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Abstract of the Dissertation

Conformal Geometry and Prescribed Scalar Curvature on S2

By

Raymond Charles Watkin

Doctor of Philosophy in Mathematics

University of California, Irvine, 2021

Professor Je�rey Streets, Chair

In this dissertation, we seek to understand prescribed scalar curvature through the gradient

�ow of conformal metrics. On S2, we will de�ne a modi�ed Liouville energy and derive a

geometric �ow equation related to the energy functional. We will prove longtime existence

for solutions of this equation with arbitrary data through the methods used by Gursky and

Streets [6]. We will then show that Gauss curvature retains its regularity under evolution

through the �ow assuming bounds on the Gauss curvature. We will �nally show that the

solution is stable when converging to constant curvature if the initial curvature is close to

the geometry of S2.

v



Chapter 1

Prescribed Scalar Curvature Problem

and Background

1.1 Curvature of a Manifold

Let M be a smooth manifold of dimension n ≥ 2, we will introduce the notion of curvature

on a manifold. For an in-depth development of smooth manifolds c.f. [10] and for in-depth

development of curvature and related properties c.f. [9].

De�nition 1.1.1. (Riemannian Metric) A Riemannian metric on M is a smooth symmetric

covariant 2-tensor �eld, g, that is positive de�nite at each point.

We call the pair (M, g) of a smooth manifold M and a Riemannian metric g a Riemannian

manifold.

Let p, q ∈M , in order to translate a vector from tangent space TpM to tangent space TqM ,

we need an additional structure on (M, g). [9] chapter 4

De�nition 1.1.2. (Connection) For vector bundle π : E →M , let Γ(E) denote the smooth
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sections of E and let TM denote the tangent bundle of M . A connection in E is map

∇ : Γ(TM)× Γ(E)→ Γ(E)

written (X, Y ) 7→ ∇XY such that

(a) ∇fX1+gX2Y = f∇X1Y + g∇X2Y

(b) ∇X(aY1 + bY2) = a∇XY1 + b∇XY2

and

(c) ∇X(fX) = f∇XY + (Xf)Y

The quantity ∇XY is often called the covariant derivative of Y in direction of X.

We need to add two restrictions to our connection. [9] chapter 5

De�nition 1.1.3. (Compatible Connection) For Riemannian manifold (M, g), a connection

∇ is compatible with g if for any vector �elds X, Y, Z on M

∇X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉

De�nition 1.1.4. (Symmetric Connection) A connection is symmetric (or torsion-free) if

for vector �elds X, Y on M

∇XY −∇YX ≡ [X, Y ]

Here [X, Y ] ≡ XY − Y X is the Lie bracket.

Theorem 1.1.5. (Fundamental Lemma of Riemannian Geometry) For Riemannian mani-
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fold (M, g) there exists a unique connection on M that is compatible with g and symmetric.

This connection is called the Riemannian connection or the Levi-Civita connection. It allows

us to de�ne the curvature of a manifold. [9] chapter 7

De�nition 1.1.6. (Riemann Curvature Tensor) For Riemannian manifold (M, g) with Rie-

mannian connection ∇, we de�ne the Riemann curvature R tensor R : Γ(TM)× Γ(TM)×

Γ(TM)→ Γ(TM) by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (1.1.1)

We also write

Rm(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉 (1.1.2)

We will use the coordinate notation as well.

Rijkl = 〈R(∂i, ∂j)∂k, ∂l〉 (1.1.3)

The Riemann curvature tensor contains all information about the curvature of M . Fortu-

nately for us, we can focus on a simpler quantity.

De�nition 1.1.7. (Scalar Curvature) For Riemannian manifold (M, g) with Riemannian

connection ∇, scalar curvature, S, is de�ned by contracting the Riemann curvature tensor

R with respect to g, speci�cally

S = gijgkmRkijm (1.1.4)

3



On a 2-manifold, we de�ne the Gauss Curvature by

K =
1

2
S (1.1.5)

Both K and S fully characterize the curvature of surface M . [9] page 144

1.2 Prescribed Scalar Curvature Problem

Let M be a smooth manifold of dimension n ≥ 2. Given a smooth real-valued function f on

M , does there exist a Riemannian metric g on M such that the scalar curvature of (M, g)

is equal to f? This question is called the Prescribed Scalar Curvature problem and will be

hereby referred to as the PSC problem.

The PSC problem is related to the Yamabe problem, which asks if for a given smooth

Riemannian manifold (M, g), does there exist a conformal metric g′ such that the scalar cur-

vature of (M, g′) is constant. Yamabe sought to prove the Poincaré conjecture and thought

this problem would be an intermediate step. While Yamabe's proof was incomplete, the

Yamabe problem has been a�rmatively solved. [2] chapter 5.

1.2.1 History of Problem

The prescribed scalar curvature problem has been solved for some conditions. Although

these results are not directly related to the work in this dissertation, we will brie�y survey

some of them.

The following three theorems are due to Kazdan and Warner. Through these theorems, they

e�ectively solve the scalar curvature problem for manifolds with dimension 3 or greater. [7]

4



c.f. [2] chapter 6

Theorem 1.2.1. Let M be a C∞ compact manifold of dimension n ≥ 3. If f ∈ C∞(M) is

negative somewhere, then there exist a Riemannian metric with scalar curvature f .

Theorem 1.2.2. Let M be a C∞ compact manifold of dimension n ≥ 3 which admits a

metric with positive scalar curvature, then for any f ∈ C∞(M), M admits a metric with

scalar curvature f .

Theorem 1.2.3. LetM be a non-compact manifold of dimension n ≥ 3 that is di�eomorphic

to an open submanifold of a compact manifold. Then for every f ∈ C∞(M), there exist a

Riemannian metric on M with scalar curvature f .

When the dimension ofM is equal to 2 the problem is more di�cult, but nonetheless follows

the same classi�cation regime suggested by the theorems above.

1.2.2 Conformal Metrics

For Riemannian manifold (M, g0), a conformal metric is a Riemannian metric g′ on M such

that for some positive function h on M

g′ = hg0 (1.2.1)

We call the set of metrics on M that are conformal to g0 the conformal class of (M, g0). It

is easy to see that a conformal class is an equivalence class.

There are di�erent conventions for representing conformal metrics and classes, but we will

identify a function u : M → R with a conformal metric gu given by

gu = e2ug0 (1.2.2)
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We will denote the conformal class of g0 on M by [g0]. That is

[g0] = {gu = e2ug0 | u ∈ C∞(M)} (1.2.3)

In this dissertation we will work on a compact Riemannian surface (M, g0) of genus 0. We

also assume M is boundary-free manifold. Any such manifold is homeomorphic to S2.

The surface (M, g0) has Gauss curvature K0 which we will assume is positive.

We are interested in the metrics in [g0] which preserve positive Gauss curvature so we intro-

duce

Γ+
1 = {gu = e2ug0 ∈ [g0] | Ku = Kgu > 0} (1.2.4)

to denote the space of these metrics following the notation laid out in [6].

Since length, angles, and curvature are de�ned through a Riemannian metric, we would like

a means to compare these quantities on M with respect to a conformal metric gu to the

background metric g0. It is easy to show that conformal transforms preserve angles between

vectors. The curvature is not invariant, but Ku is related to K0 by the following formula.

[6] sec. 3, pg. 7 and c.f. [2] pg. 196

Proposition 1.2.4. (Gauss Curvature Equation) For gu = e2ug0, the Gauss curvature of

Riemannian surface (M, gu), Ku is related to Gauss curvature of (M, g0), K0, by the formula

Ku = e−2u(K0 −∆0u)

Remark 1.2.5. Throughout this dissertation, ∆ will denote the Laplacian with respect

to metric gu. We will use ∆0 to denote Laplacian with respect to metric g0. Notice that

6



∆ = e−2u∆0.

Similarly we will use 〈·, ·〉 to denote the inner product and | · | to denote the norm with

respect to metric gu, while 〈·, ·〉0 and | · |0 are with respect to the background metric g0.

Notice 〈·, ·〉 = e2u〈·, ·〉0 and | · | = e2u| · |0.

Remark 1.2.6. We will be integrating with respect to both the background metric g0 and

the metric gu throughout this dissertation. We will denote their respective area measures as

dA0 and dAu. For local coordinates (x1, x2), they are related by

dAu =
√
| det gu| dx1 ∧ dx2 (1.2.5)

=
√

(e2u)2| det g0| dx1 ∧ dx2

= e2u
√
| det g0| dx1 ∧ dx2

= e2u dA0

1.3 Prescribed Scalar Curvature for Conformal Metric

on Surfaces

Since scalar curvature completely characterizes the curvature tensor on a two dimensional

manifold, the prescribed scalar curvature problem is a greater interest on a surface. [9] page

144

Given a Riemannian surface (M, g0) and a real-valued function f on M , we wish to �nd

a metric g so that the scalar curvature of M with respect to g is equal to f . Instead of

considering metrics from the entire set of Riemannian metrics on M , we wish to prescribe
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curvature only considering metrics g conformal to g0.

From the Gauss Curvature Equation 1.2.4 we see that for n = 2, this problem is equivalent

to solving the PDE

K0 −∆0u = fe2u (1.3.1)

We brie�y survey some results pertaining to prescribed scalar curvature for conformal metrics

on surfaces. The results fall into distinct categories depending on the sign of the background

scalar curvature.

First we consider manifolds where the scalar curvature of the background metric is negative.

To state the result, we must �rst introduce the Yamabe functional as in [2] chapter 5, page

150

De�nition 1.3.1. (Yamabe's Functional) On Riemannian manifold (Mn, g) with scalar cur-

vature S(x).

For n ≥ 3, let N = 2n
n−2

, for 2 ≤ q ≤ N , Yamabe's functional is given by

Jq(φ) =
[
4
n− 1

n− 2

�
M

|∇φ|2 dV +

�
M

S(x)φ2 dV
]
||φ||−2

q (1.3.2)

We also de�ne

µq = inf{Jq(φ)|φ ∈ H1(M), φ ≥ 0, φ 6≡ 0} (1.3.3)
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and

µ = µN (1.3.4)

We have the follow results is due to Aubin. c.f. [2] chapter 6, page 197

Theorem 1.3.2. Let (Mn, g) be C∞-Riemannian manifold with µ < 0 and n ≥ 3 and

assume scalar curvature Sg is negative. Given C∞ function f < 0, there exists a unique

conformal metric with scalar curvature f .

This result can be strengthened for n = 2. [2] page 203

Theorem 1.3.3. For (M2, g0), if f is negative somewhere and f ≤ C for some positive C,

then there exist a conformal metric with scalar curvature f .

In the case where we have background scalar curvature of zero. [2] page 204

Theorem 1.3.4. Let (M2, g) be a Riemannian surface with Sg = 0, then a smooth function

f is the scalar curvature of a conformal metric if and only if f changes sign and
�
f dA < 0.

We will be dealing with the sphere S2, which has positive scalar curvature under the standard

metric, for the remainder of this dissertation. We will however give one result about another

manifold with positive scalar curvature �rst.

The following theorem is due to M.S. Berger and J. Moser. [12] c.f. [2] page 209

Theorem 1.3.5. For the real projective space, (RP2, g), any smooth function f on RP2 with

sup f > 0 is the scalar curvature of a metric conformal to g.

9



1.3.1 Nirenberg Problem

From here on we will focus our attention to a special problem related to the general prescribed

scalar curvature problem for conformal metrics.

The Nirenberg problem poses the following: Given a positive smooth function h on (S2, g0),

is h the Gauss curvature of a metric g conformal to g0? Here g0 is the standard metric on

the sphere with Gauss curvature 1. We will also assume h is close to 1. [2] page 230

By the Gauss Curvature formula 1.2.4, solving the Nirenberg problem is equivalent to solving

the partial di�erential equation

he2u = 1−∆0u (1.3.5)

The following theorem is due to Moser. [12], c.f. [2] page 232

Theorem 1.3.6. On (S2, g0), let f ∈ C∞(S2) be a function which is invariant under the

antipodal map, i.e. f(x) = f(−x) for all x ∈ S2, then f is the scalar curvature of a metric

conformal to g0.

1.4 Our Contributions

In this section, we will brie�y summarize the contribution to the Nirenberg problem which

we make in this dissertation.

In chapter 3, section 3.2.2, we introduce a modi�ed version of the Liouville energy in de�nition
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3.1.5

G[u] =

�
M

|∇u|20 dA0 + 2

�
M

K0u dA0 − (

�
M

K0 dA0) log(

 
e2u
∣∣∣f) (1.4.1)

where we de�ne the symbol

 
e2u
∣∣∣f =

�
M
e2u f dA0�
M
f dA0

(1.4.2)

=

�
M
f dAu�

M
f dA0

for f ∈ C∞(M) with f > 0.

We also de�ne

K̃u = (

�
M
Ku dAu�

M
f dAu

)f (1.4.3)

=
4π�

M
f dAu

f

The term K̃u is the mean curvature weighted by f . We will see that K̃u is the value for the

Gauss curvature at which the �ow equation is stationary.

From our functional G, we will derive the inverse Gauss curvature �ow equation 3.2.1,

∂u

∂t
= −Ku − K̃u

Ku

(1.4.4)

This is the main geometric �ow which we study. We will simply call it the �ow equation.
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We will show that for K0 > 0, any solution to 3.2.1 exists for all time as stated in Theorem

3.2.17.

Theorem 1.4.1. For compact Riemannian manifold (M2, g0) with K0 > 0, the solution to

the �ow equation 3.2.1 exists for all time.

In chapter 4, we will show that Gauss curvature Ku retains regularity in all of its derivatives

if we assume that for some λ > 0 for some C1, C2 > 0

1

λ
< Ku < λ (1.4.5)

|∇Ku|2 ≤ C1

|∇2Ku|2 ≤ C2

We will prove Theorem 4.0.3 and Corollary 4.0.5

Theorem 1.4.2. Let u be a solution to �ow equation that satis�es 1.4.5, then for all order

i there exist some constant Ci such that for large t

|∇i 1

Ku

|2 ≤ Ci
ti−2

(1.4.6)

The constant Ci depends only on the lower order derivatives, C2, C1, and λ.

Corollary 1.4.3. Let u be a solution to �ow equation that satis�es 1.4.5, then for all order

i, there exist some C ′i depending only on the lower order derivatives, C2, C1, and λ such that

|∇iKu|2 ≤ C ′i (1.4.7)

12



Remark 1.4.4. We notice that each ∇iKu is pointwise bounded as a consequence of Corol-

lary 4.0.5.

In chapter 5, section 5.2, we will show that the solutions of the �ow equation are stable when

f ≡ 1. Speci�cally under the assumptions that for some δ > 0

|u| < δ (1.4.8)

|Ku − 1| < δ

|∇u| < δ

|∇Ku| < δ

we can prove that u decays exponentially to 0 in some cases, as given in Theorem 5.2.5.

Theorem 1.4.5. For u satisfying the �ow equation such that ||u−ū||L2 decays exponentially,

there exist some δ > 0 such that if the assumptions 1.4.8 are satis�ed then for all integer

i ≥ 1

||∇iu||2L2(M,gu) ≤ Aie
−Bit (1.4.9)

for some Ai, Bi > 0.

By Corollary 5.2.6, we have exponential decay for antipodal invariant solutions to the �ow

equation.

Corollary 1.4.6. Let u be an antipodal invariant solution to the �ow equation 5.0.3, then

there exist some δ > 0 such that if the assumptions 1.4.8 are satis�ed then for all integer

13



i ≥ 1

||∇iu||2L2(M,gu) ≤ Aie
−Bit (1.4.10)

for some Ai, Bi > 0.

In future work, we would like to prove results similar to Theorem 5.2.5 without assuming

f ≡ 1. This will allow our method to be applied to a broader class of prescribed scalar

curvatures rather than only constant scalar curvature.

14



Chapter 2

Analytic Tools

We will outline some tools from geometry and analysis which we will use throughout this

dissertation. This material will be familiar to anyone with signi�cant experience in geometric

analysis and may be skipped or referred back to at the pleasure of the reader. This is called

Green's Identity, it is the analogous integration by parts on manifolds. [9] page 44

Theorem 2.0.1. (Green's Indentity) For a compact, connected, oriented Riemannian man-

ifold (M, g), for u, v ∈ C∞(M) we have Green's Identity

�
M

u∆v dV +

�
M

〈∇u,∇v〉 dV =

�
∂M

u Nv dṼ (2.0.1)

where Nv = ∇v ·N and N is the outward pointing unit normal vector of ∂M .

For this dissertation, we will be working on closed manifolds, hence ∂M = ∅ and

�
M

u∆v dV = −
�
M

〈∇u,∇v〉 dV (2.0.2)
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We de�ne di�erential operators which we will use later. [5] chapters 6, 7 and [2] ch.3, sec. 6

De�nition 2.0.2. We de�ne a (time dependent) di�erential operator

Eu = −
∑
i,j

ai,j(x, t)uxi,xj +
∑
i

bi(x, t)uxi + c(x, t)u

Here each coe�ecient ai,j, bj, c is a function.

We call E a uniformly elliptic operator if there exist some θ > 0 so that

∑
i,j

ai,j(x, t)ηiηj ≥ θ|η|2

for all x and t in the domain of ai,j and all vectors η

An operator of the form

Pu =
∂u

∂t
+ Eu

is called a parabolic operator when E is a uniformly elliptic.

Remark 2.0.3. It is immediate that the Laplacian E = −∆ is a uniformly elliptic operator.

In fact, if α(x, t) is a positive function bounded away from zero, then E = −α∆ is a uniformly

elliptic operator.

We will be using elliptic and parabolic operators to justify estimates of functions, the Scalar

Maximum Principle is an important tool for this and we will use it throughout this disser-

tation. [1] page 99 and [2] page 130

Theorem 2.0.4. (Scalar Maximum Principle) Let L be a parabolic operator such that

Lu = ∂u
∂t

+Eu− F (u, t) where where E is a linear uniformly elliptic operator and F (u, t) is

16



a continuous function in t and locally Lipschitz in u.

Suppose u is C2 and satis�es Lu ≤ 0 on M × [0, T ), and u(x, 0) ≤ c for all x ∈M . Let φ(t)

be the solution to the associated ODE:

dφ

dt
= F (φ, t) (2.0.3)

φ(0) = c

then

u(x, t) ≤ φ(t) (2.0.4)

for all x ∈M and all t ∈ [0, T ) in the interval of existence of φ.

We will use this version more often than the alternative version where all inequalities are

reversed.

The Comparison Principle is closely related to the Maximum Principle and will be used

frequently as well. [1] page 98

Theorem 2.0.5. (Comparison Principle)

Suppose u and v are C2 and satisfy Lv ≤ Lu on M × [0, T ) and v(x, 0) ≤ u(x, 0) for all

x ∈M , then

v(x, t) ≤ u(x, t)

holds on M × [0, T ).
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Here L is the same parabolic operator as in Theorem 2.0.4.

We will de�ne Hölder and Sobolev Spaces. Both are common spaces encountered when

studying partial di�erential equations. [5] ch. 5, [2] ch. 2

De�nition 2.0.6. (Hölder Norm) For open set U ⊂ (Mn, g0), if u : U → R is bounded and

continuous, we write

||u||C(Ū) = sup
x∈U
|u(x)| (2.0.5)

For 0 < γ ≤ 1, we de�ne the γ-Hölder seminorm of u by

[u]C0,γ(Ū) = sup
x,y∈U

|u(x)− u(y)|
d0(x, y)γ

where d0 is the distance function given by the metric g0.

We de�ne γ-Hölder norm by

||u||C0,γ(Ū) = ||u||C(Ū) + [u]C0,γ(Ū) (2.0.6)

De�nition 2.0.7. (Hölder Space) The Hölder Space Ck,γ(Ū) is the space of all u ∈ Ck(Ū)

such that the norm

||u||Ck,γ(Ū) =
∑
|α|≤k

||∇αu||C(Ū) +
∑
|α|=k

[∇αu]C0,γ(Ū) (2.0.7)

is �nite.

Remark 2.0.8. It is straightforward to check that Ck,γ(Ū) is a Banach space.

De�nition 2.0.9. (Sobolev Space) For open subset U of Mn and positive integers k, p, the

18



Sobolev space is the set of functions

W k,p(U) = {u : U → R| u ∈ L1
loc(U), ∇αu ∈ Lp(U) for |α| ≤ k} (2.0.8)

here α is a multi-index.

W k,p(U) is a normed space with Sobolev norm

||u||Wk,p(U) = (
∑
|α|≤k

�
U

|∇αu|p dx)
1
p (2.0.9)

When p = 2, W k,2 is frequently denoted by Hk.

Remark 2.0.10. It is straightforward to show W k,p is a Banach space. Hk is a Hilbert

space.

There are several theorems which are sometimes called the Sobolev inequality. Roughly

speaking, a Sobolev inequality bounds the norm of a function in one Sobolev space by its

norm in another. This allows one to embed one Sobolev space into another provided certain

assumptions are met.

We will state one which we will use in this dissertation. When we use the next theorem,

p = 2, k = 2, and n = 2. [5] page 286-287

Theorem 2.0.11. (Sobolev Inequality) For U a bounded open subset ofMn with C1 boundary

and u ∈ W k,p(u) with k > n
p
then

||u||
C
k−[np ]−1,γ

(Ū)
≤ C||u||Wk,p(U) (2.0.10)
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where

γ = {
[n
p
] + 1− n

p
n
p
is not an integer

any positive number < 1 [n
p
] in an integer

We will be using the case where p = 2, k = 2, and n = 2 and have

||u||L∞(U) ≤ ||u||C0,γ(Ū) (2.0.11)

≤ C||u||H2(U)

This next theorem is often called the Poincaré inequality. [5] page 292

Here ū =
�
U u dV�
U dV

is the mean value of u on U .

Theorem 2.0.12. (Poincaré Inequality) Let U be a bounded, connected, open subset of

(M, g) with a C1 boundary, then there exist a constant C, depending only on n, p, and U

such that

||u− ū||Lp(U) ≤ C||∇u||Lp(U)

for each function u ∈ W 1,p(U).

Remark 2.0.13. On a closed manifold (M, g), we have

||u− ū||L2 ≤ λ||∇u||L2

where λ can be chosen to be the reciprocal of the smallest nonzero eigenvalue of ∆. If u is

orthogonal to the �rst nontrivial eigenspace then λ can be taken to be the reciprocal of the

20



next eigenvalue. This is sometimes called the sharp Poincaré inequality.

We will use the next inequality ubiquitously. We will call it the Arithmetic-Geometric Mean

Inequality. [5] pg 708

Lemma 2.0.14. (Arithmetic-Geometric Mean Inequality)

|ab| ≤ 1

2
a2 +

1

2
b2 (2.0.12)

In fact, in general for ε > 0

|ab| ≤ 1

2ε
a2 +

ε

2
b2 (2.0.13)

We we also use a generalization of the Arithmetic-Geometric Mean Inequality, called Young's

Inequality

Lemma 2.0.15. (Young's Inequality) For ε > 0 and 1
p

+ 1
q

= 1

|AB| ≤ εp

p
|A|p +

1

qεq
|B|q (2.0.14)

The next theorem is known as the Moser-Trudinger inequality for S2. [11]

Theorem 2.0.16. (Moser-Trudinger Inequality) For smooth function u on S2 satisfying

conditions

�
S2

|∇u|2 dA ≤ 1 (2.0.15)

�
S2

u dA = 0
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then there exists a constant C such that

�
S2

e4πu2 dA ≤ C (2.0.16)

This next theorem is due to Michael Struwe. [13] Theorem 3.2

Theorem 2.0.17. (Struwe's Theorem) Let gn = e2ung0 be family of smooth metrics on M

with unit volume and bounded Calabi energy, i.e. for some C > 0, for all n

Ca(gn) =

�
M

|Kun −K0| dAun ≤ C

then either

i) sequence {un} is bounded in H2(M, g0)

or

ii) There exist x1, ..., xL ∈M and subsequence {unk} such that for any R > 0 and l = 1, ..., L

lim inf

�
BR(xl)

|Kunk
| dAunk ≥ 2π

We will use the Evans-Krylov Theorem, proved independently by Evans and Krylov. [4] and

[8], c.f. [3]

Theorem 2.0.18. (Evans-Krylov Theorem) For u, a smooth solution of a uniformly parabolic,

fully non-linear, convex equation

F (D2u) = 0 in the unit ball B1 ⊂ Rn (2.0.17)

then

||u||C2,α(B1/2) ≤ C||u||C1,1(B1) (2.0.18)
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with C depending on ellipticity of F .

We will make use of Interior Schauder Estimates. [2] chapter 3, page 88

Theorem 2.0.19. (Interior Schauder Estimates) For linear second order, uniformly parabolic

operator L with Hölder continuous Cα coe�cients then

||u||C2,α(K) ≤ C(||Lu||Cα + ||u||L∞) (2.0.19)

We will use the Gauss-Bonnet. [9] page 167

Theorem 2.0.20. (Gauss-Bonnet Theorem) For a Riemannian surface (M, g) with Gauss

curvature Kg and Euler characteristic χ(M), if M is compact and oriented, then

�
M

Kg dAg = 2πχ(M) (2.0.20)
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Chapter 3

Energy Functional and Flow Equation

We wish to consider a one-parameter family of functions {ut | t ∈ [0, T )} on M by which we

will perform a conformal change to metric g0 given by

gut = e2utg0 (3.0.1)

As it is conventional, we will think of the variable t ∈ [0, T ) as "time" and the x ∈ M as

"space". We therefore write u(x, t) as a function of both space and time.

We seek a di�erential equation by which ut will evolve in time. We will then seek to show

that the solution to this equation exists for all time.

Remark 3.0.1. We will frequently use of notation u̇ = ∂u
∂t
. The notation ut does not refer

to a derivative with respect to t. We write u0 = u(x, 0).

The approach in this chapter is based on the approach taken in [6], section 6.
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3.1 The Energy Functional and its Properties

We introduce the Liouville energy

De�nition 3.1.1. (Liouville Energy Functional) The Liouville energy functional is given by

J [u] =

�
M

|∇u|20 dA0 + 2

�
M

K0u dA0 (3.1.1)

Remark 3.1.2. The Liouville energy is analogous to Yamabe's functional for dimension 2.

Remark 3.1.3. We see that J [u] is well-de�ned for a compact manifold M .

Remark 3.1.4. We use K0 to denote Gauss curvature with respect to g0. This is not the

same as Ku0 , the value of curvature at time t = 0.

We will modify this functional to �t our problem. Speci�cally we wish our functional to be

scale invariant. For any constant c, we see that

gu+c = e2(u+c)g0 = e2ce2ug0 = Cgu

For this reason, we want functions u and u+ c to have the same energy value.

We introduce notation for a normalized integral with respect to a smooth function f . We

will see that the function f , once weighted properly, will be the value to which the curvature

of M will �ow towards under the �ow equation which we will derive shortly.

De�nition 3.1.5. For a �xed f ∈ C∞(M) with
�
M
f dA0 < ∞ and f > 0. We de�ne the
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normalized integral by

 
e2u
∣∣∣f =

�
M
e2u f dA0�
M
f dA0

(3.1.2)

=

�
M
f dAu�

M
f dA0

Here we introduce our notation

De�nition 3.1.6.

Bu =

�
f dAu and B0 =

�
f dA0

Remark 3.1.7. We have

 
e2u
∣∣∣f =

Bu

B0

We consider the normalized functional

De�nition 3.1.8. We de�ne the functional G : W 1,2 → R by

G[u] =

�
M

|∇u|20 dA0 + 2

�
M

K0u dA0 − (

�
M

K0 dA0) log(

 
e2u
∣∣∣f) (3.1.3)

Remark 3.1.9. This functional is normalized in the sense that

G[u+ c] =

�
M

|∇0u|20 dA0 + 2

�
M

K0u dA0 + 2c

�
M

K0 dA0 (3.1.4)

− (

�
M

K0 dA0)(2c+ log(

�
M

fe2u dA0)− log(

�
M

f dA0))

= G[u]
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as desired.

Remark 3.1.10. We note the G[u] is well-de�ned since

�
f e2u dA0 ≤ (

�
f 2 dA0)

1
2 (

�
e4u dA0)

1
2 <∞ (3.1.5)

where the �rst inequality is due to Cauchy-Schwarz and the second is due to Moser-Trudinger

inequality, Theorem 2.0.16.

We will need the derivative of J [u]

Proposition 3.1.11.

J ′u(v) = 2

�
M

vKu dAu (3.1.6)

Proof.

(J ′)u(v) =
d

ds
J [u+ sv]

∣∣∣
s=0

(3.1.7)

=
d

ds

∣∣∣
s=0

�
(|∇u+ s∇v|20 + 2K0u+ 2sK0v dA0)

= 2

�
〈∇u,∇v〉0 dA0 + 2

�
M

K0v dA0

= −2

�
v∆0u dA0 + 2

�
M

K0v dA0

= 2

�
(K0 −∆0u)v dA0

= 2

�
vKu dAu
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The next step is to compute the derivative of G[u]. We introduce the term K̃u which we

think of as the mean curvature normalized by f . In fact, we will see that K̃u is the value for

the Gauss curvature at which the �ow equation is stationary.

De�nition 3.1.12.

K̃u = (

�
M
Ku dAu�

M
f dAu

)f (3.1.8)

= 2πf
χ(M)�
M
f dAu

=
4πf

Bu

Here χ(M) is the Euler characteristic ofM . Since we will be working on a topological sphere,

we have χ(M) = 2.

Proposition 3.1.13.

G′u[v] = 2

�
M

v(Ku − K̃u) dAu (3.1.9)

Proof. Since

G[u] = J [u]−
( �

K0 dA0

)(
log(

 
e2u
∣∣∣f)
)

we have

G′u[v] = J ′u[v]−
( �

K0 dA0

) d
ds

∣∣∣
s=0

log(

 
e2u+2sv

∣∣∣f)
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We calculate

d

ds

∣∣∣
s=0

log(

 
e2u+2sv

∣∣∣f) =
d

ds

∣∣∣
s=0

[
log(

�
e2sv e2u f dA0)− log(

�
f dA0)

]
(3.1.10)

=

�
2ve2sv e2u f dA0�
e2sv e2u f dA0

∣∣∣
s=0

=
2
�
v e2u f dA0�
e2u f dA0

and

−2
( �

K0 dA0

)� v e2u f dA0�
e2u f dA0

= −2

�
K0 dA0�
f dAu

�
vf dAu (3.1.11)

= −2

�
Ku dAu�
f dAu

�
vf dAu

= −2

�
vK̃u dAu

where the second equality is the result of the Gauss-Bonnet Theorem 2.0.20

We have the derivative of J [u] from Proposition 3.1.11 and this yields

G′u[v] = 2

�
M

v(Ku − K̃u) dAu (3.1.12)
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3.1.1 Formal Inner Product

Proposition 3.1.13 will motivate the de�nition of a formal inner product on C∞(M), the

space of real-valued, smooth functions on M .

We de�ne an inner product on C∞(M).

De�nition 3.1.14. For v, w ∈ C∞(M)

〈v, w〉 =

�
M

vw Ku dAu (3.1.13)

Proposition 3.1.13 can be rewritten as

G′u[v] = 2

�
M

v(Ku − K̃u) dAu (3.1.14)

= 〈v, Ku − K̃u

Ku

〉

This will motivate our focus on the �ow equation in the next section.

3.2 Flow Equation

We see from the variation equation for G′u that we can show the existence of gradient �ow

by proving a partial di�erential equation has a smooth solution.

We will call the following equation the inverse Gauss curvature �ow equation or simply the

�ow equation. It will be central for the remainder of this dissertation.
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De�nition 3.2.1. (Inverse Gauss Curvature Flow Equation)

∂u

∂t
= −Ku − K̃u

Ku

(3.2.1)

Now since curvature with respect to metric gu = e2ug0 is given by

Ku = e−2u(K0 −∆0u)

and we have

K̃u =
4πf

Bu

the equation 3.2.1 becomes

∂u

∂t
=
K̃u

Ku

− 1 (3.2.2)

=
4π

Bu

e2uf

K0 −∆0u
− 1

3.2.1 Evolution Equations

This section is devoted to a large handful of computational lemmas. They are not very

interesting on their own but will be important later in proving key theorems in the next

section.
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Lemma 3.2.2. Let u be a solution to �ow equation 3.2.1, then

∂u

∂t
=
K̃u

K2
u

∆u− 1 +
2K̃u

Ku

− e−2uK0K̃u

K2
u

Proof. From the 1.2.4, we calculate

−K̃u

K2
u

∆u =
K̃u

K2
u

[Ku − e−2uK0] (3.2.3)

=
K̃u

Ku

− e−2uK0K̃u

K2
u

so then using �ow equation 3.2.1, we have

∂u

∂t
− K̃u

K2
u

∆u = −Ku − K̃u

Ku

+
K̃u

Ku

− e−2uK0K̃u

K2
u

(3.2.4)

= −1 +
2K̃u

Ku

− e−2uK0K̃u

K2
u

and hence

∂u

∂t
=
K̃u

K2
u

∆u− 1 +
2K̃u

Ku

− e−2uK0K̃u

K2
u

(3.2.5)

as desired.

Lemma 3.2.3. Let u be a solution to �ow equation 3.2.1, then

∂

∂t
Ku = −2(K̃u −Ku)−∆(

K̃u

Ku

) (3.2.6)

= −2(K̃u −Ku)−
4π

Bu

∆f

Ku

+
8π

Bu

〈∇f,∇K〉
K2
u

− 2K̃u
|∇Ku|2

K3
u

+ K̃u
∆Ku

K2
u
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Proof.

∂

∂t
Ku =

∂

∂t
e−2u[−∆0u+K0] (3.2.7)

= −2u̇e−2u[−∆0u+K0]− e−2u∆0u̇

= −2u̇Ku −∆u̇

= −2(K̃u −Ku)−∆(
K̃u

Ku

)

We now compute ∆( K̃u
Ku

) using normal coordinates

∆(
K̃u

Ku

) = ∇ ∇(
K̃u

Ku

) (3.2.8)

= ∇(
Ku∇K̃u − K̃u∇Ku

K2
u

)

= ∇(
∇K̃u

Ku

)−∇(
K̃u∇Ku

K2
u

)

=
Ku∆K̃u − 〈∇K̃u,∇Ku〉

K2
u

− K2
u∇(K̃u∇Ku)− 2K̃uKu〈∇Ku,∇Ku〉

K4
u

=
∆K̃u

Ku

− 〈∇K̃u,∇Ku〉
K2
u

− 1

K2
u

(〈∇K̃u,∇Ku〉+ K̃u∆Ku) + 2K̃u
|∇Ku|2

K3
u

=
∆K̃u

Ku

− 2
〈∇K̃u,∇Ku〉

K2
u

− K̃u∆Ku

K2
u

+ 2K̃u
|∇Ku|2

K3
u

=
4π

Bu

∆f

Ku

− 8π

Bu

〈∇f,∇K〉
K2
u

+ 2K̃u
|∇Ku|2

K3
u

− K̃u
∆Ku

K2
u
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We rewrite the the equation as

∂

∂t
Ku −

K̃u

K2
u

∆Ku −
8π

Bu

〈∇f,∇Ku〉
K2
u

+ 2K̃u
|∇Ku|2

K3
u

= −2K̃u −
4π

Bu

∆f

Ku

+ 2Ku (3.2.9)

We denote the left-hand of Equation 3.2.9 side by operator H acting on Ku, i.e.

H(Ku) ≡
∂

∂t
Ku −

K̃u

K2
u

∆Ku −
8π

Bu

〈∇f,∇Ku〉
K2
u

+ 2K̃u
|∇Ku|2

K3
u

(3.2.10)

We see H is a parabolic operator and removing the negative term from the right-hand side

attain

H(Ku) = −2K̃u −
4π

Bu

∆f

Ku

+ 2Ku (3.2.11)

≤ − 4π

Bu

∆f

Ku

+ 2Ku

≤ α

Ku

+ 2Ku

We will write φ(x) = α
x

+ 2x, so we have

H(Ku) ≤ φ(Ku) (3.2.12)

Proposition 3.2.4. Let u be a solution to �ow equation 3.2.1, then Ku has sub-exponential

growth. Speci�cally there exist numbers P1, P2 so that

Ku ≤ P1 + P2e
2t (3.2.13)
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Proof. Let function v(t) be the solution to ODE

d

dt
v(t) = φ(v) (3.2.14)

v(0) = sup
M×{0}

K0

where φ(x) = α
x

+ 2x.

Let H0 = H−φ. We see that H0 is a parabolic operator and from inequality 3.2.11, we have

H0(Ku) = H(Ku)− φ(Ku) ≤ 0

for u be a solution to �ow equation 3.2.1.

By the Maximum Principle (Theorem 2.0.4), we conclude

supKu ≤ v(t) (3.2.15)

To show the growth of Ku is sub-exponential, we assume v(t) ≥ 1, then

v′(t) ≤ α + 2v (3.2.16)

We can solve the ODE

w′(t) = α + 2w (3.2.17)

w(0) = P
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to �nd

w(t) = P1 + P2e
2t

for some P1 and P2.

We know v′(t) ≤ w′(t) and assuming that P ≥ supM×{0} v(x, 0) , we have v(t) ≤ w(t) and

Ku ≤ P1 + P2e
2t

as desired.

Lemma 3.2.5. Let u be a solution to �ow equation 3.2.1, then

∂

∂t

( 1

Ku

)
= 2

K̃u

K2
u

− 2

Ku

+
1

K2
u

∆
(K̃u

Ku

)
(3.2.18)

Proof.

∂

∂t
(

1

Ku

) = − 1

K2
u

∂Ku

∂t
(3.2.19)

= − 1

K2
u

(−2u̇K − e−2u∆0u̇)

= − 1

K2
u

(2(Ku − K̃u)−∆(
K̃

K
))

= 2
K̃u

K2
u

− 2

Ku

+
1

K2
u

∆(
K̃u

Ku

)

Lemma 3.2.6. Let u be a solution to �ow equation 3.2.1 and G be as in de�nition 3.1.8,
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then

dG

dt
= 8π − 2

(4π)2

B2
u

�
M

f 2

Ku

dAu (3.2.20)

Proof. Using Proposition 3.1.13 and Equation 3.2.1, we compute

dG

dt
= G′[u̇] = 2

�
M

u̇(Ku − K̃u) dAu (3.2.21)

= −2

�
M

(1− K̃u

Ku

)2 Ku dAu

= −2

�
M

(1− 2
K̃u

Ku

+
K̃u

2

K2
u

) Ku dAu

= −2
(�

M

Ku dAu − 2

�
M

K̃u dAu +

�
M

K̃2
u

Ku

dAu

)
= 2
(
− 4π + 2

4π

Bu

�
f dAu −

(4π)2

B2
u

�
f 2

Ku

dAu

)
= 2
(

4π − (4π)2

B2
u

�
M

f 2

Ku

dAu

)

Lemma 3.2.7. Let u be a solution to �ow equation 3.2.1, then

B(t) = B(0) exp{ 1

4π
(G[u(0)]−G[u(t)])}

here B(t) =
�
M
f dAu(t)
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Proof.

d

dt
B(t) = 2

�
M

u̇e2uf dA0 (3.2.22)

= 2

�
M

(−1 +
K̃u

Ku

)f dAu

= B(t)
(
− 2 +

2

B(t)

�
M

K̃u

Ku

f dAu
)

= B(t)
(
− 2 +

8π

B(t)2

�
M

1

Ku

f 2 dAu
)

=
−1

4π
B(t)

dG

dt

We used Lemma 3.2.6 in the last step.

Lemma 3.2.8. Let u be a solution to �ow equation 3.2.1, then for u at all t

�
M

(|∇u|20 + 2K0u) dA0 =

�
M

(|∇u0|20 + 2K0u0) dA0 (3.2.23)

Proof. We know

G[u] =

�
M

(|∇u|20 + 2K0u) dA0 − (

�
M

K0 dA0) log(

 
e2u
∣∣∣f) (3.2.24)

=

�
M

(|∇u|20 + 2K0u) dA0 − 4π(logBu − logB0)
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By Lemma 3.2.7

�
M

(|∇u|20 + 2K0u) dA0 = G[u] + 4π(logBu − logB0) (3.2.25)

= G[u] + 4π(logB0 +
1

4π
(G[u0]−G[u])− logB0)

= G[u0] =

�
M

(|∇u0|20 + 2K0u0) dA0

Lemma 3.2.9. For solution u to the �ow equation 3.2.1,

inf
M×{t}

u ≥ inf
M
u0 − t (3.2.26)

Proof.

∂u

∂t
=
K̃u −Ku

Ku

(3.2.27)

=
K̃u

Ku

− 1 ≥ −1

The result follows from the Comparison Principle (Theorem 2.0.5).

3.2.2 First Results

We are now ready for our �rst bounds concerning u of real signi�cance.

Proposition 3.2.10. Let u be a solution to the equation 3.2.1, then there exists constant C,
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depending only on u0 and M , such that for all t for which u exists, we have

||∇u||2L2(M,g0) ≤ C(1 + t) (3.2.28)

Proof. By Lemma 3.2.8 and Lemma 3.2.9

||∇u(t)||2L2(M,g0) =

�
M

(|∇u|20 + 2K0u− 2K0u) dA0 (3.2.29)

=

�
M

(|∇u|20 + 2K0u) dV0 − 2K0

�
M

u dA0

=

�
M

(|∇u0|20 + 2K0u0) dV0 − 2K0

�
M

u dA0

≤ C − C inf
M
u

≤ C(1 + t)

Proposition 3.2.11. Let u be a solution to the �ow equation 3.2.1 on [0, T), then there

exist constant C, depending only on u at t = 0, T , and M , such that for all t for which u

exists, we have

sup
M×[0,T )

|u| ≤ C (3.2.30)
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Proof. Since Ku is positive,

�
BR(x0)

|Ku| dAu =

�
BR(x0)

Kue
2u dA0 (3.2.31)

≤ C

�
BR(x0)

e2u dA0

≤ C[

�
BR(x0)

e4u dA0]
1
2 [

�
BR(x0)

1 dA0]
1
2

≤ CR[

�
BR(x0)

e4u dA0]
1
2

We used Hölder's inequality for the last line.

We denote

ū0 =

�
M
u dA0�

M
dA0

that is the mean value of u with respect to the background metric g0.

After some manipulation, we use the Moser-Trudinger inequality 2.0.16 to see

�
BR(x0)

e4u dA0 ≤ e4ū0

�
BR(x0)

e4(u−ū0) dA0 (3.2.32)

≤ e4ū0

�
BR(x0

e
ε
2

(u−ū0)2+ 16
2ε dA0

= e4ū0e
8
ε

�
BR(x0)

e
ε
2

(u−ū0)2 dA0

≤ C

We choose ε > 0 to be small enough so that may use the inequality.
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Now for small R, we have

�
BR(x0)

|Ku| dAu ≤ C1R < 2π (3.2.33)

We now use the Theorem of Struwe 2.0.17 to conclude that u is bounded in H2(M, g0), we

then use the Sobolev inquality, Theorem 2.0.11, to conclude u is uniformly bounded.

Proposition 3.2.12. Let u be solution to �ow equation 3.2.1 on [0, T ), then there exists

constant C = C(T, u0) such that

1

Ku

≤ C (3.2.34)

Proof. We let the parabolic operator Hl = ∂
∂t
− K̃u

K2
u
∆ act on Φ = K̃u

Ku
+ Au for some A > 0

we will choose later.
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We use Lemma 3.2.3 to evaluate

Hl(
K̃u

Ku

) =
∂

∂t
(
K̃u

Ku

)− K̃u

K2
u

∆(
K̃u

Ku

) (3.2.35)

=
1

Ku

(
∂

∂t
K̃u)−

K̃u

K2
u

(
∂

∂t
Ku)−

K̃u

K2
u

∆(
K̃u

Ku

)

=
1

Ku

(
∂

∂t
K̃u)−

K̃u

K2
u

(
∂

∂t
Ku + ∆(

K̃u

Ku

))

=
1

Ku

(
∂

∂t
K̃u)−

K̃u

K2
u

(−2(K̃u −Ku))

=
1

Ku

(
∂

∂t
K̃u) + 2(

K̃u

Ku

)2 − 2(
K̃u

Ku

)

=
K̃u

Ku

[−(
B′u
Bu

) + 2
K̃u

Ku

− 2]

For the last line, we computed

∂

∂t
K̃u = Cf

∂

∂t
(

1

Bu

) = −K̃u(
B′u
Bu

)

where

B′u =
∂

∂t
Bu = 2

�
M

∂u

∂t
f dAu

We observe that B′u = 2
�
M

∂u
∂t
f dAu ≤ C0

�
M
f dAu = Bu for some C0 and thus B′u

Bu
≤ C0.

By Lemma 3.2.2

Hl(u) = −1 + 2
K̃u

Ku

− e−2uK0K̃u

K2
u
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Putting the parts together and estimating, we get

Hl(Φ) = Hl(
K̃u

Ku

) + AHl(u) (3.2.36)

=
K̃u

Ku

[−(
B′u
Bu

) + 2
K̃u

Ku

− 2] + A[−1 + 2
K̃u

Ku

− e−2uK0K̃u

K2
u

]

= K−2
u [K̃uKu(

−B′u
Bu

) + 2K̃u
2 − 2K̃u

2
Ku − AK2

u + 2AK̃uKu − Ae−2uK0K̃]

≤ K−2
u [CKu + 2C + ACKu − δA]

We choose C so that K̃u, K̃u
2
, C0 < C and δ so that −e−2uK0K̃u ≤ −δ and assumed A > 1

We want CKu + 2C + ACKu − δA ≤ 0, we assume K−1
u attains a large maximum so that

K−1
u ≥ 2C

δ
, then 2CAKu

δ
≤ A and

CK + 2C + ACKu − δA ≤ CKu + 2C − Aδ
2
< 0

for large enough A.

By the Comparison Principle (Theorem 2.0.5), Φ is bounded and therefore K−1
u is bounded

as desired.

These next two lemmas will be used to prove Proposition 3.2.16, which gives a uniform

bound for the Hessian of u.

Lemma 3.2.13. Let u be a solution to �ow equation 3.2.1, then

∂

∂t
|∇u|20 ≤

K̃u

K2
u

∆|∇u|20 −
2K̃u

K2
u

e−2u|∇2
0u|20 + C1(|∇u|20 + 1) (3.2.37)
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Proof. We calculate

∂

∂t
∇u = ∇ ∂

∂t
u (3.2.38)

= ∇(
K̃u

Ku

− 1)

=
K∇K̃u − K̃u∇Ku

K2
u

= −K̃u

K2
u

∇Ku +
∇K̃u

Ku

Now

∇Ku = ∇[e−2u(K0 −∆0u)] (3.2.39)

= e−2u∇(K0 −∆0u) + (K0 −∆0u)(−2e−2u)∇u

= −e−2u∇(∆0u)− 2Ku∇u+ e−2u∇K0

which gives

∂

∂t
∇u =

K̃u

K2
u

e−2u∇(∆0u) + 2
K̃u

Ku

∇u− K̃u

K2
u

e−2u∇K0 +
1

Ku

∇K̃u (3.2.40)
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We then calculate

∂

∂t
|∇u|20 =

∂

∂t
〈∇u,∇u〉0 (3.2.41)

= 2〈∇u, ∂
∂t
∇u〉0

= 2〈∇u, K̃u

K2
u

e−2u∇(∆0u) + 2
K̃u

Ku

∇u− K̃u

K2
u

e−2u∇K0 +
∇K̃u

Ku

〉0

= 2〈∇u, K̃u

K2
u

e−2u∇(∆0u) +X1 ∗ ∇u+X2〉0

= 2〈∇u, K̃0

K2
0

e−2u∇(∆0u)〉0 + 〈∇u,X1 ∗ ∇u〉+ 〈∇u,X2〉0

=
K̃u

K2
u

e−2u∆0|∇u|20 −
2K̃u

K2
u

e−2u|∇2u|20 + 〈∇u,X1 ∗ ∇u〉0 + 〈∇u,X2〉0

≤ K̃u

K2
u

∆|∇u|20 −
2K̃u

K2
u

e−2u|∇2u|20 + C1(|∇u|20 + 1)

In the second to last line we used the identity

∆|∇u|2 = 2|∇2u|2 + 2〈∇u,∇(∆u)〉

Lemma 3.2.14. Let u be a solution to �ow equation 3.2.1 and Z be a vector �eld, then

∂

∂t
∇0
Z∇0

Zu ≤
K̃u

K2
u

∆∇0
Z∇0

Zu+∇0Z ∗ ∇3
0u+X1 ∗ ∇0

Z∇0
Zu+X2 ∗ (∇u)∗2 +X3 (3.2.42)

Proof. We calculate
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∂

∂t
∇0
Z∇0

Zu = ∇0
Z∇0

Z [
K̃u

Ku

− 1] (3.2.43)

= ∇0
Z [

1

Ku

∇0
ZK̃u −

K̃u

K2
u

∇0
ZKu]

= −K̃u

K2
u

∇0
Z∇0

ZKu +
2K̃u

K3
u

∇0
ZKu ⊗∇0

ZKu −
2

K2
u

∇0
ZK̃ ⊗∇0

ZKu −
1

Ku

∇0
Z∇0

ZK̃u

= −K̃u

K2
u

[(∇0
Z∇0

Ze
−2u)e2uKu + 2∇0

Ze
−2u ⊗∇0

Z(e2uKu) + e−2u∇0
Z∇0

Z(−∆0u+K0)]

+
2K̃u

K3
u

∇0
ZKu ⊗∇0

ZKu −
2

K2
u

∇0
ZK̃u ⊗∇0

ZKu −
1

Ku

∇0
Z∇0

ZK̃u

≤ K̃u

K2
u

e−2u∇0
Z∇0

Z∆0u+X1 ∗ ∇0
Z∇0

Zu+X2 ∗ (∇u)∗2 +X3

Now

∇0
Z∇0

Z∆0u = ∇0
Z∇0

Z∇i∇iu (3.2.44)

= ∇0
Z(∇0

i∇0
Z∇0

iu+K ∗ ∇0
iu)

= ∇0
Z(∇0

i∇0
i∇0

Zu+K ∗ ∇0
iu+K ∗ u)

= ∇0
i∇0

Z∇0
i∇0

Zu+K ∗ ∇0
iu+K ∗ ∇0

i∇0
Zu+∇0

Z(K ∗ ∇0
iu) +∇0

Z(K ∗ u)

= ∆0(∇0
Z∇0

Zu(Z,Z)) +∇0Z ∗ ∇3
0u+∇2

0Z ∗ ∇3
0u

+∇2
0u ∗ ∇2

0Z +K ∗ ∇2
0u+∇0K ∗ ∇0u+∇0K ∗ u+K ∗ ∇0

Zu
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which leaves us with

∂

∂t
∇0
Z∇0

Zu ≤
K̃u

K2
u

e−2u∆0∇0
Z∇0

Zu+∇0Z ∗ ∇3
0u+X1 ∗ ∇0

Z∇0
Zu+X2 ∗ (∇u)∗2 +X3

(3.2.45)

as desired.

Remark 3.2.15. We will write ∇2
0u(Z,Z) in the place of ∇0

Z∇0
Zu in the next proof.

We will now show that for a solution to the �ow equation, the Hessian is uniformly bounded

on its interval of existence, [0, T ).

Proposition 3.2.16. For a solution to �ow equation 3.2.1 on [0, T ), there exist a C so that

sup
M×[0,T )

|∇2
0u| ≤ C (3.2.46)

Proof. We de�ne

β(p) = max
X∈TpM\{0}

∇2
0u(X,X)

|X|2

If we �nd an upper bound for β, then we have an upper bound for ∇2
0u.

For �xed constant A > 0 we consider the function

Φ(x, t) = tβ(x) + A|∇u|20 for t ∈ [0, 1]

We will show that if A is su�ciently large, then we will have an a priori bound for an interior
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maximum of Φ.

Let (x0, t0) be the point at which Φ(x, t) attains an interior spacetime maximum and let

Z0 ∈ Tx0M be a unit vector so that β(x) = ∇2
0u(Z0, Z0). We extend Z0 by parallel transport

along radial geodesics to a vector �eld Z on Bε(x0) so that

|Z| = 1 on Bε(x0) (3.2.47)

∇0
XZ(x0) = 0 for all vector �elds X

|∇2
0Z|(x0) ≤ C0(g0)

Now we de�ne

Ψ(x, t) = t∇2
0u(Z,Z) + A|∇u|20

and see that Ψ also attains a spacetime maximum at (x0, t0) as well.

Let Hl = ∂
∂t
− K̃

K2 ∆ as before.
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Hl is an parabolic operator and we use Lemma 3.2.13 and Lemma 3.2.14

HlΨ =
∂Ψ

∂t
− K̃

K2
∆Ψ (3.2.48)

= ∇2
0u(Z,Z) + t(

∂

∂t
∇2

0u(Z,Z)) + A
∂

∂t
|∇u|20 − t

K̃

K2
∆(∇2

0u(Z,Z))− A K̃

K2
∆|∇u|20

= ∇2
0u(Z,Z) + t(

∂

∂t
∇2

0u(Z,Z)− K̃

K2
∆(∇2

0u(Z,Z))) + A(
∂

∂t
|∇u|20 −

K̃

K2
∆|∇u|20)

≤ C0 + (∇0Z ∗ ∇3
0u+X1 ∗ ∇0

Z∇0
Zu+X2 ∗ (∇u)∗2 +X3)

+ A(−2K̃

K2
e−2u|∇2

0u|20 + C1(|∇0u|20 + 1))

≤ −δ|∇2
0u|20 + C

≤ C

We achieve the penultimate inequality from the uniform bounds for u and ∇u and applying

Cauchy-Schwartz inequality and Arithmetic-Geometric Mean Inequality

|X1 ∗ ∇2
0u|0 ≤ C0|∇2

0u|0 (3.2.49)

= (δ−1/2C0)(|∇2
0u|0δ1/2)

≤ δ

2
|∇2

0u|20 + C

We then choose A large enough so that the δ
2
− A(2K̃

K2 e
−2u) ≤ −δ.

Since HlΨ bounded and Ψ(x, 0) = A|∇u|20 we can conclude Ψ is bounded and hence |∇2
0u|

is bounded.

Theorem 3.2.17. For compact Riemannian manifold (M2, g0) with K0 > 0, the solution to

the �ow equation 3.2.1 exists for all time.
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Proof. The operator

Φ(u) =
K̃u −Ku

Ku

is a convex operator in the leading order term. Furthermore since curvature is uniformly

bounded, the equation is uniformly parabolic.

By Evans-Krylov Theorem we obtain a priori C2,α estimate for u, that is

||u||C2,α ≤ C1

since we have a bound for the Hessian of u from Proposition 3.2.16.

We bootstrap Schauder estimates to yield estimates for Ck,α norm of u. Since all derivatives

exist and are controlled, the solution exists on [0,∞).
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Chapter 4

Regularity Estimates

Our goal for this section is to show the regularity of the curvature Ku as u evolves. To

do this we must start with assumptions for the regularity of Ku and extrapolate stronger

regularity from them.

We will assume Ku is bounded away from 0 and in�nity, that is for some λ > 0

1

λ
< Ku < λ (4.0.1)

We also assume that its �rst and second derivatives are bounded, i.e. for some C1, C2

|∇Ku|2 ≤ C1 (4.0.2)

|∇2Ku|2 ≤ C2

Remark 4.0.1. Following the convention laid out earlier, the undecorated ∇ denote covari-
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ant derivatives under the metric gu.

We will approach the problem by looking at the quantity

κ =
1

Ku

(4.0.3)

instead of Ku directly.

We will express equations in terms of κ.

The �ow equation 3.2.1 becomes

∂u

∂t
= K̃uκ− 1 (4.0.4)

and our regularity assumptions become

1

λ
< κ < λ (4.0.5)

|∇κ|2 ≤ C ′1

|∇2κ|2 ≤ C ′2

since

∇κ = − 1

Ku

∇Ku (4.0.6)

and

∇2κ =
2

K2
u

∇Ku −
1

Ku

∇2Ku
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Remark 4.0.2. Even though u̇ = K̃uκ−1, and K̃u depends on t and x, for the next theorem,

we will assume that

K̃u = 1

so that

u̇ = κ− 1

This assumption will greatly simplify our calculations and is justi�ed because K̃u is close to

1 when f is close to 1 and u is small.

Theorem 4.0.3. Let u be a solution to �ow equation 4.0.4 that satis�es assumptions 4.0.1

and 4.0.2, then for all order i there exist some constant Ci such that for large t

|∇iκ|2 ≤ Ci
ti−2

(4.0.7)

The constant Ci depends only on the lower order derivatives, C2, C1, and λ.

Remark 4.0.4. We notice that each ∇iκ is pointwise bounded as a consequence of Theorem

4.0.3.

We express the results of the theorem in terms of Gauss curvature Ku.

Corollary 4.0.5. Let u be a solution to �ow equation 4.0.4 that satis�es assumptions 4.0.1

and 4.0.2 then for all order i, there exist some C ′i depending only on the lower order deriva-
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tives, C2, C1, and λ such that

|∇iKu|2 ≤ C ′i (4.0.8)

We will outline the proof now, but the �nal proof will depend on several lemmas which we

prove in the next section.

We will prove Theorem 4.0.3 through mathematical induction. We will assume |∇iκ|2, ...

,|∇κ|2 are bounded and use that fact to show |∇i+1κ|2 is bounded as well.

We consider the function

G(x, t) = ti−2|∇i+1κ|2 + Ati−2|∇iκ|2 (4.0.9)

We see that if G(x, t) is bounded, then |∇i+1κ|2 is bounded as stated in Theorem 4.0.3; we

will show G is bounded by applying the Maximum Principle to Hl acting on G.

We compute

HlG = (
∂

∂t
− κ2∆)(ti−1|∇i+1κ|2 + Ati−2|∇iκ|2) (4.0.10)

= (i− 1)ti−2|∇i+1κ|2 + A(i− 2)ti−3|∇iκ|2

+ ti−1(
∂

∂t
|∇i+1κ|2 − κ2∆|∇i+1κ|2) + Ati−2(

∂

∂t
|∇iκ|2 − κ2∆|∇iκ|2)
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In order to estimate HlG, we must �nd an appropriate bound for

Hl(|∇iκ|2) =
∂

∂t
|∇iκ|2 − κ2∆|∇iκ|2

and

Hl(|∇iκ|2) =
∂

∂t
|∇i+1κ|2 − κ2∆|∇i+1κ|2

This will be given by Lemma 4.0.13, where we see, for any ε > 0,

Hl(|∇iκ|2) ≤ (−2κ2 + ε)|∇i+1κ|2 + |κ ∗ ... ∗ ∇i−1κ||∇iκ|2 + |κm ∗ ∇κ ∗ ... ∗ ∇i−1κ|

and

Hl(|∇i+1κ|2) ≤ (−2κ2 + ε)|∇i+2κ|2 + |κ ∗ ... ∗ ∇iκ||∇i+1κ|2 + |κm ∗ ∇κ ∗ ... ∗ ∇iκ|

4.0.1 Proof of Theorem

We will start by proving a series of lemmas which will lead us to Lemma 4.0.13 and the �nal

proof of Theorem 4.0.3

Lemma 4.0.6. Let u be a solution to �ow equation 4.0.4 and κ = 1
Ku

,

κ̇ = 2κ(K̃uκ− 1) + κ2∆(K̃uκ)

56



Proof.

κ̇ =
d

dt
(

1

Ku

) (4.0.11)

=
d

dt
(

e2u

1−∆0u
)

=
2u̇e2u(1−∆0u) + e2u∆0u̇

(1−∆0u)2

= 2κu̇+ κ2e−2u∆0u̇

= 2κ(K̃uκ− 1) + κ2∆(K̃uκ)

Remark 4.0.7. In accordance with Remark 4.0.2, we will write

κ̇ = 2κ2 − 2κ+ κ2∆κ (4.0.12)

in order to make computations more tractable.

Remark 4.0.8. We introduce notation A1 ∗ ... ∗Ak to denote a linear combination of tensor

products involving some of the terms A1, ..., Ak. These may include contractions with respect

to gu so that each expression of the form A1 ∗ ... ∗ Ak is a tensor of appropriate rank.

Lemma 4.0.9. Let u be a solution to �ow equation 4.0.4, then

∂

∂t
|∇iκ|2 = 2〈∇iκ,∇iκ̇〉+ 2i(κ− 1)|∇iκ|2 + κ ∗ ∇κ ∗ ... ∗ ∇iκ
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Proof.

∂

∂t
|∇iκ|2 =

∂

∂t
〈∇iκ,∇iκ〉 (4.0.13)

=
∂

∂t
(e2iu〈∇iκ,∇iκ〉0)

= 2e2iu〈∇iκ,
∂

∂t
(∇iκ)〉0 + 2u̇e2iu|∇iκ|20

= 2〈∇iκ,
∂

∂t
(∇iκ)〉+ 2u̇|∇iκ|2

Because we are taking covariant derivatives with respect to the time-dependent metric gu,

we must apply the Leibniz rule to ∇. c.f. [1], Lemma 3.4, page 55.

∂

∂t
(∇κ) = ∇κ̇+ (

∂

∂t
∇)κ (4.0.14)

= ∇κ̇+∇u̇ ∗ κ

= ∇κ̇+∇κ ∗ κ

and hence

∂

∂t
(∇iκ) = ∇iκ̇+ κ ∗ ∇κ ∗ ... ∗ ∇iκ (4.0.15)

We now have

∂

∂t
|∇iκ|2 = 2〈∇iκ,∇iκ̇〉+ κ ∗ ∇κ ∗ ... ∗ ∇iκ+ 2u̇|∇iκ|2 (4.0.16)

= 2〈∇iκ,∇iκ̇〉+ 2(κ− 1)|∇iκ|2 + κ ∗ ∇κ ∗ ... ∗ ∇iκ
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as claimed.

We now state a lemma which relates derivatives of the curvature tensor to κ

Lemma 4.0.10. Let u be a solution to �ow equation 4.0.4, for (M, g) with Riemann curva-

ture tensor R and κ = 1
Ku

, then

∇iR = κm ∗ ∇κ ∗ ... ∗ ∇iκ

for an integer m with |m| ≤ i+ 1

Proof. We know (c.f. [9], Lemma 8.7, page 144), that

R ∼ 1

κ
(4.0.17)

It follows that

∇R ∼ − 1

κ2
∇κ (4.0.18)

and

∇2R ∼ 1

κ2
∗ ∇2κ+

1

κ3
∗ ∇κ

We follow the patten to �nd

∇iR = κm ∗ ∇κ ∗ ... ∗ ∇iκ (4.0.19)

where m is integer with |m| ≤ m+ 1

We are are now ready to work the expression for an ith derivative
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Recall Lemma 4.0.9

∂

∂t
|∇iκ|2 = 2〈∇iκ,∇iκ̇〉+ 2i(κ− 1)|∇iκ|2 + κ ∗ ∇κ ∗ ... ∗ ∇iκ (4.0.20)

In order to compute this, we need an expression for ∇iκ̇.

We know that

∇iκ̇ = ∇i(2κ2 − 2κ+ κ2∆κ) (4.0.21)

= 2∇iκ2 − 2∇iκ+∇i(κ2∆κ)

= κ2∇i(∆κ) + κ ∗ ∇κ ∗ ∇i−1(∆κ) + κ ∗ ∇κ ∗ ... ∗ ∇iκ

We need to commute derivatives in ∇i(∆κ).

Lemma 4.0.11. Let u be a solution to �ow equation 4.0.4 and κ = 1
Ku

, then

∇i(∆κ) = ∆(∇iκ) + κm ∗ ∇κ ∗ ... ∗ ∇iκ (4.0.22)

Proof. We know

∇(∆κ) = ∆(∇κ) +R ∗ ∇κ (4.0.23)

= ∆(∇κ) + κm ∗ ∇κ

by use of Lemma 4.0.10

We will use mathematical inductiuon, assume
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∇i−1(∆κ) = ∆(∇i−1κ) + κm ∗ ∇κ ∗ ... ∗ ∇i−1κ

then

∇i(∆κ) = ∇(∇i−1(∆κ)) (4.0.24)

= ∇(∆(∇i−1κ) + κm ∗ ∇κ ∗ ... ∗ ∇i−1κ)

= ∇(∆(∇i−1κ)) + κm ∗ ∇κ ∗ ... ∗ ∇iκ

= ∆(∇iκ) +R ∗ κm ∗ ∇κ ∗ ... ∗ ∇iκ+ κm ∗ ∇κ ∗ ... ∗ ∇iκ

= ∆(∇iκ) + κm
′ ∗ ∇κ ∗ ... ∗ ∇iκ

as desired. We used Lemma 4.0.10 and m′ may take a value one integer less than m.

Lemma 4.0.12. Let u be a solution to �ow equation 4.0.4 and κ = 1
Ku

, then

∂

∂t
|∇iκ|2 = κ2∆|∇iκ|2 − 2κ|∇i+1κ|2 + κ ∗ ∇κ ∗ ... ∗ ∇i+1κ (4.0.25)

+ 2i(κ− 1)|∇iκ|2 + κm ∗ ∇κ ∗ ... ∗ ∇iκ2

Proof. We are now ready to compute the term 〈∇iκ,∇iκ̇〉 from Lemma 4.0.9.
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From equation 4.0.21

〈∇iκ,∇iκ̇〉 = 〈∇iκ, κ2∇i(∆κ) +∇κ2 ∗ ∇i−1(∆κ) + κ ∗ ∇κ ∗ ... ∗ ∇iκ〉 (4.0.26)

= κ2〈∇iκ,∇i(∆κ)〉+ 〈∇iκ, κ ∗ ∇κ ∗ ∇i−1(∆κ)〉+ 〈∇iκ, κ ∗ ∇κ ∗ ... ∗ ∇iκ〉

We need to dig into the �rst and second terms in the last line. We use Lemma 4.0.11

κ2〈∇iκ,∇i(∆κ)〉 = 〈∇iκ,∆(∇iκ) + κm ∗ ∇κ ∗ ... ∗ ∇iκ〉 (4.0.27)

= κ2〈∇iκ,∆(∇iκ)〉+ 〈∇iκ, κm ∗ ∇κ ∗ ... ∗ ∇iκ〉

=
1

2
κ2∆|∇iκ|2 − κ2|∇i+1κ|2 + κm ∗ ∇κ ∗ ... ∗ ∇iκ2

For the last line, we used the identity

〈F,∆F 〉 =
1

2
∆|F |2 − |∇F |2 (4.0.28)

For the second term, we see

〈∇iκ, κ ∗ ∇κ ∗ ∇i−1(∆κ)〉 = κ ∗ ∇κ ∗ ... ∗ ∇i+1κ (4.0.29)
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We now have the formula

∂

∂t
|∇iκ|2 = κ2∆|∇iκ|2 − 2κ|∇i+1κ|2 + κ ∗ ∇κ ∗ ... ∗ ∇i+1κ (4.0.30)

+ 2i(κ− 1)|∇iκ|2 + κm ∗ ∇κ ∗ ... ∗ ∇iκ2

We are now ready to prove Lemma 4.0.13 which will be the key inequality in the proof of

Theorem 4.0.3.

Lemma 4.0.13. Let u be a solution to �ow equation 4.0.4 and κ = 1
Ku

, then for any ε > 0

Hl(|∇iκ|2) ≤ (−2κ2 + ε)|∇i+1κ|2 + |κ ∗ ... ∗ ∇i−1κ||∇iκ|2 (4.0.31)

+ |κm ∗ ∇κ ∗ ... ∗ ∇i−1κ|

Proof. Let ε > 0, recall Hl = ∂
∂t
− κ2∆, Lemma 4.0.12 can be rewritten as

Hl|∇iκ|2 = −2κ|∇i+1κ|2 + κ ∗ ∇κ ∗ ... ∗ ∇i+1κ (4.0.32)

+ 2i(κ− 1)|∇iκ|2 + κm ∗ ∇κ ∗ ... ∗ ∇iκ2

We use the Arthmetic-Geometric Mean Inequality (Lemma 2.0.14) to �nd that

|κ ∗ ∇κ ∗ ... ∗ ∇i+1κ| ≤ 1

4ε
|κ ∗ ... ∗ ∇iκ|2 + ε|∇i+1κ|2
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Hence

Hl|∇iκ|2 ≤ (−2κ2 + ε)|∇i+1κ|2 + |κ ∗ ... ∗ ∇iκ|2 + 2i(κ− 1)|∇iκ|2 + κm ∗ ∇κ ∗ ... ∗ ∇iκ2

(4.0.33)

≤ (−2κ2 + ε)|∇i+1κ|2 + |κ ∗ ... ∗ ∇i−1κ||∇iκ|2 + |κm ∗ ∇κ ∗ ... ∗ ∇i−1κ|

as claimed.

We are now ready for the proof of Theorem 4.0.3.

Proof. The proof will proceed by induction, by assumptions 4.0.1 and 4.0.2 we know that

∇κ and ∇2κ are bounded. We assume that

κ, ∇κ, ..., ∇iκ

are bounded as in Theorem 4.0.3

We will show ∇i+1κ is bounded by showing that the function

G(x, t) = ti−1|∇i+1κ|2 + Ati−2|∇iκ|2

is bounded. We will show G is bounded by applying the Maximum Principle to Hl acting

on G.
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We compute

HlG = (
∂

∂t
− κ2∆)(ti−1|∇i+1κ|2 + A ti−2|∇iκ|2) (4.0.34)

= (i− 1)ti−2|∇i+1κ|2 + A(i− 2)ti−3|∇iκ|2

+ ti−1(
∂

∂t
|∇i+1κ|2 − κ2∆|∇i+1κ|2) + Ati−2(

∂

∂t
|∇iκ|2 − κ2∆|∇iκ|2)

We use Lemma 4.0.13

HlG = (i− 1)ti−2|∇i+1κ|2 + A(i− 2)ti−3|∇iκ|2 (4.0.35)

+ ti−1(
∂

∂t
|∇i+1κ|2 − κ2∆|∇i+1κ|2) + Ati−2(

∂

∂t
|∇iκ|2 − κ2∆|∇iκ|2)

≤ (i− 1)ti−2|∇i+1κ|2 + A(i− 2)ti−3|∇iκ|2

+ ti−1
[
(−2κ2 + ε)|∇i+2κ|2 + |κ ∗ ... ∗ ∇iκ||∇i+1κ|2 + |κm ∗ ∇κ ∗ ... ∗ ∇iκ|

]
+ Ati−2

[
(−2κ2 + ε)|∇i+1κ|2 + |κ ∗ ... ∗ ∇i−1κ||∇iκ|2 + |κm ∗ ∇κ ∗ ... ∗ ∇i−1κ|

]

= ti−1(−2κ2 + ε)|∇i+2κ|2 +
[
(i− 1)ti−2 + t|κ ∗ ... ∗ ∇iκ|+ A(−2κ2 + ε)

]
|∇i+1κ|2

+ |t ∗ A ∗ κm ∗ ∇κ ∗ ... ∗ ∇iκ|

We choose ε > 0 to be small enough so that −2κ2 + ε < 0. By our inductive hypothesis

|κ ∗ ... ∗ ∇iκ| is bounded so we can choose A > 0 large enough so that

1 + t|κ ∗ ... ∗ ∇iκ|+ A(−2κ2 + ε) < 0
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Furthermore by the inductive hypothesis |t ∗ A ∗ κm ∗ ∇κ ∗ ... ∗ ∇iκ| is also bounded, thus

there exist some C so that

HlG ≤ C (4.0.36)

and hence

Hl(G− Ct) ≤ 0 (4.0.37)

By the induction assumption, see that for

G(x, 0) ≤ ACi

By the Maximum Principle, we can see that

G(x, t) ≤ Ct+ ACi

and we conclude that for large t, for some Ci+1

|∇i+1κ|2 ≤ Ci+1

ti−1
(4.0.38)
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Chapter 5

Stability and Exponential Decay

We will now turn our attention the to Nirenberg Problem. In the Nirenberg, we assume that

the background metric is the standard metric of the sphere, that is K0 ≡ 1, and we want

the �ow equation to be stationary at the standard metric so we set f ≡ 1.

With f ≡ 1, K̃u is the mean value of Ku on (M, gu). For aesthetic reasons, we will denote

Λ = K̃u (5.0.1)

Furthermore we will assume the metric gu is close to the background metric g0. Speci�cally

we assume that u is close to zero andKu is close to 1. We assume both have small derivatives.

That is for some small δ > 0
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|u| < δ (5.0.2)

|Ku − 1| < δ

|∇u| < δ

|∇Ku| < δ

We will show the for δ su�ciently small, certain functions u converge exponentially to 0

under �ow equation 4.0.4 and gu converges to background metric g0. We can say g0 is stable

in a strong sense.

We rewrite the �ow equation 3.2.1 again

Lemma 5.0.1. The �ow equation 3.2.1 can be written as

∂u

∂t
= Λκ2∆u− (Λκ− 1)2 + Λκ2(Λ− e−2u) (5.0.3)

Proof. We have the formula

∂u

∂t
=

K̄

K2
∆u− 1 +

2K̄

K
− e−2uK0K̄

K2
(5.0.4)

from [6] sec. 6, Lemma 6.13.

Since f ≡ 1, we have K̃u = K̄u, where K̄u denotes the mean value of Ku, i.e. K̄u = 4π
Au
,

where Au =
�
M

dAu is the surface area under metric gu.
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Since we assume K0 ≡ 1 and denote Λ = K̄u, the equation becomes

∂u

∂t
=

Λ

K2
u

∆u− 1 +
2Λ

Ku

− e−2u Λ

K2
(5.0.5)

=
Λ

K2
u

∆u− K2
u − 2ΛKu + e−2uΛ

K2
u

=
Λ

K2
u

∆u− (Ku − Λ)2 − Λ(Λ− e−2u)

K2
u

=
Λ

K2
u

∆u− (
Ku − Λ

K
)2 +

Λ(Λ− e−2u)

K2
u

= Λκ2∆u− (Λκ− 1)2 + Λκ2(Λ− e−2u)

Remark 5.0.2. From assumptions 5.0.2 and �ow equation 5.0.3, we can see that |u̇| < δ1

for any δ1 > 0 when δ is su�ciently small.

Remark 5.0.3. We can write equation 5.0.3 as

∂u

∂t
− Λκ2∆u = −(Λκ− 1)2 + Λκ2(Λ− e−2u)

and since κ ≈ 1, u ≈ 0, and Λ ≈ 1 we see

∂u

∂t
− κ2∆u ≈ 0

Hence solutions to the equation

Hlu = 0

approximate solutions to the �ow equation.
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5.1 Useful Estimates

We will need the follow lemmas in order to prove our result in the next section. These will

compare several quantities that appear in those results. We introduce notation for the mean

of u with respect to metrics gu and g0.

De�nition 5.1.1. We will denote the mean of u with respect to metrics g0 by

ū0 =

�
u dA0�
dA0

We will continue to denote the mean of u with respect to metrics gu by

ū =

�
u dAu�
dAu

When u is close to 0, ū is close to ū0, we will make this idea precise with the following

lemmas.

Lemma 5.1.2. For u satisfying equation 5.0.3, there exist some δ > 0 such that if |u| < δ

then

|ū− ū0| ≤ C

�
(u− ū0)2 dA0

Proof. Given the de�nitions ū =
�
u dAu�
dAu

and ū0 =
�
u dA0�
dA0

,

ū− ū0 =

�
u dAu�
dAu

−
�
u dA0�
dA0

(5.1.1)

=
A0

�
u dAu − Au

�
u dA0

AuA0
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We estimate the numerator

A0

�
u dAu − Au

�
u dA0 =

�
A0e

2uu dA0 −
�
Auu dA0 (5.1.2)

=

�
(A0e

2u − Au)u dA0

We use Taylor's Theorem to estimate A0e
2u − Au since e2u = 1 + 2u+ 2u2

1 for small |u|

A0e
2u − Au ≈ A0(1 + 2u+ 2u2

1)−
�

(1 + 2u+ 2u2
1) dA0 (5.1.3)

= A0(1 + 2u+ 2u2
1)− A0 − 2

�
u dA0 − 2A0u

2
1

= 2A0u− 2

�
u dA0

From this we �nd

A0

�
u dAu − Au

�
u dA0 =

�
(A0e

2u − Au)u dA0 (5.1.4)

≈
�

(2A0u− 2

�
u dA0)u dA0

= 2A0

�
u2 dA0 − 2(

�
u dA0)2

= 2A0

�
(u− ū0)2 dA0

For the last line, we used an identity similar to the Computational Variance Formula from
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probability theory.

�
(u− ū0)2 dA0 =

�
u2 − 2ū0u+ (ū0)2 dA0 (5.1.5)

=

�
u2 dA0 − 2ū0

�
u dA0 + ū2

0

�
dA0

=

�
u2 dA0 − 2ū2

0A0 + ū2
0A0

=

�
u2 dA0 − ū2

0A0

=

�
u2 dA0 − A0(

�
u dA0/A0)2

=

�
u2 dA0 −

1

A0

(

�
u dA0)2

=
1

A0

[A0

�
u2 dA0 − (

�
u dA0)2]

and so

A0

�
(u− ū0)2 dA0 = A0

�
u2 dA0 − (

�
u dA0)2

It follows that for some C when |u| < δ for some δ

|ū− ū0| ≤ C

�
(u− ū0)2 dA0

Lemma 5.1.3. For u satisfying equation 5.0.3, there exist some δ > 0 such that if |u| < δ

then

�
(u− ū0)2 dA0 ≤ C

�
(u− ū)2 dAu
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Proof. We begin

(u− ū0)2 = [(u− ū) + (ū− ū0)]2 (5.1.6)

= (u− ū)2 + 2(u− ū)(ū− ū0) + (ū− ū0)2

≤ 2(u− ū)2 + 2(ū− ū0)2

Here we used the Arithmetic-Geometric Mean Inequality (Lemma 2.0.14).

So we have

�
(u− ū0)2 dA0 ≤ 2

�
(u− ū)2 dA0 + 2

�
(ū− ū0)2 dA0

We will further estimate the second term using Lemma 5.1.2

�
(ū− ū0)2 dA0 = A0(ū− ū0)2 (5.1.7)

≤ C(

�
(u− ū0)2 dA0)2

and so we have

�
(u− ū0)2 dA0 ≤ 2

�
(u− ū0)2 dA0 + C(

�
(u− ū0)2 dA0)2 (5.1.8)
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We can assume |u| < δ for small enough δ so that
�

(u− ū0)2 dA0 <
ε
C
for some ε < 1 and so

�
(u− ū0)2 dA0 ≤ 2

�
(u− ū0)2 dA0 + ε

�
(u− ū0)2 dA0 (5.1.9)

and hence

(1− ε)
�

(u− ū0)2 dA0 ≤ 2

�
(u− ū)2 dA0

From here we can conclude

�
(u− ū0)2 dA0 ≤ C

�
(u− ū)2 dAu

Lemma 5.1.4. For u satisfying equation 5.0.3, there exist some δ > 0 such that if |u| < δ

then

|Λ− e−2u| ≤ C|u− ū0|

Proof. We have

Λ− e−2u =
4π�

e2u dA0

− e−2u (5.1.10)

=
4πe−2ū0�
e2(u−ū0) dA0

−
e−2u

�
e2(u−ū0) dA0�

e2(u−ū0) dA0

=
1�

e2(u−ū0) dA0

(4πe−2ū0 − e−2u

�
e2(u−ū0) dA0)
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We expand e−2(u−ū0) through its Taylor series

e2(u−ū0) = 1 + 2(u− ū0) + 2(u− ū0)2 + ... (5.1.11)

Speci�cally we will be using

−e2(u−ū0) = −1− 2(u− ū0)− 2(u− ū0)2 + ... (5.1.12)

≤ −1− C(u− ū0)

when |u− ū0| is small.

So

−
�
e2(u−ū0) dA0 ≤

�
(−1− C(u− ū0)) dA0 (5.1.13)

= −A0 − C
�

(u− ū0) dA0

= −A0

where

A0 =

�
dA0
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We apply this to the previous calculation

Λ− e−2u =
1�

e2(u−ū0) dA0

(4πe−2ū0 − e−2u

�
e2(u−ū0) dA0) (5.1.14)

≤ C(4πe−2ū0 − A0e
−2u)

≤ C(4π(e−2ū0 − e−2u))

= C0(e−2ū0 − e−2u)

Now A0 = 4π and choose constant C so that

1�
e2(u−ū0)

< C

Now we look at the term e−2ū0 − e−2u

e−2ū0 − e−2u = e−2ū0(1− e−2(u−ū0)) (5.1.15)

≤ e−2ū0(−C(−2(u− ū0)))

Thus

e−2ū0 − e−2u ≤ Ce−2ū0(u− ū0)
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so we have

Λ− e−2u ≤ Ce−2ū0(u− ū0) (5.1.16)

By a similar calculation, we also have

e−2u − Λ ≤ Ce−2ū0(u− ū0)

We conclude that for some C

|Λ− e−2u| ≤ C|u− ū0|

Lemma 5.1.5. For u satisfying equation 5.0.3, there exist some δ > 0 such that if |u| < δ

then

�
(Λ− e−2u)2 dAu ≤ C

�
(u− ū)2 dAu

Proof.

�
(Λ− e−2u)2 dAu ≤ C

�
(Λ− e−2u)2 dA0 (5.1.17)

≤ C

�
(u− ū0)2 dA0

≤ C

�
(u− ū)2 dAu

by Lemma 5.1.4 and Lemma 5.1.3.
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5.2 Exponential Decay

Proposition 5.2.1. For u satisfying the �ow equation 4.0.4, for any ε > 0 there exist some

δ > 0 such that if the assumptions of 5.0.2 are satis�ed then for

f(t) = ||u( ˙, t)||2L2(M,gu) =

�
(u(x, t)− ū(t))2 dAu

We have

f ′(t) ≤ (−1 + ε)

�
|∇u|2 dAu + (2 + ε)

�
(u− ū)2 dAu (5.2.1)

Proof. Let

f(t) =

�
(u− ū)2 dAu

f ′(t) =
∂

∂t

�
(u− ū)2e2u dA0 (5.2.2)

=

�
(u− ū)22e2uu̇+ 2(u− ū)(u̇− ˙̄u)e2u dA0

= 2

�
(u− ū)2u̇ dAu + 2

�
(u− ū)(u̇− ˙̄u) dAu

= 2

�
(u− ū)2u̇ dAu + 2

�
u̇(u− ū) dAu − 2 ˙̄u

�
(u− ū) dAu
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We know

�
(u− ū) dAu = ū

�
dAu −

�
u dAu = 0

and so

f ′(t) = 2

�
(u− ū)2u̇ dAu + 2

�
u̇(u− ū) dAu (5.2.3)

≤ ε1

�
(u− ū)2 dAu + 2

�
u̇(u− ū) dAu

We used assumption 5.0.2 to claim |u̇| < ε1.

For the second term, we use �ow equation 5.0.3 to see

�
u̇(u− ū) dAu =

�
(Λκ2∆u− (Λ− κ)2 + Λκ2(Λ− e−2u))(u− ū) dAu (5.2.4)

= Λ

�
κ2(u− ū)∆u dAu −

�
(Λκ− 1)2(u− ū) dAu

+ Λ

�
κ2(Λ− e−2u)(u− ū) dAu

We need to estimate the three integrals in the last line.

For the �rst term

�
κ2∆u (u− ū) dAu =

�
∆u(u− ū) dAu +

�
(κ2 − 1)∆u(u− ū) dAu (5.2.5)

≤ −
�
|∇u|2 dAu + ε2

�
|∇u|2 dAu
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We used assumption 5.0.2 so that |κ2 − 1| < ε2, and we used Green's identity on the other

integral.

For the second term we use assumption 5.0.2 to say |Λκ− 1| < ε3. We see that

Λκ− 1 =
1

Ku

((Λ− e−2u) + ∆u) (5.2.6)

and �nd that

∣∣∣� (Λκ− 1)2(u− ū) dAu

∣∣∣ ≤ ε3

∣∣∣� (Λκ− 1)(u− ū) dAu

∣∣∣ (5.2.7)

≤ ε3

∣∣∣� (
1

Ku

(Λ− e−2u) + ∆u)(u− ū) dAu

∣∣∣
≤ ε3

[
C0

∣∣� (Λ− e−2u)(u− ū) dAu
∣∣+
∣∣� (∆u)(u− ū) dAu

∣∣]
≤ C1ε3

�
(u− ū)2 dAu + C0ε3

�
|∇u|2 dAu

For the last line we used the Arithmetic-Geometric Mean Inequality and Lemma 5.1.5 on

the �rst term and we used Green's identity on the second term.

For the third term

�
κ2(Λ− e−2u)(u− ū) dAu =

�
(Λ− e−2u)(u− ū) dAu (5.2.8)

+

�
(κ2 − 1)(Λ− e−2u)(u− ū) dAu
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We use Taylor's Theorem to see that for |u| < ε4 there is some C2 so that

�
(Λ− e−2u)(u− ū) dAu = Λ

�
(u− ū) dAu −

�
e−2u(u− ū) dAu (5.2.9)

= −
�
e−2u(u− ū) dAu

= −
�

(1− 2u+ 2u2 + ...)(u− ū) dAu

≤ −
�

(1− 2u+ C2u
2)(u− ū) dAu

≤ 2

�
(u− ū)2 dAu + C2ε4

�
(u− ū)2 dAu

and we see

∣∣∣� (κ2 − 1)(Λ− e−2u)(u− ū)
∣∣∣ ≤ ε1

�
|Λ− e−2u||u− ū| dAu (5.2.10)

≤ ε1
[1
2

�
(Λ− e−2u)2 dAu +

1

2

�
(u− ū)2 dAu

]
≤ C3ε1

�
(u− ū)2 dAu

We now have the bound for f ′(t). Putting the estimates for the the three integrals together,

we see
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�
u̇(u− ū) ≤ −

�
|∇u|2 dAu + ε2

�
|∇u|2 dAu (5.2.11)

+ C1ε3

�
(u− ū)2 dAu + C0ε3

�
|∇u|2 dAu

+ 2

�
(u− ū)2 dAu + C2ε4

�
(u− ū)2 dAu + C3ε1

�
(u− ū)2 dAu

so for some ε > 0, we have

f ′(t) ≤ (−1 + ε)

�
|∇u|2 dAu + 2

�
(u− ū)2 dAu + ε

�
(u− ū)2 dAu (5.2.12)

as claimed.

Remark 5.2.2. We would like to show that ||u− ū||L2(M,gu) decays exponentially. In order

to get exponential decay for

f(t) =

�
(u− ū)2 dAu

however, we need

f ′(t) ≤ −ε
�

(u− ū)2 dAu (5.2.13)

in order to use ODE comparison, but we are only able to show in Proposition 5.2.1 that

f ′(t) ≤ (−1 + ε)

�
|∇u|2 dAu + (2 + ε)

�
(u− ū)2 dAu (5.2.14)

In order to attain the stronger inequality, we need to perform a conformal di�eomorphism
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to M and subtract out the �rst nontrivial eigenspace of ∆ which has eigenvalue of 2 and is

L2-orthogonal to (u− ū)2. This will allow us to attain inequality 5.2.13.

While we don't have the result in general, we do have the result if u is invariant under the

antipodal map.

Proposition 5.2.3. Let u be an antipodal invariant solution to �ow equation 5.0.3, there

exist some δ > 0 such that if the assumptions of 5.0.2 are satis�ed then

||u− ū||L2(M,gu) ≤ A0e
−B0t

for some A0, B0 > 0. .

Proof. Let u be invariant under the antipodal map, i.e. u(x, t) = u(−x, t) for all x ∈ S2.

The �rst nonzero eigenvalue of ∆0 is 2 and its eigenfunctions are the standard coordinate

functions of R3. By symmetry, u is L2-orthogonal to the �rst nontrivial eigenspace of ∆0.

It follows that

−
�
|∇u|2 dAu ≤ −C1

�
|∇u|20 dA0 (5.2.15)

≤ −6C1

�
(u− ū0)2 dA0

≤ −6C1C2

�
(u− ū)2 dAu

Here C1 can be made close to 1 and C2 can be made close to 1/2 (see proof of Lemma 5.1.3).

For middle inequality, we have a sharp Poincaré inequality (see Remark 2.0.13)

−
�
|∇u|20 dA0 ≤ −6

�
(u− ū0)2 dA0
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since u− ū0 is orthogonal to the 0 and 2 eigenspaces of ∆0 and the next eigenvalue is 6.

Hence

−
�
|∇u|2 dAu ≤ −C

�
(u− ū)2 dAu

where C is approximately 3.

It follows from Proposition 5.2.1 and Remark 5.2.2 that ||u− ū||L2(M,gu) decays exponetially.

The next proposition shows that the L2(M, gu) norm of ∇u decays exponentially in t when

u is su�ciently small and ||u− ū||L2 decays exponentially.

Proposition 5.2.4. For u satisfying the �ow equation 5.0.3 such that ||u − ū||L2 decays

exponentially, there exist some δ > 0 such that if the assumptions of 5.0.2 are satis�ed then

||∇u||2L2(M,gu) ≤ A1e
−B1t (5.2.16)

for some A1, B1 > 0.

Proof. Let

f(t) =

�
|∇u|2 dAu
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then

f ′(t) =
d

dt

�
|∇u|2 dAu (5.2.17)

=
d

dt

�
e2u〈∇u,∇u〉0e2u dA0

=

�
4u̇e4u〈∇u,∇u〉0 + 2e4u〈∇u,∇u̇〉0 dA0

= 4

�
u̇|∇u|2 dAu + 2

�
〈∇u,∇u̇〉 dAu

We will seek to bound both of these terms. For the �rst term, since u̇ = Λκ − 1 is close to

zero by assumption 5.0.2, we have

|u̇| < δ1

and

|
�
u̇|∇u|2 dAu| ≤ δ1

�
|∇u|2 dAu (5.2.18)

For the second term, we use Green's identity and �ow equation 5.0.3

�
〈∇u,∇u̇〉 dAu = −

�
u̇∆u dAu (5.2.19)

= −Λ

�
κ2(∆u)2 dAu +

�
(Λκ− 1)2∆u dAu

− Λ

�
κ2(Λ− e−2u)∆u dAu
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We need to bound each of these terms, for the �rst term for some C1,

−Λ

�
κ2(∆u)2 dAu ≤ −C1

�
(∆u)2 dAu (5.2.20)

For the second term

|
�

(Λκ− 1)2∆u dAu| ≤
�

(Λκ− 1)2|∆u| dAu (5.2.21)

≤ δ1

�
|Λκ− 1||∆u| dAu

Again we have |Λκ− 1| < δ1 from assumption 5.0.2

Now for some constant C2,

|Λκ− 1| = 1

Ku

|Ku − Λ| (5.2.22)

=
1

Ku

|e−2u(1−∆0u)− Λ|

=
1

Ku

|(e−2u − Λ)−∆u|

≤ C2|(e−2u − Λ)−∆u|
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We have

|
�

(Λκ− 1)2∆u dAu| ≤ C2δ1

�
|(e−2u − Λ)−∆u||∆u| dAu (5.2.23)

≤ C2δ1

�
|e−2u − Λ||∆u|+ (∆u)2 dAu

≤ C2δ1

�
1

2
(e−2u − Λ)2 +

1

2
(∆u)2 + (∆u)2 dAu

≤ C2

2
δ1

�
(u− ū)2 dAu +

3C2

2
δ1

�
(∆u)2 dAu

We used the triangle inequality, the Arithmetic-Geometric Mean Inequality and Lemma 5.1.5

in the last calculation.

For the third term

|Λ
�
κ2(Λ− e−2u)∆u dAu| ≤ C

�
|(Λ− e−2u)∆u| dAu (5.2.24)

≤ C

2ε

�
(Λ− e−2u)2 dAu + C

ε

2

�
(∆u)2 dAu

≤ C3

�
(u− ū)2 dAu + C4ε

�
(∆u)2 dAu

For the last line we used Lemma 5.1.5.
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We put these together and have the inequality

f ′(t) = 4

�
u̇|∇u|2 dAu + 2

�
〈∇u,∇u̇〉 dAu (5.2.25)

≤ δ1

�
|∇u|2 dAu − 2Λ

�
κ2(∆u)2 dAu + 2

�
(1− Λκ)2∆u dAu − 2Λ

�
κ2(Λ− e−2u)∆u dAu

≤ δ1

�
|∇u|2 dAu − C1

�
(∆u)2 dAu +

C2

2
δ1

�
(u− ū)2 dAu +

3C2

2
δ1

�
(∆u)2 dAu

+ C3

�
(u− ū)2 dAu + C4ε

�
(∆u)2 dAu

≤ δ1

�
|∇u|2 dAu + C5

�
(u− ū)2 dAu − (C1 −

3C2

2
δ1 − C4ε)

�
(∆u)2 dAu

≤ δ1

�
|∇u|2 dAu + C5

�
(u− ū)2 dAu − C6

�
(∆u)2 dAu

We choose δ1 and ε small enough so that the coe�cient of
�

(∆u)2 dAu has a negative sign.

Now for any A > 0 we have inequality

−C
�

(∆u)2 dAu ≤ C(A2

�
(u− ū)2 dAu − 2A

�
|∇u|2 dAu) (5.2.26)

For large enough A, this gives

f ′(t) ≤ δ1

�
|∇u|2 dAu + C5

�
(u− ū)2 dAu − C6

�
(∆u)2 dAu (5.2.27)

≤ δ1

�
|∇u|2 dAu + C5

�
(u− ū)2 dAu − C6(A2

�
(u− ū)2 dAu − 2A

�
|∇u|2 dAu)

≤ −C6

�
|∇u|2 dAu + C7

�
(u− ū)2 dAu

Since we have exponential decay for
�

(u−ū)2 dAu by hypothesis, we can use ODE comparison
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and conclude that we have exponential decay for f(t).

We now prove stability for all derivatives of u. That is if u is su�ciently small and ||u− ū||L2

decays exponentially, then the L2(M, gu) norm of ∇iu decays exponentially in t.

Theorem 5.2.5. For u satisfying the �ow equation 5.0.3 such that ||u− ū||L2 decays expo-

nentially, there exist some δ > 0 such that if the assumptions of 5.0.2 are satis�ed then for

all integer i ≥ 1

||∇iu||2L2(M,gu) ≤ Aie
−Bit (5.2.28)

for some Ai, Bi > 0.

Proof. The proof will use induction and, similar the proof for Proposition 5.2.4, will use

ODE comparison. Proposition 5.2.4 provides our base case.

We will assume that ||∇u||, ..., ||∇i−1u|| are decaying exponentially.

Let

fi(t) =

�
|∇iu|2 dAu

we �nd

f ′(t) =
d

dt

�
〈∇iu,∇iu〉 dAu (5.2.29)

=
d

dt

�
e2iu〈∇iu,∇iu〉0 e2udA0

= (2i+ 2)

�
u̇|∇iu|2 dAu + 2

�
〈∇iu, (

∂

∂t
∇i)u〉 dAu + 2

�
〈∇iu,∇iu̇〉 dAu
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We already know from assumption 5.0.2 that for small δ1 > 0

�
u̇|∇iu|2 dAu ≤ δ1

�
|∇iu|2 dAu (5.2.30)

For the the second integral, as in the proof of Lemma 4.0.9, we see

(
∂

∂t
∇i)u = ∇iu̇ ∗ u+ ...+∇u̇ ∗ ∇i−1u (5.2.31)

= ∇iκ ∗ u+ ...+∇κ ∗ ∇i−1u

= ∇iκ ∗ u+∇κ ∗ ... ∗ ∇i−1κ ∗ ∇u ∗ ... ∗ ∇i−1u

By induction we have exponential decay for the second term in the last line, but we must

be careful with the �rst term.

�
〈∇iu, (

∂

∂t
∇i)u〉 dAu =

�
〈∇iu,∇iκ ∗ u+∇κ ∗ ... ∗ ∇i−1κ ∗ ∇u ∗ ... ∗ ∇i−1u〉 dAu

(5.2.32)

=

�
〈∇iu,∇iκ ∗ u〉 dAu

+

�
〈∇iu,∇κ ∗ ... ∗ ∇i−1κ ∗ ∇u ∗ ... ∗ ∇i−1u〉 dAu

≤ C||∇iu||+ C||∇iu||2 + C||∇u ∗ ... ∗ ∇i−1u||2

We used the Cauchy-Schwarz inequality and Arithmetic-Geometric Mean Inequality for the

last line and bounded ∇kκ terms with Theorem 4.0.3
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To handle the term ||∇iu||, we employ Green's identity, Cauchy-Schwarz inequality, and

Young's inequality (Lemma 2.0.15).

||∇iu|| =
( �
|∇iu|2 dAu

) 1
2

(5.2.33)

=
(
−
�
〈∇i+1u,∇i−1u〉 dAu

) 1
2

≤
(�
|∇i+1u||∇i−1u| dAu

) 1
2

≤
(�
|∇i+1u|2 dAu

) 1
4
( �
|∇i−1u|2 dAu

) 1
4

≤ ε
1

4

�
|∇i+1u|2 dAu + ε−1 3

4

( �
|∇i−1u|2 dAu

) 1
3

We now have the bound

�
〈∇iu, (

∂

∂t
∇i)u〉 dAu ≤ ε||∇i+1u||2 + C||∇iu||2 + C||∇i−1u||

1
3 (5.2.34)

+ C||∇u ∗ ... ∗ ∇i−1u||2

We now turn to the third integral and use �ow equation 5.0.3. We have

�
〈∇iu,∇iu̇〉 dAu = Λ

�
〈∇iu,∇i(κ2∆u)〉 dAu (5.2.35)

−
�
〈∇i,∇i(Λκ− 1)2〉 dAu + Λ

�
〈∇iu,∇i(κ2(Λ− e−2u))〉 dAu
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We will break each of these integrals apart.

∇i(Λκ− 1)2 = κ ∗ ∇κ ∗ ... ∗ ∇iκ (5.2.36)

so

∣∣ � 〈∇i,∇i(Λκ− 1)2〉 dAu
∣∣ =

∣∣ � 〈∇i, κ ∗ ∇κ ∗ ... ∗ ∇iκ〉 dAu
∣∣ (5.2.37)

≤ C||∇iu||

In the last line, we used the Cauchy-Schwarz inequality and Theorem 4.0.3.

For the next integral, we �rst see

∇i(κ2(Λ− e−2u)) = u ∗ ∇iκ+ κ ∗ ... ∗ ∇iκ ∗ ∇u ∗ ... ∗ ∇i−1u+ κ ∗ u ∗ ∇iu (5.2.38)

and so using Cauchy-Schwarz inequality and Arithmetic-Geometric Mean Inequality and

bounding ∇kκ terms with Theorem 4.0.3, we have

∣∣ � 〈∇iu,∇i(κ2(Λ− e−2u))〉 dAu
∣∣ =

∣∣� 〈∇iu, u ∗ ∇iκ+ κ ∗ ... ∗ ∇i−1u+ κ ∗ u ∗ ∇iu〉 dAu
∣∣

(5.2.39)

≤ C||∇iu||+ C||∇iu||2 + C||∇u ∗ ... ∗ ∇i−1u||2

≤ ε||∇i+1u||2 + C||∇iu||2 + C||∇i−1u||
1
3

+ C||∇u ∗ ... ∗ ∇i−1u||2
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For the last line, we used the same calculation as in 5.2.33.

We turn our attention to term
�
〈∇iu,∇i(κ2∆u)〉 dAu.

We compute

∇i(κ2∆u) = ∇i(∆u) + κ ∗ ∇κ ∗ ∇i+1u+ κ ∗ ... ∗ ∇iκ ∗ ∇2u ∗ ... ∗ ∇iu (5.2.40)

and have

�
〈∇iu,∇i(κ2∆u)〉 dAu =

�
〈∇iu,∇i(∆u)〉 dAu (5.2.41)

+

�
〈∇iu, κ ∗ ∇κ ∗ ∇i+1u〉 dAu

+

�
〈∇iu, κ ∗ ... ∗ ∇iκ ∗ ∇2u ∗ ... ∗ ∇iu〉 dAu

Using Arithmetic-Geometric Mean Inequality, we have

�
〈∇iu, κ ∗ ∇κ ∗ ∇i+1u〉 dAu ≤ C||∇iu||||∇i+1u|| (5.2.42)

≤ C(
1

2ε
||∇iu||2 +

ε

2
||∇i+1u||2)

93



and

�
〈∇iu, κ ∗ ... ∗ ∇iκ ∗ ∇2u ∗ ... ∗ ∇iu〉 dAu ≤ C||∇iu||2 (5.2.43)

+ C||κ ∗ ... ∗ ∇iκ ∗ ∇2u ∗ ... ∗ ∇i−1u||2

For the other integral
�
〈∇iu,∇i(∆u)〉 dAu, we must commute derivatives similarly to Lemma

4.0.11.

∇i(∆u) = ∆(∇iu) +R ∗ ∇i+1 +∇R ∗ ∇iu+ ...+∇iR ∗ ∇u (5.2.44)

= ∆(∇iu) +
1

κ
∗ ∇i+1u+ κ ∗ ∇κ ∗ ... ∗ ∇iκ ∗ ∇u ∗ ... ∗ ∇iu

And so

�
〈∇iu,∇i(∆u)〉 dAu =

�
〈∇iu,∆(∇iu)〉 dAu +

�
〈∇iu,

1

κ
∗ ∇i+1u〉 dAu (5.2.45)

+

�
〈∇iu, κ ∗ ∇κ ∗ ... ∗ ∇iκ ∗ ∇u ∗ ... ∗ ∇iu〉 dAu

We bound the last two integrals like before

�
〈∇iu,

1

κ
∗ ∇i+1u〉 dAu ≤ C||∇iu||||∇i+1u|| (5.2.46)

≤ C(
1

2ε
||∇iu||2 +

ε

2
||∇i+1u||2)
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and

�
〈∇iu, κ ∗ ... ∗ ∇iκ ∗ ∇u ∗ ... ∗ ∇iu〉 dAu ≤ C||∇iu||2 (5.2.47)

+ C||κ ∗ ... ∗ ∇iκ ∗ ∇u ∗ ... ∗ ∇i−1u||2

Finally we apply Green's identity to the �rst integral

�
〈∇iu,∆(∇iu)〉 dAu = −

�
|∇i+1u|2 dAu (5.2.48)

= −||∇i+1u||2

We are now ready to put all of these pieces together, we have the inequality

f ′(t) ≤ (−1 + ε)||∇i+1u||2 + C||∇iu||2 + C||∇i−1u||
1
3 + C(∇u ∗ ... ∗ ∇i−1u) (5.2.49)

We have such a C since the terms κ, ..., ∇iκ and we can choose ε < 1. By the inductive

hypothesis, the �nal term in the expression is already decaying exponentially.
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We now consider the function

Fi(t) = ||∇iu||2 + A||∇i−1u||2 (5.2.50)

= fi(t) + Afi−1(t)

We see using inequality 5.2.49

d

dt
Fi(t) ≤ (−1 + ε1)||∇i+1u||2 + C||∇iu||2 + C||∇i−1u||

1
3 + C(∇u ∗ ... ∗ ∇i−1u)

(5.2.51)

+ A
(
(−1 + ε2)||∇iu||2 + C||∇i−1u||2 + C||∇i−2u||

1
3 + C(∇u ∗ ... ∗ ∇i−2u)

)
≤ (−1 + ε1)||∇i+1u||2 − C||∇iu||2 + C(∇u ∗ ... ∗ ∇i−1u)

≤ C(∇u ∗ ... ∗ ∇i−1u) + C||∇i−1u||
1
3 + C||∇i−2u||

1
3

By the induction hypothesis, all terms of the �nal line are decaying exponentially. By ODE

comparison, Fi must decay exponentially and therefore

fi(t) = ||∇iu||2

does as well.

We have the result for an antipodal invariant solution to the �ow equation.

Corollary 5.2.6. Let u be an antipodal invariant solution to the �ow equation 5.0.3, then

there exist some δ > 0 such that if the assumptions of 5.0.2 are satis�ed then for all integer
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i ≥ 1

||∇iu||2L2(M,gu) ≤ Aie
−Bit (5.2.52)

for some Ai, Bi > 0.

Proof. By Proposition 5.2.3, we have exponential decay for ||u − ū||L2 . By Theorem 5.2.5,

we conclude that ||∇iu||L2 decays exponentially for each i ≥ 1.
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