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Abstract 

A parallel connection of eight minicomputers 
is under test in an attempt to deal interactively 
with arrays of experimentally-generated kilopar­
ameter data events. We have been able to achieve 
computer amplification factors linearly propor­
tional to the number of executing processors. By 
replacing our minicomputers with single chip pro­
cessor arrays, we expect to observe add i tiona 1 
multiplication of data processing capacity. 

Introduction 

Since about 1964 we have been designing and 
building custom minicomputer-based systems for 
use in high-speed data acquisition and analysis. 
Figure 1 uses these nearly two decades of experi­
ence as its data source, starting with a single 
PDP-5 based system in 1964-1965 and presently 
with a Mo~omp-based parallel processor system. 
The near future cou 1 d eas i 1y be mi croprocessor­
based hyperparalle1 systems. The prinCiple sub­
jects of this paper are the last two data points 
on the system hardware capacity 1 ine in Fig. 1. 
The last point represents the projected capacity 
of a hyperparal1e1 system. The next to last 
point represents the measured capacity of the 
prototype parallel processing unit we now have 
operating. To properly introduce these two, we 
need to briefly explore their time context as 
well as their environmental context. 

"System hardware capacity" (Fig. 1) is a con­
trived number derived empirically from our exper­
iences with what constitutes computer· power ap­
plied to our needs. It is proportional to in­
struct ions executable per second, byte-1 ength of 
the data word and the log (base 2) of memory 
capaCity in words. From about 1967 until 1980, 
hardware capacity has increased exponentially. 
Minicomputers running as single processors are, 
in the 1980's, facing limits beyond which it will 
be difficult to go. Major improvements in the 
individual processor are unlikely, and particul­
arly in the case of the minicomputer promise to 
be uneconomic. 

Data acquisition and analysis in our research 
environment tends to be the driving force for 
system development. The second curve on Fig. 1, 
cost per unit of value, illustrates this dramati­
cally. Points on the curve are simply system 
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Fig. 1 Processing power of the computer systems 
we assembled increased exponentially from the 
1 ate 1960' s through 1980. For the near future, 
developments in parallel processor architecture 
Simultaneously with still another hardware revo1u­
tion--the microprocessor r~vo1ution--have steepen­
ed the curve. Per unit of value, costs of very 
powerful systems, in spite of earl ier bumps, are 
plunging. 

costs divided by system hardware capacity. When 
the first system was installed, it connected to 
an external data-taking device; a pulse height­
analyzer. The second group of systems demonstra­
ted the feasibility of using computer program 
memory to do the histograrrming, the feasibility 
of storing an incoming data stream verbatim on 
magnetic tape for later replay and analysis and 
the ab i 1 i ty to allow more than one person s imu 1-
taneous access to the computer. The next system 



was expected to· have these capabilities, but with 
greatly expanded capacity, explaining its high 
cost. The introduction of micrologic and later 
of inexpensive semiconductor memories and finally 
of microprocessor technology accounts for the 
later improved cost per unit of value. 

The change in data acquisition was a general 
change in philosophy. Originally, data was par­
tially processed as it was taken. Monotonically, 
the trend has been to acquire and store all avail­
able data, relying on subsequent replay for anal­
ysis and reanalysis. Such data normally consists 
of sequential discrete events, either independent 
or correlated, and each represented by a group of 
parameters •. Whereas in the 1960's and early 
1970's, eight parameters per event usually was 
adequate, today's detectors are spewing out hun­
dreds or thousands of parameters per event. Data 
acquisition today is often limited only by the 
speed and dens ity of afford ab 1 e tape mach i nes. 
Data analysis has become a major bottleneck be­
cause of the volume of data, and the value of. 
human judgement and iterati ve procedures in the 
analysis. Interaction requires fast replays, but 
high data volume makes fast replays difficult. 

Our initial response to this pressing demand 
was the conceptualization of high-speed special 
processors controlled by a minicomputer. For 
example, the sorting module in Fig. 2 was once 
proposed. Yes-no decisions were preprogrammed 
into memories. Data then drove the memory ad­
dress lines and a decision appeared within half a 
microsecond. To make it more general, plans were 
made to have a 'stable' of special-purpose pro­
cessors, all controlled by one minicomputer. 
This eventually evolved into our existing paral­
lel-processor, where eight general-purpose pro­
cessors are controlled by a single minicomputer,. 

Parallel Processing Array 

Our initial objective was to build special­
purpose processors, each to perform a limited set 
of tasks at very high speed, and to run them as a 
group under the contro 1 of a separate mi ni compu­
ter. Driven by practical and technological 
realities, we decided to use minicomputer cen­
tral processors. As general-purpose devices, 
they would be able to do the various special­
purpose jobs requ ired. Us i ng a mi ncomputer from 
the same manufacturer who bui lt the system con­
troller let us make more efficient use of our 
software support. In order to achieve our ob­
jectives, it would be necessary to be able to 
'amplify' the data throughput of one processor by 
the number of processors we pl an ned to run. The 
phase I prototype, completed in late 1982, ran 
five processors. Phase II, now operational, is 
running eight processors (Fig. 3). 

Not starting from a conventional processor 
des i gn ori entat i on or with the general purpose 
goals of normal processor design, our configura­
tion has several unique features. Philosophical­
ly, we felt it to be of prime importance to sep-
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arate data processing channels from control chan­
nels. Thus we began by prohibiting data-proces­
s ing central processors (CPU's) from perform; ng 
any contro 1 funct ions. Processors are i ntercon­
nected within the data stream by what is in ef­
fect a crossbar switch (Fig. 3). 
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Fig. 2 An early proposal for a specialized sort­
i ng processor under independent mi ni compu ter con­
trol. The minicomputer, operating under direct 
control of an experimenter, prewrites bits intc 
memory locations. High speed sorting occurs when 
data is used as addresses and the pre-written 
memory bits are read to produce an accept/ reject 
deci s i on. Th i s idea 1 ed to the concept of many 
special processors under minicomputer control; 
precursor of our prototype parallel processor 
configuration. 

Control of the syst~m resides in a separate 
mi ni computer system, and is exerci sed over the 
multiple processors via emulated front panel con­
tro 1 s 1. Input and output for the data proces­
sors is done by switching memory blocks. Memo­
ries are filled from an input pipeline processor, 
switched into the address space of an available 
minicomputer CPU, and finally switched onto 
another pipeline processor to be emptied. Memory 
switching requires less than 50 ns. The input 
pipeline has the responsibility for presorting to 
separate data from corrrnents or 1 abe 1 s. It a 1 so 
contains high speed RAM-driven logic used to sepa­
rate events from each other and stack them into 
predetermined fixed locations in the memories. 
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Fig. 3 Our parallel processor configuration employs a crossbar to interconnect memories to special­
purpose processors. Control functions are not allowed in the high-speed data stream. They are exported 
to attached dedicated minicomputers and microcomputers. 

Control of the memories is done with a hybrid 
microcomputer/hardware controller. It is possi­
ble (though not in our existing prototype) to run 
different code in different CPU's (or groups of 
CPU's) and to 'thread' a data memory through 
first one CPU group and then another and another, 
etc.3 Because control is exercised via front­
panel emulation, the controlling minicomputer is 
ab'le to monitor the operations of the data pro­
cessors without slowing execution. This monitor­
ing operation could be used to select more or 
fewer processors to run a code, thus dynamically 
optimizing the system for any particular problem. 
More details are presented in references. 2 ,3,4 

Results of Prototype Tests 

The input pipeline is 40-bits wide (5 bytes) 
and shifts one word every 250 ns (4 x 106 H3). 
Data passes through each stage at 5 x 4 x 106 
20 x 106 bytes per second. In real ity, our 300 
MByte disk can only supply 0.64 x 106 bytes per 
second. Figure 4 illustrates the data path. 
Results appear graphically in the lower part of 
the figure. Data transport memories are zeroed, 
switched to the input pipeline processor to be 
filled, switched to an available minicomputer 
central processor for processing and finally con­
nected to the output pipeline to be emptied. 
From there, the cycle starts again by the memory 
being zeroed. 
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The left graph (Fig. 4) is the result of 
measuri ng data throughput with different numbers 
of minicomputers switched into the available pool. 
Except for the last two pOints (seven and eight 
processors) the system is compute-bound. With 
seven or eight CPU's running, the entire system 
has to wait for data from the disk controller. 

The processors are running identical programs 
compiled in FORTRAN and down-loaded from the down­
load and control processor before the test began. 
The FORTRAN code was taken unchanged from other 
computers (CDC7600 PDP-ll and Mod Comp Classic). 
The right-hand graph (Fig. 4) plots results for a 
completely compute-bound case. The vertical axi s 
is a ratio of system perfonnance to the perform­
ance of a single stand-alone minicomputer (with 
the same type of CPU as those in the system). 
The lower limit of each bar is the result of run­
n i ng i dent i ca 1 programs in the system and in the 
stand-alone computer. The relationship is very 
nearly 1 inear with a slope of one. We then went 
back to the program and tri ed to opt imi ze it for 
use on our multiprocessor system, producing the 
results illustrated by the tops of the bars. 

Hyperparallelism 

Several different scenarios have been pro­
posed for future developments. 2 ,3 From a hard­
ware standpoint, we are in the midst of a micro­
processor revolution and an ongoing semiconductor 
memory revolution. As microprocessors approach 
discrete systems in speed and function, we are 



being given the option of replacing our two large, 
125-watt-each minicomputer CPU boards with a few 
chips dissipating nearly two orders of magnitude 
less power. A third large board, also a candi­
date for miniaturization houses the minicomputer's 
memory. 
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Fig. 4 Configured as shown here, the architec­
ture of Fig. 3 is running with processing capa­
bil ities directly proportional to the number of 
processors executing. Foldover of data through­
put has been observed at 1 imits of system input 
devices and system output devices. The greater­
than-one slope in the right-hand graph is the 
result of taking advantage of specialized input, 
zerOing and output processors. 

Using new high-density memory chips and new 
microprocessor chips, it becomes practical to 
compress our entire system. The resulting one or 
two large logic cards can then be assembled into 
a parallel array, giving us a parallel array of 
parallel processors - the hyperparallel array. 
(See Fig. 5.) It seems clear that for certain 
problems - those involving sequences of independ­
ent data blocks where processing speed limits 
data throughput - this array can Significantly 
multiply processing capacity once again. 

To prevent the crossbar structure from becom­
ing unwieldy, we propose filling a large segmen­
ted memory from the input pipeline. Segmentation 
c an be accomp 1 is hed by proper addres s decod i ng 
and memory chip size selection. The segmented 
memory is then gi ven as a block to a hyperpara­
llel processor array where the segments 'separate' 
and each assoc i ates with one of the mi croproces­
sors. Finally is the 'reassembly' of the memory 
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array for transport to the output pipel ine. De­
gradation of performance can occur within a. hyper­
array because the subarray must wait until all 
its processors are finished before releasing the 
segmented memory for emptyi ng. It wou 1 d be ex­
pected that a 11 processors ina hyperarray wou 1 d 
run the same program code during execution, so 
downloading is no more of a problem with this 
system than it is with the original system. How­
ever, it will be desirable for an external pro­
cessor to be able to monitor the performance of 
individual processors within each hyperarray. 
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Fig. 5 Microcomputer central processor chips may 
be controlled and monitored at the chip-memory 
interface. When we replace minicomputer proces­
sor cards with· single chip devices, we can use 
this connection instead of the operator control 
panel emulators we are using on our prototype 
system. 

We can interject control between the micro­
processor and its external memory, as shown in 
Fig. 6. The controlling processor controls the 
memory 'ready' 1 ine and can force a pause between 
memory cycles. During the pause, it can read (or 
s upp ly) memory data and addres s as well as read­
ing any available status signals. By controlling 
non-maskable interrupt 1 ines and vectors, it can 
control startup. 
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The controlling computer can supply the micro­
processor with program steps allowing it the same 
absolute control and access it had via the mini­
computer operator control panel connection. Since 
the interjection is between micro and memory, the 
controlling processor can easily download programs 
directly into micro memory. The controlling pro­
cessor has non-interfering monitoring capability 
over microprocessor address and data 1 ines, a 1-
lowing for optimizations similar to those availa­
ble in the prototype system. 
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Fig. 6 The microprocessor revolution in concert 
with the ongoing semiconductor memory revolution 
is making it physically and economically practi­
cal to think about building the equivalent of our 
prototype parallel processor system onto a set of 
two or three processor boards which could be in­
cluded as elements in the same general structure 
we are now using. The predicted result is a fur­
ther amplification of processing power. 

Conclusions 

Historical development in demand for data 
taking and analysis led us to develop a unique 
parallel processor configuration. The resulting 
system runs processing codes nearly unchanged 
from single stand-alone systems, and with eight 
processors running in parallel executes the code 
about eight times faster than the stand-alone 
system. Optimizing programs to take advantage of 
our multiple processor architecture can result in 
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additional processing speed enhancements of as 
much as 25%. A newer system, using a parallel 
array of parallel microprocessors has the poten­
tial of further dramatic enhancement of system 
performance for certain data sets. 

Acknowledgments 

I wish to acknowledge the unwavering help of 
F. Gin, H. Jackson and T. Shimizu during the de­
velopment of this system and during a prior decade 
of other developments. D. Weaver, C. Maples, W. 
Rathbun and D. Logan were instrumental in the 
development of the prototype parallel processor 
systems. 

This work was supported by the Director's 
Office of Energy Research, Office of Hi gh Energy 
and Nuclear Physics, Division of Nuclear Physics, 
and by Nuclear Sciences of the Basic Energy Pro­
gram of the U. S. Department of Energy under Con­
tract Number DE-AC03-76SF00098. 

Reference to a company or product name does 
not imp 1 y ap prov a 1 or recommend a t i on of the pro­
duct by the University of California or the U. S. 
Department of Energy to the exclusion of others 
that may be suitable. 

References 

1. Meng, J., "Controlling a Radially-Connected 
Array of Mi ni computers." Conference Record, 
Sixteenth Asilomar Conference on Circuits, 
Systems and Computers, f'«)v., 1982, pp. 280-
284. Also Lawrence Berkeley Laboratory 
report LBL-14471. 

2. Weaver, D., Creve Maples, John Meng and Will­
iam Rathbun, "Operating System Considerations 
in the Multiprocessing MIDAS Environment. II 

Lawrence Berkeley Laboratory Report, Oct., 
1983. 

3. Maples, C., Daniel Weaver, John Meng, Will iam 
Rathbun and Douglas Logan, "Utilizing a M..ll­
tiprocessor Architecture - The Performance of 
MIDAS." Lawrence Berke 1 ey Laboratory Report, 
Oct., 1983. 

4. Maples, C., Will iam Rathbun, Daniel Weaver 
and John Meng, "The Design of MIDAS - A Modu­
lar Interactive Data Analysis System," IEEE 
Trans. on Nuclear Science, NS-28, 3880 (1981). 



I~ 

This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



---..~-

'?~ .......... ,-

TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATOR Y 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

~.~~--.;:. 

~:'- ~.- '"1") 




