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Abstract—We have developed statistical error modeling 
techniques for acoustic signal detection-based ranging 
measurements in the framework of wireless ad-hoc sensor 
networks (WASNs). The models are used as the basis for solving 
the location discovery problem in sensor networks. We first 
demonstrate that the major difficulty in location discovery is how 
to treat errors by proving the location discovery in presence of 
noisy measurements is a NP-complete problem, even in one-
dimensional space. Consequently, we formulate the location 
discovery as an instance of nonlinear function minimization that 
optimizes each of the empirically derived statistical error models. 
The minimization problem is then solved using a conjugate 
gradient-based nonlinear function optimization solver.  

We validate the efficiency of the approach by conducting 
comprehensive experiments on both deployed and simulated 
WASNs. The results indicate that the statistical model-based 
approach significantly improves the location accuracy compared 
with the approaches using the traditional optimization objectives. 
In addition, the localized version of our location discovery 
algorithm is capable of finding competitive solutions using 
significantly lower communication cost. 

Keywords-Statistical error modeling; Location discovery 

I.  INTRODUCTION 
Location discovery (LD) or localization is a highly important 

task in many sensor network and pervasive computing 
applications. Numerous problem formulations have been 
proposed for localization that target different technologies for 
distance measurements, use different optimization mechanisms, 
and impose different sets of constraints and objectives [1][2]. 
These efforts form strong foundations for addressing location 
discovery in sensor networks. 

Interestingly, the characterization of errors in distance 
measurements has been rarely addressed. As demonstrated by 
the following small motivational example, the overall accuracy 
of the location discovery is often strongly correlated to the 
accuracy of the error model employed. 

A. Motivational Example 
Consider a WASN shown in Figure 1, where nodes N1 to N9 

are aware of their exact locations but node N10 knows only its 
measured distances to the other nodes. Table 1 indicates the 
real distances, which are obtained by applying the distance 
formula given the true positions of the nodes, the measured 

(Euclidian) distances and the normalized distance errors from 
node N10 to all other nodes. The nodes and the distance 
measurements are randomly selected from a deployed WASN 
(see Section III.A). The goal is to calculate the location of 
node N10 (x10, y10). We define the discrepancy between nodes 
N1 and N10 as 10,1

2
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measured distance d1,10 is 10.02m and the calculated distance 
is 2

101
2

101 )()( yyxx −+− . Similarly, we can define 
discrepancies between nodes N2,…,N9 to N10. The 
discrepancies (Equation (1)) can be used to guide the location 
discovery. For example, we can formulate LD as determining 
(x10, y10) to minimize S, the sum of absolute values of the 
discrepancies: 

|||||||||||||||||| 987654321 εεεεεεεεε ++++++++=S          (1) 

Equation (1) is the L1 norm and it is the objective of 
optimization. Other alternative measures that are often used 
include L2 = 2

9
2

2
2

1 ... εεε +++ and L∞ = max{ε1,ε2,…,ε9}. The 
most popular measure is to use the least linear squares 
minimization approach that targets the Gaussian error model 
for the distance measurement errors. 

Due to the small size of the instance, it can be easily and 
optimally solved using exhaustive search, which guarantees 
that the calculated location is within 0.1mm of the optimal in 
terms of the targeted objective function. The optimization 
mechanism produces solutions of location error 1.272m, 
5.737m, and 8.365m when L1, L2 and L∞ are used, respectively. 
If we assume the Gaussian distribution for the measurement 
errors and utilize the maximum likelihood (ML) approach to 
maximize the probabilities of errors occurring, the 
optimization gives a solution with location error 0.928m. 
However, when we use the distance error model derived from 
experimental data that does not include these 10 measurements 
shown in Figure 2 and maximize the product of probabilities 
of individual discrepancies, the optimization produces a 
solution with location error 1.662x10-3m. The error is reduced 
by more than two orders of magnitude. Although the example 
is small, it strongly suggests the importance of modeling 
distance measurement errors. 

In practice, we have observed that all optimization solvers 
have great difficulty producing accurate solutions based on 
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Figure 1. The motivational example topology. 

 
NODE REAL 

(R) 
MEASURED 

(M) 
ERROR (%) 
((R – M)/R) 

N1 10.31 10.02 +2.79% 
N2 15.01 16.59 -10.54% 
N3 7.07 3.02 +57.29% 
N4 7.07 6.67 +5.67% 
N5 45.06 27.65 +38.65% 
N6 15.81 17.34 -9.67% 
N7 41.23 39.84 +3.37% 
N8 19.52 20.22 -3.56% 
N9 35.35 36.46 -3.12% 

Table 1. The real, measured and the normalized errors of distance 
estimates between N10 and its neighbors. 
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Figure 2. Statistically constructed error model. 
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Figure 3. Measured distances vs. Correct Distances. 

measurements that have errors. Therefore, it is clear that 
measurement errors and error models cause both conceptual 
and computational difficulties. However, the difficulty of LD 
can be greatly alleviated when a sound error model is 
available. Unless the adequate objective function is targeted, 
regardless of the optimization mechanism, LD will not be 
effective. 

B. New Location Discovery Approah: The Global Flow 
In this section we outline the key components of our LD 

approach. While other sections describe the approach in much 
more systematic and detailed way, the emphasis in this 
subsection is on the intuition and reasoning that guide the 
approach and the process on how the modeling and 
optimization are conducted.   

Our LD approach emphasizes error modeling. The starting 
point of our approach is traces of collected sets of measured 
distances. Figure 3 shows 2,000 pairs of measured distances 
plotted against the corresponding real (correct) distances. The 
measured distances between a pair of nodes were obtained 
using the acoustic signal-based ranging method (Section III.A); 
the real distances were obtained using the distance formula 
based on the true locations of the nodes. Our analysis shows 
that the main source of the problem difficulty is errors, since 
LD is a NP-complete problem even in the 1-d framework 
(Section III.B). We conducted Chi-Square, Kolmogorov-
Smirnov (KS), Anderson-Darling, Cramer-von Mises, and 
Kupier goodness-of-fit tests [3][4] to evaluate how likely the 
distance measurements (Figure 3) follow a specific distribution, 

assuming the data follows one of the following five 
distributions: Gaussian, beta, gamma, Weibull, and lognormal. 
The parameters of each distribution were estimated using the 
maximum likelihood procedure and the Probability Plot 
Correlation Coefficient (PPCC) method [5]. None of the five 
considered distributions was able to pass any of the evaluation. 
The goal of error modeling is not just to answer the question of 
what is the most likely actual value for a given measured 
distance (regression), but also to provide the likelihood of any 
proposed actual distance for a given measured distance (density 
estimation). We start by developing and evaluating a number of 
techniques for off-line error modeling that assumes the 
knowledge of the real distance for each measured distance. We 
use statistical validation and evaluation techniques to select the 
most effective procedure (kernel smoothing). Once the error 
model for individual measurement is available, we analyze the 
correlation among errors. The statistical-proven independence 
of the errors provides the justification for the maximum 
likelihood objective function used by the LD algorithms.   

There are several reasons why off-line models are important. 
First, they enable us to learn about the properties of the error 
distribution functions, which can be used for faster and less 
expensive on-line model development (Section V).  Secondly, 
in many actual cases when we have beacons, whose exact 
locations are provided by GPS devices, the distances between 
the beacons can be measured. Consequently, we can easily 
construct an on-line model based on the measurements among 
beacons using the same approaches. Finally, we show how one 
can iteratively deduce error models by interleaving LD and 
error modeling. We quantitatively compare the impact of 
location accuracy based on off-line and on-line error models in 
Section VII.  

We evaluate several optimization mechanisms for 
localization and select the best one (Section IV.B). Since the 
problem is NP-complete, there is well-justified need for 
considering a variety of powerful optimization mechanisms. 
Some of the best performing approaches are all based on 
nonlinear function minimization using continuous optimization 
techniques. We believe that this is a consequence of the nature 
of the error model that provides strong hints to the continuous 
optimization methods which direction to pursue. We also have 
developed a localized LD algorithm and we demonstrate that it 
often performs better than centralized both in GPS and GPS-
less instances (Section VI). The key reason for this unexpected 
behavior is that no solver can effectively solve systems with 
too many variables and constraints. It is beneficial in terms of 
optimization in limiting the size of considered instances. 
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We analyze the performance of all proposed error models 
and optimization mechanisms using networks that are 
composed based on actually deployed network (e.g. Figure 
4(a)). In order to properly evaluate the feasibility and the 
scalability issues, we have developed an integer linear 
programming (ILP)-based procedure that guarantees the 
extraction of a network with user specified properties such as 
the average number of neighbors, minimal and maximal 
number of neighbors for each node, and the total number of 
measurements for a network of given size (Appendix). 

Note that the developed error model construction techniques 
are demonstrated on, but certainly not limited to the acoustic 
signal-based distance measurements. As part of our future 
work, we continue to investigate whether the derived error 
model (as opposed to Gaussian) is a good fit across different 
ranging methods in different environments. In addition, we are 
also studying how to incorporate the background noise and 
significant multipath effects generated by an urban setup. 
However, this paper should serve as a starting point of 
investigating error characterization using combinations of 
parametric and non-parametric statistical methods.            

II. RELATED WORK 
We survey the most closely related literature on location 

discovery as well as error characterization in the framework of 
location discovery. One way of classifying the LD algorithms 
is based on the availability of distance measurements: range-
based and range-free. Range-based localization techniques 
rely on the availability of the measured (or estimated) 
Euclidean distances between pairs of communicating nodes, 
while the range-free techniques pose no such requirements. 

For range-based techniques, distance is often measured by 
exploiting time of arrival [6], received signal strength [7][8], 
time difference of arrival of two different signals (TDOA) 
[9][10] and angle of arrival (AOA) [11]. Some of the state-of-
the-art range-based location discovery techniques and systems 
for WASN include [12][13][14][15][16][17]. Biswas and Ye 
[2] propose a semidefinite programming (SDP) relaxation 
based localization method where the main idea is to convert 
the non-convex quadratic distance constraints into linear 
constraints by introducing a relaxation to remove the quadratic 
term. The L1 norm of location errors serves as the optimization 
target. Galstyan et al. [13] treats localization through online 
distributed learning and integrates it with target tracking given 
a fraction of anchor nodes while not requiring the moving 
object to have a-prior knowledge about its own location. 
Nasipuri and Li [16] propose a localization method that a 
sensor node can determine its location by noting the times 
when it receives the different beacon signals, and evaluating 
its angular bearings and location with respect to the beacon 
nodes using triangulation. Shang and Zhang [17] present an 
algorithm that uses the basic connectivity information – which 
nodes are in the communication ranges of which others – to 
derive the locations of the unknown nodes.  

Range-free localization techniques do not require the 
availability of the estimated/measured Euclidean distances 

between pairs of communicating nodes. He et al. [18] present 
an area-based range-free localization technique – APIT. The 
locations are estimated by isolating the environment into 
triangular regions between anchor nodes. A node’s presence 
inside or outside of these triangular regions allows the node to 
narrow down the area in which it can potentially reside. The 
diameter of a node’s estimated area can be reduced by 
utilizing different combinations of anchor positions. Doherty 
et al. [19] form the localization problem as a constraint 
satisfaction problem where the constraints are induced based 
exclusively on connectivity. Connectivity between all pairs of 
communicating nodes is modeled as a set of geometric 
constraints on the node positions, and then the system is 
solved globally in a centralized place. Niculescu and Nath in 
[20] document the Ad Hoc Positioning System (APS), which 
is a distributed, hop-by-hop positioning algorithm that 
resembles an extension of both distance vector routing and 
GPS positioning given a fraction of anchor nodes.  

More recently, GPS-less positioning approaches have also 
emerged [20][21][22] where the resultant locations of the 
unknown nodes are relative with respect to their neighboring 
nodes either in terms of the Euclidean distances or hops. For 
example, Capkun et al. [22] developed a distributed 
infrastructure-free (mobile) positioning algorithm that uses the 
measured Euclidean distances between the nodes to build a 
relative coordinate system in which the node positions are 
computed in two dimensions. The authors also demonstrated 
that relative coordinates are sufficient for applications such as 
Location Aided Routing and Geodesic Packet Forwarding. In 
addition, there have been studies on the positioning algorithms 
targeting mobile sensor networks as well [22][23]. 

To the best of our knowledge, no comprehensive statistical 
studies on measurement errors or error modeling have been 
conducted. Two popular assumptions regarding the 
measurement/ranging errors include the Gaussian distribution 
[1][24] and the L1 norm [12]. When localization is formed in 
terms of an optimization instance, maximizing the likelihood of 
Gaussian-based errors or minimizing the L1 norm of location 
errors usually serve as the optimization target. For example, 
Niculescu and Nath [24] derive a Cramer-Rao lower bound for 
positioning error of multi-hop distance-vector based algorithms 
based on the assumption of Gaussian error measurements. 
Savvides et al. [25] conduct comprehensive studies on the 
position error behavior of multihop localization protocols based 
on the assumption that the measurement errors are independent 
Gaussian random variables with zero mean and a known 
variance. 

III. PRELIMINARIES 

A. The Distance Measurements 
We construct the statistical error models and conduct 

location discovery on sets of distance measurements that are 
collected using the acoustic signal detection-based ranging 
techniques. The number of deployed sensor nodes varies from 
79 to 93, with the average being 90. The sensor nodes are 
custom designed based on an SH4 microprocessor running at 
200MHz (Figure 4(b)). The nodes are deployed at the Fort 
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Leonard Wood Self Healing Minefield Test Facility, which 
measures 200m x 50m. The nodes are roughly 10.5m apart and 
the radio signal (communication) range is about 50m. Figure 
4(a) shows an example of a deployment topology. Each node is 
equipped with four independent speakers and microphones that 
are used as the ranging tool. The distance between two nodes is 
obtained by timing the arrival of the acoustic signals [26]. Each 
node in the network takes turns to transmit the acoustic signals; 
all the nodes that receive the signals record the time of arrival 
and convert the time of flight to distance in meters. There are 
33 sets of distance measurements in total that were collected 
over the course of few days. Each set consists of one round of 
acoustic signal transmission by all the nodes. For the sake of 
simplicity, we demonstrate the algorithms and techniques on a 
randomly selected set of measurements, and we present the 
results for ten other randomly selected data sets in Section VII. 
The details on the experimental setup and the acoustic 
detection scheme used can be found in [27]. 

               
                                 (a)                                                        (b) 

Figure 4(a). An example of deployment topology. 
Figure 4(b). A SH4 node. 

B. Computational Complexity 
Recently, it has been proven that localization is a NP-

complete problem by transforming the graph embedding 
problem into the localization problem [28]. It was identified 
that mirroring and flipping in 3-d space are the cause of 
computational intractability [15]. In this subsection, we provide 
an alternative proof of the computational intractability of the 
localization problem. The impetus for the development of the 
new proof is provided by our objective to better understand the 
sources of the complexity, to establish more precise conditions 
under which localization is NP-complete and to better 
understand the importance of noisy measurements. Our main 
conclusion is that localization is NP-complete even when no 
mirroring and flipping is possible as in the one dimensional 
localization problem due to errors in measurements. At the 
same time as we observe, actual distance measurements usually 
have significant errors and, therefore, there is a need to address 
error modeling, optimization in presence of error and to 
develop and employ powerful optimization mechanisms for 
localization. 

We prove the NP-completeness of the 1-d LD problem by 
polynomial transformation of an instance of the known NP-
complete problem – optimal linear arrangement problem [29], 
into the 1-d localization problems, in polynomial time. For the 
sake of completeness and readability, we state both problems 
using the standard Gary-Johnson format: 

THE LINEAR ARRANGEMENT PROBLEM 
INSTANCE: Graph G = (V, E), positive integer K ≤ |V|. 

QUESTION: Is there a one-to-one function f: V → {1, 2, …, 
|V|} such that Kvfuf

Evu

≤−∑
∈},{

)()( ?                       

THE 1-D LOCALIZATION PROBLEM  

INSTANCE: A network of N sensor nodes, measured distances 
between all pairs of sensors P={dij, i,j∈N}, a subset of P also 
has bi-directional measurements Q={dji}, Q∈P, positive 
integer M. 

QUESTION: Is there a one-to-one function g: i → xi where xi 
is the estimated location of i, i=1,…,N, such that the overall 
discrepancy between the calculated distances |g(i) – g(j)| and 
the measured distances dij and dji of all pairs of sensor nodes i 
and j satisfy the following condition: 

Mdjgigdjgig
Qji

ji
Pji

ij ≤−−+−− ∑∑
∈∈ },{},{

)()()()( ?        

Proof: The reduction from the linear arrangement problem to 
the localization problem is as follows. Let the vertices in G be 
the sensor nodes, i.e. V = {i, i=1,…,N}. Let the edges in G be 
the measurements in Q, i.e., E= {dji, dji∈Q}. 

More formally, let the graph G = (V, E) and the positive 
integer K constitute an arbitrary instance of the linear 
arrangement problem. The basic units of the instance of the 
linear arrangement problem are the vertices and the edges of 
G. The instance of the localization problem is completely 
specified by:   

i = {v: v∈ V} 
dij = {{i,j}: i,j∈ V} 
dji = {{j,i}:{j,i}∈ E} 

M = K + C, where C = 4
1 (K2+K+2)(K–1)   

It is easy to see that this instance can be constructed in linear 
time. Note that the measured distances dij acts as an “enforcer” 
[29][30], which impose additional restrictions on the ways the 
sensor nodes must be placed. Specifically, all the dij have value 
K+h, where h specifies the least distance between any pair of 
nodes. This enforcer is necessary and sufficient to prevent 
multiple nodes being placed on an identical location, which 
corresponds to the condition that each node must have a unique 
assignment in the linear arrangement problem, that the distance 
between any two nodes is at least 1 unit. Therefore, each node 
maps into a unique integer location between 0 and K.  

Function f exists if and only if there exists a function g that 
satisfies the condition of 

 Mdjgigdjgig
Qji

ji
Pji

ij ≤−−+−− ∑∑
∈∈ },{},{

)()()()(  

Suppose g such that 
Mdjgigdjgig

Qji
ji

Pji
ij ≤−−+−− ∑∑

∈∈ },{},{

)()()()(   

Consequently, there exists an f such that  
Kjfif

Pji
≤−∑

∈},{
)()(  
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Therefore, function f satisfies the condition  

Kvfuf
Evu

≤−∑
∈},{

)()( since P={dji: {j,i}∈ E} 

IV. OFF-LINE MODEL CONSTRUCTION 
In this section we present the acoustic ranging-based 

distance measurement error models and the objective 
functions developed using combinations of parametric and 
non-parametric statistical techniques. In addition to modeling 
individual distance measurements, we also statistically analyze 
the error models associated with a particular speaker or 
microphone (Section III.A), and nodes that are in a particular 
geographic area. All models are evaluated using resubstitution 
[31]. We also present several new techniques for evaluating 
the error cumulative density functions (CDFs). The input to all 
procedures is a set of pairs of values. In each pair, one value is 
the distance measurement obtained based on the acoustic 
signals (the measured distance) and the other is the distance 
obtained using a high accuracy manual procedure (the real 
distance). The goal is to find the probability density function 
(PDF) of errors for any given measurement. 

A. Model Construction 
We have developed and analyzed the following five families 

of error models for distance measurements: (i) independent of 
distance (ID); (ii) normalized distance (ND); (iii) kernel 
smoothing (KS); (iv) recursive linear regression (LR); and (v) 
data partitioning (DP). 

For each type of model, we develop a number of variants and 
statistically test them in order to select the best one for the 
optimization process in LD. The first model (independent of 
distance) does not distinguish between different measurements 
and considers only the positive or the negative error values (i.e. 
measured – real), shown in Figure 2. Conceptually, this model 
is attractive because of its simplicity and the use of a single 
dimension for all different measurement values. In the second 
family of models (normalized distance), the error values are 
defined by normalizing the measured distance against the real 
distance (measured/real). The model is shown in Figure 5. 
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Figure 5. The normalized distance-based error model. 

In addition, we also experimented with several more 
complicated techniques: kernel smoothing and local regression 
[31]. The basic idea is that when we estimate a continuous 
density from a dataset, we also seek to smooth the discrete 
data. The challenge in smoothing is to choose the best 
bandwidth that balances the desire to reduce the variance of 
the estimator (which needs lots of data points that we do not 

have) yet capture significant small-scale features in the 
underlying distribution (which needs a narrow bandwidth). 
The kernel smoothing method (KS) convolves the density 
distribution with a kernel where the user specifies the shape 
and bandwidth, which supports our primary goal to develop 
error models that take into account the length of measurements 
as a prediction parameter. We have experimented with 
multiple kernel weight and shape functions and selected the 3-
d pyramid in our experiments. We use the sliding window 
kernel smoothing technique [31] to construct the PDF, which 
is a function of two variables: the measurement errors and the 
intensity of measurements. Figure 6 shows the model 
presented in a 2-d plot for easy visualization (the figure only 
shows the PDFs for five measured distances as an example). 
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Figure 6. The kernel smoothing-based error model. 

The recursive linear regression-based technique (LR) 
constructs the PDF by utilizing both the measured and the real 
distances. It is constructed in the following way. First we use 
the standard linear regression to approximate the real distances 
as a function of measured distances (the 50% line in Figure 
7(a)). The data is naturally partitioned into two fractions by 
the regression line. We then recursively produce a regression 
line in both fractions –  the 25% and the 75% regression lines 
respectively. The process is repeated until the specified 
precision is reached. The precision is set to 1% in our 
experiments. Given a specific measured distance 35m, the 
CDF can be constructed by finding the real distance mappings 
according to the regression lines (shown in Figure 7(a)). Points 
A to F are the 1%, 25%, 50% 75%, 94% and 99% CDF values 
respectively. The PDF is then derived from the CDF by 
subtracting two consecutive terms. Figure 7(b) shows the PDF 
constructed for the measured distance 35m. 
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Real Distance (measured distance = 35m)  
                          (a)                                                             (b) 

Figure 7(a). The linear regression lines. 
Figure 7(b) The linear regression-based error model given the measured 

distance = 35m. 

Finally, we explore the data partitioning-based model (DP). 
The impetus to develop an error model separately for different 
measurement ranges is provided by the exploratory data 
analysis. We find that the percentage of outliers in terms of 
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measurement errors depends on the range of the measured 
distances. For example, in the majority of our 33 data sets, 
measurements in the range of 15 to 35m are almost without 
outliers, while the measurements in the range 40+ m contain 
more than 80% of all the outliers. The data partitioning is 
conducted within the framework of dynamic programming 
which guarantees the optimality under the assumption that the 
applied regression on each individual segment is optimal. The 
run time of the algorithm is O(k·R2)·O(regression), where k is 
the number of partitions and R is the ratio between the range 
of the measurements and the minimum size of a partition. 
Figure 8 shows the PDFs constructed when the data is 
partitioned into four segments. 
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Error (measured - real, measured > 40m)
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   (d) 
Figure 8. The measurement partitioning-based error model. The error is 

defined as (measure – real) in meters. 

While there are a wide variety of well-proven statistical 
techniques for the evaluation of regression models, there is 
very limited literature on the evaluation of density estimation 
techniques. Therefore, we decide to map the density 
estimation evaluation problem into the problem of evaluating 
the regression functions by using the resubstitution paradigm 
[31]. Resubstitution is the procedure where different K% of 
the original data is randomly selected as the learning data set 
to acquire the result, which is then evaluated on the remaining 

(1–K)% of the testing data.  This procedure is repeated R times 
in order to indicate how frequently different results occur. In 
our study, K is 60% and R is 200. The key idea in our 
evaluation is to map each data point in the testing set to its 
corresponding CDF value, which can be derived from the PDF 
developed by applying one of the five methods to the learning 
data set. After each resampling, we plot the testing sets in 
ascending order where the x-coordinate indicates its ranking 
normalized against the cardinality of the testing data set, and 
the y-coordinate shows the product of its CDF value and its 
ranking.  Figure 9(a) shows an example of such plot for the 
kernel-based model. Note that if the model is perfect, all 
points will reside on the line y = x. Figure 9(b) shows the 
boxplots of the discrepancy distribution from the line y = x 
based on the 200 resamplings for all five families of models. A 
boxplot summarizes a set of data in the following way. The 
top and bottom lines indicate the maximum and the minimum 
errors; the top and bottom lines of the rectangle indicate the 75 
and 25 percentile values; and the line inside of the rectangle is 
the median value. We see that the kernel-based and the 
measurement partitioning-based methods are the best ones in 
terms of the median discrepancy. Moreover, Table 2 shows the 
slopes and the R2 values for all five types of error models 
when the least linear squares regression is overlaid on the plots 
such as in Figure 9(a). Again, the results strongly indicate the 
strength of the kernel-based model. Therefore, we select this 
method as the basis for constructing the objective function 
(OF) that serves as the optimization target in LD. 
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Figure 9(a). The testing set evaluation.  
Figure 9(b). The boxplots of discrepancy (from y=x) distribution of the five 

error models. 
  

MODEL SLOPE (M) VARIANCE (R2) 
ID 1.0678 0.9936 
ND 0.8287 0.8973 
KS 1.0151 0.9955 
LR 1.2469 0.8976 
DP 0.9193 0.9584 

Table 2. The regression line summary of the testing set evaluation for the 
five error models. 

B. The Objective Function (OF) 
Consider a network of N sensor nodes in a K-d space where 

each node i has geographic location (xi,1, xi,2,…, xi,K), i=1,…,N. 
dij indicates the measured distance between a pair of 
communicating nodes i and j. The individual distance 
measurement error εij associated with i and j is defined in 
Equation (2). Note that Equation (1) is an instantiation of 
Equation (2). 
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The objective function is derived by combining the 
individual discrepancies of all pairs of nodes with distance 
measurements. More specifically, a function f is defined over 
the set of discrepancies εij for all pairs of i and j, and is subject 
to minimization (Equation (3)):  

OF = f(εij)                            (3) 
Commonly used objective functions are metric error norms: 

L1, L2 and L∞. In the case of the ML-based OF, the OF is the 
product of probabilities associated with each individual 
discrepancy (Equation (4)). We denote the function that 
transforms the discrepancy εij into the corresponding 
probability by following a particular error model as P. The 
new OF is subject to maximization. In our study, we adopted 
the kernel-based measurement error model for locations in the 
2-d physical space. 

OF =∏
ij

ijP )(ε                                                                   (4) 

Once the model of individual errors is available, the 
remaining task is to identify the best possible way to combine 
them into an overall objective function (OF) that will guide the 
LD process. One can envision a large number of options. The 
standard practice is to use L1, L2, L∞, or to apply the maximum 
likelihood principle.  In sensor and ad-hoc wireless network 
literature, the most common approach is to assume the 
Gaussian error distribution and follow the ML principle. In 
addition to these four standard options (L1, L2, L∞, and 
Gaussian distribution ML), we propose two new maximum 
likelihood-based OFs. 

The ML principle states that we should select the solution 
which yields errors such that their joint likelihood is 
optimized. If errors are not correlated, the joint probability is 
equal to the product of individual probabilities. Otherwise, we 
have to take into account the joint probabilities and create 
complex OFs. Therefore, in order to create an accurate OF that 
is easy to calculate, it is important to identify to what extent 
the errors between different measurements are correlated. 

There are two natural sources of correlation for distance 
measurements: the use of identical equipment (speaker or 
microphone) and the impact of the environment (in our case 
the vicinity of speakers or receivers). We start the analysis by 
calculating the cumulative distribution function of the 
measurement errors. The CDF value of a given error indicates 
the percentage of communication links (measurements) that 
have smaller error than itself. After that, we examine all the 
measurements that have the same correlation property (i.e. 
originated from the same (i) speaker, or (ii) receiver, or (iii) 
are geographically close). 
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Figure 10. Quality measurements grouped by speakers. The correlation 

level is very low. 

Figure 10 shows the CDF values for all possible pairs of 
communication links (measurements) grouped by speakers as 
an example. Each pair of links that originated at the same 
speaker is characterized by a point in the 2-d space that has x 
and y coordinates according to its CDF values. The plot shows 
the absence of correlation, as indicated by the wide spread of 
data points. Also shown in figure is the best-fit model of the 
data points, which also hints that there is little correlation 
among the data points (R2=0.003, which means that only 0.3% 
of the data variability is explained by correlation). In addition, 
we evaluated the correlation significance using the t-test [31] 
(likelihood of accidental presence of the correlation) in all 
three scenarios across several independent data sets. The 
probability that the correlation is accidental in all three 
scenarios across all data sets is always very low (less than 10-

10). However, the correlation is also always very low as well 
(less than 0.01). Therefore, we can conclude that it is not 
necessary to consider the error correlation during the LD 
procedure (i.e. error values can be interpreted as independent 
probabilities in the ML-based optimizations). 

We constructed two OFs, the first one is based on the kernel 
smoothing-based error model within the ML framework. The 
second OF incorporates an additional heuristic factor: nodes 
that are closer to beacons receive weight factor proportional to 
the inverse of their distance to the three closest beacons. 

Figure 11 shows the correlation between the kernel-based 
OF values and the resultant location errors. Table 3 summaries 
the results of the statistical analysis of the four widely used 
OFs and two of our new OFs. One conclusion is that the ML-
based OF is superior to the norm-based OFs. By far the worst 
is L∞ because it focuses only on the single largest error value. 
Although the Gaussian OF performs reasonably well, it is still 
inferior when compared to the two new OFs. The third column 
indicates the consistency between high quality solutions and 
objective functions. Although the OF constructed with 
heuristics performs slightly better in terms of consistency, we 
decide to use the kernel OF because of its generic nature. 
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Figure 11. The correlation between the OF values and the resultant 

location errors of the kernel-based error model. 

OF VARIENCE (R2) CONSISTENCY 
L1 0.469 0.720 
L2 0.417 0.742 
L∞ 0.090 0.566 

GAUSSIAN 0.885 0.86 
KERNEL 0.943 0.915 

KERNEL+HEURISTIC 0.927 0.938 

Table 3. Evaluation of the six objective functions. 

In the case of centralized algorithm, we assume that the 
distance measurements are collected at nodes that receive 
acoustic signals from their geographical neighbors and are 
gathered at a centralized location. If the LD problem is GPS-
based, we assume that a small fraction of nodes have their 
locations. The goal is to calculate the locations of all unknown 
nodes by optimizing the OF derived in the previous section. 

Once all the measurements are aggregated at a single point, 
we evaluated several optimization mechanisms. Overall, our 
conclusion is that the nonlinear function minimization 
(Broyden-Fletcher-Goldfarb-Shanno (BFGS) variant of 
Davidon-Fletcher-Power minimization procedure [32] to be 
exact) is the best performing method in terms of both location 
accuracy and run time. The experimental results using the 
BFGS method are presented in Section VII. 

The starting point for GPS-less localization is the identical 
objective function as in the case when beacons are present. 
The only change is that in this case all nodes are unknown. We 
use three steps to match the relative locations produced by the 
optimization solver against the correct locations of the nodes: 
(i) flipping; (ii) translation; and (iii) rotation. The details 
about these operators can be found in [15]. Solutions obtained 
with and without flipping with respect to the x-axis are always 
attempted and the better matching solution is preserved. 

V. ON-LINE MODEL CONSTRUCTION WITH SIMULTANEOUS 
LOCATION DISCOVERY 

It is easy to envision many situations when error models for 
the distance measurements are not available a-priori, including 
deployment in environments with unknown characteristics, the 
presence of moving obstacles, employment of new and 
different models of speakers and microphones, and 
applications of different technologies for distance 
measurements. Both in principle and often in practice we can 
develop the error models in many of these situations by (i) 
using distance measurements among a relatively small number 

of nodes relying on GPS (e.g. beacons); or (ii) extrapolating 
from models developed at similar environments with the same 
distance measurement equipment. Nevertheless, the 
importance of the on-line in-field techniques for error model 
construction is clear.   

In this section we present four methods for simultaneous on-
line error model construction and LD: (i) parameter fitting; (ii) 
monolithic approximation; (iii) iterative approximation; and 
(iv) iterative shape and space approximation. The methods 
provide trade-offs between the amount of required/assumed 
information, and the solution quality and the computational 
complexity. We compare the error models constructed off-line 
and on-line in Section V.E; and we analyze the impact of 
location accuracy by adopting off-line and on-line error 
models in Section VII. 

A. Parameter Fitting 
Given a set of distance measurements as the input, our goal 

is to simultaneously determine the known locations and 
construct an error model. Unfortunately, it is easy to see that it 
is not possible to solve the LD problem unless a set of 
restrictions/properties is imposed or assumed on the error 
model. If there are no such restrictions or assumptions, the 
solver can always produce an arbitrary solution that follows an 
arbitrary error distribution perfectly. Therefore, restrictions or 
assumptions of errors must be imposed and our goal is to find 
a minimum set of intuitive assumptions that will be applicable 
to a variety of distance ranging technologies and 
environments. One example is that the error function has to be 
unimodular, i.e., there exists an error εi such that for any two 
errors εk and εj, εi > εk > εj implies P(εi) > P(εk) > P(εj); and 
there exists error εi such that for any two errors εk and εj, εi < εk 
< εj implies that P(εi) < P(εk) < P(εj), where P is the probability 
of the error. From a practical point of view, one can view εi as 
the bias of the imposed random noise of an unspecified 
distribution. We statistically examined 33 data sets and they 
all satisfy the unimodular property.  

Motivated by the similarities of our data sets, we first 
addressed the easy and less general but commonly practiced 
case, where the shape of the error distribution function (error 
model) is known and we just have to determine the 
parameters. We start by identifying the shape that is a accurate 
approximation for error distributions for all 33 sets of data. By 
approximating the actual distributions of the data sets using 
least-squares, we have selected two linear functions and two 
polynomials. Figure 12 shows the selected shape and the 10 
parameters used for its characterization. Note that although the 
number of variables in the formulation of the nonlinear 
function subject to minimization does not increase 
significantly, the topology of the solution space becomes 
much more nonlinear. 
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Figure 14(a). The testing set evaluation. 
Figure 14(b). The boxplots of the discrepancy (from y = x) distribution of the 

model constructed off-line and on-line.  
 

MODEL SLOPE (M) VARIANCE (R2) 
OFF-LINE 1.015 0.995 
ON-LINE 0.979 0.903 

Table 4. Comparison of the error models constructed off-line vs. on-line. 

1.   Create token, wait for a randomly generated period of time
2.   if  (no packet arrives from neighbors before waiting time expires)
3.        send all measurements and neighbor locations (if known) to the closest neighbor
4.   else {
5.        disable the ability to start LD procedure by disabling the token
6.        aggregate all its measurement and neighborhood information
7.        if (number of visited nodes >= VISIT_LIMIT) {
8.            invoke optimization solver
9.            broadcast the resultant locations }
10.      else {
11.               determine the next node
12.               send packet along with the token }
13.   }  

Figure 15. Localized LD algorithm pseudo-code. 

Probability

Error
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E ),( EE yx
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Segment 2 Segment 3

Segment 4

 
Figure 12. The selected shape of the error model and the corresponding 10 

parameters. Segments 1 and 4 are linear, segments 2 and 3 are quadratic. The 
parameters include: the coordinates of five points except the x coordinates of 

points A and E (the min. and max. of the error values are known); two 
additional parameters for the two quadratic segments 2 and 4. 

B.  Monolithic Approximation 
The second approach was monolithic piece-wise linear 

approximation where we assumed that the targeted unimodular 
model distribution can be approximated with at most L (L = 20 
in our study) piecewise linear segments that satisfy the 
unimodularity constraints. The approach is subject to very 
mild assumptions and conceptually it is easy to introduce a 
new term to the OF. However, our experiments show that 
solving such an instance of nonlinear function is excessively 
difficult for the optimization solver and unsuccessful for any 
instances with more than 20 nodes. In all 33 data sets, the 
eventual location error was at least an order of magnitude 
larger than in any other on-line technique. Therefore, we 
abandoned this line of research and focused on two iterative 
techniques with the same goal under the identical set of 
assumptions.     

C. Iterative Approximation 
This technique starts with the error model approximation 

that has a triangular form, which is characterized by four 
parameters as shown in Figure 13. After each iteration, we add 
one additional parameter and use the previous solution as a 
starting point. Whenever we add a new parameter, we also 
allow any modification of all already-existing parameters. The 
procedure terminates when no improvement large than ε in the 
OF is observed after two consecutive additions of parameters. 
In our experiments, ε is set to 0.1%. 

Probability

Error

A ),( AA yx

B

C ),( CC yx

),( BB yx

 
Figure 13. The initial approximation of the error model. The four parameters 

are the x and y coordinates of points A, B and C, except the x coordinates of A 
and C (which are the known min. and max. error values). 

D. Iterative Shape and SpaceApproximation 
The last technique – iterative shape and space 

approximation, tries to further enhance the advantages of the 
iterative learning technique while simultaneously reducing the 
run time. Again, the idea is very simple: we first divide all 
nodes into k partially overlapping subsets using our ILP 

instance selection formulation (Appendix) in such a way that 
the number of measurements is maximized within each subset 
(in our experiments each subset had at least 25 nodes and at 
least 8 of which were overlapping nodes). We applied the 
iterative learning procedure only on the first subset of data, 
and then refine the error model in the round-robin manner. 
The approach takes advantage of checking and refining the 
partially developed model on a small set of data where the 
solver is able to produce high quality solutions much faster. 

E. Model Evaluation and Analysis 
For the sake of brevity, we only present the results on error 

models constructed using parameter fitting. The results indicate 
that the iterative improvement method is of almost identical 
accuracy with somewhat larger run time. The same method 
discussed in Section IV.A (Figure 9(a)) is used to evaluate the 
on-line error model (Figure 14(a)). Figure 14(b) shows the 
discrepancy boxplots of the on-line model when compared to 
the off-line kernel-based model. Table 4 compares the slope 
and the variances for both models.  

VI. LOCALIZED ALGORITHM FOR LOCATION DISCOVERY 
We now present the localized algorithm for LD in presence 

of noisy measurements. There are several advantages of 
localized over centralized algorithms for location discovery. 
Some of them are well known and often advocated, e.g. lower 
communication and computation cost, enhanced fault 
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Figure 16(a) The measurement error (measured – real) boxplot.  
Figure 16(b) The measurement error boxplot zoom view.  

Figure16(c). The location error boxplots of the off-line GPS-base LD and 
localized GPS-less LD.  
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             (a)                                            (b) 
Figure 17(a). The location error boxplots given different average connectivity 

for off-line GPS-based LD. 
Figure 17(b). The location error boxplots given different average connectivity 

for localized GPS-less LD. 

tolerance, and scalability. We found through experimentation 
that the localized algorithm provides a surprising advantage 
once the distance error is considered: improved location 
accuracy. Our intuition is that it is much easier for any solver 
to find a high quality solution to a smaller system of equations 
with fewer variables or to optimize an objective function that 
has fewer terms. Consequently, we found that it is 
advantageous to limit the number of nodes that are 
simultaneously considered for location discovery and reiterate 
the procedure. This is also the basis of our localized algorithm. 
The best suitable number of nodes is a function of the 
complexity of the OF used and the average number of 
neighbors. It ranged between 40 and 70 in our experiments 
given the optimization tool we have adopted. 

In practice, a true localized algorithm is not only subject to 
local optimization, but also localized/limited measurement 
information. Therefore, we derived the following algorithm 
upon which all of our experimental results regarding the 
localized algorithm are based. Our assumption is that the 
communication range of each node is larger than the distance 
measurement range, as is the case with the majority of today's 
technologies. Figure 15 presents the pseudo-code for the 
localized LD algorithm. 
 

Each node starts its own LD procedure at a random point in 
time unless it receives information from a neighbor. It creates a 
token and sends it to the closest neighbor along with the 
information about the distance measurements that the node has 
collected (lines 1-3). The procedure continues as the next node 
disables its ability to start the LD procedure (lines 4-6). It then 
sends the token and its information about the measured 
distances and locations of other nodes (if known) to the third 
node that is closest in terms of the sum of the measured 
distances to nodes visited by the token (lines 10-13). The data 
collection procedure terminates when the number of visited 
nodes is larger than the specified threshold (lines 7-9). In our 
experiments, the threshold is set to 40 nodes. The locations of 
all nodes with three or more neighbors are calculated. The 
information about locations of all the nodes is then broadcast 
back. If there are nodes with locations that are not calculated, 
they restart the mechanism for initiating the LD process at 
some other random moments. 

VII. EXPERIMENTAL RESULTS 
In this section we experimentally evaluate the centralized 

off-line LD algorithm, the on-line LD algorithm with 
simultaneous error model construction, as well as the localized 
algorithm. All three algorithms are evaluated in situations with 
and without GPS devices. We conduct analysis of the LD 
algorithms with respect to (i) performance across different 
data sets; (ii) the average number of neighbors; (iii) the quality 
of distance measurements; and (iv) scalability. We also 
compare the performance of the LD algorithms with a sample 
of previously published algorithms. Finally, we analyze the 
communication cost of the centralized and the localized LD 
algorithms. All experiments are conducted using the acoustic 

signal-based distance measurements collected by the deployed 
sensor networks (Section III.A). 

A good way to evaluate the overall effectiveness of both the 
objective function and the LD algorithm is to compare the 
input error (the distance measurement errors) and the resultant 
location errors. Figures 16(a) and 16(b) present the boxplots of 
the distance measurement errors. The median and average of 
the measurement error are 6.73m and 0.74m, respectively. 
Figure 16(c) presents the boxplots of the location error 
distribution in five optimization scenarios with models 
constructed off-line: (i) 25% beacons; (ii) 15% beacons; (iii) 
10% beacons; (iv) centralized off-line GPS-less; and (v) 
localized off-line GPS-less. We can see from the plot that 
increasing the percentage of beacons has diminishing returns, 
as indicated by the small improvement from having 25% of 
beacons compared to only 15%. The plot also shows that even 
in the least competitive scenario (centralized GPS-less), the 
maximum error is smaller than 0.05m. Another interesting 
observation is that the localized GPS-less LD often 
outperforms the centralized case with 10% beacons. In 
addition, as the collateral cost for switching from off-line to 
on-line model construction, the run time increased by a factor 
of almost 2 while the location accuracy of the approach 
deteriorated by approximately 1/3 in our experiments when 
compared to centralized off-line GPS-less LD. Its 
corresponding boxplot is partially out of the current scale 
range (0 – 0.05m). Therefore, we excluded it from the plot for 
a better visualization of the reminding five boxplots. 

It is widely assumed that a high degree of connectivity in LD 
graph results in smaller location errors. Figures 17(a) and 17(b) 
show the boxplots of the resultant location errors given 
different average number of neighbors for centralized GPS and 
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localized GPS-less LD algorithms. We see that while it is 
important to have more than minimally required three 
neighbors, once the number of neighbors per node is more than 
10, one can expect very little further improvement. More 
interestingly, the quality of the neighboring measurements 
matters much more than the number of neighbors. For example, 
Figure 18 indicates that lower median and average location 
errors are achieved when the number of neighbors is only 5 but 
all the measurements are in the range [15m, 35m] (where the 
measurements are the most accurate) than having 15 neighbors. 
There are at least two major ramifications: (i) it is often 
advantageous to conduct LD by considering a subset of 
measurements, both in terms of optimization complexity and 
accuracy; and (ii) more accurate locations are often calculated 
by considering only measurements of certain range. 
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Figure 18. The location error boxplots of 10%, 15% beacons with an average 
connectivity of 15; and 10% beacons with an average connectivity of 5 (15m 

< measurements < 35m). 
 

In the appendix we explain how we create different sizes of 
the location discovery problem instances using the original set 
of the measurements (Figure 3). Each node in the generated 
instance has a user-specified number of neighbors; the 
generated distance measurements follow the same error 
distribution as the original data set. All the scalability analysis 
is conducted on the instances created by this ILP instance 
generation, and we use the localized GPS-less LD approach 
for this study. From Figure 19(a), we observe that initially the 
median location error increases by a factor of 2, but it 
stabilizes with any further size increase. In addition, we 
observe that the location error distribution expands to a larger 
range as the network size grows, especially in the case of 1000 
and 2000 nodes. This is an expected consequence of the 
presence of large number of nodes. Simply put, the 
interpretation is that some nodes have higher probability of 
getting ‘lucky’ and vice versa when the network size 
increases. It is interesting to observe that no instances larger 
than 300 nodes are solved well using the centralized 
algorithms: obviously we reached the limit that can be 
addressed using the BFSR optimization software. In Figure 
19(b) we plotted the median location errors verses the network 
size. Also shown in the plot is the best fit of median location 
errors. Note that the trend is sublinear (logarithmic).   

In addition to network size, we also analyze the scalability 
in terms of dimensions. Figure 20 shows the location error 
boxplots when the localization is conducted in 1-d, 2-d and 3-
d spaces. It is interesting to note that in 3-d all percentiles of 
the location error increased by almost 45%. 
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Figure 19(a). The scalability study – location error boxplots given different 

network sizes. 
Figure 19(b). Best fitted model of the scalability in terms of network size. 
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Figure 20. The scalability study – location error boxplots when LD is 

conducted in different dimensions. 
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Figure 21. The median location error comparison of the centralized off-line 
LD, the centralized on-line LD, and the localized GPS-less LD across 10 

independent data sets. 

We also examine the consistency of performance of the 
developed LD algorithms by applying them on all 33 instances 
of our data set. Figure 21 shows the results for 10 randomly 
selected instances where the number of neighbors is on average 
six per node. Centralized GPS-based off-line and on-line, and 
the localized GPS-less on-line algorithms are evaluated. We 
see that the on-line algorithm, although often somewhat 
inferior, is essentially performing at a similar level to the off-
line algorithms. 

Table 5 presents the communication cost comparison 
between the centralized and the localized scenarios. In both 
cases, the calculation is done in terms of number of bytes-hops 
that are transmitted/received for the purpose of LD (Section 
VI). The precision is set to 16 bits. The localized algorithm 
becomes more scalable as the network size expands, indicated 
by the ratio between the two in the last column. The run time 
for instances of size 100 is usually 1-2min on a Pentium III 
1.2GHz processor in the centralized scenario. 
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NETWORK 
SIZE CENTRALIZED LOCALIZED RATIO  

(C/L) 
93 56KB-hops 16KB-hops 3.50 

150 114KB-hops 25KB-hops 4.56 
200 175KB-hops 34KB-hops 5.14 
300 324KB-hops 51KB-hops 6.35 
500 698KB-hops 86KB-hops 8.11 
1000 1.91MB-hops 172KB-hops 11.37 
2000 5.44MB-hops 345KB-hops 16.14 

Table 5. The communication cost comparison. 
 

AVE. CONNECTIVITY  
12.1 9.0 

ROBUST 93.75% – 
N-HOP  43.25% 58.3% 

APS 40.36% 43.25% 
CENTRALIZED 

OFF-LINE 0.089% 0.15% 

LOCALIZED 
GPS-LESS 0.082% 0.13% 

Table 6. Comparison of the normalized location errors.  
 

Finally, we compare our LD algorithms with three 
previously published algorithms: (i) APS [20]; (ii) N-hop 
multilateration [10]; and (iii) Robust positioning [33]. 
Langendoen and Reijers [2] present a comprehensive 
performance comparison of these three approaches on a single 
(simulation) platform  – OMNeT++ discrete event simulator 
[34]. The authors induced random noise that follows the 
Gaussian distribution in the simulation. A total of 225 sensor 
nodes were randomly generated in the simulations; 5% of the 
nodes were randomly set to be beacons. The average location 
errors were normalized against the measurement range. For 
example, 30% location error means the real and the estimated 
positions differ by 30% of the maximum measurement range. 
Under these conditions, the authors considered two different 
average connectivity values (average number of neighbors): 
12.1 and 9.0. In order to create a similar experimental setup 
for the best possible comparison, we have also generated a 
network of same number of nodes, beacons, and connectivity, 
using the ILP instance generator. The measurements follow 
the error distribution of the original data set (Figure 3). Table 
6 shows the average location error comparison of all three 
techniques with our centralized GPS-based on-line and 
localized GPS-less approaches. An average reduction in 
location error of approximately 1/3 is usually achieved when 
we apply our LD algorithms as compared to the authors’ 
simulated data with the Gaussian distribution. 

Note that the propagation characteristics of acoustic signals 
are related to a number of environmental factors such as the 
pressure (altitude), vapor in the air and the temperature as well 
as the terrain features. We investigate the compensation for 
temperature in [35]. In addition, Detailed explanations of the 
five model construction techniques and more comprehensive 
experimental results can be found in [35].   

VIII. CONCLUSION 
We have developed a new location discovery approach that 

uses statistical models to drive the objective function; and uses 
minimizations of a continuous nonlinear function as the 

optimization mechanism. The approach is evaluated using data 
collected from deployed sensor networks and we compared the 
performance with several other location discovery methods. 
The analysis indicates the importance of error models and that 
the nature of errors can be captured well by parametric (closed 
formula) models. We experimentally demonstrate that it is 
equally important to identify what to optimize (objective 
function) as how to optimize (optimization algorithms). The 
approach is generic and often performs better in a localized 
manner and in a GPS-free framework than in a centralized 
beacon-based setup. Finally, we conclude that it is often more 
valuable to have measurements in certain low-error ranges than 
to have a large degree of connectivity. 
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APPENDIX 

ILP Formulation for Instance Selection 
In this appendix we present the boolean ILP formulation 

which selects a portion of the original data set in order to 
satisfy a set of neighboring requirements, while the 
measurement errors still follow the same distribution as the 
original instance. Note that the formulation for instance 
generation, which is the basis for all the scalability studies, is 
very similar to the instance selection we are presenting. We 
formulate this problem as ILP because its optimality and its 
ability of solving large instances. All of our experiments 
regarding instance selection and generation are done by the 
commercial ILP solver CPLEX [35]. The input of the 
formulation is a set of constants that denote the existence of 
edges between all N nodes: 

=ijE
1,   if there exists edge between nodes i and j
0,   otherwise{

 
The outputs are the subset of nodes selected and the size of 

the subset. More specifically, the goal is to select a subset S of 
nodes from the original network in such a way that (i) each 
node in S has at least C1 but not more than C2 neighbors in S; 
(ii) the average number of neighbors in the subset is equal to 
C3. The ILP formulation has two types of variables and four 
types of constraints: 

=ix 1,   node i is chosen
0,   otherwise{

=ijL
1,   edge between nodes i and j is chosen
0,   otherwise{

 
Four required types of constraints are: 

1. All variables must have value either 1 or 0. 
xi ≥ 0; xi ≤ 1;   i = 1,…,N 

      ∀ Eij = 1,      Lij ≥ 0;  Lij ≤ 1;    
   i = 1,…,N;  j = 1,…,N   

2. Each node in S must have at least C1 and at most C2 
neighbors that also belong to S. 

( )( )( ) 01
1

≥−∧∧∑
=

i

N

j
iiijij xCyxEL ; 

( )( )( ) 02
1

≤−∧∧∑
=

i

N

j
iiijij xCyxEL ;     i = 1,…,N 

3. The nodes in S have an average number of neighbors 
close to C3. 

ε≤− ∑∑∑
== =

N

i
i

N

i

N

j
ij xCL

1
3

1 1

; 

where ε is a small user specified discrepancy constant. 

4. If an edge between nodes i and j is selected, then nodes i 
and j must be selected as well 

0)( ≤∧− iiij yxL ; i = 1,…,N;  j = 1,…,N 

In the second type of constraint, the term 
)( iiijij yxEL ∧∧ specifies whether the edge Eij is chosen 

(value 1) or not (value 0). The summation of this term over all 
j is therefore the number of edges (or neighbors) chosen for 
node i. The condition of not fewer than C1 number of chosen 
neighbors is enforced by constraining the difference between 
the summation and (C1xi) to be greater than or equal to zero. 
Similarly, constraining the difference between the summation 
and (C2xi) requires that the number of chosen neighbors does 
not exceed C2. The last constraint ensures that in the situation 
in which an edge Eij is chosen, the corresponding node i and j 
must belong to the subset.  
The objective function is to maximize the number of nodes 
that satisfy these conditions (i.e. the size of the selected 
subset): 

max: ∑
=

N

i
ix

1

                                                           

The logical ‘ ∧’ (and) operator is implemented in the 
following way. Consider a and b as the two operands and c is 
the result (i.e. c = ba ∧ ). There are four types of constraints: 

1. a ≥ 0;   a ≤ 1;   b ≥ 0;   b ≤ 1;   c ≥ 0;   c ≤ 1; 
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2. c – a ≤ 0; 
3. c – b ≤ 0; 
4. c – (a + b) ≥ –1; 

The first type of constraint forces every variable to be 
boolean. The second and the third type of constraint enforce c 
to be 0 when either a or b, or both have value 0. The forth 
constraint enforces c to be 1 when both a and b have value 1.  
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