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Abstract

We examine the feasibility of designing an accelerometer-based (or
gyroscope-free) inertial navigation system that uses only accelerome-
ters to compute the linear and angular motions of a rigid body. The
accelerometer output equation is derived to relate the linear and an-
gular motions of a rigid body relative to a fixed inertial frame. A suf-
ficient condition is given to determine if a configuration of accelerom-
eters is feasible. If the condition is satisfied, the angular and linear
motions can be computed separately using two decoupled equations
of an input-output dynamical system; a state equation for angular
velocity and an output equation for linear acceleration. This simple
computation scheme is derived from the corresponding dynamical sys-
tem equations for a special cube configuration for which the angular
acceleration is expressed as a linear combination of the accelerometer
outputs. The effects of accelerometer location and orientation errors
are analysed. Algorithms that identify and compensate these errors
are developed.

Keywords gyroscope-free, configuration of accelerometers, feasibility, input-
output dynamical system realisation, error sensitivity analysis.
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Nomenclature

F̂ : force per unit mass (specific force) on a rigid body
g: gravitational force
IF: inertial frame {OI ; e1, e2, e3}
MF: moving frame {O; f1, f2, f3}
F : rotation matrix that transforms a coordinate in the MF to its coordinate
in the IF
ω: angular rate of moving (or body) frame with respect to inertial frame,
with coordinates in the moving frame
Ω: skew-symmetric matrix corresponding to ω ∈ R3

u: location of an accelerometer in the moving frame
θ: orientation of an accelerometer in the moving frame
J ∈ RN×6: configuration matrix corresponding to a configuration of N ac-
celerometers
Q ∈ R6×N : left inverse of configuration matrix J
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1 Introduction

Inertial navigation systems (INS) are used in many diverse applications, in-
cluding automobiles, aviation aircrafts, yachts, and submarine fleet. Re-
cently, robotics and image stabilisation are among the emerging areas that
use micro-machined navigation systems. Most inertial navigation systems
use accelerometers to sense linear accelerations and gyroscopes to sense an-
gular velocity. In this paper, we examine the feasibility of designing an
accelerometer-based or gyroscope-free INS that uses only accelerometers to
compute the linear and angular motions of a rigid body. In theory, a min-
imum of six accelerometers is required for a complete description of rigid
body motion. The key to a solution of the feasibility problem is the choice
of location and orientation of the accelerometers. It will be shown that for
some “nice” (or feasible) configurations of accelerometers, the angular and
linear motions can be computed separately using two decoupled equations
associated with an input-output (I/O) dynamical system.

The main motivation for developing a gyroscope-free navigation system
is that low-cost gyroscopes lack the accuracy needed for precise naviga-
tion applications. The accuracy is usually characterised by the resolution,
or the minimum detectable angular rate (in degree/second), of the gyro-
scope. In general, gyroscopes can be classified into three different categories
based on their performace: inertial-grade (10−3 deg/sec), tactical-grade (10−2

deg/sec), and rate-grade devices (1 deg/sec). Inertial-grade gyroscopes, such
as a laser ring gyroscope that measures the earth’s rotation, cost in the or-
der of tens of thousands of US dollars. Micro-machined silicon rate-grade
gyroscopes, such as those for automotive applications, cost about US$10-
20 with a resolution of 0.5 deg/sec in a bandwidth of 50 Hz ([1]). It has
also been reported in ([2], [3]) that due to challenges associated with micro-
miniaturisation of gyroscopes, inexpensive batch-processed gyroscopes can-
not achieve the required levels of precision in the near future. A precise
micro-machined accelerometer, on the other hand, is more affordable. This
type of accelerometer has become one of the most notable applications of
poly-silicon surface micro-machining ([4]). Due to recent breakthrough de-
velopments in micro-machining technology, the costs of micro-machined ac-
celerometers are decreasing while the accuracy is being improved ([1], [5]).
Also, less fundamental physical constraints inhibit the precision of a micro-
machined accelerometer than the precision of a micro-machined gyroscope.
So there is a promising market for accelerometer-based inertial navigation
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systems.
Semiconductor micro-machined accelerometers are used as basic sensing

devices for an accelerometer-based INS ([6], [7], [8]). Using measurements
from accelerometers strategically distributed on a rigid body, an INS algo-
rithm computes the linear displacement and rotation of the body relative to
a fixed inertial reference frame. In Section 2, the accelerometer output (mea-
surement) equation is derived, and the acceleration of a body is described
by the body linear acceleration and a rotation matrix. In Section 3, a suf-
ficient condition is used to determine if a configuration of accelerometers is
feasible. Feasibility means that with specified accelerometer locations and
orientations, one can compute the linear and angular motions using the ac-
celerometer outputs. A feasible cube configuration of six accelerometers is
then considered, and based on this configuration, a basic INS algorithm is
developed. The cube configuration was first considered in [6]. In our ap-
proach, the motion equations are formulated as an I/O dynamical system
in such way that the algorithm involves solving a state equation for angular
velocity and computing an output equation for linear acceleration. Our I/O
dynamical system formulation results in a general INS algorithm, which is
computationally as simple as the basic INS algorithm, for all other feasible
configurations of six accelerometers. All other configurations are considered
as distorted configurations of the special cube configuration. So in Section
IV, we analyse the effects of location and orientation errors on accelerometer
output. We also discuss how these misalignment errors can be identified and
compensated.

The main result is that as long as the feasibility condition stated in Sec-
tion 3 is satisfied, we can compute the linear and angular motions using a
general INS algorithm that has the same computational simplicity as the ba-
sic INS algorithm for the cube configuration. The feasibility condition checks
the invertibility of a 6 × 6 matrix, hence will be satisfied “almost surely”.
So the beauty of the main result is that except of a “measure zero” set of
configurations of six accelerometers, any other sets of six accelerometers can
be placed and oriented arbitrarily on a rigid body, and the six accelerome-
ter measurements are used to compute the linear and angular motions using
our simple algorithm. These are discussed in Section 5. We illustrate our
results with a simulation example in Section 6. Some concluding remarks are
discussed in Section 7.
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2 Accelerometer Output Equation

A single-axis accelerometer mounted on a rigid body is a device with one
input and one output that measures the force, per unit mass, acting on the
body along a specific sensing direction. This force vector is also known as
the specific force. The vector sum of this force F̂ and the gravity g, per
unit mass, is the inertial acceleration of the body. That is, F̂ + g = ma,
m = 1. So the specific force is F̂ = a−g . The device is designed to measure
this force quantity projected along the sensing axis (or orientation) of the
accelerometer. Let θI and rI be the sensing axis and the coordinate of the
centre of an accelerometer relative to a fixed inertial frame. The vector rI is
time-dependent, and the vector θI varies when the body rotates. The output
of the accelerometer is given by:

A = 〈a− g, θI〉 = 〈r̈I − g, θI〉 (2.1)

where 〈·, ·〉 is the inner product, g = −|g|e3 and e3 is the column vector
[0 0 1]T expressed in a local tangent plane coordinate system. One can
also model a single-axis accelerometer as a spring-mass system to derive the
output equation (2.1) (see [9]).

Next we derive the equations that relate the body acceleration, a = r̈I , to
the linear and angular motions of the body. It will be shown that the body
acceleration can be expressed in terms of the linear acceleration at a point
and a rotation matrix. In Figure 1, let OI be the centre of a fixed inertial
frame (IF) with a right-handed orthonormal basis {e1, e2, e3} (so the cross
products e1× e2 = e3, e2× e3 = e1, e3× e1 = e2 hold). Typically, the basis is
the standard basis in R3 . The moving frame (also called body frame) (MF)
associated with the rigid body is a coordinate system {O; f1, f2, f3} , where
O is the centre and {f1, f2, f3} is a right-handed orthonormal basis.

We shall see that the body motion can be described by the linear accel-
eration, RI , of the centre O and the rotation of the moving frame relative to
the inertial frame. The rotation is given by a 3 × 3 matrix F as shown in
Figure 1. This is a coordinate transformation that expresses the coordinate
in the moving frame in terms of its coordinate in the inertial frame. That is,
fk = Fek, k = 1, 2, 3. The matrix F is orthogonal with F T F = I (identity
matrix). It follows that det(F ) = ±1. Since the bases are right-handed, we
have det(F ) = 1. The matrix F is called a rotation matrix. Next consider a
point M on the body as shown in Figure 1. We have the following equation

5



 
 
 
 
 
 
 

M

Ir

3e

1e
2e 1f

2f

3f

IR

r

Io

o

IF 

MF 
3e

1e
2e

1f

2f

3f

Io

o

F

Figure 1: Rigid body motion relative to an inertial frame

relating the displacement vectors shown in Figure 1:

rI = RI + r (2.2)

All the vectors in (2.2) are expressed in the inertial frame. Since the body
is rigid, the magnitude of r remains constant. However, the direction of r
changes when the body rotates. Let u be the coordinate of the vector r in the
moving frame. So u is time-independent and we have r = Fu. Substituting
this into (2.2) gives:

rI = RI + Fu (2.3)

Thus the motion at point M can be described by the translation RI and the
rotation F relative to the inertial frame. The acceleration at M (relative to
IF) is:

r̈I = R̈I + F̈ u (2.4)

Time differentiation of F T F = I gives F T Ḟ + Ḟ T F = 0. Define the matrix
Ω := F T Ḟ , so Ω is skew-symmetric with ΩT = −Ω. The orthogonality of F
implies:

Ḟ = FΩ (2.5)

Time differentiation of (2.5) gives F̈ = F (Ω̇ + Ω2). So from (2.4) the accel-
eration at M can also be expressed as:

r̈I = R̈I + F (Ω̇ + Ω2)u (2.6)

Next consider an accelerometer mounted on the rigid body, with its centre
at M . Let θ be the orientation of the sensor in the moving frame. So θ is
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time-independent and θI = Fθ. Using (2.1) and (2.6) the accelerometer
output is:

A(u, θ) =
〈
(R̈I − g) + F (Ω̇ + Ω2)u, Fθ

〉

=
〈
F T (R̈I − g) + (Ω̇ + Ω2)u, θ

〉
(2.7)

= 〈L, θ〉+ 〈Gu, θ〉

where L := F T (R̈I − g) and G := Ω̇ + Ω2. The term 〈L, θ〉 computes the
linear acceleration (along θ). L is the specific force at the center O expressed
in the body frame. The other term 〈Gu, θ〉 computes the angular acceleration
consists of the tangential (skew-symmetric Ω) and centripetal (symmetric Ω2)
accelerations. The authors in ([6], [7]) have obtained a similar accelerometer
output equation, but that equation does not consider the transformation of
coordinates between the inertial frame and moving frame. So their rotation
matrix is always the identity.

It is known that every 3×3 skew-symmetric matrix Ω has a unique cross-
product representation. So there exists a unique ω ∈ R3 such that Ωa = ω×a
for all a ∈ R3 . We use Ω ↔ ω or Ω = S(ω) to denote this equivalence. The
vector ω(t) is the instantaneous angular velocity of the rotation described by
the matrix F (t). Geometrically, a 3× 3 skew-symmetric matrix corresponds
to an axis of rotation (via the mapping Ω ↔ ω). It can be shown ([10]) that
a rotation about an axis ω (relative to an inertial frame) by a specified angle
θ is equivalent to the matrix exponential eΩθ. So for a rotation about a fixed
axis, the matrix differential equation (2.5) has a simple closed-form solution.
Indeed, it is easy to check that if a rigid body rotates about a fixed axis ω0

with an angular speed θ̇(t) and Ω0 ↔ ω0, then F (t) = F (t0)e
θ(t)Ω0 solves

Ḟ = FΩ, t ≥ t0. For angular motions other than a simple rotation about
a fixed axis, (2.5) can be solved numerically using the quaternion equations
([11]).

3 Feasibility of Gyroscope-Free INS Design

A gyroscope-free inertial navigation system (GF-INS) is a system that uses
only accelerometer measurements to compute the linear displacement and
angular motion of a rigid body. To achieve this, the accelerometers need to be
strategically distributed on the body. A set of accelerometers whose outputs
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are sufficient to compute the linear and angular motions of a moving body
is called a feasible configuration of accelerometers. It is obvious that not all
configurations are feasible. For example, those with all the accelerometers
having the same orientation are not feasible. However, it turns out that
“almost all” configurations are feasible. We first present a sufficient condition
to determine if a configuration is feasible.

3.1 Feasible Configurations of Accelerometers

Consider N accelerometers mounted at locatons u1, · · · , uN with orientations
θ1, · · · , θN , respectively. The pair (ui, θi) is expressed in the moving frame
and is thus time-independent.

Definition 1: A configuration C = {(ui, θi); 1 ≤ i ≤ N} of N ac-
celerometers is feasible if the outputs Ai = A(ui, θi) and the initial condi-
tions {RI(t0), ṘI(t0), F (t0), Ḟ (t0)} are sufficient to determine the linear and
angular motions, RI(t) and F (t), for t ≥ t0.

Define two 3 × N matrices J1 := [u1 × θ1, · · · , uN × θN ] and J2 :=
[θ1, · · · , θN ]. Let J = [JT

1 JT
2 ], a N × 6 matrix. We call J the configu-

ration matrix. Using the output equation (2.7) and Ω ↔ ω, we get:

Ai = A(ui, θi) =
〈
L + (Ω̇ + Ω2)ui, θi

〉

= θT
i L + (ui × θi)

T ω̇ + θT
i Ω2ui

=
[

(ui × θi)
T θT

i

] [
ω̇
L

]
+ θT

i Ω2ui

So we have:

A =




A1
...

AN


 = J

[
ω̇
L

]
+




θT
1 Ω2u1

...
θT

NΩ2uN


 (3.1)

If J has a left inverse Q ∈ R6×N , then (3.1) becomes:

[
ω̇
L

]
= QA−Q




θT
1 Ω2u1

...
θT

NΩ2uN


 (3.2)

The matrix differential equation Ḟ = FΩ is embedded in (3.2) to relate F
and Ω, so we can view (3.2) as an input-output (I/O) dynamical system where
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the input is A, the state equation consists of the top three rows of (3.2):

ω̇ = f(ω, A); Ḟ = FΩ, Ω ↔ ω (3.3)

and the output equation consists of the bottom three rows of (3.2):

L = F T (R̈I − g) = g(ω, A) (3.4)

Note that the angular and linear motions are computed separately using
two decoupled equations: the state equation for solving the angular motion,
and the algebraic output equation for computing the linear motion. We
summarise this I/O representation in a proposition.

Proposition 1 (A Sufficient Condition for Feasibility): If the N ×6 matrix
J has a left inverse, then the configuration C = {(ui, θi); 1 ≤ i ≤ N} is
feasible. Also if N < 6, then the configuration is not feasible. ¤

So a feasible configuration must have at least six accelerometers. For con-
figurations with six accelerometers, the feasibility condition in Proposition 1
checks if the configuration matrix J is invertible. This condition is satisfied
“almost surely” since the set of singular 6×6 matrices form a “measure zero”
set in R6×6. For those invertible J matrices, it is nonetheless computation-
ally inefficient to use (3.3)-(3.4) to compute the angular and linear motions.
The main contribution of our work is the development of a simple, computa-
tionally efficient, algorithm that computes angular and linear motions for all
feasible configurations. The key idea is to obtain an I/O realisation of the
dynamical system (3.2). From now on, we will only consider configurations
of N = 6 accelerometers, but all the results are valid for N > 6. The first
step of our algorithm development is to consider a special cube configuration.

3.2 A Cube Configuration

In general, the state equation ω̇ = f(ω, A) in (3.3) does not have a closed
form solution. A numerical solution for ω(t) depends on its value calculated
from previous time steps because of the implicit dependence of f(ω, A) on
ω. This results in an accumulation of numerical errors in solving for ω(t).
We consider a special configuration where ω̇ is a linear combination of the
accelerometer outputs. So ω(t) has a closed form solution and this makes
numerical integration much easier. (For example, if ω̇(t) = A1(t), forward
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Euler approximation of the integral gives ω(ti) = ω(t0) + ∆t ·∑i−1
j=0 A1(tj).)

Consider the cube-shaped GF-INS first examined in [6] (however, their ac-
celerometer output equation is incorrect). The design has one accelerometer
at the centre of each face of a cube of length 2l. The sensing direction of
each accelerometer is along the respective cube face diagonal, in such a way
that these diagonals form a regular tetrahedron (see Figure 2).

 
 
 
 
 
 
 

• •

•
••

•

1

2

3

5

4

6

l2 x

y

z

Figure 2: A six-accelerometer cube configuration Ccube

Let the origin of the MF be the centre of the cube. The locations and
orientations of the six accelerometers (in the MF coordinate) are:

U = [u1 · · · u6] = l




0 0 −1 1 0 0
0 −1 0 0 1 0

−1 0 0 0 0 1




J2 = [θ1 · · · θ6] =
l√
2




1 1 0 0 −1 −1
1 0 1 −1 0 1
0 1 1 1 1 0




It is easy to check that:

J1 = [u1 × θ1 · · ·u6 × θ6]

=
l√
2




1 −1 0 0 1 −1
−1 0 1 −1 0 −1

0 1 −1 −1 1 0



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Lemma 1 For i, j ∈ {1, 2, · · · , 6}, i 6= j,

1

l2
〈ui × θi, uj × θj〉+ 〈θi, θj〉 = 0 .

And for each 1 ≤ i ≤ 6, we have ||ui × θi||2 = l2 and ||θi||2 = 1.

Proof: The assertions follow immediately from straight-forward calculations
using the J1 and J2 matrices. ¤

Proposition 2 The inverse of J = [JT
1 JT

2 ] is:

Q = J−1 =
1

2l2

[
J1

l2J2

]
. (3.5)

Proof: The proof is in the Appendix. ¤
By Proposition 1, the configuration Ccube = {(ui, θi); 1 ≤ i ≤ 6} is feasi-

ble. We can use (3.2) and (3.5) to obtain the corresponding state and output
equations for Ccube.

Lemma 2 For the cube configuration, the second term on the right-hand side
of (3.2) is:




θT
1 Ω2u1

...
θT

NΩ2u6


 = −lJT

2




ω2ω3

ω1ω3

ω1ω2


 , (3.6)

where Ω ↔ ω = [ω1 ω2 ω3]
T .

Proof: Let ω̂ = [ω2ω3 ω1ω3 ω1ω2]
T . It is easy to check that:

θT
1 Ω2u1 =

l

2
(−ω1ω3 − ω2ω3) = −lθT

1 ω̂

Indeed, we have θT
i Ω2ui = −lθT

i ω̂, for each 1 ≤ i ≤ 6. Therefore (3.6) holds
since J2 = [θ1, · · · , θ6]. ¤

Proposition 3 The decoupled state and output equations (3.3)-(3.4) for the
cube configuration are:




ω̇1

ω̇2

ω̇3


 =

1

2l2
J1A =

1

2
√

2l




A1 − A2 + A5 − A6

−A1 + A3 − A4 − A6

A2 − A3 − A4 + A5


 (3.7)
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L =
1

2
J2A + l




ω2ω3

ω1ω3

ω1ω2




=
1

2
√

2




A1 + A2 − A5 − A6

A1 + A3 − A4 + A6

A2 + A3 + A4 + A5


 + l




ω2ω3

ω1ω3

ω1ω2


 (3.8)

Proof: The proof is in the Appendix. ¤
From (3.7) we see that the angular acceleration is independent of the

angular rate ω. Furthermore, it is a linear combination of the accelerometer
outputs, thus making numerical integration much easier. This is expected
from the choice of the locations and orientations. Recall that in (2.7) the
term 〈Gu, θ〉, where G = Ω̇ + Ω2, computes the angular acceleration con-
sisting of the tangential (skew-symmetric Ω̇) and centripetal (symmetric Ω2)
accelerations. The sensors at u3 and u4 do not sense x-axis motion, so ω̇1

does not depend on A3 or A4. The asymmetry of {θ1, θ6} implies that the
symmetric components of the angular motions measured at these two loca-
tions cancel each other. Similarly for the angular motions measured at u2

and u5. So ω̇1, the asymmetric component of the angular motion, is a linear
combination of the outputs A1, A2, A5 and A6.

3.3 Basic Algorithm

For the cube configuration Ccube, we have a simple Basic INS Algorithm for
computing ω(t) (or F (t)) and RI(t).

Basic INS Algorithm:
Step 1: Integrate ω̇ = f(A) in (3.7) to obtain ω(t). Use the correspondence
Ω ↔ ω to obtain Ω.
Step 2: Solve the matrix differential equation Ḟ = FΩ (numerically) to
obtain F (t). The numerical solution F (ti) must be a rotation matrix. One
can solve this using the quaternion equations ([11]).
Step 3: Compute L(t) using the algebraic output equation (3.8). The linear
displacement is computed by integration:

RI(t) = RI(t0) + ṘI(t0)(t− t0)

∫ t

t0

[∫ s

t0

F (τ)(L(τ) + g)dτ

]
ds
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3.4 Gyroscope-Free Cube INS Versus Conventional INS

A conventional INS has three rate gyroscopes that measure the angular rates
ω (yaw, roll, pitch), and three accelerometers that measure the specific forces
F̂ along the three axes. Integration of ω gives the attitude (i.e. angles), so
the (numerical) attitude error grows linearly with time. The position esti-
mate involves double-integration of the specific force and using the attitude
information, so the position error grows with time in an order of t3. On
the other hand, a cube GF inertial measurement unit (IMU) gives only the
angular acceleration, which is a linear combination of the acceleromter out-
puts. So an additional integration is needed to obtain the angular rate. This
is illustrated in Figure 3. The error growth rates are thus an order higher
than those of a conventional INS. Error growth rates: (i) conventional INS:
attitude ∼ t, position ∼ t3, (ii) GF-INS: attitude ∼ t2, position ∼ t4.

 
 
 
 
 
 
 

�

+

ω�
Cube GF-IMU 

3-axis Gyroscopes 

×

ω

F̂

Linear 
Combination 

Linear 
Combination 

3-axis Accelerometers 

Figure 3: An additional integration for GF-IMU

4 Effects of Location and Orientation Errors

The simple Basic Algorithm presented in Section 3.3 assumes a special cube
configuration of accelerometers. So the next logical design question is:

If six accelerometers are arbitrarily placed at six locations on
a rigid body with arbitrary orientations, can one compute the
linear and angular motions using an algorithm that has the same
computational simplicity as the Basic INS Algorithm for the cube
configuration Ccube?
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The answer to this question is “yes” as long as the configuration matrix J
is invertible. The first step in the development of such an algorithm is to
consider any configuration of six accelerometers as a distorted configuration
of the cube configuration Ccube . That is, it is Ccube with location and orien-
tation errors. We first derive the accelerometer output (measurement) error
caused by location and orientation errors.

4.1 Accelerometer Output Error and Sensitivity

There are several error sources that cause an accelerometer output to deviate
from its correct value. They are configuration (or misalignment) errors and
the accelerometer errors embedded in the device itself. The configuration
errors of an accelerometer are the location and orientation errors of the ac-
celerometer. The error sources of a MEMS accelerometer are: scale factor
error, bias, and noise. All of these errors need to be identified and cali-
brated either on-line or off-line as accurately as possible. In this paper, we
will consider only the configuration errors and propose schemes to identity
them. The identification schemes are presented in Sections 4.2 and 4.3. Our
schemes can easily be extended to identify scale factor and bias.

Suppose one would ideally like to place an accelerometer at location u
with orientation θ. The expected (or ideal) accelerometer measurement out-
put is given by (2.7). However, due to misalignment (or calibration) errors,
the sensor location and orientation are actually ur and θr. So the actual
accelerometer output is given by:

Ar(ur, θr) = 〈L, θr〉+ 〈Gur, θr〉 (4.1)

By using (2.7), the change in the output, Ae = Ar − A, is:

Ae(ur, θr; u, θ) =
[
(u× θe + ue × θe)

T θT
e

] [
ω̇
L

]

+
[
θT

e Ω2u + θT
r Ω2ue

]
(4.2)

where ue = ur − u and θe = θr − θ are the configuration (or misalignment)
errors. Note that the output error depends on both the linear motion (de-
scribed by the specific force L) and the angular rate ω.

By taking partial derivatives of the error equation (4.2), the sensitivity
with respect to location and orientation errors can easily be calculated. It is
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not difficult to check that:

∂Ae

∂θe

|(u,θ) = (ω̇ × u)T + LT + uT Ω2 (4.3)

∂Ae

∂ue

|(u,θ) = − (ω̇ × θ) + θT Ω2 (4.4)

Note that these error sensitivity terms are motion-dependent. Also from
(4.4) the sensitivity relative to location error depends only on the angular
motion. This is intuitively obvious because if there is only linear motion and
there is no orientation error, then the accelerometer output will be the same
regardless of where the accelerometer is mounted on the body.

Consider the cube GF-INS. If there is no misalignment error, the ac-
celerometer outputs are A = [A1, · · · , A6]

T . We can then use the Basic Al-
gorithm to compute the correct angular rate ω(t). However, if there are
misalignment errors uei and θei, the actual output of accelerometer i is Ari.
If the errors are not identified and compensated, the angular rate computed
by the Basic Algorithm using the distorted output Ar will be ω̃(t). By using
the chain rule and (4.3)-(4.4), it follows that:

∂ω̃

∂θei

=
∂ω̃

∂Aei

· ∂Aei

∂θei

=
1

2l2
(ui × θi)

[
(ω̇ × ui)

T + LT + uT
i Ω2

]

∂ω̃

∂uei

=
∂ω̃

∂Aei

· ∂Aei

∂uei

=
1

2l2
(ui × θi)

[
θT

i Ω2 − ω̇ × θi

]

So if the misalignment errors are not identified and compensated, the
incorrect solution ω̃(·) depends on the correct motion and is also sensitive to
the cube length. We next discuss how we can identify location and orientation
errors.

4.2 Identification of Orientation Error

Suppose there is an orientation error so that the actual location and orien-
tation are u and θr = θ + θe , respectively. This error can be identified by
examining the resultant gravity effect on the accelerometer output. When
the body is stationary, the only force acting on the accelerometer is the grav-
ity. This gravity effect can be obtained by adding its components along three
independent axes. So an identification scheme is to flip the rigid body along
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three independent axes (e.g. the standard basis axes {e1, e2, e3}) and record
the corresponding accelerometer outputs. This implies R̈I = 0, Ω = 0, and
F is a constant corresponding to the specific flip rotation. So we have G = 0,
L = −F T g, and the accelerometer output equation is reduced to:

Ar(u, θr) = − 〈
F T g, θr

〉
= |g| 〈F T e3, θr

〉
(4.5)

Let F (1), F (2) and F (3) be the flip rotation of the body by +π/2 (anti-
clockwise flip by π/2) about the axes e1, e2 and e3, respectively. The corre-

sponding (steady-state) accelerometer outputs are A
(1)
r , A

(2)
r and A

(3)
r . It is

easy to check that F (1)e3 = e2, F (2)e3 = −e1 and F (3)e3 = e2. So from (4.5)
we obtain:

A(1)
r = |g| 〈e2, θr〉 , A(2)

r = −|g| 〈e1, θr〉 , A(3)
r = |g| 〈e3, θr〉

Therefore, we can estimate the actual orientation θr =
∑

i 〈ei, θr〉 ei as:

θr =
1

|g|
(−A(2)

r e1 + A(1)
r e2 + A(3)

r e3

)
(4.6)

4.3 Identification of Location Error

If there are also location errors, the acceleromter locations and orientations
for the cube GF-INS are uri and θri, 1 ≤ i ≤ 6. The location errors cannot
be identified unless the body rotates (see (4.4)). So to estimate them, we
consider three cases of constant speed (ω0) rotational motion of different
surfaces of the (cube) body frame with respect to the inertial frame (or a
navigation frame). In all three cases, the rotation is parallel to the gravity
direction. The six surfaces of the cube are numbered in the same way as
shown in Figure 2. That is, accelerometer i is mounted on surface i. For
example, surface 2 is the x − z plane of the cube body frame. The three
cases are: the rotation axis lies in (1) x − z plane, (2) y − z plane, and (3)
x − y plane of the body frame. The first case is shown in Figure 4. As
shown in the figure, the cube is placed on a wedge of angle β. The combined
cube-wedge body is then placed on a rate table for performing the rotations.

For a constant speed rotation, R̈I = 0 and Ω̇ = 0. So from (4.1), the
steady-state outputs of accelerometer i corresponding to the three cases (j =
1, 2, 3) of constant speed rotation are:

A
(j)
ri = θT

riF̂
(j) + θT

ri(Ω
(j))2uri , 1 ≤ i ≤ 6, 1 ≤ j ≤ 3 (4.7)
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Figure 4: Identification of location error

where Ω(j) ↔ ω(j) and

ω(1) = ω0 [cos β 0 sin β]T , F̂ (1) = |g| [cos β 0 sin β]T

ω(2) = ω0 [0 cos β sin β]T , F̂ (2) = |g| [0 cos β sin β]T

ω(3) = ω0 [cos β sin β 0]T , F̂ (3) = |g| [cos β sin β 0]T

Here ω0 is a constant angular rate and ω(j) is the axis of rotation in the body
frame for case (j). Assuming that the orientation error θei has been identified
(see Section 4.2), the actual location of accelerometer j is estimated by:

uri =




θT
ri(Ω

(1))2

θT
ri(Ω

(2))2

θT
ri(Ω

(3))2



−1




A
(1)
ri − θT

riF̂
(1)

A
(2)
ri − θT

riF̂
(2)

A
(3)
ri − θT

riF̂
(3)


 (4.8)

The matrix inverse in (4.8) exists if the rotation axis is not parallel or
orthogonal to the sensing direction of accelerometer j, which corresponds to
β = 0◦, 45◦, 90◦.

5 Design of Gyroscope-Free INS

The Basic Algorithm presented in Section 3.3 for the cube configuration has
the simplicity that ω̇ is independent of ω and is a linear combination of the
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accelerometer outputs. The main result of this paper is that for any con-
figuration of six accelerometers, if the configuration matrix is invertible (i.e.
the configuration is feasible), then one can compute the linear and angular
motions using an algorithm that has the same computational simplicity as
the Basic Algorithm.

Consider a set of six accelerometers located at uri with orientations θri,
1 ≤ i ≤ 6. The accelerometer outputs are Ari, 1 ≤ i ≤ 6 . If the configuration
matrix Jr =

[
JT

r1 JT
r2

]
is invertible, then the state and output equations are:

[
ω̇
L

]
= J−1

r Ar − J−1
r




θT
r1Ω

2ur1
...

θT
r6Ω

2ur6


 (5.1)

Note that the angular acceleration ω̇ depends on product terms ωiωj, i, j ∈
{1, 2, 3}. So numerical integration of (5.1) is more complex than that of (3.7)
for the cube configuration. To overcome this complexity problem, we design
an I/O dynamical system Σ that realises the same I/O relation in (5.1). That
is, for all inputs Ar, the solution of (5.1) and that of Σ are identical. The idea
is to consider the configuration Cr = {(uri, θri)} as a distortion of the cube
configuration, such that the location and orientation errors are uei = uri − u
and θei = θri − θ, respectively. These misalignment errors can be identified
using the methods discussed in Sections 4.2 and 4.3. For a gyroscope-free INS
with the configuration Cr, the actual accelerometer outputs, corresponding to
a body motion (ω, RI), are Ar = [Ar1, · · · , Ar6]

T . Our approach is to derive an
equation that computes the “ideal” accelerometer outputs A = [A1, · · · , A6]

T

that would be measured by the cube-shaped INS, so that we can use the
Basic Algorithm to compute the motion (ω,RI). By using the output error
equation (4.2), it can be shown that there is a 6 × 6 matrix K and a 6 × 1
column vector H(ω) (a function of the angular rate ω) such that

A = K(Ar + H(ω)) (5.2)

So from the accelerometer measurement Ar, we can use (5.2) to obtain the
measurement A that would be the accelerometer output if there were no
misalignment errors. This measurement A is the input to the Basic Algo-
rithm for computing the motion (ω,RI) (see Section 3.3). Finally, a feedback
system consisting of (3.7)-(3.8) for the cube configuration and the feedback
path defined by (5.2) realises the I/O dynamical system (5.1). We summarise
these ideas in the following theorem.
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Theorem 1 (Input-Output Realisation): The input-output (I/O) dynamical
system defined by the state and output equations in (5.1) can be realised by
the I/O system Σ depicted in Figure 5. This I/O realisation consists of the
basic I/O system (3.7)-(3.8) for the cube-shaped INS, a gain K and feedback
H(ω), where

K = (JrQ)−1 , Q = J−1 is given in (3.5) (5.3)

H(ω) = JrQ




θT
1 Ω2u1

...
θT
6 Ω2u6


−




θT
r1Ω

2ur1
...

θT
r6Ω

2ur6


 (5.4)
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Algorithm 
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Figure 5: I/O realisation of system (5.1)

Proof: The proof is in the Appendix. ¤
The system Σ compensates the cube INS system (3.7)-(3.8) for the loca-

tion and orientation errors. So the design is simply a compensation scheme.
The design solves the dynamical system (5.1) and involves using only the
Basic Algorithm for the cube configuration plus some trivial algebraic com-
putations given in (5.2). Therefore, if the configuration matrix Jr is invert-
ible, we can solve (5.1) using an algorithm that has the same computational
simplicity as the Basic Algorithm.

We note that the I/O system Σ in Theorem 1 is a continuous-time reali-
sation of the I/O system (5.1). For discrete-time realisation, there should be
a one-time-step delay before the input to the feedback path H(ω). We have
the following General INS Algorithm.
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General INS Algorithm:
Step 1: At the kth time step tk, use (5.2) to compute

A(tk) = K(Ar(tk) + H(ω(tk−1))

Step 2: Use A(tk) as the input to the Basic Algorithm to compute ω(tk+1)
and RI(tk+1). ¤

Suppose ω(t) is the solution of the state equation in (5.1), and ω̂(tk) is
a numerical solution of the General INS Algorithm. It is crucial that the
discrete-time realisation converges to the continuous-time realisation as the
simulation time-step ∆t decreases to zero. That is, ω̂(tk) converges to ω(tk)
as ∆t ↓ 0. (We need only consider the state equation since this is where
the numerical error occurs.) By using forward Euler approximation for the
integral of ω̇, the numerical error |ω̂(tk)− ω(tk)| is bounded above.

Proposition 4 Let T be the simulation time. An upper bound for the norm
of the numerical error is given by:

|ω̂(tk)− ω(tk)| ≤ (|ω̂(t0)− ω(t0)|+ k1∆t) ek2T (5.5)

where k1, k2 > 0. The term k1 depends on tk, and the term k2 depends the
simulation time T .

Proof: The proof is in the Appendix. ¤
Typically, ω̂(t0) is set to the given initial angular rate ω(t0). So the

numerical error in (5.5) converges to zero as ∆t ↓ 0. This implies the discrete-
time realisation converges to the continuous-time realisation. We illustrate
the importance of compensating the errors (ue, θe) and the dependence of the
numerical solution on the time-step in an example in the next section.

6 Simulation Results: Illustration of Error

Compensation and Simplicity of INS Al-

gorithm

In this section, we illustrate the elegance and simplicity of our General INS
Algorithm in a simulation example. Consider a vehicle accelerating around
a circle of radius r = 10 metres. The angular (yaw) acceleration is ω̇ = ρe3,
where ρ = 0.01 rad/sec2. The vehicle is initially stationary with F (0) = I.
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This is shown in Figure 6. The cube length for the cube GF-INS is l = 10 cm.
In this example, there is a location error at u1 with ue1 equals 1% of u1. So
the actual location of the accelerometer on surface 1 is ur1 = [0.01 0 − 1]T .
The simulation time is 1 min. with ∆t = 0.01 sec.

 
 
 
 
 
 
 

r

initial position 

ρ

ργ =
1f

2f

2f

1f
22 , fe

11, fe

Figure 6: Simulation example

In this example, the motion (ω, RI) is known, so we can use (4.1) to com-
pute the actual accelerometer output Ar. If the error ue1 is not compensated,
we use Ar as the input to the Basic INS Algorithm for computing the mo-
tion trajectory. This is shown in Figure 7. The computed trajectory quickly
diverges away from the vehicle trajectory.

If we use the General INS Algorithm to compensate for the location error,
the computed trajectory agrees well with the actual vehicle trajectory, except
for the numerical error. Figure 8 shows the error ω̂(tk) − ω(tk). This error
is the numerical error and its absolute value has an upper bound given in
(5.5). The numerical error is sensitive to the time-step ∆t. If we increase
it to ∆t = 0.1 sec, the numerical error increases about ten times. This is
shown in Figure 9. The bound in (5.5) suggests that the error is bounded by
an “exponential envelope” which grows “linearly” with ∆t.
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Figure 7: Simulation result when ue1 is not compensated
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Figure 8: Compensation of location error with ∆t = 0.01 sec
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Figure 9: Compensation of location error with ∆t = 0.1 sec

7 Conclusions

We have examined the feasibility of designing an INS using only accelerome-
ters. A simple sufficient condition - invertibility of the configuration matrix
J - is used to determine if the body motion can be computed from the ac-
celerometer outputs. This condition is “almost surely” satisfied since the set
of singular 6× 6 matrices is a “measure zero” set in R6×6 . If a configuration
of six accelerometers is feasible, there is a state equation (3.3) for angular
acceleration and an output equation (3.4) for linear acceleration. While it is
feasible to compute the motion, it may be a difficult task to solve the (non-
linear) state equation (3.3) numerically. This problem is tackled by designing
a simple feedback compensation system (in Section 5) to realise the I/O sys-
tem (3.3)-(3.4). The design is based on the corresponding I/O dynamical
system equations for a cube configuration for which the angular acceleration
is a linear combination of the accelerometer outputs.

The position and velocity estimates of a GF-INS are obtained by simple
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computations that involve integration of the accelerometer data. Since the
data are error-prone, the integration processes lead to errors that grow with
time. So a GF-INS is a rapid diverging system, and indeed its output error
diverges at a rate that is an order faster than that of a conventional gyroscope-
based system. To enhance the performance of a GF-INS, it is thus necessary
to estimate and correct the errors in the INS data by using external reference
data, such as those from the Global Positioning System (GPS). An integrated
GPS/GF-INS system needs to include the error dynamics of the INS data so
that the errors can be estimated, compensated and bounded.

An integrated GPS/GF-INS system has a wide range of navigation ap-
plications, especially those where location information is most often safety-
critical and time-critical. The location information could be used to pro-
vide traffic information to travellers, detect traffic incidents and congestion,
or pinpoint the positions of other vehicles near an intersection for collision
avoidance application. There are applications where the required level of
accuracy and reliability is typically very high (cm-accuracy), and the in-
formation update rates are usually fast (100Hz). For example, in the case
of controlling the vehicle positions in a platoon of vehicles. An integrated
GPS/GF-INS system can provide the accuracy and fast update rate that are
needed for this class of applications.

Appendix

The proofs of Proposition 2, Proposition 3, Theorem 1, and Proposition 4
are provided in this appendix.

Proof of Proposition 2
Proof: We have

JQ =
[
JT

1 JT
2

] 1

2l2

[
J1

l2J2

]
=

1

2

[
1

l2
JT

1 J1 + JT
2 J2

]

Since J1 = [u1 × θ1, · · · , u6 × θ6] and J2 = [θ1, · · · , θ6], the (i, j) entry of JQ
is:

(JQ)ij =
1

2

[
1

l2
(ui × θi)

T (uj × θj) + θT
i θj

]

By Lemma 1, (JQ)ij is 0 for i 6= j, and is 1 for i = j. Hence Q = J−1. ¤
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Proof of Proposition 3
Proof: It is easy to check that J1J

T
2 = O3 and J2J

T
2 = 2I3, where O3 is the

zero matrix and I3 is the identity matrix in R3×3. So by Proposition 2 and
Lemma 2, we get:

Q




θT
1 Ω2u1

...
θT
6 Ω2u6


 =

1

2

[
1
l2

J1

J2

] 
−lJT

2




ω2ω3

ω1ω3

ω1ω2







= −
[

O3

lI3

] 


ω2ω3

ω1ω3

ω1ω2


 (A.1)

Substitute (A.1) into (3.2), and use the Q matrix in Proposition 2 and J1

and J2, we obtain the state equation (3.7) and output equation (3.8). ¤

Proof of Theorem 1
Proof: The accelerometer outputs generated by the configurations Cr and
Ccube are Ar and A, respectively. The difference, Ae = Ar − A, is:

Ae = Je

[
ω̇
L

]
+




θT
e1Ω

2u1 + θT
r1Ω

2ue1
...

θT
e6Ω

2u6 + θT
r6Ω

2ue6


 (A.2)

where

Je = Jr − J =




(u1 × θe1 + ue1 × θe1)
T θT

e1
...

(u1 × θe1 + ue1 × θe1)
T θT

e1




For simplicity of notation, let
[
xT

i yi

]∗
denote the column vector

[
xT

1 y1 · · · xT
6 y6

]T
.

The angular and linear motions can be computed using the I/O equations
(3.2) for Ccube when there are no misalignment errors. So (A.2) becomes:

Ae = Je

(
QA−Q

[
θT

i Ω2ui

]∗)
+

[
θT

eiΩ
2ui + θT

riΩ
2uei

]∗
(A.3)

Since Je = Jr − J and JQ = I, we get (I + JeQ)−1 = (JrQ)−1. Next we use
the relation A = Ar − Ae and (A.3) for Ae to obtain:

A = (JrQ)−1 Ar + (JrQ)−1 {JeQ
[
θT

i Ω2ui

]∗
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− [
θT

eiΩ
2ui + θT

riΩ
2uei

]∗}
= (JrQ)−1 Ar + (JrQ)−1 {(JrQ− I)

[
θT

i Ω2ui

]∗

− [
θT

eiΩ
2ui + θT

riΩ
2uei

]∗}
= (JrQ)−1 Ar + (JrQ)−1 {JrQ

[
θT

i Ω2ui

]∗

− [
θT

riΩ
2uri

]∗} (A.4)

=: K(Ar + H(ω))

The feedback compensation system Σ is defined by (A.4) and (3.2) for Ccube.
If we substitute (A.4) for A into (3.2), we get (5.1). So Σ realises the I/O
system (5.1). ¤

Proof of Proposition 4
Proof: Using the state equation (3.7) for Ccube and the relation (5.2), we get:

ω̇(t) = a(t) + b(ω(t)) , t ≥ t0

where a(t) := 1
2l2

J1KAr(t) and b(ω(t)) := 1
2l2

J1KH(ω(t)). Integration of ω̇
gives:

ω(t) = ω(t0) +

∫ t

t0

a(τ)dτ +

∫ t

t0

b(ω(τ))dτ , t ≥ t0 (A.5)

Let ω̂ be the numerical solution of (A.5) with forward Euler approximation
for the integral. That is, ∆t ˙̂ω(tk) = ω̂(tk+1)− ω̂(tk), where k = 0, · · · , N − 1
and T = N∆t. From (A.5) the numerical data are:

ω̂(tk) = ω̂(t0) + ∆t

k−1∑
j=0

a(tj) + ∆t

k−1∑
j=0

b(ω̂(tj)) (A.6)

Consider the two piecewise-constant functions below.

â(t) := a(tk) , t ∈ [tk, tk+1) , 0 ≤ k ≤ N − 1

ω̂(t) := ω̂(tk) , t ∈ [tk, tk+1) , 0 ≤ k ≤ N − 1

These two piecewise-constant functions are integrable, so from (A.6) we get:

ω̂(tk) = ω̂(t0) +

∫ tk

t0

â(τ)dτ +

∫ tk

t0

b(ω̂(τ))dτ (A.7)
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The function a(·) is a linear combination of the actual accelerometer outputs
Ari, so it is continuous and there exist constants ck < ∞ such that:

sup
t∈[tk,tk+1)

|â(t)− a(t)| < ck , 0 ≤ k ≤ N − 1

Let c = max{ck : 0 ≤ k ≤ N − 1}. Also for each fixed T , it is not difficult to
see that there is a Lipschitz constant kT > 0 such that:

|b(ω̂(t))− b(ω(t))| ≤ kT |ω̂(t)− ω(t)| (A.8)

So (A.5)-(A.8) together give:

|ω̂(tk)− ω(tk)| ≤ |ω̂(t0)− ω(t0)|+ ck∆t + kT

∫ tk

t0

|ω̂(τ)− ω(τ)|dτ

Next by the Bellman-Gronwall Lemma ([12]), we obtain:

|ω̂(tk)− ω(tk)| ≤ (|ω̂(t0)− ω(t0)|+ ck∆t) ekT (tk−t0)

≤ (|ω̂(t0)− ω(t0)|+ k1∆t) ek2T

where k1 = ck and k2 = kT . This completes the proof. ¤
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