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ABSTRACT

One of ecology’s grand challenges is developing general rules to 

explain and predict highly complex systems. Understanding and predicting 

ecological processes from species’ traits has been considered a ‘Holy Grail’ 

in ecology. Plant functional traits are increasingly being used to develop 

mechanistic models that can predict how ecological communities will 

respond to abiotic and biotic perturbations and how species will affect 

ecosystem function and services in a rapidly changing world; however, 

significant challenges remain. In this review, we highlight recent work and 

outstanding questions in three areas: (i) selecting relevant traits, (ii) 

describing intraspecific trait variation and incorporating this variation into 

models, and (iii) scaling trait data to community- and ecosystem-level 

processes. Over the past decade, there have been significant advances in 
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the characterization of plant strategies based on traits and trait 

relationships, and the integration of traits into multivariate indices and 

models of community and ecosystem function. However, the utility of trait-

based approaches in ecology will benefit from efforts that demonstrate how 

these traits and indices influence organismal, community, and ecosystem 

processes across vegetation types, which may be achieved through meta-

analysis and enhancement of trait databases. Additionally, intraspecific trait 

variation and species interactions need to be incorporated into predictive 

models using tools such as Bayesian hierarchical modelling. Finally, existing 

models linking traits to community and ecosystem processes need to be 

empirically tested for their applicability to be realized.

Key words: community assembly, ecological modelling, intraspecific 

variation, leaf economics spectrum, functional diversity, response traits, 

effect traits.
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I. INTRODUCTION

Ecologists have a long tradition of grouping organisms based on 

function (Grime, 1974; Raunkiaer, 1934; Root, 1967). A renewed interest in 

this approach came in the late 1990s when a number of ecologists sought to 

understand how the functional traits of species could predict community 

response to environmental change and the effects of changes in community 

composition on ecosystem processes (Chapin et al., 2000; Díaz & Cabido, 

1997; Lavorel et al., 1997). Lavorel & Garnier (2002) developed a conceptual

framework by distinguishing traits that predict how species respond to 
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environmental factors (response traits) from traits that affect ecosystem 

processes (effect traits). They argued that understanding and predicting 

community processes from species traits, rather than species identity, was a 

‘Holy Grail’ in ecology. While empirical tests of this framework were slow to 

appear (Suding & Goldstein, 2008), the formalization of the leaf economic 

spectrum (LES) spurred an increased focus on trait-based methodological 

approaches. The LES shows that relationships exist among several key traits 

across a broad range of species and different climates (Reich, Walters & 

Ellsworth, 1997; Wright et al., 2004), and that simple predictors (specific leaf

area, SLA) may link to hard-to-measure ecological processes (e.g. growth 

rate).

Whether or not traits matter to community ecology is closely related to

whether or not the niche matters, as niche differentiation can be defined as 

differential performance along environmental gradients with respect to 

organismal traits (Chase & Leibold, 2003). Opinions regarding the relative 

importance of the niche, and hence traits, to community dynamics fall 

loosely into three camps. The first argues that trait differences among 

individuals are largely irrelevant at the community level compared to factors 

such as demographic stochasticity (e.g. Neutral Theory: Hubbell, 2001). The 

second argues that traits are relevant to individuals, but the complexity of 

biotic and abiotic interactions precludes us from scaling individual processes 

to the community level (e.g. Lawton, 1999). The final camp argues that traits

provide a path forward to a unified theory of community ecology by 
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providing a taxon-independent means for generalizing the structure and/or 

functioning of communities that is based on functional traits rather than 

species identity (e.g. McGill et al., 2006a; Westoby & Wright, 2006). While 

the impact of stochasticity on community structure is largely undisputed, it 

has been shown that Neutral Theory cannot, by itself, explain observed 

species distributions in many systems (McGill, 2003; McGill, Maurer & 

Weiser, 2006b). Furthermore, many recent studies have demonstrated that 

traits within communities and regional species pools explain a large amount 

of variance in community structure (e.g. de Bello et al., 2012; Edwards, 

Lichtman & Klausmeier, 2013) and function (e.g. Sutton-Grier & Megonigal, 

2011). These studies demonstrate that traits can scale up to influence 

community structure and, thus, provide optimism that it will be possible to 

develop general, predictive rules in community ecology as we refine our 

understanding of which traits are important in a given environment, how 

traits are distributed within and among species, and how those traits relate 

to mechanisms driving community dynamics and function (Fig. 1). 

While trait-based ecology (TBE) has made significant strides over the 

past decade, a number of critical issues must be addressed before we can 

have confidence in the framework’s ability to deliver on its significant 

promise. This review highlights recent work and outstanding questions in 

three areas: (i) selecting relevant traits, (ii) describing intraspecific trait 

variation and incorporating this variation into models, and (iii) scaling trait 

data to community- and ecosystem-level processes. While this review 
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focuses on plants, similar TBE movements are occurring in animal and 

microbial ecology (e.g. Bokhorst et al., 2012; Fierer, Barberán & Laughlin, 

2014; Haddad et al., 2008; Litchman et al., 2007; Pedley & Dolman, 2014). 

II. SELECTING RELEVANT TRAITS

(1) Simplifying plant communities: functional groups versus 

functional traits 

Over time, there have been major shifts in how trait variation is 

measured and utilized, particularly with respect to applications in community

ecology. Shortcomings in the predictive power of TBE have ironically 

stemmed from one of its fundamental tenets—species can be grouped 

according to their responses to and effects on abiotic and biotic conditions 

(Lavorel & Garnier, 2002). Historically, ecologists have attempted to capture 

ecological processes within communities (e.g. assembly, response to abiotic 

factors) by measuring the distribution and responses of species groups 

based on characteristics such as life history, life form, photosynthetic 

pathways or other functional traits (Lavorel et al., 2007; Lavorel & Garnier, 

2002; Lavorel et al., 1997). If such groups are assumed to function similarly, 

community- to global-scale processes could be modelled without the 

collection of detailed trait data for many species.

While numerous studies have found significant relationships between 

ecosystem functions and traditional plant functional group classifications like

the grass–forb–legume approach (reviewed in Díaz & Cabido, 2001), 
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categorical groups mask variability, and may underestimate the important 

role that functional diversity plays in maintaining key ecosystem functions 

like productivity and nutrient cycling (Wright et al., 2006). For example, 

studies have shown that not all C4 perennial grasses or C3 annual forbs 

respond similarly to disturbance or resource fluctuations (Badgery et al., 

2005; Firn et al., 2010; Firn, Prober & Buckley, 2012; Han, Buckley & Firn, 

2012). Further evidence of the inability of categorical functional groups to 

predict species responses to environmental change are emerging from the 

field of invasion ecology, as native and invasive species from similar 

functional groups respond differently to environmental variation (Firn et al., 

2010, 2012; Funk, 2008; Han et al., 2012). Simple categorical functional 

groups can also be low in number in ecosystems like grasslands, meaning 

that correlative relationships between simple functional groups and changes 

in ecosystem function may be statistically significant because variability is 

reduced and not necessarily because groups are responding in a common 

way to perturbations.

Given limited abilities of traditional functional groups to capture and 

represent trait variation, there has been a shift away from describing and 

predicting community and ecosystem dynamics with functional categories of 

species and towards the use of continuous trait distributions (Lavorel et al., 

2007; Westoby & Wright, 2006). Interspecific differences in continuous traits 

have been linked to environmental gradients (e.g. Wright et al., 2005; Wright

& Westoby, 1999), demographic responses (Poorter & Markesteijn, 2008), 
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and ‘major axes of variation’ describing suites of co-varying traits indicative 

of broader ecological strategies (e.g. Díaz et al., 2004; Wright et al., 2004). 

Still, trait effects on ecosystem-, landscape- and global-scale processes 

depend on the combined traits of co-occurring species, and are likely to be 

driven disproportionately by traits of the most abundant species (Grime, 

1998). These realizations have led to the quantification and use of 

aggregated trait attributes of the community [e.g. community-weighted 

mean (CWM)] and indices of community diversity to reveal broad patterns 

and explain more of the variation in trait–environment relationships (see 

Section IV.1, Díaz et al., 2007a; Villeger, Mason & Mouillot, 2008). Meanwhile,

alternative methods of classifying species into ecologically relevant 

functional groups based on numerous functional traits have continued to 

develop, often utilizing methods in cluster analysis (e.g. Aubin et al., 2009; 

Fry, Power & Manning, 2014; Grime et al., 1997; Pillar & Sosinski, 2003); 

however, identification of consistent groups and demonstrations of their 

utility in predictive models remain sparse and equivocal (e.g. Larson et al., 

2015; Louault et al., 2005; Müller et al., 2007).

(2) Trait selection

Deciding which traits to measure is one of the most difficult aspects of 

TBE. It is often difficult to know, a priori, the mechanism(s) responsible for 

driving a particular community- or ecosystem-level process, much less the 

organismal trait(s) most closely linked to the mechanism. Compounding the 

9

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204



problem is that many traits relevant to a particular mechanism are difficult or

expensive to measure, especially for enough individuals to accurately 

characterize the trait distributions of a community, or even populations 

within the community. Fortunately, these ‘hard’ traits are often strongly 

correlated with more easily or cheaply measured ‘soft’ traits (Hodgson et al., 

1999). If certain traits are relevant to multiple plant responses and effects, it 

may be possible to identify a set of soft but multifaceted traits which predict 

a substantial portion of the variation in plant function and ecological 

processes (Fig. 1). Soft traits for many species can now be acquired from 

global databases like TRY (Kattge et al., 2011) and BiolFlor (www.biolflor.de).

A recent study of 222 plant species found that soft traits sourced from the 

TRY database (i.e. seed mass, wood density, and leaf traits) were strong 

predictors of a range of life-history strategies (Adler et al., 2013). Despite 

these advances, our understanding of which traits most strongly influence 

plant and ecosystem function reflects a bias towards leaf traits and 

databases like TRY generally do not account for site-level differences 

including species interactions, trait variation, and environmental variation.

(a) Response traits

Plant traits reflect adaptations to abiotic and biotic factors and, thus, 

can be used to describe and predict species responses to changes in these 

factors. In this framework, trait variation is assumed to be linked to variation 

in organismal responses to different factors (e.g. abiotic stress or 
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competition), which scales up to influence demographic responses and 

species abundances (Suding, Goldberg & Hartman, 2003). The particular 

response traits of interest will depend on the specific combination of abiotic 

and biotic factors in a vegetation community. Which traits are linked to 

specific environmental changes has been the subject of previous reviews 

(Lavorel et al., 2007), although empircal demonstrations of trait–response 

linkages remain relatively rare. Here, we briefly review key aspects of 

functional variation across species and their potential relevance to species 

responses in light of abiotic and biotic factors. 

Plant growth rate is considered a key trait differentiating ecological 

strategies within communities (e.g. Grime, 1977; Reich, 2014). In general, 

growth rate has been shown to be positively associated with shade tolerance

and negatively associated with drought tolerance (Suding et al., 2003). Rapid

growth has also been shown to be more prevalent in productive (e.g. Grime 

& Hunt, 1975), high-nutrient communities (Wright & Westoby, 1999), 

suggesting that it provides some fitness advantage when resources are not 

limiting. In some cases, however, rapid growth can allow plants to escape 

resource limitation in low, pulse-resource systems (e.g. among invasive 

species; Funk, 2013). Plant relative growth rate (RGR, the rate of dry mass 

addition per unit dry mass) has been recognized as a strong predictor of 

species’ potential for success and the most useful measure of plant growth 

(Grime, 1977; Grime & Hunt, 1975; Hunt & Cornelissen, 1997). 

Unfortunately, it is also difficult and time-consuming to measure. However, 
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RGR is a ‘synthetic’ trait summarizing the outcome of several processes (e.g.

photosynthesis, respiration, nutrient allocation, life-history strategies) that 

are tied to other measurable traits, such as leaf nitrogen (N) concentration, 

photosynthetic rate, tissue density, and SLA. A small number of soft traits, 

such as SLA or wood density, can explain a large portion of the variation in 

RGR across a large range of herbaceous and woody plant species (Hunt & 

Cornelissen, 1997; Nguyen et al., 2014; Poorter et al., 2008; Walker & 

Langridge, 2002). 

In addition, terrestrial plants exhibit a consistent trade-off among these

growth-related traits within the LES, such that high SLA is often linked to 

higher leaf N concentration and photosynthetic rate at the expense of tissue 

density and longevity. Consequently, soft traits like SLA or plant tissue 

density may also serve to represent functional strategies of nutrient 

acquisition and conservation, across a wide range of taxa and ecosystem 

types (Díaz et al., 2004; Walker & Langridge, 2002; Wright et al., 2004). 

While these trade-offs may not be exhibited in all species or plant systems 

(e.g. wetlands and grasslands: Funk & Cornwell, 2013; Wright & Sutton-Grier,

2012), the ubiquity of these trade-offs across many environmental and 

disturbance gradients, coupled with their strong relationship to important 

demographic rates (Donohue et al., 2010), suggests that these traits are 

associated with mechanisms determining plant success in response to 

different abiotic and biotic factors (reviewed in Reich, 2014). As such, LES 
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traits present a good starting point in the selection of traits for plant 

systems.

While great progress has been made in understanding the function of 

LES traits, our understanding of how other traits relate to plant and 

community responses is limited. Root traits are notoriously difficult to 

measure, although there is some evidence that an economic axis for roots 

exists as well, with slow-growing species having low root elongation rates, 

specific root length (SRL), high root diameter, and low nutrient concentration

(Freschet et al., 2010; Liu et al., 2010; Larson & Funk, 2016). In arid and 

semi-arid ecosystems, responses to changes in water availability may be 

better predicted from root traits such as root depth or elongation rate than 

from leaf traits (Nicotra, Babicka & Westoby, 2002; Padilla & Pugnaire, 2007).

However, the traits most closely linked to plant performance may change 

depending on the environment. For example, a study of the annual species 

Polygonum persicaria found that leaf-level water-use efficiency was 

correlated with plant fitness in water-limited habitats while root biomass 

allocation was more closely linked to fitness in moist environments (e.g., 

Heschel et al., 2004). Recent work also suggests that leaf and stem hydraulic

traits (e.g. wood density; Cornwell & Ackerly, 2010) are correlated with traits 

from the LES (reviewed in Reich, 2014), but these traits are rarely 

incorporated into empirical tests and additional data are needed to 

determine if the LES can adequately capture plant response to changes in 

water availability. Lastly, traits influencing regeneration processes (i.e. 
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dispersal/colonization, resprouting, germination, emergence) also have 

significant implications for population dynamics and community composition 

(Aicher, Larios & Suding, 2011; Donohue et al., 2010; Flores-Moreno & Moles,

2013; Pakeman & Eastwood, 2013; Zeiter, Stampfli & Newbery, 2006), but 

are not well represented in trait-based theoretical frameworks.

Although mean trait values for organisms and species are typically 

used in predictive models, there is growing evidence that species vary in 

their phenotypic responses to changing abiotic and biotic factors (i.e. 

phenotypic plasticity, see Section III), which contributes to functional 

variation within communities (e.g. Ashton et al., 2010; Firn et al., 2012; Funk,

2008; Larson & Funk, 2016; Siebenkäs, Schumacher & Roscher, 2015). 

Although empirical links between phenotypic plasticity and performance or 

fitness are still rare across species (Van Kleunen & Fischer, 2005; Firn et al., 

2012), if plasticity is adaptive it could be an important metric related to 

population, species, and community responses to environmental change 

(reviewed in Berg & Ellers, 2010; Nicotra et al., 2010; Valladares et al., 

2014). For example, leaf trait plasticity has been linked to productivity and 

plant growth in response to both nitrogen availability and cutting (da Silveira

Pontes et al., 2010) as well as temperature and water availability (Liancourt 

et al., 2015). Ultimately, while belowground traits, regenerative traits, and 

intraspecific trait variation have long been recognized as key (albeit difficult) 

components to incorporate into models (Weiher et al., 1999), their inclusion 
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in empirical tests is still relatively rare, and represents an important area for 

future research. 

Through their influence on plant response to abiotic and biotic factors, 

response traits can be used to identify ecological processes structuring plant 

populations and communities (Fig. 1; Dorrough, Ash & McIntyre, 2004; 

McIntyre, 2008; Mayfield & Levine, 2010; Butterfield & Callaway, 2013; Gross

et al., 2015). For example, Gross et al. (2009) used patterns of SLA to 

determine that community structure in a subalpine grassland was influenced 

by facilitation in water-limited areas and competition in more mesic areas. In 

a study of soil disturbance in a lake-plain prairie, Suding et al. (2003) found 

that traits conferring tolerance to shade, drought, and defoliation were better

predictors of abundance patterns following disturbance than was competitive

ability, a frequently measured response. Other studies have shown that 

multiple traits can interact to influence community patterns. For example, 

Maire et al. (2012) found that, despite differences in nutrient strategy among

species (niche differences), traits associated with competitive ability (e.g. 

height) were better predictors of abundance across grazing and nutrient 

treatments in a grassland community. Gross et al. (2015) found that while 

native and invasive species differed in traits (SLA and height), they had 

similar responses to grazing and competition because different trait 

combinations generated similar success to these factors. These last two 

examples demonstrate that using a diverse set of traits may be important to 

differentiate ecological processes acting on community assembly. Selection 
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of the performance metric is also important because growth, survival, and 

reproductive measures will have different relationships with community-level

processes (e.g. abundance) as environmental conditions change (Gross et 

al., 2007, 2009). More studies are needed that examine how traits relate to 

plant performance across different environments; this will be critical if we are

to predict plant and community responses in a changing world (Meinzer, 

2003).

 

(b) Effect traits

For functional traits to provide a comprehensive theoretical framework 

in ecology, we must also understand how trait composition and diversity 

influence ecosystem functioning (Fig. 1; Lavorel & Garnier, 2002). Effect 

traits alter abiotic and biotic processes corresponding to a wide range of 

ecosystem functions, and have been the subject of recent review (de Bello et

al., 2010; Eviner & Chapin, 2003; Garnier & Navas, 2012). However, while 

our understanding of effect traits has improved in the wake of the framework

laid out by Lavorel & Garnier (2002), predictive models have lagged behind 

those incorporating response traits (Suding et al., 2008). In addition to their 

predictive role in species and community responses to environmental 

variation, links between LES traits and ecosystem function have been best 

characterized. The effects of RGR, SLA, and leaf N are particularly well 

studied, with evidence suggesting positive relationships between these traits

and primary productivity, litter decomposition rates (see below), plant-
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available soil N, N turnover rates, and palatability to herbivores, and 

negative relationships with soil C and N retention (e.g. De Deyn, Cornelissen 

& Bardgett, 2008; Grigulis et al., 2013; Lavorel & Grigulis, 2012; Loranger et 

al., 2012). When community-scale analogues of LES traits are considered, 

similar patterns emerge. Canopy N and leaf area index (LAI) tend to scale 

positively with SLA and leaf N values, and have also been tied to 

aboveground net primary productivity (ANPP; Reich, 2012). 

The influence of leaf tissue chemistry and structure on decomposition 

rate is among the most studied aspects of trait influence (de Bello et al., 

2010), and traits associated with the LES have been shown to influence 

decomposition rates in several studies (Bakker, Carreño-Rocabado & Poorter,

2011; Cornwell et al., 2008; see for example Santiago, 2007). Species on the 

‘fast return’ end of the LES (rapid growth, thin leaves, high nutrient 

concentrations, and high rates of photosynthesis) decompose more quickly 

than species on the ‘slow return’ end of the LES (slow growth, thicker, 

tougher, more recalcitrant leaves with more defences and lower rates of 

photosynthesis), suggesting that the suite of coordinated structural and 

chemical leaf traits maximizing photosynthesis also has important 

implications for nutrient cycling (Santiago, 2007) and the global carbon cycle

(Cornwell et al., 2008). However, the effects of the plant community on 

biogeochemical cycles will likely require more than singular LES traits. For 

example, Sutton-Grier, Wright & Richardson (2012) determined that different

plant traits had strong effects on plant biomass N (water-use efficiency) 
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versus denitrification (e.g. belowground biomass, root porosity), and the 

traits that maximized one N removal pathway were largely orthogonal to 

traits that maximized the other. This suggests that multiple species, 

exhibiting a diversity of traits, may have complex effects on ecosystem 

functions.

Although plant traits are an important predictor of decomposition, 

biotic and abiotic factors are also important drivers. For example, in a 

restored riparian wetland, Sutton-Grier et al. (2012) determined that 

environmental factors including soil organic matter and soil N had 

approximately the same amount of explanatory power as plant traits. 

Variation in external factors such as precipitation, grazing, or land use can 

also exert strong indirect influences on ecosystem function by driving shifts 

in plant community composition and community-weighted trait means which 

result in indirect effects on decomposition (Bakker et al. 2011; Garibaldi, 

Semmartin & Chaneton, 2007; Santiago, Schuur & Silvera, 2005). Similarly, 

the net influence of plant traits on soil chemistry not only depends on direct 

effects via the quality and quantity of plant litter and exudates, but on 

indirect effects of these inputs on soil biota (e.g. de Vries et al., 2012; Orwin 

et al., 2010), whose properties may explain >70% of the variation in N 

cycling processes (Grigulis et al., 2013). Consequently, models of 

decomposition will need to identify and incorporate traits as well as critical 

feedback mechanisms through which biotic and abiotic factors will influence 

decomposition.
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Given the association of LES traits with gas and water exchange, it is 

likely that these attributes also drive climatic and hydrologic processes 

(Reich et al., 2014). However, despite their potential utility in earth–

atmospheric models (e.g. Van Bodegom et al., 2012; Verheijen et al., 2015) 

and the understanding that vegetation drastically influences water cycles 

(e.g. Huxman et al., 2005), demonstrations of theorized trait–effect links are 

still relatively sparse. High leaf hydraulic conductance and leaf vein density, 

which are often linked to rapid carbon assimilation, have been predicted to 

increase evapotranspiration, canopy vapour flux, and precipitation dynamics 

in historic and current climate models (Boyce et al., 2009; Brodribb, Feild & 

Sack, 2010; Lee & Boyce, 2010). Ollinger et al. (2008) also found that high 

canopy N was associated with greater shortwave surface albedo and CO2 

uptake capacity, suggesting LES implications for surface temperatures and 

atmospheric CO2 concentrations, respectively. However, the effect of 

vegetation on carbon budgets will depend not only on the assimilation of 

carbon, but its subsequent fate in plant–soil interactions, and more work is 

needed to map the net influence of functional traits on earth–atmosphere 

fluxes (perhaps using tools such as structural equation modelling, see 

Section IV.2).

Beyond the LES, plant height is another important axis of plant trait 

variation (Díaz et al., 2004, 2016; Westoby et al., 2002). Despite its potential

to influence a range of ecosystem functions via effects on abiotic properties 

such as moisture (e.g. Gross et al., 2008), light (e.g. Violle et al., 2009) and 
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standing/litter/microbial biomass (Grigulis et al., 2013), demonstrations are 

far less frequent than for LES traits (Chapin, 2003; Garnier & Navas, 2012; 

Lavorel & Grigulis, 2012). Particularly as canopy height becomes easily 

estimable with improvements in remote-sensing data and techniques, 

demonstrated effects of height on ecosystem processes could prove highly 

valuable in models of ecosystem function at larger scales, making this a key 

area for interdisciplinary development (Turner, Ollinger & Kimball, 2004). 

Our understanding of how root and wood traits influence ecosystem 

function is less clear compared to other traits (e.g. LES traits), although (as 

mentioned above) recent studies have suggested that some water-related 

root and stem traits may align with ‘fast return’ and ‘slow return’ strategies 

represented by the LES (Chave et al., 2009). For example, lower sapwood 

density and higher sap flux—which has been positively associated with SLA 

(O’Grady et al., 2009)—may explain higher evapotranspiration rates 

observed in an invasive tree species relative to coexisting natives (Swaffer & 

Holland, 2015). Independent of the LES, root morphological and architectural

traits have been shown to influence soil moisture (Gross et al., 2008), soil 

stability, and erosion (Stokes et al., 2009), with possible impacts on soil 

structure (Six et al., 2004), leaching and infiltration (De Deyn et al., 2008), 

and evapotranspiration and climate cycles (Lee et al., 2005). Like foliar 

traits, there have been relatively few direct tests linking root and wood traits 

to hydrologic or atmospheric processes, representing a substantial 

opportunity for research on belowground trait influence. As in leaves, higher 
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density, lignin or dry matter content in roots and wood should slow 

decomposition and increase soil C storage (Chambers et al., 2000; De Deyn 

et al., 2008; Freschet, Aerts & Cornelissen, 2012; Klumpp & Soussana, 2009).

Unlike foliar tissue, however, root N is not necessarily related to root 

decomposition rates, which may be complicated by co-occurring effects of 

substrate chemistry, litter secondary chemistry, or mycorrhizae on root 

decomposition (Freschet et al., 2012; Langley, Chapman & Hungate, 2006). 

Quantity and quality of root exudation could also affect soil C and N 

dynamics, as higher quantities may increase labile C and microbial 

stimulation (Dijkstra, Hobbie & Reich, 2006; Kaštovská et al., 2015), although

the nature of microbial effects may depend on the type of exudate, which is 

only just beginning to be explored (De Deyn et al., 2008). 

Relationships between plant roots and mycorrhizae or N-fixing bacteria

should also affect biogeochemical processes. As symbiotic relationships 

make N and P more available, primary productivity and soil C inputs should 

generally increase. Furthermore, increased longevity and slower 

decomposition of colonized roots, along with C immobilization by symbionts, 

may also increase soil C and N retention (De Deyn et al., 2008; Langley et 

al., 2006). It is still unclear whether these trends are generalizable, as effects

may vary across species of plants, fungi and/or microbes (Rillig & Mummey, 

2006). For example, Cornelissen et al. (2001) found plant litter of species 

associating with ericoid mycorrhizae, ectomycorrhizae, and arbuscular 

mycorrhizae to correspond to poor, intermediate, and rapid decomposition 

21

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478



rates, respectively. Ecologists are just beginning to understand the wide 

functional diversity of soil microbial and fungal communities (McCormack, 

Lavely & Ma, 2014; Van Der Heijden & Scheublin, 2007); thus, a critical 

avenue for future research should focus on how traits, plant community 

composition, and soil biota interact to impact soil carbon dynamics and 

ecosystem function (e.g. Grigulis et al., 2013).

(c) Trait selection: future directions

Moving forward, a main challenge will be identifying which of many 

traits are likely to be most useful in predicting community and ecosystem 

dynamics. The initial pool of traits in an analysis will strongly constrain 

detectable patterns, but including multiple correlated traits in a given model 

leads to diminishing returns and defeats the purpose of developing a simple 

way to characterize community and ecosystem function (Laughlin, 2014b). 

Fortunately, many emerging methods can aid trait selection when many 

traits or environmental factors may influence species responses. For 

example, RLQ and fourth corner analyses are ordination and bivariate 

analyses, respectively, in a multivariate framework which reveal patterns 

between three data tables containing environmental variables (R), species 

abundances (L), and species traits (Q) across a range of samples (e.g. plots, 

sites). Recently, variations in RLQ and fourth corner analyses have been 

applied to identify objectively the most informative traits as well as their 

relatedness to environmental variables in multivariate space (e.g. Bernhardt-
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Römermann et al., 2008; Dray et al., 2014). Using the same type of data, 

Jamil et al. (2013) developed a generalized linear mixed model (GLMM) 

approach to identify more directly links between traits, environmental 

variables, and abundances.

Other models have simultaneously identified traits linked to ecosystem

function as well as species responses (Suding et al., 2008). For example, 

working across a range of sites (e.g. pasture, agricultural, woodland) on the 

west coast of Scotland, Pakeman (2011) extended RLQ analysis for this 

purpose, identifying four traits which predicted species distributions across 

sites based on their relationships with soil/management attributes and 

ecosystem function parameters. This shortlist included SLA and leaf size, 

which aligned positively with more fertile, disturbed sites and led to higher 

rates of decomposition and nutrient cycling, as well as leaf dry matter 

content (LDMC) and canopy height, which showed opposite associations. This

type of multivariate approach could be extended to other types of systems 

broadly to identify traits linked to both species responses and ecosystem 

effects. These efforts should also extend beyond the LES to begin identifying 

traits which may capture less-understood responses and functions (e.g. root 

architectural traits related to water availability, germination response traits 

related to regeneration). 

A further challenge is that traits, abiotic factors, and species 

interactions (e.g. competition, facilitation) may interact in non-additive ways 

to influence community and ecosystem processes (Suding et al., 2008). For 

23

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524



example, while ‘fast return’ LES traits are generally associated with greater 

herbivore palatability (e.g. Díaz et al., 2004), Loranger et al. (2012) found 

that influences from surrounding plants obscured the predicted trait 

influence on herbivore damage. Similarly, litter decomposition rates and 

effects on N cycling may result from non-additive effects of plant traits and 

soil biota diversity (Hättenschwiler, Tiunov & Scheu, 2005). Consequently, 

efforts which seek to expand upon our understanding of critical traits must 

consider abiotic and biotic context as fully as possible and seek to develop 

models which account for these interactions in a given system, especially 

across trophic levels (e.g. Deraison et al., 2015; Lavorel et al., 2013; 

Pakeman & Stockan, 2014). Once key traits are identified and specific 

hypotheses are generated regarding their links to responses and effects, 

other statistical approaches such as structural equation modelling can be 

applied to capture and test how multiple traits ultimately drive community 

structure (see Section IV.2).

III. INTRASPECIFIC TRAIT VARIATION

Because traits vary across biological, spatial, and temporal scales in a 

context-dependent manner (e.g. patterns differ for individual traits and 

species: Siefert et al., 2015), traits need to be accurately characterized 

within a species or population. Most plant traits are defined and measured on

individual plants (e.g. height), on organs within a plant (e.g. leaves), or on 

populations (e.g. demography; Violle et al., 2007). Ecological studies 
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commonly assign mean trait values to species, justified on the assumption 

and frequent evidence that more variation occurs between than within 

species (e.g. Hulshof & Swenson, 2010; Koehler, Center & Cavender-Bares, 

2012). However, variation within species can be substantial and both 

ecologically (e.g. Clark, 2010) and evolutionarily important (e.g. Etterson & 

Shaw, 2001). For example, Albert et al. (2010) measured three traits 

(maximum vegetative height, LDMC, leaf nitrogen concentration) on 16 co-

occurring alpine species with diverse life histories and found approximately 

70% of trait variation to occur among species, leaving variation among 

individuals of a species to account for 30% of trait variation. These values 

correspond well to a recent global meta-analysis (Siefert et al., 2015). This 

intraspecific trait variability in natural populations may impact competitive 

interactions and ultimately community composition (Bolnick et al., 2011), 

and can influence key ecosystem functions like productivity (Enquist et al., 

2015), nutrient cycles (Lecerf & Chauvet, 2008; Madritch & Lindroth, 2015), 

litter decomposition (Sundqvist, Giesler & Wardle, 2011; Schweitzer et al., 

2012), and response to herbivory (Boege & Dirzo, 2004). For example, 

Madritch & Lindroth (2015) showed using carefully controlled conditions that 

condensed tannin concentrations varied among aspen genotypes and 

decreased with increasing nutrient availability. Genotypic variation in leaf 

chemistry could be directly linked to nutrient cycling via herbivore frass and 

leaf litter N concentrations. The ‘after-life’ consequences of intraspecific 
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variation in tannin concentrations, a result of both genetic variation and 

nutrient treatment, influenced the subsequent availability of N to plants.

Population-level studies illustrate the magnitude of intraspecific 

variation that may be observed as well as the range of functional traits that 

may vary. For example, studies of species with very large geographic ranges 

– such as Pinus sylvestris and Quercus virginiana – have shown substantial 

between-population variation in leaf nutrient traits (Oleksyn et al., 2003), 

needle longevity (Reich et al., 2014), seed mass and growth rate/height 

increment (Reich et al., 2003), hydraulic traits (Martínez-Vilalta et al., 2009), 

freezing tolerance (Koehler et al., 2012), and leaf morphology (Cavender-

Bares et al., 2011). Studies of plant populations have also assessed the 

degree to which intraspecific trait variation is shaped by genetic variation 

and phenotypic plasticity, broadly defined as the capacity of an individual to 

alter their growth in response to disturbance and fluctuating environmental 

conditions (Valladares, Gianoli & Gomez, 2007). Common garden studies 

indicate that the substantial intraspecific variation in needle longevity 

observed with latitude or elevation in P. sylvestris and Picea abies is more 

strongly influenced by phenotypic plasticity than genetic variation (Reich et 

al., 1996). Likewise, studies of foliar phenology in provenance trials of two 

common European tree species (Fagus sylvatica and Quercus petraea) 

suggest that temperature-mediated plasticity is greater than population-

based genetic differences or genotypic differences in plasticity (Vitasse et 
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al., 2010). This distinction could have implications for how traits are sampled

and used in modelling efforts (see Section III.2).

(1) How is variation in traits distributed across different scales of 

organization?

Trait variation among repeated organs within a species may be 

separated into three components (Albert et al., 2011): variation within an 

individual plant, variation among individuals within a population, and 

variation among populations. First, at a given point in time, the trait values 

of organs within a plant might reflect differences in age, environmental 

conditions, or disturbance history (e.g. herbivory). For example, differences 

in the sun exposure and age of leaves can lead to marked differences in SLA,

13C, and N concentration within a tree crown (Cavender-Bares, Keen & 

Miles, 2006; Legner, Fleck & Leuschner, 2014; Mediavilla & Escudero, 2003; 

Yan et al., 2012). Trait values of an individual plant vary across the season 

due to environmental tracking (sensu Bazzaz, 1996) including predictable 

shifts with phenology (Donohue et al., 2007; McKown et al., 2013) and 

acclimation to cold temperatures (Cavender-Bares et al., 2005; Wisniewski et

al., 1996). Traits also vary with ontogeny from seedlings to adults as plants 

reach reproductive maturity (Cavender-Bares & Bazzaz, 2000; Lusk & 

Warton, 2007). Such shifts may reflect, in part, adaptive shifts in traits that 

accompany changing environments with life stage (Donohue et al., 2010). 

Second, trait values may vary among individuals within a population because
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of both genetic differences among individuals and phenotypic plasticity 

reflecting environmental conditions, ontogeny, and competition from 

neighbouring plants (Le Bagousse-Pinguet et al., 2015). Third, trait values 

may vary among populations of a species, again reflecting both genetic 

variation and phenotypic plasticity (e.g. Donohue et al., 2005; Sultan, 2001; 

Sultan et al., 1998). 

In addition, patterns of intraspecific variation differ among traits. For 

instance, Albert et al. (2010) found that differences among populations in 

maximum height (Hmax) were nearly equal to differences among individuals 

within populations across several alpine plant species, whereas more 

variation was observed among individuals within a population than among 

populations for LDMC. In addition, both the magnitude and patterns of 

intraspecific variation differed among species, with individuals sampled 

within a single plot showing two-thirds to less than one third of site-wide 

variation in LDMC and Hmax. For organ-level traits, sometimes more variation 

occurs within individuals than among individuals within populations or 

between populations. Messier, McGill & Lechowicz (2010) found LDMC to 

vary more on average within the crown of a tree than among conspecific 

trees within plots. In the same study, variation in SLA was near equivalent 

within and among conspecifics within plots. 

While interspecific trait variation is typically captured by differences in 

mean trait values across species, there are also opportunities to integrate 

metrics of intraspecific variation described above into our understanding of 
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how species differ functionally. For example, phenotypic plasticity can be a 

critical component of responses to environmental change that differs 

substantially across species (see Section II.2a). As such, phenotypic plasticity

has been explored for its potential to explain differences in ecological 

strategy and performance between invasive and native species with mixed 

results (e.g. Davidson, Jennions & Nicotra, 2011; Funk, 2008; Palacio-López &

Gianoli, 2011), as well as competitively dominant species and non-dominant 

species (e.g. Ashton et al., 2010; Grassein, Till-Bottraud & Lavorel, 2010). 

However, while plasticity is often an independent focus of empirical efforts, 

some evidence suggests that plasticity may tie into our broader 

understanding of ecological strategies based on mean trait values (Grime & 

Mackey, 2002). For example, mean plant height represents a major axis of 

functional variation across species which has also been linked to the extent 

of aboveground trait plasticity in response to nitrogen or light across several 

grass and forb species (e.g. Maire et al., 2013, Siebenkäs et al., 2015). 

Patterns of below-ground trait plasticity across species are less clear 

(Siebenkäs et al., 2015; Larson & Funk, 2016). There is thus a need for 

broader testing of the mechanisms underlying interspecific variation in 

phenotypic plasticity across traits and environmental variables (e.g. Weiner, 

2004) and how this variation ultimately informs species and community 

responses to environmental change. Incorporating metrics of trait plasticity 

(reviewed in Valladares, Sanchez-Gomez & Zavala, 2006) into trait 

databases, alongside trait data that correlate with ecological strategies, 
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would allow us to assess if trait plasticity is an inherent component of 

ecological strategies across plant community types.

Beyond species, trait variation might be expected to increase 

hierarchically among clades. However, early opinions were that ecologically 

important traits are likely to be very labile through evolutionary time 

(Donoghue, 2008). Empirical studies have begun to determine the extent to 

which trait values are phylogenetically conserved; for example, seed mass 

(Moles et al., 2005), wood density (Chave et al., 2006; Kerkhoff et al., 2006), 

leaf traits (Ackerly & Reich, 1999; Cavender-Bares et al., 2006), xylem traits 

(Zanne et al., 2010), and disease resistance (Gilbert & Webb, 2007). 

Additional studies have begun to assess the degree to which phylogeny and 

functional traits influence community and ecosystem-level processes 

(Cadotte, Cardinale & Oakley, 2008; Cadotte et al., 2009; Cadotte, Dinnage &

Tilman, 2012; Flynn et al., 2011). The early evidence suggests that 

integrating both metrics can yield highly predictive models (e.g. community 

assembly; Cadotte, Albert & Walker, 2013).

(2) How does significant variability within species affect our 

predictions?

How variation is arranged within species influences how we design 

sampling efforts to capture relevant trait values. How carefully a trait is 

defined in relation to its environment becomes especially important in 

standardizing the measurement of traits that are plastic; for example, 
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defining SLA in relation to sun exposure. If high levels of trait differentiation 

are observed among populations within a study area, sampling methods will 

need to reflect such differentiation to capture one or more trait values 

pertinent to the study question.

The nature and scale of the questions being asked is critical. If we are 

interested in mechanisms of coexistence (internal community dynamics), 

sampling to capture intraspecific variation is likely to be important. Recent 

work increasingly supports the importance of individual-level variation for 

understanding trade-offs among species that enable coexistence of species 

(Clark et al., 2010). By contrast, if we are interested in ecosystem 

consequences of plant community composition, capturing the mean and 

variance of trait values at the species level may provide sufficient resolution 

for predictive models. Still, intraspecific variation could indirectly influence 

our ability to model ecosystem effects of plant communities. A critical and 

timely example is forecasting changes in species distributions in response to 

climate change. Studies of genetic diversity and local adaptation repeatedly 

reveal that genotypes and populations within species differ in their 

sensitivity to climate (e.g. Shaw & Etterson, 2012; Alberto et al., 2013; 

Ramirez-Valiente, Koehler & Cavender-Bares, 2015). Shifts in species 

distributions with climate are thus unlikely to be reasonably well predicted 

without taking this variation into account, making the ecosystem-level 

consequences (e.g. carbon uptake) difficult to model.
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Most traditional approaches used to model collections of species, such 

as dynamical systems models (e.g. Tilman, 2004; Warner & Chesson, 1985), 

can be modified to handle some degree of intraspecific variation by including

separate classes for each discrete phenotype within a species. Individual-

based models (Grimm & Railsback, 2005) go further by tracking every 

individual in a community. Both of these methods can potentially become 

cumbersome for speciose communities that include highly variable species. 

Some studies simplify these issues by incorporating intraspecific variability 

into standard statistical analyses by using different mean trait values for 

populations at different locations along a gradient of interest (e.g. Ackerly & 

Cornwell, 2007; Jung et al., 2010; Violle et al., 2012). These methods can still

be somewhat limiting as focusing on the mean trait, even within 

subpopulations, neglects the effect of extreme values in the tails of the trait 

distributions, which may have a profound impact on community response to 

the environment (Bolnick et al., 2011). Ames, Anderson & Wright (2015) 

found that statistical inference regarding the environmental drivers of trait 

variation was greatly altered when using regional species means rather than 

locally measured trait values. There are several modelling approaches that 

are better suited for incorporating intraspecific variation into models of 

community dynamics and function.

Bayesian hierarchical models (BHMs, Gelman et al., 2004; Gelman & 

Hill, 2007) incorporate the hierarchical relationships inherent in scaling from 

the traits of individuals up to the structure/function of the community in 
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which they are embedded (Clark, 2005). In a BHM, a species’ trait 

distributions are explicitly incorporated into one of the levels of the 

hierarchy, and uncertainty around trait distributions are considered by 

including prior distributions on the parameters of the trait distributions. 

Further, the parameters of the trait distribution can be functions of biotic 

and/or abiotic environmental factors in order to capture changes to the trait 

distribution that are driven by changing environmental conditions. A major 

advantage of BHMs is that they allow the user to explore relationships 

among traits, the environment, and organismal performance without 

knowing, a priori, the mechanisms that relate them (Webb et al., 2010). 

However, these models are limited to forecasting within the range of the 

data used to fit them. Thus, BHMs are beneficial in identifying the traits and 

environmental drivers that are most important in driving the dynamics of a 

community. Because the trait distributions and their parameters are 

described explicitly, it is also possible to explore directly the impact of 

changes in intraspecific trait variation on the dynamics of the species and 

the community as a whole.

Dynamical systems models have been developed that explicitly 

describe the temporal dynamics of the community trait distribution in 

response to environmental forcing for either a single trait (Norberg et al., 

2001) or multiple, correlated traits (Savage, Webb & Norberg, 2007). These 

models use moment closure, a technique that approximates complete 

distributions using only low-order moments such as means and variances, to 
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describe the whole community trait distribution as a function of biotic or 

abiotic environmental factors. A drawback to this approach is that it requires 

an explicit, known functional relationship between traits, environment, and 

organismal performance. However, this allows these models to predict 

changes in the trait distribution that result from environmental forcing 

outside of the observed range, such as that expected from climate change. 

An interesting feature of these models is that they aggregate inter- and 

intraspecific variation into a single community trait distribution. This results 

in a loss of information about species identity and changes in relative 

abundances. On the other hand, for cases where the trait(s) are strongly 

related to an ecosystem function of interest, these models may allow robust 

prediction of function while ignoring extraneous details of species 

composition. A more integrative approach incorporates the predictive power 

of deterministic, dynamical systems models with the ability of Bayesian 

models to incorporate empirical data and generate measures of uncertainty 

associated with the model output. These ‘first principles Bayesian multilevel 

models’ (Webb et al., 2010) embed known mechanistic relationships into a 

BHM and thereby allow prediction outside of the observed range of data 

while simultaneously estimating uncertainty (Bayesian credible intervals) 

associated with those predictions.

IV. SCALING TRAIT–ENVIRONMENT RELATIONSHIPS TO COMMUNITY 

AND ECOSYSTEM LEVELS
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Nearly all traits vary systematically along broad environmental 

gradients. At the same time, nearly half of the global variation of many traits

can be found within individual communities (Wright et al., 2004). Variation in

trait values among communities can be used to predict changes in 

ecosystem functioning under persistent changes in the environment (Klumpp

& Soussana, 2009; Suding et al., 2008), while variation within communities 

can predict the resilience of ecosystem functioning to disturbance (Mori, 

Furukawa & Sasaki, 2013). Systematic variation in trait distributions along 

environmental gradients can also reveal environmentally dependent 

assembly rules (Ackerly & Cornwell, 2007; Keddy, 1992), thereby linking 

community assembly theory to models of biodiversity–ecosystem functioning

(Naeem & Wright, 2003). Trait–environment relationships are becoming 

increasingly well described with ‘global’ trait–environment relationships 

assessed for many traits (Moles et al., 2007, 2009; Wright et al., 2004; Zanne

et al., 2010), although the current state of knowledge in this area is hugely 

variable, with some traits, functional indices, and environmental gradients 

much more intensively studied than others. 

(1) Community-level metrics of plant function

Perhaps the simplest measure of community-level functional 

composition is the community-weighted mean (CWM) trait value, which uses 

the relative abundances of species and their trait values to calculate a 

community aggregated trait value (Violle et al., 2007). Not only does 
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variation in CWM trait values identify shifts in assembly filters along 

environmental gradients (Ackerly & Cornwell, 2007), it is also perhaps the 

strongest determinant of biotic effects on ecosystem functioning (Fortunel et

al., 2009; Laliberté & Tylianakis, 2012; Lavorel et al., 2011) as more 

abundant species have a disproportionate influence on ecosystem processes 

(mass ratio hypothesis; Grime, 1998). A simple null hypothesis is that CWM–

environment relationships are identical to interspecific trait–environment 

relationships, at least qualitatively speaking. At the resolution of 1° of 

latitude and longitude, Swenson et al. (2012) found that CWM values of leaf 

traits, height, seed mass, and wood density based on species occurrences 

(although species may not co-occur within 1° grid cells) were relatively 

strongly correlated with annual mean and seasonality of temperature and 

precipitation in ways that were consistent with expectations based on 

species trait–environment patterns across much of the Western Hemisphere. 

However, trait–environment relationships do not always scale linearly from 

the species to community levels due to interactions between multiple 

environmental factors (Rosbakh, Römermann & Poschlod, 2015) and 

assembly processes that may not favour species with intermediate trait 

values. For example, in one set of woody plant communities, over 80% of 

traits were found to have linear or context-dependent abundance 

distributions within communities while only one was unimodal (Cornwell & 

Ackerly, 2010), thereby producing CWM–environment relationships that differ

from expectations based on interspecific patterns. This difference was likely 
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due to coordinated ecological selection on multiple traits that differed from 

the evolutionary and biogeographic factors that determined trait correlations

among species in the regional pool. Research aimed at identifying these 

processes and the trait–abundance distributions that they generate is 

essential for improving predictive models of CWM–environment relationships.

Functional diversity indices capture the distribution of trait values 

within communities and can also demonstrate systematic variation along 

environmental gradients. Functional diversity can be broken down into three 

orthogonal components – richness, evenness, and divergence (Mason et al., 

2005) – that are represented in various ways by different indices. The range, 

or functional richness (Villeger et al., 2008), of trait values within a 

community can be indicative of the intensity of environmental assembly 

filters (Cornwell, Schwilk & Ackerly, 2006), and can have significant effects 

on ecosystem functioning (Butterfield & Suding, 2013; Clark et al., 2012). 

The range of trait values is expected to decrease with increasing 

environmental severity (i.e. environmental filtering), a hypothesis that has 

been supported for a variety of traits at fine (Cornwell & Ackerly, 2009; Jung 

et al., 2010; Kooyman, Cornwell & Westoby, 2010) and coarse (Swenson et 

al., 2012) spatial scales, but not in all cases (Coyle et al., 2014). Species 

may, for example, use contrasting strategies to deal with stress (e.g. stress 

avoidance versus tolerance; Ludlow, 1989), resulting in divergent traits and 

greater functional richness. The distribution of trait values within a 

community, as described by functional evenness may also vary 
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systematically along environmental gradients, although indirectly: even 

spacing of trait values may reflect competition (which may be expected to 

increase with productivity; Grime, 1977) and, consequently, niche 

partitioning – although this pattern is not consistently supported (Cornwell & 

Ackerly, 2009; Jung et al., 2010). Which traits exhibit systematic variation in 

functional richness or evenness along environmental gradients should 

depend on their roles in community assembly. Traits related to 

environmental filtering ought to influence functional richness, while those 

related to competition ought to influence functional evenness. 

The trait–environment predictions outlined above follow from relatively

simple models of community assembly, although several studies have 

demonstrated that biotic interactions can strongly alter trait–environment 

predictions. Trait-based community assembly studies have typically focused 

on the convergence–divergence paradox which states that species with 

similar environmental tolerances and requirements – reflected in the 

similarity of their functional trait values – may experience simultaneous, 

competing forces: similar species are more likely to co-occur (converge), and

thus to compete more strongly (diverge; Weiher, Clarke & Keddy, 1998; 

Adler et al., 2013). However, there is increasing evidence that using 

functional divergence (i.e. degree of niche differentiation; Mason et al., 2005;

Villeger et al., 2008) to infer whether environmental filtering or competition 

mechanisms are operating most strongly in communities may be narrow-

sighted. This framework overlooks the fact that plants often compete via 
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hierarchical differences in traits (fitness differences) rather than via limiting 

similarity (niche differences; Kunstler et al., 2012, 2016). A consequence of 

competitive hierarchies is a reduction in the range of trait values observed 

within a community, where species at one end of a trait spectrum are 

competitively excluded, and functional divergence is not observed. 

Furthermore, high divergence could result from the success of different 

strategies dealing with stress (as described above) rather than from 

competition. This pattern could also be enabled by facilitation, which has 

been shown to increase the range of trait values in a community through the

creation of favourable microenvironments allowing species with otherwise 

unsuitable trait values to persist (Gross et al., 2009; Butterfield & Briggs, 

2011). In a study of alpine plant communities, Schöb, Butterfield & Pugnaire 

(2012) found that the magnitude of the net effects of competition and 

facilitation on the CWM, richness, and evenness of trait distributions was 

proportional to the effects of broad environmental gradients, and that the 

biotic effects on trait distributions often countered those of the environment. 

In short, biotic interactions can substantially alter trait–environment 

relationships in a variety of ways, and a better understanding of the 

functional trait basis of interaction outcomes is essential for integrating 

these effects into predictive models of trait–environment relationships 

(Butterfield & Callaway, 2013).

In addition to single-trait indices, multi-trait indices of functional 

composition can be used to represent the multidimensional nature of the 
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‘niche’ (Villeger et al., 2008), while other metrics such as dendrogram-based 

indices (Petchey & Gaston, 2002) combine richness and evenness. However, 

functional richness—the key indicator of functional spread within 

communities—could be heavily influenced by rare, outlying species. 

Abundance-weighted measures of spread, such as functional dispersion 

(Laliberté & Legendre, 2010) and Rao’s quadratic entropy (Botta-Dukat, 

2005) may more accurately predict some ecosystem functions as the traits 

of dominant species have stronger effects (i.e. mass ratio hypothesis; Grime,

1998). A great deal of research has gone into the mathematical properties 

and ecological justifications of these different indices (Petchey & Gaston, 

2006; Mouchet et al., 2010); however, their relative performance in 

identifying biotic responses to a wide variety of environmental gradients, as 

well as biotic effects on various ecosystem processes, are only just beginning

to be addressed (McGill, Sutton-Grier & Wright, 2010; Sutton-Grier et al., 

2011).

Deciding which indices to apply to a given trait-based question is not a 

simple task given the potential relevance of many traits and diversity 

metrics. Single-trait indices may retain more information, as opposed to 

combining their variation into composite indices. This may mirror the issue of

inter- versus intraspecific trait variation discussed above, where the variance

in trait values may be reduced through aggregation. Single-trait indices may 

also provide a better understanding of the complexity of responses to 

environmental gradients, as well as effects on ecosystem processes, and 
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may in fact be necessary for elucidating response–effect patterns in complex

landscapes (Butterfield & Suding, 2013) and identifying multiple assembly 

processes that act simultaneously along environmental gradients (Spasojevic

& Suding, 2012). On the other hand, there are examples of patterns that can 

only be revealed through multi-trait indices, both for community assembly 

(Villeger, Novack-Gottshall & Mouillot, 2011) and effects on ecosystem 

processes (Mouillot et al., 2011). Additionally, while most studies have linked

functional diversity to single ecosystem processes (e.g. productivity), there is

also mounting evidence that multi-trait metrics (e.g. functional divergence 

and dispersion) may be useful in predicting multiple processes 

simultaneously (i.e. multifunctionality; Mouillot et al., 2011; Valencia et al., 

2015). At this stage in our understanding, it is important to use both single- 

and multi-trait indices to examine individual and multifunctional responses or

effects in ecosystems, since no generalization is yet available as to which 

indices may be superior for specific questions. However, useful prescriptions 

for trait selection and aggregation exist (Villeger et al., 2008) that can aid in 

comparing and contrasting index performance as we move forward.

(2) Applying community-level metrics at global scales

For TBE to be predictive, relationships between response traits and 

environmental conditions and disturbance regimes need to be globally 

consistent. It is currently unknown whether statistical models that link 

response traits to environmental conditions in one ecosystem can be easily 
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transferred and applied to another ecosystem on another continent. This lack

of generality is partly hindered by the lack of a global-scale database of 

vegetation composition and associated environmental data. Efforts are 

underway to develop such a database (sPlot, http://www.idiv-biodiversity.de/

sdiv/workshops/workshops-2013/splot), which will link directly to a global-

scale trait database (Kattge, 2011). This research will be instrumental for 

advancing our understanding of how traits vary along the full range of 

environmental conditions throughout the planet. In the meantime, however, 

there is a wealth of published trait–environment relationships that can be 

synthesized through meta-analysis (Gurevitch & Hedges, 2001). Meta-

analysis can be used to determine the consistency of trait responses to 

environmental conditions and disturbance regimes across multiple studies, 

and can also be used to rank the importance of traits based on their effect 

sizes and their consistency of response (e.g. Cornwell et al., 2008; Díaz et al.,

2007b).

To predict the response of communities to environmental conditions in 

new sites or times, it will be necessary to identify the critical predictor 

variables for those new sites and times. The best-resolved trait–environment 

relationships demonstrate the influence of temperature and precipitation 

gradients on interspecific variation in trait values. A recent study found that 

temperature is a stronger predictor of trait variation than is precipitation 

across a variety of traits (Moles et al., 2014), likely due to the direct effects 

of temperature on plant function relative to the less proximate relationship 
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between precipitation and soil moisture dynamics. Predictors of water stress 

that integrate temperature, precipitation, and other factors that influence 

soil moisture supply are typically better predictors of plant trait spectra than 

temperature or precipitation alone (Wright et al., 2004). Soil data are 

becoming better each year, but the quality of soil data varies among 

countries, and often within countries. Current climate data and future climate

projections are available at a global scale as data layers in Geographical 

Information Systems (Hijmans et al., 2005). The tools for predicting future 

responses are increasing rapidly, but the accuracy of our predictions will 

depend heavily on the precision of these future projections. As access to 

accurate, consistent environmental data improves, predicting changes in 

community composition can be accomplished using trait-based models that 

yield a predicted relative abundance for every species in the local pool based

on the traits of the species and the relationships between traits and the 

environment (Laughlin & Laughlin, 2013). 

Our ability to predict ecosystem processes under changing 

environmental conditions is also contingent on our understanding of the 

relative importance of both abiotic conditions and the effect traits of the 

community (Díaz et al., 2007a), and how simultaneously to test and account 

for multiple important factors in predictive models. For example, litter 

decomposition rate has been shown to be a function of the local climate, the 

composition of the microbial community, and the physical and chemical 

traits of the litter (see Section II.2b). Structural equation modelling (SEM) is a
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useful tool to quantify the unique effects that are attributable to multiple 

abiotic versus biotic components of the ecosystem (Mokany, Ash & 

Roxburgh, 2008). SEM permits the specification of a network of relationships 

that are characteristic of complex systems (Grace, 2006). The standardized 

path coefficients that describe the statistical relationships among variables 

are similar to partial regression coefficients, and the absolute values of these

coefficients can be ranked to compare their impact on an ecosystem 

process. For example, nitrification potential was shown to be most strongly 

driven by the direct effects of abiotic soil properties such as pH, 

temperature, and nitrogen availability, and only weakly driven by the LES 

traits in the understorey plant community (Laughlin, 2011). In other words, 

altering the functional composition of leaf traits in this pine forest 

understorey plant community would have less effect on internal nitrogen 

cycling than if we altered the abiotic properties of the soil. In another 

example, SEM was used to discover that ecosystem multifunctionality was 

driven equally by both the average and the diversity of traits in a dryland 

community (Valencia et al., 2015). The ability of SEM to parse out the 

influence of many factors and feedbacks is proving it to be an extremely 

useful tool for TBE as seen in several recent studies (Mokany et al., 2008; 

Laughlin, 2011; Laliberté & Tylianakis, 2012; Lavorel et al., 2013; Valencia et

al., 2015); multivariate tools such as these will have a critical role in realistic 

predictions of ecosystem dynamics moving forward. 
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Finally, in addition to forecasting the future, TBE can also be used to 

back-cast previous palaeoecological transitions, a very useful approach to 

predicting changes in the future. For example, the end-Cretaceous mass 

extinction of plants resulted in a shift towards dominance of plants with 

lower LMA and higher vein density, which is consistent with a faster growth 

strategy in the cold and dark impact winter that followed the Chicxulub 

bolide impact (Blonder et al., 2014). Changes in leaf vein density have also 

been observed over much longer timescales throughout the Cretaceous 

(Feild et al., 2011), with the emergence of high vein densities in angiosperms

likely corresponding to major shifts in climatic and hydrological processes via

increased evapotranspiration rates and associated feedbacks (Boyce et al., 

2009). Combining information about how traits have responded to previous 

climate changes with current trait–environment relationships will enhance 

our ability to predict how traits will respond to future environmental change.

V. CONCLUSIONS

(1) Trait-based ecology can be a powerful approach to explain and predict 

highly complex systems. While our understanding of key components of TBE 

(e.g. response traits, effect traits, functional diversity) has developed 

continuously since Lavorel & Garnier (2002) introduced their trait-based 

conceptual framework, many challenges remain. 

(2) We have highlighted several exciting areas for future research. The 

usefulness of traits in predictive models hinges on deepening our 
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understanding of which traits drive ecological processes at organismal, 

community, and ecosystem scales. While soft traits, such as SLA or wood 

density, show much promise in explaining some metrics of plant function 

(e.g. RGR) and species distributions, it remains to be seen if these traits can 

simultaneously predict multiple ecological processes across diverse 

community types. We demonstrated that genetic variation and phenotypic 

plasticity can strongly influence a range of plant functions, but how these 

two components contribute to intraspecific trait variation and ecological 

strategies across a range of species needs to be addressed. Furthermore, 

future work needs to identify how intraspecific trait variation should be 

quantified and incorporated into models. Our review also highlighted the 

need to understand how non-additive effects of traits, species interactions, 

and abiotic factors influence community- and ecosystem-level processes, 

and how these separate components may be incorporated into cohesive and 

predictive frameworks. While TBE has seen many recent advances in 

modelling approaches, we still do not know if algorithms developed in one 

community can be applied at larger spatial and temporal scales. Progress on 

all of these questions will be facilitated by improvements in the quality and 

availability of trait and environmental data.

(3) While this review has focused on how TBE informs our understanding of 

basic ecological processes, work is underway to apply this framework to 

conservation and restoration programs (e.g. Funk et al., 2008; Laughlin, 

2014a). For example, traits have been used to identify native species from 
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regional species pools that can tolerate certain abiotic conditions or compete

with invasive species (Funk & McDaniel, 2010; Kimball et al., 2014), and 

traits that may be useful in re-establishing critical ecosystem services (e.g. 

pollination services: Lavorel et al., 2011). 

(4) The potential for TBE to improve our understanding of basic and applied 

ecological processes makes the need for empirical tests of this framework a 

priority in ecology.
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Figure legend

Fig. 1. Functional traits can be used to understand a wide range of 

ecological processes occuring at organismal, community, and ecosystem 

scales. Examples are given here of how leaf, stem, and fine root traits 

influence a variety of ecological processes. 
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