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Abstract

Mutations in Optineurin (Optn) gene have been implicated in both familial and sporadic 

amyotrophic lateral sclerosis (ALS). However, the role of this protein in the central nervous 

system (CNS) and how it may contribute to ALS pathology is unclear. Here, we found that 

optineurin actively suppressed RIPK1-dependent signaling by regulating its turnover. Loss-of-

OPTN led to progressive dysmyelination and axonal degeneration through engagement of 

necroptotic machinery, including RIPK1, RIPK3 and MLKL, in the CNS. Furthermore, RIPK1/

RIPK3-mediated axonal pathology was commonly observed in SOD1G93A transgenic mice and 
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pathological samples from human ALS. Thus, RIPK1/RIPK3 plays a critical role in mediating 

progressive axonal degeneration and inhibiting RIPK1 kinase may provide an axonal protective 

strategy for the treatment of ALS and other human degenerative diseases characterized by axonal 

degeneration.

Loss-of-function mutations in the Optineurin (Optn) gene have been implicated in both 

familial and sporadic cases of amyotrophic lateral sclerosis (ALS), a devastating 

degenerative motor neuron disease (1–3). The Optn gene encodes a ubiquitin-binding 

protein involved in TNFα signaling but is dispensable for NF-κB activation (4, 5). It is still 

unclear how the loss of function of Optn leads to human ALS.

RIPK1 is a critical regulator of cell death and inflammation (6). RIPK1 regulates 

necroptosis, a form of regulated necrotic cell death, by promoting the sequential activation 

of two downstream targets, RIPK3 and MLKL (7–9). Application of Nec-1s, a highly 

specific inhibitor of RIPK1 kinase activity, blocks necroptosis and inflammation in vitro and 

in vivo (10, 11). However, the pathophysiological significance of RIPK1 and necroptosis in 

the genetic context of human diseases remains to be established.

Axonal degeneration is frequently observed before the death of neuronal cell bodies in 

patients with neurodegenerative disorders including ALS and contributes significantly to 

neurological disability (12). Axonal degeneration induced by direct nerve injury, known as 

Wallerian degeneration, is mediated through a mechanism distinct from apoptosis of 

neuronal cell bodies (13, 14). Axonal degeneration in patients with neurodegenerative 

diseases may also exhibit features similar to Wallerian degeneration and is referred to as 

“Wallerian-like” degeneration. The mechanism of Wallerian degeneration is still unclear.

To understand the mechanism by which the loss of OPTN could lead to ALS, we developed 

Optn−/− mice (fig. S1A–B). We examined the impact of Optn loss in the spinal cord of Optn
−/− mice. We found that the number and morphology of spinal cord motor neurons in Optn
−/− mice were indistinguishable from WT mice (fig. S1C–D). However, we observed a 

marked reduction in the number of motor axons and abnormal myelination in the 

ventrolateral spinal cord white matter in the Optn−/− mice from 3 weeks to 2 years (Fig. 

1A–D; fig. S1E). The axonal pathology presented as a decompaction of myelin sheaths with 

a decreased g-ratio, an increased large-diameter axons and a decreased axonal number in the 

ventrolateral white matter (Fig. 1B–D), suggesting degeneration and swelling of motor 

neuron axons in Optn−/− mice. This finding is similar to axonal pathology observed in the 

spinal cords of ALS patients in early stages of the disease (15). The pathology was 

progressive as a reduction in axonal numbers was observed at 12 weeks or older but not at 3 

weeks (fig. S1F). Similar pathology was observed in the ventral roots of motor axons in 

Optn−/− mice (fig. S1G–J). In addition, denervation of neuromuscular junctions in the 

tibialis anterior muscle was observed in Optn−/− mice (fig. S1K–L). Thus, OPTN deficiency 

leads to axonal pathology without affecting motor neuron cell bodies. Consistent with this 

notion, we observed a significant increase in the number of TUNEL+ in the ventrolateral 

white matter of spinal cords of Optn−/− mice (Fig. 1E). Thus, OPTN deficiency sensitizes 

cells to non-apoptotic cell death in Optn−/− mice.
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To determine the cell types involved in mediating OPTN-deficiency-induced axonal 

degeneration, we generated lineage-specific deletion of OPTN using Cnp-cre, Lyz2-cre, 
Gfap-cre and Mnx1-cre mice (16–18) (fig. S2). Loss of OPTN from oligodendrocytes and 

myeloid cells, but not that of astrocytes or motorneurons were sufficient to reproduce axonal 

myelination pathology (Fig. 1F–I). Furthermore, we induced OPTN loss from microglial 

lineage by dosing OptnF/F; Cx3cr1Cre mice (19) with tamoxifen for one month (fig S3A) and 

also found axonal pathology as that in Optn−/− mice (fig. S3B–E).

Because necroptosis is an important non-apoptotic cell death mechanism (20), we searched 

our dataset for genes that could sensitize to necroptosis (21). Knockdown of Optn sensitized 

L929 cells to necroptosis induced by TNFα or zVAD.fmk, the latter is known to involve 

TNFα autocrine (Z-score = −2.07, Table S1; fig. S4A–B) (22). Thus, Optn deficiency 

sensitized to necroptosis (fig. S4C). The biochemical hallmarks of necroptosis, including the 

upshifts of RIPK1, RIPK3 and p-MLKL, and the levels of complex IIb were significantly 

higher in Optn−/− MEFs than in Optn+/+ MEFs (fig. S4D). Importantly, Optn−/− 

oligodendrocytes were sensitized to die by TNFα-induced necroptosis which was protected 

by Nec-1s and in Optn−/−; Ripk1D138N/D138N and Optn−/−; Ripk3−/− double mutants (23, 

24) (Fig. 2A). Thus, we conclude that OPTN deficiency can promote necroptosis of 

oligodendrocytes.

The expression levels of RIPK1, RIPK3 and MLKL, the key mediators of necroptosis, were 

all increased in the spinal cords of Optn−/− mice (Fig. 2B). Furthermore, we detected the 

interaction of OPTN and RIPK1 in WT spinal cords (Fig. 2C). Compared to WT mice, 

RIPK1 K48 ubiquitination levels were decreased while RIPK1 mRNA unchanged in the 

spinal cords of Optn−/− mice (Fig. 2D–E). Furthermore, RIPK1 was degraded slower in 

Optn−/− MEFs than that in WT cells (Fig. 2F). Thus, OPTN might control sensitivity to 

necroptosis by regulating proteasomal turnover of RIPK1.

Phosphor-Ser14/15, a marker of RIPK1 activation, was increased in Optn−/− microglia 

relative to WT microglia, which was inhibited by Nec-1s and Ripk1D138N/D138N mutation 

(Fig. 2G). Because microglia express little MLKL, we hypothesize that RIPK1 activation in 

microglia promotes inflammatory signaling, not necroptosis. Consistently, we detected an 

increased production of multiple proinflammatory cytokines, including IL1α, IL1β, IL2, 

IL12, IFNγ and TNFα in the spinal cords of Optn−/− mice, which were markedly reduced 

in the Optn−/−; Ripk1D138N/D138N mice (Fig. 2H). In addition, Optn−/− microglia had 

elevated TNFα, which was inhibited by Nec-1s (fig. S5A). Consistently, the levels of TNFα 
were also increased in the spinal cords of OptnF/F; Lyz2-cre mice (fig. S5B).

To explore the effect of OPTN deficiency on transcriptions, we performed RNA-seq on WT, 

Optn−/−, and Optn−/−; Ripk1D138N/D138N primary microglia. Co-expression analysis (25) 

identified a module with approximately 1300 genes (ME1) differentially-expressed between 

WT and Optn−/− microglia and suppressed by Ripk1D138N/D138N. The top 71 genes in this 

module include the LPS receptor CD14 and CD86, a biomarker for the proinflammatory 

M1-like state (26) (Fig. 2I; Table S2). Elevated CD14 and CD86 in Optn−/− microglia were 

suppressed by Nec-1s and Ripk1D138N/D138N (fig. S5C). Thus, OPTN deficiency promotes 

an M1-like inflammatory microglia.
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We analyzed the genes differentially expressed in Optn−/− microglia using MSigDB 

(Molecular Signatures Database) (27) to identify transcription factors whose targets were 

overrepresented. We found a significant overrepresentation of the predicted Sp1 transcription 

factor targets in ME1 module (Table S3) with a network (28) of 225 Sp1 targets regulated by 

RIPK1 (fig. S6A). We found that increased production of TNFα and death of L929 cells can 

be blocked by knockdown of Sp1 and by Nec-1s (fig. S6B–C). Thus, loss-of-OPTN in the 

spinal cord may increase RIPK1-dependent inflammation.

We examined the involvement of necroptosis in Optn−/− mice in vivo. We found that the 

increase in TUNEL+ cells and axonal pathology of Optn−/− mice were all rescued in the 

Optn−/−; Ripk1D138N/D138N double mutant and the Optn−/−; Ripk3−/− double mutant mice, 

and by Nec-1s (Fig. 3A–E). Behaviorally, Optn−/− mice showed no difference in the total 

locomotor activity while the vertical rearing activity was significantly reduced compared to 

that of WT mice (Fig. 3F–H). These data suggest that OPTN deficiency leads to hindlimb 

weakness. Furthermore, the vertical rearing deficit in Optn−/− mice was rescued 

pharmacologically by Nec-1s and genetically in the Optn−/−; Ripk1D138N/D138N mice and 

Optn−/−; Ripk3−/− mice. Thus, OPTN deficiency leads to the activation of necroptotic 

machinery to promote axonal pathology.

To explore the involvement of RIPK1 mediated axonal pathology in ALS in general, we 

used SOD1G93A transgenic mice. Early degeneration of oligodendrocytes SOD1G93A mice 

was reported but mechanism is unclear (29). We found that the expression of RIPK1, RIPK3 

and MLKL in the spinal cords of SOD1G93A transgenic mice was elevated (Fig. 4A). In 

addition, we observed a similar axonal pathology as that of Optn−/− mice in SOD1G93A 

mice before the onset of motor dysfunction (Fig. 4B–C). Furthermore, these axonal 

myelination defects were blocked and motor dysfunction onset delayed by genetically Ripk3 
knockout or by oral administration of Nec-1s (Fig. 4D–E). Thus, while we cannot rule out 

the contribution of RIPK1 or other pro-apoptotic factors to the degeneration of motor neuron 

cell bodies (30, 31), the activation of necroptosis contributes to axonal pathology and motor 

dysfunction in the SOD1G93A transgenic mice.

We next characterized the role of RIPK1 and necroptosis in human ALS. We found evidence 

of demyelination in the lateral column white matter of lower spinal cord pathological 

samples from ALS patients as reported (Fig. 4F). In human ALS pathological samples, we 

also detected multiple biochemical hallmarks of necroptosis including increased levels of 

RIPK1, RIPK3 and MLKL and increased RIPK1 p-Ser14/15 and p-MLKL in both microglia 

and oligodendrocytes (Fig. 4G; fig. S7; Table S4). Importantly, p-MLKL was primarily 

localized in the white matter, where demyelination was found.

Taken together, our results provide a direct connection between Wallerian-like degeneration 

induced by OPTN deficiency and RIPK1 regulated necroptosis and inflammation. By 

promoting both inflammation and cell death, RIPK1 may be a common mediator of axonal 

pathology in ALS (fig. S8). Because RIPK1 is recruited specifically to TNFR1 to mediate 

the deleterious effect of TNFα (32), blocking RIPK1 may provide a therapeutic option for 

the treatment of ALS without affecting TNFR2. Finally, given the recruitment of OPTN to 

intracellular protein aggregates found in pathological samples from patients with 
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Alzheimer’s disease, Parkinson’s disease, Creutzfeldt-Jakob disease, multiple system 

atrophy and Pick’s disease (33, 34), a possible role of RIPK1 in mediating the wide presence 

of axonal degeneration in different neurodegenerative diseases should be considered.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One Sentence Summary

RIPK1-mediated inflammatory and cell death mechanism may provide a common 

underlying etiology for mediating axonal pathology in ALS.
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Fig. 1. Optn deficiency in oligodendrocyte and myeloid lineages promotes axonal loss and 
dysmyelination in the spinal cords of Optn−/− mice
(A) Top: Toluidine blue staining sections from the ventrolateral lumbar spinal cords of WT 

and Optn−/− mice. The brackets showing axons in the ventrolateral lumbar spinal cord white 

matter, and the motor neurons in the ventral lumbar spinal cord grey matter, respectively. 

Bottom, electron microscopic analysis of motor axonal myelination in the ventrolateral 

lumbar spinal cords from WT and Optn−/− mice. (B–D; F–I) The mean axonal numbers, 

mean g-ratios and mean axonal diameters, individual g-ratios distribution and distributions 

of axonal diameters in the ventrolateral lumbar spinal cord white matter (L1–L4) of WT, 
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Optn−/− mice, OptnF/F mice, OptnF/F; Cnp-cre mice, OptnF/F; Lyz2-cre mice, OptnF/F; 
Gfap-cre mice and OptnF/F; Mnx1-cre as indicated. (E) The number of TUNEL+ cells in the 

lumbar spinal cords (L1–L4, one section each) of indicated genotype (5 mice each 

genotype).
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Fig. 2. OPTN deficiency sensitizes to necroptosis
(A) Murine primary oligodendrocytes of indicated genotypes were treated with mTNFα (10 

ng/mL) +/or- Nec-1s (10 μM) for 24 hrs and cell death was assessed by using Toxilight 

assay (Lonza). Data are represented as the normalized means ± SEM, n=5–9 replicates per 

group. (B) The spinal cords of WT and Optn−/− mice were extracted with urea buffer and 

analyzed by western blotting using indicated abs. (C) The spinal cord lysates extracted with 

RIPA buffer were immunoprecipitated using anti-OPTN or anti-RIPK1 and the 

immunocomplexes were analyzed by western blotting using using indicated abs. (D) The 

Ito et al. Page 11

Science. Author manuscript; available in PMC 2017 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spinal cords from mice of indicated genotypes were lysed in 6M urea and 

immunoprecipitated using anti-K48 ubiquitin chain abs. The isolated immunocomplexes and 

input were analyzed by western blotting with anti-RIPK1. (E) The mRNA levels of RIPK1 

in the spinal cords with indicated genotypes were measured by qRT-PCR. (F) WT and Optn
−/− MEFs were treated with CHX (2 μg/ml) for indicated periods of time and the lysates 

were analyzed by western blotting using indicated antibodies. (G) Microglia from newborns 

of indicated genotypes were extracted in TX114 buffer and the western blots were probed 

with anti-RIPK1 p-S14/15 phosphorylation and anti-RIPK1. (H) The cytokine profiles in the 

spinal cords were measured using a cytokine array by ELISA. (I) Heatmap of top 71 genes 

in the module ME1 differentially expressed in microglia of indicated genotypes. Low 

expression is shown in blue and high expression in red.
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Fig. 3. RIPK1 and RIPK3 mediate axonal pathology in the spinal cords of Optn−/− mice
(A) Dysmyelination in the spinal cords of Optn−/− mice was blocked by genetically 

inhibiting RIPK1 in Optn−/−; Ripk1D138N/D138N mice, pharmacologically inhibiting RIPK1 

by Nec-1s (oral dosing of Nec-1s for one month starting from 8 weeks of age) and by loss of 

RIPK3 in Optn−/−; Ripk3−/− mice. (B–D) Mean axonal numbers, g-ratios and axonal 

diameters (B), individual g-ratio distributions (C), and axonal diameter distributions (D). (E) 

The number of TUNEL+ cells in the lumbar spinal cords (L1–L4, one section each) of 

indicated genotypes at 3 months of age (5 mice per genotype). (F–H) Mice of indicated 
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genotypes were tested in Open Field Test for spontaneous motor activity. The mice were at 3 

months of age and 28–32 g of body weight (no statistical significant difference on body 

weight between different groups). The total distance traveled in one hour showed no 

difference between different groups (F). Optn−/− mice showed a significant deficit on the 

vertical rearing activity (frequency with which the mice stood on their hind legs). This 

deficit was blocked after dosing with Nec-1s for one month starting from 8 weeks old and in 

Optn−/−; Ripk1D138N/D138N double mutant mice and reduced in Optn−/−; Ripk3−/− double 

mutant mice (G–H).
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Fig. 4. RIPK1 and RIPK3 mediated axonal pathology is a common mechanism in ALS
(A) Urea buffer lysates of spinal cords from WT and SOD1G93A transgenic mice (12 weeks 

of age) were analyzed by western blotting using indicated abs. (B–C) The myelination 

morphology (top), mean axonal numbers (bottom), mean g-ratios (bottom), mean axonal 

diameters (bottom) of the ventrolateral lumbar spinal cord white matter of SOD1G93A mice, 

SOD1G93A; Ripk3−/− mice (12 weeks of age) and SOD1G93A mice dosed with vehicle or 

Nec-1s for one month starting from 8 weeks of age. (D–E) RIPK3 deficiency (D) and 

inhibition of RIPK1 by Nec-1s starting from 8 weeks of age (E) delayed the onset of motor 

dysfunction in SOD1G93A mice. (F) Sections of pathological spinal cords from human 

control and an ALS patient were stained with luxol fast blue for myelin to show reduced 

myelination in the lateral column of lower spinal cords of ALS. (G) Western blotting 

analysis of human control and ALS spinal cord samples using indicated abs (top) and the 
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quantitation of RIPK1, RIPK3 and MLKL levels from 10 controls and 13 ALS cases 

(bottom).
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