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Abstract

INTRODUCTION: Growing evidence indicates that fine particulate matter (PM2.5) is

a risk factor for Alzheimer’s disease (AD), but the underlying mechanisms have been

insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in

brain tissue as a potential mediator of this association.

METHODS:Weassessedgenome-wideDNAm(IlluminaEPICBeadChips) in prefrontal

cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD,

ABC score) for 159 donors, and estimated donors’ residential traffic-related PM2.5

exposure 1, 3, and 5 years prior to death. We used a combination of the Meet-in-the-

Middle approach, high-dimensional mediation analysis, and causal mediation analysis

to identify potential mediating CpGs.

RESULTS: PM2.5 was significantly associated with differential DNAm at cg25433380

and cg10495669. Twenty-four CpG sites were identified as mediators of the associ-

ation between PM2.5 exposure and neuropathology markers, several located in genes

related to neuroinflammation.
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DISCUSSION: Our findings suggest differential DNAm related to neuroinflammation

mediates the association between traffic-related PM2.5 and AD.

KEYWORDS

Alzheimer’s disease, DNAmethylation, neuropathology, traffic-related fine particulatematter

Highlights

∙ First study to evaluate the potential mediation effect of DNA methylation for the

association betweenPM2.5 exposure and neuropathological changes of Alzheimer’s

disease.

∙ Study was based on brain tissues rarely investigated in previous air pollution

research.

∙ Cg10495669, assigned to RBCK1 gene playing a role in inflammation, was associ-

ated consistently with 1-year, 3-year, and 5-year traffic-related PM2.5 exposures

prior to death.

∙ Meet-in-the-middle approach and high-dimensional mediation analysis were used

simultaneously to increase the potential of identifying the differentially methylated

CpGs.

∙ Differential DNAm related to neuroinflammationwas found tomediate the associa-

tion between traffic-related PM2.5 and Alzheimer’s disease.

1 BACKGROUND

Exposure to traffic-related air pollution (TRAP) is a significant con-

tributor to public health burden with various well-characterized and

emerging detrimental health effects.1 Fine particulate matter (PM2.5),

which has been regulated by the National Ambient Air Quality Stan-

dards (NAAQS) as a criteria air pollutant since 1997 in the United

States,2 is an important component of TRAP mainly resulting from

tailpipe exhaust, brake wear, tire wear, and resuspended dust.3 A

previous study has demonstrated PM2.5 from traffic emissions has

higher toxicity compared to other natural sources in terms of oxidative

potential, cell viability, genotoxicity, oxidative stress, and inflammatory

response.4 The literature to date demonstrates that exposure to PM2.5

is associatedwith a series of neurological disorders, includingdementia

and Alzheimer’s disease (AD).5,6

AD is themost common cause of dementia and its hallmark patholo-

gies include the accumulation of beta-amyloid (Aβ plaques) outside

neurons and aggregation of hyperphosphorylated tau protein (neu-

rofibrillary tangle, NFT) inside neurons in the brain.7 In the United

States, 9.30 and 75.68 million people are estimated to develop clini-

cal AD or preclinical AD by 2060,8 and the total direct medical costs

of AD at the national level is estimated to reach $259 billion by 2040.9

Due to the growing public concern with these substantial increases in

the prevalence of AD, investigations on interventions to prevent pro-

gression and onset of AD have targeted the potentially modifiable risk

factors of AD, including air pollution.10

Different biological pathways have been discussed underlying the

association between air pollution and AD development. PM2.5 expo-

sure might directly infiltrate the brain11 and accelerate AD pathogen-

esis and development via neuroinflammation, oxidative stress, and Aβ
accumulation.12 Increasing evidence from human and animal studies

proposes that perturbations in DNA methylation (DNAm), which reg-

ulate the expression of genes, are associated with indicators of AD

as well as PM2.5 exposure. However, the tissue specificity of DNAm

has limited the ability of previous studies to formally investigate

mediation.

While there is no conclusive evidence of an association between

AD and DNAm in blood,13 a growing body of evidence suggests

robust association in brain tissues.13 DNAm alterations in a number

of genes were observed to be associated with AD pathology and

neuroinflammation in brain tissues, such as amyloid precursor protein

(APP),14 microtubule-associated protein tau (MAPT),14 apolipoprotein

(APOE) promoter region,15 homeobox A3 (HOXA3),16 interleukin-

1 beta (IL-1β),17 interleukin-6 (IL-6),17 and claudin-5 (CLDN5)

genes.18

The association of PM2.5 with DNAm in blood has been extensively

studied,19 and one study found thatDNAm in interleukin-10 (IL-10), IL-

6, tumor necrosis factor (TNF), toll like receptor 2 (TLR2) genes, which

play key roles in neuroinflammation,20 was significantly altered in

response to short-term exposure to PM2.5 and its species.
21 However,

to the best of our knowledge, no human studies have been published

on the association between PM2.5 exposure and DNAm in the brain,



2540 LI ET AL.

which is the most relevant tissue when studying AD. The only evi-

dence to date comes from in-vivo and in-vitro studies. Tachibana et al.

demonstrated with a mouse model that prenatal exposure to diesel

exhaust altered DNAm in brain tissues collected from 1- and 21-day-

oldoffspring and thedifferentiallymethylatedCpGsiteswereenriched

in the gene ontology (GO) terms related to neuronal development.22

Wei et al. exposed human neuroblastoma cells to PM2.5 collected at a

near-road site and found that DNAmwas hypermethylated in the pro-

moter regions of neurexin 1 (NRXN1) and neuroligin 3 (NLGN3) genes

encoding synaptic neuronal adhesionmolecules that mediate essential

signaling at the synapse.23

Given the limited evidence of an association between PM2.5 expo-

sure and DNAm in the brain, the mediating role of DNAm for the

association between PM2.5 and AD pathology has not been well

studied. Only one study investigated DNAm in mouse brain; these

investigators failed to find evidence for DNAm as a potential medi-

ator of the association between particulate matter exposure and

increased cytokines and Aβ levels associated with early AD-like

pathology.24

The current study investigated the relationship among PM2.5,

DNAm, andADneuropathology in the postmortem human brain among

brain donors of the Emory Goizueta AD Research Center (ADRC)

brain bank. We recently showed a significant association between

traffic-related PM2.5 exposure and increased AD neuropathology in

this dataset.25 To elucidate the biological mechanisms for this associa-

tion, we here investigatedwhether differential DNAm in the prefrontal

cortex tissues mediates the association between long-term exposure

to traffic-related PM2.5 and the levels of AD-related neuropatholog-

ical markers. This hypothesis was tested using a combination of the

meet-in-the-middle (MITM) approach and high-dimensional mediation

analysis.

2 METHODS

2.1 Study design

The current cross-sectional analysis included study participants

recruited by the Emory Goizueta ADRC. The ADRC was founded

in 2005 and has maintained a brain bank to facilitate AD research.

The study participants were research participants evaluated annually,

and others were patients treated by Emory Department of Neurol-

ogy physicians and diagnosed clinically with AD (biomarker defined)

or probable AD. The prefrontal cortex tissues were obtained from

the participants who had consented to donate biospecimens to the

ADRC brain bank. There were 1011 donors enrolled by the third

quarter of 2020. After applying the following inclusion criteria, 264

donors remained eligible for the current study (Figure S1): (1) the avail-

ability of residential addresses within Georgia (GA) state; (2) age at

death equal to or over 55 years; (3) deceased after 1999 (due to the

availability of air quality data); (4) no missing values in neuropathol-

ogy outcomes and key covariates including age at death, race, sex,

educational attainment, and APOE genotype. Among these donors,

RESEARCH INCONTEXT

1. Systematic review: Growing evidence indicates fine par-

ticulate matter (PM2.5) exposure as a risk factor for

Alzheimer’s’ disease (AD), but theunderlyingmechanisms

have been insufficiently investigated. Several studies

have investigated associations between PM2.5 exposure

andDNAmethylation (DNAm) levels in blood or between

DNAm levels in the brain and AD neuropathology. How-

ever, no human study has explored differential DNAm

in the brain as a potential mediator of the association

between air pollution and AD.

2. Interpretation: In an autopsy cohort, we detected mul-

tiple CpG sites in prefrontal cortex tissues that medi-

ated associations between PM2.5 exposure and AD-

related neuropathology markers. Some of these probes

are located in genes related to neuroinflammation and

neuroinflammation-mediated necroptosis in brain tis-

sues, implicating neuroinflammation a potential underly-

ingmechanism of PM2.5 neurotoxicity.

3. Future directions: Future research should investigate

whether these changes in DNAm could also be detected

in other more accessible tissues to consequently serve as

early biomarkers of disease.

genome-wide DNAm was measured in 161 available samples from

the donors deceased after 2007, and after quality control, 159 were

included in the current analysis. Written informed consent was pro-

vided for all donors, and samples were obtained following research

protocols approved by the Emory University Institutional Review

Board.

2.2 Neuropathology assessment

The ADRC performed thorough neuropathologic evaluations on the

brains of all donors using established comprehensive research evalu-

ations and diagnostic criteria.26 These neuropathological assessments

include a variety of stains and immunohistochemical preparations, as

well as semi-quantitative scoring of multiple neuropathologic changes

by experienced neuropathologists using published criteria.27 In this

project, AD-related neuropathological changes were evaluated using

Braak stage, Consortium to Establish a Registry for AD (CERAD) score,

and a combination of Amyloid, Braak stage, and CERAD (ABC) score

which were developed based on the Aβ plaques and NFTs.28 Braak

stage is a staging scheme describing NFTs with six stages (Stage I-VI)

with a higher stage indicating a wider distribution of NFTs in brain.

CERAD score describes the prevalence of Aβ plaques with four lev-

els from no neuritic plaques to frequent. ABC score combines the

former two (along with the Thal score for Aβ plaque distribution
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across various brain regions)29 and is transformed into one of four

levels: not, low, intermediate, or high level of AD neuropathologic

changes.

2.3 Air pollution assessment

Annual concentrations of traffic-related PM2.5 were estimated for the

20-county area ofMetropolitanAtlanta, Georgia, for 2002–2019using

two air quality models with one covering the years 2002–2011 and

the other for 2012–2019 (see details below). The spatial resolution of

the PM2.5 data were 250 × 250 m (for 2002–2011) and 200 × 200 m

(for 2012–2019). The grid cells of the corresponding side length were

evenly distributed throughout the study area. The process for estimat-

ing 2002–2011 PM2.5 concentrations was previously published.30,31

Briefly, a calibrated Research LINE-source dispersion (R-LINE) model

for near-surface releases was applied for calculating annual averages

of traffic-related PM2.5. The model yielded a normalized root mean

square error of 24% and a normalized mean bias of 0.3% by compar-

ing with the estimates of the receptor-based source apportionment

Chemical Mass Balance Method with Gas Constraints.30 For estimat-

ing 2012 to 2019 PM2.5 concentrations, we trained a land-use random

forest model based on the 2015 annual concentrations of traffic-

related PM2.5 obtained from Atlanta Regional Commission,32 road

inventory and traffic monitoring data shared by the Georgia Depart-

ment of Transportation,33 land cover data accessed via the National

Land Cover Database,34 and ambient PM2.5 data obtained from Atmo-

spheric Composition Analysis.35 The random forest model was trained

with the R package randomForest,36 and two user-defined parameters

(i.e., the number of trees and the number of variables randomly tried

at each split) were determined by a balance of the efficiency and the

out-of-bag R2 value. The final model reached an out-of-bag R2 of 0.8

and a root-mean-square deviation of 0.2 μg/m3. This model was used

to predict annual traffic-related PM2.5 for 2012–2019 with a spatial

resolution of 200 m. More details can be found elsewhere.25 Finally,

we spatially matched geocoded residential addresses to the centroid

of the closest grids and calculated the individual long-term exposures

as the average of specific exposure windows (1-, 3-, and 5-years prior

to death). The estimated PM2.5 concentrations of different exposure

windows served as an approximate proxy of individuals’ long-term

exposure, with a subsidiary goal of assessing the robustness of the

hypothesis.

2.4 Genome-wide DNA methylation

DNA was isolated from the fresh frozen prefrontal cortex in 161 sam-

ples using the QIAGEN GenePure kit. DNAm was assessed with the

Illumina Infinium MethylationEPIC BeadChips in batches of 167 pre-

frontal cortex samples including six replicates. The raw intensity files

were transformed into a dataset that included beta values for each of

the CpG sites, and these beta values were computed as the ratio of the

methylated signal to the sum of the methylated and unmethylated sig-

nals, which ranged from 0 to 1 on a continuous scale. Pre-processing

and statistics were done using R (v4.2.0). We followed a validated

quality control and normalization pipeline as previously published.37

The detailed data processing and sample quality control can be found

in the Supplementary Methods. One hundred and fifty-nine samples

passed the quality check, and after excluding SNP probes, XY probes,

and other low-quality probes, 789,286 CpG sites remained. The final

DNAm beta values were further normalized to reduce the probe type

differences and corrected byComBat to remove the batch effect before

the downstream analysis.38 We estimated the cell-type proportions

(neuronal vs. non-neuronal cells) for each sample using themost recent

prefrontal cortex database and the R packageminfi.39,40

2.5 Covariate assessment

Individual-level demographic characteristics (sex, race [Black vs.

White], educational attainment [high school or less, college degree,

and graduate degree], age at death, APOE ε4 genotype) were obtained
from the medical records. APOE ε4 genotype was continuous with a

3-point scale (0 = no ε allele, 1 = one ε4 allele, and 2 = two ε4 alle-

les). Area Deprivation Index (ADI) for each donor was estimated at the

residential address as a proxy for neighborhood socioeconomic sta-

tus, based on a publicly available database at the level of the Census

Block Group for 2015.41 Post mortem interval (hours) of sample collec-

tion was provided by our lab collaborators. The confounding structure

was determined according to literature review and our previous stud-

ies, which was illustrated by directed acyclic graphs (DAGs) in the

Supplement (Figure S2). Briefly, the minimum adjustment set for the

association between PM2.5 exposure and DNA methylation contained

sex, race, age at death, educational attainment, and ADI. Furthermore,

PMI and cell-type proportions were also included due to their sub-

stantial impact on DNA methylation. The minimum adjustment set for

the association between DNA methylation and neuropathology mark-

ers contained sex, race, age at death, educational attainment, APOE ε4
genotype, PMI, and cell-type proportions.

2.6 Statistical analysis

Previously, we found higher residential PM2.5 exposure was associ-

ated with increased AD neuropathology in the Emory Goizueta ADRC

brain bank.25 To identify DNAm patterns in brain tissue that poten-

tially mediate the association between PM2.5 exposure and increased

neuropathology markers, we (1) conducted an epigenome-wide asso-

ciation study (EWAS) for the long-term PM2.5 exposures 1-, 3-, and

5-years prior to death and then investigated whether any differen-

tially methylated CpG sites that were significantly associated with

PM2.5 exposure in the EWAS were also associated with increased

neuropathology markers; and (2) conducted a combination of the

MITM approach and high-dimensional mediation analysis (HDMA) to

identify any mediating CpGs that did not reach genome-wide signif-

icance in the EWAS of PM2.5 (Figure 1). The MITM approach and
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F IGURE 1 Graphical overview of the analytical strategy to evaluate the potential mediating CpG sites in the current analysis. X, CEM, and COM
denote thematrices of covariates for each association.

HDMA work complementarily to maximize the detention of potential

mediators.

First, we conducted an EWAS to assess associations of long-term

PM2.5 exposures 1-, 3-, and 5-years prior to death, and methyla-

tion levels of CpG sites. Specifically, we used robust multiple linear

regression models as implemented in the R package MASS to iden-

tify differentially CpG sites associated with PM2.5 exposures.42 To

account for measured confounding factors, we included sex, race, edu-

cational attainment, age at death, PMI, ADI, andproportionof neuronal

cells in the model. Potential batch effect and other unwanted varia-

tions were further corrected using the R packages sva43 (estimating

surrogate variables included in the EWAS model as covariates) and

Bacon.44 The svawas used to obtain surrogate variables to be included

in the models. To account for multiple testing, the Bonferroni thresh-

old was used for statistical significance (0.05/789,286 = 6.33 × 10−8),

while no cutoff was applied on the magnitude of DNA methylation

difference.45

Any CpG sites that were significantly associated with PM2.5 expo-

surewere then investigated for their associationswith neuropathology

markers. These associations were extracted from an EWAS of each

neuropathology marker (CERAD, Braak stage, ABC score) with methy-

lation levels of all CpG sites, using robust multiple linear regression

modelswith theneuropathologymarkers converted to continuous out-

comes and DNAm beta values of CpG sites as exposures, adjusting

for sex, race, educational attainment, age at death, PMI, APOE geno-

type, and proportion of neuronal cells. We used Bacon44 to control for

unmeasured confounding and bias due to the minor inflation/deflation

indicated by raw p-values.

For the MITM, we compared the 1000 most significant CpGs from

the two sets of EWAS on all CpG sites for PM2.5 exposures and neu-

ropathology markers to identify the differentially methylated CpG

sties that were associated with both exposures and outcomes. In other

words, the raw p-values of all 789,286 CpG sites were sorted increas-

ingly, whichwere derived from the two set of EWASmodels conducted

on PM2.5 exposure and neuropathology markers, respectively. We

selected the CpG sites among the lowest 1000 for both PM2.5 expo-

sure and neuropathology markers. The MITM approach is widely used

in high-dimensional setting to identify intermediate biomarkers.46

Then, we conducted an HDMA using the R packages HIMA and

DACT to identify any potential mediating CpG sites between PM2.5

exposure and neuropathology from all 789,286 CpG sites. HIMA is

an R package for estimating and testing high-dimensional mediation

effects for omics data, which adopts the multiple mediator model’s

framework with reducing the dimensionality of omics data via sure

independence screening and minimax concave penalty.47 The divide-

aggregate composite null test (DACT) is a more recent method for
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HDMA, which utilizes the Efron empirical null framework to calculate

a weighted sum of p-values obtained from exposure-mediator (EWAS

of PM2.5 exposure as described above) and mediator-outcome (EWAS

of neuropathology markers as described above) models for testing

the significance of all mediators.48 We corrected for multiple testing

in HIMA and DACT using the Bonferroni method. Last, for the medi-

ating CpG sites identified by either HIMA or DACT, we used the R

package mediation to conduct a causal mediation analysis obtain their

indirect effects.49–51 The mediation is a frequently used tool which

implements the mediation methods and suggestions proposed by Imai

et al.52,53 The average causal mediation effect (i.e., indirect effect) and

total effect estimated bymediationwere summarized for the CpG sites

with positive indirect effects that were in line with the hypothesized

adverse effect of traffic-related PM2.5 on neuropathology markers. In

contrast to theMITMapproach described earlier, HDMAexaminemul-

tiple mediators together in a framework of mediation analysis, which

allowed us to ascertain the extent to which the particular indirect

effects were associated with themediators.

To aid the interpretation of model results, we conducted a gene

ontology analysis using the R package missMethyl based on the top

1000 CpG sites with lowest raw p-values.54 The gene ontology anal-

ysis was conducted for the EWAS results of PM2.5 exposure as well

as for the EWAS results of the three neuropathology markers. All

CpG sites were annotated using an online annotation data for the

“IlluminaHumanMethylationEPIC.”55 Additional functional insight on

single CpG sites was obtained by searching the corresponding CpG

site in publicly available databases, including EWAS catalog56 and

GoDMC.57

All analyses were completed in R (v4.2.0).

3 RESULTS

3.1 Study population characteristics

A total of 159 donors were included in the current analysis, and

their demographic characteristics and neuropathologic markers are

described in Table 1. The average age of death was 76.6 years

(SD=9.98) and 56%of the study populationweremale. The study pop-

ulation was predominantly white (89.3%) and well-educated with 123

(78.7%) completing college or more and living in less deprived neigh-

borhoods (ADI: mean = 36.3, SD = 24.2). The prevalence of the APOE

ε4 allele (56% with at least one APOE ε4 allele) in this population was

much higher than that in the general population in the United States.58

As illustrated by the 1-year traffic-related PM2.5 exposure

(Figure 2A), donors living in urban areas had a higher level of

PM2.5 exposure compared to those living in suburban areas. The

median of 1-year exposure was 1.21 μg/m3 [interquartile range

(IQR) = 0.78]. As PM2.5 concentrations have decreased over the

last decades, 3- and 5-year exposures were slightly higher (3-year

exposure: median = 1.32 μg/m3 [IQR = 0.74], 5-year exposure:

median= 1.39 μg/m3 [IQR: 0.81]) (Figure 2B).

TABLE 1 Selected population characteristics among the donors
included in the current analysis.

Parameter N= 159

Age at death, mean (SD) 76.6 (9.98)

Sex, No. (%)

Female 70 (44.0)

Male 89 (56.0)

Race, No. (%)

Black 17 (10.7)

White 142 (89.3)

Educational attainment, No. (%)

High school or less 36 (22.6)

College degree 76 (47.8)

Graduate degree ormore 47 (29.6)

Area Deprivation Index, mean (SD) 36.3 (24.2)

APOE genotype

No ε4 allele 70 (44.0)

Single ε4 allele 68 (42.8)

Two ε4 allele 21 (13.2)

Post mortem interval (hours), mean (SD) 11.7 (9.68)

Proportion of neuronal cells (%), mean (SD) 31.9 (8.21)

Braak stage, No. (%)

Stage 1 16 (10.1)

Stage 2 11 (6.9)

Stage 3 20 (12.6)

Stage 4 17 (10.7)

Stage 5 22 (13.8)

Stage 6 73 (45.9)

CERAD score, No. (%)

No 35 (22.0)

Sparse 4 (2.5)

Moderate 10 (6.3)

Frequent 110 (69.2)

ABC score, No. (%)

Not 15 (9.4)

Low 29 (18.2)

Intermediate 22 (13.8)

High 93 (58.5)

Abbreviations: ABC, a combination of Amyloid, Braak stage, and CERAD

(ABC) score; AD, Alzheimer’s disease; APOE, apolipoprotein E; CERAD,

Consortium to Establish a Registry for AD; SD, standard deviation.

3.2 Association between PM2.5 exposure and
DNAm in the brain

After correcting for multiple tests and adjusting for bias and mea-

sured and unmeasured confounding, two CpG sites (cg25433380 and
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F IGURE 2 Statistics and distribution of PM2.5 exposures inMetropolitan Atlanta (study area), Georgia, United States. (A)Map ofMetropolitan
Atlanta with individual 1-year averaged annual PM2.5 exposure. The dots denote the donors’ residential address and are colored according to their
PM2.5 exposures as showed in the legend. Redmeans a higher exposure level. (B) Statistics of individual averaged annual PM2.5 exposures for 1-, 3-,
and 5-years.

cg10495669)were consistently associatedwith PM2.5 across different

exposurewindows (Figure3, Table2; summary statistics for all 789,286

CpG sites are provided as Tables S1-S3 in spreadsheets). For example, a

1 μg/m3 increase in 1-year PM2.5 exposurewas associatedwith 0.0065

increase in theDNAmbeta value of cg25433380 (p=1.58×10−8). The

cg25433380 and cg10495669 are on chromosome 9 and 20, respec-

tively, and cg10495669 is assigned to the gene encoding RanBP-type

and C3HC4-type zinc finger-containing protein 1 (RBCK1). The two

CpG sites were not significantly associated with any neuropathology

markers (Table 2).

3.3 MITM approach and high-dimensional
mediation analysis

For the MITM approach, we explored the overlapping CpG sites

among the top 1000 CpG sites for the EWAS of PM2.5 and the

EWAS of neuropathology markers (results presented in Tables S4-S6

in spreadsheets) and identified four overlapping CpG sites (Table S7).

Specifically, DNAm in cg01835635 (APOA4 gene) was associated with

CERAD score as well as PM2.5 exposure for the 1- and 3-year exposure

windows. DNAm in cg16342341 (SORBS2 gene) was associated with

CERAD score as well as 1-year PM2.5 exposure. Two other CpG sites

(cg09830308 and cg27459981) were also among the top 1000 CpGs

for both EWAS. However, due to their opposing directions of effect

estimates in the exposure- and outcome-EWAS, which is biologically

not plausible, they are considered false positive findings.

The HDMA via HIMA did not identify any CpG sites as significant

mediators. In the HDMA using a combination of DACT and causal

mediation analysis, we identified 22 CpG sites to mediate the pos-

itive association between PM2.5 exposure and ABC score (Table 3),

while none were observed for Braak stage and CERAD score. Seven

CpG sites were associated with two exposure windows, and fifteen

with a single exposure window. Of note, one of the seven CpG sites,

cg16342341 (SORBS2), was also identified in the MITM approach

described above. The total effect estimated for all mediation analy-

ses was positive but insignificant in this subsample of the cohort (see

Christensen et al. (2024) for the significant total effect in the full

cohort).25 The summary statistics for all CpG sites detected by DACT

are summarized in the Supplement (Table S8).

3.4 Secondary analyses

A gene ontology analysis was conducted for the top 1000 CpG sites

associated PM2.5 and for the top 1000 CpG sites associated with the

neuropathology markers. None of the KEGG pathways reached signif-

icance after correcting for multiple tests. Therefore, we summarized

the top 10 KEGG pathways for each of the PM2.5 exposures or neu-

ropathologymarkers in the Supplement (Table S9).Onepathway,which
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F IGURE 3 Manhattan andQQplots for the epigenome-wide association of PM2.5 exposures (A) 1-year/(B) 3-year/(C) 5-year average
exposure prior to death, and DNAmethylation in post mortem frontal cortex tissue. λ denotes the inflation factor. Adjusted for covariates: age at
death, sex, race, educational attainment, post mortem interval, area deprivation index, and cell type composition. Unmeasured confounding and
bias were adjusted with surrogate variable analysis and R package Bacon. Bonferroni threshold: 0.05/789,286.

is the longevity regulating pathway, was associated with both 3-year

exposure to PM2.5 and CERAD score. Eight genes (HSPA1A, HSPA1L,

IRS1, KRAS, NRAS, RPTOR, IRS2, ATG5) in this pathway were enriched

by differentially methylated CpG sites that were associated with 3-

year PM2.5 exposure, and 10 genes (ADCY3, ADCY5, NFKB1, PRKAG2,

RPTOR, TSC2, EHMT1, ULK1, AKT1S1, ATG5) with CERAD score. Of

note, AKT1S1 was also among the genes that were identified in the

HDMA (DACT and causal mediation analysis).

4 DISCUSSION

In the current study of 159 donors from the Emory Goizueta ADRC

brainbank,we identifieddifferentialDNAm inprefrontal cortex tissues

at two CpG sites to be significantly associated with long-term PM2.5

exposure. Two CpG sites (cg25433380 [intergenic] and cg10495669

[RBCK1]) were consistently associated with all exposure windows of

traffic-related PM2.5, after controlling for measured and unmeasured

confounding. While cg25433380 and cg10495669 were not associ-

ated with increases in neuropathology markers, we identified 4 CpG

sites that overlapped between the top 1000 CpG sites associated with

PM2.5 andneuropathologymarkers (MITMapproach) and22CpGsites

that mediated the adverse effect of PM2.5 exposures on AD-related

neuropathology markers using HDMA. In addition, the longevity reg-

ulating pathway, was found to be enriched by differentially methylated

CpGsites associatedwithPM2.5 (3-year exposurewindow) andCERAD

score.

Although there is a growing body of research on PM2.5-associated

DNAm patterns in the human blood,19 this is the first study showing

an association between PM2.5 exposure and differential DNAm in

the brain (cg25433380 and cg10495669). Scarce evidence related to

air pollution has been reported so far on cg25433380. On the other

hand, higher DNA methylation levels of cg10495669 in nasal cells

have been associated with 1-year ambient PM2.5 exposure among 503

children from Project Viva in Massachusetts state.59 RBCK1, the gene

which cg10495669 is assigned to, is involved in carcinogenesis and

inflammation pathways. The overexpression of RBCK1 was observed

in multiple cancer cells, including renal, colorectal, and breast cells, in

in-vitro experiments.60–62 The knockdown of RBCK1 in renal cancer

cells may induce p53 expressions, and thus, Yu et al. proposed a model

in which RBCK1 promoted the ubiquitination and degradation of

p53, a protein playing a major role in DNA damage response.62 The

impairment of p53 expression and activity might participate in neu-

rodegeneration, as p53 can bind to genes that regulate the expression
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TABLE 2 CpGs associated with traffic-related PM2.5 exposure prior to death and their association with neuropathologymarkers.

CpG chr Position Gene Coefficientsa p-Valuesb

A. CpGswith PM2.5 exposures

cg25433380 9 388,531 Intergenic 1-year exposure 0.0065 1.58× 10−8

3-year exposure 0.0066 5.82× 10−9

5-year exposure 0.0063 1.12× 10−9

cg10495669 20 137,531,767 RBCK1 1-year exposure 0.0127 1.69× 10−8

3-year exposure 0.0128 1.78× 10−8

5-year exposure 0.0114 5.96× 10−8

B. CpGswith neuropathologymarkers

cg25433380 9 388,531 Intergenic Braak stage 0.08 0.729

CERAD 0.05 0.629

ABC 0.04 0.825

cg10495669 20 137,531,767 RBCK1 Braak stage 0.02 0.929

CERAD 0.12 0.397

ABC 0.09 0.593

Abbreviations: chr, chromosome; PM2.5, fine particulatematter; RBCK1, RanBP-type and C3HC4-type zinc finger-containing protein 1.
aThe coefficients for PM2.5 exposures represent the change in the beta values of CpG sites associated with a one-unit increase in the exposures; the coeffi-

cients for neuropathologymarkers represent the change in the neuropathologymarkers associatedwith a one-interquartile-range increase in the beta values

of CpG sites.
bThe Bonferroni threshold: 0.05/789,286≈ 6.33× 10−8.

of synaptic proteins, neurite outgrowth, and axonal regeneration,

which indicated a neuroprotective role against AD development.63 In

addition, RBCK1, as part of linear ubiquitin chain assembly complex,

can regulate the proinflammatory-cytokines-induced nuclear factor

kappa B (NF-kB) activation which serves as a pivotal mediator of

inflammatory responses.64,65 NF-kB activation is a common feature

of many neurodegenerative diseases,66 and the increased expression

and/or activation of NF-kB has been largely observed in post mortem

studies of AD patients.67 However, the two CpG sites were not found

to be associated with any neuropathology markers in the current

analysis. More research is warranted on the physiological function of

cg25433380 to clarify its potential role in PM2.5-related pathological

changes, and the impact of PM2.5 on the two CpG sites needs to be

verified with a larger sample size and donors of more diverse disease

stages from preclinical to severe dementia.

We identified two CpG sites (cg01835635 and cg16342341) that

overlapped between the top 1000 CpG sites associated with both

PM2.5 andneuropathologymarkers viaMITMapproach. It isworthnot-

ing that theMITM approach used in the present study was hypothesis-

generating, as the overlapping features were derived from the top

1000 CpG sites associated with exposures or outcomes without mul-

tiple comparison corrections. The findings need to be verified in an

independent target analysis.

Cg16342341, assigned to the Sorbin and SH3 domain-containing

protein 2 gene (SORBS2), was also identified as a potential mediator

in the HDMA, where it mediated the association of all PM2.5 exposure

windows with ABC score. As SORBS2 is well known for its role in AD

and neuroinflammation68,69 and has also been associated with PM2.5

exposure in rats,70 our findings contribute to the growing body of evi-

dence of SORBS2 expression playing a role in PM2.5 associated changes

in neuropathology markers of AD. SORBS2 was found to repress IL-6

and TNF-α expression in themouse embryonic fibroblasts,71 and Chen

et al. demonstrated that the level of SORBS2 was lower in the brains

of AD model mice compared to wild type mice,68 implying a role of

SORBS2 in regulating neuroinflammation. In a human study of families

that multiply affected by AD, Lee et al. reported that genetic variation

in SORBS2was associatedwith age at onset ofAD.69 While evidence on

the association between PM2.5 exposure and SORBS2 is more scarce,

Chao et al. reported that prenatal exposure to PM2.5 caused upreg-

ulation of microRNAs targeting the SORBS2 gene in fetal rat cortex

tissues.70

In addition to cg16342341,we identified 21otherCpGs as potential

mediators of the association between long-term exposure to traffic-

relatedPM2.5 andABCscore usingHDMA, and twoof theseCpGshave

been previously reported in association with AD. Differential methyla-

tion in cg07963191, assigned to the dual 3′,5′-cyclic-AMP and -GMP

phosphodiesterase 11A gene (PDE11A), mediated the adverse effect

of the average PM2.5 exposure 3 years prior to death on the ABC

score. PDE11A pertains to the phosphodiesterase family that plays an

essential role in neuroplasticity and neuroprotection.72 Differential

methylation in cg27297993, assigned to the gamma-aminobutyric acid

B receptor 1 gene (GABBR1), mediated the adverse effect of the aver-

age PM2.5 exposure 3 and 5 years prior to death on the ABC score.

GABBR1 is the main inhibitory neurotransmitter in the central ner-

vous system, which was reported to be downregulated in the brains of

AD patients.73 Iwakiri et al. observed a negative correlation between
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TABLE 3 Indirect effect estimated by causal mediation analysis via the R packagemediation of CpG sites selected by high-dimensional
mediation analysis for the associations between PM2.5 exposure and ABC scorea.

CpG chr Gene Exposureb
DACT
p-valuesc ACMEd Total effecte

cg23932332 1 DUSP10 3-year 4.3× 10−8 0.056 (0.005, 0.150) 0.086 (−0.110,0.280)

a 5-year 2.9× 10−8 0.060 (0.002, 0.170) 0.104 (−0.081,0.310)

cg08512806 1 TARBP1 3-year 5.3× 10−8 0.058 (0.008, 0.130) 0.084 (−0.107,0.300)

5-year 3.8× 10−8 0.063 (0.009, 0.130) 0.102 (−0.080,0.310)

cg10705045 2 RNF144A 5-year 2.6× 10−8 0.063 (0.001, 0.140) 0.109 (−0.079,0.310)

cg17275287 2 Intergenic 3-yearf 3.4× 10−9 0.085 (0.019, 0.170) 0.079 (−0.118,0.300)

5-year 2.0× 10−9 0.089 (0.020, 0.180) 0.097 (−0.093,0.300)

cg07258300 2 CYP27C1 3-year 5.4× 10−8 0.080 (0.020, 0.150) 0.083 (−0.107,0.300)

cg05532414 2 Intergenic 3-year 6.2× 10−8 0.071 (0.004, 0.170) 0.090 (−0.084,0.320)

cg07963191 2 PDE11A 3-year 3.1× 10−8 0.061 (0.005, 0.140) 0.080 (−0.103,0.300)

cg26109897 4 TBC1D14 3-year 2.1× 10−8 0.085 (0.010, 0.190) 0.090 (−0.098,0.310)

cg26877022 4 POLR2B 3-year 4.5× 10−9 0.080 (0.015, 0.180) 0.089 (−0.092,0.310)

5-year 1.2× 10−8 0.077 (0.011, 0.180) 0.107 (−0.079,0.310)

cg16342341 4 SORBS2 1-yearf 1.3× 10−9 0.097 (0.021, 0.180) 0.034 (−0.168,0.230)

3-year 5.4× 10−9 0.076 (0.017, 0.160) 0.080 (−0.106,0.280)

5-year 1.6× 10−9 0.078 (0.017, 0.150) 0.098 (−0.093,0.320)

cg17444747 5 COL23A1 5-year 3.2× 10−8 0.074 (0.015, 0.150) 0.098 (−0.085,0.290)

cg27297993 6 GABBR1 3-year 8.3× 10−9 0.064 (0.009, 0.140) 0.084 (−0.091,0.300)

5-year 9.2× 10−9 0.066 (0.003, 0.140) 0.103 (−0.076,0.300)

cg00829961 8 Intergenic 3-year 1.3× 10−8 0.075 (0.009, 0.170) 0.092 (−0.092,0.310)

5-year 3.2× 10−8 0.075 (0.012, 0.170) 0.110 (−0.078,0.330)

cg02987635 10 C10orf11 3-year 4.1× 10−8 0.063 (0.004, 0.150) 0.079 (−0.099,0.300)

cg06805557 11 APBB1 5-year 4.1× 10−8 0.062 (0.007, 0.130) 0.101 (−0.104,0.300)

cg19969778 11 SIAE; SPA17 3-year 8.9× 10−9 0.065 (0.008, 0.130) 0.080 (−0.108,0.310)

5-year 1.8× 10−8 0.063 (0.010, 0.130) 0.098 (−0.092,0.310)

cg20713102 15 ZSCAN2 5-year 5.0× 10−8 0.074 (0.014, 0.160) 0.106 (−0.083,0.310)

cg09088153 15 Intergenic 3-year 4.6× 10−8 0.072 (0.013, 0.150) 0.089 (−0.094,0.320)

cg27181554 16 SEPX1 1-yearf 1.7× 10−8 0.084 (0.021, 0.180) 0.039 (−0.162,0.270)

3-year 2.7× 10−8 0.069 (0.015, 0.150) 0.085 (−0.108,0.280)

cg20389589 16 FAM57B 3-year 2.9× 10−8 0.069 (0.003, 0.160) 0.084 (−0.120,0.290)

cg06832209 16 ADGRG3 3-year 4.2× 10−8 0.078 (0.015, 0.160) 0.089 (−0.101,0.280)

cg00633834 19 AKT1S1; TBC1D17 5-year 3.7× 10−8 0.081 (0.017, 0.160) 0.095 (−0.090,0.290)

Abbreviations: ACME, average causal mediated effect (i.e., indirect effect); chr, chromosome; PM2.5, fine particulatematter.
aAll CpG sites that were selected by DACT and had a positive ACME were associated with ABC score. No positive associations were found for Braak stage

and CERAD score.
bOnly the exposure windowswere shown for which significant indirect effects were found.
cThe p-values of mediation effect testing conducted by DACT.
dThe ACMEwas associatedwith a one-interquartile-range increase in beta values of CpG sites.
eEffect estimates, associated with a 1-unit increase, of PM2.5 exposures on neuropathology markers. The total effect was obtained by adding the indirect

effects and direct effects together.
fThe CpG sites had opposing direct and indirect effect estimates, resulting in a lower total effect compared to ACME. The direct effect is in contrast with the

positive total effect and biologically not plausible. Therefore, these associations aremost likely false positive hits.
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GABBR1 and NFT formation in the hippocampus of 16 aged subjects,

suggesting that the increased or stable expression of GABBR1 may

contribute to neuronal resistance to AD development.74 Note that in

Table 3, the total effect was obtained by adding the indirect effects and

direct effects together. That higher indirect effects than total effects

equaled a negative direct effect of PM2.5 on neuropathology markers,

which is not biologically plausible. The findings need to be interpreted

with caution.

To derive more functional insights from the mediating CpG sites,

we conducted gene ontology analysis based on the KEGG path-

way database for the top 1000 CpGs associated with PM2.5 expo-

sure or neuropathology markers.54 Proline-rich AKT1 substrate 1

(AKT1S1) was one of the genes enriched in the longevity regu-

lating pathway which was found to overlap between PM2.5 expo-

sure and CERAD score. Of note, differential DNA methylation in

cg00633834, which is assigned to AKT1S1, was also identified as a

potential mediator in the HDMA. AKT1S1 can activate mammalian

target of rapamycin (mTOR)—mediated signaling pathways when

phosphorylated,75 and mTOR signaling was observed to have higher

activity in AD brains.76 As mTOR plays a role in maintaining the

balance between protein synthesis and degradation, Salvatore Oddo

suggested a critical role of mTOR in the accumulation of Aβ and

tau proteins over the course of AD development from early to late

stage.76

The current analysis employed the MITM approach and HDMA

simultaneously to maximize the potential of identifying the differen-

tially methylated CpG sites lying on a pathway from PM2.5 exposure

to AD-related neuropathology. The application of the MITM approach

was based on the investigation of epigenomics versus PM2.5 expo-

sures and AD-related neuropathology versus epigenomics, which lent

credibility to the association between PM2.5 exposure and AD-related

neuropathology by breaking it down and linking it up with DNAm.77

In other words, the MITM approach was a conceptually straightfor-

ward extension of the causal step strategy in which investigators

estimate the individual paths first, including exposure-to-mediator

and mediator-to-outcome, and then manually identify the overlap-

ping metabolic features.78 Furthermore, while conventional methods

of multiple testing correction (e.g., Bonferroni method) may overlook

potentially relevant CpG sites, especially given a small sample size, the

MITMapproach serves as a supplement by taking into account the bio-

logical relevance regardless of their statistical significance.77 However,

the MITM approach assumes that all intermediate variables are inde-

pendent,which is not always the case inmany real-world scenarios. The

HDMA focusedmore onquantifying the indirect effect of themediator.

Compared to the MITM approach, HIMA examines multiple media-

tors in one model and utilizes variable selection techniques to identify

important mediators.47 DACT created a divide-aggregate composite-

null test which yields less conservative results and accounted for

possible correlations among the multiple tests by adopting Efron’s

empirical null inference framework.48 Admittedly, we did not observe

many consistencies, except for cg16342341 (SORBS2), between the

two approaches. Further research is warranted with a large sample

size.

Our study has several strengths. We established for the first time

a potential mediation effect of DNAm for the association between

PM2.5 and neuropathological changes of AD. Although false discovery

is a problem in high-dimensional settings, we minimized the possi-

bility of false discovery by verifying the indirect effect of CpG sites

identified by HDMA using causal mediation analysis. The neuropatho-

logical changes of AD were quantified via multiple markers, including

Braak stage, CERAD score, and ABC score, which covers the essen-

tial components (i.e., NFTs and Aβ plaques) for the neuropathological

diagnosis of AD. Further, the neuropathology markers were assessed

by experienced neuropathologists at Emory Goizueta ADRC follow-

ing a standardized protocol, whichminimized themisclassification bias

of outcomes. Finally, the high-resolution PM2.5 exposure assessment

model enabled the characterization of spatial variation in individual

exposure and reduced the potential measurement error.79

Our study is not without limitations. First, the temporal sequence

between mediators (DNAm changes) and outcomes (AD neuropathol-

ogy) could not be clearly defined because both were assessed post

mortem. Second, traffic-related PM2.5 exposure was estimated based

on the residential address of donors at death. Moving shortly prior to

death could have introduced measurement errors in exposure assess-

ment, and the selection of exposure windows was arbitrary, as the

disease process of AD may start many years before death and vary

by patients. Third, the results are from a single brain bank and donors

with a high APOE ε4 carrier rate and a high prevalence of dementia,

so the generalizability should be tested in other brain bank or autopsy

cohorts, and the implication on the onset of Alzheimer’s disease needs

further investigation. Fourth, even though most of the study popu-

lation was White, and we controlled for race, the ancestry effect on

DNAmethylation might persist as residual confounding. Fifth, the cur-

rent analysis only focused on the health effect of traffic-related PM2.5,

while PM2.5 fromother sources or other air pollutants such as nitrogen

oxides or ozone might also play a role in AD and influence or confound

the present findings.80,81 Furthermore, PM2.5 is a complexmixture and

its composition varies by geographic region. In our analysis, we can-

not determine which PM2.5 components, such as heavy metals, were

driving the association with AD.82 Thus, this study may not capture

a comprehensive picture of the overall health impact of air pollution

on neuropathology, and the findings may have limited generalizabil-

ity to regions or populations where non-mobile sources of PM2.5 are

dominant. Sixth, while the sample size of 159 brain samples was rela-

tively large considering the challenges in collecting such samples, the

high dimensionality of the genome-wide DNAm data raises concerns

about the reliability of our findings.Wehad previously investigated the

total effect of PM2.5 on neuropathology markers with a slightly larger

sample size and observed that traffic-related PM2.5 exposure was sig-

nificantly associated with CERAD score at autopsy, but we did not

observe any significant total effect estimates in the present analysis,

which indicated an insufficient sample size as well. Additional research

using a larger sample size is necessary to confirm and validate our

results. Finally, while the present findings suggested a mediation role

of neuroinflammation pathways for the impact of PM2.5 exposure on

neuropathology, it is important to note that we did not directly assess



LI ET AL. 2549

proinflammatory factors or the expression of related genes in brain tis-

sues in this study. Further research (e.g., measurement of inflammatory

cytokines, transcriptomics, and metabolomics research) is warranted

to validate their involvement.

5 CONCLUSIONS

Using a combination of the MITM approach, high-dimensional medi-

ation analysis, and causal mediation analysis, we identified several

CpG sites mediating the adverse effects of long-term exposure to

traffic-related PM2.5 exposure on the levels of AD-related neu-

ropathologymarkers amongprefrontal cortex tissues from159donors.

Of note, several of these CpGs were identified by more than one

approach and located in genes related to neuroinflammation and

neuroinflammation-mediatednecroptosis.Our findings provide impor-

tant information on the biological mechanisms underlying PM2.5 toxi-

city in AD pathogenesis. Future studies evaluating the mediating role

of DNAm on AD-related outcomes should consider: (1) performing the

analysis among early-stage AD patients or patients with mild cogni-

tion impairment to further illustrate the role of PM2.5 in AD etiology;

(2) performing genome-wide DNAm together with transcriptomics,

proteomics, and/or metabolomics to capture a holistic picture of the

underlying mechanism. Furthermore, it would be of interest to inves-

tigate whether these changes in DNAm could also be detected in other

more accessible tissues to consequently serve as early biomarkers

of AD.
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