UCLA UCLA Previously Published Works

Title

Turning on Low-Temperature Catalytic Conversion of Biomass Derivatives through Teaming Pd1 and Mo1 Single-Atom Sites

Permalink

https://escholarship.org/uc/item/9mc5k1wk

Journal

Journal of the American Chemical Society, 146(47)

ISSN

0002-7863

Authors

Tang, Yu Yan, George Zhang, Shiran <u>et al.</u>

Publication Date

2024-11-27

DOI

10.1021/jacs.4c07075

Supplemental Material

https://escholarship.org/uc/item/9mc5k1wk#supplemental

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives License, available at <u>https://creativecommons.org/licenses/by-nc-nd/4.0/</u>

Peer reviewed

Turning on Low-Temperature Catalytic Conversion of Biomass Derivatives through Teaming Pd₁ and Mo₁ Single-Atom Sites

Yu Tang,^{a¶} George Yan,^{b¶} Shiran Zhang,^{a¶} Yuting Li,^{a¶} Luan Nguyen,^a Yasuhiro Iwasawa,^c Tomohiro

Sakata,^c Christopher Andolina,^d Judith C. Yang,^d Philippe Sautet,^{b,e*} Franklin Feng Tao^{a*}

 ^a Center for Environmental Beneficial Catalysis and Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA.
^bDepartment of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
^cInnovation Research Center for Fuel Cells and Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan.
^dDepartment of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
^eDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.

¶: These authors made equal contribution to this work.

*: To whom all correspondence should be addressed to. Email: <u>franklin.tao.2017@gmail.com</u> (FT) and <u>sautet@ucla.edu</u> (PS)

Abstract

On purpose atomic scale design of catalytic sites specifically active and selective at low temperature for a target reaction is a key challenge. Here we report teamed Pd₁ and Mo₁ singleatom sites that exhibit high activity and selectivity for anisole hydrodeoxygenation to benzene at low temperature, 100-150°C where a Pd metal nanoparticle catalyst or a MoO₃ nanoparticle catalyst is individually inactive. The catalyst built from Pd₁ or Mo₁ single-atom sites alone are much less effective, although the catalyst with Pd₁ sites shows some activity but low selectivity. Similarly, less dispersed nanoparticle catalysts are much less effective. Computational studies show that the Pd₁ and Mo₁ single-atom sites activate H₂ and anisole, respectively and their combination triggers the hydrodeoxygenation of anisole in this low temperature range. The Co₃O₄ support is inactive for anisole hydrodeoxygenation by itself but participates in the chemistry by transferring H atoms from the Pd₁ to the Mo₁ site. This finding opens an avenue of designing catalysts active for a target reaction channel such as conversion of biomass derivatives at a low temperature where neither metal nor oxide nanoparticles are.

Keywords: Single-atom catalysis, multifunctional catalysis, hydrodeoxygenation, catalysis, in situ spectroscopy, density functional theory calculations, and kinetic modeling

1. Introduction

The on-purpose design at the atomic scale of catalysts for multi-step reactions that would operate at low temperature with high selectivity is the "holy grail" of heterogeneous catalysis. Usual heterogeneous catalysts, formed by nanoparticles of metal or oxide on a support present a variety of active sites. In many situations, this wide, but nonuniform, distribution of active sites on metal or oxide nanoparticles may suppress activity and selectivity at low temperature due to potential poisoning of some types of active sites to decrease the per-atom activity of the catalyst and unwanted side-reactions.¹⁻⁴ Highly dispersed catalytic sites, ultimately in the form of isolated cations, present a narrow distribution of uniform active sites with specific electronic structures, which may improve the catalytic activity and selectivity. The downside of this specificity is that such single atoms may have difficulty in catalyzing a multi-step reaction.^{5, 6}

Here, to realize catalysis along a demanded reaction channel at a low temperature where supported metal or oxide nanoparticle catalysts of metal element X or Y are not active, we propose teaming two single-atom sites including X_1 , responsible for chemisorbing and activating molecule A, and Y_1 for molecule B, respectively, to turn on the reaction between A and B at low temperature. Here the subscript "1" was added to refer to a single-atom site. Typically, single-atom sites are formed by immobilization of an isolated metal cation on an oxide support and have a chemical state and coordination environment markedly different from that of the continuously packed surface sites of a nanoparticle of the considered metal.^{7, 8}

To explore the hypothesis of realizing low-temperature catalysis through teaming singleatom sites, hydrodeoxygenation (HDO), a transformative reaction of biomass derivative,⁹⁻¹³ was chosen as a probe reaction. Single-atom Pd₁ and Mo₁ sites were chosen to anchor on Co₃O₄. Our exploration shows that Pd₁ and Mo₁ single-atom sites activate H₂ and anisole, respectively, and that the teamed Pd₁ and Mo₁ single-atom catalyst is highly active and selective for anisole HDO at a temperature as low as 100°C, while neither a Pd metal nanoparticle nor a MoO₃ nanoparticle is active for producing benzene through anisole HDO in the temperature range 25°C-250°C.¹³ This work demonstrates that teaming single-atom catalytic sites is an efficient approach for designing catalysts active and selective at low temperature.

2. Results and Discussion

2.1 Preparation and in-situ characterization of catalyst with teamed Pd₁ and Mo₁ singleatom sites

2.1.1 Selection of reaction and design of catalysts

We chose the hydrodeoxygenation (HDO) of anisole ^{11, 14-25} as an example of a type of reactions in which both reactants, molecular hydrogen and anisole, must be adsorbed and dissociated on catalytic sites before their derivatives could couple to form intermediates leading to a product such as benzene. Palladium metal nanoparticles supported on silica, 0.5wt%Pd/SiO₂ [**Figures S9 and S10 in the Supporting Information (SI)**] were first prepared as benchmark materials through impregnation of a palladium precursor, followed by drying at 60°C in air and then reduction at 350°C in H₂. These supported Pd nanoparticles are not active for anisole HDO at <300°C although they are active for hydrogenation of anisole to methoxycyclohexane (**Figure S19**). MoO₃ nanoparticles are not active for anisole HDO at a temperature lower than 250°C (**Figure S20**), consistent with literature.¹³ In addition, literature reported that MoO₃ crystallites undergo facile reduction to form less reactive MoO₂ at 320°C.²⁶

Figure 1. XRD and TEM studies of used catalysts. (a) XRD patterns of MoO₃ (black line) and Co₃O₄ (red line) (a1), used 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ (a2), 0.25wt%Pd/Co₃O₄ (a3), 5.0%Mo/Co₃O₄ (a4), 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ (a6). (b) Enlargement of XRD pattern of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ after anisole HDO at 150°C. (c-e) High-resolution TEM images of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ nanoparticles after anisole HDO at 150°C.

To prove the hypothesis that teaming single-atom sites could turn on anisole HDO catalysis at low temperature, we chose palladium as one of the two metal elements as it was demonstrated in the literature that (1) singly dispersed Pd atoms (Pd₁) on Cu or Au metal can activate molecular hydrogen at low temperature and (2) the adsorption energy of H atoms on Pd₁ single-atom sites is relatively weak and thus allows H atoms to spill-over on the support.²⁷⁻³⁰ In addition, we chose isolated Mo₁ cations as the second type of single-atom sites since they exhibit

high affinity to oxygen atoms.³¹⁻³⁴ We selected Co_3O_4 as the support to anchor Pd_1 and Mo_1 atoms as it has been used as a support for Pt,³⁵ Pd,³⁶ Ni^{37} , and $Rh^{38, 39}$ single-atoms in the literature.

2.1.2 Preparation of catalysts

Three catalysts, $(Co_{0.95}Mo_{0.05})_3O_4$ having only single-atom Mo₁ sites $(Mo_1/Co_3O_4)_3O_4$, 0.25wt%Pd/Co₃O₄ having only single-atom Pd_1 sites $(Pd_1/Co_3O_4),$ and 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ having coexisting single-atom Mo₁ sites and single-atom Pd₁ ones (Pd₁+Mo₁/Co₃O₄), respectively, were prepared (Section S1 of the SI). To prepare 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄, (Co_{0.95}Mo_{0.05})₃O₄ was first prepared by a wet-chemistry route and then Pd was added in a second step by a specific deposition-precipitation as described in SI. XRD of the $(Co_{0.95}Mo_{0.05})_{3}O_{4}$ 0.25wt%Pd/Co₃O₄, patterns used and 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ are presented in Figure 1a2, 1a3, and 1a4, respectively. Since the three used catalysts exhibit the same XRD pattern as pure Co₃O₄ (the red lines in Figure 1a1), the introduction of Pd₁ and/or Mo₁ atoms in the three catalysts did not change the lattice structure of the Co₃O₄ support. Sizes of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ nanoparticles are 10±2 nm before catalysis and 11±3 nm after catalysis, based on calculations using the Scherrer equation⁴⁰ based on its XRD pattern in Figures 1b and statistical accounting of TEM images such as Figure 1c-1e and Figure S2. These studies suggest that no notable sintering of 0.25 wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ nanoparticles occurred after the anisole HDO at 150°C. In addition, the crystalline nature of the support of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ after HDO catalysis at 150°C was confirmed by the observation of lattice fringes of the (111), (200) and (311) planes of Co₃O₄ in HRTEM images

(Figure 1c-1e). Statistical investigations suggest that the main exposed plane of the Co_3O_4 nanoparticles is (111).

2.1.3 XANES and EXAFS studies of fresh 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄

The oxidations state and coordination environment of Pd and Mo atoms of the fresh catalyst 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ were characterized with X-ray Absorption Near Edge Spectroscopy (XANES)⁴¹, Extended X-ray Absorption Fine Structure (EXAFS)⁴², and Ambient Pressure X-ray Photoelectron Spectroscopy (AP-XPS)^{43, 44} in a manner of ex situ studies at 25°C and in situ studies at catalysis temperatures under a catalytic condition as defined by the literature.⁴⁵ The Pd foil, Mo foil, and PdO nanoparticles in ambient were studied as references for energy calibration and peak assignment in XAS studies. Their XANES spectra of Pd K-edge and Mo K-edge and their r-space spectra of Pd foil, Mo foil, and PdO nanoparticles were generated aid the interpretation of energy-space and r-space of to spectra 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ before catalysis, also designated as fresh catalyst, and 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis, anisole HDO at 150°C.

The red spectrum in **Figure 2b** is the energy space spectrum of Mo K-edge of the fresh catalyst, 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄. It is distinctly different from the black spectrum of Mo foil in **Figure 2b** but similar to MoO₃ reported in literature.⁴⁶ Thus, Mo atoms of the fresh catalyst 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ are oxidized. In addition, the r-space spectrum of Mo K-edge of the fresh catalyst (black spectrum in **Figure 2d**) is distinctly different from the Mo foil (pink spectrum in **Figure 2d**). The fresh 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ has one major peak at 1.71 Å while there is a minor peak at 3.23 Å (black spectrum in **Figure 2d**). All distances cited in this article are the values upon phase correction of EXAFS unless a specific note is given.

Based on the literature⁴⁶, the Mo-O-Mo peak at 2-3.5 Å in the r-space spectrum of Mo K-edge of MoO₃ nanoparticles is strong. **Figure S11b** represents the reported r-space spectra of MoO₃ nanoparticles reported in the literature⁴⁶. Compared to the strong Mo-O-Mo peak of MoO₃ nanoparticles in 2-3.5 Å reported in the literature, the quite weak peak at 3.23 Å observed from the fresh catalyst, 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ suggests that Mo-O-Mo is not a majority species formed in the fresh catalyst. Thus, the Mo atoms are mainly singly dispersed in the fresh catalyst.

 $0.25 \text{wt}\% \text{Pd}/(\text{Co}_{0.95} \text{Mo}_{0.05})_3 \text{O}_4$ (a-d) Figure XANES and EXAFS studies of fresh 2. and 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis (anisole HDO at 150°C) (e-h). (a) XANES spectrum of Pd K-edge of fresh 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ and Pd foil in ambient. (b) XANES spectrum of Mo K-edge of as-prepared 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ and Mo foil in ambient. (c) r-space spectrum of Pd K-edge of fresh 0.25 wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ and Pd foil in ambient. (d) r-space spectrum of Mo K-edge of fresh 0.25 wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ and Mo foil in ambient. (e) XANES spectrum of Pd K-edge of 0.25 wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis (anisole HDO at 150°C) and Pd foil in ambient. (f) XANES spectrum of Mo K-edge of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis (anisole HDO at 150° C) and Mo foil in ambient. (g) r-space spectrum of Pd K-edge of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis (anisole HDO at 150°C), Pd foil in ambient, and PdO in ambient. (h) r-space spectrum of Mo K-edge of 0.25 wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis (anisole HDO at 150°C).

Table 1. List of parameters used to fit peaks in r-space spectra of Pd K-edge and Mo K-edge of $0.25 \text{wt}\% Pd/(Co_{0.95}Mo_{0.05})_3O_4$ data collected during catalysis of anisole HDO at $150^{\circ}C$ or collected from fresh $0.25 \text{wt}\% Pd/(Co_{0.95}Mo_{0.05})_3O_4$ in ambient before catalysis.

Entry	Status	Path	CN	Distance (Å)	σ^2 (Å ²)
1	During catalysis at 150°C	Pd-O	2.09±0.28	2.23±0.02	0.00683
2		Pd-(O)-Co	3.17±0.51	2.92 ± 0.02	0.00683
3		Mo-O	3.20±0.71	1.72±0.01	0.00619
4		Mo-(O)-Co	1.74±0.61	3.39±0.06	0.00619
5	Fresh catalyst in ambient at 25°C	Pd-O	3.15±1.11	2.01±0.03	0.00141
6		Mo-O	1.75±0.64	1.71±0.03	0.00387
7		Mo-(O)-Co	0.88 ± 0.63	3.23±0.09	0.00397

The energy space spectrum of Pd K-edge of the fresh catalyst, 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ (black spectrum in Figure 2a) is distinctly different from Pd foil (green spectrum in Figure 2a). Its r-space spectrum (black spectrum in Figure 2c) only has one peak at 2.01 Å, distinctly different from the peak of Pd foil (green spectrum in Figure 2c). The peaks of Pd-O and Pd-O-Pd of the reference sample, the well crystalized PdO nanoparticles in ambient are presented in the blue spectrum in Figure 2g. Compared to the spectra of the reference sample PdO nanoparticles (blue spectrum in Figure 2g) and another reference sample Pd foil (green spectrum in Figure 2c), the r-space spectrum of the fresh catalyst, 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ (black spectrum in **Figure 2c**) does not have either the peaks of Pd-O-Pd of PdO nanoparticles or the peak of Pd-Pd of Pd foil, suggesting that Pd atoms in the fresh catalyst, 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ are singly dispersed. The fitting to the spectrum of the fresh catalyst (red spectrum in Figure 2c) suggests that the Pd atoms are singly dispersed and only bond with oxygen atoms. The lack of peak of Pd-(O)-Co in the black spectrum in Figure 2c suggests that the singly dispersed Pd atoms of the fresh catalyst, 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ are mainly on the surface instead of in the subsurface or in the bulk.

2.1.4 XANES, EXAFS, and AP-XPS studies of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis

The coordination and chemical environments of the Mo and Pd atoms of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during anisole HDO at 150°C were studied using XANES, EXAFS, and AP-XPS. The Pd K-edge spectrum of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ (black spectrum in Figure 2e) was collected during catalysis at 150°C. In terms of the r-space spectrum of the Pd K-edge of 0.25wt%Pd/5.0%Mo/Co₃O₄ during catalysis, two peaks were observed at 2.23 Å and 2.92 Å in the black spectrum in Figure 2g, assigned to Pd-O and Pd-(O)-Co bonds, respectively. For comparison, the r-space spectrum of Pd K-edge of the reference sample PdO nanoparticles is presented in Figure 2g (blue spectrum). The first peak in this blue spectrum was assigned to Pd-O bonds, and the second and third peaks were contributed from two different Pd-(O)-Pd interactions in the Pd-O-Pd units of the PdO nanoparticles.⁴⁷ Compared to the r-space spectrum of PdO nanoparticles, the lack of the two featuring peaks of Pd-O-Pd of PdO nanoparticles in the r-space spectrum of 0.25wt%Pd/5.0%Mo/Co₃O₄ during catalysis suggests that no PdO nanoparticles were formed in 0.25wt%Pd/5.0%Mo/Co₃O₄ during catalysis. The major feature of metallic Pd foil in the r-space spectrum (green spectrum in Figure 2g) is the peak of Pd-Pd bonds at 2.75 Å. The lack of such a Pd-Pd peak of Pd foil in the spectrum of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis at 150°C indicates that no Pd metal nanoparticles were formed during catalysis at 150°C. In addition to these deductions from EXAFS, the lack of metallic Pd clsuters and PdO nanoparticles was supported by AP-XPS studies of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis at 150°C in Figure 3d3 and the ex-situ studies with HR-TEM (Figure 1c-1e).

Based on the black spectrum in **Figure 2g**, neither Pd-O-Pd peak of PdO nanoparticles nor Pd-Pd peak of Pd nanoparticles was observed in the r-space spectrum of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis, suggesting that the Pd atoms exist in the form of single-atom sites, Pd₁ during the catalysis at 150°C. Coordination numbers and bond lengths around Pd₁ single atoms during catalysis were estimated through fitting the r-space spectrum of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis (red spectrum in **Figure 2g**). They are listed in entry 1-4 in **Table 1**. Based on this fitting, a Pd atom coordinates with 2.09 ± 0.28 oxygen atoms and 3.17 ± 0.51 cobalt atoms in its first and second shells, respectively. The low coordination numbers of a Pd₁ atom suggest that Pd atoms of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis at 150° C are mainly on the surface of the support. The potential possibilities of fitting the r-space spectrum of Pd K-edge collected from 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis at 150° C were discussed in **Section 4.3** of the SI and later compared to these distances between Pd and Co atoms in the intermediates obtained in DFT calculations in **Section 8.3** of the SI.

Figure 3. XPS studies of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ at 25°C (black spectra) and AP-XPS studies of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis at 100°C (red spectra), 150°C (blue spectra), and 200°C (green spectra). (a) O 1s. (b) Co 2p. (c) Mo 3d. (d) Pd 3d.

The bonding of Pd with oxygen atoms was further supported by the binding energy (BE) of Pd 3d during catalysis at 150° C tracked with AP-XPS (**Figure 3d3**). The BE of Pd $3d_{5/2}$ of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis at 150° C, 337.2 eV, is obviously higher than those of metallic Pd or Pd-Co bimetallic nanoparticles, 335.0-335.3 eV reported in literature,⁴⁸⁻⁵⁰ confirming that the Pd atoms of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis are cationic. This cationic nature of Pd atoms is further supported by the energy position of Pd K-edge in XANES study of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis at 150° C (black spectrum in **Figure 2e**). The lack of palladium oxide or Pd metal nanoparticles in the HR-TEM images of

0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ after catalysis at 150°C (**Figure 1c-1e**) supports that Pd does not exist in the form of metal oxide or metallic nanoparticles.

coordination Compared to the environment of Pd atoms in the 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis at 150°C (entries 1 and 2 in **Table 1**), Pd atoms in the fresh catalytic have a different coordination environment as listed in entry 5 in Table 1. It suggests that the fresh catalyst was restructured by the pretreatment in 5% H₂ at 150°C and the catalysis condition at 150°C. In the following computational studies (Section 2.7), the structural model of the catalyst 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ was built on the basis of the structural parameters of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis.

The black spectrum in **Figure 2h** is the r-space spectrum of Mo K-edge of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis. In this spectrum, only a peak at 1.72 Å was observed. For MoO₃ nanoparticles reported in the literature,⁴⁶ however peaks at 2.90 Å and 3.12 Å attributed to Mo-(O)-Mo interactions in Mo-O-Mo units in addition to the Mo-O peak were simultaneously observed.⁴⁶ They are represented in **Figure S11b**. In terms of Mo foil,^{26, 46} its Mo K-edge in r-space spectrum is featured by two peaks at 2-3 Å (pink spectrum in **Figure 2d**). However, the r-space spectrum of Mo K-edge of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis at 150°C does not have any peak at a R value higher than 2.0 Å (black spectrum in **Figure 2h**). It suggests that neither MoO₃ nor metallic Mo nanoparticles were formed during catalysis. The spectrum of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis (black spectrum in **Figure 2h**) was fitted into a single peak (red spectrum in **Figure 2h**). This fitting suggests that each Mo atom coordinates with 3.20 ± 0.71 oxygen atoms in the first shell and 1.74 ± 0.61 Co atoms in the second shell (entry 3 and 4 in **Table 1**). The lack of formation of Mo metal or MoO₃ nanoparticles on 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis is supported by the surface sensitive AP-XPS

studies during catalysis (**Figure 3c3**) since the observed binding energy of Mo 3d of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis, 231.8 eV, is obviously higher than that of metallic Mo reported in literature,⁴⁸ but lower than that of MoO₃.⁵¹⁻⁵³ In addition, in-situ XANES spectra of the Mo K-edge of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis (red spectrum in **Figure 2f**) show that Mo atoms are cationic, consistent with its coordination with oxygen atoms deduced from in situ studies of EXAFS and AP-XPS.

Compared to the coordination environment of Mo atoms in 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis (entries 3-4 in **Table 1**), the Mo atoms of the fresh catalyst are in a different coordination environment (entry 6-7 in **Table 1**). Thus, obviously the coordinating environment of Mo atoms was restructured by the pretreatment in 5% H₂ at 150°C and the following catalysis at 150°C. This restructuring made a Mo atom directly bond with 3.20 ± 0.71 oxygen atoms and 1.74 ± 0.61 cobalt atoms in the first and second coordination shells. This structural parameter was used in building structural model of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis for exploring catalytic mechanism of anisole HDO in **Section 2.7**.

2.2 Preparation and characterization of (Co_{0.95}Mo_{0.05})₃O₄ and 0.25wt%Pd/Co₃O₄

Compared to 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ containing two types of single-atom sites, Mo₁ and Pd₁, the catalyst (Co_{0.95}Mo_{0.05})₃O₄ containing only one type of single-atom sites Mo₁ and the catalyst 0.25wt%Pd/Co₃O₄ containing only one type of single-atom sites Pd₁ were prepared as described in **Sections S1.2 and S1.4**, respectively. The r-space spectrum of the Mo K-edge of (Co_{0.95}Mo_{0.05})₃O₄ (**Figure S12**) shows that the Mo atoms are singly dispersed in (Co_{0.95}Mo_{0.05})₃O₄ during anisole HDO at 150 °C and coordinate with 3.20 ± 0.28 oxygen atoms on average, similar to Mo atoms in 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ during catalysis. The in-situ XANES spectrum shows that the Mo atoms in $(Co_{0.95}Mo_{0.05})_3O_4$ are cationic (**Figure S13**). Similar to the single dispersion of Pd atoms in $0.25wt\%Pd/(Co_{0.95}Mo_{0.05})_3O_4$, the Pd atoms of the $0.25wt\%Pd/Co_3O_4$ after catalysis for HDO anisole at $150^{\circ}C$ are still singly dispersed on Co_3O_4 (**Figure S7**). In the following sections, the $(Co_{0.95}Mo_{0.05})_3O_4$, $0.25wt\%Pd/Co_3O_4$, and $0.25wt\%Pd/(Co_{0.95}Mo_{0.05})_3O_4$ catalysts are designated as Mo_1/Co_3O_4 , Pd_1/Co_3O_4 and Mo_1+Pd_1/Co_3O_4 , respectively for convenience.

2.3 Realization of active and selective catalysis with teamed Pd_1 and Mo_1 sites at low temperature

Figure 4. Catalytic activity and selectivity for benzene formation through anisole hydrodeoxygenation (HDO) on catalysts. (a) Catalytic performances of 50 mg of $(Co_{0.95}Mo_{0.05})_3O_4$ (Mo_1/Co_3O_4). (b) Catalytic performances of 50 mg of $0.25wt\%Pd/Co_3O_4$ (Pd_1/Co_3O_4). (c) Catalytic performances of 50 mg of $0.25wt\%Pd/(Co_{0.95}Mo_{0.05})_3O_4$ (Mo_1+Pd_1/Co_3O_4). (d-f) Catalytic performances of x wt%Pd/($Co_{0.95}Mo_{0.05}$)_3O_4 with increased amount of Pd (x) from 0.01wt%, 0.05wt% to 0.15wt%. In each measurement of catalytic performance, 50 mg of a catalyst was mixed with 300 mg of purified quartz. In all catalytic measurements, the anisole vapor was delivered to the catalyst bed through the flowing H₂. For delivering anisole vapor, 25 mL/min H₂ (99.99%) was introduced to a sealed bottle containing about 10 ml 99.9% anisole; the liquid anisole in the bottle remained at room temperature by keeping the bottle in a room-temperature water bath without additional heating or cooling.

The catalytic activity and selectivity of anisole HDO on the three different catalysts, Mo_1/Co_3O_4 , Pd_1/Co_3O_4 , and Mo_1+Pd_1/Co_3O_4 were measured in a fixed-bed flow reactor under the catalytic condition as described in **Section S6**. As shown in **Figure 4a**, 50 mg of $(Co_{0.95}Mo_{0.05})_3O_4$ is nearly inactive for the conversion of anisole in 100-130°C; The conversion of anisole on 50 mg $(Co_{0.95}Mo_{0.05})_3O_4$ at 150° C is <10% with a selectivity of only 40% for producing benzene. 50 mg of Pd_1/Co_3O_4 exhibits a larger conversion of anisole, 68% at 140°C and 88% at 150°C, but the selectivity for benzene remains quite low (35% at 140°C and 40% at 150°C) (**Figure 4b**). The main side-reaction channel is the hydrogenation of the phenyl ring of anisole.

In comparison, the catalyst with teamed single-atom sites, Mo_1+Pd_1/Co_3O_4 , exhibits 87% conversion of anisole at 140°C and 98% at 150 °C (**Figure 4c**). The selectivity for benzene through anisole HDO at 140 °C and 150 °C on Mo_1+Pd_1/Co_3O_4 (**Figure 4c**) are 81% and 83%, respectively, obviously higher than that on Mo_1/Co_3O_4 (**Figure 4a**) and Pd_1/Co_3O_4 (**Figure 4b**) by at least 40%-45%. These parallel studies clearly show that teaming the two types of single-atom sites, Pd_1 and Mo_1 , on Co_3O_4 to form Mo_1+Pd_1/Co_3O_4 allows the benzene production through anisole HDO of anisole to be efficiently and selectively performed at a temperature as low as 100-150°C. The yields of benzene from 50 mg of Mo_1+Pd_1/Co_3O_4 (35%) and 50 mg of Mo_1/Co_3O_4 (4.2%) at 150°C, clearly justifying the team effect of Pd_1 and Mo_1 sites on Co_3O_4 in this low-temperature range. The high low-temperature activity of the Mo_1+Pd_1/Co_3O_4 for anisole HDO contrasts the absence of activity in producing benzene through anisole HDO on Pd metal nanoparticles of 0.50wt%Pt/SiO₂ (**Figure S19**) at 300°C or lower, and on MoO_3 nanoparticles at a temperature 200°C or lower (**Figure S20**).¹³ It justifies the hypothesis that a

low temperature catalysis, unable to be reached on a classical metal or oxide nanoparticle catalyst, can be realized by teaming two sets of single-atom sites on a support.

The teaming effect of Pd₁- and Mo₁-based sites on the support, Co₃O₄ was clearly confirmed by the evaluation of catalytic performance of a physical mixture of 50 mg 0.25%Pd/Co₃O₄ (Pd₁/Co₃O₄) and 50 mg (Mo_{0.05}Co_{0.95})₃O₄ (Mo₁/Co₃O₄). As listed in **Table S5**, the yield of benzene on the physical mixture in Column 3 is always lower than that on 50 mg 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ [Mo₁+Pd₁/Co₃O₄] in Column 2 in the temperature range of 120-150°C by 11.4%-28.5% (Column 4. These differences listed in **Table S5** clearly supported the team effect of Pd₁ and Mo₁ on anisole HDO at these catalysis temperatures.

In terms of the catalytic stability of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ [Mo₁+Pd₁/Co₃O₄], we performed time-stream experiments for 0.25wt%/(Co_{0.95}Mo_{0.05})₃O₄ at 140°C for 96 hours. As shown in **Figure S21**, the yield of benzene remains about 72% for at least 96 hours. In addition, we also tested the reusability of the catalysts by repeating the ramping up and cooling down. The yield for benzene remained nearly constant in the first four cycles (**Figure S22**).

2.4 Hydrogen spillover on the support of teamed Pd₁-based and Mo₁-based sites of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄

The potential influence of the loading of Pd atoms on the catalytic performance of anisole HDO was explored through systematic studies under the same catalytic condition as used 0.01 wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄, 0.05 wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄, in Figure 4. and with 0.15wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ prepared the method were same as 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ described in Section S1.3. The actual loadings of Pd and Mo are in **Table S2**. These four catalysts with different loadings of Pd listed Гx wt%Pd/ $(Co_{0.95}Mo_{0.05})_{3}O_{4}$] exhibit very similar conversions of anisole and selectivity for benzene

at 150°C (**Figures 4c-4f**). It suggests that the amount of Pd_1 sites on $(Co_{0.95}Mo_{0.05})_3O_4$ is not critical for kinetics. It also indicates that the step performed on Pd atoms, dissociation of H_2 as we will show in the computational studies (**Section 2.7**), can proceed even with an actual loading of Pd as low as 0.003at% (entry 1 in **Table S2**). This suggests a low activation barrier for dissociating H_2 on Pd₁ site and a high spillover rate of H atoms on the support, Co_3O_4 .

The hydrogen spillover effect of Co_3O_4 was confirmed by the following experiment. We measured catalytic performance of a physical mixture of 50 mg 0.25% Pd/Co₃O₄ (Pd₁/Co₃O₄) and 50 mg $(Mo_{0.05}Co_{0.95})_{3}O_{4}$ $(Mo_{1}/Co_{3}O_{4})$ to compare to the catalytic performance of 50 mg 0.25%Pd/Co₃O₄ (Pd₁/Co₃O₄) or that of 50 mg (Mo_{0.05}Co_{0.95})₃O₄ (Mo₁/Co₃O₄). Column 2, 3, and 5 in Table S4 list the yield of 50 mg 0.25wt%Pd/Co₃O₄ (Pd₁/Co₃O₄), yield of 50 mg $(Mo_{0.05}Co_{0.95})_{3}O_{4}$ $(Mo_{1}/Co_{3}O_{4})$, and the yield of the physical mixture of 50 mg 0.25%Pd/Co₃O₄ (Pd_1/Co_3O_4) and 50 mg $(Mo_{0.05}Co_{0.95})_3O_4$ (Mo_1/Co_3O_4) in 110-150°C, respectively. Clearly, the yield of benzene generated from the physical mixture of 50 mg 0.25%Pd/Co₃O₄ (Pd₁/Co₃O₄) and 50 mg $(Mo_{0.05}Co_{0.95})_3O_4$ (Mo_1/Co_3O_4) in Column 5 in **Table S4** is obviously higher than the sum (Column 4) of the yield from 50 mg 0.25%Pd/Co₃O₄ (Pd₁/Co₃O₄) and that from 50 mg $(Mo_{0.05}Co_{0.95})_{3}O_{4}$ $(Mo_{1}/Co_{3}O_{4})$. Column 6 in **Table S4** lists the difference between the yield of the mixture (Column 5) and the sum of the yields of the two catalysts (Column 4). This comparison shows that H atoms can readily spillover on surfaces of Co_3O_4 which is the support of Mo_1/Co_3O_4 , Pd_1/Co_3O_4 , Mo_1+Pd_1/Co_3O_4 . It confirmed the role of the support Co_3O_4 in H spillover.

Figure 5. Kinetics studies of anisole HDO on (a) $(Co_{0.95}Mo_{0.05})_3O_4$, (Mo_1/Co_3O_4) , (b) $0.25wt\%Pd/(Co_3O_4)$ (Pd₁/Co₃O₄), and (c) $0.25wt\%Pd/(Co_{0.95}Mo_{0.05})_3O_4$ (Mo₁+Pd₁/Co₃O₄) in 100-150°C for measuring apparent activation energies. In these kinetics studies, 5 mg catalyst was mixed with 100 mg quartz and conversions of anisole are always lower than 15%.

2.5 Kinetic studies of the team effect of Pd1 and Mo1 single-atom sites for anisole HDO

To check whether the observed differences in catalytic performance among Mo_1+Pd_1/Co_3O_4 (Figure 4c), Pd_1/Co_3O_4 (Figure 4b), and Mo_1/Co_3O_4 (Figure 4a), and the

difference listed in **Table S5**, are intrinsic or not, the kinetics studies of anisole HDO on the three catalysts was performed in the temperature range of 100-150°C, where the conversions of anisole were always kept $\leq 10\%$ (See Section S6.2). Figure 5 shows the plots of Ln(k) - LnC as a function of $\frac{1}{T}$. The rate constant, k can be calculated with the equation (1): $k = \frac{Q_{anisole flowing into reactor \times Y_{benzene}}{N_{surface site} \times [A]^a[B]^b}$. The definition of Q, Y, N, [A], and [B] can be found in the SI,

in Section S6.2. When the conversion is $\leq 10\%$, rate constant, *k* is nearly linearly proportional to the yield of benzene through the equation (2), $k = Y_{Benzene} \times C$ since Q, Y, and N are constant, and the slight variations of [A] and [B] does not obviously influence the rate constant, *k* in the narrow temperature range (100-150°C) as described in Section S6.2. Then, there is a correlation, $LnY_{Benzene} = Ln(k) - LnC$. Thus, the plot of $Ln(Y_{Benzene})$ as a function of $\frac{1}{T}$ has the same slope as the Arrhenius plot where Ln(k) is plotted as a function of $\frac{1}{T}$. Based on the slopes of these plots in Figure 5a for Mo₁/Co₃O₄, Figure 5b for Pd₁/Co₃O₄, and Figure 5c for Mo₁+Pd₁/Co₃O₄, the apparent activation energies for producing benzene through anisole HDO on Mo₁/Co₃O₄, Pd₁/Co₃O₄, and Mo₁+Pd₁/Co₃O₄ are calculated to be 112±11 kJ/mol, 79±5 kJ/mol, and 69±6 kJ/mol, respectively. Thus, the apparent activation barrier on Mo₁+Pd₁/Co₃O₄, and markedly lower than that of Pd₁/Co₃O₄ having only Pd₁ single-atom sites, 112±11 kJ/mol.

Figure 6. Catalytic activity and selectivity for the anisole HDO on the $0.25wt\%Pd/(Co_{1-x}Mo_x)_3O_4$. Catalytic performances of (a) 50 mg of $0.25wt\%Pd/Co_3O_4$, Pd_1/Co_3O_4 , (b) 50 mg of $0.25wt\%Pd/(Co_{0.95}Mo_{0.05})_3O_4$, Mo_1+Pd_1/Co_3O_4 . (c) 50 mg of $0.25wt\%Pd/(Co_{0.90}Mo_{0.10})_3O_4$, (d) 50 mg of $0.25wt\%Pd/(Co_{0.80}Mo_{0.80})_3O_4$, and (e) Selectivity for producing benzene at 150°C as a function of the amount of Mo integrated in the synthesis of $(Co_{1-x}Mo_x)_3O_4$. In each measurement, 50 mg of catalyst was mixed with 300 mg of purified quartz. In all catalytic measurements, 25 mL/min H₂ (99.99%) was introduced to a sealed bottle containing about 10 ml anisole (99.9%); The liquid anisole in the bottle was maintained at room temperature by keeping the bottle in a water bath without additional heating or cooling; the anisole vapor was delivered to the catalyst bed with the flowing H₂.

It is found that the Mo₁ sites play a significant role. By including Mo₁ single-atom sites, the selectivity for benzene at 150°C is increased from 38% on Pd₁/Co₃O₄ in **Figure 6a** to 83% on Mo₁+Pd₁/Co₃O₄ (**Figure 6b**). Notably, the selectivity decreases from 83% to 56% at 150°C

along increase of the loading of Mo from 5% to 10% (Figure 6b versus 6c). When Mo loading further 10% 20%. selectivity is increased from to the for benzene on 0.25wt%Pd/(Co_{0.80}Mo_{0.20})₃O₄ decreases from 56% to 42% at 150°C (Figure 6c versus 6d). The selectivity for benzene on 0.25wt%Pd/(Co_{0.80}Mo_{0.20})₃O₄, 42% in Figure 6d is very similar to that on 0.25wt%Pd/Co₃O₄, 38% in Figure 6a. Figure 6e presents a volcano-like evolution of selectivity for producing benzene through anisole HDO with a maximum for a Mo concentration of ~5%. This evolution suggests that Mo₁ single-atom sites instead of MoO₃ nanoparticle played a significant role in promoting the catalytic selectivity for benzene in anisole HDO. XRD shows that MoO₃ nanoparticles were formed in the 0.25wt%Pd/(Co_{0.80}Mo_{0.20})₃O₄, evidenced by the observation of the shoulder at 29.8° in Figure 1a6. Thus, obviously the MoO₃ nanoparticles are not active for producing benzene through anisole HDO.

2.6 Restructuring of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ at relatively high temperature and decayed catalytic performance in HDO

Catalytic performance of 35 mg of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ was evaluated in the temperature range of 150-300°C (**Figure S18**). The conversion of anisole on 35 mg catalyst at 150°C is 75% which is consistent with the conversion of anisole (98%) obtained on 50 mg of this catalyst at 150°C (**Figure 4c**). Unfortunately, selectivity for producing benzene largely decreased along the elevation of catalysis temperature from 150°C to 300°C. Notably, the selectivity for producing benzene is near zero at 250-300°C although the conversions of anisole at these temperatures are high. Based on AP-XPS studies, Pd atoms of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ were partially reduced at 250°C and completely reduced to metallic Pd at 300°C (**Figure S17b**) while Mo remained at an oxidizing state (**Figure S17a**). The correlation between the measured

low catalytic selectivity for benzene through anisole HDO at 200-300°C (**Figure S18**) and the reduction of cationic Pd to metallic Pd in this temperature range (**Figure S17b**) shows that Pd metal nanoparticles are not active for production of benzene through anisole HDO at a temperature of $\leq 300^{\circ}$ C.

Our 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ active for HDO at 100-150°C consists of Co₃O₄ with anchored Pd₁ and Mo₁ single atom sites. It is distinctly different from the Pd-Mo bimetallic nanoparticle catalyst supported on the inert support, SiO₂ reported in literature.¹³ On the reported Pd-Mo NPs/SiO₂ catalyst,¹³ Mo and Pd formed Pd-Mo bimetallic nanoparticles at 150°C-300°C. The nature of the bimetallic catalysis on Pd-Mo bimetallic nanoparticles supported on SiO₂ is distinctly different from the team effect of two sets of single-atom sites, Mo₁ and Pd₁ on Co₃O₄ of 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄. Another difference is that the catalysis temperature for producing benzene through anisole HDO. On Pd-Mo NPs/SiO₂ it is active in 150°C-300°C but here 0.25wt%Pd/(Co_{0.95}Mo_{0.05})₃O₄ is highly active for producing benzene in 100-150°C.

2.7 Molecular mechanism of catalysis on teamed single-atom sites at low temperature

To understand the roles of Pd_1 and Mo_1 single sites in low-temperature catalysis, the reaction pathways for anisole HDO over each type of site of the catalyst were investigated with DFT, together with the surface molecular diffusion process on the surface of the support between these sites.

2.7.1 Structure of the Co₃O₄(111) surface and the anchored Mo₁ and Pd₁ sites

We optimized the geometries of Pd_1 and Mo_1 sites. Due to the low surface atomic fractions of both Mo_1 and Pd_1 in this catalyst, we modeled the two sites separately anchored on Co_3O_4 . The (111) surface of Co_3O_4 was chosen to represent the support since the (111) is the most prevalently exposed termination of spent catalysts as determined by HR-TEM (**Figure 1c-1e**).

Figure 7. Optimized structures of the hydroxylated $Co_3O_4(111)$ surface and the anchored Mo_1 and Pd_1 surface sites. (a) Side view of the structure of the hydroxylated $Co_3O_4(111)$ surface in equilibrium with the gas environment during steady state reaction. The surface is Co-enriched and hydroxylated, terminated with 7.11 Co/nm^2 and 7.11 OH/nm^2 . Oxidized $Co_3O_4(111)$ films are terminated by O (red) and Co (green). Co (gold) atoms are added to simulate surface reduction without phase-change to CoO in the near-surface layers. (b) Top view of the hydroxylated $Co_3O_4(111)$ surface. (c) Top view of the optimized Mo_1 site constructed by substituting one of the gold-coloured Co cations on the hydroxylated surface with Mo and removing one unit of H_2O . (d) Side view of the optimized Pd_1 site constructed by adsorbing one unit of PdH_2 and substituting a nearby OH group by OCH₃ on hydroxylated Co_3O_4 .

Under catalytic conditions, the $Co_3O_4(111)$ surface was found from computational exploration of surface terminations to be heavily hydroxylated (7.11 OH/nm², **Figure 7**).⁵⁴ As such, we explored several configurations of a grafted Pd₁ site and the geometry of a substituted

Mo₁ site based on stoichiometry (see **Section S8.2**). In these conditions, the Pd₁ active site is calculated to be formally in a (+2) oxidation state (see **Section S8.3** for formal charge assignment), coordinated to two hydrides and two surface O atoms in a square planar arrangement (**Figure 7d**). For the Mo₁ site, although the mono-oxo-molybdenum site is the most stable configuration, we selected a 3-fold coordinated substituted Mo site as the starting point because it is only mildly metastable by 0.26 eV under low anisole conversion, and the highly coordinated Mo sites are rather inert as shown in studies on the activation of CH₄ over MoO₃/SiO₂.⁵⁵ This Mo₁ site in **Figure 7c** was generated by replacing one surface Co with Mo and removing one lattice OH plus one H from another adjacent OH (see **Section S8.2**).

Figure 8. Gibbs free energy pathway for anisole HDO over the Pd_1 site shows that the methanol formation controls the energetic span. All structures in the reaction pathway are listed in Figure S25 and more structural details of the intermediates are shown in Figure S26. Anisole HDO over only the Pd_1 site takes advantage of a single O vacancy near the Pd_1 . The energetic span of the reaction mechanism is 1.28 eV, between the PdH_2 intermediate (Pd-6) and the transition state for the desorption of methanol (TS6).

Next, to compare the anisole HDO activity on different catalysts, we first examined the reaction mechanism over the Pd₁ site alone (**Figure 8**). We found the anisole HDO to occur at the interface between the Pd₁H₂ site and the hydroxylated $Co_3O_4(111)$ support (**Figure 8**). Similar to some reported reaction mechanisms on metal oxide-containing catalysts, the mechanism over Pd₁ requires the participation of an O vacancy near to the Pd₁.⁵⁶⁻⁵⁸ We started the cycle not at the most stable and abundant Pd₁H₂ structure, but with a Pd₁ site (Pd₁H₁, Pd-1 in **Figure 8**) containing a single hydride (H) ligand and an O vacancy (O_v) in the vicinity of the Pd₁ active site. The Pd₁H₁ and a nearby O vacancy are generated from the recombination of a H atom of Pd₁H₂ and a hydroxyl or alkoxyl species on the support (Pd-1 on **Figure 8**). Formally, the formed Pd₁H₁ complex is closest to a combined oxidation state of (-1) (see **Section S8.3**). A more stable Pd₁H₂ site where the Pd cation is in a +2 formal oxidation state is formed later in the catalytic cycle.

In the first step, the oxygen atom of an anisole molecule is adsorbed on the O vacancy near Pd₁H₁ (structure Pd-2 in **Figure 8**). The activation of Gibbs free energy of this step from Pd-1 to Pd-2 through TS-1 (0.64 eV) is estimated from the kinetic theory of gases (see **Section S9.1**; a similar analysis has been presented in reference ⁵⁹). By crossing a 0.40 eV barrier from Pd-2 to Pd-3 through TS2 in **Figure 8**, the adsorbed anisole dissociates by breaking its C-O bond between C₆H₅ and OCH₃ (C_{ring}-O), to form a phenyl (C₆H₅) ligand on Pd₁H₁ and a methoxy (OCH₃) group on the Co atoms surrounding the O vacancy near Pd₁ (Pd-3 in **Figure 8**). The key C_{ring}-O cleavage hence occurs at Pd₁-oxide interface; in other words, the support assists the Pd₁ cation to facilitate the C_{ring} -O cleavage at the transition state (TS2 in **Figure 8**). The Pd₁ center is oxidized from Pd₁H₁ (-1) to Pd (+2) in this largely exothermic step (ΔG =-1.06 eV). In comparison, the unwanted hydrogenation of the aromatic ring of anisole by the Pd₁H₁ species is an endothermic process with a reaction energy of 0.57 eV, which is less energetically favorable

(Figure S28 and Section S8.4).

On the other hand, the intramolecular hydrogenation of the formed C₆H₅ group by the H ligand of Pd₁H₁ to form a benzene molecule in the step from Pd-3 to Pd-4 through TS3 is expectedly easy, requiring only 0.22 eV (Figure 8), reducing the Pd (+2) center to Pd (0). After the desorption of benzene in the step from Pd-4 to Pd-5 through TS4, a bare Pd₁ is formed in Pd-5. Then, H₂ replenishes the bare Pd₁ site to form PdH₂ in Pd-6, reoxidizing the bare Pd(0) center Pd (+2) in Pd-6. The formation of PdH₂ proceeds by crossing a small barrier of 0.37 eV from Pd-5 to TS5. Since no potential energy barrier was found for the dissociation of H₂, the free energy barrier for this step is purely comprised of entropy losses corresponding to a collision theory adsorption rate. Clearly, as anticipated, H₂ dissociation is easy on the Pd₁ site of Pd-5 and does not appear to be a rate determining step at all. The formed Pd₁H₂ in Pd-6 is the most stable square-planar Pd₁ active site mentioned above. Finally, one H ligand reacts with the adjacent OCH₃ on the Co atom in the step from Pd-6 to Pd-1 through TS6 to form methanol and restore the original (-1) Pd_1H_1 site of Pd-1, closing the catalytic cycle on the Pd_1/Co_3O_4 surface. No potential energy barrier was found for the readsorption of methanol; thus, the additional entropy contribution to the desorption barrier was estimated using collision theory. Notably, the formation and desorption of methanol from Pd₁H₂ and a nearby OCH₃ group in Pd-6 through TS6 requires a rather large Gibbs free energy barrier of 1.28 eV (Figure 8). This is the catalytic cycle of anisole HDO on Pd₁/Co₃O₄, a catalyst with only one set of single-atom sites, Pd₁.

In the mechanism described above, anisole does not initially adsorb on the Pd₁H₁ site, but the phenyl fragment formed from C_{ring} -O dissociation binds to Pd₁ through the radical C (Pd-2 to Pd-3 in **Figure 8**). This is consistent with the weak chemisorption of anisole on the Pd₁ site even on the bare Pd₁ site without a H ligand in Pd-5. Additional calculations found that anisole could chemisorb on Pd₁ without a H ligand (Pd-5) through its phenyl ring; however, this chemisorption is endergonic by 0.15 eV under reaction conditions (**Figure S29**). The chemisorption of anisole on Pd₁ of Pd-5 is not energetically preferred since the chemisorption of H₂ on Pd₁ of Pd-5 is slightly exothermic (ΔG =-0.05 eV).

Figure 9. Gibbs free energy pathway for anisole HDO over the Mo_1+Pd_1 site. (a) Anisole HDO over the Mo_1 site assisted by H spillover formed on Pd₁ site. All structures in the reaction pathway are listed in Figure S27. The energetic span of the reaction mechanism is 1.34 eV under low conversion (1%), between the state Mo-6b and the transition state (TS1) for the dissociation of the anisole molecule. After the dissociation of anisole, a methanol molecule is formed first by reacting OCH₃ with a surface H. The methanol molecule can desorb (pathway in red) or donate its H to the phenyl group and form benzene. This sub-pathway is shown in red, designated as methanol-first sub-pathway. Alternatively, upon dissociation of anisole, a benzene molecule can form first to desorb and then a methanol molecule forms to desorb. This sub-pathway is shown in green, designated as benzene-first sub-pathway. (b) Gibbs free energy barrier for the dissociation of molecular H₂ on the Pd₁ site and the structure of the relevant intermediates.

2.7.3 Reaction mechanism of anisole HDO over Mo₁+Pd₁/Co₃O₄

2.7.3.1 Dissociation of Cring-O of anisole on Mo1 site

We explored next the anisole HDO over the teamed single-atom Pd_1+Mo_1/Co_3O_4 catalyst, where reactivity on the Mo₁ site is assisted by the Pd₁ site for H₂ dissociation and the support for H spillover (**Figure 9**). Since this undercoordinated Mo₁ site in Mo-1 in **Figure 9** appears to have very little steric hindrance, we found that the C_{ring}-O bond is cleaved through oxidative addition. In the transition state (TS1), the C_{ring}-O bond is stretched to 1.76 Å and forms a triangle with the Mo₁ center. This step produces in Mo-2 a C₆H₅ fragment whose carbon atom binds to the Mo₁ center and an OCH₃ fragment whose O atom bridges over the Mo₁ center (purple) and its neighboring Co (green). In combination, this step raises the formal oxidation state of Mo₁ in Mo-1 from +3 to +4 (see **Section S8.3**). The Gibbs free energy barrier to break the C_{ring}-O bond in this oxidative addition step is 1.30 eV (TS1), accounting for the loss of gas-phase entropy upon adsorption. Here again the Co atoms on the support play a role, although not in the C-O bond cleavage (TS1) but rather in the stabilization of the product (Mo-2). To continue the reaction, the C₆H₅ and OCH₃ fragments must be hydrogenated.

2.7.3.2 Dissociation of H₂ on the Pd₁ site and spillover on the Co₃O₄ support

The dissociation of H₂ over Pd₁, from Pd-5 to Pd-6, only requires crossing a Gibbs free energy barrier of 0.37 eV, through TS5 (**Figure 8 or 9b**). Other sites present on the catalyst such as Co and Mo₁ were also considered for the dissociation of H₂, but they were found to be much less active than the Pd₁ site (**Figures S30 and S31 and Section S8.5**). Accounting for the translational and rotational degrees of freedom, the dissociation of H₂ on the hydroxylated Co₃O₄(111) substrate is estimated to have an activation barrier of 1.62 eV Gibbs free energy (**Figure S30**). The activation barrier over the Mo₁ site is even as high as 2.39 eV (**Figures S31**). The high activation barriers for dissociating molecular H₂ on Mo₁ and Co forces H₂ dissociation to occur on the Pd₁ site of Mo₁+Pd₁/Co₃O₄ (**Figure 9b**), while the hydroxylated Co₃O₄(111) substrate acts as a H adsorbate reservoir, where surface H is in quasi-equilibrated with H₂ gas. This explains why Mo₁/Co₃O₄ is hardly active for anisole HDO in **Figure 4a** since the activation barrier for H₂ dissociation on Mo₁ and Co is high.

Spillover of H across the Co₃O₄ support surface occurs through a Grotthuss type motion involving metastable water intermediates and the Co₃O₄ surface itself as an electron reservoir.⁶⁰ The H spillover event on Co₃O₄(111) presents an electronic energy barrier of 0.63 eV (**Figure S32**) which is markedly lower than the 1.30 eV barrier for cleaving the C_{ring}-O bond at Mo₁ in the step from Mo-1 to Mo-2 (**Figure 9a**). In our pathway in **Figure 9a**, the whole process of H₂ adsorption and spillover is lumped in a single effective step from Mo-2 to Mo-3 through TS2, where a proton and electron are brought close to the Mo₁ site (forming Mo-3), with a net Gibbs free energy barrier of 0.72 eV from Mo-2 to TS2 and a Gibbs free energy of reaction of +0.37 eV from Mo-2 to Mo-3. A detailed description of the H spillover mechanism on the catalyst surface is presented in **Figure S32** and **Section S8.5**.

2.7.3.3 Two possible sub-pathways for producing benzene and methanol on Mo₁ sites

After the cleavage of Cring-O of anisole, the OCH₃ species of Mo-4 can first desorb as a methanol molecule through the methanol-first sub-pathway of Mo-4 \rightarrow Mo-5a \rightarrow Mo-6a to Mo-1. Alternatively, the C₆H₅ ligand of Mo-4 can desorb first as a benzene molecule through the benzene-first sub-pathway of Mo-4→Mo-5b→Mo-6b→Mo-1. We first explored the steps in the methanol-first sub-pathway in red in Figure 9a. From the collision theory rate of adsorption/desorption, methanol can be desorbed by crossing a 0.68 eV Gibbs free energy barrier (Mo-4 to TS4a in Figure 9a), then one more H may be transferred to bind to the O atom bridging between Mo and Co of Mo-5a, forming Mo-6a. This H atom will react with C₆H₅ to form benzene in the step of Mo-6a to Mo-1. In the step of Mo-5a to Mo-6a, the Mo center is reduced from +4 in Mo-5a to +3 in Mo-6. In the step from Mo-6a to Mo-1, the bridging OH group reacts with the C₆H₅ ligand to form a free benzene molecule by crossing a 0.87 eV Gibbs free energy barrier, restoring the Mo₁ active site (Mo-1, most-right side of Figure 9a). This step (Mo-6a to Mo-1) couples a proton transferred from the OH group and an electron from the substrate. In this sub-pathway (red in Figure 9a), CH₃OH first desorbs and then benzene is formed and desorbs from the catalyst surface.

We next explored the benzene-first sub-pathway (in green) starting from Mo-4 in **Figure 9a**. The OCH₃ formed through TS3 can rotate and react with the C_6H_5 ligand to form a benzene molecule and an OCH₃ group bridging over Mo₁ and Co atoms (TS4b). In other words, the methoxy group acts as a relay for transferring the proton from the oxide surface to the phenyl fragment. This step requires a 0.54 eV barrier relative to Mo-4, which is slightly smaller than the desorption barrier of methanol (0.68 eV from Mo-4 to TS4a in **Figure 9a**) in the alternative methanol-first sub-pathway. In this step from Mo-4 to Mo-5b, the Mo₁ center is formally reduced from +4 to +3. The near-linear configuration of the C_{ring} , H, and O atoms in this transition state (TS4b) resembles that for σ bond metathesis.⁶¹ Due to the relatively high thermodynamic stability of the bridging OCH₃ group in Mo-5b, the formation and desorption of a benzene molecule in the step from Mo-4 to Mo-5b is much more exergonic (ΔG =-0.82 eV) than the desorption of a methanol molecule in the step from Mo-4 to Mo-5a (ΔG =-0.11 eV). To close the catalytic cycle, one more H is brought to Mo₁ of Mo-6b by spillover, by which the bridging OCH₃ group (Mo-6b) is re-hydrogenated through crossing a 0.81 eV barrier (TS6b) to form methanol which then desorbs, restoring the Mo-1 site. Interestingly, the net free energy barrier to hydrogenate OCH₃ on the Mo₁ site of Mo-6b (0.81 eV, from Mo-6b to TS-6b in Figure 9a) is much smaller than the barrier of hydrogenating OCH₃ in the step from Pd-6 to Pd-1 through TS6 on Pd₁ of Pd₁/Co₃O₄ (1.28 eV from Pd-6 to TS6 in Figure 8).

Overall, compared to the methanol-first sub-pathway (red in **Figure 9a**), this alternative sub-pathway (green) of first desorbing benzene and then CH₃OH, is kinetically preferred as the methoxy group acting as a relay lowers the barrier for the formation of benzene. In addition to this pathway over the Mo₁ site formed by substituting a Co atom, the reactivity of a grafted Mo₁ site (IS-1 in **Figure S33**) was also explored (**Figure S33 and Section S8.6 in SI**). Compared to the substituted Mo₁ site, the grafted Mo₁ site is much more prone to poisoning by OCH₃, which strongly binds atop the Mo₁ site (**Figure S33**). Although the free energy barrier to cleave the C_{ring}-O bond of anisole (IS-1 to TS1 in **Figure S33**) is 1.24 eV, the free energy change of methanol recombination (IS-4b to IS-6 in **Figure S33**) is 0.65 eV, resulting in a free energy span of 1.90 eV in **Figure S33**, higher than that of the substituted Mo₁ site (**Figure 9a**), making the grafted Mo₁ site less reactive. Considering that the actual catalyst could present a distribution of

 Mo_1 active sites, we expect the fraction of substituted Mo_1 sites to be responsible for the observed reactivity.

2.8 Theoretical assessments of anisole HDO kinetics over Pd_1/Co_3O_4 and $Pd_1/Mo_1/Co_3O_4$

2.8.1 Energetic span assessment of the reaction kinetics

Figure 10. Enthalpy pathways for the HDO of anisole (a) over Pd₁ and (b) over Mo₁ assisted by H spillover.

With the Gibbs free energy of all reactants, products, IS, and TS in the reaction defined, we model the kinetics of anisole HDO and compare them to the experimental measurements, beginning with an energetic span analysis of the reaction pathways. Since the energetic span model is derived from the analytical solution for the TOF of single-site catalytic reactions at a specific steady state conversion, it is appropriate for analysing the single-site HDO mechanisms developed in this work (**Figure 8 and 9**).⁶²⁻⁶⁴

For the reaction over Pd₁ only at 1% anisole conversion, we find two possible TOFdetermining intermediates (TDIs), the bare Pd (Pd-5) and PdH₂ (Pd-6), but one TOF-determining transition state (TDTS), corresponding to the desorption of methanol. All relevant Gibbs free energy spans (ΔG_{span}) are listed in **Table S11**. Here, Pd-6 and the TS of methanol desorption are the most dominant TDI and TDTS. Between this pair of states, we find a free energy span ΔG_{span} of 1.28 eV (**Figure 8**) and an enthalpy span (ΔH_{span}) of 1.57 eV (**Figure 10a**). For the HDO reaction over Mo₁ assisted by H spillover, we find that Mo-1, Mo-5b and Mo-6b are possible candidates for the TDI, while TS1 is the sole candidate for the TOF-determining transition state (TDTS) (**Figure 9a**). Mo-6b and TS1 are the most dominant TDI and TDTS, where ΔG_{span} span is 1.34 eV and ΔH_{span} is 1.49 eV (**Figure 10**).

With the relevant ΔG_{span} and ΔH_{span} in hand, we can calculate the reaction rates and apparent activation energies. From the general form of the analytical rate in ref⁶², we see that the rate of reaction should be:

$$r = \frac{k_B T}{h} \frac{\theta_{k,0}}{\sum_{i,j} \exp\left(\frac{\Delta G_{span,IS-i/TS-j}}{RT}\right)} \quad (1)$$

Where $\theta_{k,0}$ denotes the total surface coverage of active site k, and i and j denote the *i*-th IS and *j*-th TS occurring over site k. The apparent activation energy of a rate law in the above form is:

$$E_{a,app} = RT + \sum_{i,j} p_{i,j} \Delta H_{span,IS-i/TS-j} \quad (2)$$

Where $p_{i,j}$ is the Boltzmann-like weight of the free energy span between IS-i and TS-j:

$$p_{i,j} = \frac{\exp\left(\frac{\Delta G_{span,IS-i/TS-j}}{RT}\right)}{\sum_{i,j} \exp\left(\frac{\Delta G_{span,IS-i/TS-j}}{RT}\right)} \quad (3)$$

We note that equation (2) is a free-energy-span-specific variation of that of Mao and Campbell, which relates the degree of rate control to apparent activation energy in a microkinetic simulation.⁶⁵ Using the equations (1-3) and the spans in **Table S11**, we find the turnover frequency over only the Pd₁ sites to be $2.29 \cdot 10^{-1}$ min⁻¹ and the apparent activation energy to be 1.49 eV at 150 °C. For the HDO reaction mechanism over Mo₁ assisted by H spillover (**Figure 9**), we find its TOF to be $3.44 \cdot 10^{-2}$ min⁻¹ and the apparent activation energy to be 1.24 eV at 150 °C. Given that the Mo₁ sites outnumber Pd₁ by more than 10-fold (**Table S6**), these calculations show that the Mo₁+Pd₁/Co₃O₄ is kinetically favourable over Pd₁/Co₃O₄, confirming the team effect of Mo₁ and Pd₁ on Co₃O₄ in anisole HDO. On the other hand, as the Gibbs free energy barriers of H₂ dissociation over the Co₃O₄(111) substrate and the Mo₁ site are 1.62 eV and 2.39 eV (**Figure S30 and S31**), the Mo₁/Co₃O₄ catalyst is obviously less active than the Pd₁/Co₃O₄ catalyst.

As it is important to assess the impact of the accuracy of the electronic structure description on the calculated rates, we tested the sensitivity of the predicted reactivity to the effective Hubbard U (U_{eff}) values for Co and Mo. As shown in **Table S12**, we found that the transition state and intermediates have opposing sensitivity to the value of U_{eff} , resulting in a small net difference on the energy spans of the catalytic cycle. Although the free energy span of the reaction over Mo₁ increases slightly when a smaller value of U_{eff} is used for either or both Co and Mo (2.0 eV and 3.0 eV respectively), the overall activity of the catalyst still benefits from the presence of H spilled over from Pd₁.

2.8.2 Microkinetic modeling of the reaction kinetics and analysis

Figure 11. Microkinetic simulations showing that the teamed Mo_1+Pd_1 catalyst is more active than Pd_1 for anisole HDO at 50-150°C. (a) Calculated reactions rate as a function of catalysis temperature show that the teamed Mo_1+Pd_1/Co_3O_4 catalyst is more active than the Pd_1/Co_3O_4 single-site catalyst in the temperature range of 50-150°C. (b) Calculated apparent activation energy as a function of catalysis temperature show that the activation barrier for HDO over Mo_1 assisted by H spillover (Mo_1+Pd_1/Co_3O_4) is smaller than that over only Pd_1 (Pd_1/Co_3O_4) in this temperature range as well. (c) Degree of rate control (DRC) of key intermediates and transition states in anisole HDO over Pd_1/Co_3O_4 . (d) DRC of key intermediates in anisole HDO over Mo_1+Pd_1/Co_3O_4 . DRC analyses show that the decrease of the apparent activation energy with temperature is due to the depletion of surface intermediates.

To solidify the link between the DFT-calculated energy profiles and the catalysis experiments, we developed microkinetic models for the proposed reaction mechanisms over Mo_1+Pd_1/Co_3O_4 and Pd_1/Co_3O_4 , to quantify the rates of anisole HDO (Sections S9.3).^{62, 66, 67} These simulations show that the Mo₁ site of the Pd_1+Mo_1/Co_3O_4 catalyst is the main contributor to the overall catalytic activity along with the assistance of the Pd_1 site to activate H_2 molecules. The rate of anisole HDO over Mo_1+Pd_1/Co_3O_4 was found to be consistently higher than that over

 Pd_1/Co_3O_4 in the temperature range 50-150 °C (**Figure 11a**). As temperature rises, the apparent activation energies of the HDO reaction over both Mo₁ assisted by H spillover and Pd₁ decrease as the coverage of reactive intermediates decrease (**Figure 11b**). These findings are consistent with our free energy span analysis presented above in **subsection 2.8.1**.

For further analysis, we computed the degree of rate control (DRC) of key intermediates and transition states in the reaction mechanisms. As shown in **Figure 11c**, in the anisole HDO over only Pd₁, the desorption of methanol is the sole rate-controlling TS (Pd-TS6, blue), while the bare Pd₁ species (Pd-5, orange) and the PdH₂ species (Pd-6, green) are the rate-controlling intermediates. The coverage of hydrides on Pd₁ gradually decreases with temperature, resulting in an increasing DRC of PdH₂ and a lowering apparent activation energy (**Figure 11b**). These results agree with those from our energetic span analysis, where we found the TS of the desorption of methanol to be the sole TDTS and the bare Pd₁ site and PdH₂ to be the TDIs (**Figures 8 and 10**).

On the other hand, for the teamed Pd_1+Mo_1 catalyst, the dissociation of anisole over Mo_1 is the main rate-controlling TS through the temperature range 50-150 °C (Mo-TS1, pink, **Figure 11d**). On the other hand, the bridging methoxy with a nearby OH [Mo-(OH)-OCH₃ (Mo-6b), brown] is the main rate-controlling intermediate. The importance of this intermediate is reflected in the high apparent activation energy at 50 °C. As temperature increases, the importance of Mo-6b decreases, which results in a decrease of the apparent activation energy with temperature (**Figure 11b**). Similar to the case of anisole HDO over only Pd_1 , these results also agree with those from our energetic span analysis, where we found the dissociation of anisole to be the sole TDTS and the Mo₁ with a bridging methoxy (Mo-6b) to be the main TDI.

2.8.3 Comparison to experimental findings

The apparent activation energy $E_a(app)$ over Mo_1+Pd_1/Co_3O_4 predicted from computational studies is lower than that over Pd_1/Co_3O_4 as shown in Figure 11b, which qualitative agrees with the experimental measurements (**Figure 5c versus 5b**). Further, the configurations of the Mo_1 and Pd_1 sites on Mo_1+Pd_1/Co_3O_4 (Mo-6b with a bridging OCH₃ in **Figure 9a** and Pd-6 with two adsorbed H⁻ in **Figure 9b**) found during steady state reaction also agree with the coordination environment of Mo_1 and Pd_1 sites experimentally measured by the in-situ EXAFS studies (entries 1-4 in **Table 1**). Our in-situ EXAFS studies of Pd_1+Mo_1/Co_3O_4 catalyst show that the Mo atoms are coordinated to 3.20 ± 0.71 oxygen atoms, while the Pd atoms are coordinated to 2.09 ± 0.28 oxygen atoms (**Table 1**). Finally, the link between the active site coverage and catalyst reactivity is also revealed. In the catalytic tests, we found that when both Mo_1 and Pd₁ sites are present on the Co₃O₄ support, the catalyst reactivity is not sensitive to the amount of Pd₁ sites (**Figure 4c-f**). This is well rationalized by computational studies since H₂ dissociation (Pd-TS5) is not a rate-determining step. As long as Pd₁ sites are present on the same catalyst particle to generate surface H, the Mo₁ sites will have H to perform the reaction.

The quantitative differences between the calculated apparent activation energies over the Pd_1 and Pd_1+Mo_1 catalysts and the experimentally measured ones could be due to the gas composition used in the microkinetic model. Although the HDO reaction over the Pd_1 site alone does not depend on the partial pressure of methanol, a lower H_2 partial pressure would make the intermediate Pd-5 become the rate-controlling one, resulting in a lower activation energy. Thus, a lower H_2 partial pressure can make the barrier predicted from computational studies better agree with the measured apparent active energy on Pd_1/Co_3O_4 . For instance, using an H_2 partial pressure of ~10 kPa instead of ~100 kPa would destabilize the intermediate Pd-6 by ~0.08 eV,

making Pd-5 the most abundant intermediate and bringing the apparent activation energy on Pd_1/Co_3O_4 closer to the experimentally measured one.

On the other hand, the reaction over the Mo₁ site, when assisted by H spillover, is less prone to poisoning by the methanol product than the reaction over Pd₁ alone, as seen in the free energy profiles shown in **Figures 8 and 9a.** This difference implies that a more inlet-like gas composition (even lower than 1% anisole conversion) would result in a lower apparent activation energy and better agreement with experiment. For instance, lowering anisole conversion, and thereby the partial pressure of the product methanol, by an order of magnitude will destabilize intermediates Mo-5b and Mo-6b by ~0.08 eV, making Mo-1 the most abundant intermediate and drastically lowering the apparent activation energy. Similarly, considering the reaction over the grafted Mo₁ site (**Figure S33**), a type of site different from the substituted Mo₁ site (Mo-1 in **Figure 9a**), we are aware that a more inlet-like gas composition could improve its reactivity by shrinking the energetic span; however, the grafted Mo₁ site will still be less reactive than the substituted Mo₁ site. This shift will also decrease the predicted Mo-O coordination number during steady state reaction, bringing it closer to that found the EXAFS measurements.

3. Conclusion

In summary, we have demonstrated that low-temperature catalysis can be realized by teaming two different single-atom sites which can temporally simultaneously but spatially separately activate two reactants A and B of a reaction [A+B→target product(s)] where an ordinary metal or oxide nanoparticle catalyst cannot. The catalyst consisting of teamed single-atom sites, Mo_1+Pd_1/Co_3O_4 was synthesized through two consecutive preparation steps. The Mo_1+Pd_1/Co_3O_4 catalyst is highly active and selective in producing benzene through anisole

HDO at 150° C while supported metal Pd or MoO₃ nanoparticle catalysts are inactive at this temperature. The teamed Mo₁+Pd₁/Co₃O₄ catalyst is also more active and more selective than the Pd₁/Co₃O₄ and Mo₁/Co₃O₄ catalysts since Mo₁/Co₃O₄ is not active and only Pd₁/Co₃O₄ shows some activity but low selectivity for producing benzene through anisole HDO.

Computational studies uncovered the Gibbs free energy pathways of anisole HDO on the dual site catalyst, Mo_1+Pd_1/Co_3O_4 , and single site catalysts, Pd_1/Co_3O_4 and Mo_1/Co_3O_4 . For the teamed single-atom site catalyst, Pd_1 activates H_2 with a free energy barrier of only 0.37 eV while Mo_1 cleaves the C_{ring} -O bond of anisole. The hydrogenation of phenyl to form benzene on the Mo_1 center is assisted by the methoxy fragment which acts as relay for the H transfer. The Co_3O_4 support is inactive for anisole HDO by itself but participates in the catalysis of the teamed Pd_1 and Mo_1 sites by facilitating H spillover. In turn, the hydrogenation of OCH_3 to form CH_3OH could be performed on a Mo_1 site with only a net free energy barrier of 0.81 eV instead of 1.28 eV over Pd_1 . Energetic span analysis and microkinetic models built from the proposed reaction mechanisms found that the Mo_1+Pd_1/Co_3O_4 catalyst.

The combined experiments and theoretical modelling therefore show that for a catalytic reaction involving multiple bond activations, several single cation sites can be efficient teamed together, with coupling via intermediate spill-over on the support, to catalyze the reaction at low temperature where traditional nanoparticle catalysts are not active. This study opens avenues for the customized design of highly efficient catalysts.

Supporting Information:

The Supporting Information is available free of charge at of charge at https://pubs.acs.org/doi/xxxx.

SI #1: Experimental methods for catalyst synthesis, ex-situ XRD, TEM, XPS, and BET characterizations, in-situ AP-XPS, in-situ XANES, and in-situ EXAFS characterizations, measurements of catalytic performance, kinetic measurements, calculations of Pd/Co atomic ratio, computational methods for DFT calculations and kinetic modeling, geometry of intermediates, and transition states in the reaction pathways over the Pd₁ site, H₂ dissociation and spillover, and alternative anisole HDO pathway. (pdf)

SI #2: Geometry of intermediates and transition states in the reaction pathways over the Pd_1 site and the substituted Mo_1 site. (zip)

Author Contributions

YT, GY, SZ, and YL made equal contributions to this work.

Acknowledgements

This work was supported by NSF through grants (NSF-CHE-1462121, NSF-OIA-1539105, NSF-CHE-1800577, and NSF-CHE-1800601) and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Grant No. DE-SC0014561 and DE-SC0019152. The calculations in this work used computational and storage services associated with the Hoffman2 shared computational cluster located at UCLA. This work also used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562.⁶⁸ Specifically, it used the Bridges, Bridges-2, and

Comet systems. The Bridges system is supported by NSF award number ACI-1445606, at the

Pittsburgh Supercomputing Center (PSC).⁶⁹

References

1. Resasco, J.; Christopher, P., Atomically Dispersed Pt-group Catalysts: Reactivity, Uniformity, Structural Evolution, and Paths to Increased Functionality. *J. Phys. Chem. Lett.* **2020**, *11* (23), 10114-10123.

2. Pang, S. H.; Schoenbaum, C. A.; Schwartz, D. K.; Medlin, J. W., Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. *Nat. Commun.* **2013**, *4* (1), 2448.

3. Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B., Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts. *Science* **2013**, *341* (6147), 771-773.

4. Serna, P.; Gates, B. C., Molecular Metal Catalysts on Supports: Organometallic Chemistry Meets Surface Science. *Acc. Chem. Res.* **2014**, *47* (8), 2612-2620.

5. Resasco, J.; Yang, F.; Mou, T.; Wang, B.; Christopher, P.; Resasco, D. E., Relationship between Atomic Scale Structure and Reactivity of Pt Catalysts: Hydrodeoxygenation of m-Cresol over Isolated Pt Cations and Clusters. *ACS Catal.* **2020**, *10* (1), 595-603.

6. Zhang, Z.; Tian, J.; Lu, Y.; Yang, S.; Jiang, D.; Huang, W.; Li, Y.; Hong, J.; Hoffman, A. S.; Bare, S. R.; Engelhard, M. H.; Datye, A. K.; Wang, Y., Memory-dictated dynamics of single-atom Pt on CeO2 for CO oxidation. *Nat. Commun.* **2023**, *14* (1), 2664.

7. Liu, L.; Corma, A., Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. *Chem. Rev.* **2018**, *118* (10), 4981-5079.

8. Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T., Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. *Acc. Chem. Res.* **2013**, *46* (8), 1740-1748.

9. Tonini, D.; Schrijvers, D.; Nessi, S.; Garcia-Gutierrez, P.; Giuntoli, J., Carbon footprint of plastic from biomass and recycled feedstock: methodological insights. *Int. J. Life Cycle Assess.* **2021**, *26* (2), 221-237.

10. He, M.; Sun, Y.; Han, B., Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. *Angew. Chem. Int. Ed.* **2022**, *61* (15), e202112835.

11. Li, K. L.; Wang, R. J.; Chen, J. X., Hydrodeoxygenation of Anisole over Silica-Supported Ni2P, MoP, and NiMoP Catalysts. *Energy & Fuels* **2011**, *25* (3), 854-863.

12. Sakoda, K.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T., Selective Hydrodeoxygenation of Esters to Unsymmetrical Ethers over a Zirconium Oxide-Supported Pt–Mo Catalyst. *JACS Au* **2022**, *2* (3), 665-672.

13. Liu, X.; Zhang, S.; Zhao, H.; Lin, H.; Xu, K.; Xu, Y.; Tan, L.; Wu, L.; Tang, Y., Insitu studies on the synergistic effect of Pd-Mo bimetallic catalyst for anisole hydrodeoxygenation. *Mol. Catal.* **2022**, *530*, 112591. 14. González-Borja, M. Á.; Resasco, D. E., Anisole and Guaiacol Hydrodeoxygenation over Monolithic Pt-Sn Catalysts. *Energy & Fuels* **2011**, *25* (9), 4155-4162.

15. Zhu, X. L.; Lobban, L. L.; Mallinson, R. G.; Resasco, D. E., Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. *J. Catal.* **2011**, *281* (1), 21-29.

16. Loricera, C. V.; Pawelec, B.; Infantes-Molina, A.; Alvarez-Galvan, M. C.; Huirache-Acuña, R.; Nava, R.; Fierro, J. L. G., Hydrogenolysis of anisole over mesoporous sulfided CoMoW/SBA-15(16) catalysts. *Catal. Today* **2011**, *172* (1), 103-110.

17. Runnebaum, R. C.; Lobo-Lapidus, R. J.; Nimmanwudipong, T.; Block, D. E.; Gates, B. C., Conversion of Anisole Catalyzed by Platinum Supported on Alumina: The Reaction Network. *Energy & Fuels* **2011**, *25* (10), 4776-4785.

18. Runnebaum, R. C.; Nimmanwudipong, T.; Block, D. E.; Gates, B. C., Catalytic Conversion of Anisole: Evidence of Oxygen Removal in Reactions with Hydrogen. *Catal. Lett.* **2011**, *141* (6), 817-820.

19. Deutsch, K. L.; Shanks, B. H., Hydrodeoxygenation of lignin model compounds over a copper chromite catalyst. *Appl. Catal. A* **2012**, *447*, 144-150.

20. Lee, W. S.; Wang, Z. S.; Wu, R. J.; Bhan, A., Selective vapor-phase hydrodeoxygenation of anisole to benzene on molybdenum carbide catalysts. *J. Catal.* **2014**, *319*, 44-53.

21. Saidi, M.; Samimi, F.; Karimipourfard, D.; Nimmanwudipong, T.; Gates, B. C.; Rahimpour, M. R., Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. *Energy Environ. Sci.* **2014**, *7* (1), 103-129.

22. Jin, S. H.; Xiao, Z. H.; Li, C.; Chen, X.; Wang, L.; Xing, J. C.; Li, W. Z.; Liang, C. H., Catalytic hydrodeoxygenation of anisole as lignin model compound over supported nickel catalysts. *Catal. Today* **2014**, *234*, 125-132.

23. Yang, Y. X.; Ochoa-Hernández, C.; O'Shea, V. A. D.; Pizarro, P.; Coronado, J. M.; Serrano, D. P., Effect of metal-support interaction on the selective hydrodeoxygenation of anisole to aromatics over Ni-based catalysts. *Appl. Catal. B: Environ.* **2014**, *145*, 91-100.

24. Khromova, S. A.; Smirnov, A. A.; Bulavchenko, O. A.; Saraev, A. A.; Kaichev, V. V.; Reshetnikov, S. I.; Yakovlev, V. A., Anisole hydrodeoxygenation over Ni-Cu bimetallic catalysts: The effect of Ni/Cu ratio on selectivity. *Appl. Catal. A* **2014**, *470*, 261-270.

25. Sankaranarayanan, T. M.; Berenguer, A.; Ochoa-Hernandez, C.; Moreno, I.; Jana, P.; Coronado, J. M.; Serrano, D. P.; Pizarro, P., Hydrodeoxygenation of anisole as bio-oil model compound over supported Ni and Co catalysts: Effect of metal and support properties. *Catal. Today* **2015**, *243*, 163-172.

26. Ressler, T.; Wienold, J.; Jentoft, R. E.; Neisius, T., Bulk structural investigation of the reduction of MoO3 with propene and the oxidation of MoO2 with oxygen. *J. Catal.* **2002**, *210* (1), 67-83.

27. Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H., Isolated Metal Atom Geometries as a Strategy for Selective Heterogeneous Hydrogenations. *Science* **2012**, *335* (6073), 1209-1212.

28. Karim, W.; Spreafico, C.; Kleibert, A.; Gobrecht, J.; VandeVondele, J.; Ekinci, Y.; van Bokhoven, J. A., Catalyst support effects on hydrogen spillover. *Nature* **2017**, *541* (7635), 68-71.

29. van der Hoeven, J. E.; Ngan, H. T.; Taylor, A.; Eagan, N. M.; Aizenberg, J.; Sautet, P.; Madix, R. J.; Friend, C. M., Entropic control of HD exchange rates over dilute Pd-in-Au alloy nanoparticle catalysts. *ACS Catal.* **2021**, *11* (12), 6971-6981.

30. Marcella, N.; Lim, J. S.; Płonka, A. M.; Yan, G.; Owen, C. J.; van der Hoeven, J. E.; Foucher, A. C.; Ngan, H. T.; Torrisi, S. B.; Marinkovic, N. S., Decoding reactive structures in dilute alloy catalysts. *Nat. Commun.* **2022**, *13* (1), 1-9.

31. Gao, J.; Zheng, Y. T.; Jehng, J. M.; Tang, Y. D.; Wachs, I. E.; Podkolzin, S. G., Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion. *Science* **2015**, *348* (6235), 686-690.

32. Yandulov, D. V.; Schrock, R. R., Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. *Science* **2003**, *301* (5629), 76-78.

33. Hu, H.; Wachs, I. E.; Bare, S. R., Surface structures of supported molybdenum oxide catalysts: characterization by Raman and Mo L3-edge XANES. *J. Phys. Chem.* **1995**, *99* (27), 10897-10910.

34. Mouat, A. R.; Lohr, T. L.; Wegener, E. C.; Miller, J. T.; Delferro, M.; Stair, P. C.; Marks, T. J., Reactivity of a Carbon-Supported Single-Site Molybdenum Dioxo Catalyst for Biodiesel Synthesis. *ACS Catal.* **2016**, *6* (10), 6762-6769.

35. Zhang, S.; Shan, J.-j.; Zhu, Y.; Frenkel, A. I.; Patlolla, A.; Huang, W.; Yoon, S. J.; Wang, L.; Yoshida, H.; Takeda, S., WGS Catalysis and In Situ Studies of CoO1-x, PtCo n/Co3O4, and Pt m Co m' /CoO1-x Nanorod Catalysts. *J. Am. Chem. Soc.* **2013**, *135* (22), 8283-8293.

36. Nguyen, L.; Zhang, S.; Wang, L.; Li, Y.; Yoshida, H.; Patlolla, A.; Takeda, S.; Frenkel, A. I.; Tao, F., Reduction of Nitric Oxide with Hydrogen on Catalysts of Singly Dispersed Bimetallic Sites Pt1Com and Pd1Con. *ACS Catal.* **2016**, *6* (2), 840-850.

37. Tao, F. F.; Shan, J.-j.; Nguyen, L.; Wang, Z.; Zhang, S.; Zhang, L.; Wu, Z.; Huang, W.; Zeng, S.; Hu, P., Understanding complete oxidation of methane on spinel oxides at a molecular level. *Nat. Commun.* **2015**, *6* (1), 1-10.

38. Wang, L.; Zhang, S.; Zhu, Y.; Patlolla, A.; Shan, J.; Yoshida, H.; Takeda, S.; Frenkel, A. I.; Tao, F., Catalysis and in situ studies of Rh1/Co3O4 nanorods in reduction of NO with H2. *ACS Catal.* **2013**, *3* (5), 1011-1019.

39. Zhang, S.; Nguyen, L.; Liang, J.-X.; Shan, J.; Liu, J.; Frenkel, A. I.; Patlolla, A.; Huang, W.; Li, J.; Tao, F., Catalysis on singly dispersed bimetallic sites. *Nat. Commun.* **2015**, *6*, 7938.

40. Patterson, A. L., The Scherrer Formula for X-Ray Particle Size Determination. *Phys. Rev.* **1939**, *56* (10), 978-982.

41. Nguyen, L.; Tao, F., Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy. *Rev. Sci. Instrum.* **2018**, *89* (2), 024102.

42. Tang, Y.; Nguyen, L.; Li, Y.; Tao, F., In situ and operando study of catalysts during high-temperature high-pressure catalysis in a fixed-bed plug flow reactor with x-ray absorption spectroscopy. *Rev. Sci. Instrum.* **2023**, *94* (5).

43. Tao, F.; Nguyen, L.; Tang, Y., Report on Photoelectron-Induced Excitation Spectroscopy and Its Close Correlation with Fundamental Studies of Catalysis. *J. Phys. Chem. C* **2022**, *126* (31), 13069-13087.

44. Tao, F., *Application of Ambient Pressure X-ray Photoelectron Spectroscopy to Catalysis*. John Wiley & Sons: 2023.

45. Weckhuysen, B. M., Determining the active site in a catalytic process: Operando spectroscopy is more than a buzzword. *Phys. Chem. Chem. Phys.* **2003**, *5* (20), 4351-4360.

46. Jin, L.; Zheng, X.; Liu, W.; Cao, L.; Cao, Y.; Yao, T.; Wei, S., Integration of plasmonic and amorphous effects in MoO3–x spheres for efficient photoelectrochemical water oxidation. *J. Mater. Chem. A* **2017**, *5* (24), 12022-12026.

47. Degler, D.; Pereira de Carvalho, H. W.; Weimar, U.; Barsan, N.; Pham, D.; Mädler, L.; Grunwaldt, J.-D., Structure–function relationships of conventionally and flame made Pd-doped sensors studied by X-ray absorption spectroscopy and DC-resistance. *Sens. Actuators, B* **2015**, *219*, 315-323.

48. Chastain, J.; King, R. C.; Moulder, J. F., *Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data*. Physical Electronics Division, Perkin-Elmer Corporation Eden Prairie, Minnesota: 1992.

49. Toyoshima, R.; Yoshida, M.; Monya, Y.; Kousa, Y.; Suzuki, K.; Abe, H.; Mun, B. S.; Mase, K.; Amemiya, K.; Kondoh, H., In situ ambient pressure XPS study of CO oxidation reaction on Pd(111) surfaces. *J. Phys. Chem. C* **2012**, *116* (35), 18691-18697.

50. Carlsson, A. F.; Naschitzki, M.; Bäumer, M.; Freund, H. J., The Structure and Reactivity of Al2O3-Supported Cobalt–Palladium Particles: A CO-TPD, STM, and XPS Study. *J. Phys. Chem. B* **2003**, *107* (3), 778-785.

51. Marin-Flores, O.; Scudiero, L.; Ha, S., X-ray diffraction and photoelectron spectroscopy studies of MoO2 as catalyst for the partial oxidation of isooctane. *Surf. Sci.* **2009**, *603* (15), 2327-2332.

52. Baltrusaitis, J.; Mendoza-Sanchez, B.; Fernandez, V.; Veenstra, R.; Dukstiene, N.; Roberts, A.; Fairley, N., Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. *Appl. Surf. Sci.* **2015**, *326*, 151-161.

53. Choi, J.-G.; Thompson, L. T., XPS study of as-prepared and reduced molybdenum oxides. *Appl. Surf. Sci.* **1996**, *93* (2), 143-149.

54. Yan, G.; Sautet, P., Surface Structure of Co3O4 (111) under Reactive Gas-Phase Environments. *ACS Catal.* **2019**, *9* (7), 6380-6392.

55. Chempath, S.; Bell, A. T., A DFT study of the mechanism and kinetics of methane oxidation to formaldehyde occurring on silica-supported molybdena. *J. Catal.* **2007**, *247* (1), 119-126.

56. Prasomsri, T.; Nimmanwudipong, T.; Román-Leshkov, Y., Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO3 using low H2 pressures. *Energy Environ. Sci.* **2013**, *6* (6), 1732-1738.

57. Mironenko, A. V.; Vlachos, D. G., Conjugation-Driven "Reverse Mars-van Krevelen"-Type Radical Mechanism for Low-Temperature C-O Bond Activation. *J. Am. Chem. Soc.* 2016, *138* (26), 8104-8113.

58. Fu, J.; Lym, J.; Zheng, W.; Alexopoulos, K.; Mironenko, A. V.; Li, N.; Boscoboinik, J. A.; Su, D.; Weber, R. T.; Vlachos, D. G., C-O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides. *Nat. Catal.* **2020**, *3* (5), 446-453.

59. Cohen, M.; Vlachos, D. G., Modified Energy Span Analysis Reveals Heterogeneous Catalytic Kinetics. *Ind. Eng. Chem. Res.* **2022**, *61* (15), 5117-5128.

60. Merte, L. R.; Peng, G.; Bechstein, R.; Rieboldt, F.; Farberow, C. A.; Grabow, L. C.; Kudernatsch, W.; Wendt, S.; Lægsgaard, E.; Mavrikakis, M., Water-mediated proton hopping on an iron oxide surface. *Science* **2012**, *336* (6083), 889-893.

61. Joubert, J.; Delbecq, F.; Thieuleux, C.; Taoufik, M.; Blanc, F.; Coperet, C.; Thivolle-Cazat, J.; Basset, J.-M.; Sautet, P., Synthesis, Characterization, and Catalytic Properties of γ -Al2O3-Supported Zirconium Hydrides through a Combined Use of Surface Organometallic Chemistry and Periodic Calculations. *Organometallics* **2007**, *26*, 3329-3335.

62. Kozuch, S.; Shaik, S., How to conceptualize catalytic cycles? The energetic span model. *Acc. Chem. Res.* **2011**, *44* (2), 101-110.

63. Kozuch, S.; Shaik, S., A combined kinetic–quantum mechanical model for assessment of catalytic cycles: Application to cross-coupling and Heck reactions. *J. Am. Chem. Soc.* **2006**, *128* (10), 3355-3365.

64. Christiansen, J. A., The elucidation of reaction mechanisms by the method of intermediates in quasi-stationary concentrations. *Adv. Catal.* **1953**, *5*, 311-353.

65. Mao, Z.; Campbell, C. T., Apparent activation energies in complex reaction mechanisms: a simple relationship via degrees of rate control. *ACS Catal.* **2019**, *9* (10), 9465-9473.

66. Motagamwala, A. H.; Dumesic, J. A., Microkinetic modeling: a tool for rational catalyst design. *Chem. Rev.* **2020**, *121* (2), 1049-1076.

67. Campbell, C. T., The Degree of Rate Control: A Powerful Tool for Catalysis Research. *ACS Catal.* **2017**, *7* (4), 2770-2779.

68. Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G. D.; Roskies, R.; Scott, J. R.; Wilkens-Diehr, N., XSEDE: Accelerating Scientific Discovery. Computing in Science & Engineering. *Comput. Sci. Eng.* **2014**, *16* (5), 62-74.

69. Nystrom, N. A.; Levine, M. J.; Roskies, R. Z.; Scott, J. R. In *Bridges: a uniquely flexible HPC resource for new communities and data analytics*, Proceedings of the 2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure, 2015; pp 1-8.

Catalytic Conversion of Biomass Derivatives

TOC graphics

Higher Selectivity for Benzene

Pd₁+Mo₁ >**Pd**₁>Mo₁

