
Lawrence Berkeley National Laboratory
Recent Work

Title
MULTIPLICATION OF PROCESSING CAPACITY WITH A PARALLEL PROCESSOR ARRAY

Permalink
https://escholarship.org/uc/item/9mg0f05n

Author
Meng, J.

Publication Date
1983-10-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9mg0f05n
https://escholarship.org
http://www.cdlib.org/

LBL-16194
(".~

Lawrence Berkeley Laboratorv
~EC~V!"

UNIVERSITY OF CALIFORNIA L.AWRE~E
BERK~I ~v I .. ~"''''' •

JAN 1 7 1984 Engineering & Technical
Services Division LIBRARY AND

DOCUMENTS SECTION

Presented at the 17th Conference on Circuits,
Systems, and Computers, Pacific Grove, CA,
October 30 - November 2, 1983

MULTIPLICATION OF PROCESSING. CAPACITY WITH A
PARALLEL PROCESSOR ARRAY

J. Meng

October 1983

- - ---- --- ---(---- -----

I

!

I

TWO-WEEK LOAN COpy

This is a Library Circulating Copy

which may be borrowed for two weeks.

For a personal retention copy, call

Tech. Info. Division, Ext. 6782.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

r­
(JJ
r-
I

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain COlTect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any walTanty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

. (~
/

"

LBL-16i94

MULTIPLICATION OF PROCESSING CAPACITY WITH A
PARALLEL PROCESSOR ARRAY

John Meng

Lawrence Berkeley Laboratory, University of California
Berkeley, California 94720

Abstract

A parallel connection of eight minicomputers
is under test in an attempt to deal interactively
with arrays of experimentally-generated kilopar­
ameter data events. We have been able to achieve
computer amplification factors linearly propor­
tional to the number of executing processors. By
replacing our minicomputers with single chip pro­
cessor arrays, we expect to observe add i tiona 1
multiplication of data processing capacity.

Introduction

Since about 1964 we have been designing and
building custom minicomputer-based systems for
use in high-speed data acquisition and analysis.
Figure 1 uses these nearly two decades of experi­
ence as its data source, starting with a single
PDP-5 based system in 1964-1965 and presently
with a Mo~omp-based parallel processor system.
The near future cou 1 d eas i 1y be mi croprocessor­
based hyperparalle1 systems. The prinCiple sub­
jects of this paper are the last two data points
on the system hardware capacity 1 ine in Fig. 1.
The last point represents the projected capacity
of a hyperparal1e1 system. The next to last
point represents the measured capacity of the
prototype parallel processing unit we now have
operating. To properly introduce these two, we
need to briefly explore their time context as
well as their environmental context.

"System hardware capacity" (Fig. 1) is a con­
trived number derived empirically from our exper­
iences with what constitutes computer· power ap­
plied to our needs. It is proportional to in­
struct ions executable per second, byte-1 ength of
the data word and the log (base 2) of memory
capaCity in words. From about 1967 until 1980,
hardware capacity has increased exponentially.
Minicomputers running as single processors are,
in the 1980's, facing limits beyond which it will
be difficult to go. Major improvements in the
individual processor are unlikely, and particul­
arly in the case of the minicomputer promise to
be uneconomic.

Data acquisition and analysis in our research
environment tends to be the driving force for
system development. The second curve on Fig. 1,
cost per unit of value, illustrates this dramati­
cally. Points on the curve are simply system

1

COST PER UNIT

SYSTEM HAROWARE

CAPACITY

"' "' 0:

~t~ "' . "' "' u
u 0
o 0:
0: ~

~ ~ " ~ Z <C
0:
<C ...

1970 1975 1980 1985

I8l8310-12109

Fig. 1 Processing power of the computer systems
we assembled increased exponentially from the
1 ate 1960' s through 1980. For the near future,
developments in parallel processor architecture
Simultaneously with still another hardware revo1u­
tion--the microprocessor r~vo1ution--have steepen­
ed the curve. Per unit of value, costs of very
powerful systems, in spite of earl ier bumps, are
plunging.

costs divided by system hardware capacity. When
the first system was installed, it connected to
an external data-taking device; a pulse height­
analyzer. The second group of systems demonstra­
ted the feasibility of using computer program
memory to do the histograrrming, the feasibility
of storing an incoming data stream verbatim on
magnetic tape for later replay and analysis and
the ab i 1 i ty to allow more than one person s imu 1-
taneous access to the computer. The next system

was expected to· have these capabilities, but with
greatly expanded capacity, explaining its high
cost. The introduction of micrologic and later
of inexpensive semiconductor memories and finally
of microprocessor technology accounts for the
later improved cost per unit of value.

The change in data acquisition was a general
change in philosophy. Originally, data was par­
tially processed as it was taken. Monotonically,
the trend has been to acquire and store all avail­
able data, relying on subsequent replay for anal­
ysis and reanalysis. Such data normally consists
of sequential discrete events, either independent
or correlated, and each represented by a group of
parameters •. Whereas in the 1960's and early
1970's, eight parameters per event usually was
adequate, today's detectors are spewing out hun­
dreds or thousands of parameters per event. Data
acquisition today is often limited only by the
speed and dens ity of afford ab 1 e tape mach i nes.
Data analysis has become a major bottleneck be­
cause of the volume of data, and the value of.
human judgement and iterati ve procedures in the
analysis. Interaction requires fast replays, but
high data volume makes fast replays difficult.

Our initial response to this pressing demand
was the conceptualization of high-speed special
processors controlled by a minicomputer. For
example, the sorting module in Fig. 2 was once
proposed. Yes-no decisions were preprogrammed
into memories. Data then drove the memory ad­
dress lines and a decision appeared within half a
microsecond. To make it more general, plans were
made to have a 'stable' of special-purpose pro­
cessors, all controlled by one minicomputer.
This eventually evolved into our existing paral­
lel-processor, where eight general-purpose pro­
cessors are controlled by a single minicomputer,.

Parallel Processing Array

Our initial objective was to build special­
purpose processors, each to perform a limited set
of tasks at very high speed, and to run them as a
group under the contro 1 of a separate mi ni compu­
ter. Driven by practical and technological
realities, we decided to use minicomputer cen­
tral processors. As general-purpose devices,
they would be able to do the various special­
purpose jobs requ ired. Us i ng a mi ncomputer from
the same manufacturer who bui lt the system con­
troller let us make more efficient use of our
software support. In order to achieve our ob­
jectives, it would be necessary to be able to
'amplify' the data throughput of one processor by
the number of processors we pl an ned to run. The
phase I prototype, completed in late 1982, ran
five processors. Phase II, now operational, is
running eight processors (Fig. 3).

Not starting from a conventional processor
des i gn ori entat i on or with the general purpose
goals of normal processor design, our configura­
tion has several unique features. Philosophical­
ly, we felt it to be of prime importance to sep-

2

arate data processing channels from control chan­
nels. Thus we began by prohibiting data-proces­
s ing central processors (CPU's) from perform; ng
any contro 1 funct ions. Processors are i ntercon­
nected within the data stream by what is in ef­
fect a crossbar switch (Fig. 3).

12·8IT$

MEMORY CHIP
4096 CElLS

ONE BIT EACH

EIPIREMENTAL DATA

4·81TS D
E
C
D
D
E

SELECT

-

-
SELECTED MEIIORY DATA BIT

A CH'P '-_""'-___ ~ ___ -/

MINICOMPUTER

TO PRE·WRITE

DECISIONS INTO
MEMORY CHIPS

J

l
YES/NO

DECISION

ISLS31u-'201;

Fig. 2 An early proposal for a specialized sort­
i ng processor under independent mi ni compu ter con­
trol. The minicomputer, operating under direct
control of an experimenter, prewrites bits intc
memory locations. High speed sorting occurs when
data is used as addresses and the pre-written
memory bits are read to produce an accept/ reject
deci s i on. Th i s idea 1 ed to the concept of many
special processors under minicomputer control;
precursor of our prototype parallel processor
configuration.

Control of the syst~m resides in a separate
mi ni computer system, and is exerci sed over the
multiple processors via emulated front panel con­
tro 1 s 1. Input and output for the data proces­
sors is done by switching memory blocks. Memo­
ries are filled from an input pipeline processor,
switched into the address space of an available
minicomputer CPU, and finally switched onto
another pipeline processor to be emptied. Memory
switching requires less than 50 ns. The input
pipeline has the responsibility for presorting to
separate data from corrrnents or 1 abe 1 s. It a 1 so
contains high speed RAM-driven logic used to sepa­
rate events from each other and stack them into
predetermined fixed locations in the memories.

~'.

\.

\/

" ./

• 2

DATA

o lIT • .,Of
IO •• 'WCMl:O

ao-•• • 1""/lacONO

) ""UT "PUt.,
'IIOCf",O.

,

'"" .. ''' " .. , \ 1.(·ILlCED ONTO _.1

.,.
I T , . I "-DlaICTIO.AL

C • OU lUI

, ,

IPlC'Al sotIT_ I
.aDUL(

IPUE '01 I IIP"."O.

~J OUT~T 'tfIIlLl.'
PIIOCUIOI

10 .,naGu •••
MlIOar

I

TO 0.1'
110Ullf

1"'.(
TO fAPi 110U~"

LLI.c;
U

CO.TIO
CP

I.PUT/OUT PUT lUI
. I t « Q "" Q " Q Q ~ Q ~"« ~ ({.~I"::.\~\: .. .

L Iil iii Iil rtJ Iil rtJ [ltJ Ii
UIO PlOCElIG"

... 'Jt..UIJI

Fig. 3 Our parallel processor configuration employs a crossbar to interconnect memories to special­
purpose processors. Control functions are not allowed in the high-speed data stream. They are exported
to attached dedicated minicomputers and microcomputers.

Control of the memories is done with a hybrid
microcomputer/hardware controller. It is possi­
ble (though not in our existing prototype) to run
different code in different CPU's (or groups of
CPU's) and to 'thread' a data memory through
first one CPU group and then another and another,
etc.3 Because control is exercised via front­
panel emulation, the controlling minicomputer is
ab'le to monitor the operations of the data pro­
cessors without slowing execution. This monitor­
ing operation could be used to select more or
fewer processors to run a code, thus dynamically
optimizing the system for any particular problem.
More details are presented in references. 2 ,3,4

Results of Prototype Tests

The input pipeline is 40-bits wide (5 bytes)
and shifts one word every 250 ns (4 x 106 H3).
Data passes through each stage at 5 x 4 x 106
20 x 106 bytes per second. In real ity, our 300
MByte disk can only supply 0.64 x 106 bytes per
second. Figure 4 illustrates the data path.
Results appear graphically in the lower part of
the figure. Data transport memories are zeroed,
switched to the input pipeline processor to be
filled, switched to an available minicomputer
central processor for processing and finally con­
nected to the output pipeline to be emptied.
From there, the cycle starts again by the memory
being zeroed.

3

The left graph (Fig. 4) is the result of
measuri ng data throughput with different numbers
of minicomputers switched into the available pool.
Except for the last two pOints (seven and eight
processors) the system is compute-bound. With
seven or eight CPU's running, the entire system
has to wait for data from the disk controller.

The processors are running identical programs
compiled in FORTRAN and down-loaded from the down­
load and control processor before the test began.
The FORTRAN code was taken unchanged from other
computers (CDC7600 PDP-ll and Mod Comp Classic).
The right-hand graph (Fig. 4) plots results for a
completely compute-bound case. The vertical axi s
is a ratio of system perfonnance to the perform­
ance of a single stand-alone minicomputer (with
the same type of CPU as those in the system).
The lower limit of each bar is the result of run­
n i ng i dent i ca 1 programs in the system and in the
stand-alone computer. The relationship is very
nearly 1 inear with a slope of one. We then went
back to the program and tri ed to opt imi ze it for
use on our multiprocessor system, producing the
results illustrated by the tops of the bars.

Hyperparallelism

Several different scenarios have been pro­
posed for future developments. 2 ,3 From a hard­
ware standpoint, we are in the midst of a micro­
processor revolution and an ongoing semiconductor
memory revolution. As microprocessors approach
discrete systems in speed and function, we are

being given the option of replacing our two large,
125-watt-each minicomputer CPU boards with a few
chips dissipating nearly two orders of magnitude
less power. A third large board, also a candi­
date for miniaturization houses the minicomputer's
memory.

•• w
DATA

DATA·TRANSPOAT M[MORIES

I I I I I I I I I I I' I I

PROCESSED
DATA

'I I I • I I I I I I I t I

O
......---.l.--y y~' 9~' Y-...L..-y --,--y y~' y·~:~Jlr!..~::·

SPREAD IN AMPLIFICATION FACTOAS

DOWNLOAO"
CONTROL

PROCESSOR

SATURATION CAUSED BY

COMMERCIAL DISC CONTROLLER ..
e
~
z
0

~
!1

..
~

INDICATES DIFFERENCE BETWEEN
OPTIMIZED AND UNMODIFIED PROGIUM5
II

I.

I I
7

I I •
• I
3 I

I
I

NUMBER OF PAOCESSORS

EXECUTING IN PARALLEL

·.~'~2~3-7.-75~.~7~8~'
NUMBER OF PROCESSORS

EXECUTING IN PARALLEl

IBL8J9+il836

Fig. 4 Configured as shown here, the architec­
ture of Fig. 3 is running with processing capa­
bil ities directly proportional to the number of
processors executing. Foldover of data through­
put has been observed at 1 imits of system input
devices and system output devices. The greater­
than-one slope in the right-hand graph is the
result of taking advantage of specialized input,
zerOing and output processors.

Using new high-density memory chips and new
microprocessor chips, it becomes practical to
compress our entire system. The resulting one or
two large logic cards can then be assembled into
a parallel array, giving us a parallel array of
parallel processors - the hyperparallel array.
(See Fig. 5.) It seems clear that for certain
problems - those involving sequences of independ­
ent data blocks where processing speed limits
data throughput - this array can Significantly
multiply processing capacity once again.

To prevent the crossbar structure from becom­
ing unwieldy, we propose filling a large segmen­
ted memory from the input pipeline. Segmentation
c an be accomp 1 is hed by proper addres s decod i ng
and memory chip size selection. The segmented
memory is then gi ven as a block to a hyperpara­
llel processor array where the segments 'separate'
and each assoc i ates with one of the mi croproces­
sors. Finally is the 'reassembly' of the memory

4

'" :::>

array for transport to the output pipel ine. De­
gradation of performance can occur within a. hyper­
array because the subarray must wait until all
its processors are finished before releasing the
segmented memory for emptyi ng. It wou 1 d be ex­
pected that a 11 processors ina hyperarray wou 1 d
run the same program code during execution, so
downloading is no more of a problem with this
system than it is with the original system. How­
ever, it will be desirable for an external pro­
cessor to be able to monitor the performance of
individual processors within each hyperarray.

MICRO·

PROCESSOR

CENTRAL

PROCESSOR

NMI

DATA

ADDRESS

e
l­
e
o

PROGRAM

MEMORY

e
e
0

'" '" '" a:
o
o
e

'" '" ...
a:
0
0
e

MONITOR

CHANNEL

'" '" '" ..
a: l-
0 ..
0 0 ..

DIRECT

MEMORY

I-
e 0
I- a:
'" I-

c..
:::>
I­
a:

MEMORY HANDSHAKE

CONTROL
(SINGLE STEP

CHANNEL

Z
a: 0
~ c.J
I- of
o '" OR FREE·RUN)

CONTROLLING

PROCESSOR

~-------------l MONITOR AND
CONTROL

XBL 8310-12078

Fig. 5 Microcomputer central processor chips may
be controlled and monitored at the chip-memory
interface. When we replace minicomputer proces­
sor cards with· single chip devices, we can use
this connection instead of the operator control
panel emulators we are using on our prototype
system.

We can interject control between the micro­
processor and its external memory, as shown in
Fig. 6. The controlling processor controls the
memory 'ready' 1 ine and can force a pause between
memory cycles. During the pause, it can read (or
s upp ly) memory data and addres s as well as read­
ing any available status signals. By controlling
non-maskable interrupt 1 ines and vectors, it can
control startup.

'(

\
\ j
'w

J

,

\.'

The controlling computer can supply the micro­
processor with program steps allowing it the same
absolute control and access it had via the mini­
computer operator control panel connection. Since
the interjection is between micro and memory, the
controlling processor can easily download programs
directly into micro memory. The controlling pro­
cessor has non-interfering monitoring capability
over microprocessor address and data 1 ines, a 1-
lowing for optimizations similar to those availa­
ble in the prototype system.

tAW DATA

~ '.'UT
Y"PEUN. .

,,~~
STAT'ON I

TRUE CROSSIAR

,MPTYING
STATION

x--nltOING

Ul 1)1G-11'016

Fig. 6 The microprocessor revolution in concert
with the ongoing semiconductor memory revolution
is making it physically and economically practi­
cal to think about building the equivalent of our
prototype parallel processor system onto a set of
two or three processor boards which could be in­
cluded as elements in the same general structure
we are now using. The predicted result is a fur­
ther amplification of processing power.

Conclusions

Historical development in demand for data
taking and analysis led us to develop a unique
parallel processor configuration. The resulting
system runs processing codes nearly unchanged
from single stand-alone systems, and with eight
processors running in parallel executes the code
about eight times faster than the stand-alone
system. Optimizing programs to take advantage of
our multiple processor architecture can result in

5

additional processing speed enhancements of as
much as 25%. A newer system, using a parallel
array of parallel microprocessors has the poten­
tial of further dramatic enhancement of system
performance for certain data sets.

Acknowledgments

I wish to acknowledge the unwavering help of
F. Gin, H. Jackson and T. Shimizu during the de­
velopment of this system and during a prior decade
of other developments. D. Weaver, C. Maples, W.
Rathbun and D. Logan were instrumental in the
development of the prototype parallel processor
systems.

This work was supported by the Director's
Office of Energy Research, Office of Hi gh Energy
and Nuclear Physics, Division of Nuclear Physics,
and by Nuclear Sciences of the Basic Energy Pro­
gram of the U. S. Department of Energy under Con­
tract Number DE-AC03-76SF00098.

Reference to a company or product name does
not imp 1 y ap prov a 1 or recommend a t i on of the pro­
duct by the University of California or the U. S.
Department of Energy to the exclusion of others
that may be suitable.

References

1. Meng, J., "Controlling a Radially-Connected
Array of Mi ni computers." Conference Record,
Sixteenth Asilomar Conference on Circuits,
Systems and Computers, f'«)v., 1982, pp. 280-
284. Also Lawrence Berkeley Laboratory
report LBL-14471.

2. Weaver, D., Creve Maples, John Meng and Will­
iam Rathbun, "Operating System Considerations
in the Multiprocessing MIDAS Environment. II

Lawrence Berkeley Laboratory Report, Oct.,
1983.

3. Maples, C., Daniel Weaver, John Meng, Will iam
Rathbun and Douglas Logan, "Utilizing a M..ll­
tiprocessor Architecture - The Performance of
MIDAS." Lawrence Berke 1 ey Laboratory Report,
Oct., 1983.

4. Maples, C., Will iam Rathbun, Daniel Weaver
and John Meng, "The Design of MIDAS - A Modu­
lar Interactive Data Analysis System," IEEE
Trans. on Nuclear Science, NS-28, 3880 (1981).

I~

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

---..~-

'?~ ,-

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATOR Y

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

~.~~--.;:.

~:'- ~.- '"1")

