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How perilous are broad-scale correlations with environmental 
variables?

David J. Currie1* , Cloé Pétrin1 and Véronique Boucher-Lalonde1

1 Biology Department, University of Ottawa, Ottawa Ont., K1N 6N5, Canada. *Email: dcurrie@uottawa.ca

Highlights

•	 Most variables in biogeographic and macroecological 
studies are spatially structured. Spatially structured 
variables are almost always significantly correlated 
with one another.

•	 These correlations will often be in the range of 
r2=0.1 to 0.3, but they can be very much stronger.

•	 If a biotic variable Y is driven by an environmental 
variable X1 that is spatially structured, then Y will be 
significant correlated with nearly any other spatially 
structured environmental variable X2, X3, … . Moreover, 
X1, X2, X3 … are likely to be collinear, purely by chance.

•	 Spurious correlations resulting from spatially 
structured variables are likely to be rampant in the 
biogeographic and macroecological literatures. Other 
evidence must be adduced before suggesting that a 
correlation reflects a causal link.

Abstract

Many studies correlate geographic variation of biotic 
variables (e.g., species ranges, species richness, etc.) 
with variation in environmental variables (climate, 
topography, history). Often, the resulting correlations 
are interpreted as evidence of causal links. However, 
both the dependent and independent variables in these 
analyses are strongly spatially structured. Several studies 
have suggested that spatially structured variables may 
be significantly correlated with one another despite the 
absence of a causal link between them. In this study we 
ask: if two variables are spatially structured, but causally 
unrelated, how strong is the expected correlation between 
them? As a specific example, we consider the correlations 
between broad‑scale variation in gamma species richness 
and climatic variables. Are these correlations likely to 
be statistical artefacts? To answer these questions, we 
randomly generated pseudo-climatic variables that have 
the same range and spatial autocorrelation as temperature 
and precipitation in the Americas. We related mammal 
and bird species richness both to the real and the pseudo-
climatic variables. We also observed the correlations 
among pseudo-climate simulations. Correlations among 
randomly generated, spatially unstructured, variables are 
very small. In contrast, the median correlations between 
spatially structured , but causally unrelated, variables are 
near r2=0.1 – 0.3, and the 95% confidence limits extend to 
r2=0.6 – 0.7. Viewing this as a null expectation, published 
richness–climate correlations are typically marginally 
stronger than these values. However, many other 
published richness–environment correlations would fail 
this test. Tests of the “predictive ability” of a correlation 
cannot reliably distinguish correlations due to spatial 
structure from causal relationships. Our results suggest 
a three-part update of Tobler’s “First Law of Geography”: 
#1) Everything in geography that is spatially structured 
will be collinear. #2) Near things are more related than 
distant things. #3) The more strongly spatially structured 
two variables are, the stronger the collinearity between 
them will be.

Keywords: Analytical artefact, birds, correlation, environment, mammals, spatial autocorrelation, spatial structure, species 
richness, Tobler’s first law
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Introduction
The most basic questions in ecology and biogeography 

are: why do some places on Earth have more species, or 
higher productivity, or greater densities of individuals, 
or more herbivory, etc., than other places (Wallace 
1876; Rosenzweig 1995; Adams 2009)? A first step 
toward answering these questions is to ask which 
characteristics of the environment are most strongly 
correlated with variation in the biotic variable of 
interest (Currie 2019). Consequently, the goal of 
many biogeographic or macroecological studies is to 
characterize the relationship between some biotic 
variable Y and environmental variables X1, X2, …:

( )1 2,  ,Y f X X ε= … +  	 (1)

where ε is an error term. Of course, correlations such 
as these do not imply causation, but correlations 
are “a recognition of the possible” (Rigler 1982). 
Correlations invite the researcher to propose and 
test hypotheses about underlying causal processes. 
But before suggesting that a correlation may reflect a 
causal link, it makes sense first to ask what correlations 
would arise in the absence of causal links (Gotelli 
and Ulrich 2012).

In the present study, we focus on correlations 
between broad-scale variation in species richness 
and environmental variables. The strongest of 
these correlations (r2>0.8) are typically with climatic 
variables: heat, water, and/or an interaction between 
the two (Currie 1991; Wright et al. 1993; Field et al. 
2009). Other richness–environment correlations are 
comparatively weak (0.0<r2<0.1), but still statistically 
significant when sample sizes are large (e.g., Fig. 6.1 
in Wright et al. 1993).

Richness–environment correlations can arise in 
several different ways. Variation in environmental 
variable X1 may cause variation in richness. Alternatively, 
a correlation between richness and X1 may be indirect: 
some other variable X2 causes the variation in richness, 
and X1 happens to be collinear with X2. For example, 
continental-scale variation in species richness is strongly 
correlated with contemporary climate (Field  et  al. 
2009), as well as with climate during the Last Glacial 
Maximum (Hortal et al. 2011), and with time since the 
retreat of the last glaciers (Hawkins and Porter 2003). 
These three environmental variables are strongly 
collinear (Hawkins and Porter 2003). Not surprisingly, 
richness correlates with them all. It is unlikely that 
they all represent causal links.

Further, variables that are spatially structured 
have an elevated probability of being correlated 
with one another, even in the absence of any causal 
link (Lennon 2000). For example, geographic ranges 
of individual species are often correlated with 
environmental variables (Kearney and Porter 2009; 
Araújo et al. 2013). Yet, randomization studies have 
shown that species’ ranges sometimes correlate 
equally strongly with randomly generated, spatially 
structured independent variables (Chapman 2010; 
Bahn and McGill 2013; Fourcade  et  al. 2018). This 
led Beale et al. (2008) to conclude dramatically that 

“opening the climate envelope reveals no macroscale 
association with climate in European birds”. This may 
be a very general problem, considering that much 
of biogeography and macroecology is built upon 
correlations between spatially structured biological 
and environmental variables (Lennon 2000).

Ecological studies most commonly deal with spatially 
structured dependent variables by partitioning the error 
term ε in eq. 1 into a spatially structured component 
and a random component (Section 5.1.3 in Fortin and 
Dale 2005). This makes sense if endogenous population 
processes such as dispersal, territoriality, etc., cause 
neighbouring samples to be more similar (or sometimes 
more dissimilar) than would be expected, given the 
environmental conditions (Legendre 1993). Fortin and 
Dale (2005) call this non-independence in the residuals 
of statistical models “inherent autocorrelation”. 
Inherent autocorrelation causes hypothesis tests to be 
too liberal because the individual observations do not 
each contribute an independent degree of freedom 
(Clifford et al. 1989). An extensive literature discusses 
statistical models that include, and thereby control for, 
spatially autocorrelated residual error (Dutilleul et al. 
1993, Legendre 1993, Dale and Fortin 2002, Fortin 
and Dale 2005, Dormann 2007, Dormann et al. 2007, 
Kühn 2007, Bini et al. 2009, Diniz-Filho et al. 2009, 
Beale et al. 2010, Peres-Neto and Legendre 2010).

However, spatial structure in biotic variable Y can 
also arise if the driving (independent) variables X1, X2, …, 
are spatially structured. Fortin and Dale (2005) call this 
“induced spatial dependence”. Often, the goal of a 
biogeographic or macroecological study is to characterize 
the shape and the strength of the relationship the 
relationship between Y and X1, X2,… . If the relationship 
is modelled with an autocorrelated error term, that term 
will likely be collinear with X1, X2, … . It will therefore 
capture, and control for, some part of the induced 
spatial dependence, which was the focus of the study 
in the first place. Using an autocorrelated error term 
affects parameter estimates and the apparent strength 
of the biology–environment relationship in idiosyncratic, 
method-dependent ways (Kühn 2007; Bini et al. 2009), 
depending on the strength of the collinearity between 
the autocorrelated error term and X1, X2, … . When data 
are spatially structured, significance tests are more 
conservative in models that include an autocorrelated 
error term than in models without that term. However, 
when statistical power is high (which is often the case 
in biogeographic/macroecological studies), significance 
tests are not particularly informative. In sum, models 
that include an autocorrelated error term do not appear 
to be appropriate when the independent variables are 
spatially structured.

Rather than controlling for spatial autocorrelation, 
the present study asks: how strong are correlations 
between spatially structured variables expected to 
be when there is no causal link between the two? 
How does this compare to observed correlations 
between broad-scale variation in species richness and 
environmental variables? Since the effect of inherent 
autocorrelation becomes small when the number of 
sites is large (Dutilleul et al. 1993), we shall ignore 
inherent autocorrelation in species richness here.
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To answer whether broad-scale variation in species 
richness and environmental variables are stronger 
than predicted from induced spatial dependence 
alone, we used a randomization study, as advocated 
by Lennon (2000). We focused on temperature and 
precipitation because the strongest richness–environment 
correlations reported in the literature often involve 
those two variables (Wright  et  al. 1993). We were 
interested to know how strong correlations are likely 
to be in practice; we therefore used a real geographic 
domain: the Americas (whereas Lennon 2000 used 
a 32 x 32 quadrat matrix). We used the algorithm 
of Chapman (2010) to generate simulated climatic 
variables that have the same spatial autocorrelation 
structure as temperature and precipitation in the 
Americas. We shall refer to these as pseudo-temperature 
and pseudo-precipitation. We then estimated bird 
species richness using the species’ ranges reported 
by Birdlife International and mammal richness from 
ranges reported on NatureServe. We related richness 
to observed temperature and precipitation, and 
to pseudo‑temperature and pseudo-precipitation. 
We compared the strength of these relationships. Finally, 
we tested how well models using real climate data in 
North America predict the spatial variation of richness 
in an independent area: South America. We compare 
this to richness predicted using pseudo‑climate data.

Methods

Study area
The study area is North and South America, divided 

at the Darien Gap of Panama. We superimposed a grid 
of 100 km x 100 km quadrats over this area. Because 
richness is a strongly non-linear function of area, we 
excluded quadrats that were >50% water. Off-shore 
islands were also excluded. This yielded 1978 quadrats 
in North America and 1764 in South America.

Data
Mean annual temperature, total annual precipitation, 

and elevation were taken from WorldClim (Hijmans et al. 
2005) Version 1.4 at a resolution of 30 arc-seconds. 
The data were resampled to the grid system, and 
the mean value for each quadrat was extracted. 
The frequency distribution of precipitation (mm/year) 
is strongly positively skewed. We therefore cube-root 
transformed precipitation to yield an approximately 
normally distributed independent variable in order to 
reduce the weight of extreme values. Temperature (K) 
was untransformed.

Ranges of the native bird species of the Americas 
were obtained from Birdlife International1. Ranges of 
the native mammals of the Americas were taken from 
NatureServe (Patterson  et  al. 2007). Richness was 
determined by superimposing ranges on the grid system. 
We counted a species as present in any quadrat into 
which its range extended, partially or entirely. Richness 
represents a tally of all the presences in a given quadrat. 
The frequency distribution of richness is also strongly 

1  https://www.birdlife.org/, accessed on 30/11/2014

positively skewed; a logarithmic transformation yielded 
an approximately normal distribution and improved 
residuals in regression models.

Pseudo-climate
We created pseudo-temperature and 

pseudo‑precipitation datasets as follows. We used the 
algorithm presented by Chapman (2010). Broadly, the 
algorithm first models the spatial correlation structure 
in a real data set. It then generates a stationary Gaussian 
field with the same spatial structure. Chapman’s 
algorithm assumes that autocorrelation is homogeneous 
across the study area, except near the coasts, where 
there is a buffering effect of the ocean. We rescaled 
the resulting pseudo-temperature surface to have 
the same range of values as the real temperature 
data. This yields temperature surfaces that resemble 
a real temperature map, except that the extremes 
of temperature were not generally in the expected 
places and the gradients were not necessarily in the 
expected directions (e.g., Fig. 1). We carried out the 
same process for precipitation, and we repeated the 
simulations 1000 times.

Figure 1. Mean annual temperature (°C) observed in North 
America (top panel) and an example of a simulation of 
pseudo-temperature produced using Chapman’s (2010) 
algorithm, which maintains the same degree of spatial 
autocorrelation, but the locations of minima and maxima 
are random (bottom panel).
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To isolate the effect of spatial structure in the 
pseudo-climatic variables, we also fully randomized 
each pseudo-climate variable, destroying its spatial 
structure. We related species richness to both the 
spatially structured pseudo-climate variables and to 
the fully randomized variables.

We also calculated the pairwise correlations between 
environmental variables. These correlations reflect 
the effect of induced spatial structure in the absence 
of any inherent spatial autocorrelation (which may be 
present in species richness).

Richness model
Next, we modeled richness as functions of the 

environmental variables in North America, using the 
following model and its subsets:

( )
( )

10 0 1

1/3 1/3
2 3

 0.5 *

*  *  *  

log SR c c T

c P c T P ε

+ = + +

+ +
	 (2)

where SR= species richness, T=mean annual 
temperature, P= total annual precipitation, and ε 
is a normally distributed error term. Regression 
coefficients are represented by c0, c1, c2, and c3. We fitted 
this model using the real climate data (T and/or P1/3) 
as well as each set of pseudo‑temperature (T ) 
and/or pseudo‑precipitation (P 1/3), and we noted 
the coefficients of determination (R2) for each fit.

The fits to the 1000 pseudo-climate datasets yield 
a distribution of the R2 between richness and spatially 
structured environmental variables in the absence 
of any causal links among them. We then compared 
the R2 using the real environmental data to the 
distribution generated using pseudo-environmental 
variables. We  could have examined other models 
(e.g., models with higher-order polynomial terms or 
other environmental variables), but simple models 
suffice to evaluate the effect of spatial dependence 
in the dependent and independent variables.

Test of predictive ability
For any fitted model, R2 provides a measure of 

explained variance within a dataset but not a measure 
of the model’s predictive accuracy. We tested the 
predictive capacity of each of the 1000 models fitted 
to the North American pseudo-climate data, and the 
1 model fitted to the real data. We did this in two 
ways. First, we examined within-sample predictive 
capacity using a jackknife technique. Using the North 
American data, we excluded one site, and we calculated 
a regression model with the remaining data. We then 
used that model to predict richness at the hold-out 
site. We repeated this process for each observation 
in the data set.

Second, we tested out-of-sample predictive ability. 
For each data set, we fitted a model in North America, 
and we used the environmental data from South 
America to predict richness in each quadrat in South 
America. We carried out this procedure using both the 

2  https://vassarstats.net, last accessed on 12/12/2019.

real climatic data and pseudo-climate. We restricted 
the test cases in South America to quadrats whose 
temperature and precipitation both fall within the 
ranges of those variables in North America.

Residual effects of pseudo-variables
We also tested whether the residual variation in species 

richness, after controlling for the real environmental 
variables, is related to pseudo-temperature (T ) or 
pseudo-precipitation (P 1/3). To do this, using the North 
American data, we fitted each of the following subsets 
of the original model, adding pseudo-temperature:

( )10 0 1 2 0.5  *  *log SR c c T c ε+ = + + +T

( ) 1/3
10 0 1 2 0.5  *  *  log SR c c P c ε+ = + + +T

( )
( )

1/3
10 0 1 2

1/3
3 4

 0.5 * *  

* * *

log SR c c T c P

c T P c ε

+ = + + +

+ +T
	 (3)

We then repeated these analyses, substituting P 1/3 
for T .

All statistics were done using R version 3.4.1, 
with the exception of confidence intervals around 
coefficients of determination, which were calculated 
using VassarStats2 .

Results

How well the algorithm works
Chapman’s (2010) algorithm yielded spatially 

autocorrelated pseudo-environmental variables that 
vary spatially in ways that resemble the real temperature 
and precipitation data, but whose gradients appear 
slightly less regular (Figure 1). Chapman’s algorithm 
assumes isotropic autocorrelation (i.e., equally strong 
in all directions), whereas the Earth’s geometry and 
rotation most strongly constrain temperature in the 
N–S direction and precipitation in the E–W direction 
(in the Americas). Chapman’s algorithm also does not 
prevent variables from having multiple minima or 
maxima along any particular transect, whereas this is 
uncommon in real climatic data. The pseudo-climate 
variables have the same mean spatial autocorrelation 
as the real data (by design), but the autocorrelation 
in the simulated data is slightly stronger at short 
distances, and slightly weaker at long distances, than 
in the real data (Figure S1).

Correlations among simulated environmental data
Spatially structured variables (here, pseudo‑temperature 

or pseudo-precipitation) tend to be collinear with one 
another (Table 1), despite the absence of any causal 
connection. When simulated environmental data are 
not spatially structured (because their values have been 
randomized through space), the pairwise correlations 
among simulations of the pseudo-climatic data are very 
small (Table 1). When randomly generated variables are 
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spatially structured, the expected correlation among 
them is still r≈0. However, the variation is huge, with 
some r2>0.7 (Figure  2). Among these correlations, 
96.2% are statistically significant at α=0.05 (statistical 
power is high: n=1000). Similarly, 89.5% of the pairwise 
correlations among the pseudo‑precipitation simulations 
are significant at α=0.05. It is important to note that 
the median coefficient of determination between 
replicate, causally unrelated, but spatially structured, 
pseudo‑temperature simulations is r2=0.183. We will 
return to this point below.

Spatially structured variables need not share the same 
spatial structure to be strongly collinear (Figure 2). Of the 
pairwise pseudo-temperature – pseudo-precipitation 
correlations, 94.0% are statistically significant at 
α=0.05. The strength of collinearities between causally 
unrelated variables appears to depend upon how 
strongly spatially structured the two variables are, not 
how similarly structured the variables are (Table 1). 
Pseudo-temperature (T ) is more strongly spatially 
structured than pseudo-precipitation (P ). We observed 
that median T - T collinearity (i.e., between pairs of 
T simulations) > T- P collinearity > P - P collinearity 
(Table  1, Figure  2). These results are qualitatively 
similar to those of Lennon (2000).

Correlations among pseudo-climate variables 
are relatively insensitive to the spatial extent of the 
data, at least over continental to hemispheric extents 
(Table 2). If anything, the correlations were slightly 
stronger over smaller spatial extents.
Correlations between simulated and observed 
environmental data

Observed temperature and precipitation are spatially 
structured. Not surprisingly, nearly all T and P  simulations 
were collinear with both observed temperature and 
precipitation (Table 1 and Figure 3).

Richness correlations with real environmental data
The observed variation of species richness across 

the Americas is strongly related to climate. A simple 
linear regression of log10(richness) as a function of 
temperature statistically accounts for 68% and 76% of 
the spatial variation for mammals and birds, respectively, 
in the Americas (Figure 4). Multiple regressions that 
include both temperature, precipitation, and their 
interaction increase explained variation by another 
~3%-7% (Table 3). These results are similar to other 
published results (Wright et al. 1993; Field et al. 2009). 
We will return to the differences between continents 
(Figure 4) below.

Table 1. Pearson correlations between pairwise combinations of replicate simulations of pseudo-temperature (which has 
the same Moran’s I as observed temperature across the Americas, n=1000), pseudo-precipitation (which has the same 
Moran’s I as observed precipitation, n=1000), and observed temperature and precipitation. Note that temperature is 
more strongly spatially structured than precipitation (Fig. 2). The expected r values are all near 0, but most correlations 
involving spatially structured data are much stronger (positively or negatively). Consequently, expected r2 values are nearly 
always significantly greater than 0. The number of pairwise correlations used to calculate the quantiles is given by n. In all 
cases, the underlying data consisted of observations of climate or pseudo-climate in 3744 quadrats across the Americas.

Data statistic 2.5% 
quantile Median 97.5% 

quantile n

Pseudo-temperature x pseudo-temperature, 
randomized through space

r -0.003 0.000 0.003 499500

r2 0.0000 0.0001 0.0001 499500
Pseudo-temperature x pseudo-temperature, 
(spatially structured)

r -0.800 -0.009 0.854 499500

r2 0.000 0.183 0.750 499500
Pseudo-precipitation x pseudo-precipitation 
(spatially structured)

r -0.423 -0.006 0.461 499500

r2 0.000 0.026 0.244 499500
Pseudo-temperature x pseudo-precipitation 
(spatially structured)

r -0.616 0.003 0.576 1000000

r2 0.000 0.057 0.423 1000000
Observed temperature x pseudo-temperature r -0.770 0.058 0.830 1000

r2 0.000 0.208 0.702 1000
Observed temperature x pseudo-precipitation r -0.606 -0.014 0.568 1000

r2 0.000 0.065 0.422 1000
Observed precipitation x pseudo-temperature r -0.682 0.045 0.617 1000

r2 0.000 0.135 0.465 1000
Observed precipitation x pseudo-precipitation r -0.482 -0.030 0.529 1000

r2 0.000 0.046 0.298 1000
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Richness correlations with simulated environmental 
data

Richness is also related to the simulated 
pseudo‑environmental variables, even though there is 
(by design) no causal link between the two. The median 

correlations between richness and the pseudo-variables 
are much weaker than the correlations with the real 
environmental variables (Table 3): r2=0.15 to r2=0.31 for 
log10(richness) and pseudo-temperature, and r2=0.06 
to r2=0.07 for pseudo-precipitation. However, some 

Table 2. Does the correlation between spatially structured variables depend upon the spatial extent of the data? 
The underlying data represent 499500 pairwise comparisons between 1000 randomly generated, but spatially structured, 
pseudo-temperature data surfaces.

Data statistic 2.5% 
quantile Median 97.5% 

quantile
N

quadrats
North and South America r -0.800 -0.009 0.854 3742

r2 0.000 0.183 0.750 3742
North America r -0.849 -0.005 0.982 1978

r2 0.001 0.207 0.826 1978
South America r -0.869 -0.013 0.910 1764

r2 0.001 0.244 0.855 1764

Figure 2. Top: The frequency distribution of pairwise 
Pearson correlations between randomly generated 
pseudo‑temperature gradients across the Americas. 
All simulations have the same spatial autocorrelation. Median 
r=-0.009, 95% c.i.= [-0.80 – +0.85]. n=1000 simulations, 
yielding 499500  paired comparisons. Of these, 96.2% are 
statistically significant at α=0.05. Bottom: Pearson correlations 
between pseudo-temperature and pseudo-precipitation, 
which have different spatial structures. Median r=-0.003, 
95% c.i=[-0.62 – +0.58]

Figure 3. The correlations between observed temperature 
and 1000 simulations of pseudo-temperature (top panel) 
and of pseudo-precipitation (bottom panel). The only way 
in which these two sets of data differ is the strength of the 
spatial autocorrelation in the two simulated variables, which 
influences their tendency to be collinear with observed 
temperature.
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simulations yielded pseudo-climates that have much 
stronger correlations with richness. The one-tailed 
non‑parametric 95% confidence limits (obtained from 
the 1000 simulations) included simple linear correlations 
between observed richness and pseudo-temperature 
as strong as r2=0.70, and multiple-correlations as strong 
as R2=0.74 (Table 3 and Figure 5).

The richness – pseudo-climate coefficient of 
determination has three components (Figure 6). First, as 
statistical theory predicts, there is usually some small, 
but non-zero correlation between richness and fully 
randomized pseudo-climate variables (represented by 
the + in the centre of Figure 6). Approximately 5% of the 
correlations with fully randomized pseudo‑temperature 
were significant at α=0.05 (n=1978), as theory predicts.

Second, as shown in Figure 2, spatially structured 
variables tend to be collinear with one another, even 
with no causal link between them. Consequently, 
96% of the pairwise correlations between richness 
and pseudo-temperature are statistically significant 
(p≤0.05). The more strongly pseudo-temperature 
or pseudo-precipitation is collinear with observed 
temperature, the more strongly richness is correlated 
with that pseudo-climate variable(Figure  6, also 
Figure S2). In contrast, richness is not strongly correlated 
with pseudo-climate variables that are collinear with 
pseudo-precipitation (Figure S2).

Third, even when pseudo-temperature is not 
collinear with temperature, it shows an elevated 
probability of being correlated with richness by chance. 
When pseudo-temperature was not collinear with 
true temperature (viz., the points directly above and 
below the + in the centre of Figure 6), correlations 
between richness and pseudo-temperature ranged 
between -0.3 < r < +0.3. This correlation represents 

Table 3. The shaded lines in the table show the observed coefficient of determination (r2 or R2) in simple regressions of 
log10(species richness) as a function of mean annual temperature (T), or of the cube root of total annual precipitation (P1/3). 
Some multiple regressions also include the interaction T* P1/3. n=3742 quadrats across North and South America. 
Unshaded lines shows the same models using simulated environmental variables — pseudo-temperature (T ) and 
pseudo‑precipitation (P ) — whose ranges and spatial autocorrelation are the same as those of the real T and P data. 
N=1000 simulations. Values in parentheses are two-tailed, parametric 95% confidence intervals around the r2 or R2 values. 
Values in square brackets represent the two-tailed 95% confidence interval estimated from the repeated simulations.

Model:
log10(species richness) ~ Climate data r2or R2

Mammals
r2or R2

Birds
T Observed 0.675 (0.658 - 0.691) 0.781 (0.769 - 0.792)
T Simulated 0.146 [0.001 - 0.594] 0.309 [0.001 - 0.736]

T + T Both 0.682 [0.675 - 0.748] 0.814 [0.781-0.879]
T + P 1/3 Both 0.682 [0.675 – 0.736] 0.790 [0.781-0.847]

P1/3 Observed 0.485 (0.462-0.507) 0.478 (0.454-0.501)
P 1/3 Simulated 0.056 [0.000-0.365] 0.074 [0.000-0.492]

P1/3 + T Both 0.518 [0.486 – 0.687] 0.607 [0.478-0.831]
P1/3 + P 1/3 Both 0.501 [0.486 – 0.607] 0.507 [0.478-0.677]

T + P1/3+ T* P1/3 Observed 0.741 (0.727 - 0.753) 0.815 (0.804 - 0.824)
T + P 1/3 + T * P 1/3 Simulated 0.282 [0.028 - 0.646] 0.434 [0.044 - 0.779]

T + P1/3+ T* P1/3 + T Both 0.746 [0.741 - 0.790] 0.844 [0.815-0.905]
T + P1/3+ T* P1/3 + P 1/3 Both 0.745 [0.741 – 0.780] 0.822 [0.815-0.865]

Figure 4. Log10 mammal (top panel) and bird (bottom panel) 
species richness in North and South America as linear functions 
of temperature. The lines represent th e lines of best fit of 
simple linear regressions in the two subsets of the data.
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the effect of spatial structure per se, plus (potentially) 
collinearity with other environmental drivers that are 
not collinear with temperature.

Simulated environmental data in multiple regressions
Adding a spatially structured pseudo-environmental 

variable to a regression nearly always increases explained 
variance. On average, addition of pseudo‑temperature 
or pseudo-precipitation to a simple regression of 
log10(richness) as a function of temperature, or 
to a multiple regression in which log10(richness) 
is a function of temperature + precipitation1/3 + 
temperature*precipitation1/3, increased the explained 
variance by ~3% (Table 2). This would be significant 
at α=0.05 in any regression with >91 observations.

In practical terms, this means that one should 
expect that any independent variable that is spatially 
structured will be statistically significant in a simple 
regression, or in a multiple regression, where the 
dependent variable is spatially structured, provided 
that there is at least moderate statistical power.

Does within-sample prediction accuracy unmask 
spurious correlations between spatially structured 
variables?

If a statistical model captures the true driver(s) of a 
dependent variable, then the model should accurately 
predict new instances of the dependent variable. Many 
published studies test the “predictive accuracy” of a 
model by randomly dividing a dataset into two subsets. 
One subset is used to fit the statistical model, and the 
other serves as the “test” data set. However, random 
assignment of data to two groups means that the error 
distribution and the spatial structure, are the same in 
the training and the test data sets. This suggests that 
within-sample, hold-out tests of predictive accuracy 

Figure 5. The frequency distributions of observed coefficients of 
determination (r2) of log10(species richness) as a linear function 
of pseudo-temperature in 1000 simulations for mammals 
(upper panel) and birds (lower panel). Pseudo‑temperature 
has the same degree of spatial autocorrelation as observed 
temperature. The correlations using the real climatic data 
are indicated by the red arrows.

Figure 6. The correlations between log10(species richness) and 
pseudo-temperature, shown as a function of the correlation 
between pseudo-temperature and observed temperature. 
The data are from North America. Top panel: mammals; 
bottom panel: birds. The + in the centre of the cloud of 
points represents the range of correlations observed in 
completely randomized data (1000 sets of pseudo-climate 
data; its non-parametric 95% confidence interval is half of its 
total range). Thus, the + represents the range of correlations 
that occur by chance in spatially unstructured data. All of 
the points more extreme than these bars show correlations 
that result from the spatial structure in the two variables. 
The diagonal line represents the 1:1 relationship.
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should be equivalent to measures of explained and 
residual variance.

When we examined the “predictive accuracy” of 
the log(richness) – temperature relationship in North 
America using a jackknife procedure, we found that 
the relationship between observed and predicted 
richness had a slope of 1 and an intercept of 0, as 
expected (Figure 7). Moreover, the shape and the r2 of 
the observed–predicted relationship were very close 
to the fit of the original model (cf. Figures 4 and 7). 
A within-sample, hold-one-out procedure using real 
data tells nothing that the standard statistics of the 
original model (F and r2) did not already tell.

Using pseudo-climatic data, we found the same result 
(Figure 8). Even though the relationship between richness 
and pseudo-climate is entirely spurious and relatively 
weak, within-sample predictions mirror the original 
fit. When the richness– pseudo-climate relationship 
happens to be strong (even though it is entirely spurious), 
within-sample predictive accuracy is high.

Does out-of-sample prediction accuracy unmask 
spurious relationships?

A stronger test for the hypothesis that a statistical 
model captures the true driver of a dependent variable 
(as opposed to a spurious correlation due to spatial 
autocorrelation) is that the model should also accurately 
predict the dependent variable in geographic regions 
outside the region used to calibrate the original 
model. Because environmental variables are unlikely 
to be spatially structured in the same way in different 
regions, out-of-sample prediction should fail using the 
pseudo-climate data. In contrast, if there is a causal 
link between richness and climate, out-of-sample 
prediction should work using the real data.

Using the real data (Figure S3), we found that observed 
richness in South America is strongly correlated with 
richness predicted from the richness–temperature 

Figure 7. Test of the within-sample predictive ability of a 
regression model using a jack-knife procedure: using the 
North American data, hold one observation out, fit the model, 
and predict the value of the hold-out. Model: log(species 
richness) as a linear function of observed temperature. 
Top panel: mammals; bottom panel: birds. The black line 
represents the predicted 1:1 relationship. The blue line is 
a fitted linear relationship. The two lines are nearly exactly 
superimposed.

Figure 8. Test of the within-sample predictive ability of 
a regression model using a jack-knife procedure: using 
the North American data, hold one observation out, 
fit the model, and predict the value of the hold-out. 
Model: log (species richness) as a linear function of one 
simulation of pseudo‑temperature. In this particular 
simulation of pseudo‑temperature, temperature and 
pseudo-temperature were positively collinear (r=0.677). 
Top panel: mammals; bottom panel: birds. The black line 
represents the predicted 1:1 relationship. The blue line is 
a fitted linear relationship. The two lines are nearly exactly 
superimposed.
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relationship fitted using the North America data. This 
is true for both mammals and birds. Moreover, these 
relationships are nearly as strong as the observed 
richness–temperature correlations in North America. 
However, for both taxonomic groups, the slopes and 
intercepts of the observed–predicted relationship 
differed from the expected values of 1.0 and 0.0. 
This difference, which is also evident in the original 
scatterplots (Figure 4), indicates that the linear function 
of temperature alone is an insufficient explanation 
of the richness patterns across the Americas, despite 
its impressive predictive power. Something is missing 
from the model.

Out-of-sample prediction using the pseudo-climatic 
data can yield quite variable results. Consider, first, a 
simulation in which — by chance — pseudo‑temperature 
was weakly negatively collinear with observed 
temperature in North America (r=-0.17), but strongly 
positively collinear in South America (r=+0.68). The North 
American model predicts that richness should also be 
weakly negatively correlated with pseudo-temperature 
in South America. Instead, richness in South America 
is positively correlated with pseudo-temperature. 
Consequently, observed richness in South America is 
negatively related to predicted richness (Figure 9). This 
would lead one (correctly) to reject the hypothesis that 
the correlation reflects a causal relationship.

Consider, now, a second pseudo-temperature 
dataset in which temperature and pseudo-temperature 
are weakly positively correlated on both continents 
(r=+0.198 and +0.172). Observed richness in South 
America was essentially unrelated to richness predicted 
from the North American model (r=0.006 for birds, 
r=0.000 for mammals; not shown). Again, the lack of 
relationship between predicted and observed richness 
in the test region would lead one (correctly) to reject 
the hypothesis that the fitted linear model reflects a 
causal link.

Finally, consider, a third set of pseudo-climate data in 
which temperature and pseudo-temperature happened 
to be strongly positively collinear in both the calibration 
and test data sets (r=+0.604 and r=+0.791). In this case, 
out-of-sample prediction of richness is surprisingly 
strong (r2=0.71; Figure S4) even though there is no 
causal relationship. The slope and intercept again differ 
significantly from the expected values of 1.0 and 0.0. 
However, the strong out-of‑sample predictive ability 
would probably be viewed as “support” for a causal 
link between richness and this pseudo-climatic variable 
even though (by design) there was no causal link.

Let us summarize this section. Within-sample 
tests of predictive ability say nothing beyond the 
original measures of goodness of fit. Unsuccessful 
out-of-sample prediction can reject the hypothesis of 
causation. Successful out-of-sample prediction means 
that the hypothesis of a causal link has survived a strong 
test. Evidence that is consistent with a hypothesis is 
often viewed as “supporting” the hypothesis, but 
one cannot infer that the causal hypothesis is true. 
Popper and Miller (1983) pointed out (somewhat 
counter-intuitively) that evidence that is consistent 
with a hypothesis does not increase the probability 
that the hypothesis is true. Our results illustrate why: 
a hypothesis may survive a test, despite being false.

Discussion
We began with two questions: how strongly correlated 

are causally unrelated, spatially structured, variables 
likely to be? Are correlations between species richness 
and environmental variables likely to be artefacts of 
the fact that both variables are spatially structured? 
Our simulation study supports the following conclusions:

1)	 The best-known effect of inherent spatial autocorrelation 
(i.e., spatially structured residuals) is that significance 
tests become too liberal (Dutilleul  et  al. 1993; 
Dutilleul and Legendre 1993). Here, we show 
that pseudo-climatic variables with exogenously 
induced spatial structure and no inherent spatial 
autocorrelation have a dramatically increased 
probability of being significantly correlated, even 
with no causal link whatsoever between the pairs 
of pseudo-climatic variables.

2)	 Spatial structure does not induce bias. The expected 
correlation between randomly generated, spatially 
structured variables is zero.

Figure 9. Test of the out-of-sample predictive ability of a 
regression model (as in Figure S3), except that the independent 
variable here is pseudo-temperature. In this particular 
simulation of pseudo-temperature, real temperature and 
pseudo-temperature are weakly negatively collinear in 
North America (r=-0.166) and strongly positively collinear 
in South America (r=+0.677). Top panel: mammals; bottom 
panel: birds. The black line represents the predicted 1:1 
relationship. The blue line is a fitted linear relationship.



Currie et al.

Frontiers of Biogeography 2020, 12.2, e44842 © the authors, CC-BY 4.0 license  11

How perilous are broad-scale correlations with environmental variables?

3)	 Spatial structure does greatly increase the variance 
in correlations between causally unrelated variables. 
Some correlations are very strong, purely by chance. 
Consequently, the expected r2 between spatially 
structured variables is much greater than the r2 
between variables that are not spatially structured. 
In the case of pseudo-temperature across the 
Americas, spatial structure increased the median 
r2 from 0.000 to 0.183.

4)	 “The First Law of Geography” (Tobler 1970) states 
that “everything is related to everything else, but 
near things are more related than distant things.” 
This is a consequence of conclusion  2),  above. 
However, we propose a reformulation of Tobler’s 
law as three new laws: #1) Everything in geography 
that is spatially structured will be collinear. 
#2)  Near things are more related than distant 
things. #3) The  more strongly spatially structured 
two variables are, the stronger the collinearity 
between them will be.

5)	 The strength of the expected r2 between two spatially 
structured, but causally unrelated, variables:

a.	 increases with the strength of the spatial structure 
in each of the two variables;

b.	 depends weakly, or not at all, on the spatial 
extent of the data, at least over broad spatial 
extent;

c.	 appears not to depend upon how similarly 
spatially structured the two variables are.

6)	 Many studies have hypothesized that there is a causal 
link between species richness and contemporary 
environmental variables (Wright 1983; Currie 
1991; O’Brien 1998; Field et al. 2009). Treating our 
simulations as a null model (Beale et al. 2008; Chapman 
2010), one prediction of this hypothesis is that the 
observed richness–environment correlations should 
be stronger than those obtained using random data 
that are similarly spatially‑structured. The observed 
richness–temperature correlations (r2≈0.7) were 
much stronger than the median correlations between 
richness and pseudo‑temperature (0.15 – 0.31). 
However, the one-tailed 95% confidence interval for 
richness–pseudo-temperature correlations included 
correlations as strong as r2=0.70. The richness–observed 
temperature correlation was stronger than that 
(Table  1), but only marginally so (but see point 
12 below). Spatial structure alone is unlikely to 
generate richness–temperature correlations as 
strong as those observed here.

7)	 A second observation is inconsistent with the 
hypothesis that the richness–temperature relationship 
is an artefact of spatial structure. If this were true, 
then strength of the richness–pseudo-temperature 
correlation should be unrelated to collinearity 
between temperature and pseudo-temperature. 
The data in Fig. 6 should describe a circle. In contrast, 
we found that, richness is strongly related to 

pseudo‑temperature only when pseudo-temperature 
is strongly collinear with observed temperature. 
When temperature and pseudo-temperature are 
not collinear, the correlation between richness 
and pseudo-temperature is similar to the expected 
correlation among replicate pseudo-temperature 
simulations.

8)	 A practical consequence of conclusion 4 (above) is that, 
for nearly any case in which spatial variation in biotic 
variable Y is hypothesized to be driven by variation 
in environmental variable X, the two variables will 
be significantly correlated whether there is any real 
causal link or not. As a preliminary rule-of-thumb, 
we suggest that the expected correlation is likely 
to be on the order of 0.15 < r2 < 0.30. It remains 
to be determined how sensitive this expectation 
is to the study design (i.e., the spatial structure of 
the variables, spatial extent, spatial grain, shape of 
the domain, the algorithm used to simulate spatial 
structure, etc.).

9)	 Within-sample prediction provides no additional 
evidence that a correlation between Y and X reflects 
a causal link beyond what standard goodness-of-fit 
statistics already provide.

10)	 Out-of-sample prediction provides a stronger test 
of a hypothesized, general causal link between 
two variables Y and X1. For example, if there is a 
causal link between richness and environment, 
and if that causal link acts globally, then a 
richness–environment relationship derived in 
one part of the world should accurately predict 
the variation in richness in other parts of the 
world, provided that ranges of environmental 
variables in the training region overlap the ranges 
in the test region (Francis and Currie 2003). 
If out‑of‑sample prediction is poor, one can 
correctly reject the hypothesis of a general causal 
link between Y and X1. However, out-of‑sample 
predictions can be surprisingly good, even in 
the absence of a causal link. This can happen if 
the spatial variation of Y is driven by variation 
in X2, and if X1 and X2 are similarly collinear in 
both the calibration and the test data sets. Thus, 
out‑of‑sample prediction accuracy is a necessary, 
but not a sufficient, test of a causal link.

11)	 In the specific case of bird and mammal richness 
in the Americas, out-of-sample prediction is 
only partly consistent with the prediction that 
richness is controlled by a linear function of 
contemporary temperature. Observed richness in 
South America is strongly correlated with richness 
predicted from the richness–environment model 
fitted in North America. However, there are clear 
quantitative differences between the patterns in 
North and South America that are unrelated to 
temperature and precipitation. A linear function 
of these variables is insufficient to account for 
the variation of richness across the Americas. 
More complete models for species richness have 
been investigated elsewhere; the objective here 
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is to demonstrate how out-of‑sample predictions 
can allow the investigator to test hypotheses and 
come up with new ones.

12)	 In principle, one could use a randomization 
study as a null model (as we have done here) 
to test whether a correlation between spatially 
structured variables is stronger than would 
be expected due to spatial structure alone 
(Beale et al. 2008, Chapman 2010). However, 
our study highlights a serious drawback to this 
approach. Suppose that biotic variable Y is 
strongly correlated with environmental variable X1. 
An uncensored, spatially‑structured randomization 
of X1 will yield many pseudo-X1 surfaces that are 
highly correlated with true X1 (Figure 6). Biotic 
variable Y will be strongly correlated with those 
randomizations. Consequently, the randomization 
study provides an excessively conservative test 
of the significance of the Y~ X1 relationship 
because the randomizations have an elevated 
probability of being collinear with the true X1 
data. Thus, it is probably too strong to say that 
there are “no macroscale associations with 
climate in European birds” (Beale et al. 2008). 
Rather, it would be more accurate to say that 
those associations with climate may be real, but 
randomizations cannot exclude the possibility 
that the associations result from spatial structure. 
Using the subset of randomizations in which 
pseudo-X1 is not collinear with X1 may provide 
a more reasonable null distribution.

13)	 Spurious correlations resulting from spatially 
structured variables are likely to be rampant 
in the biogeographic and macroecological 
literatures. Other evidence must be adduced 
before suggesting that a correlation reflects a 
causal link.
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