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Abstract	9	

Helicobacter	 pylori	 is	 a	 gram-negative	 bacterium	 that	 infects	 half	 of	 the	 world’s	10	

population,	causing	gastritis,	peptic	ulcers,	and	gastric	cancer.	To	establish	chronic	stomach	11	

infection,	H.	pylori	utilizes	chemotaxis,	driven	by	a	conserved	signal	 transduction	system.	12	

Chemotaxis	allows	H.	pylori	to	sense	an	array	of	environmental	and	bacterial	signals	within	13	

the	stomach,	guiding	its	motility	towards	its	preferred	niche	within	the	gastric	mucosa	and	14	

glands.	 Fine-tuned	 localization,	 regulated	 by	 the	 chemotaxis	 system,	 enables	 robust	15	

colonization	during	the	acute	stage	of	infection.	During	chronic	infection,	chemotaxis	helps	16	

maintain	 bacterial	 populations	 and	 modulates	 the	 host	 immune	 response.	 Given	 its	17	

importance	 in	host	colonization	and	disease,	 chemotaxis	 is	an	attractive	 target	 for	 future	18	

treatments	against	H.	pylori	infections.	19	

Highlights		20	

• The	H.	pylori	chemotaxis	system	includes	classical	and	auxiliary	chemotaxis	proteins		21	

• H.	pylori	senses	several	host	and	bacterial	ligands	through	four	chemoreceptors	22	

• Chemotaxis	is	critical	for	colonization	during	acute	infection	23	

• Chemotaxis	modulates	host	inflammation	during	chronic	infection	24	

Introduction	25	

Helicobacter	pylori	is	a	gram-negative	bacterium	that	has	evolved	a	keen	ability	 to	26	

chronically	 colonize	 the	 stomach,	 infecting	 roughly	 half	 of	 the	 world’s	 population	 [1].	27	

Colonization	can	lead	to	the	development	of	chronic	gastritis,	gastric	and	duodenal	ulcers,	28	
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and	gastric	cancers	[2,3].	Colonization	is	also	linked	to	potential	health	benefits,	including	29	

protection	 against	 allergic	 asthma,	 and	 inflammatory	 bowel	 and	 esophageal	 diseases,	30	

presumably	though	modulating	effector	T-cell	populations	or	gastric	acid	production	[4–7].	31	

The	 beneficial	 and	 pathogenic	 aspects	 of	 H.	 pylori	 require	 colonization,	 therefore	 an	32	

important	goal	 is	 to	understand	 the	molecular	basis	of	 the	bacterial	 factors	 that	promote	33	

chronic	infection.			34	

H.	pylori	colonizes	 the	primate	stomach,	a	harsh	environment.	The	stomach	 lumen	35	

ranges	 between	 pH	 1-5	 [8],	 conditions	 at	 which	H.	 pylori	 is	 viable	 for	 only	 ~30min	 [9].	36	

Additionally,	 stomach	 contents	 are	 cleared	 regularly,	 and	 the	 gastric	 mucosa	 undergoes	37	

constant	turnover	[10].	Accordingly,	H.	pylori	must	rapidly	initiate	colonization	and	localize	38	

where	 the	environment	 is	more	hospitable:	within	15μm	 from	 the	gastric	 epithelial	 cells	39	

[11],	and	deep	within	gastric	glands	[12].	40	

H.	 pylori	 colonization	 is	 promoted	 by	 chemotaxis,	 the	 focus	 of	 this	 review.	41	

Chemotaxis	is	a	process	that	enables	H.	pylori	to	sense	environmental	signals	and	regulate	42	

its	 motility	 to	 move	 away	 from	 harmful	 conditions	 and	 towards	 favorable	 ones	 [13].		43	

Chemotaxis	promotes	colonization	and	plays	a	role	in	modulating	host	immune	responses	44	

[14–16].	In	addition	to	chemotaxis,	H.	pylori	utilizes	a	suite	of	colonization	factors	including	45	

urease,	 cell	 shape,	adhesins,	 the	Cag	pathogenicity	 island	 type	 four	secretion	system,	and	46	

the	 toxin	 VacA.	 Readers	 are	 referred	 to	 several	 excellent	 recent	 reviews	 on	 these	 topics	47	

[7,17–19].			48	
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The	 H.	 pylori	 signal	 transduction	 system	 transforms	 ligand	 presence	 into	 a	49	

swimming	response	50	

	 Chemotaxis	 signal	 transduction	 systems	 allow	 bacteria	 to	 direct	 their	 motility	51	

[13,20,21].	 Such	 systems	 are	 widespread,	 present	 in	 ~50%	 of	 bacterial	 species,	52	

highlighting	 the	 strong	 fitness	 advantage	 they	 confer	 [20].	 The	 chemotaxis	 system	 of	H.	53	

pylori	 contains	 core	 chemotaxis	 proteins	 found	 in	 all	 chemotaxis	 systems,	 and	 auxiliary	54	

ones	found	in	only	some	(Figure	1).	The	core	chemotaxis	proteins	are	the	chemoreceptors	55	

(TlpA,	 TlpB,	 TlpC,	 and	TlpD),	 the	 CheW	 coupling	 protein,	 the	 CheA	kinase,	 and	 the	 CheY	56	

response	regulator	[13,22].	The	H.	pylori	auxiliary	chemotaxis	proteins	include	three	CheV-57	

type	coupling	proteins	(CheV1,	CheV2,	and	CheV3),	the	CheZ	phosphatase,	and	the	unique	58	

chemotaxis	protein	ChePep,	which	 localizes	CheZ	 to	 the	poles	 [12,23–28].	Environmental	59	

signals	are	sensed	either	directly	or	 indirectly	by	chemoreceptors,	and	are	relayed	to	the	60	

histidine	kinase	CheA	via	the	CheW	or	CheV1	coupling	proteins	[13,27].	Currently,	the	role	61	

of	 CheV2	 and	 CheV3	 are	 unknown.	 Chemicals	 sensed	 as	 repellents	 activate	 CheA’s	 auto-62	

phosphorylation,	and	this	phosphoryl	group	is	subsequently	passed	to	CheY	via	histidine-63	

to-aspartate	 phosphorelay	 [29].	 Phosphorylated	 CheY	 interacts	 with	 the	 flagellar	motor,	64	

causing	 it	 to	 rotate	 clockwise	 and	 the	 bacteria	 to	 reverse	 or	 change	 direction	 [30,31].	65	

Alternatively,	attractants	squelch	CheA’s	auto-phosphorylation;	non-phosphorylated	CheY	66	

does	 not	 interact	 with	 the	 motor,	 and	 the	 bacteria	 swim	 straight,	 without	 direction	67	

changes.	 Mutants	 in	 any	 one	 of	 these	 proteins	 are	 non-chemotactic	 (Che-)	 to	 varying	68	

degrees	and	with	different	swimming	behavior.		Accordingly,	cheW,	cheA,	cheY,	cheV1,	and	69	
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cheV2	mutants	are	all	Che-,	displaying	straight	swimming	phenotypes,	 likely	because	they	70	

do	not	produce	phosphorylated	CheY	[24,25,32,33].	cheZ,	chepep,	cheV3	mutants	are	also	71	

Che-,	 but	 display	 hyper-reversal	 phenotypes,	 apparently	 because	 they	 produce	 high	72	

amounts	 of	 phosphorylated	 CheY	 	 [12,24–26].	 Readers	 are	 referred	 to	 several	 excellent	73	

reviews	of	this	system	for	more	molecular	details	[18,34,35].	74	

H.	pylori	senses	multiple	host	and	bacterially-generated	conditions	as	repellents	and	75	

attractants	76	

H.	 pylori	 senses	 specific	 chemicals	 and	 conditions	 via	 three	 transmembrane	77	

chemoreceptors	 with	 periplasmic	 sensing	 domains—TlpA,	 TlpB,	 TlpC—	 and	 one	78	

cytoplasmic	 receptor,	 TlpD	 [16,36–38].	 The	 signals	 of	 these	 chemoreceptors	 and	 their	79	

distribution	 likely	 play	 a	 driving	 role	 in	 the	 localization	 of	H.	pylori	 in	vivo.	 Thus,	 efforts	80	

have	been	made	to	determine	H.	pylori’s	sensing	profile.				81	

H.	 pylori	 experiences	 multiple	 repellent	 conditions.	 Several	 of	 these	 are	 host	82	

generated,	 including	 acidic	 pH,	 reactive	 oxygen	 species	 (ROS),	 and	 bile	 [37,39,40].	 The	83	

acidic	 stomach	 lumen	 is	 toxic	 to	 H.	 pylori	 [8,9].	 Accordingly,	 acid	 is	 a	 potent	84	

chemorepellent,	with	 TlpA,	 TlpB,	 and	 TlpD	 playing	 roles	 in	 sensing	 [37,41,42],	 and	 TlpC	85	

playing	a	role	in	modulating	the	acid	response	[43].	Currently,	there	is	only	a	mechanistic	86	

proposal	 for	 how	 TlpB	 senses	 acid,	 via	 amino	 acids	 that	 are	 variably	 protonated	 [41].	87	

Another	 signal,	ROS	 [39],	 is	 produced	by	host	 epithelial	 and	 immune	 cells	 [44–46].	TlpD	88	

senses	ROS	via	an	unknown	mechanism	[39].	Bile	acids	are	toxic	to	H.	pylori	and	are	sensed	89	

via	 unknown	 chemoreceptor(s)	 [40,47].	 Bile	 is	 released	 from	 the	 gallbladder,	 into	 the	90	
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duodenum	[48].	The	repellent	and	toxic	properties	of	bile	may	explain	why	H.	pylori	does	91	

not	colonize	this	region	[40,47,49].	92	

H.	 pylori	 is	 also	 repelled	 by	 the	 self-generated,	 quorum-sensing	 molecule	93	

autoinducer-2	(AI-2),	and	responds	to	its	own	electron	transport	chain	(ETC)	[38,50].	AI-2	94	

is	sensed	by	TlpB	as	a	chemorepellent,	in	a	manner	dependent	on	the	periplasmic	proteins	95	

AibA	and	AibB	[50,51].	A	repellent	response	to	AI-2	may	promote	dispersion	of	H.	pylori	in	96	

vivo.	H.	 pylori	also	 senses	 disruptions	 to	 the	 ETC	 via	 TlpD,	 but	 the	 physiological	 change	97	

required	to	induce	this	sensing	is	unknown	[38,52,53]	98	

In	 addition	 to	 chemorepellents,	 many	 of	 which	 are	 harmful	 to	 the	 bacterium,	H.	99	

pylori	also	senses	several	beneficial	chemoattractants.	One	of	these	chemoattractants,	urea,	100	

is	 sensed	 by	 TlpB	 [40,54–56].	 In	 non-infected	 individuals,	 urea	 is	 available	 at	101	

concentrations	between	5-21mM	within	 the	 stomach	 [57],	 and	 is	hydrolyzed	by	H.	pylori	102	

urease	 into	 ammonia	 and	 bicarbonate	 to	 buffer	 its	 local	 environment	 [7].	 Arginine	 is	103	

sensed	as	a	chemoattractant	by	TlpA	[40,58,59],	and	is	an	essential	amino	acid	for	H.	pylori	104	

[60,61].	In	both	urea	and	arginine	chemotaxis,	chemoattraction	may	help	H.	pylori	find	key	105	

nutrients,	while	also	directing	it	toward	the	epithelial	surface.	106	

There	 are	 several	 additional	 chemotactic	 signals	 that	 have	 not	 been	 extensively	107	

studied.	 For	 example,	H.	pylori	uses	 chemotaxis	 to	migrate	 to	 the	 site	 of	 gastric	 damage	108	

[62].	 However,	 the	 exact	 host-derived	 chemicals	 that	 direct	 this	 response	 are	 unknown.	109	

Another	attractant	that	has	not	been	mapped	to	a	chemoreceptor	is	cholesterol	[63].		110	
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Chemotaxis	during	in	vivo	colonization	111	

Che-	H.	pylori	mutants	 have	 severe	 colonization	 defects	 (Figure	 2),	 and	 appear	 to	112	

interact	 with	 host	 tissue	 differently	 based	 on	 their	 aberrant	 inflammatory	 responses	113	

(Figure	2).	These	aspects	are	discussed	in	the	following	sections.	114	

Chemotaxis	is	required	for	wild-type	colonization	115	

	 Chemotaxis	is	required	for	wild-type	(WT)	level	colonization	of	the	stomach,	based	116	

on	studies	using	a	variety	of	Che-	mutants,	 lacking	CheA,	CheY,	CheW,	or	ChePep.	In	some	117	

cases,	 Che-	 mutants	 did	 not	 colonize	 at	 all	 [16,32],	 and	 in	 others	 they	 colonized	 poorly	118	

[14,15,33,49,62,64].	 Che-	mutants	 require	 100-fold	more	 bacteria	 to	 initiate	 colonization	119	

[33],	thus	some	studies	might	have	employed	H.	pylori	doses	that	were	below	the	infectious	120	

dose.	 Overall,	 these	 results	 show	 that	 chemotaxis	 is	 critical	 during	 the	 initial	 stages	 of	121	

infection,	 particularly	 with	 low	 infectious	 doses,	 such	 as	 could	 be	 experienced	 during	122	

human	infection.		123	

Chemotaxis	during	early	infection	124	

For	roughly	the	first	three	months	of	an	infection,	chemotaxis	is	critical.	During	this	125	

period,	Che-	mutants	display	significant	colonization	defects	that	are	greater	in	one	region,	126	

the	antrum	 [33,49].	The	 stomach	 is	 extensively	 invaginated	 into	over	25,000	glands,	 and	127	

Che-	mutants	fail	to	robustly	colonize	these	niches,	especially	within	the	antrum	[12,64,65].	128	

During	the	first	month	of	a	WT	infection,	the	number	of	glands	infected	and	the	amount	of	129	
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H.	pylori	per	gland	increases.	Che-	mutants,	however,	 infect	few	glands	initially	and	fail	to	130	

promote	this	same	population	expansion	between	and	within	glands	[64].		131	

Chemotaxis	during	chronic	infection	132	

A	 hallmark	 of	H.	pylori	colonization	 is	 its	 ability	 to	 achieve	 chronic	 infection.	 The	133	

role	of	chemotaxis	during	the	chronic	stage	has	been	more	difficult	to	evaluate.	However,	it	134	

seems	that	in	the	absence	of	challenge	by	WT,	Che-	H.	pylori	are	able	to	achieve	WT	levels	of	135	

colonization	as	early	as	one	month	post	infection,	maintaining	comparable	levels	up	to	six	136	

months	 post	 infection	 and	 presumably	 longer	 [14,33,49,64].	 During	 the	 chronic	 stage	 of	137	

infection,	 Che-	 H.	 pylori	 colonize	 gastric	 glands	 in	 the	 corpus	 and	 antrum,	 while	 WT	138	

populations	 also	 colonize	 the	mucus	 layer	 of	 the	 corpus	 [64].	 Additionally,	 Che-	mutants	139	

have	 been	 observed	 to	 be	 less	 closely	 associated	with	 the	 gastric	 epithelium	during	 this	140	

stage	[14].	141	

Competition	142	

	 Che-	H.	 pylori	 have	 general	 colonization	 defects	 when	 they	 are	 the	 sole	 infecting	143	

strain,	with	 even	 greater	 colonization	 defects	 observed	 during	 competition	 experiments.	144	

When	 mice	 are	 infected	 with	 equal	 doses	 of	 WT	 and	 Che-	H.	 pylori,	 the	 Che-	 mutant	 is	145	

outcompeted	 by	 over	 1000-fold	 [33,36].	 If	 the	 infections	 are	 given	 sequentially,	 a	146	

secondary	 WT	 infection	 can	 displace	 a	 primary	 population	 of	 Che-	 H.	 pylori,	 nearly	147	

displacing	 the	 entire	 gland	 population	 of	 Che-	 bacteria.	 In	 contrast,	 a	 secondary	 WT	148	

infection	 is	unable	 to	displace	a	primary	population	of	WT	 [33,64].	This	 finding	 suggests	149	
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that	chemotaxis	is	needed	to	maintain	colonization	during	chronic	colonization,	especially	150	

when	WT	H.	pylori	are	present.		151	

Role	of	chemoreceptors	for	colonization	152	

Chemoreceptors	 head	 the	 chemotaxis	 signal	 transduction	 system.	 Accordingly,	153	

several	 studies	have	examined	 the	 in	vivo	phenotypes	of	 chemoreceptor	mutants.	Loss	of	154	

individual	 chemoreceptors	 alters	 the	 sensing	 profile	 of	 H.	 pylori,	 but	 does	 not	 cause	 a	155	

complete	 loss	 of	 chemotactic	 ability.	 Specifically,	 bacteria	would	 lose	 the	 ability	 to	 sense	156	

some	 compounds,	 perhaps	 biasing	 bacteria	 towards	 or	 away	 from	 signals	 sensed	 by	 the	157	

remaining	chemoreceptors.	Such	a	change	could	lead	H.	pylori	 towards	more	inhospitable	158	

environments.		159	

tlpA	and	tlpC	mutants	colonize	mice	to	WT	levels	during	single	strain	infections,	but	160	

are	outcompeted	by	WT	during	competition	infections	[36].	This	phenotype	suggests	that	161	

WT	exacerbates	 the	mutant’s	defect	 in	some	way,	possibly	by	competing	 for	nutrients	or	162	

causing	 a	 host	 response	 that	 the	mutant	 cannot	 avoid.	 This	 idea	would	 fit	well	with	 the	163	

function	of	TlpA	for	finding	arginine	[58,59].		164	

tlpB	mutants	have	either	no	or	subtle	defects	that	appear	more	pronounced	later	in	165	

infection	 [14,37,49,56].	 Interestingly,	 tlpB	 mutants	 are	 not	 outcompeted	 by	WT	 [14,16],	166	

suggesting	that	WT	does	not	exacerbate	the	mutant’s	defect.	This	outcome	suggests	TlpB’s	167	

signal,	 urea,	 is	not	 a	 limiting	 substance	 for	H.	pylori,	 and	 fits	well	with	 its	 relatively	high	168	

(mM)	levels	[57].	The	late	infection	defects	observed	for	tlpB	mutants	could	be	related	to	169	

enhanced	inflammation	(see	below)	or	to	defects	associated	with	AI-2	chemotaxis	[14,50]	170	
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In	single	strain	 infections,	tlpD	mutants	have	substantial	colonization	defects	early	171	

in	infection,	greater	than	Che-	H.	pylori	[49,52].	Additionally,	tlpAD	double	mutants	have	an	172	

even	 greater	 colonization	 defect,	 and	 are	 defective	 in	 antral	 gland	 colonization	 [42].	173	

Treatment	of	tlpAD-infected	mice	with	omeprazole,	which	blocks	acid	production,	rescues	174	

H.	pylori	levels	to	that	seen	in	tlpD	single	strain	infections	[42,49].	This	result	suggest	the	175	

inability	 to	sense	acid	via	TlpA	and	D	reduces	 in	vivo	 fitness,	and	 indicates	the	remaining	176	

colonization	defect	in	tlpD	infections	is	potentially	due	to	an	inability	to	sense	ROS	or	ETC	177	

conditions	[38,39].		178	

Role	of	auxiliary	chemotaxis	proteins	in	colonization	179	

Loss	of	 the	auxiliary	 chemotaxis	proteins	 creates	H.	pylori	mutants	 that	 are	either	180	

fully	or	partially	Che-	[12,23,25,26].	Likewise,	mutants	lacking	the	CheVs	or	ChePep	display	181	

colonization	 defects	 that	 range	 from	 severe,	 similar	 to	 fully	 Che-	mutants,	 to	 less	 severe	182	

[12,25,65].	Overall,	data	supports	that	auxiliary	proteins	can	have	as	substantial	an	effect	183	

as	core	proteins.			184	

Chemotaxis	modulates	host	inflammation	185	

	 Host	 inflammation	 is	 a	 major	 disease	 outcome	 of	 H.	 pylori	 colonization.	186	

Inflammation	 occurs	 upon	 recognition	 of	 microbial-associated	 molecular	 patterns	187	

(MAMPs)	 or	 damage	 associated	 molecular	 patterns	 (DAMPs)	 by	 local	 monocytes,	188	

macrophages,	 and	 epithelial	 cells.	 These	 cells	 release	 pro-inflammatory	 cytokines	 and	189	

chemokines,	the	latter	of	which	recruits	neutrophils	and	antigen	presenting	cells,	including	190	

macrophages	 and	 dendritic	 cells,	 to	 the	 site	 of	 infection	 [66,67].	 Dendritic	 cells	 release	191	
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cytokines	and,	process	and	present	H.	pylori	antigens,	priming	T-cell	differentiation	[7,66–192	

71].	H.	pylori	colonization	induces	the	differentiation	of	pro-inflammatory	T-helper	1	(Th1)	193	

and	 T-helper	 17	 (Th17)	 cells	 and	 anti-inflammatory	 T-helper	 2	 (Th2)	 and	 T-regulatory	194	

cells	(Tregs)	[7,66,70,71].	The	degree	of	host	inflammation	is	modulated	by	the	balance	of	195	

effector	T-cell	populations.	H.	pylori	induces	inflammation	via	its	intimate	interaction	with	196	

the	gastric	epithelium	and	the	production	of	virulence	factors	such	as	the	type	4	secretion	197	

system,	 CagA,	 NapA,	 and	 VacA	 [7,66,70].	 The	 inflammatory	 response	 to	 H.	 pylori	198	

colonization,	however,	is	also	modulated	by	chemotaxis	[14–16].		199	

	 Chemotaxis	 was	 first	 shown	 to	 modulate	 inflammation	 using	 a	 tlpB	 mutant	 in	 a	200	

gerbil	model	of	 infection	 [16].	 tlpB	mutants	 colonized	gerbils	 to	WT	 levels	at	 four	weeks	201	

post	 infection,	but	 induced	only	 low	gastric	 inflammation,	as	measured	using	histological	202	

enumeration	of	lymphocytes.	While	tlpB	mutants	induced	less	inflammation	than	WT,	tlpB	203	

infected	gerbils	had	high	neutrophil	 recruitment	 to	 the	gastric	 tissue,	 such	as	 seen	a	 few	204	

days	after	H.	pylori	infection.	This	phenotype	suggested	they	were	mimicking	an	early	stage	205	

of	infection	[16].		206	

	 Subsequent	studies	extended	this	work	to	the	mouse	model,	examining	the	roles	of	207	

all	chemoreceptors	[14].	Three	months	post-infection,	Che-,	tlpA,	and	tlpB	mutants	induced	208	

modestly	 less	 inflammation	 than	WT.	At	 later	 time	points,	 six	months	post-infection,	 tlpA	209	

and	tlpB	mutants	caused	high	inflammation,	while	Che-	mutants	induced	low	inflammation.	210	

At	both	time	points,	all	strains	colonized	to	WT	levels.	Overall,	these	results	made	it	clear	211	
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that	 the	 inflammatory	 response	 was	 modulated	 by	 bacterial	 properties	 controlled	 by	212	

chemotaxis,	and	was	affected	independent	of	overall	bacterial	load	[14].	213	

	 To	gain	insight	into	why	Che-	mutants	induce	less	inflammation,	Rolig	et	al.	(2011)	214	

examined	 the	 specific	 immune	 cell	 populations	 recruited	 to	 the	 stomach.	 While	 Che-	215	

mutants	induce	less	histologically-evident	inflammation,	the	total	number	of	CD4+	T-cells	216	

recruited	was	equivalent	between	mice	infected	with	WT	or	Che-	H.	pylori	two	months	post	217	

infection	 [15].	 WT	 infections,	 however,	 were	 found	 to	 have	 higher	 amounts	 of	 pro-218	

inflammatory	 Th17	 cells,	 as	 assessed	 by	 expression	 of	 associated	 genes,	 and	 an	 overall	219	

elevated	ratio	of	Th17/Treg	cells	compared	with	Che-	infections.	A	possible	explanation	for	220	

the	ability	of	WT	to	trigger	a	Th17	response	came	from	the	observation	that	WT	infections	221	

induced	more	gastric	tissue	apoptosis	than	did	Che-	infections	[15].	Because	apoptosis	is	a	222	

host	response	that	can	lead	to	the	differentiation	of	Th17	cells	[72],	it	seemed	plausible	that	223	

the	inability	to	trigger	apoptosis	partially	explains	why	Che-	infections	lack	Th17	cells.	It	is	224	

still	not	fully	understood	why	WT	H.	pylori	induces	more	apoptosis	and	a	more	robust	Th17	225	

response,	 however,	 it	 is	 now	known	 that	Che-	mutants	 are	mis-localized	 [12,14,64].	Mis-226	

localization	possibly	induces	modified	interactions	with	distinct	cell	types	compared	to	WT	227	

infections,	modulating	 the	 resulting	 inflammatory	 response.	 The	 reason	 for	 the	 elevated	228	

inflammation	of	tlpA	and	tlpB	mutants	is	still	under	study.		229	

Conclusions	230	

Chemotaxis	 is	 one	 of	 several	 colonization	 factors	 utilized	 by	H.	pylori	 to	 promote	231	

chronic	 infection	 of	 the	 stomach	 [7,12,14,16,25,32,33,49].	 Work	 over	 the	 past	 20	 years	232	
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strongly	supports	that	chemotaxis	helps	H.	pylori	find	nutrients	such	as	urea	and	arginine,	233	

and	avoid	toxic	substances	such	as	acid	and	ROS.	The	list	of	critical	compounds	sensed	by	234	

H.	pylori	 will	 undoubtedly	 grow	 as	more	work	 is	 done	 to	 better	 understand	 the	 sensing	235	

profile	of	each	chemoreceptor.	Chemotaxis	plays	roles	 in	 localization	and	modulating	 the	236	

host	immune	response.	The	stomach	landscape	is	comprised	of	multiple	niches,	and	studies	237	

support	 that	 chemotaxis	 is	 particularly	 critical	 for	 colonization	 during	 early	 infection,	238	

especially	 in	 the	 antrum,	 and	 for	 spread	 into	 new	 glands	 [12,49,64].	 During	 established	239	

infections,	 chemotaxis	 is	 less	critical	 for	 colonization,	perhaps	because	H.	pylori	has	been	240	

able	 to	 stochastically	 access	 the	 glands	 and	 does	 not	 demand	 chemotaxis	 for	 growth	 in	241	

these	 pockets.	 Instead,	 in	 late-stage	 infections,	 the	 role	 of	 chemotaxis	 in	 inflammation	242	

control	becomes	apparent	[14–16].	 	Understanding	the	mechanisms	by	which	chemotaxis	243	

modulates	host	inflammation	will	facilitate	our	understanding	of	how	bacteria	control	this	244	

important	process,	and	could	lead	to	future	treatments	to	modify	disease	outcomes.	Several	245	

pathogens	are	motile	and	chemotactic.	H.	pylori	 is	 leading	our	understanding	of	 the	roles	246	

for	this	important	process	in	vivo,	and	it	will	be	of	great	interest	to	assess	how	many	of	the	247	

same	principles	translate	across	bacterial	systems	and	organs.			248	
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	258	

Figure	Legends,	Figures,	and		Tables	259	

	260	

Figure	 1-	 H.	 pylori	 chemotaxis	 system.	 Chemotactic	 signals	 are	 sensed	 by	 the	261	

chemoreceptors	 TlpA,	 TlpB,	 TlpC,	 and	 TlpD.	 Signals	 are	 relayed	 through	 the	 coupling	262	

protein	CheW	(W)	or	the	auxiliary	CheV-type	coupling	protein	CheV1	(V1)	to	the	histidine	263	

kinase	CheA	(A).	Repellents	promote	CheA	auto-phosphorylation,	while	attractants	squelch	264	

CheA	auto-phosphorylation.	Phosphorylated	CheA	passes	its	phosphoryl	group	to	the	CheY	265	

(Y)	 response	 regulator	 via	 histidine	 to	 aspartate	 phosphorelay.	 Phosphorylated	 CheY	266	

interacts	 with	 the	 flagellar	 motor	 and	 is	 dephosphorylated	 by	 CheZ	 phosphatase	 (Z),	 in	267	
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complex	with	ChePep	(Pep).	CheV2	and	CheV3	are	not	depicted	as	their	role	is	this	system	268	

is	unknown.	269	

	270	

Figure	2-	Chemotaxis	promotes	localization	and	modulates	inflammation	in	vivo.	Wild-type	271	

(WT)	H.	pylori	 robustly	 colonizes	 gastric	 glands	 early	 during	 infection,	 and	 can	 replicate	272	

and	 spread	 between	 glands.	 Conversely,	 non-chemotactic	 (Che-)	H.	pylori	 fail	 to	 colonize	273	

gastric	glands	to	the	same	degree.	Concurrently,	WT	H.	pylori	 initiates	a	proinflammatory	274	

immune	 response,	 with	 a	 substantial	 T-helper	 17	 cell	 (Th17)	 response,	 while	 non-275	

chemotactic	 H.	 pylori	 promotes	 a	 dampened	 immune	 response,	 skewed	 toward	 T-276	

regulatory	cells	(Tregs).	277	

	 	278	
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Papers	of	significance	279	

(*=	Of	special	interest,	**=	Of	outstanding	interest)	280	

*Lertsethtakarn	et	al.	2012-	A	review	covering	the	H.	pylroi	chemotaxis	system	in	greater	281	

molecular	detail.	282	

**Goers	 Sweeney	 et	 al.	 2012-	This	 paper	 solved	 the	 first	 crystal	 structure	 of	 the	 sensing	283	

portion	of	 the	H.	pylori	 chemoreceptor,	TlpB.	Additionally,	a	proposed	mechanism	 for	pH	284	

sensing	by	TlpB	is	reported.		285	

**Huang	et	al.	2015-	This	study	describes	the	mechanism	of	urea	sensing	by	TlpB.	286	

*Huang	et	al.	2017-	This	study	uncovers	the	role	of	TlpA,	TlpB,	and	TlpD	in	pH	sensing	and	287	

showed	TlpAD	mutants	have	sever	colonization	defects	in	vivo.	288	

*Croxen	et	al.	2007-	The	first	paper	to	demonstrate	H.	pylori	senses	acidic	pH	through	TlpB.	289	

*Rader	et	 al.	2011-	This	 study	uncovers	 the	 role	of	TlpB	 in	 sensing	 the	bacterial	derived	290	

signaling	molecule,	autoinducer-2.	291	

*Collins	 et	 al.	 2016-	 This	 study	 demonstrates	 H.	 pylori	 senses	 reactive	 oxygen	 species	292	

through	TlpD.	293	

*Schweinitzer	et	al.	2008-	This	study	demonstrates	H.	pylori	is	capable	of	sensing	changes	294	

in	electron	transport	chain	activity	through	TlpD.		295	

*Aihara	et	al.	2014-		This	study	determined	H.	pylori	is	attracted	to	the	site	of	gastric	injury	296	

in	vivo	via	two-photon	microcopy,	in	a	manner	dependent	on	chemotaxis.	297	
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**Terry	et	al.	2005-	This	is	a	seminal	paper	investigating	the	role	of	H.	pylori	chemotaxis	in	298	

vivo.	This	study	demonstrated	that	non-chemotactic	H.	pylori	infect	to	lower	levels	and	are	299	

defective	 in	 antral	 colonization,	 determined	 the	 infectious	 dose	 of	 non-chemotactic	 H.	300	

pylori,	 and	 preformed	 competition	 experiments	 with	 wild-type	 and	 non-chemotactic	 H.	301	

pylori.	302	

**Keilberg	et	al.	2016,	MBio-	A	comprehensive	study	of	wild-type	and	non-chemotactic	H.	303	

pylori	 population	dynamics	within	 the	gastric	glands	and	mucus	 layer	of	 the	antrum	and	304	

corpus	of	the	stomach	over	a	6-month	period.	Additionally,	competition	experiments	with	305	

wild-type	and	non-chemotactic	H.	pylori	were	performed.	306	

**Howitt	 et	 al.	 2011-	This	 study	determined	 the	 auxiliary	 chemotaxis	protein,	ChePep,	 is	307	

required	for	chemotaxis,	and	ChePep	mutants	are	unable	to	colonize	gastric	glands	within	308	

the	antrum.	It	was	the	first	demonstration	of	the	use	of	chemotaxis	to	colonize	the	glands.	309	

*Rolig	et	al.	2012-	This	work	demonstrated	that	non-chemotactic	H.	pylroi	have	a	general	310	

colonization	defect	within	the	antrum,	and	that	TlpD	mutants,	overall,	have	a	more	severe	311	

colonization	defect	than	non-chemotactic	H.	pylori.		312	

**Williams	 et	 al.	 2007-	 A	 comprehensive	 study	 investigating	 the	 role	 of	 each	313	

chemoreceptor	in	vivo	over	a	6-month	infection.	Inflammation,	as	scored	by	histology,	and	314	

overall	bacterial	 loads	are	measured.	This	work	 identified	differential	 immune	responses	315	

elicited	by	TlpA,	TlpB,	and	Che-	H.	pylori.	316	
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**Rolig	 et	 al.	 2011-	 This	 study	 investigates	 the	 host-immune	 responses	 elicited	 during	317	

infection	 with	 wild-type	 and	 non-chemotactic	 H.	 pylori.	 Host	 gene	 expression	 and	 flow	318	

cytometry	is	used	to	uncover	the	unique	effector	T-cell	populations	recruited	during	each	319	

infection.				320	
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