-human

and multi-robot teams, which will give us a necessary understanding of the underlying

human-robot team dynamics in such scenarios.

10.5 Chapter summary

In this Chapter, I described the design and implementation of four algorithms

for robots to understand tempo changes in rhythms. The design of these algorithms was

inspired by the neuroscience literature. I validated the efficacy of these algorithms by

applying to a robot to drum synchronously with a person, even when the tempo of the

drumming changed. These algorithms were found to be effective, and have the potential

to be implemented on robots to interact with people in teams.
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Chapter 11

Conclusion

This chapter discusses the main contributions of my work for the human-robot

interaction and robotics communities in general. It then briefly introduces some work that

I would like to conduct in the future. The chapter concludes with some open questions

that I discovered over the course of my research which need to be addressed to build

fluent human-robot teams.

11.1 Contributions

11.1.1 Developed a new non-linear method to measure the synchro-

nization of a group

Interaction in a team is an important aspect of human social behavior, and is an

active area of research in many fields including robotics, psychology, cognitive science,

kinesiology, dance, and music. If a robot could make better sense of how humans interact

among themselves in a team, its interactions with people would reach a higher level of

coordination, resulting in a fluent meshing of actions.

Understanding human team dynamics is not trivial. One of the main challenges is

161
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the unpredictability of human behavior. Another major challenge is accurately detecting

human activities “in the wild”, e.g., in ecologically realistic settings. However, if a robot

has some ability to model team dynamics, then it can anticipate future actions in a team,

and adapt to those actions in order to be an effective teammate.

To enable a robot to understand team dynamics, I developed a method to auto-

matically detect the degree of synchronization in a team (discussed in Chapter 4). This

method takes multiple types of discrete, task-level events into consideration. It is capable

of modeling synchronous and asynchronous behavior of the group, and is well-matched

to the group members’ perception about synchrony. Our method is more accurate in

estimating synchrony than other methods from the literature that depend on a single event

type [82].

I validated our new method across a series of human-human and human-robot

teaming experiments, which included automatic detection of synchrony in human teams

(see Chapter 5), synchronization synthesis in robots (see Chapter 6), and development of

a new event anticipation algorithm for robots (see Chapters 7 and 8).

11.1.2 Validated the new method by applying it to a human-human

team

For human-human teams, II validated the method in three ways (described in

detail in Chapter 5). First, I applied the method to analyze the synchrony during a multi

event-based rhythmic game. This involved a group game where each player performed a

periodic psychomotor activity within the group. Each player’s movements influenced the

actions of all other group members. Our method was able to model both synchronous and

asynchronous activities and was well-matched to the players’ perceptions of synchrony

[82, 80, 81].

Second, I compared our results to another method from the literature that uses
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single event types. The results suggest that our multiple event-based method is more

accurate in estimating synchrony than a single event-based method.

Third, I compared our results to the cross-recurrence quantification analysis

(CRQA) method, which is widely used in the literature to measure synchronization in

a system. The results again suggested that our multiple event-based method is more

accurate in estimating synchrony in human teams.

11.1.3 Validated the new method by applying to a human-robot

team

I further validated our method by applying it to a human-robot team (described

in Chapter 6). In this work, we used multiple robots to automatically measure the syn-

chronous joint action of a group while both the robots and co-present humans were in

motion. During the experiments, two people marched either synchronously or asyn-

chronously, while being followed by two autonomous mobile robots. The results sug-

gested that our method accurately identifies synchronous and asynchronous motion in

the team [76, 75].

11.1.4 Designed a new approach for robots to anticipate and synthe-

size coordinated actions

I designed a new approach to enable robots to perceive human group motion

in real-time, anticipate future actions, and synthesize their own motion accordingly. I

explored this within the context of joint action, where humans and robots moved together

synchronously [79, 78, 166, 83].

Our approach (the synchronization index-based anticipation (SIA) algorithm)

takes group coordination dynamics into account while anticipating the timing of a future
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event. I developed another motion anticipation algorithm (event cluster-based anticipation

(ECA) method) to serve as a reasonable comparison to our developed method, which did

not take group’s internal dynamics into account.

Next, I validated these methods (SIA and ECA) within a human-robot interaction

scenario, where an autonomous mobile robot observed a team of human dancers, and

then successfully and contingently coordinated its movements to “join the dance.” It was

able to do that without having any prior knowledge of the dance sequences.

The results suggested that the SIA method performed better both in terms of more

closely synchronizing the robot’s motion to the team, and also exhibiting more contingent

and fluent motion than the ECA method.

These findings suggest that robots perform better when they have an understand-

ing of team dynamics than when they do not.

11.1.5 Investigated how the presence and behavior of robots affect

group coordination in multi-human multi-robot teams

As robots enter human environments, they will be expected to collaborate and

coordinate their actions with people. In many of these situations, multiple robots will be

expected to collaborate with multiple people in teams.

How robots engage in the coordination process can influence the dynamics of

the team, particularly in multi-human, multi-robot situations. I investigated how the

presence of robots affects group coordination when both the anticipation algorithms they

employed and the number of robots varied (single robot or multi-robot) (see Chapter 9)

[87, 84, 85].

The results suggested that group coordination was significantly degraded when a

robot joined a human-only group, and was further degraded when a second robot joined

the team and employed a different anticipation algorithm from the other robot. These
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findings suggest that heterogeneous behavior of robots in a multi-human group can play

a major role in how group coordination dynamics change.

11.1.6 Created human-inspired adaptation and anticipation models

for robots

Beyond the rhythmic synchronous team interactions scenarios, people also ef-

fectively time their actions to coordinate with others during everyday activities, even

in a constantly changing environment. However, robots still do not know how to take

advantage of such concepts.

I designed and implemented algorithms for robots to coordinate with the other

members of a team in tempo-changing environments, inspired by the neuroscience

literature (see Chapter 10). These algorithms leveraged a human-like understanding of

temporal anticipation and adaptation during the coordination process [77, 86].

I validated the algorithms by applying them in a human-robot synchronous

drumming scenario. The results suggested that an adaptation algorithm alone enabled

a robot to achieve human-level performance in a synchronous drumming scenario. By

combining an anticipatory knowledge along with an adaptation process, a robot can

perform as good as, or sometimes better than, people during several tempo-changing

situations.

11.1.7 Developed a time-synchronous multi-modal data capture sys-

tem

I identified many of the aspects and challenges of building a time-synchronous

data capture system, which is an essential element to investigate group interactions

precisely. From these, I designed and implemented a time-synchronous, multi-modal data
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capture system based on a client-server architecture to detect high-level human activities

(described in Chapter 3) [74].

I deployed this system to capture data synchronously with two Kinect sensors

during a dance-off scenario. Based on the captured data, a motion analysis algorithm

made decisions about human movements. From these decisions, the system passed

movement commands to a mobile robot.

11.2 Future Work

11.2.1 Coordinating with groups in tempo-changing environments

In chapter 10, we introduced four different modules for robots to understand

and respond to dynamic tempo changes in their surroundings. We validated three of

the developed modules in a human-robot teaming context and left the fourth module

(Combined Module: Group) for our future exploration.

As robots are becoming increasingly common in teams, they will encounter

people and need to adapt to their actions. In group settings, a robot may find that different

people are working at different paces. To coordinate with the team, the robot needs to

understand all those various pacing of actions and build a strategy for itself.

In my future work, I want to validate the anticipation and the adaptation algorithms

that we developed in Section 10.1.4 in a human-robot teaming context. I want to explore

how effectively a robot can understand various rhythms and can make appropriate

decisions to incorporate itself into a group.

I also want to explore how multiple robots can take advantage of these algorithms

to interact with multiple people in a team. This exploration is important, as understanding

how coordination dynamics change in these scenarios may be an important metric for us

to design robots’ strategy for teams.
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11.2.2 Understanding coordination in non-rhythmic tasks

Beyond rhythmic coordination, a robot may encounter many group tasks, where

the task might not be rhythmic and cyclical. However, there may exist some structural

similarities how the group interacts to achieve the goal in those tasks.

In the future, I plan to explore coordination beyond synchronous joint action.

Although my research up to this point explores a subset of entire coordination problem

domain, our algorithms have potential to be extended in other scenarios. I want to extend

our algorithms for other coordination tasks, which may not be synchronous but have

some structural similarities.

11.2.3 Leveraging non-verbal cues during human-robot interaction

In human-human communication, we convey a significant portion of information

non-verbally, such as through our hand gestures, head movements, postures, etc. Thus, if

researchers only focus on solving problems in natural language processing, a significant

portion of the message is lost [176].

To address this challenge, I plan to explore how a robot can incorporate an

understanding of non-verbal human cues along with an understanding of verbal messages.

I also plan to explore how to fuse this understanding of non-verbal cues with verbal

messages to understand the conversational context more accurately, so that we can use

that knowledge to synthesize the gestures of a robot more appropriately.

11.2.4 Anticipatory action selection for assistive robots

Robots can help support older adults with mobility, manipulation, and cognition.

For example, older adults may need help to retrieve medication, prepare meals, locomote,

or perform household tasks. If a robot can anticipate the needs and intentions of a
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person in advance, then it can perform its tasks efficiently and will be more helpful and

functional.

I plan to develop robotic systems which will be able to understand the intentions

of older adults from their verbal messages and non-verbal cues in real-time. Along with

this understanding, these systems will incorporate contextual knowledge to anticipate the

future intentions. Another advantage to such an approach is that it has the potential to

be adaptive to the unique differences between people, especially since their situations

change as they age.

11.3 Open Questions

11.3.1 Will it be possible for a robot to accurately understand its

role in a dynamically changing group?

If a robot has some ability to understand its role in a dynamically changing group,

its interaction will be more fluent with the team. However, understanding a role in a team

is non-trivial.

In many human-human team situations, team members are explicitly assigned

to various roles [153]. On the other hand, in many other team scenarios, various roles

emerges over time across the team members to achieve a common goal [105]. Often

these assigned roles change dynamically based on the necessity of the task.

For example, a person who begins to lead a team to move a table may follow

another teammate’s lead later during the moving process. How people coordinate and

cooperate amongst themselves in these situations is an important indicator for robots to

understand the role distributions in the group.

In human-robot interaction scenarios, various predefined role distribution models
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are used based on a task. However, these well-defined role distributions are rarely seen in

real-world situations. Distributed roles change dynamically in many situations. If the

roles for an interaction are not predefined, the robot needs to make predictions about the

role of co-present people, in order to infer its role in the group. A dynamic understanding

of role distributions in a human-robot team can enable a robot to understand team

dynamics more appropriately, which can lead to fluent interaction in the group.

11.3.2 Can we build robots for long-term interaction?

For decades, people have been using robots to solve problems in industrial settings

(such as automobile manufacturing), in which the robots performed repetitive tasks for

long periods of time. Recently, robot usage has begun to expand into human social

environments. In many of these settings, robots will be expected to provide direct

assistance to people for many years at a time, for example by giving support to older

adults in their homes.

While working in such social environments, robots will need to fluently interact

with people, learn from their interactions, adapt to people’s individualized needs, and

modify their behaviors accordingly over time. Extensive research needs to be conducted

in order to enable future robots to perform such long-term social interactions, including

work on human behavior modeling, learning from demonstration, long-term shared

autonomy, understanding coordination dynamics, and communication strategies, to name

a few.
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11.3.3 Does a robot need better human action detection mechanisms

to act fluently with people?

One of the main challenges to detecting human actions is the unpredictability of

human behavior. Sometimes it can be difficult for a robot to perceive and understand

the different types of events involved in these activities to make effective decisions due

to sensor occlusion, sensor fusion error, unanticipated motion, narrow field of view,

cluttered backgrounds, etc. [180, 176, 23, 22, 168].

One approach to address the challenge of human action detection is to use

classification algorithms to detect actions from video data. However, this approach

has major challenges, including intra vs inter-class variations between action classes,

temporal variations of actions, and obtaining and labeling training data [161]. Moreover,

using a classifier for action detection has several computational bottlenecks, including

generalizability, abnormality detection, and classifier training [168]. Furthermore, in

most action recognition cases, researchers usually assume that camera positions are static,

which is not the case for mobile robots [22].

If a robot can detect human actions accurately, its ability to coordinate with people

will be improved. In the future, robots need better hardware and algorithms to address

these practical challenges to be effective in human environments.

11.4 Closing Remarks

My Ph.D. research explores coordination dynamics in human-robot teams. I

explore complex real-world problems pertaining to building intelligent robots capable of

working with people in real-world scenarios.

The primary contribution of my research is the introduction of new algorithms that

enable robots to understand coordination dynamics, as well as procedures to synthesize
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appropriate actions in human-robot teams. As robots are becoming increasingly common

in human social environments, it is becoming even more important for them to understand

team dynamics, to anticipate future actions, and to take appropriate adaptive actions. My

Ph.D. work focuses on addressing some of the exciting and important research questions

regarding enabling robots to work fluently with people in teams.

I hope that my work will help to build adaptable, efficient, and functional robots

for multi-human, multi-robot teams.



Bibliography

[1] H. Admoni, A. Dragan, S. Srinivasa, and B. Scassellati. Deliberate Delays During
Robot-to-Human Handovers Improve Compliance With Gaze Communication.
Int. Conf. Human-Robot Interact., 2014.

[2] S. Afzal and P. Robinson. Natural affect data: Collection and annotation. In New
Perspectives on Affect and Learning Technologies. 2011.

[3] J. Aggarwal and M. Ryoo. Human activity analysis. ACM Comput. Surv., 2011.

[4] C. Alexopoulos, D. Goldsman, and J. R. Wilson. Overlapping batch means:
something more for nothing? In Proc. of the Winter Simulation Conference, 2011.

[5] S. Ali and M. Shah. Human action recognition in videos using kinematic features
and multiple instance learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2010.

[6] H. B. Amor, G. Neumann, S. Kamthe, O. Kroemer, and J. Peters. Interaction
primitives for human-robot cooperation tasks. In IEEE Conf. on Robotics and
Automation, 2014.

[7] B. Argall, S. Chernova, and M. Veloso. A Survey of Robots Learning from
Demonstration. Robotics and Autonomous Systems, 2009.

[8] J. Bandouch, O. C. Jenkins, and M. Beetz. A Self-Training Approach for Visual
Tracking and Recognition of Complex Human Activity Patterns. Int. J. Comput.
Vis., 2012.

[9] E. I. Barakova and T. Lourens. Expressing and interpreting emotional movements
in social games with robots. Pers. Ubiquitous Comput., 14(5), 2010.
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