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With multimedia research burgeoning, video applications have become essential to

our daily life. However, as the compression becomes more aggressive, too much data

loss results in degrading perceived video quality for viewers. Therefore, an accurate

quality measurement is important to improve or preserve the quality of compressed

video. This dissertation focuses on measuring the quality degradations that are caused

by compression. We specifically target distortions with impact above the human

perceptual threshold, which are also called artifacts. This type of distortion usually

appears in a structured form. This characteristic makes quality assessment highly

content dependent and many existing metrics fail in this regard. Some previous

research has tried to raise the accuracy of video quality assessment by considering

human visual system (HVS) effects, or human visual attention factors. However, both

HVS and human visual attention have very strong interaction in the video quality

assessment process, and none of the existing quality measurement research takes both

of them into account. In addition, cognitive factors significantly influence the visual

quality assessment process, but they have been ignored in current quality assessment

research. Based on these realizations, a new video quality assessment philosophy is

introduced in this thesis. It considers the characteristics of artifacts, effects from HVS,

visual attention, and cognitive non-linearity. First, a new human visual module is

proposed, it takes both visual masking and attention effects into account. Its unique

xvii



design makes embedding this visual module in any video quality related applications

very easy. Based on this new human visual module, a blurriness metric is designed

which includes cognitive characteristics. This new blurriness metric does not rely

on edge information, and is more robust at assessing heavily compressed video data.

A metric for artifacts introduced by motion compensated field interpolation (MCFI)

is also implemented. It is the first metric ever designed for measuring the spatial

quality of temporally interpolated frames. From a temporal quality perspective, a

novel temporal quality metric is designed to measure the temporal quality degradation

caused by both uniform and non-uniform distributed frame loss. Experimental data

shows these metrics significantly outperform the existing metrics.

xviii
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Introduction

The most obvious shortcoming of existing quality metrics of compressed video is in

treating quality measurement as a signal measurement issue without considering vi-

sual and cognitive effects. However, video quality is ultimately judged by human eyes

using a complicated cognitive process. Quantifying quality of compressed video by

only considering the presence or absence of video data will severely deviate from what

humans perceive. Therefore, performance of video quality metrics can be dramati-

cally improved by including those visual and cognitive effects. This improvement

is demonstrated in this thesis by one new human visual module and three quality

metrics.

1.1 Motivation

In past decades, video technology has developed quickly. As video materials mi-

grate from analog to digital format, delivering video content has become an important,

almost must-have, part of daily human life. Video signals can be delivered via var-

ious kinds of media, such as storage devices or networks. Among these, the most

rapidly growing service is delivering video materials by wireless network. This service

allows the subscriber to fetch or produce multimedia content almost any time and

anywhere. Other reasons for its popularity are the increasing availability of com-

putational power in hand held devices and mature wireless transmission technology.

As this service becomes more and more popular, users’ expectations of video qual-

1
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ity have increased rapidly as well. Hence, the ability to deliver adequate quality to

end users becomes increasingly important. Digital video data distributed through

communication networks is subject to various kinds of distortions during acquisi-

tion, compression, processing, transmission, and reproduction. For example, lossy

video compression techniques, which are almost always used to reduce the bandwidth

needed to store or transmit video data, may degrade the quality during the source cod-

ing process. In another instance, digital video bitstreams delivered over error-prone

channels, such as wireless channels, may be received imperfectly due to impairment

occurring during transmission. Packet-switched communication networks can cause

loss or severe delay of received data packets, depending on network conditions and

the quality of service. All these transmission errors can result in distortions in the

received video data.

In order to achieve the best balance between compression efficiency and human

perceived quality, a number of different video encoding standards have been estab-

lished. The Moving Picture Experts Group (MPEG), for example, has developed

a number of standards including MPEG-1, MPEG-2 and MPEG-4. Other exam-

ples include the International Telecommunication Union (ITU) H.263 standard, and

the emerging ITU H.264 standard. These video encoding standards generally sup-

port improved transmission efficiency of video sequences by encoding data in a com-

pressed manner. However, most of the codecs are designed to compress video data by

maximizing the Peak-Signal-to-Noise-ratio (PSNR), which is a normalized root mean

square error between original and compressed video frames. Larger PSNR is taken

to mean higher fidelity between original and compressed signals. But the PSNR has

been proven not to correspond very well to human perception because of 1) human

visual factors, 2) characteristics of quality degradation, and 3) added improving signal

(i.e. additional signal used to sharpen image). Human visual factors cover the effects

from the human visual system (HVS) and human visual attention. These effects re-

flect human sensitivities to various quality degradations in different spatial-temporal

locations. In addition, quality degradation can be classified into several groups by

its perceptibility for human eyes. The unique aspects of different types of quality

degradation must be considered and the metric designed accordingly. Finally, in cer-

tain situations, human perceived quality can be improved by adding some additional
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signal (i.e. sharpening is usually implemented by adding some high frequency sig-

nals). However, the pixel-difference based quality metrics usually treat this as noise

and thus give lower quality scores. Therefore, a perceptual quality assessment system

that takes account of all the concerns above is highly desirable.

A perceptual video quality assessment system can be used either off-line or real-

time. In off-line applications, the video quality assessment system can be used as

an independent metric that provides insight to help the codec designer develop a

coding strategy that minimizes the perceptual quality distortion. In real-time appli-

cations, the quality assessment system can be embedded with the video data receiver

to estimate viewers’ quality feedback. This information is used to guide a quality

post-processing algorithm to enhance video quality in real-time. Also, this informa-

tion can be sent back to the network server or transmission side to prevent quality loss

by tuning the transmission or compression parameters. With this concept, perceptual

video quality assessment system provides a balance between compression efficiency

and human perceived quality.

As compressed video quality has became an important issue for the entire multi-

media industry, some recently developed codecs have included quality enhancement

modules in their base profile. The H.264 standard, the most advanced video codec,

already includes a de-blocking filter as a built in post-processing module to reduce

the most annoying compression artifact: blockiness, which usually given into an ab-

normal tiling structure on compressed images [4]. The fundamental working principle

of the de-blocking filter is to apply a strong low pass filter to remove the abnormal

blocking structure. Although this module is designed to adaptively low-pass filter

compressed video according to some compression parameters, it still can not avoid

increasing the annoying level of another important artifact: blurriness, which can be

referred to as fuzzy or unclear content representation [4]. Hence, although blockiness

can be effectively removed, blurriness has become the most pronounced artifact, and

an accurate measurement of this kind of quality distortion is a very critical issue.

From a temporal quality aspect, as a video sequence is transmitted through a

bandwidth-limited and error-prone channel, the video temporal smoothness at the

receiving end might be degraded by:
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1. The encoder skipping some frames during encoding in an attempt to reduce the

data rate, while decoder might not be able to play all received frames because

of limited computational capability.

2. An error-prone channel, in which packet loss may corrupt the video data and

an entire frame may be lost. In the case of substantial frame loss, the viewer

may observe motion freezing because most video decoders automatically repeat

the last frame received before a dropped frame.

Since frame skipping is an important function in a codec’s design, and frame loss

caused by communication errors is unavoidable, a reliable way to measure the tem-

poral quality is important. Once the level of temporal quality degradation is known,

a post-processing algorithm, frame interpolation, can be applied to enhance the tem-

poral quality by producing the missing frame after decoding. Since the interpolated

frame is produced in an un-conventional way (separate from video compression),

the nature of quality distortion caused by frame interpolation is very different from

the quality degradation caused by compression. Thus, the quality metrics designed

for compression artifacts can not be applied to assessing the quality degradation

caused by frame interpolation. Therefore, a suitable metric for temporally interpo-

lated frames is highly desired.

Most existing blurriness metrics use the pixels around content edges to quantify

the strength of blurring artifacts. However, as an image is degraded by blurriness, edge

detection will not be correct and the accuracy of blurriness estimation will decrease.

In addition, several important human visual and cognitive factors that are crucial to

blurriness estimation are not considered in most blurriness metrics. Based on these

concerns, we will present a visual module that emulates various visual sensitivities

to blurring artifact at different spatial and temporal locations with consideration of

the effects from the HVS and visual attention. In the following, a novel blurriness

metric will be proposed based on this visual module without relying on the edge in-

formation. In temporal quality assessment, most research estimates temporal quality

based on the ratio of the number of lost and original frames. The final temporal

quality output is calculated by adjusting this ratio by motion activity. This ap-

proach assumes that lost frames are distributed evenly through the whole sequence,
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and frame loss occurs in a fixed frequency fashion. However, in real applications,

the temporal location of frame loss is uncertain and the duration of each frame loss

instance varies. In this case, the temporal quality of a sequence is non-uniform and

the temporal quality contrast of each individual frame loss occasion usually results

in much more profound quality impact compared to the uniform case. Therefore, a

new temporal quality metric will be introduced, including the attribute of temporal

quality contrast. For the temporally interpolated frames, most related research in

frame interpolation measures the algorithms’ performance by PSNR or other fidelity

measurements. However, because of the unique characteristics of the artifacts in-

troduced during frame interpolation, such fidelity measurements can not accurately

quantify the quality degradation caused by frame interpolation. Therefore, a more

suitable metric for frame interpolation artifacts is proposed in this thesis with the

consideration of visual attention, perceptual sensitivity to local quality contrast, and

characteristics of the artifacts introduced by frame interpolation.

1.2 Contributions

The major contributions of this thesis can be summarized as follows:

• A Visual Blurriness Sensitivity Map (VBSM) including human visual attention

and masking factors is defined . It not only considers the various sensitivities

for different spatial-temporal locations introduced by visual attention, but also

takes into account the suppression effect from visual masking. These character-

istics make the VBSM suitable for quality assessment and enhancement related

applications. In addition, the VBSM works in the frequency domain and as a

block-based unit. Because most codecs transform video data into the frequency

domain using a block-based compression, VBSM can easily be embedded into

any block-based codec design and extended to other applications.

• A Perceptual Blurriness Metric (PBM) is designed to estimate the level of blur-

riness caused by compression. It can work without accessing original video data.

Also, PBM employs the VBSM to emulate the various blurriness sensitivities

at different spatial-temporal locations and adjusts the local blurriness score ac-
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cordingly to improve the accuracy of blurriness measurement. Unlike many

blurriness related metrics, PBM is insensitive to content type and is able to

carry out cross-sequence comparisons. Moreover, PBM takes into account the

non-linearity of the cognitive blurriness estimation process to make the objective

blurriness scores closer to the blurriness humans perceive.

• An extensive study and comparison of designs, strengths, and weaknesses of

several well known blurriness metrics is presented in this thesis. A performance

comparison of all blurriness metrics, including PBM, is performed. Results show

that most metrics work fine with video sequences compressed by the MPEG-4

codec, but except for PBM fail in estimating the blurriness introduced by the

H.264/AVC codec. Since H.264/AVC is the most popular codec in modern mul-

timedia industry, the success of PBM is a major advantage over other existing

metrics.

• A temporal quality metric, the Perceptual Temporal Quality Metric (PTQM),

is proposed and demonstrated. This metric can provide accurate temporal

quality estimation without the original video data. Most existing temporal

quality metrics use the number of frames lost in one second to measure tem-

poral quality. Experimental results show this approach can only cover the case

with evenly distributed frame loss, but is not sufficient to capture the temporal

quality degradation caused by non-uniformly distributed frame loss, which hap-

pens more often than the former in practical scenarios. PTQM can successfully

provide accurate measurements for both cases. In addition, PTQM outputs a

hierarchical temporal quality report that includes the temporal quality for each

frame and segment, up to the entire sequence. This characteristic allows users

to freely zoom in or out to know the exact temporal quality from local to global

scope. This property permits more flexibility for PTQM to combine with en-

coder design for a more adaptive temporal quality enhancement mechanism (i.e.

adaptive frame skipping, and frame interpolation). Finally, because temporal

quality is not only influenced by the number of lost frames, but also the level of

motion, PTQM combines scene cut detection with motion estimation to achieve

more accurate motion mapping for temporal quality estimation.
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• Detailed investigation of the artifacts introduced by frame interpolation tech-

niques is presented. The process of frame interpolation is very unlike the process

of conventional video compression. The appearance of quality distortion caused

by frame interpolation is also very different. Thus, conventional quality mea-

surement methods can not be directly applied to measure the quality degrada-

tions introduced during frame interpolation. This thesis presents the first work

to investigate this type of quality impairment. Furthermore, this analysis also

addresses several weaknesses of the quality metrics that are commonly used for

evaluating the spatial quality of interpolated frames.

• Based on the investigation of quality degradation caused by frame interpolation,

a new metric, the Perceptual Frame Interpolation Quality Metric (PFIQM), is

designed. The visual attention model in PFIQM is based on the characteristics

of artifacts caused by frame interpolation. Since the accuracy of quality mea-

surement for many widely used frame interpolation metrics is often decreased by

some unnoticeable distortion induced during frame interpolation, the PFIQM

differentiates and disregards this type of distortion to ensure high quality pre-

diction performance. In addition, contrasted with compression artifacts, the

quality distortion caused by frame interpolation often aggregates in a small re-

gion. This leads many objective metrics to give high quality scores since the

distorted area is small, but it actually produces a large impact on visual per-

ception because of its high quality difference to neighboring temporal regions.

This effect is considered in PFIQM. Subjective comparison shows that PFIQM’s

outputs are closer to human perceived quality than other metrics. A systematic

performance comparison shows that PFIQM significantly outperforms all the

other metrics.

1.3 Structure of this thesis

This thesis is organized as follows: Chapter 2 provides detailed background infor-

mation about video quality assessment and video compression techniques. The focus

of Chapter 3 is to explain the process of constructing the VBSM. In Chapter 4, a
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detailed investigation of several existing blurriness metrics is presented, and a novel

blurriness metric, PBM, is described. In Chapter 5, the phenomena of additional

temporal quality degradation caused by local temporal quality difference is demon-

strated and a new temporal metric, PTQM, is implemented. The characteristics of

quality degradation caused by frame interpolation are discussed in detail and a new

metric, PFIQM, designed specifically for interpolated frames is developed in Chapter

6. Finally, a summary and the conclusions of this thesis are presented in Chapter 7.



2

Background

In this chapter, several aspects of video quality are reviewed. Section 2.1 gives an

introduction to digital video compression. The factors that cause video quality degra-

dation are described at Section 2.2. Finally, representative video quality assessment

research is reviewed in Section 2.3.

2.1 Digital Video Compression

Video compression has two important benefits: 1) It makes feasible transmission

of video data through a variety of mediums, such as network or storage devices.

Without compression, the size of raw (uncompressed) video data dramatically limits

the usefulness of these transmission devices. For example, current Internet throughput

rates are insufficient to acceptably handle raw video data. The most popular video

storage device, Digital Versatile Disk (DVD), can carry only very limited raw video

data at television-quality resolution and frame rate. Thus, DVD-Video storage would

not be practical without video and audio compression. 2) Video compression enables

more efficient use of transmission and storage resources, resulting in more versatile

multimedia applications. Even in a high bitrate transmission channel, it is more

desirable to send a multiple channel high-resolution compressed video than to send a

single channel, low-resolution stream. Even with constant advance for increasing the

capacity of transmission devices, people still desire higher-resolution, better quality

video data through these mediums. Therefore, video compression is an essential

9
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component of multimedia services for the foreseeable future.

The fundamental concept of information compression is redundancy removal. Re-

dundancy can be understood as the components that are not necessary for complete

reproduction of the data. The fundamental concept of compression is to avoid al-

locating too many resources to targets with similar representation. In a lossless

compression scheme, the compression target’s redundancy is removed so that the

original signal can be perfectly reconstructed at the receiver. This sounds great at

first, but with current lossless compression techniques, it can only achieve a very

moderate amount of compression. The other more practical compression scheme is

lossy compression. This can achieve a larger compression ratio (i.e. ratio of the size

of the raw data to the size of the compressed data) with the penalty that the decoded

signal is not identical to the original. In summary, information compression is used

to achieve as much compression as possible while minimizing the quality degradation

of the reconstructed signal.

The key aspect of digital video compression is to reduce the video data size by

removing different types of redundancy. The redundancy of video data can be cate-

gorized into temporal and spatial attributes. In the temporal domain, there is usually

a high correlation (similarity) between frames of video that were captured around

the same time. Temporally adjacent frames (sucessive frames in time order) are often

highly correlated, especially if the temporal sampling rate (frame rate) is high. Figure

2.1 shows a pair of frames captured in a consecutive manner using a frame rate of 30

frame per second (fps). It shows clear evidence of temporal redundancy, since most

of the image remains unchanged between these two frames. A simple compression

method for removing temporal redundancy is to utilize the frame difference, where

only pixel differences between successive frames are coded. Higher compression can

be achieved using motion estimation, a technique for describing a frame based on

the content of nearby frames by means of motion vectors. By compensating for the

movements of objects in this manner, the differences between frames can be further

reduced. Figure 2.2 shows an example of spatial redundancy. In the region marked

by a cross, there is very little variation in the content of the image and thus there is

significant spatial redundancy.
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(a) (b)

Figure 2.1: Example of temporal redundancy where (a) is the (n − 1)th frame and
(b) is the nth frame

Figure 2.2: Example of spatial redundancy where the marked region has very little
content variation

Video Compression Fundamentals

The major video compression standards released since the early 1990s have been

based on the same generic design. Figure 2.3 shows the system diagram of a generic

framework for video compression. Any codec that is compatible with H.261, H.263,

MPEG-1, MPEG-2, MPEG-4, and H.264 standards [5–14] implements this set of

basic coding and decoding functions [3]:

1 Mode decision: A video sequence is composed of two types of frames, namely

intra-, and inter - frames. An intra-frame is usually referred as an I-frame. A

general intra-coding process is shown in Fig. 2.4. This coding method is very

similar to the JPEG image compression standard [5, 6]. The I-frame data goes

through the transform, quantization, and entropy coding stages without any

temporal redundancy removal. The inter-frames utilize temporal redundancy

to achieve further video data compression. This step looks for similar content in

selected reference frames and compress only the differential information. A gen-
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Figure 2.3: Generic system diagram for video compression

eral system diagram of inter coding is shown in 2.5. Distinct from intra-coding,

the inter-coding requires the current frame and the reference frame for tempo-

ral redundancy removal, which is processed by the prediction module. Then,

the predicted data are transformed, quantized, and entropy coded. The inter-

frames can be further separated into forward predicted (P), and bi-directionally

predicted (B) frames. The structure of a sequence of frames is typically ar-

ranged in IBBPBBPBBPBBPBBIBBP....and so on, as shown in Fig. 2.6. As

depicted in Fig. 2.6, P-frames are compressed by searching for similar content

from past reconstructed reference frames (i.e. I- or P-frames). The B-frame

take both the past and future reconstructed frames as reference frames to carry

out temporal redundancy removal. The mode decision module selects one of

these three compression modes for each frame based on the structure of Group

of Pictures (GOP). Together, I- and P- frames are called anchor frames. They

are used as the basis for temporal redundancy removal in bi-directionally coded

B-frames.

Transform Quantization
Entropy
coding

fn

(current fame)
Bitstream

Figure 2.4: System diagram of intra-coding
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Figure 2.5: System diagram of inter-coding

PBBPBBI

forward backward

forward

Figure 2.6: Structure of a sequence of frames and their relationship when carrying
out temporal redundancy removal

2 Prediction: This process reduces the size of the data by removing temporal

redundancy. The temporal redundancy reduction between transmitted frames

is carried out by forming a predicted frame and subtracting this from the current

frame. The output of this process is a residual (difference) frame and the more

accurate the prediction process, the less energy is contained in the residual

frame. The residual frame is compressed and transmitted to the decoder which

independently re-creates the predicted frame, adds the decoded residual, and

reconstructs the current frame. The predicted frame is created from one or more

past or future frames. However, the correlation between current and reference

frames decreases as spatial displacement of moving objects on these two frames

occurs; this results in a large residual. In order to reduce the energy of residual

data, the content of the reference frame is re-arranged according to the motion

trajectory of moving objects. This process is called - motion estimation. An

illustration is shown in Fig. 2.7. The displacement of moving objects between

two frames is a motion vector, which is denoted as (vh, vv) in horizontal and

vertical directions respectively. Consider fn−1 and fn are the (n− 1)th and nth

frames respectively, where fn is the current frame and fn−1 is a reference frame
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for fn. Take the (i′0, j
′
0)th block in nth frame, fn(i′0, j

′
0), as an example. The

residual data of fn(i′0, j
′
0) is calculated by taking the difference between the block

with the smalles difference in the reference frame, fn−1(i
′
M , j′M), and the block in

current frame - fn(i′0, j
′
0). This process is known as motion compensation. The

motion vectors and residual data are sent to the following compression modules

suitable for transportation of the data format. This prediction process is only

applied on P- and B-frames, by which a set of prediction values is created (often

based in part on an indication sent by the mode decision module).

1−nf

),j(ifn 11 ''

),j(ifn 22 ''

),j(ifn 33 ''),j(if MMn ''1−

)v,v( vh
),j(ifn 00 ''

nf

Figure 2.7: Illustration of the motion estimation process. White blocks represent
blocks in the current frame subject to motion estimation and the gray region is the
block in the reference frame that has the least difference to current block.

3 Transformation: The frames or motion-compensated residual data are trans-

formed into the frequency domain to facilitate removal of the psychovisual re-

dundancies by decomposing the data into several independent sets. Also, human

eyes have very limited ability to recognize data in some spatial frequency bands
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(i.e. high frequency), which means data in those bands have less impact on

visual quality. Hence, transforms allow us to separate the data in those bands

from the bands that carry more significant information. More resources can

be allocated on those important bands by reducing the data precision in the

bands that are less important. This can decrease the compressed data size

without sacrificing appreciable visual quality. The choice of transform depends

on a number of criteria: 1) Data in the transform domain should be decorre-

lated, 2) the transform should be reversible, and 3) the transform should be

computationally tractable. The transforms can be separated into block- and

image-based. The block-based transforms include the Karhunen-Love trans-

form (KLT), which is an optimal decorrelator, and the Discrete Cosine Trans-

form (DCT), which has performance close to that of a KLT when applied to

highly correlated auto-regressive sources. Each of these operate on blocks of

an image or residual samples, Hence the image is processed in units of a block

with NB × NB pixels, where NB is chosen for effectiveness and computational

efficiency. Block transforms have low memory requirements and are well-suited

to compression of block-based motion compensation residuals. However, they

tend to introduce some artificial blocking artifacts. Image-based transforms op-

erate on the entire image of a frame. The most popular image transform is the

Discrete Wavelet Transform (DWT). Image transforms such as the DWT have

been shown to out-perform block transforms for still image compression, but

tend to have higher memory requirements since the whole image is processed

as a unit. Also, it does not work well with block-based motion compensation.

For these reasons, the DCT has become the most popular transform for video

compression techniques. Using the DCT to transform the (i′, j′)th block with

dimensions NB ×NB in the frame fn into the frequency domain is given by

Fn(i′, j′, u, v) =

NB−1∑
i=0

NB−1∑
j=0

fn(i′, j′, i, j)k(i, j, u, v), (2.1)

k(i, j, u, v) = α(u) · α(v) cos[
(2i + 1)uπ

2NB

] cos[
(2j + 1)vπ

2NB

], (2.2)
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where

α(u) =





√
1

NB
, for u = 0√

2
NB

, for u = 1, 2 . . .NB − 1,
(2.3)

and likewise for v, where (i, j) represents the index of a pixel, and u, v represent

the DCT coefficient indices within a block. The DCT coefficients can be grouped

into DC and AC as shown in Fig. 2.8. DC refers to Fn(i′, j′, u, v) with (u, v) =

(0, 0), which is the DCT coefficient of the lowest band. The rest of the DCT

coefficients are AC, where Fn(i′, j′, u, v) for all (u, v) ∈ (1, · · · , NB, 1, · · · , NB).

DC

AC

Figure 2.8: Illustration of a DCT block with dimensions 8 × 8, and the location of
the DC and AC coefficients.

4 Quantization: After transformation, the numerical precision of the transform

coefficients is reduced in order to decrease the data size. The degree of quan-

tization applied to each coefficient is usually determined by the visibility of

the resulting distortion to a human observer. For example, high-frequency co-

efficients can be more coarsely quantized than low frequency coefficients. A

quantization process is composed of two parts: 1) scaling, and 2) re-scaling. A

general example of scaling and re-scaling is:

Fn,scaled = round(
Fn,org

QP
)

Fn,re−scaled = Fn,scaled ·QP, (2.4)

where QP denotes the Quantization Parameter, which controls the degree of

quantization , Fn,org, Fn,scaled, and Fn,re−scaled represent the original, scaled, and
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re-scaled data respectively. If the QP is large, the range of quantized values is

small and can therefore be efficiently represented (highly compressed) during

transmission, but the fidelity between the re-scaled and original values is de-

creased. If the step-size is small, the re-scaled values match the original signal

more closely, but the larger range of quantized values reduces compression effi-

ciency. A scalar quantiser maps one sample of the input signal to one quantized

output value and a vector quantiser maps a group of input samples to a group

of quantized values.

5 Entropy coding: This is a process by which discrete-valued source symbols

are represented in a manner that takes advantage of the relative probabilities

of the various possible values of each source symbol. A well-known type of

entropy code is the variable-length code (VLC), which involves establishing a

tree-structured code table that uses short binary strings to represent symbol

values that are highly likely to occur and longer binary strings to represent less

likely symbol values. The best-known method of designing VLCs is the well-

known Huffman code method, which produces an optimal VLC. A somewhat less

well-known method of entropy coding that can typically be closer to optimal

than VLC coding, and can also be more easily designed to adapt to varying

symbol statistics, is the newer technique referred to as arithmetic coding.

MPEG-4 and H.264/AVC are the codecs used for simulation in this thesis. An

overview of these two codecs will be presented in the following sections, and a com-

parison of these two codecs is shown in Table 2.1.

Table 2.1: Comparison of MPEG-4 and H.264/AVC from Ref. [3]

Comparison MPEG-4 H.264/AVC
Number of profiles 19 3
Compression efficiency Medium High
Support for video streaming Scalable coding Switching slices
Motion compensation mini-
mum block size

8× 8 4× 4

Motion vector accuracy half or quarter-pixel quarter-pixel
Transform 8× 8 DCT 4× 4 DCT approximation
Built-in de-blocking filter No Yes
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Overview of the MPEG-4 compression

In Fig. 2.3, the data flow of a compression process of the MPEG-4 codec can be

separated into 1) the encoding process, and 2) the decoding process. The encoding

flow is as follows [3]:

1 An input video frame fn is presented for encoding and is processed in units

of a macroblock (corresponding to a 16 × 16 luminance region and associated

chrominance samples).

2 The fn is compared with a reference frame, for example the previous encoded

frame: f ′n−1. A motion estimation function finds a 16× 16 region in f ′n−1 (or a

sub-sample interpolated f ′n−1) that closely matches the current macroblock in

fn. The offset between the current macroblock position and the chosen reference

region is used to calculate the a motion vector.

3 Based on the chosen motion vector, a motion compensated prediction is gener-

ated.

4 The predicted region is subtracted from the current macroblock to produce a

residual or difference macroblock.

5 The residual macroblock is transformed using the DCT. Typically, the resid-

ual macroblock is split into 8 × 8 or 4 × 4 sub-blocks and each sub-block is

transformed separately.

6 The coefficients of each sub-block are quantized.

7 The quantized DCT coefficients are re-ordered and coded.

8 Finally, the coefficients, motion vectors, and associated header information for

each macroblock are entropy encoded to produce the compressed bitstream.

The reconstruction data flow is as follows:

1 Each quantized macroblock is re-scaled, and inverse transformed to produce a

residual. This is usually not identical to the residual data before quantization.
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2 The motion compensated prediction is added to the re-scaled residual to produce

a reconstructed macroblock and the reconstructed macroblocks are saved in the

frame buffer: f ′n.

Overview of H.264/AVC Compression

H.264/AVC is the newest video coding standard of the ITU-T Video Coding Ex-

perts Group and the ISO/IEC Moving Picture Experts Group. It is designed primar-

ily to support efficient and robust coding and transport of rectangular video frames.

Common applications include two-way video communications (video-conferencing or

video-telephony), coding for broadcast and high quality video, and video streaming

over packet networks. Support for robust transmission over networks is built in and

the standard is designed to facilitate implementation on as wide a range of processor

platforms as possible. The general structure of a H.264/AVC codec is shown in Fig.

2.9. Comparing Fig. 2.9 against the general compression structure in Fig. 2.3, the

H.264/AVC has one more function - Intra prediction. This technique also existed in

MPEG-4, but H.264/AVC uses it more efficiently. The following paragraphs describe

it in more detail.

Transform
fn

(current)

+
-

Quantization

Motion
Estimation

fn-1

(reference)

Motion
Compensation

fn

(reconstructed)

+

+

Inverse
Transform

Rescale

Entropy
coding

Mode 
Decision

(vh,vv) Bitstream

Prediction

Intra Prediction

Figure 2.9: A general system diagram of H.264/AVC codec.

Relative to prior video coding methods, some highlighted features designed in

H.264/AVC for enhancing coding efficiency include the following [15] :
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1) Variable block-size motion compensation with small block sizes: The H.264/AVC

standard supports more flexibility in the selection of motion compensation block

sizes and shapes than any previous standard, with a minimum luma motion com-

pensation block size as small as 4 × 4. This characteristic allows the encoder

to carry out motion compensation more adaptive to object shape. All possible

macroblock partitions for H.264 are shown in Fig. 2.10. A 16× 16 macroblock

can be divided into four different partitions as shown in Fig. 2.10(a). Further-

more, the 8 × 8 partition has four additional sub-partitions as shown in Fig.

2.10 (b).

16x16 16x8 16x8

8x16

8x16

8x8 8x8

8x88x8

(a)

8x8 8x4 8x4

4x8

4x8

4x4 4x4

4x44x4

(b)

Figure 2.10: Illustration of different size blocks in H.264 motion compensation, (a)
shows a set of macroblock partitions, and (b) shows the sub-partitions of an 8 × 8
macroblock partition.

2) Quarter-sample-accurate motion compensation: Most prior standards (in MPEG-

1, MPEG-2, and H.263) enable half-sample motion vector accuracy at most.

The new design improves on this by adding quarter-sample motion vector ac-

curacy, as first found in an advanced profile of the MPEG-4 Visual (part 2)

standard, but further reduces the complexity of interpolation processing com-

pared to the prior design. The quarter-sample motion vector refers to the use

of spatial displacement motion vector values that have greater than integer pre-
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cision, thus requiring the use of interpolation for the searching target when

performing motion prediction. This is being done by first creating a half pixel

frame by up-sampling 2 × 2 using a 6 tap FIR filter. Then generate a quarter

pixel frame from the half pixel frame by up-sampling 2 × 2. Finally, the mo-

tion vectors with quarter-sample accuracy are obtained by carrying out a block

search motion estimation on the quarter pixel frame.

3) Motion vectors over picture boundaries: While motion vectors in MPEG-2 and

its predecessors were required to point only to areas within the previously-

decoded reference picture, the picture boundary extrapolation technique first

found as an optional feature in H.263 is included in H.264/AVC.

4) Multiple reference picture motion compensation: Predictively coded pictures

(called P pictures) in MPEG-2 and its predecessors used only one previous

picture to predict the values in an incoming picture. The new design extends

the enhanced reference picture selection technique found in H.263++ to enable

efficient coding by allowing an encoder to select, for motion compensation pur-

poses, among a larger number of pictures that have been decoded and stored

in the decoder. The same extension of referencing capability is also applied to

motion compensated bi-prediction, which is restricted in MPEG-2 to using two

specific pictures only (one of these being the previous I- or P- frame in display

order and the other being the next I- or P- frame in display order).

5) Decoupling of referencing order from display order: In prior standards, there

was a strict dependency between the ordering of pictures for motion compen-

sation referencing purposes and the ordering of pictures for display purposes.

In H.264/AVC, these restrictions are largely removed, allowing the encoder to

choose the ordering of pictures for referencing and display purposes with a

high degree of flexibility, constrained only by the total memory capacity bound

imposed to ensure decoding ability. Removal of this restriction also enables

removing the extra delay previously associated with bi-predictive coding.

6) Decoupling of picture representation methods from picture referencing capabil-

ity: In prior standards, pictures encoded using some encoding methods (namely
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bi-predictively-encoded pictures) could not be used as references for prediction

of other pictures in the video sequence. By removing this restriction, the new

standard provides the encoder more flexibility and, in many cases, the ability to

use a picture for referencing that is a closer approximation to the picture being

encoded.

7) Weighted prediction: A new innovation in H.264/AVC allows the motion com-

pensated prediction signal to be weighted and offset by amounts specified by the

encoder. This can dramatically improve coding efficiency for scenes containing

fades, and can be used flexibly for other purposes as well.

8) Improved inference for skipped and direct motion: In prior standards, a skipped

area of a predictively-coded picture could not move in the scene content. This

had a detrimental effect when coding video containing global motion, so the new

H.264/AVC design instead infers motion in skipped areas. For bi-predictively

coded areas (called B slices), H.264/AVC also includes an enhanced motion

inference method known as direct motion compensation, which improves further

on prior direct prediction designs found in H.263++ and MPEG-4 Visual.

9) Directional spatial prediction for intra-coding: A new technique of extrapolat-

ing the edges of the previously-decoded parts of the current picture is applied in

regions of pictures that are coded as intra (i.e., coded without reference to the

content of some other picture). This improves the quality of the prediction sig-

nal, and also allows prediction from neighboring areas that were not coded using

intra coding. Every luminance macroblock has three different intra prediction

- intra 16 × 16, intra 4 × 4, and intra PCM(transmit the image data directly

without prediction). Figure 2.11 shows some sample modes of Intra 4× 4. The

Intra 4×4 has eight directional Intra prediction modes and one DC mode, which

simply takes the average of the referenced data regardless of direction.

10) In-the-loop de-blocking filter: Block-based video coding produces artifacts known

as blocking artifacts. These can originate from both the prediction and resid-

ual difference coding stages of the decoding process. Application of an adap-

tive de-blocking filter is a well-known method of improving the resulting video
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Figure 2.11: Samples of different modes of Intra 4×4 prediction, and all possible Intra
prediction directions for Intra 4× 4, where the blocks with alphabetic characters are
the referred data during Intra prediction and the gray blocks are the predicted data.

quality. When designed well, this can improve both objective and subjective

video quality. Building further on a concept from an optional feature of H.263,

the de-blocking filter in the H.264/AVC design is brought inside the motion-

compensated prediction loop, so that this improvement in quality can be used

in inter-picture prediction to improve the ability to predict other pictures as

well. The de-blocking filter functions as a low-pass filter to smooth out the

abrupt pixel value changes around blocks’ boundaries. Figure 2.12 shows an

example of pixel value change around a block boundary, where p0-p3 and q0-q3

represent the pixels on the left and right hand side of a block boundary. In

order to avoid removing details that belong to original content, the de-blocking

filter will be applied on the block boundary only if all the following criteria are

true:

(a) |p0-q0| < α ·QP ,

(b) |p1-q0| < β ·QP ,

(c) |q1-q0| < α ·QP .

where α and β determine the strength of de-blocking filter and higher value

means stronger filtering.

11) Small block-size transform: All major prior video coding standards used a trans-

form block size of 8 × 8, while the new H.264/AVC design is based primarily
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Figure 2.12: The p0-p3 and q0-q3 represent pixels at the left and the right hand side
of a block boundary.

on a 4 × 4 transform. This allows the encoder to represent signals in a more

locally-adaptive fashion, which reduces artifacts known colloquially as ringing.

(The smaller block size is also justified partly by the advances in the ability to

better predict the content of the video using the techniques noted above, and

by the need to provide transform regions with boundaries that correspond to

those of the smallest prediction regions.)

12) Hierarchical block transform: While in most cases, using the small 4× 4 trans-

form block size is perceptually beneficial, there are some signals that contain

sufficient correlation to call for some method of using a representation with

longer basis functions. The H.264/AVC standard enables this in two ways: 1)

by using a hierarchical transform to extend the effective block size, used for

low-frequency chroma information to an 8 × 8 array and 2) by allowing the

encoder to select a special coding type for intra coding, enabling extension of

the length of the luma transform for low-frequency information to a 16 × 16

block size in a manner very similar to that applied to the chroma.

13) Exact-match inverse transform: In previous video coding standards, the trans-

form used for representing the video was generally specified only within an

error tolerance bound, due to the impracticality of obtaining an exact match

to the ideal specified inverse transform. As a result, each decoder design would

produce slightly different decoded video, causing a drift between encoder and

decoder representation of the video and reducing effective video quality. Build-
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ing on a path laid out as an optional feature in the H.263++ effort, H.264/AVC

is the first standard to achieve exact equality of decoded video content from all

decoders.

14) Arithmetic entropy coding: An advanced entropy coding method known as

arithmetic coding is included in H.264/AVC. While arithmetic coding was pre-

viously found as an optional feature of H.263, a more effective use of this tech-

nique is found in H.264/AVC to create a very powerful entropy coding method

known as CABAC (context-adaptive binary arithmetic coding).

15) Context-adaptive entropy coding: The two entropy coding methods applied

in H.264/AVC, termed CAVLC (context-adaptive variable-length coding) and

CABAC, both use context-based adaptivity to improve performance relative to

prior standard designs.

2.2 Sources of Digital Video Degradation

From a visual perceptibility perspective, video quality distortion can be sepa-

rated into sub-, near-, and supra-threshold categories according to its perceptibility

to human vision [16]. This threshold can be thought of as the visual perceptibility to

distortion or, more simply, the minimum distortion a human observer will notice. The

sub- and near-threshold distortions are types that are either not or only slightly able

to be perceived by human eyes respectively. Supra-threshold distortion generally ap-

pears in a structured form and is known as an artifact. This type of distortion is very

irritating to human perception and largely dominates subjective quality judgements.

In general, causes of digital video quality distortion are compression and trans-

mission errors. In compression, the video quality is mainly degraded by information

loss during video data size reduction. Also, some post-processing (i.e. the de-blocking

filter) might be applied on video data during or after decompression. Its purpose is to

reduce artifacts caused by the source coding process, but it also can introduce other

artifacts (e.g. blurriness). With regard to transmission errors, most transmission

networks produce errors, and this results in another type of information loss. The

appearance of this type of information loss is quite different than the information
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loss caused by compression. Therefore, the quality degradations caused by these two

sources are discussed separately.

2.2.1 Compression Artifacts

Most compression standards rely on a block-based DCT with motion compensa-

tion and subsequent quantization of the coefficients. In such coding schemes, com-

pression distortions are often caused by the quantization of the transform coefficients.

Although other factors affect the visual quality of the stream, such as motion pre-

diction or decoding buffer size, they do not introduce any distortion, but affect the

encoding process indirectly through the quantization scale factor. Artifacts are com-

monly categorized as:

1 Blockiness: This refers to a abnormal block pattern in the decompressed se-

quence. It is caused by the independent quantization of individual blocks (usu-

ally 8 × 8 pixels in size) in block-based DCT coding schemes, leading to dis-

continuities at the boundaries of adjacent blocks. The blocking artifact is often

the most prominent visual distortion in a sequence compressed in a block-based

fashion because of its regularity and the extent of the pattern. Figure 2.13

shows an example of the blocking artifact, where Fig. 2.13(a) is the original

image and Fig. 2.13(b) is the heavily compressed image. As we can see, an ab-

normal tiling artifact appears at the block boundaries and it severely degrades

the compressed image’s quality.

2 Blurring manifests itself as a loss of spatial detail and a reduction of edge sharp-

ness. Blurring artifacts can be classified into three types - (1) motion blur, (2)

out-of-focus blur, and (3) compression blur. The first type of blurriness is caused

by camera aim moving during video capture [17], or the long response time Liq-

uid Crystal Display (LCD). Appearance of this type of blurriness is the same

with the output of a directional low pass filtering; the energy of high frequency

signal components smear out along the camera motion direction. The second

type of blurriness is usually caused by misplacing the camera focus, and makes

the image detail smeared isotropically around each pixel. The third type of
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(a) (b)

Figure 2.13: Samples of blocking artifact. (a) the original image, and (b) the heavily
compressed image with blocking artifact.

blurriness usually occurs during compression. It is caused by the suppression

of high-frequency coefficients during the image/video data redundancy removal

process. The blurriness introduced by compression can be caused by: (1) ag-

gressive data reduction: quantization is the main cause of data size reduction in

image/video compression. It eliminates the high frequency data on the assump-

tion that the human vision system has higher tolerance to high frequency data

loss. However, as quantization becomes too aggressive, many spatial details

are lost and the video is perceived as fuzzy. (2) Strong post-processing: Some

recently developed codecs include a quality enhancement module in their basic

profile. H.264, the most advanced video codec, already includes a de-blocking

filter as its built-in post-processing module to reduce the most annoying com-

pression artifact - blockiness. The working principle of the de-blocking filter is

to apply a strong low pass filter to remove abnormal block structure. The taps

and strength of the de-blocking filter are controlled by compression parameters,

such as quantization step size. Nevertheless, strong filtering also results severe

high frequency loss and blurriness is introduced. Figure 2.14 shows an exam-

ple of this type of bluriness, where Fig 2.14(a) is the original image, and Figure

2.14(b) is the image compressed by H.264/AVC with QP=45 and post-processed

by a strong de-blocking filter. Clearly, Fig. 2.14(b) omits many details com-

pared to Fig. 2.14(a), specially in the high texture regions (i.e. spectators).
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(a) (b)

Figure 2.14: Examples of blurring artifact where (a) is the original image, and (b) is
the heavily compressed image with severe blur.

3 The ringing artifacts is a manifestation of Gibbs phenomenon in the case of

two-dimensional signals. The Gibbs phenomenon named after the American

physicist J. Willard Gibbs, is the peculiar manner in which the Fourier series

of a piecewise continuously differentiable periodic function behaves at a jump

discontinuity. It is a consequence of trying to approximate a discontinuous

function with a partial (i.e. finite) sum of continuous functions. A finite sum

of continuous functions is, by definition, continuous, and therefore cannot ap-

proximate the discontinuity (and the area ”near” it) to within any arbitrarily

chosen accuracy. An infinite sum of continuous functions can be discontinuous,

and hence, does not exhibit the Gibbs phenomenon. In two-dimension data, this

phenomenon leads to the values of pixels’ oscillating around edges in compressed

images. Figure 2.15(a) shows a one-dimensional illustration of pixel oscillation

around edges, where the horizontal and vertical axis represent pixel location

and pixel value respectively, the straight line represents the pixels before Gibbs

phenomenon occurs, and the oscillating curve represents the pixel values recon-

structed from frequency data with severe high frequency energy loss. Ringing is

most evident along high-contrast edges in otherwise smooth areas (i.e. a large

jump of a discontinuous function). It is a direct result of quantization leading

to high-frequency irregularities in the reconstruction. Figure 2.15(b) shows an

example of ringing. In Fig. 2.15(b), the tower has very strong edges against

the flat sky. The image on right hand side is a magnified version of the tower.
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As we can see, there are many pixel value oscillations around the tower’s edges.

This is the so called ringing artifact.
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Figure 2.15: Samples of ringing artifact. (a) the illustration of Gibbs phenomenon,
and (b) the compressed image with ringing artifact.

4 Color bleeding is the smearing of color between areas of strongly differing

chrominance. Its cause is ringing in chrominance data, which results from the

suppression of high-frequency coefficients of the chroma components. Due to

chroma sub-sampling, color bleeding extends over an entire macro-block. Fig-

ure 2.16 shows an example of color bleeding. Obvious color interference can be

found around regions with high color difference.

5 Flickering appears when a scene has high texture content. Texture blocks are

compressed with varying quantization factors over time, which results in a vis-

ible flickering effect.
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Figure 2.16: An example of color bleeding, where the left image is the highly com-
pressed image, and the image on right hand side is zoomed in on the regions with
significant color bleeding.

6 Ghost is a result of temporal low-pass filtering of the source video sequence,

and it appears as a blurred remnant trailing behind fast moving objects. The

tendency of temporal low-pass filtering is to eliminate the noise in the original

sequence with the assumption that the noise in each frame has very low corre-

lation along temporal axis. The method to achieve noise removal is to represent

the current frame with a weighted average of its neighboring frames. How-

ever, if a video sequence contains high motion objects, which is not noise but

has low correlation compared to non-moving regions. Then part of the moving

object from neighboring frames might appear in the current frame, but with

lower intensity. It is so called ghost artifact. Figure 2.17 shows an example of

ghost artifact. The foreman’s face is a mixture of the mouth and nose from the

neighboring and current frames.

7 Jitter refers to irregular frame dropping. It can be introduced by either compres-

sion or the presence of transmission errors. On the decoder side, video frames

can be dropped by a playback system that is not efficient enough to decode and

display each video frame at the required speed. On the encoder side, frames

may be dropped because of a sudden increase of motion in the video content,

which can cause the encoder to discard frames in order to prevent an increase

of the encoding bit rate while maintaining a certain level of picture quality.

Figure 2.18(a) shows an example of jitter, where the black bars represent the
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Figure 2.17: Example of ghost artifact, where the man’s face is a mixture of nose and
mouth from previous and current frames.

frames received successfully, dashed bars are the lost frames, and the numbers

represent the index or time stamp of received frames. We can observe that the

interval of frame loss is not consistent, and hence, viewers will perceive irregular

motion freezing.

8 Jerkiness is the result of regularly skipping video frames to reduce the amount

of video information that the system is required to encode or transmit. This

creates motion perceived as a series of distinct snapshots, rather than smooth

and continuous motion. Figure 2.18(a) shows an example of jerkiness. The

frame loss occurs regularly every two frames and also the number of lost frames

is consistently two. Viewers will perceive consistent discontinuous motion.

2.2.2 Transmission Errors

A very important source of video impairment comes from the transmission of the

video stream over an error-prone channel. Digitally compressed video is primarily

transferred over packet-switched networks. In this scenario, two main types of trans-

mission impairments can occur. Packets can be lost or they can be delayed to the

point where they are not received in time for decoding. Both will result in the same

effect on the decoded information: a portion of the video stream is missing. This

partial loss of information can have a dramatic impact on users’ perceived quality

since the loss of a single packet can result in a corrupted macro-block. Corrupted

information can subsequently spread both spatially to neighboring blocks and tem-
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Figure 2.18: An illustration of video temporal quality degradation, where black bars
represent the frame received successfully, dashed bars are the lost frames, and the
numbers represent the index or time stamp of received frames. Figure (a) represents
jitter artifact, and (b) represents jerkiness artifact. Humans will perceive irregular
motion freezing in the case with jitter artifacts, and consistent frame freezing in the
case with jerkiness artifacts.

porally over adjacent frames because most video encoders use differential predictive

coding and motion compensation. The loss or corruption of a single macro-block

can therefore affect the stream up to the next re-synchronization point (e.g. next

slice, next intra-coded frame). The visual impact of such losses varies between video

decoders depending on their ability to deal with corrupted streams. Some decoders

hardly recover from certain errors, while others will apply more or less complex er-

ror concealment mechanisms. However, in some applications, decoders will choose

to entirely discard the frame that has corrupted or missing information and repeat

the previous video frame instead, until the next valid decoded frame is available.

This is an entirely different situation from error concealment scenarios since one or

several complete video frames are missing. No additional spatial degradations are in-

troduced but frame repetition and frame drop occur. Thus, both jitter and jerkiness

might occur.
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2.3 Overview of Video Quality Assessment

Generally speaking, video quality can be measured in two ways: subjective and

objective methods.

2.3.1 Subjective Video Quality Assessment

Subjective testing is the most reliable method because it measures the most di-

rect response from end users. It requires viewers, e.g. members of the public, to

view video clips and assign a quality score. Average quality for a processed video

sequence is known as Mean Opinion Score (MOS). Two methods, single stimulus

continuous quality evaluation (SSCQE) and double stimulus continuous quality scale

(DSCQS), have been demonstrated to give the most repeatable and stable results,

provide consistent viewing configurations and subjective reports, and have conse-

quently been adopted as parts of an international standard, ITU-R BT. 500 [18], by

the International Telecommunications Union (ITU). If the SSCQE and DSCQS tests

are conducted on multiple human subjects, the scores can be averaged to yield the

MOS. The standard deviation between the scores may also be useful to measure the

consistency between subjects.

1 Single Stimulus Continuous Quality Evaluation: In the SSCQE method, sub-

jects continuously indicate their impression of the video quality on a linear scale

that is divided into five segments. The five intervals are marked with adjectives

to serve as guides. An example of grading value and semantic meaning is shown

in Fig. 2.19. The viewers are instructed to move a slider to any point on the

scale that best reflects their impression of quality at that instant of time, and

to track the changes in the quality of the video using the slider.

2 Double Stimulus Continuous Quality Scale The DSCQS method is a discrimi-

nation based method, and has the extra advantage that the subjective scores

are less affected by adaptation and contextual effects. In the DSCQS method, a

reference and a compressed video form a test case. The procedure for a test case

is illustrated in Fig. 2.20, where period T1 shows either reference or test image

data, T2 shows a gray image for buffering. The DSCQS method first presents
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the reference, then the test data to participants. Subsequently, this image pair

is repeated but in random order and participants vote on a quality score. The

length of each video data is restricted to a small number of seconds; 10 to 15 sec

is recommended. Participants evaluate both test and reference sequences using

sliders similar to those for SSCQE. The difference between the scores of the ref-

erence and the distorted sequences gives the subjective impairment judgment,

and it is defined as Differential-Mean-Opinion-Score (DMOS).

5

4

3

2

1

Excellent

Good

Fair

Poor

Bad

Figure 2.19: Example of subjective grading and its corresponding semantic expression.

T1 T1T2 T2 T1 T3T2

Vote

T2

Ref Test Ref (Test) Test (Ref)

Figure 2.20: Procedure of DSCQS subjective test, where period T1 that shows either
reference or test image data, and T2 shows a gray image for buffering.

However, results of subjective testing can be affected by several experimental condi-

tions (i.e. lighting condition, display order of testing materials, etc.). The experiment

needs to be designed carefully. In addition, in order to increase the reliability of sub-

jective data, the number of samples (i.e. participants) can not be few. Hence, carry-

ing out a subjective test is very resource consuming and inconvenient. It is neither a

practical nor scalable solution for a live application. Objective methods provide the

alternative solution.
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2.3.2 Objective Video Quality Assessment

The goal of objective image/video quality assessment research is to design quality

metrics that can predict subjective image/video quality without carrying out subjec-

tive experiments. A good objective metric should correlate well with subjective data.

Since the objective video quality evaluation method consumes less resources than the

subjective method, it permits objective metrics to be applied to more versatile ap-

plications. Hence, an objective image/video quality metric can be employed for the

following functions:

1 It can be used to monitor image quality for quality control systems. For in-

stance, an image/video acquisition system can monitor the quality metric and

automatically adjust related parameters to obtain the best quality image and

video data rate. A network video server can control the quality of video stream-

ing by monitoring feedback of the quality of the digital video transmitted over

the network.

2 It can be used to help the system designer while developing new image/video

processing systems and algorithms. If multiple video processing systems are

available for a specific task, then a quality metric can help in determining which

one of them provides the best quality results.

3 It also can be embedded into an image and video processing system to optimize

the algorithms and allow the algorithm to adjust its parameters autonomously.

For instance, in a visual communication system, a quality metric can be em-

ployed to optimize the parameters of the post-processing and bit allocation

algorithms on the encoder side for optimal reconstruction, error concealment,

and post-processing algorithms on the decoder side.

Objective image and video quality metrics can be classified according to the avail-

ability of the original image or video signal, which is considered to be distortion-free,

or perfect quality, and may be used as a reference for comparison to a distorted im-

age or video signal. Most of the proposed objective quality metrics in the literature

assume that the undistorted reference signal is fully available. Although ”image and

video quality” is frequently used for historical reasons, the more precise term for this
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type of metric would be image and video similarity or fidelity measurement, or full-

reference (FR) image and video quality assessment. It is worth noting that in many

practical video service applications, the reference images or video sequences are often

not accessible. Therefore, it is highly desirable to develop measurement approaches

that can evaluate image and video quality blindly. Blind or no-reference (NR) image

and video quality assessment turns out to be a very difficult task, although human

observers usually can effectively and reliably assess the quality of distorted image or

video without using any reference. There exists a third type of image quality as-

sessment method, in which the original image or video signal is not fully available.

Instead, certain features are extracted from the original signal and transmitted to

the quality assessment system as side information to help evaluate the quality of the

distorted image or video. This is referred to as reduced-reference (RR) image and

video quality assessment.

The most well known FR objective image and video distortion/quality metrics is

peak signal-to-noise ratio (PSNR), which is defined as:

PSNR = 10 log10

2552

MSE
(2.5)

where MSE is the mean-square-error, which is given by

MSE =
1

NC ·NR

NR∑
i=1

NC∑
j=1

(fx(i, j)− fy(i, j))
2, (2.6)

NC and NR are the numbers of rows and columns of an image, and fx(i, j) and

fy(i, j) are the values of (i, j)th pixel of the reference and degraded images respec-

tively. PSNR is widely used because of its simplicity and clear physical meaning.

However, it also has been widely criticized for its poor correlation with subjective

quality measurement. In other words, video content with the same PSNR value can

result in different quality opinion scores. Similar approaches have tried to estimate de-

livered video quality using network parameters [19,20], such as the amount of packet

loss. However, packet loss levels will not always give a meaningful quality score. The

same level of packet loss can produce different types of degradations and therefore

different levels of quality. Quality determined by the customer’s perception is much

more complex than the statistics that a typical network management system can pro-

vide, e.g. bit error rates or levels of packet loss. Aside from PSNR, quality evaluation
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research can be grouped approximately into three major categories, which are fidelity,

artifacts and hybrid approaches [21, 22]. In fidelity approaches, the metrics are es-

tablished based on knowledge of the human visual system (HVS) [23–30]. Figure

2.21a provides an example system diagram. The visual quality is interpreted from

the perceivable distortion associated with several human visual factors, such as con-

trast sensitivity [31–33], pattern masking [34–36], etc. The artifacts approach [37,38]

estimates the quality based on a priori knowledge of the same features, such as com-

pression artifacts, and obtains the final quality by ad-hoc integration and is shown in

Fig. 2.21b. Generally, the artifacts approach works well in some specific applications

and permits a computationally efficient implementation. In designing a quality metric

based on the artifacts approach, the accuracy of measuring the quality degradation

caused by compression is crucial for ensuring good performance. The hybrid approach

has been discussed in [28,39]. This approach predicts final quality by combining both

fidelity and artifacts measurement; a system diagram of this approach is shown in

Fig. 2.21c. The pooling module takes the perceptual saturation and artifacts masking

phenomenon into account.

The development of individual metrics for specific compression artifacts can be

separated into two major groups [4], which are the spatial and temporal domains. In

the spatial domain, several well known artifacts and the related metrics, such as block-

iness, blurriness and ringing etc., have been extensively studied in Refs. [1,17,40–47].

References [1, 17, 40–42, 48] focus on measuring the blurring artifact. Caviedes and

Oberti [40] extend the work in Ref. [48] from measuring sharpness(i.e. the opposite of

blurriness) of images captured under a microscope to compressed video. They com-

pare the distribution of the compressed image’s high frequency coefficients against

a Gaussian model and utilize this deviation as a sharpness measurement. Marichal

et al. [1] designed another blurriness estimation method in frequency domain by ob-

serving the distribution of the ratio of AC to DC coefficients. Marziliano and et

al. [41] estimate the blurriness based on the width of edges; a blurred image has wide

edge widths. Yang et al. [17] detect the blurriness caused by motion with a machine

learning approach. The results show that the metric can detect motion blurriness but

lacks resolution in determining an accurate blurriness level. In a later paper, Yang

et al. [42] measure the blurriness by observing high frequency energy associated with



38

Pre-
processing

Pre-
processing

Channel 
decomposition

Channel 
decomposition

Masking

Masking

Contrast 
sensitivity

Contrast 
sensitivity

Ref.
Signal

Testing
Signal

Contrast 
& adoptation

Contrast 
& adoptation

Pooling Quality
Index

(a)

Artifacts Metric 1

Artifacts Metric 2

Reference
video

Degraded
video

Pooling
Objective 
quality score

…
..

Artifacts Metric 3

(b)

Fidelity

Artifacts Metric 1

Reference
video

Degraded
video

Pooling
Objective 
quality score

Artifacts Metric 1

…
..

(c)
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the effects from human visual factors. The focus of Ref. [43–46] is to determine the

amount of blockiness. Wu [43, 44] proposed the first non-reference blockiness metric

that considers texture and luminance masking. Karunasekera [45] designed a blocki-

ness metric with an elaborate implementation of many HVS modules. Gao in Ref. [46]

proposed a non-reference blockiness metric, and also designed a de-blocking algorithm

guided by this metric. Marziliano [41] proposed a ringing metric that estimates the

pixel oscillation by measuring the pixel variation around each edge pixel. Oguz et

al. [47] implemented a ringing metric that also use pixel variation to determine the

severity of ringing artifacts. But in addition to that, the estimated ringing level is

adjusted by texture, and luminance masking effects.

In objective temporal quality metric designs, Feghali et al. [49] use frame rate

as the scaling factor to adjust PSNR and output a spatial-temporal quality score.

In Refs. [50] and [51], a jerkiness metric based on frame rate and motion activity is

proposed. This metric in Ref. [50] is further applied to guiding a new transcoder. In

Ref. [52], the inter-frame correlation is used to determine the location of lost frames.

Some post-processing is conducted on the number of lost frames to extract several

indices, such as the duration of group dropping and the number of group dropping

occurrences, etc. The final temporal quality score is determined based on the ad-hoc

analysis of those indices. Pastrana-Vidal and Gicquel [53] proposed a non-reference

objective metric for measuring fluidity impairments in video service. This metric

responds to their previous work [54] and takes the density of group dropping into

account. Lost frames are detected by inter-frame dissimilarity on the decoder side.

After thresholding, noticeable fluidity breaks are obtained. Each fluidity break is

weighted by a function of the pixel variation in the last frame at the end of the freeze

and the first frame appearing after the freeze. This stage tries to map the fluidity

break to different types of motion. Afterward, the fluidity break is further adjusted

by a function of the fluidity break density. The paper claims that the contribution

to temporal quality degradation of the fluidity breaks with more occurrences is less

significant. In other words, with the same amount of frame loss, the temporal quality

with scattered fluidity breaks is better than with aggregated fluidity breaks. Watan-

abe et al. [55] studied subjectively the temporal distortion with different combinations

of small group dropping with a fixed amount of frame loss. Based on that, they tuned
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a logarithmic function specifically for different combinations of frame loss in each se-

quence. This work provides important evidence that the same amount of frame loss

within one sequence could lead to different levels of subjective temporal degradation

through different combinations of aggregated frame loss. It shows the prediction ac-

curacy of the logarithmic function can be improved by tuning parameters according

to the duration of each grouped frame loss.

2.3.3 Performance Evaluation of Objective Quality Metrics

Since most objective quality metrics’ outputs are content dependent, and also for

the sake of data interpretation convenience, metrics’ outputs are normalized by the

max and min value of each sequence by

VQRn = 1 + 4
V QRn −min(V QR)

max(V QR)−min(V QR)
(2.7)

where VQRn represents a normalized metric’s output for the nth frame, which ranges

from 1 to 5, and higher value means better quality, V QRn denotes a metric’s raw

output for the nth frame, and V QR is a set of the metric’s raw outputs for a se-

quence. According to the Phase II Final Report from Video Quality Experts Group

(VQEG) [56], the relationship between the metrics’ outputs and the subjective quality

ratings, DMOSs, may not be linear, as subjective testing can have nonlinear quality

testing compression at the extremes of the test range. In order to remove any non-

linearity caused by subjective rating process and to facilitate comparison of metrics

in a common analysis space, normalized metrics’ outputs are mapped by a nonlinear

regression function as

DMOSo,n =
b(1)

1 + exp[−b(2)× (VQRn − b(3))]
(2.8)

where DMOSo,n denotes the mapped objective score for the nth frame, and b is

a set of parameters obtained by fitting the VQR of each metric against DMOSs.

As a result, each metric has a set of b parameters, and the corresponding DMOSo

represents the objective scores that are closest to subjective ratings. Therefore, the

best performance of each metric can be obtained by this mapping process.
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After normalization and nonlinear transformation, outputs of all metrics range

from 1 to 5 and higher value means better quality. The DMOSo are compared with

the DMOSs values by computing the similarity using the following metrics:

(a) Pearson correlation coefficient (CP ): This metric is used to estimate the model

prediction accuracy, which is the ability of the objective metric to predict sub-

jective ratings with minimum average error,

CP =

∑
∆DMOSo,n ·∆DMOSs,n√∑
∆DMOS2

o,n ·∆DMOS2
s,n

, (2.9)

where ∆DMOSo,n = DMOSo,n − DMOSo and ∆DMOSs,n = DMOSs,n −
DMOSs, where DMOSo, DMOSs are the mean values of mapped objective

and subjective scores respectively. Larger CP means higher prediction accuracy.

(b) Spearman rank order correlation coefficient (CS): This coefficient is designed

to determine the level of monotonicity by measuring the correlation of the de-

creasing(increasing) trend of both variables independent of the magnitude. CS

is given by

CS = 1− 6
∑ (DMOSo,n −DMOSs,n)2

N(N2 − 1)
, (2.10)

where N is the number of the data point. Larger CS means better prediction

performance.

(c) Root-Mean-Square-Error (CR): Root-Mean-Square-Error (RMSE) is the square

root of the mean squared difference between objective and subjective values, and

is given by

CR =

√
1

N

∑
n

(DMOSo,n −DMOSs,n)2. (2.11)

Lower CR means less deviation between subjective and objective data and better

prediction performance.

In this chapter we have reviewed the fundamentals of digital video compression for

the MPEG-4 and H.264/AVC standards. The nature of spatial and temporal artifacts

introduced by aggressive compression or by transmission errors. Next, subjective and

objective methods for video quality assessment were described. This included a review
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of relevant standards that have been established, as well as metrics for evaluating the

accuracy of quality determination.



3

Visual Blurriness Sensitivity Map

(VBSM)

3.1 Introduction

Automatic segmentation of attention-getting regions is a very interesting but chal-

lenging problem, and it can benefit a wide range of multimedia applications. For ex-

ample, in video telephony applications the video encoder can allocate more resources

to object regions that might be of interest to a viewer, to code them at higher quality

to achieve better perceptual quality. As another example, for video quality evalua-

tion, the segmented object can be allocated higher sensitivity when pooling the local

quality values into a global (i.e. frame or sequence level) quality value. In [57], Itti et

al. presented a saliency-based computational model for visual attention. The funda-

mental idea is that human visual attention focuses on objects having features distinct

from their surroundings. In the first stage, several salient features are extracted based

on psychovisual knowledge. Afterward, the salient features are combined to produce

a saliency map. Finally, a winner-take-all neural network is used to determine the

high attention locations in the saliency map. Yang et al. [58] proposed a perceptual

sensitivity map based on several bottom-up human visual system (HVS) factors and

skin tone. Furthermore, this sensitivity map is applied to bits allocation for a video

telephony application. Lu et al. [59] introduced a visual attention module that can

be deployed in several video quality evaluation systems. The attention module is

43
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produced by combining several bottom-up and top-down features. In the pooling

stage, the dependence between features is considered. Then motion masking caused

by camera motion is emulated to adjust the importance of each frame.

In summary, most of previous research only considers positive visual stimuli (i.e.

visual interesting regions), but pay very little attention on negative visual stimuli

(i.e. visual masking). As described in Sec. 2.3.2, masking is an important aspect of

the HVS in modeling the interactions between different image components present

at the same spatial/temporal location. Masking refers to the fact that the presence

of one image component (i.e. texture) will decrease the visibility of another image

signal (i.e. artifacts). The mask generally reduces the visibility of the image signal

in comparison to the case where the mask is absent. Therefore, the visual attention

model can not be applied to video quality evaluation directly, it must be combined

with visual masking effects.

Since artifacts have various appearances, the visual masking model for each ar-

tifact is also slightly different. For example, blocking artifacts have less visibility in

high texture regions, but on the other hand, those regions are important to determine

blurring artifacts. Hence, the human visual module must have enough flexibility to

include or adjust the masking components according to different characteristics of

the evaluated artifacts. Based on this reason, a novel and extendable human vi-

sual module has been designed to emulate the perceptibility of blurring artifacts in

the spatial and temporal domains by considering both human visual attention and

masking phenomena.

3.2 Visual Blurriness Sensitivity Map

When evaluating the blurriness of a video, observers tend to allocate different at-

tention to various spatial and temporal locations. This tendency is driven by several

bottom-up (i.e., luminance contrast) and top-down (i.e. skin tone) stimuli. In addi-

tion, the blurriness at some spatial/temporal locations can not be correctly recognized

because of masking phenomena. Less blurring sensitivity should be assigned to those

regions. Hence, human visual attention and masking factors lead to different weights

on various spatial and temporal locations. These weights are numerically emulated by
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a Visual Blurriness Sensitivity Map (VBSM). The VBSM is composed of two major

parts - 1)Human Visual Attention Map (HVAM) from Ref. [60], and 2) luminance

and motion masking components. Figure 3.1 shows the procedure for obtaining a

VBSM, where the white blocks are responsible to determine the level of human visual

interest and the gray blocks are used to suppress the response using masking effects.

In order to accommodate the system design of the blurriness metric that is going to

be introduced in Chapter 4, and avoid computational complexity without sacrificing

the accuracy of blurriness sensitivity determination, the input image is processed by a

non-overlapped block-based DCT and separated into 64 sub-bands as absolute values

using

Fn(i′, j′, u, v) = |
NB−1∑
i=0

NB−1∑
j=0

fn(i′, j′, i, j)k(i, j, u, v)|, (3.1)

k(i, j, u, v) = α(u) · α(v) cos[
(2i + 1)uπ

2NB

] cos[
(2j + 1)vπ

2NB

], (3.2)

where

α =





√
1

NB
, for u = 0√

2
NB

, for u = 1, 2 . . . NB − 1,
(3.3)

fn(i′, j′, i, j) represents the image data of (i, j)th pixel in (i′, j′)th block in nth frame,

Fn is the image data in frequency domain, which is used as input for VBSM deter-

mination, u, v represent the DCT coefficient indices within a block, and NB is the

dimension of each DCT block. This type of input gives VBSM more flexibility to be

combined with other video related applications, such as sharpening or bits-allocation.

In the first layer of Fig. 3.1, several attention features, such as intensity, chrominance,

texture, and motion, denoted as I+
n ,BG+

n ,BY+
n , T +

n ,M+
n respectively, are calculated.

Meanwhile, the luminance masking value, L−, and camera motion activity are esti-

mated. In the second layer, the outputs of attention and luminance masking features

that belong to the same object are grouped together by post-processing in the spatial

domain. Then, the values of spatially post-processed visual features and camera mo-

tion are temporally post-processed to avoid sudden changes in visual features’ output

along the time axis. Finally, camera motions are used to estimate the motion masking
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Figure 3.1: System diagram of Visual Blurriness Sensitivity Map

(VBSM)

value, β− and combined with all spatial-temporal post-processed visual features to

form a VBSM.

3.2.1 Intensity attention feature

The response of human eyes depends much less on absolute luminance than its

local variations. This property is known as the Weber-Fechner law. The intensity

attention feature, I+, is a measure of this relative variation of the luminance at each

pixel location and is given by

I+
n (i′, j′) = max(|Fn,I(i

′, j′, 0, 0)− Fn,I(i
′
w, j′w, 0, 0)|) (3.4)

where I+
n (i′, j′) denotes the intensity visual attention value of (i′, j′)th block in the

nth frame, (i′w, j′w) ∈ w and w is a 3× 3 mask centered at the (i′, j′)th block.

3.2.2 Chroma attention feature

The chromatic attention feature is constructed based upon [57], which is the so

called ”color-double-opponent” system. It shows that human cortex activity is excited



47

by one color (e.g., red) and suppressed by another color (e.g., green). That means

the difference between a pair of specific color channels provides information for de-

termining attention. The chromatic opponents, red/green and blue/yellow, denoted

as RG+ and BY+ respectively, are estimated by

RG+
n (i′, j′) = max(|RGn(i′, j′, 0, 0)−GRn(i′w, j′w, 0, 0)|) (3.5)

BY+
n (′i, j′) = max(|BYn(i′, j′, 0, 0)− Y Bn(i′w, j′w, 0, 0)|) (3.6)

and

RGn(i′, j′, 0, 0) = Fn,R(i′, j′, 0, 0)− Fn,G(i′, j′, 0, 0) (3.7a)

BYn(i′, j′, 0, 0) = Fn,B(i′, j′, 0, 0)− Fn,Y (i′, j′, 0, 0) (3.7b)

GRn(i′w, j′w, 0, 0) = Fn,G(i′w, j′w, 0, 0)− Fn,R(i′w, j′w, 0, 0) (3.7c)

Y Bn(i′w, j′w, 0, 0) = Fn,Y (i′w, j′w, 0, 0)− Fn,B(i′w, j′w, 0, 0) (3.7d)

where Fn,R, Fn,G, Fn,B, and Fn,Y denote the DCT coefficients of the red, green, blue,

and yellow color channels respectively, where Fn,Y =
Fn,R+Fn,G

2
− |Fn,R−Fn,G|

2
−Fn,B. The

DCT coefficients of color channels can be obtained through the following conversion:




Fn,R(i′, j′, 0, 0)

Fn,G(i′, j′, 0, 0)

Fn,B(i′, j′, 0, 0)


 =




1.16 0 1.59

1.16 −0.39 −0.81

1.16 2.01 0


 (3.8)

×




Fn,I(i
′, j′, 0, 0)− 128

Fn,Cb(i
′, j′, 0, 0)− 1024

Fn,Cr(i
′, j′, 0, 0)− 1024


 , (3.9)

where Fn,Cb, Fn,Cr are the DCT coefficients of up-sampled Cb and Cr chromatic

video data respectively. The color conversion matrixes in the pixel domain are given

by ITU-R Recommendation BT.601-4 [61] as




fR

fG

fB


 =




1.16 0 1.59

1.16 −0.39 −0.81

1.16 2.01 0


×




fI − 16

fCb − 128

fCr − 128


 . (3.10)
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The multiplication matrix and value shift constants from Equation (3.10) are trans-

formed by Equation (3.1) into the color conversion matrix as shown in Equation

(3.9).

3.2.3 Texture attention feature

The energy in high frequency bands is used to estimate the texture level of each

block. Edge structure is more important than fine texture since the former has

more structural texture pattern and draws more human attention than the latter.

Therefore, only the medium frequency bands that are denoted as M in Fig. 3.2 [62]

are used to determine the texture visual attention region. The value for the texture

attention feature of each block, T +, is estimated by the magnitude of medium bands

as

T +
n (i′, j′) =

6∑
i=2

Fn,I(i
′, j′, i, 0) +

6∑
j=2

Fn,I(i
′, j′, 0, j)

+ Fn,I(i
′, j′, 1, 2) + Fn,I(i

′, j′, 2, 1)

+ Fn,I(i
′, j′, 2, 2) + Fn,I(i

′, j′, 3, 3). (3.11)

DC

L

M

H

Figure 3.2: Illustration of 8×8 block DCT coefficients and different frequency bands,
where DC, L, M, and H denote the DC, low, median, and high frequency bands
respectively.

3.2.4 Motion attention feature

Motion is the major difference between video and still images. In video, a set

of images is played sequentially and moving regions usually draw most of viewers’

attention, while other features are not very conspicuous.
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A common way to recognize moving regions is by using the magnitude of the

motion vectors. However, because of rate control and compression efficiency opti-

mization, motion vectors do not always match the true motions. Besides, the motion

vector information is only available in inter-coded blocks; they are not available in

the intra-coded blocks.

In order to cope with these concerns, a robust and low complexity background

subtraction method is adopted from [63] to estimate the movement in each block.

This approach assumes that the background scene belongs to regions with very minor

movement and the foreground is in noticeable motion. However, this assumption is not

always applicable. For a surveillance camera, the unmoving regions are determined to

be background and the regions with movement are classified as foreground. But for

a tracking camera, the determination is the other way around; the unmoving regions

belong to foreground, because the aim of the camera moves along with the object and

the background regions are in motion. Therefore, instead of foreground/background,

we use the terms moving-region(MR) and non-moving-region(NMR) for the sake of

clarity.

The motion of each block is estimated by observing the DC value distribution

along the temporal axis of the R, G and B color channels. Figure 3.3 shows the

procedure for the determination of motion attention regions. In order to find the

likelihood belonging to NMR of the nth frame, the DC values of all blocks for all

three color channels of nth and previous frames are given as input into a mixture

Gaussian model. The current nth frame is compared against each of the previous

frames and the deviations are given as input into a mixture Gaussian function given

by

Prn(i′, j′) =
1

T

T∑
t=1

∏
c

1√
2πσ2

n,c

e
− 1

2

D2
t,c

σ2
n,c , (3.12)

where Pr represents the likelihood to NMR and a larger Prn(i′, j′) means (i′, j′)th

block in nth frame is more likely to be considered as part of the NMR, c ∈ (R, G,B),

Dt,c is the deviation between the current and the tth prior frames in cth color channel,

where Dt,c = Fn,c(i
′, j′, 0, 0) − Fn−t,c(i

′, j′, 0, 0), T is the number of previous frames,

which is set to 5 according to Ref. [63] and experimental data, and σ2
n,c is the variance

of cth color channel of a given DC value. This variance can also be thought of
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the width of the mixture Gaussian kernel. In order to estimate σ2
n,c against some

slight movement of background, the median value, mn,c of the DC value difference

of all blocks, |Fn(i′, j′, 0, 0) − Fn−1(i
′, j′, 0, 0)|, for a consecutive pair (Fn, Fn−1) in

the sample is calculated independently for each color channel. The reason behind

using the median of the absolute difference of all blocks’ DC value of two consecutive

frames is that DC values change as different objects appear on the same block but at

different times; this is defined as the objects’ movement. As measuring the deviation

between two consecutive frames, most DC value pairs [Fn(i′, j′, 0, 0), Fn−1(i
′, j′, 0, 0)]

have similar values except a few pairs with object movement. However, using the

same reason, some slight and un-meaningful movement (e.g. leaves with random

movement in the background) might also cause DC value differences, but this should

be lower than the DC value difference caused by real object movement. In order

to distinguish these two different movements, the median value of the deviation of

DC value pairs has been recognized as the most robust threshold to filter out un-

meaningful movements [63]. Let’s assume that the pixel value distribution of an image

can be approximated by a Gaussian distribution N(0, σ2), then the distribution for

the deviation of two images is also Gaussian: N(0, 2σ2). Since the distribution is

symmetric, the median of the absolute deviations mn,c is equivalent to a quarter of

the deviation distribution as

Pr(N(0, 2σ2) > mn,c) = 0.25, (3.13)

and therefore the standard deviation is estimated as

σn,c =
mn,c

0.68
√

2
. (3.14)

Calculate the variance
for the mixture Gaussian model

Apply the mixture 
Gaussian model

Fn,c(i’,j’,0,0)
Look backward
with Τ frames

Prn Anisotropic 
Gaussian

Motion attention
regions

Dt,c

|Fn,c(i’,j’,0,0) –
Fn-1,c(i’,j’,0,0)|

σn,c
2

Figure 3.3: Procedure for the determination of motion attention regions.

When the camera tracks a moving object, the aim of the camera is on the object

and the object usually stays in the central region of the video images [64]. Most of
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the NMR locates around the image central. On the contrary, the NMR for a static

camera usually stays near the boundary of the image. An anisotropic Gaussian kernel

given by

P2(i
′, j′) =

1√
2π(σ2

x + σ2
y)/2

e
− 1

2
(
(i′−i′c)2

σ2
x

+
(j′−j′c)2

σ2
y

)
(3.15)

is used to differentiate these two types of camera motion by observing the locations of

high motion regions, where (i′c, j
′
c) represents the index of the spatial central point of

an image, and σ2
x, σ2

y control the widths of the Gaussian distribution in the horizontal

and vertical directions respectively. Suggested by Ref. [64], the values of σ2
x and

σ2
y are set to 800 and 500 respectively. Figure 3.4 shows the outputs of Equation

(3.15), where brighter intensity represents higher attention. The visual sensitivity

aggregates in the central region and it decreases toward the image boundary. Hence,

as more high motion occurs around the image boundary, output from Equation (3.15)

will be smaller and the camera motion will be classified as a tracking camera. The

block indices (i′, j′) in Equation (3.15) are replaced by (i′o, j
′
o), which are the block

indices with considerable motion as Prn(i′o, j
′
o) ≤ 0.8. The static and tracking camera

motions are differentiated by

camera motion =

{
static if G(n) > T2

tracking if G(n) ≤ T2

(3.16)

where G(n) = 1
(NC/8−1)·(NR/8−1)

∑
i′o,j′o

P2(i
′
o, j

′
o), where NC and NR are the width and

height of an image; T2 is the threshold to determine the camera motion type; it

is empirically set to 0.08. Because visual attention caused by motion changes with

camera motion, the final motion attention regions are given by

M+
n (i′, j′) = |η − Prn(i′, j′)|, (3.17)

where

η =

{
1 if camera motion = static

0 if camera motion = tracking
(3.18)

3.2.5 Luminance Masking

Luminance masking is the phenomenon that human eyes have less discrimination

ability under lighting conditions that are too bright or too dark. The blurriness level
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Figure 3.4: Output of a anisotropic Gaussian function. Brighter regions represent
stronger visual sensitivity and it decreases as spatial location moves toward boundary.

is less noticeable, or incorrectly judged, under those conditions. Luminance masking

is given by

L−n (i′, j′) =

{
a1 − c1[1− e1Fn,I(i

′, j′, 0, 0)]k1 if Fn,I(i
′, j′, 0, 0) ≥ 127

a1 − c2[e1Fn,I(i
′, j′, 0, 0)]k2 Otherwise

where parameters a1 = 1.096, c1 = 0.36, c2 = 0.95, e1 = 9.75E−04, k1 = 3,

and k2 = 2 are obtained from [65]. Figure 3.5 shows varying blurriness sensitivity

caused by luminance masking. Note that the blurriness sensitivity is highest when the

average luminance value in an eight bit scale lies between 100 and 130. Experimental

results from [66] indicate that image content can be most correctly distinguished

within this lighting range, and the sensitivity in very low light is higher than very

bright light.

3.2.6 Camera Motion Activity Estimator

Motion can be roughly separated into local and global types. Local motion refers

to the relative motion between objects and the camera. It induces human visual

attention as described in Sec. 3.2.4. Global motion is usually generated by camera

movement. According to [67], global motion can be further separated into several
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Figure 3.5: Blurriness sensitivity with different average luminance values within eight
bit scale

types, such as rotation, shifting, panning, etc. Shifting motion caused by a fast camera

aim change from one scene to another functions as a spatial low-pass filtering [68] to

eliminate some high spatial frequency signals that are very important to blurriness

assessment. This effect will be considered in Section 3.2.8. Before that, the motion

vectors that are responsible for shifting motion must be extracted to estimate the

motion activity.

Although motion vectors are not always consistent with real motion, they can

still be utilized for motion activity estimation since it does not require very accurate

motion information. For shifting motion, most of the motion vectors point in a similar

direction and that makes the distribution of all motion vectors concentrate in some

interval, as shown in Fig. 3.6. Based on this characteristic, a quantity, MAs, the

average of the amplitude of the motion vectors that have the highest coherence in

the motion direction of one frame, is defined to represent the strength of camera

shifting motion activity. Figure 3.7 shows the procedure of determining the global

motion activity. The motion vector information and a predefined histogram step size

are used as inputs. After calculating the occurrences in both horizontal and vertical

directions, the occurrences in each bin is normalized by the total number of motion

vectors and converted into a probability scale. The probabilities are compared against

a threshold to filter out the bins with high probability. If no bin has high probability,
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then MAs = 0. Otherwise, the amplitude of the bin that has highest probability is

used as the final MAs.
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Figure 3.6: Examples of (a) motion vectors with shifting motion and (b) distribution
of motion vectors, where x- and y- axes represent the motion in the horizontal and
vertical directions.

3.2.7 Spatial and Temporal Post-Processing

In order to ensure that the responses of all attention features are within a con-

sistent range at the final feature composition stage, the output from each attention

feature is normalized by

Xn(i′, j′) =
xn(i′, j′)−min[xn(I ′, J ′)]

max[xn(I ′, J ′)]−min[xn(I ′, J ′)]
, (3.19)

where Xn(i′, j′) represents the normalized value of an attention feature which ranges

from 0 to 1, xn ∈ (I+
n ,BG+

n ,BY+
n , T +

n ,M+
n ), I ′ ∈ (0, . . . , NR/8 − 1), and J ′ ∈

(0, . . . , NC/8− 1).

A two-dimensional median filter first sorts a set of two-dimensional data into one

dimension with either decreasing or increasing order vector. Then the middle value

of the sorted vector is the output of the median filtered data. This filter is applied to

each block to group the attention responses that belong to the same object together:

Xn,S(i′, j′) = median1[Xn(i′w, j′w)], (3.20)

where median1 denotes one iteration of median filtering, and Xn,S represents the

spatially post-processed data.
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Calculate the histogram in horizontal direction

Calculate the histogram in vertical direction

Convert the occurrence of each bin to probability by dividing 
the occurrences with the total number of motion vectors

Threshold the probability of each bin to validate 
the motion vectors with high occurrences

Use magnitude of the motion vectors that with 
the highest probability as global motion activity

MAs

Motion vector information Histogram step size

Figure 3.7: Procedure of global motion activity determination.

Since the content of the current video frame is expected to be similar to its neigh-

boring frames, high attention response contrast of a block in the current frame to the

blocks at the same spatial location but in neighboring frames will result in a sudden

attention value change. A one iteration temporal median filter is applied to each

block along the temporal axis as

Xn,ST (i′, j′) = median1[Xnw,S(i′, j′)] (3.21)

to moderate this effect, where Xn,ST represents the spatially and temporally post-

processed normalized attention value, nw ∈ wt and wt represents a group of frames

centered at the nth frame.

3.2.8 Motion Masking Function

It is generally believed that two temporal mechanisms exist in human vision, one

is transient and the other is sustained [69]. The transient channel usually happens
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as high motion camera shifting occurs and it introduces strong motion blur [17]. In

this case, the spatial content is low-pass filtered, and most of the spatial detail is lost.

On the other hand, the sustain channel generally refers to static camera motion and

no motion blurriness occurs. As a result, most visual detail information is carried in

the sustained channel. In order to imitate this human visual effect, a binary motion

masking mechanism is implemented as

β−(n) =

{
0 if MAs,T (n) ≥ Ts

1 Otherwise
, (3.22)

where MAs,T (n) is the temporally post-processed shifting motion activity of nth

frame, and Ts is the threshold for MAs,T (n) to decide the visibility of high frequency

content, where Ts is determined experimentally and it is set to 8 for QCIF(176×144)

and 11 for QVGA(320× 240) image size. Using (3.22), blurriness scores from frames

with high shifting motion are disregarded due to motion masking.

Figure 3.8 shows examples of MAs,T vs. β− and corresponding snapshots. Note

that β− is multiplied by 10 for illustration purposes. In Fig. 3.8, details in the frames

with high MAs,T are masked by motion and the texture content is barely perceptable.

The corresponding β− of those frames decreases to 0, meaning the blurriness caused

by compression of those frames is not visible and they are not taken into account in

sequence level blurriness estimation.

3.2.9 Combiner

The final VBSM is derived by a linear combination of all attention and masking

features and is given by

Mn(i′, j′) =
β−(n)L−n,ST (i′, j′)

5
· [I+

n,ST (i′, j′) +RG+
n,ST (i′, j′)

+ BY+
n,ST (i′, j′) + T +

n,ST (i′, j′) +M+
n,ST (i′, j′)], (3.23)

where L functions as a suppression parameter to adjust the attention value of each

block, and β− binarily determines the blurriness visibility of each frame.
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Figure 3.8: Example of camera shifting motion activity vs. motion masking for
(a)FOREMAN and (b) RUGBY sequences at frame rate 15fps.
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3.3 VBSM performance evaluation

Figure 3.9 shows several image samples, their corresponding VBSMs are shown

in Fig. 3.10. Fig. 3.9(a-c, g, h) are QCIF size and Fig. 3.9(d-f) are QVGA size.

Figure 3.9(a) represents content of a moving bus tracked by a camera, Figure 3.10(a)

shows that the bus has been allocated the highest blurriness sensitivity of all regions.

Data from Fig. 3.9(b, c) depict sports type content with high object movement.

The corresponding VBSMs in Fig. 3.10(b, c) show the highest blurriness attention

aggregates on the players. Fig. 3.9(d) comes from a panning camera that moves along

with a slow moving boat, with high texture background and foreground. Results

from Fig. 3.10(d) show that not only the boat but also the adjacent rocks have been

assigned high blurriness sensitivity because the former is the main attention object

and the latter belong to high structural texture regions. Figure 3.9(e, f) use a static

camera with slow moving talking-head and object, respectively. In Fig. 3.10(e, f), the

main interesting objects have high blurriness sensitivity but the flat regions that have

the least blurriness sensitivity are assigned very low blurriness attention. Figures

3.9(g, h) are from the same sequences as Fig. 3.9(b, c) but with high shifting motion.

As shown in Fig. 3.10(g, h), both Fig. 3.9(g, h) receive zero blurriness attention since

they are heavily masked by motion.

Furthermore, a deeper evaluation of the performance of VBSM is carried out by

injecting blurriness into image with and without VBSM. On the average, two cases are

designed to reduce the same percentage high frequency energy, but case 1 assigns a

varying percentage of high frequency loss to each block according to VBSM, and case

2 truncates high frequency energy of all blocks using a uniform percentage. Thus, the

magnitude of all frequency bands of a blur-injected block are adjusted by

F ′(i′, j′, u, v) = F (i′, j′, u, v) ·Mask8×8(u, v) (3.24)

where Mask(u1, v1) = 1 and Mask(u2, v2) = 0.8 × th, where u1, v1 ∈ (1, 2, 3), and

u2, v2 ∈ (4, · · · , 8). This indicates that only the high frequency band energies are

adjusted by the value of 0.8× th, and th is the key factor that controls the way that
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energy of high frequency bands will be reduced. It is given by

th =

{
Mn(i′, j′) for case 1P

i′
P

j′ Mn(i′,j′)
(NR/8−1)·(NC/8−1)

for case 2.

As a result, both cases reduce high frequency energy by the same percentage but with

different energy loss allocation. Finally, the image that has high frequency energies

truncated is obtained by inverse DCT as f ′ = IDCT(F ′), where IDCT is the inverse

DCT. In case 1, with guidance from VBSM, blurriness sensitive blocks have less

high frequency energy reduction, while case 2 eliminates the same percentage of high

frequency energy for all blocks regardless of their importance to visual perception.

Blur-injected frames of CONTAINER are shown in Fig. 3.11. In case 1, the salient

objects (i.e. boat and pole) have a sharper appearance than case 2. This is evidence

that the VBSM can accurately determine the regions that are significant to visual

blurriness perception.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9: Sample image data of (a)BUS, (b)RUGBY, (c)FOOTBALL,
(d)COASTGUARD, (e)MOTHER DAUGHTER, (f)CONTAINER, (g)RUGBY with
high shifting motion, and (h)FOOTBALL with high shifting motion
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.10: VBSMs of (a)BUS, (b)RUGBY, (c)FOOTBALL, (d) COASTGUARD,
(e)MOTHER DAUGHTER, (f)CONTAINER, (g)RUGBY with high shifting motion,
and (h)FOOTBALL with high shifting motion

3.4 Summary

A new framework for determining human visual sensitivity to blurring artifacts

has been proposed. It considers both human visual attention and several human vi-

sual effects. Not only the positive stimuli (i.e. visual attention) but also the negative

stimuli (i.e. visual masking effect) have been taken into account. Because of these

characteristics, the output visual sensitivity maps are very suitable for video quality

assessment or enhancement related applications. Simulation results show that the

estimated visual sensitivity maps highly correspond to human visual determination.

In addition, a blur-injection experiment has been carried out to evaluate the perfor-

mance of VBSM by removing the same percentage of information from two images

with the same contents, but one loses information with guidance from the VBSM, and

the another one in a uniform fashion. Subjective evaluation shows that the former

has better visual quality than the latter. It confirms that the VBSM can accurately

determine the visual sensitivities in a video sequence.

In the next Chapter, the VBSM will be applied to video quality assessment; specif-

ically to blurriness estimation. In future, possibility of more applications will be ex-

plored, such as bits allocation, and video quality enhancement. For bits allocation,

the compression ratio of each local compression unit (i.e. macroblock) can be ad-
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(a)

(b)

Figure 3.11: Blur-injected samples of CONTAINER for (a) VBSM directed, and (b)
uniformly spread.

justed according to VBSM, with more bits assigned to the regions with higher visual

sensitivity. For quality enhancement, the VBSM can be used to direct the quality

enhancement algorithm (e.g. sharpening) to improve the quality of regions that are

important to visual quality and skip the parts with low visual significance. In this

way, the computation complexity can be decreased dramatically but the video quality

is still effectively enhanced.

PUBLICATIONS

Kai-Chieh Yang, Clark C. Guest and Pankaj K. Das, “Human Visual Attention for



62

Compressed Video”, Proc. IEEE International Symposium on Multimedia, pp. 525-
532, Dec. 2006

Kai-Chieh Yang, Clark C. Guest and Pankaj K. Das, “Hierarchy Visual Attention
Map”, Proc. SPIE, Human Vision and Electronic Imaging XII, Vol. 6492, Feb. 2006



4

Perceptual Blurriness Metric

(PBM)

4.1 Introduction

Blurriness, one of the most pronounced artifacts in video quality assessment, dom-

inates the first impression of compressed video or image signals. In this Chapter, a

new blurriness metric that includes human cognitive and visual effects will be pre-

sented. It does not require access to original video sequence. This metric estimates

the blurriness level of a compressed video sequence based on the presence of high

frequency signal components. A numerical visual blurriness sensitivity map (VBSM)

as described in Chapter 3 is adopted to assign a weight to each spatial and temporal

location according to human visual attention and human visual system factors (i.e.

motion, luminance masking). The local blurriness measure is adjusted based on the

VBSM and forms a sequence of blurring score. In order to ensure the blurriness as-

sessment is independent of content, the blurring score is normalized by Quantization

Parameter information from the bitstream. Finally, a cognitive module is applied

to emulate human perceptual non-linearity and saturation effects, and produce a fi-

nal blurring value. Detailed performance analysis of each sub-module is reported to

demonstrate the importance of each. Moreover, two performance tests:(1) objective

and (2) psychovisual experiments are carried out. Experimental results confirm high

accuracy of blurriness prediction for the proposed metric.

63
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Quantization is the core aspect of data size reduction used in video compression.

The basic principle of quantization is to represent the video data with a finite number

of levels. This results in more compact data after entropy coding. The precision of

quantized data is determined by the quantization step size and is often denoted by

the Quantization Parameter(QP), where larger QP means larger quantization step

size and smaller compressed data size. However, the consequence of large QP is

greater information loss and impaired perceived quality for viewers. As described

in Chapter 2, video quality distortion can be separated into sub-, near-, and supra-

threshold categories according to its perceptibility to human vision [51]. The sub-

and near-threshold classes refer to types of distortion that are below or slightly above

just-noticeable-difference (JND) respectively. Supra-threshold distortion generally

appears in a structured form and is known as an artifact. This type of distortion

is very irritating to human perception and dominates subjective quality assessment.

Many researchers have attempted to improve video quality assessment accuracy by

determining an appropriate JND [21, 65]. However, research in quantifying supra-

threshold distortion is relatively sparse. One of the main challenges to supra-threshold

distortion measurement is that its appearance varies with video content. Hence,

human perceived annoyance can be different even though two video segments have the

same error energy [70]. Many high level cognitive functions in the human brain and

visual system are involved in artifacts perception, which complicates the measurement

process.

Blockiness, ringing, and blurriness are the major artifacts caused by video com-

pression [71]. Blockiness refers to an abnormal tiling structure in compressed images.

It results from the independent quantization of blocks in the block based Discrete Co-

sine Transform (DCT) coding schemes, leading to discontinuities at the boundaries

of adjacent blocks. Ringing is fundamentally associated with Gibbs phenomenon [71]

and is most evident along high-contrast edges in smooth areas. Blurriness manifests as

a loss of spatial detail and a reduction of edge acuteness. It is due to the suppression

of high-frequency coefficients by coarse quantization.

Video data compressed by MPEG-1, MPEG-2, and MPEG-4 very often suffer

from these three major artifacts. However, some emerging codecs, such as H.263 and

H.264, have included in-loop post-processing as a part of the standard. The post-
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processing is like a low-pass filtering mechanism to remove possible spurious high

frequency signal components in reconstructed video data. Consequently, blocking

and ringing artifacts are effectively removed. But this post-processing often accidently

eliminates some high frequency content that belongs to the original video data. Thus,

it adds additional blurriness to the blurriness introduced by quantization. Therefore,

blurriness has recently become the most pronounced artifact. Enhancing this aspect of

video quality has drawn much research interest. A good blurriness metric can provide

precise information about the strength and location of blurring artifact. With a

proposed burriness metric as guidance, video coder designer can reduce the blurriness

by adaptively allocating resources or intelligently post-processing video data. Thus,

accurate blurriness assessment is crucial to video quality enhancement and a reliable

blurriness metric is highly desired.

The flow of this chapter is arranged as follows. Section 4.2 provides an overview of

related research for blurriness assessment. Based on the analysis of the related work,

several weaknesses of current blurriness estimation approaches are discussed in Section

4.3. The proposed metric is introduced in detail in Section 4.4. Section 4.5 explains

the experiment set up for parameter fitting and metric performance evaluation. The

parameter fitting process for several important functions is described in Section 4.6.

The experimental results are presented and analyzed in Section 4.7. Finally, the

summaries of this work are given in Section 4.8.

4.2 Related Work

An organization of blurriness measurement research is shown in Fig. 4.1. First,

edge pixels are extracted by observing the local peak in luminance gradient value.

The edge pixels are those with a local maximum in first derivative of pixel values.

In the second step, pixel value activities around each edge pixel are used to estimate

the strength of blurring artifacts. The estimation process can be carried out in either

the spatial or frequency domain. The former uses video pixel values directly and the

latter uses the transformed spatial frequency data.

Using a spatial approach, Ref. [41,72,73] propose several metrics that measure the

blurriness by estimating spatial activity around edges. These algorithms heavily rely
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Figure 4.1: Summary of related blurriness assessment research.

on accurate edge detection and are designed for still image applications. Figure 4.2

shows an example of blurriness estimation using edge profiles. Figure 4.2(a) is a sam-

ple image and Fig. 4.2(b) shows a row of pixels of the image, where (ie, je) depicts the

spatial location of an edge pixel, (il, jl) and (ir, jr) represent respectively the closest

left and right local minimum or maximum second order intensity derivative along the

horizontal or vertical direction of (ie, je). Consider f(ie, je), f(il, jl), f(ir, jr) as the

corresponding intensity values, the spatial edge profile based blurriness estimation

methods can be summarized into the following three categories:

1 Average Edge Transition Width (AETW): Measure the strength of blurring

artifact by observing the average width of all edge pixels as

AETW =
1

Ne

∑
ie,je

|(il, jl)− (ie, je)|+ |(ir, jr)− (ie, je)|, (4.1)

where |(il, jl)− (ie, je)| and |(ir, jr)− (ie, je)| represent the edge widthes on both

sides of an edge pixel on (ie, je), Ne is the total number of all edge pixels. Larger

AETW means that edges are wider and image is more blurred.
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Figure 4.2: Example of edge profile.

2 Digital Sharpness Scale (DSS) : Using the height of edges to estimate the blur-

riness as

DSS =
1

Ne

∑
ie,je

|f(il, jl)− f(ie, je)|+ |f(ir, jr)− f(ie, je)|. (4.2)

Higher DSS means that edges are more acute and image is less blur.

3 Average Edge Transition Slope (AETS) : Estimate the blurriness by observing

the slope of edges as

AETS =
1

Ne

∑
ie,je

DSS(ie, je)

AETW (ie, je)
. (4.3)

Sharp images contain edges with steeper slope, and hence, AETS value is higher.

Using a frequency domain approach, Caviedes [40] extends Zhang’s work [48]

to design a sharpness metric, the opposite to blurriness, based on measuring the

departure of a probability distribution from a Gaussian(normal) shape of local DCT

coefficients around each edge pixel by a statistical measure: Kurtosis. The Kurtosis

measurement, β2, for a variable, X , is given by

β2 =
m4

m2
2

=
E[(X − E(X ))4]

E2[(X − E(X ))2]
, (4.4)

where m4 and m2 are the 4th and 2nd moment of data X , respectively, and E(X ) is the

mean value. The Kurtosis of a Gaussian distribution is 3. The value of β2 for a random
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Figure 4.3: Example of different distributions and their Kurtosis value.

variable can be compared with 3 to determine whether its distribution is ”peaked”

or ”flatted-topped” relative to a Gaussian distribution. Figure 4.3 shows probability

density functions for Gaussian and Laplacian distributions. For the distribution that

is more like the Laplacian, the β2 will be higher than 3. On the contrary, for the

distribution that is similar to Gaussian or flatter, the Kurtosis measurement will be

close to 3 or less. Consider each DCT coefficient except the DC value as one histogram

bin. After normalization, each DCT coefficient can be thought as a probability value

that ranges from 0 to 1. For a sharp image, high frequency bands will contain more

energy and the distribution of DCT coefficients will be closer to Gaussian. In this

case, the Kurtosis measurement will be lower. For a blurred image, less energy exists

in high frequency bands and the distribution of DCT coefficients will be closer to a

Laplacian distribution, and hence, the Kurtosis value will be higher. Therefore, it

can be concluded that β2 will increase as the image suffers more blurriness. A more

complete procedure of blurriness estimation using Kurtosis measurement is shown

in Fig. 4.4. First, the locations of edge pixels are detected by calculating pixel
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Figure 4.4: Procedure of sharpness estimation using Kurtosis measurement.

gradient values in both horizontal and vertical directions. An 8-by-8 block is grouped

around each edge pixel and the DCT is carried out on each block. AC coefficients are

normalized by the sum of all AC coefficients. The Kurtosis value is calculated using

Equation (4.4) and it is adjusted by the number of edge pixels in each block. The

sharpness score of a frame is the average of Kurtosis value of all edge pixels.

Marichal and et al. [1] designed another blurriness estimation method in the fre-

quency domain by observing the distribution of the ratio of AC to DC coefficients.

This metric is denoted as the DCT-histogram in the following presentation. The blur-

riness estimation procedure for this metric is shown in Fig. 4.5. First, the compressed

image is transformed by the non-overlapped block-based DCT. Then the occurrence

of non-zero values for each DCT coefficient of all blocks is calculated. The histogram
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Figure 4.5: Procedure of blurriness estimation using the DCT-histogram approach.

for each AC coefficient is compared against a threshold that adapts to the histogram

value of DC coefficient. If any AC coefficient that is less than the threshold, then

blurriness increases according to the location of the coefficient by a predefined value

as defined in Fig. 4.6. Finally, the ratio of the sum of the blurriness values produced

by all AC coefficients to the sum of the values in Fig. 4.6 is the blurriness score of

one block. The final blurriness score for entire image is average blurriness score of all

blocks.

4.3 Problem Formulation

Most related work relies on edge information to determine the regions that are

significant for blurriness assessment. However, edge detection can fail because of the
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Figure 4.6: Predefined blurriness values for each AC coefficient [1].

presence of other compression artifacts and the absence of high frequency information

due to heavy quantization. Accurate edge location might not be available and the

accuracy of blurriness estimation is reduced.

Also, most previous work focuses on application to individual images and treats a

video sequence as a set of independent images. These approaches assume that human

eyes have the same sensitivity to blurriness regardless of varying spatial and temporal

stimuli. However, the fact is that viewers pay the most attention to blurriness only

in certain regions, and some blurring artifacts might not be perceived because of the

presence of other signals. Therefore, when estimating blurriness, the sensitivity to

local blurriness should vary with the level of human visual attention.

All the referenced blurriness metrics assume that the measured signal can be

mapped to human perceived blurriness linearly. However, because of high-level human

cognitive mechanisms, the visual blurriness assessment process is highly nonlinear and

saturates as blurriness is either imperceivable or extremely severe.

Normalization is a challenging and unresolved issue in most blurriness estimation

research. Because human perceived blurriness is highly influenced by content, it

results in different annoyance level even with the same strength of erroneous signal.

This causes objective measures to deviate from human perceived blurriness. Previous

research does not have a good solution for this problem. Because of this weakness,

the absolute blurriness value can not be interpreted directly.
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Addressing the concerns above, a novel and effective blurring metric - Percep-

tual Blurriness Metric(PBM) is designed for compressed video data. Several notable

characteristics of this metric are:

1. Non-Reference estimation: Video/image quality metrics can be classified into

Full-Reference(FR), Reduced-Reference(RR), and No-Reference(NR) according

to the accessability of original data [21,22]. The proposed PBM is a NR metric,

which allows more flexibility for future deployment.

2. High blurriness estimation accuracy on both MPEG-4 and H.264/AVC: Our

investigation shows that many blurriness metrics can handle the MPEG-4 en-

coded sequences but fail for H.264/AVC. Experimental results show that PBM

not only works well with MPEG-4 but also dramatically outperforms all other

metrics on the sequences encoded by H.264/AVC.

3. More robust estimation basis: The most important cause of blurriness is high

frequency signal loss, so we use the energy of high frequency bands as the

blurriness estimation basis. Also, different weights are applied to each band

since each frequency band contributes a different level of impact for blurring

artifact. Results show that this measure is more robust and generic than edge

profile based schemes.

4. New visual module for supra-threshold video quality assessment: A novel and

extendable human visual module introduced in Chapter 3 is adopted to emulate

varying artifact perceptibility in the spatial and temporal domains by consid-

ering both human visual attention and masking phenomena. This is the first

work that provides enough flexibility for adding other visual masking or atten-

tion features based on the characteristics of different types of artifact. Also,

the proposed visual module works in the frequency domain, so it can be easily

implemented with coder design for more applications (such as bits allocation

and quality enhancement).

5. Content independent: The output of PBM remains within a fixed range regard-

less of the video content. This makes the calculated absolute blurriness score

more interpretable.
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6. Cognitive saturation effects are taken into account: Perceptual saturation and

non-linearity are emulated to enable high accuracy of blurriness estimation.

4.4 The Proposed Metric

Figure 4.7 depicts the system diagram of PBM. Assuming the input is a video

bitstream of a compressed video sequence, it is first decoded to raw data. The recon-

structed video data of nth frame, fn, is transformed into the frequency domain and

decomposed into several sub-bands, denoted as Fn. Subsequently, all sub-bands are

weighted according to their importance to blurriness estimation given by Blurriness

Sensitivity Vector(BSV) and the weighted high frequency energy-HFn is calculated.

Meanwhile, the Fn and motion vector information from bitstream are given as input

into Visual Blurriness Sensitivity Map(VBSM) to form a set of significance values,

Mn, to all blocks. Afterward, the HFn is combined with Mn and form a frame level

blurriness score - bn,0. The normalization module takes the QP information from bit-

stream and bn,0 to estimate the texture level of video content, texn, and normalize the

bn,0 to bn according to different texture level. Finally, both bn and textn are input into

a cognitive module to emulate visual saturation effect and obtain the final blurriness

score for the entire sequence - B.

VBSM

Normalization
module

Cognitive 
module

Video
Bit stream

Quantization parameter (QP)

Β
bn

Mn

Pooling
bn,0

HFn

texn

Channel
Decomposition

Motion vectors (vh,vv)

BSV
Fn

Decoder
fn

Figure 4.7: System diagram of PBM.

4.4.1 Channel Decomposition

The purpose of channel decomposition is to transform video data from pixel do-

main to frequency domain, the data with similar frequency are grouped into different
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sub-bands. The most well known block based transform, DCT, with block size 8× 8

is used.

Since DCT is a widely used transform in video and image codecs, the DCT co-

efficients can be extracted directly from the bitstream. For the intra-coded frames,

which are compressed using one of image standards (i.e. JPEG and JPEG-2000),

the DCT coefficients can be obtained directly. Also, the DCT coefficients for inter-

coded frames, which are compressed by motion compensation, can be reconstructed

by inverse motion compensation with the corresponding motion prediction residual.

The extraction can be easily carried out using a MPEG-4 codec. However, this is

not entirely applicable in a H.264/AVC bitstream, because: 1) The DCT transform

block size is no longer fixed at 8 × 8; it can be 4 × 4 as well. In the case of 4 × 4

block size, up-sampling DCT coefficients from 4× 4 to 8× 8 will introduce additional

uncertainty, and 2) The intra-prediction has too many different modes (i.e. eight for

4×4, and four for 16×16 block size), and it is carried out in the pixel domain. These

effects may degrade the channel decomposition accuracy of inverse motion compensa-

tion method and increase implementation complexity. Therefore, we still decode the

bitstream fully and process a non-overlapped block-based DCT to separate the nth

frame, fn, into 64 sub-bands in absolute value using

Fn(i′, j′, u, v) = |
NB−1∑
i=0

NB−1∑
j=0

fn(i′, j′, i, j)k(i, j, u, v)|, (4.5)

k(i, j, u, v) = α(u) · α(v) cos[
(2i + 1)uπ

2NB

] cos[
(2j + 1)vπ

2NB

], (4.6)

where

α =





√
1

NB
, for u = 0√

2
NB

, for u = 1, 2 . . . NB − 1,
(4.7)

u, v represent the DCT coefficient indices within a block, and NB is the dimension

of each DCT block, which is set to 8 here.
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4.4.2 Blurriness Sensitivity Vector

Only certain frequency bands are useful for blurriness estimation. Low frequency

bands elicit too little sensitivity to blurriness, while the highest frequency bands are

too sensitive to some high frequency compression artifacts (i.e., ringing). Therefore,

each channel is weighted accordingly to emphasize bands that are important to blur-

riness estimation and suppress the others. Significant research effort has been spent

on a similar topic: the Contrast Sensitivity Function(CSF) [74, 75]. However, it is

mainly designed for determining sensitivity to near-threshold distortion (i.e. noise);

its philosophy is not applicable to blurriness estimation. Therefore, a Blur Sensitivity

Vector (BSV), Ψ, has been designed as

Ψ1×8 =
[
0 0 0 1 0.13 0.04 0 0.04

]
, (4.8)

to represent the importance of each band to blurriness estimation. Each element of

Ψ corresponds to one band, and a higher value means this band is more sensitive to

blurring artifacts. Values from (4.8) shows that the 4th band has the greatest effect

on blurriness assessment. The values in Ψ are determined from data of a subjective

experiment. Details of parameter determination process will be explained in Section

4.6.

The first column and row in a block of DCT coefficients represent frequencies

associated with horizontal and vertical edges respectively. Human eyes have higher

blurriness sensitivity to the edges in these two orientations. Also, luminance data

contains the richest information for quality assessment. Thus, we emphasize the

DCT coefficients for these two directions in luminance data, and estimate the high

frequency energy of (i′, j′)th block, HFn(i′, j′), as

HFn(i′, j′) =
1

2Fn,I(i′, j′, 0, 0)
·Ψ× ˆFn,I(i

′, j′) (4.9)

where Fn,I denotes the DCT coefficients of the luminance data, Fn,I(i
′, j′, 0, 0) is the
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corresponding DC value, and ˆFn,I(i
′, j′) is given by

ˆFn,I(i
′, j′) =




2Fn,I(i
′, j′, 0, 0)

Fn,I(i
′, j′, 0, 1) + Fn,I(i

′, j′, 1, 0)
...

Fn,I(i
′, j′, 0, NB − 1) + Fn,I(i

′, j′, NB − 1, 0)




.

4.4.3 Visual Blurriness Sensitivity Map

When evaluating the blurriness of a video, observers tend to allocate different at-

tention to various spatial and temporal locations. This tendency is driven by several

bottom-up (i.e., luminance contrast) and top-down (i.e. skin tone) stimuli. In addi-

tion, the blurriness at some spatial/temporal locations is not recognized because of

masking phenomenon. Less blurring sensitivity should be assigned to masked regions.

Hence, human visual attention and masking factors lead to different blurriness sen-

sitivities on various spatial and temporal locations. This phenomena is numerically

emulated using a Visual Blurriness Sensitivity Map (VBSM) as introduced in Chap-

ter 3. The VBSM is composed of two major parts: 1)the Human Visual Attention

Map (HVAM) from work in [60], and 2)luminance and motion masking components.

The final VBSM of nth frame is given by Equation (3.23).

4.4.4 Pooling

The preliminary blurring score, bn,0, is the summation of product of blurriness

sensitivity of each block given by Equation (3.23) and the amount of high frequency

energy calculated from Equation (4.9) as

bn,0 =

NR/8−1∑

i′=0

NC/8−1∑

j′=0

HFn(i′, j′) ·Mn(i′.j′). (4.10)

4.4.5 Normalization Module

A great challenge to blurriness assessment is that the range of blurring scores

varies with content, which is mainly attributed by different texture levels in the orig-

inal video. In the scenario that original video data is not accessible, selecting an
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appropriate normalization threshold is extremely difficult. Nevertheless, since quan-

tization is the main cause of blurriness, the QP information is helpful to approximate

the original texture level.

However, a question may arise - ”Since we know blurriness increases along with

QP, why not simply exploit QP to measure blurriness instead of high frequency band

magnitude?” This makes sense at first, however, the blurriness caused by compression

is not only introduced by quantization, but also by pre- and post-processing (i.e.

de-blocking filtering) and long distance motion compensation. For example, the de-

blocking filter low-passes the reconstructed video data after applying quantization

and generates additional blurriness. In motion compensation, blurriness introduced

by both quantization and in-loop de-block filtering of reference frames will propagate

to the current frame. So the level of blurring artifacts in the current frame includes

the blurriness caused by quantization and the blurriness from the reference frame. In

both cases, QP can only reflect part of the blurriness distortion and is not sufficient

to capture the true blurring annoyance. But with the help of QP information and

the measure of high frequency energy obtained from Equation (4.10), we can trace

back to the original image texture level and select appropriate normalization factors

to maintain the output from Equation (4.10) in a fixed range.

Consider two compressed images with the same high frequency energy but quan-

tized by different QP. The image quantized by higher QP must originally have more

texture than the image quantized by lower QP, because the former loses more high

frequency signal than the latter during quantization. Based on this property, the

texture level of an original image is determined by

texn,0 = Υ(QP)× b̂ (4.11)

where texn,0 represents the estimated texture level of the original nth frame, Υ1×4(QP)

contains a set of polynomial parameters that varies with QP, and b̂ = [b3
n,0, b

2
n,0, bn,0, 1]T ,

output from Equation (4.10).

Each QP corresponds to a Υ(QP), and MPEG-4 and H.264/AVC codecs have 30

and 50 different QP values respectively. Theoretically, both codecs require 30 and 50

sets of parameters respectively. That is neither a practical nor convenient solution.

Therefore, we only define Υ(QP) for certain QPs and the texture level for other QPs



78

are linearly interpolated using

texn,0 − texL

texU − texL

=
QPn −QPL

QPU −QPL

⇒ texn,0 =
(QPn −QPL)(texU − texL)

QPU −QPL

+ texL

⇒ texn,0 =
(QPn −QPL)(Υ(QPU)× b̂−Υ(QPL)× b̂)

QPU −QPL

+Υ(QPL)× b̂. (4.12)

where QPL, QPU , texL, and texU are the closest upper and lower QPs, and the

corresponding outputs from Equation (4.11), respectively. Finally, texn,0 is bounded

by

texn =

{
1 if texn,0 ≤ 1

10 if texn,0 ≥ 10
, (4.13)

Because MPEG-4 and H.264/AVC have different ranges of QP, the Υ(QP) of these

two codecs are defined separately as

Υ(QPH.264) =




1.72E+5, −1.833E+4, 8.3E+2, 0

2.02E+5, −2.044E+4, 8.7E+2, 0

3.19E+5, −2.874E+4, 1.0E+3, −10

3.72E+5, −3.277E+4, 1.1E+3, 0

7.14E+3, −2.002E+4, 1E+3, −3




and

Υ(QPMPEG4) =




1.73E+5, −1.83E+4, 8.4E+2, 0

3.36E+5, −2.9E+4, 1.04E+3, −10

4.02E+5, −3.27E+4, 1.09E+3, −10

3.99E+5, −3.21E+4, 1.08E+3, 0

4.76E+5, −3.63E+4, 1.16E+3, −10

4.23E+5, −3.4E+4, 1.15E+3, 0




where QPH.264 ∈ [10, 20, 30, 40, 45], and QPMPEG4 ∈ [2, 10, 15, 20, 25, 30]. The param-

eter determination process will be discussed in Sec. 4.6.

After the texture level of original image is known from Equation (4.13), the nor-
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malization upper and lower bounds, ubn and lbn, are calculated by

[
ubn

lbn

]
= Φ×




tex2
n

texn

1


 (4.14)

where

ΦH.264 =

[
0, 1.7E−3, 6.9E−3

1E−4, 1.4E−3, 3.9E−3

]
,

ΦMPEG4 =

[
0, 1.7E−3, 7E−3

1.1E−3, 5.2E−3, 0

]
.

The process of parameter fitting for Φ will be discussed in Sec. 4.6.

Outputs of Equation (4.11) for both MPEG-4 and H.264/AVC are shown in Fig.

4.8. Each curve corresponds to one QP, and all of them behave in a similar way for

either MPEG-4 or H.264/AVC. This suggests that the trend of texture level change

of each QP case is the same, and hence, it is reasonable to use linear interpolation

to obtain the texture level by neighboring QP information. Also, the shift between

curves and the different range of x-axis data of MPEG-4 and H.264/AVC shows the

necessity of providing Υ to these two codecs separately. The solid and dash lines

in Fig. 4.9 represent the upper and lower bound for each texture level respectively.

Notice that the distance between ubn and lbn for each texture level is very different

in these two codecs.

Once the normalization upper and lower bounds are available, the output of Equa-

tion (4.10) is normalized by

bn =
4(bn,0 − lbn)

ubn − lbn

+ 1, (4.15)

where bn is the normalized blurriness score, which ranges from 1 to 5 and higher

scores represent less blurriness.

4.4.6 Cognitive Module

Humans have limited resolution in judging blurriness when compressed video is

extremely blurred or sharp. Human perception can only classify them as either Very
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Figure 4.8: Estimation of original image texture for (a) MPEG-4, and (b) H.264/AVC
codecs

blurred or Sharp. This is called Saturation. Also, viewer perceived blurriness does not

linearly correlate with the raw objective blurriness measure (i.e. edge profile, high

frequency energy) because human perception is a non-linear process. Therefore, we

compensate for these phenomena by modulating the measured blurriness value from

Equation (4.15) with a Cognitive Module.

First in the cognitive module, the very low texture cases is compensated using

b′n =

{
bn + 0.25 if texn ≤ 1.85

bn Otherwise
. (4.16)

Second, cognitive saturation is emulated by

b′′n =





5 if bn ≥ 4.14

1 if bn ≤ 1.25

b′n Otherwise.

(4.17)

Finally, a non-linear mapping function is applied to the blurriness score from Equation

(4.15) using

b′′′n = Θ×




b′′4n

b′′3n

b′′2n

b′′n
1




, (4.18)



81

2 4 6 8 10

0.01

0.015

0.02

0.025

0.03

0.035

Max/Min normalization value of different texture level

 texture level 

 N
or

m
al

iz
at

io
n 

va
lu

e

upper bound
lower bound

2 4 6 8 10

0.01

0.015

0.02

0.025

0.03

0.035

Max/Min normalization value of different texture level

 texture level 

 N
or

m
al

iz
at

io
n 

va
lu

e

upper bound
lower bound

(a) (b)

Figure 4.9: Normalization of upper and lower bound of each texture level for (a)
MPEG-4, and (b) H.264/AVC codecs

where

ΘMPEG4 = [0, −2.1E−3, 1.07E−1, 3.84E−1, −1.4]

ΘH264 = [−1.2E−2, 6.3E−2, 6E−4, 9.086E−1, 1.4E−3],

and the parameter determination process will be explained in Sec. 4.6, and b′′′n is the

blur score of nth frame.

The final blurriness score of the entire sequence is

B =
1

N − 1

N−1∑
n=0

b′′′n , (4.19)

where B is the blurriness score of a sequence, and N is the number of total frames.

4.5 Experimental Setup for PBM Tuning and Val-

idation

4.5.1 Data Preparation

Two sets of video data are generated in this experiment, a training video database

is used to determine several important parameters and a separate testing video

database is dedicated to evaluate the metric’s performance. All video sequences
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are sampled in YCbCr 4:2:0 with frame size either QVGA (320 × 240) or QVGA

(176× 144) and frame rate 30 frame per second(fps). These data are obtained from

Ref. [76, 77]. Table 4.1 provides a brief description of all training and testing se-

quences. Shifting motion is quantified by the ratio of number of frames that have

high shifting motion against the number of all frames.

MPEG-4 and H.264/AVC JM12 [78] are employed to generate various compres-

sion scenarios. In order to isolate the spatial quality degradation from temporal

effects, frame skipping and rate control functions are turned off. The sequences

are compressed using different QPs. The training set is encoded using QPH.264 ∈
[10, 20, 30, 40, 45], and QPMPEG4 ∈ [2, 10, 15, 20, 25, 30]. The testing set is encoded by

Q̂PH.264 ∈ [15, 25, 35, 45], and Q̂PMPEG4 ∈ [5, 13, 23, 27]. We also use the H.264/AVC

built in de-blocking filter with different strengths to simulate the blurriness caused by

post-processing. The filtering strength is controlled by α and β, where α, β ∈ [−6, 0, 6]

and higher values mean stronger low-pass filtering.

4.5.2 Objective Test Methodology

The metric’s performance is objectively tested by two criteria adopted from [79]

and one new criterion. These criteria are based on prior knowledge of video compres-

sion and the human visual system. A well-designed blurriness metric should have the

ability to satisfy the following expectations:

E-1. With the same level of post-process filtering, blurring score should increase as

QP increases.

E-2. For a fixed QP, the blurring value should increase along with [α, β].

E-3. Since human eyes have less sensitivity on the frames with high shifting motion,

applying different QP on frames with high MAs,T should not influence the

human-perceived blurriness level. Hence, the sequences that have high shifting

motion, FOREMAN, FOOTBALL, and RUGBY are separated into two parts

according to the strength of MAs,T . Frames with high MAs,T are encoded using

QPhs = [2, 10, 17, 25]. The rest of the frames, which are static motion frames,

are encoded with QPls = 30. The expectation is that the blurriness should not
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vary with different QPhs. This experiment is only carried out with the MPEG-4

codec.

4.5.3 Subjective Test Methodology

The subjective experiments are carried out using the Double Stimulus Impair-

ment Scale (DSIS) method recommended in ITU-R BT.500 [18]. This methodology

is very similar to the Double Stimulus Continuous Quality Scale (DSCQS) described

in Section 2.3, except different semantic meaning of voting scores, where DSIS is more

suitable to evaluate the strength of specific compression artifact. Eight testers were

employed to provide the quality value for the parameter fitting experiment. Another

twenty viewers comprised of five females and fifteen males participated in the perfor-

mance evaluation experiment, ages ranging from 25 to 50. Examiners are asked to

score the video sequences’ blurriness levels from 1 to 5 with the semantic meaning -

”Very annoying”, ”Annoying”, ”Slightly annoying”, ”Perceptible” and ”Impercepti-

ble”. The increment interval between level is 0.1. The presented video sequences are

10s long.

A test has Introduction and Testing sessions. The duration of the introduction

session is 10 minutes long and it includes an eye test, testing purpose explanation,

scoring method, showing sample sequences with different levels of blurriness, and a

question period. The testing session is composed of several testing pairs. Each testing

pair shows both original and blurred sequences. The viewers are asked to vote for the

perceived blurriness difference between these two sequences and it is converted into

Difference Mean Opinion Score (DMOS), where higher values represent less blurriness.

The performance of objective blurriness metrics is quantified by measuring the

correspondence between the DMOS and the metrics’ output as introduced in Section

2.3.3. The correspondence is measured by Pearson and Spearman correlation coeffi-

cients, Root-Mean-Square-Error (RMSE) [56], and are denoted as CP , CS, and CR,

between the metric’s output and DMOS data. Higher CP , CS and lower CR indicate

better metric performance.



84

4.6 Parameter Fitting

4.6.1 Blurriness Sensitivity Vector

In order to determine the importance of each DCT coefficient, a band-blocking

filter is designed to remove the same percentage of energy for each band. The band-

blocking frequency runs from 1
(NB−1)

√
i2 + j2 to 1

(NB−1)

√
(i + 1)2 + (j + 1)2, where

i, j ∈ [1, 2, · · · , 7]. This band-blocking is applied to the 40th frame of all training

sequences and the testers are asked to vote on the perceived blurriness. Each band-

blocking interval has one DMOS and it is the average DMOS of all training samples of

all testers. As shown in Fig. 4.10, the 3rd DCT AC coefficient, which is the 4th DCT

coefficient, has the lowest DMOS. It reflects a fact that with the same percentage

energy loss in each band, the 4th band introduces the most pronounced blurriness.

In other words, the 4th band is very sensitive to blurriness. Thus, the values of the

BSV are obtained using Ψ = (5−DMOS)/4.

Band-Blocking subjective test results

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7

DCT AC coefficient index

D
M

O
S

DMOS

Figure 4.10: Subjective DMOS values of band-blocking filtered data

4.6.2 Normalization Module

Figure 4.11 illustrates the procedure for obtaining Υ and Φ. The procedure for

determining values of Υ is shown in Fig. 4.11(a). First, several frames from the

original training sequences are transformed by DCT and the summation of the 4th

to 8th DCT coefficients are used for indicating the texture level of images before
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compression: tex′n. Meanwhile, those frames are compressed using MPEG-4 and

H.264/AVC with the given QPMEPG4 and QPH.264 respectively, and the corresponding

bn,0 is calculated using Equation (4.10). Please note that the QP value in Fig. 4.11

represents either QPMEPG4 or QPH.264. In the following, in order to find a function

to map bn,0 to tex′n, a kernel function in polynomial form

tex′n = Υ0 · b3
n,0 + Υ1 · b2

n,0 + Υ2 · bn,0 + Υ3. (4.20)

is trained using supervised learning, where bn,0 and tex′n are used as the training data

and labels respectively. Rtex′n,Υ the residual between left and right terms in Equation

is given by (4.20)

R2
tex′n,Υ =

Nt∑
z=1

[tex′n,z − (Υ0 · b3
n,0 + Υ1 · b2

n,0,z + Υ2 · bn,0,z + Υ3)]
2, (4.21)

where tex′n,z and bn,0,z are the tex′n and bn,0 values of zth training data respectively,

and Nt is the number of training data. The partial derivatives are

∂R2
tex′n,Υ

∂Υ3

= −2
Nt∑
z=1

[tex′n − (Υ0 · b3
n,0,z + Υ1 · b2

n,0,z + Υ2 · bn,0,z + Υ3)] = 0,

∂R2
tex′n,Υ

∂Υ2

= −2
Nt∑
z=1

[tex′n,z − (Υ0 · b3
n,0,z + Υ1 · b2

n,0,z + Υ2 · bn,0,z + Υ3)]bn,0,z = 0,

∂R2
tex′n,Υ

∂Υ1

= −2
Nt∑
z=1

[tex′n,z − (Υ0 · b3
n,0,z + Υ1 · b2

n,0,z + Υ2 · bn,0,z + Υ3)]b
2
n,0,z = 0,

∂R2
tex′n,Υ

∂Υ0

= −2
Nt∑
z=1

[tex′n,z − (Υ0 · b3
n,0,z + Υ1 · b2

n,0,z + Υ2 · bn,0,z + Υ3)]b
3
n,0,z = 0.

(4.22)
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These lead to the equations

Nt∑
z=1

tex′n,z = Υ0 ·
Nt∑
z=1

b3
n,0,z + Υ1 ·

Nt∑
z=1

b2
n,0,z + Υ2 ·

Nt∑
z=1

bn,0,z + NtΥ3,

Nt∑
z=1

bn,0,ztex
′
n,z = Υ0 ·

Nt∑
z=1

b4
n,0,z + Υ1 ·

Nt∑
z=1

b3
n,0,z + Υ2 ·

Nt∑
z=1

b2
n,0,z + NtΥ3

Nt∑
z=1

bn,0,z,

Nt∑
z=1

b2
n,0,ztex

′
n,z = Υ0 ·

Nt∑
z=1

b5
n,0,z + Υ1 ·

Nt∑
z=1

b4
n,0,z + Υ2 ·

Nt∑
z=1

b3
n,0,z + NtΥ3

Nt∑
z=1

b2
n,0,z,

Nt∑
z=1

b3
n,0,ztex

′
n,z = Υ0 ·

Nt∑
z=1

b6
n,0,z + Υ1 ·

Nt∑
z=1

b5
n,0,z + Υ2 ·

Nt∑
z=1

b4
n,0,z + NtΥ3

Nt∑
z=1

b3
n,0,z.

(4.23)

These equations can be written in a matrix format as




∑Nt

z=1 tex′n,z∑Nt

z=1 bn,0,ztex
′
n,z∑Nt

z=1 b2
n,0,ztex

′
n,z∑Nt

z=1 b3
n,0,ztex

′
n,z




=




∑Nt

z=1 b3
n,0,z

∑Nt

z=1 b2
n,0,z

∑Nt

z=1 bn,0,z Nt∑Nt

z=1 b4
n,0,z

∑Nt

z=1 b3
n,0,z

∑Nt

z=1 b2
n,0,z Nt

∑Nt

z=1 bn,0,z∑Nt

z=1 b5
n,0,z

∑Nt

z=1 b4
n,0,z

∑Nt

z=1 b3
n,0,z Nt

∑Nt

z=1 b2
n,0,z∑Nt

z=1 b6
n,0,z

∑Nt

z=1 b5
n,0,z

∑Nt

z=1 b4
n,0,z Nt

∑Nt

z=1 b3
n,0,z




×




Υ0

Υ1

Υ2

Υ3




, (4.24)

and can be organized as




1 1 · · · 1

bn,0,1 bn,0,2 · · · bn,0,Nt

b2
n,0,1 b2

n,0,2 · · · b2
n,0,Nt

b3
n,0,1 b3

n,0,2 · · · b3
n,0,Nt







tex′n,1

tex′n,2

...

tex′n,Nt




=




1 1 · · · 1

bn,0,1 bn,0,2 · · · bn,0,Nt

b2
n,0,1 b2

n,0,2 · · · b2
n,0,Nt

b3
n,0,1 b3

n,0,2 · · · b3
n,0,Nt




×




b3
n,0,1 b2

n,0,1 bn,0,1 1

b3
n,0,2 b2

n,0,2 bn,0,2 1
...

...
...

...

b3
n,0,Nt

b2
n,0,Nt

bn,0,Nt 1







Υ0

Υ1

Υ2

Υ3



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Thus, Equation (4.24) can be represented as




tex′n,1

tex′n,2

...

tex′n,Nt




=




b3
n,0,1 b2

n,0,1 bn,0,1 1

b3
n,0,2 b2

n,0,2 bn,0,2 1
...

...
...

...

b3
n,0,Nt

b2
n,0,Nt

bn,0,Nt 1







Υ0

Υ1

Υ2

Υ3




. (4.25)

In matrix notation, Equation (4.25) is given by

T̄Nt×1 = B̄Nt×4ῩNt×1.

It can be solved by premultiplying the left hand side of above equation with the

matrix transpose B̄T
Nt×4. This matrix equation can be solved numerically, or can be

inverted directly if it is well formed, to yield the solution vector

ῩNt×1 = (B̄T
Nt×4B̄Nt×4)

−1B̄T
Nt×4T̄Nt×1.

The process for obtaining Φ is shown in Fig. 4.11. First, the training images are

compressed with QP′MPEG4 = 2, 30 and QP′H264 = 10, 45. Then texn and bn,0 are

calculated from Equation (4.13) and (4.10) , respectively. Finally, texn and bn,0 are

used to train a quadratic polynomial kernel function

bn,0 = Φ0 · tex2
n + Φ1 · texn + Φ2 · tex0

n. (4.26)

The training process is the same as Equations (4.20 - 4.25). Coefficients trained

by QP′MPEG4 = 2 or QP′H264 = 10 are used for estimating the upper bound for

normalization, ubn, and the coefficients trained by QP′MPEG4 = 30 or QP′H264 = 45

are used for estimating lower bound, lbn.

4.6.3 Cognitive Module

This module is designed to modify the relationship between the DMOS value

and bn for different blurriness levels. The various blurriness levels are simulated by

compressing the video data with different QPs. Furthermore, in order to isolate any

temporal human visual factors (i.e., motion masking), only several frames from the

training sequences are compressed instead of entire sequences. The selected images
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Figure 4.11: Training procedure for obtaining (a) Υ, and (b) Φ.

are compressed using MPEG-4 and H.264/AVC with the same QPMEPG4 and QPH.264

used in Section 4.6.2. These compressed images were shown to viewers who scored the

blurriness levels. The average DMOS for each QP through all samples is used as the

training label and the corresponding average bn obtained from Equation (4.15) is used

as the training data. The training data and labels are employed first to determine

the saturation thresholds in (4.17), and second to fit the coefficients of the quintic

polynomials for H.264/AVC and MPEG-4 codecs, ΘMPEG4 and ΘH.264, respectively.

The training process follows Equations (4.20 - 4.25).

4.7 Analysis of Experimental Results

4.7.1 Objective evaluation

Definitions of E-1, E-2, and E-3 have been given in Section 4.5.2. The E-1 ex-

pectation assumes that the metrics’ output should increase monotonically with QP

value regardless of type of codec. Performance on this point is quantified using the

Spearman correlation coefficient, CS. The metrics that are able to fulfill the E-2

expectation will be denoted as ”Y”, and ”X” otherwise. The consistency of E-3 ex-

pectation is quantified by the average variance of metrics’ output for all QPhs and
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QPls combinations through the three sequences; higher value means that the metric

is affected by QPhs and has worse performance. The objective evaluation results are

shown in Table 4.2.

Overall, PBM has the highest score in E-1 expectation, Kurtosis is the second

highest, and the DSS is third. Among them, the scores for Kurtosis are very close to

PBM’s. It indicates that these three metrics’ outputs increases monotonically as QP

increases. The DCT-histogram has a very low value in the E-1(H.264) case. AETS

performs evenly in both E-1(MPEG-4) and E-2(H.264) but is always less than 0.8.

All metrics are able to meet the E-2 expectation. For the E-3 expectation, PBM has

the lowest variance. Thus, PBM is the only metric that is immune to the influence

of different QPhs.

Given the objective results, the DCT-histogram metric is excluded from the fol-

lowing performance evaluation process since it fails in E-1 requirement.

4.7.2 Subjective evaluation

Figure 4.12 presents a scatter plot of the objective blurring score and the corre-

sponding DMOS for all testing cases. A curve fitted by the scattering data with a

second order polynomial function is plotted on each of the figures. It is used to repre-

sent the correlation between the objective metric’s outputs and the subjective data.

Note that the output of all metrics except PBM have been normalized manually and

converted to the same range and semantic meaning as the subjective rating, where

higher value means less blurriness. A good metric should have a linear correlation

between the x-axis and y-axis data, and hence, the curve should close to a straight

line. The AETS and AETW have scattered distributions and both of them give most

cases a very low objective value. DSS shows higher correlation with subjective DMOS

compared to the previous two metrics, but its estimation is a bit overly optimistic

since it gives many low DMOS cases high objective scores. The Kurtosis metric also

has a very scattered distribution similar to AETS and AETW. Overall, PBM has

much better correspondence than to all the other metrics. In some very extreme

cases, such as the cases with very low and high DMOS, PBM still matches the sub-

jective DMOS accurately. This indicates the importance of the saturation function in
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the Cognitive Module. In the cases with medium blurriness (2 ≤ DMOS ≤ 4), the

high linear correspondence between PBM’s output and DMOS shows the performance

improvement from the non-linear mapping function in the Cognitive Module.

Tables 4.3 and 4.4 show the quantified performance - CP and CR of all test cases.

Most metrics perform fine in the cases encoded by MPEG-4. PBM has the best

performance and AETW is second, while AETS performs worst. It is interesting to see

that the performance difference between PBM and AETW is marginal, and DSS has

performance almost identical to Kurtosis. In the cases encoded by H.264/AVC, PBM

has very high correlation and low CR compared to all the other metrics. Ignoring

PBM, only DSS has correlation more than 0.7, and other metrics have very low

correlation. This is especially true of AETW, the second best metric in the case

encoded by MPEG-4; its performance drops dramatically here. Hence, most metrics

fail in predicting the blurriness caused by the H.264/AVC coder but PBM is still able

to estimate it accurately. Overall performance is calculated by averaging the CP and

CR of all test cases. It is worth mentioning that AETS, AETW, and Kurtosis have

similar prediction accuracy, with CP < 0.7. DSS performs better, but it is still worse

than PBM. Finally, PBM has correlation close to 0.9 and significantly outperforms

all the other metrics.

A detailed performance report for each sequence compressed by both coders is

shown in Table 4.5. The experimental results show that AETS, AETW, and Kurtosis

perform poorly in the FOREMAN and FOOTBALL sequences. That might be be-

cause of inaccurate edge profile determination due to high shift motion. Besides these

two sequences, AETS also has very low performance on MOTHER DAUGHTER. It

could be because of low texture and fewer edge points. DSS works fairly well in most

cases. As with the two sequences mentioned before, the Kurtosis metric also has low

prediction accuracy on BUS. PBM-raw denotes the output from (4.9), which only

includes the weighted high frequency energy. Even though it is not adjusted by any

perceptual module, it still outperforms all other metrics except full PBM. This shows

that high frequency band energy is a better blurriness estimation basis compared

to edge profile oriented approaches. After including all the perceptual modules, a

complete PBM has correlation coefficient ranging from 0.85 to 0.97, and CR from

1.35 to 2.35. None of the other metrics has better performance than PBM in any
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sequence. Comparing PBM with PBM-raw, the PBM has 0.06, 0.07, and 0.04 higher

CP than PBM-raw in FOREMAN, FOOTBALL, and RUGBY sequences respectively.

These sequences have high motion and complicated content. The benefits brought by

VBSM is more observable and it might explain the performance difference between

PBM and PBM-raw. In the relatively simple sequence, MOTHER DAUGHTER,

although PBM and PBM-raw have the same CP , PBM still has lower CR. Overall,

PBM is better than PBM-raw, and another strength of PBM is that its output is

normalized and it can be used for cross-sequence comparison.

4.8 Summary

A reference-free human perception based blurriness metric for compressed video is

proposed in this Chapter. It gauges blurriness level by measuring the energy in high

spatial frequency bands. Several human visual and cognitive factors are included

to enhance the blurriness prediction accuracy. Output of the proposed metric is

content independent and the analysis of detailed experimental results shows significant

performance improvement provided by each module. Both objective and subjective

performance evaluation show high blurriness prediction accuracy for PBM compared

to other metrics.
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Figure 4.12: Subjective DMOS compared against metrics’ output of (a)AETS,
(b)AETW, (c)DSS, (d)Kurtosis, and (e)PBM
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Table 4.1: Content description and format of training and testing sequences for PBM

Training sequences
Size Name Shift

mo-
tion(%)

Object
motion

Texture
level

Content description

QVGA
CONTAINER 0 Low Low Static camera with a

slow moving boat
MOBILE 0 Low Medium Static camera aims

at many moving ob-
jectives

COASTGRD 0 Low High Slow panning camera
follows slow moving
boats

QCIF CARPHONE 0 Low Medium Static camera with
talking head

Testing sequences
Size Name Shift

mo-
tion(%)

Object
motion

Texture
level

Content description

QVGA
FAMILY 0 Low High Static camera with

multiple scenes
FOREMAN 13 Medium Medium Talking head scene

shift to another com-
plex scene

MOTHER
DAUGHTER

0 Low Low Static camera with
talking head

QCIF
FOOTBALL 20 High Medium Sports content with

high motion scene
shifting

RUGBY 12 High Medium Sports content with
high motion scene
shifting

BUS 0 Medium High Camera tracks a
moving bus
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Table 4.2: Results of objective performance evaluation of all blurriness metrics

E-1(MPEG-4) E-1(H.264/AVC) E-2 E-3
PBM 0.98 0.98 Y 0.0014
AETS 0.78 0.77 Y 1.1
AETW 0.89 0.81 Y 0.27
DSS 0.94 0.90 Y 0.01
DCT-histogram 0.80 0.62 Y 0.52
Kurtosis 0.97 0.96 Y 0.1

Table 4.3: Correlation value, CP , between all blurriness metric’s outputs and subjec-
tive rankings.

AETS AETW DSS Kurtosis PBM
MPEG4 0.73 0.85 0.81 0.81 0.87
H.264/AVC 0.55 0.50 0.78 0.53 0.91
Overall 0.64 0.67 0.79 0.67 0.89

Table 4.4: RMSE value, CR, between all blurriness metric’s outputs and subjective
rankings.

AETS AETW DSS Kurtosis PBM
MPEG4 2.60 2.38 2.74 2.59 1.64
H.264/AVC 5.23 5.78 3.45 5.66 2.12
Overall 3.91 4.08 3.09 4.13 1.88

Table 4.5: Detail quantitative performance, CP (CR), of each blurriness metric and
sequence

FAMILY FOREMAN MOTHER
DAUGH-
TER

BUS FOOTBALL RUGBY

AETS 0.76 0.41 0.44 0.75 0.60 0.80
(3.81) (5.94) (4.08) (3.73) (4.16) (3.10)

AETW 0.78 0.50 0.79 0.68 0.57 0.77
(3.57) (5.37) (3.46) (4.32) (4.29) (3.36)

DSS 0.82 0.81 0.78 0.81 0.71 0.91
(3.28) (2.64) (3.41) (2.53) (4.10) (1.97)

Kurtosis 0.79 0.60 0.78 0.61 0.58 0.73
(3.73) (4.75) (3.55) (4.72) (4.06) (3.60)

PBM-raw 0.94 0.82 0.88 0.84 0.83 0.93
(2.02) (2.14) (2.19) (1.94) (2.57) (1.70)

PBM 0.95 0.88 0.88 0.86 0.9 0.97
(1.35) (1.86) (1.50) (1.68) (2.35) (1.38)
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Perceptual Temporal Quality

Metric (PTQM)

5.1 Introduction

The quality degradation introduced by compression can be separated into two

principal types of artifacts [4]: spatial and temporal. In the spatial domain, several

key artifacts and their related metrics, such as blockiness, blurring and ringing, have

been extensively studied [1, 40–43, 45]. Temporal degradation includes three major

artifacts: flickering (blinking), motion jerkiness, and jittering. Flickering is usually

caused by visual quality fluctuation at the same spatial position but in different

temporal locations. The severity of flickering can be estimated by observing spatial

quality fluctuation along the time axis. However, there is a lack of comprehensive

research into quantifying jerkiness and jittering, which occurs very frequently in real

time video communication, i.e. video telephony and broadcasting.

When a video sequence is transmitted through a bandwidth-limited and error-

prone channel (e.g. packet-switched wireless network), the video playing smoothness

at the receiving end suffers from several sources of degradation. The encoder might

discard some frames during encoding in an attempt to reduce the data rate, while

decoder might not be able to play all received frames because of limited computa-

tional capability. Moreover, in an error-prone channel, packet loss may corrupt the

video data and an entire frame may be lost. The relationship between packet loss

95
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and temporal quality has been studied by Claypool and Tanner [80]. However, among

these three degradation sources, the temporal quality loss caused by an error-prone

network is marginal compared to the other two degradation sources. In the case of

substantial frame loss, the viewer may observe frame freezing because most video

decoders automatically repeat the last frame received before a dropped frame. Jerki-

ness is the result of regular frame dropping by the codec in order to down-sample the

frame rate and meet the bits budget. When jerkiness occurs, viewers perceive regular

frame freezing and discontinuous motion. Jitter is usually caused by irregular frame

skipping by the codec or frame loss during data transmission. In this case, viewers

perceive irregular frame freezing and various impacts of discontinuous motion. In this

chapter, temporal quality is generalized into two types: (1) Regular and (2) Irregular

frame loss. The regular case refers to frame loss distributed evenly through the whole

sequence, while the latter one is the case where each dropping event has variable size

and relative temporal location. With the same amount of frame loss, the irregular

case tends to produce a greater impact on perceived temporal quality. In order to

reduce the negative impact of frame dropping on viewers, several approaches, i.e.,

smart frame dropping and frame interpolation [81–83], have been extensively inves-

tigated. With the help of accurate temporal quality assessment, the performance of

such enhancements can be improved dramatically. Subjective video quality testing is

the most convincing approach because it represents the general user experience. Aver-

age response from all viewers is known as the Mean-Opinion-Score (MOS). However,

subjective experiments require testers to view video clips and assign quality scores

in a well controlled viewing environment; it is inconvenient and costly, and hence, it

is neither a practical nor scalable solution for live applications. Therefore, objective

methods provide an alternative feasible solution.

A novel objective temporal quality metric - Perceptual Temporal Quality Metric

(PTQM) is proposed in this chapter. Instead of just using frame rate, we treat each

frame as a possible dropping instance and measure the temporal quality for each

of them. These individual temporal quality measures are pooled together to form

a higher level temporal quality score. In addition, since the human visual system

(HVS) perceives with contrast rather than absolute signal strength, we investigate

the perceptual impact of local temporal quality fluctuations and propose an explicit
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mathematical model. Experimental results show this is an essential factor for tem-

poral quality prediction in practical scenarios. Several notable contributions of the

PTQM are summarized below:

1 PTQM is a Non-Reference (NR) metric. This characteristic allows PTQM to be

combined with other applications, such as real time temporal quality monitoring

and adaptive frame skipping, more easily.

2 Temporal quality degradation caused by both regular and irregular frame loss

can be accurately measured.

3 PTQM outputs both local and global temporal quality measurement. This hier-

archical temporal quality report provides more flexibility and detail for further

temporal quality analysis and enhancement.

4 The proposed method can accurately estimate humans’ perceived visual discom-

fort induced by temporal discontinuity under various combinations of scenes and

motion activity.

This chapter is organized as follows. Section 5.2 provides a literature survey of

temporal quality related research. Some important but not yet resolved issues of tem-

poral quality assessment are discussed in Section 5.3. Section 5.4 presents the details

of PTQM. In Section 5.5, the process of subjective experiments is introduced. The

fitting process of several important parameters and the result of metric performance

evaluation are reported in Section 5.6. Finally, we present summaries in Section 5.7.

5.2 Related Works

Key related works on objective temporal quality metric design include [49–53,55].

Feghali et al. [49] uses frame rate as the scaling factor to adjust Peak-Signal-to-Noise-

Ratio (PSNR) and output a spatial-temporal quality score. In Refs. [50] and [51], a

jerkiness metric based on frame rate and motion activity is proposed. In Ref. [52],

Montenovo et al. use inter-frame correlation to locate lost frames. Some post-

processing is conducted on the number of lost frames to extract several indices, such
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as the duration of dropping and the number of dropping occurrences, etc. The final

temporal quality score is determined based on an ad-hoc analysis of those indices.

Pastrana-Vidal and Gicquel [53] proposed a no-reference objective metric for measur-

ing fluidity impairments in video service. Here, fluidity means smoothness of motion;

the lack of jerkiness and jitter. This metric responds to their previous work [54] and

takes the density of dropping into account. Lost frames are detected by inter-frame

dissimilarity on the decoder side. After thresholding, noticeable fluidity breaks are

obtained. Each fluidity break is weighted by a function of the pixel variation of the

last frame at the end of the freeze and the first frame appearing after the freeze.

Afterward, the fluidity break is further adjusted by a function of the fluidity break

density. The paper claims that the contribution to temporal quality degradation of

the fluidity breaks with more occurrences is less significant. In other words, with

the same amount of frame loss, the temporal quality with scattered fluidity breaks

is better than with aggregated fluidity breaks. Watanabe et al. [55] studied the sub-

jective effect on temporal distortion with different combinations of small dropping

occasions with a fixed amount of frame loss. Based on that, they tuned a logarithmic

function specifically for different combinations of frame loss in each sequence. This

work provides important evidence that the same amount of frame loss within one

sequence can lead to different levels of subjective temporal degradation through dif-

ferent combinations of aggregated frame loss. It shows the prediction accuracy of the

logarithmic function can be improved by tuning parameters according to the duration

of each grouped frame loss.

5.3 Problem Statement

Many of the previous works estimate the temporal quality based on average frame

rate and motion activity. However, human observers usually have higher tolerance

to regular frame dropping than irregular because of the well preserved correlation of

the remaining frames. This allows human viewers to interpolate the missing content

with an inherent cognitive ability. In the irregular case, frame loss does not occur

on a fixed time schedule; it can occur in groups with various lengths and uncertain

time slots. The irregular case introduces a more profound impact on video playing
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smoothness because of unexpected perceptual changes. Hence, estimating temporal

quality based on the amount of frame loss and motion activity only is not sufficient;

the temporal quality contrast should also be considered.

This problem has been discussed in Refs. [52, 53, 55]. In Refs. [52, 53], they tried

to resolve this issue by observing the density of dropping occasions. However, they

assume the lengths of dropping occasions are nearly identical and no dependency

exists between dropping occasions. In real applications, as irregular frame loss oc-

curs, the length of dropping occasions is rarely the same, and additional discomfort

is introduced when sudden temporal quality changes occur. With the same amount

of frame loss and the same dropping occasion frequency, very different sizes for each

dropping occasion will induce dramatically different subjective impact. In Ref. [55],

although a set of specific parameters are provided experimentally for each scenario, a

general mathematical model is still lacking. All of the related works assume (1) the

non-dropped frames do not contribute to the temporal degradation at all, and (2)

the local temporal quality is independent of neighboring dropping occasions. Nev-

ertheless, from subjective test, we have found that the sensitivity to each dropping

occasion not only varies with the number of lost frames, but also with the local tem-

poral quality contrast to neighboring dropping occasions. Higher contrast results in

more pronounced discomfort. Therefore, we claim that each dropping occasion should

not be treated independently. The sensitivity to each dropping occasion should be

adjusted according to the inter-dropping-occasion dependency. In this chapter, we

will present the results of several experiments conducted to investigate this issue.

Based on the observations, a general and more accurate temporal quality metric is

proposed.

5.4 System Description

Table 5.1 presents several important notations. Figure 5.1 illustrates the system

diagram of PTQM and Fig. 5.2 depicts an example of the temporal quality estimation

process at each stage. Each displayed frame is treated as a potential dropping occasion

and assigned a dropping severity measurement - sm,n, which represents a measurement

of video flow discontinuity of nth frame in mth scene. In the first stage, time stamp
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information from the bitstream is used to identify the location of dropped frames

and estimate the dropping severity of each of them. Meanwhile, the video sequence is

separated into several segments based on content similarity, and the motion activity of

each segment is calculated. Based on the motion activity, one of the predefined motion

models is applied to each segment to adjust its dropping severity in the second stage.

The following three stages are carried out by the Temporal Fusion module. Among

them, the first stage emulates human sensitivity to different levels of temporal quality

contrast, and weights each dropping severity by a temporal quality fluctuation (TQF)

function. Thereafter, the dropping severity of each dropping occasion is transformed

to frame level temporal quality, denoted as qm,n ∈ (1, 5), a higher value means better

temporal quality. The temporal quality of all dropping occasions within a segment are

pooled together to form the segment level temporal quality - qm. Since the algorithm

earlier applied different motion models to various scenes, the overall temporal quality,

Q, is simply obtained by averaging temporal quality of all segments.

Table 5.1: Important notations for PTQM

m Index of a video scene
n Index of a dropping occasion
mam Motion activity of the mth video segment
sm,n Dropping severity of the nth dropping occasion at the mth

video segment
s′m,n Motion adjusted dropping severity of the nth dropping occasion

at the mth video segment
qm,n Temporal quality of the nth dropping occasion at the mth

video segment
qm Temporal quality of the mth video segment
Q Temporal quality of whole video sequence

5.4.1 Dropping Severity Estimator

Any index that increases as the video plays can be used for estimating the video

playing continuity. Here, we assume that each frame has its own time stamp infor-

mation from the video bitstream. If the time stamps for consecutive received frames

show a gap, it is evident that one or more intervening frames have been dropped.

The length of the gap, as determined by the time stamps, permits determination of
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Figure 5.1: System diagram of PTQM.
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12
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segment 2
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q2q14

Q

Figure 5.2: Sample temporal quality estimation process at each stage of PTQM.

the number of consecutive frames that have been lost, which is defined as the length

of the dropping occasion. The length can be zero or greater; zero means no frame

dropping occurs. Furthermore, the length of the dropping occasion is normalized to

a dropping severity , sm,n, by

sm,n =
1

R− 1

[∣∣tm,n+1 − tm,n

∣∣
T

− 1
]
, (5.1)

where sm,n ∈ (0, 1), tm,n+1 and tm,n are the time stamp of n + 1th and nth frame in

the mth segment respectively, T is the default time interval between frames at full

frame rate, and the factor R is equivalent to the applicable maximum frame rate; it

is used to normalize the frame dropping severity value across different frame rates
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and is set to 30fps in this case. As a result, a sequence that plays at 1fps would have

dropping severity equal to 1, and a sequence playing at full frame rate has a dropping

severity of 0.

5.4.2 Scene Boundary Determination

A video sequence may contain multiple scenes and each scene may be different in

terms of the captured subject matter. Therefore, one of the reasons for doing scene

boundary detection is that video sequences with similar content usually have consis-

tent motion activity, and different motion activity level results in different temporal

quality impact. In order to accurately estimate the temporal quality, motion activ-

ity for each video segment must be estimated separately. Another reason for scene

boundary detection is that large displacements usually occur between the last frame

of one scene and the first frame of the next scene; the motion activity is usually very

high. However, since these kinds of motion do not contribute to temporal degrada-

tion at all, the motion activity caused by scene transitions should not be taken into

account.

In order to detect the location of scene boundaries from the bitstream, the ap-

proach from Ref. [84] is adopted. This approach can effectively detect both abrupt

and gradual scene changes using motion vectors, coding type and the DC value of

each 8× 8 macro block, with minimum decoding. In general, a motion vector points

from a video block in one frame to a substantially similar or identical video block in

another frame, providing an indication of displacement. As introduced in Chapter 2.1,

there are two different coding types, which are intra and inter coding. The term intra

coding means that no motion compensation is performed during compression and the

image is compressed by a JPEG-like standard. The term inter coding includes the

ability to use temporal redundancy to improve coding efficiency. The DC value is the

DCT coefficient in the lowest frequency band. When video data is compressed, the

frames are compressed as a unit for group-of-pictures (GOP). As shown in Fig. 5.3,

within each GOP, the first frame is usually compressed as an I-frame. An I-frame

is completely intra-coded, a P-frame is inter coded to perform motion compensation

forward from the previous I- or P- frames, and in a B-frame, motion compensation
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is performed both forward and backward from the closest past and future I- or P-

frames. According to the type of coding, scene change detection can be categorized

into four different scenarios, which are

1 Scene change happens on an I-frame: In this scenario, the previous B-frame has

very few backward motion vectors since the correlation between these two frames

is low, and hence, the previous B-frame will favor forward motion compensation

to decrease the energy of residual of motion compensation. This causes the ratio

between number of forward to backward motion vectors , Rf , to be high. In

addition, the absolute inter-frame variance difference |4σ2| between current I-

frame and its previous frame will be low, where frame variance σ2 is obtained

by estimating the variance of DC values of each 8 × 8 block. Based on these

two characteristics, the scene boundary on the I-frame can be detected.

2 Scene change happens on a B-frame: When a scene change happens on B-frame,

this frame will contain more backward motion vectors compared to the forward

direction, because it has higher correlation with succeeding frames. Therefore,

the ratio of the number of backward and forward motion vectors, Rb, will be

high.

3 Scene change happens on a P-frame: A quantity, Rp, the ratio of the number

of intra-coded blocks to inter-coded blocks in a P-frame, is used to determine if

the scene boundary is located on a P-frame. Because the content of the current

P-frame is very different from the content of the previous scene, the codec

will prefer to use more intra-coding than inter-coding to increase compression

efficiency. Thus, the Rp will be high when a P-frame happens to be the scene

boundary.

4 Gradual scene change detection: This type of scene change does not have a

clear difference between different scenes, it appears in a fading-in-then-out form.

Thus, the coding type or number of different direction motion vectors are not

sufficient to detect the scene boundary accurately. However, because of the

scene fading-in-then-out characteristic, the scene change can be detected by

observing a parabolic pattern of the curve of absolute frame variance |4σ2|.
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Figure 5.3: Structure of a GOP and the related direction of motion prediction of
different types of inter frames.

5.4.3 Motion Activity Estimator

Along with the number of lost frames, motion activity is another important factor

in temporal quality assessment. We determine the motion activity of each segment

by averaging the magnitude of all eligible motion vectors within that scene; a motion

vector indicates the displacement from a video block in one frame to a substantially

similar or identical video block in another frame. Here, the motion vectors are ob-

tained from the bitstream and the motion activity of the mth scene is

mam = min[
1

N ·NR,MB ·NC,MB

N∑
n=1

NR,MB∑

i′MB=1

NC,MB∑

j′MB=1

MA(m,n, i′MB, j′MB), 10], (5.2)

where mam ∈ (1, 10), N is the number of dropping occasions of each scene, NR,MB

and NC,MB are the number of total eligible motion vectors in horizontal and vertical

direction respectively, MA(m, n, i′MB, j′MB) is the magnitude of motion vectors in

(i′MB, j′MB)th block of nth frame in mth segment that satisfy MA(m,n, i′MB, j′MB) >

Tma, where MA(m,n, i′MB, j′MB) is given by

MA(vm,n,i) =
√

v2
i′MB ,j′MB ,h + v2

i′MB ,j′MB ,v, (5.3)

and (vi′MB ,j′MB ,h, vi′MB ,j′MB ,v) depicts the motion vector at (i′MB, j′MB)th block. The con-

stant Tma is a threshold to filter out un-noticeable motion vectors, and it is given by
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Tma =
√

12 + 12 = 1.414; the value is derived from subjective observation. Moreover,

some blocks are intra-coded (no motion compensation is performed during compres-

sion, the blocks are compressed by a JPEG-like standard) because the motion of those

blocks is too large and the motion estimator can not find matched block within the

search range. In that case, although those macro blocks have large displacement,

the motion vector information is not available. Hence, a predefined motion activity,

22.62, is assigned to those blocks.

5.4.4 Motion Mapping

As reported in Refs. [50, 51, 85, 86], the same amount of dropping loss may intro-

duce different temporal quality impacts because of different motion activity; higher

motion activity usually results in larger temporal quality degradation. Therefore, the

dropping severity sm,n should be mapped to s′m,n according to motion activity by

s′m,n = sαT−(0.1·mam+εT )
m,n , (5.4)

where constant αT influences the slope and trend of the mapping function of each

motion activity, and εT is the baseline of motion activity. The determination process

of αT and εT will be explained in Sec. 5.6.1.

Figure 5.4 presents the outputs of Equation (5.4), and each slice along the x-axis

represents a mapping function corresponding to a motion activity - mam. As the

motion activity increases, the slope and the non-linearity of the mapping function

increases accordingly, which means the same sm,n is projected into higher s′m,n. In

other words, the same dropping severity is more noticeable for a high motion clip

than for a low motion clip.

5.4.5 Temporal Fusion

With the considerations stated at Section 5.3, we adjust each motion mapped

dropping severity s′m,n by the relationship of current dropping occasion to its neigh-

boring frames within a scanning window. A Temporal Quality Fluctuation (TQF)

module is designed to estimate the additional annoyance level of each dropping occa-

sion caused by local temporal quality difference. Figure 5.5 shows the system diagram
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of TQF. The quantity s′m,n is the input of the temporal fluctuation estimator, and

the temporal fluctuation tf ’ is determined by

tf ′m,n =
1

UB(R)
[s′m,n −

1

I

I∑
i=1

s′m,n±i]
β, (5.5)

where R is equivalent to the applicable maximum frame rate, UB(R) is the normal-

ization function, I is the size of the scanning window (it is set to 3 here), β is a factor

used to differentiate similar dropping occasions and it is set to 2. Since the range of

fluctuation for each frame rate varies, we use UB(R) to normalize tf ’ to (0, 1), where

the UB(R) = [d(R)− 1
I
d(R)]2 and d(R) = (30−R)/29. The scanning window direc-

tion could be backward or forward based on the availability of neighboring frames;

because of human stronger working memory of previous dropping instances [87, 88],

the default direction is backward (previous frames). But if not enough prior frames

exist, such as a scene boundary, the missing frames will be compensated by scanning

forward (future frames). Suggested by subjective data, human sensitivity to cases

with different fluctuation of frame rate can be approximated by a logarithm function;

the slope varies with frame rate and the magnitude varies with motion. Hence, a

non-linear TQF

TQF (tf ′m,n) = κ
[
1− (1− tf ′m,n

η
)ψ

]
(5.6)
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Figure 5.5: Procedure for estimating the impact of temporal quality fluctuation.

is applied on tf ′m,n, where

ψ =





4 if 20 ≤ R ≤ 30

8 if 19 ≤ R ≤ 14

9 if 1 ≤ R ≤ 13

, (5.7)

constant η is used to fit the training data and it is assigned a value of 1.25, ψ influ-

ences the scaling nonlinearity of different fluctuation cases at different frame rate, κ

balances the dominance between the effect of temporal fluctuation and the amount

of consecutive frame loss; the value of κ is provided in Table 5.2. The procedure of

obtaining parameters κ and ψ will be explained in Sec. 5.6.1. Output of Equation

(5.6) functions as enlarging dropping severity, s′m,n, obtained from Equation (5.4).

Therefore, larger output of Equation (5.6) represents additional temporal quality

degradation is introduced by local temporal quality difference. As shown in Table

5.2, κ decreases as frame rate decreases, which means the effect from quality fluctu-

ation is less noticeable at low frame rates because the amount of frame loss is large

enough to dominate perceived temporal quality. Figure 5.6 presents the outputs of

TQF, and we can see that the linearity and maximum magnitude of TQF decrease

as frame rate decreases. The curve is more linear at high frame rates, and becomes

nonlinear at low frame rates. At low frame rates, because the length of each dropping

occasion is large, even a small temporal quality contrast difference will result in a very

noticeable quality change. Moreover, as the temporal quality contrast is larger than a

certain threshold, human perceived quality will reach the quality baseline. Therefore,

as frame rate decreases, TQF rises more quickly initially, but saturates earlier. Fur-

thermore, since only limited perceptual quality can be achieved at low frame rates,

even if there is no additional degradation from quality contrast, the TQF saturates

at lower values for low frame rates than high frame rates.

After weighting by the TQF and normalizing, the temporal quality score of each
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Table 5.2: Values of parameter κ in PTQM

R∈[30,20) R∈[20,10) R∈[10,1]
Low motion 10 2.6 1.5
Medium motion 9.7 2.5 1.5
High motion 9.6 2.4 1.4

dropping occasion, qm,n, is given by

qm,n = δT + βT · [1− TQF (tf ′m,n) · s′m,n], (5.8)

where δT , βT denote the normalization factors to scale qm,n ∈ (1, 5), δT and βT are

set as 1 and 4 respectively. The scaling of qm,n is needed to match the MOS, and

higher qm,n means better temporal quality. The temporal quality for each scene, qm,

is estimated by

qm =
1

N

N∑
n=1

qm,n, (5.9)

and the final temporal quality for whole sequence - Q is calculated by

Q =
1

M

M∑
m=1

qm, (5.10)

where M is the number of scenes in one sequence.

5.5 Experimental Set Up

Two different subjective tests have been conducted. The intention of the first test

is to fit some important parameters as introduced in Sec. 5.6.1, while, in the second

test, the subjective scores are used to evaluate the PTQM’s performance in Sec. 5.6.2.

5.5.1 Testing Data

A total of six standard sequences from Ref. [76] are included, and these sequences

can be classified into three groups based on their motion activity; low motion se-

quences: CONTAINER , MOTHER AND DAUGHTER, medium motion sequences:

CARPHONE, HIGHWAY; and high motion sequences: RUGBY, FOOTBALL. More

detail of each sequence can be found in Table 5.3. The original frame rate of all the
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Figure 5.6: Output of TQF with (a) 10fps, (b) 15fps, and (c) 23fps.
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sequences is 30fps and the duration of each sequence is 10 seconds as suggested by

ITU-recommendation BT.500 [18]. The video sequences are sampled in YCbCr 4:2:0

with QCIF size(176×144). Among them, CONTAINER, HIGHWAY, and RUGBY

are utilized for parameter fitting. All six sequences are used for metric performance

evaluation.

Table 5.3: Description of testing sequences for performance evaluation of PTQM

CONTAINER Still camera with slow moving ship
MOTHER AND DAUGHTER Still camera with talking head

CARPHONE Still camera with talking head and moving
background

HIGHWAY Camera in a moving vehicle
RUGBY High motion sports

FOOTBALL High motion sports

The testing cases are processed in two steps. First, the testing sequences are

frame rate down sampled by dropping frames at a constant frequency. In order to

simulate the temporal quality degradation without introducing any spatial distortion,

testing sequences are not compressed. The lost frames are dropped artificially and

replaced by duplicating the last frame before the frame loss occurs. In the second

step, several sub-cases with different combinations of dropping occasion length and

temporal location were generated for each frame rate and each sequence. The profile

of all sub-cases can be denoted by the following formats:

1. a − b : There are a total of a dropping occasions within 1 second and each of

them has b consecutive lost frames,

2. (a′, b′) : Two dropping occasions occur in 1 second and each of them has a′ and

b′ consecutive dropping frames, respectively.

These notations will be used in Tables 5.4 and 5.5.

5.5.2 Experimental Methodology

These experiments were carried out using Double-Stimulus Continuous Quality

Scale(DSCQS) [18] as described in Chapter 2.3. The sequences played at full frame



111

rate (i.e., 30fps) serve as reference sequences. A pair of video sequences, comprised by

one reference and one impaired video sequence with the same content, is shown twice

for each testing session. The position of the reference sequence is changed in pseudo-

random fashion. The video sequences are shown using a standard personal computer

with Samsung 17’ LCD displays. The lighting condition of the viewing environment

and the viewing distance are adjusted to the testers’ comfort. Viewers are asked to

score the video sequences on a 1 to 5 scale, with the corresponding semantic meanings:

Bad, Poor, Fair, Good, and Excellent. The final MOS data is the difference of MOS

(DMOS) between reference and impaired sequences. The DMOS is converted into 1

to 5 and a higher DMOS indicates better temporal quality.

Two different groups of testers participated in the experiment. The first group

had a total of eight examiners (all non-expert viewers). The DMOS data of this group

is used for parameter fitting. Another group consisted of twenty examiners, which

included twelve non-expert and eight expert viewers. This group was employed to

evaluate the metric performance. In accordance with ITU-Recommendation BT.500

[18] , all DMOS data have been screened to remove the outliers and increase the data

reliability.

5.6 Experimental Results

5.6.1 Parameter Fitting

The profiles of all test cases used for obtaining parameters are given in Table 5.4.

Calculated by Equation (5.5), the low fluctuation cases have tf ′ = 0.003, and the

medium and high fluctuation cases have tf ′ = 0.25 and 1 respectively.

Table 5.4: Profile of all cases at each frame rate for parameters determination of
PTQM

23fps 15fps 10fps
Low fluctuation 7-1 15-1 20-1
Medium fluctuation (3,4) (7,8) (10,10)
High fluctuation 1-7 1-15 1-20

Figure 5.7 shows the subjective data. First observation shows that DMOS de-

creases as frame rate decreases. Also, with the same frame rate but different motion
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activity, not surprisingly, lower motion sequences have higher DMOS than high mo-

tion sequences. Another important phenomenon is that for the same content sequence

with the same frame rate and same motion, but different temporal quality fluctua-

tion, the DMOS changes dramatically. These data provide strong evidence that the

local temporal quality contrast must be considered when estimating temporal quality

degradation. Furthermore, this set of subjective data is used for determining several

parameters used in Equation (5.4) and (5.6).

Because sm,n from Equation (5.1) has a different range and opposite semantic

meaning to DMOS, (i.e., higher sm,n represents worse temporal quality but DMOS

works in the other way around), DMOS in Fig. 5.7 is converted using s′′ = 0.75 −
DMOS/4 to align the semantic expression with sm,n. Equation parameters are de-

termined using the following procedures.

Determination of αT and εT

The parameters αT and εT in Equation (5.4) account for the trend of the motion

mapping function without considering temporal quality fluctuation. We define s′′o to

be the normalized DMOS with the lowest temporal quality fluctuation (test cases in

the first row of Table 5.4) and the lowest motion activity of each testing sequence to

get the best-fit parameters using a least square approach, and as a result, αT = 10

and εT = 7.7.

Determination of ψ and κ

In Equation (5.6), ψ and κ regulate the nonlinearity and magnitude of TQF

respectively. Regardless of the factor of motion, ψ can be determined by observing

the relationship between each test case with a given frame rate. Since TQF amplifies

the dropping severity according to different temporal quality fluctuations, Equation

(5.6) is re-written as

TQF (tf ′)
κ

=
s′′ψ
s′′o

= 1− (1− tf ′

η
)ψ, (5.11)
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where s′′ψ represents a s′′ values of a training datum with a given tf ′ value and the

same level of motion with s′′o. Taking the logarithm of both sides,

log(s′′ψ)− log(s′′o) = −ψ · log(1− tf ′

η
). (5.12)

The optimal ψ for Equation (5.12), which provides minimum residual deviation be-

tween DMOS data and the right term of all test cases, is obtained using a recursive

estimation algorithm. Since the nonlinear scaling behavior of TQF varies at different

frame rates, a ψ is trained for a range of frame rates across all sequences with different

motion level. Afterward, with the same frame rate, output of TQF not only varies

with different tf ′, but also varies with different motion. This deviation is fine tuned

by κ. Process of determining κ is similar to Equation (5.12), it is computed for each

range of frame rates but different motion sequences as

s′′κ
s′′o

= κ · [1− (1− tf ′

η
)ψ], (5.13)

where s′′κ and s′′o belong to the same sub-case but with different motion activity, s′′κ

represents a s′′ value with corresponding tf ′ value but higher motion activity, and

s′′o is similar to s′′κ but of the sequence with lowest motion activity. This training

process is carried out through all different sub-cases across sequences with different

level of motion within a range of frame rate. Thus, each range of frame rate has one

κ value.

5.6.2 Metric Performance Analysis

Computational Complexity

There are three factors that can influence the computation load of the PTQM

system: frame rate R, the total number of motion vectors of one frame P , and the

number of dropping occasions, N . If quality is to be monitored continuously, then

inevitably the processing load scales linearly with R. Thus it is not a useful indicator

and will be ignored. Referring to Fig. 5.1, we will examine the complexity of each

functional box, using the O notation. The Dropping Severity Estimator implemented

in Equation (5.1) requires only differences between sequential received frame num-

bers, and so is O(1). The Motion Activity Estimator implements Equation (5.2).
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Figure 5.7: Sample DMOS data for (a) 10fps, (b) 15fps, and (c) 23fps cases of frame
loss with temporal quality fluctuation.
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As P increases, the number of calculated motion vectors must increase, so there is

linear dependence on P . Equation (5.2) also contains a sum whose limit is N . In its

current form, the algorithm treats each frame as a potential dropping occasion, so

N would be a stand-in for R. However, for optimized implementations, calculations

might be triggered only for actual detected dropping, so a linear dependence on N

can be included. Overall, the Motion Activity Estimator is O(PN). Scene Bound-

ary Detection can rely on the same motion vectors developed for Motion Activity

Estimation, so it is O(P ). Motion Mapping uses output from the Motion Activity

Estimation, but given that as input is itself O(1). The sum in Equation (5.5) for

Temporal Fusion is over a fixed size window, so that is O(1). The normalization

function UB(R) does not change this. The Temporal Quality Function of Equation

(5.6) is just a transformation of previously produced factors, and so is O(1).

Summarizing, the most computationally costly part of the PTQM system is the

Motion Activity Estimator, which is O(PN). However, this is an operation that is

common in video coding, and is not considered unreasonably expensive. The presence

of N in the order notation is actually good news, indicating that as the frequency

of dropping occasions decreases, the cost of this block tends toward zero, freeing

resources for other uses.

Quality Prediction Accuracy

Testing cases in Table 5.5 are used for evaluating the performance of PTQM.

Using several metrics from Chapter 2.3.3, the performance of PTQM is quantified

by the Pearson and Spearman correlation coefficients, and Root-Mean-Square-Error

(RMSE), denoted as CP , CS, and CR, between the PTQM’s output and DMOS data.

Higher CP , CS and lower CR indicate better metric performance.

Figure 5.8 compares the output of PTQM and DMOS data. Each mark represents

a sub-case at different frame rate. Comparing PTQM against DMOS, we find that

PTQM has very high linear correlation with DMOS data. Tables 5.6 through 5.8

show the quantified performance. On average, PTQM has CP ranging from 0.92 to

0.97, and CS ranges from 0.84 to 0.92. These high CP and CS validate the observation

of high linear correlation in Fig. 5.8. The CR ranges between 0.56 to 0.75. Since CR
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Table 5.5: Profile of testing cases for PTQM performance evaluation

23fps 15fps 10fps
7-1 15-1 10-2
(3, 2-2) (6-2, 3) 7-3
(1-1, 5) (3-4, 3) 5-4
(3, 4) (2-3, 2, 7) (10, 10)
(2, 4) (7, 8) (5, 15)
1-7 (4, 11) (3, 12)
NA 1-15 1-20

tends to estimate the absolute value difference while CP and CS estimate the trend

similarity between two testing data sets, the CP , CS, and CR should be interpreted

jointly. Take for example, the case of RUGBY at 15fps and 10fps. Although it has

higher CR at 15fps, it still has very high correlation with CP = 0.96 and CS = 0.93

respectively. Another example is FOOTBALL at 15fps and 10fps. The case at 10fps

has higher CR than the one at 15fps, but both cases have a very similar CP and

CS. Hence, it can be that the DMOS and PTQM fit very well and the CR difference

is marginal. Overall, the quantified correlation shows high correspondence between

the objective and subjective data. We can summarize that PTQM is able to predict

human perceived temporal quality accurately.

Table 5.6: Performance parameter for PTQM at 23fps

23fps CP CS CR

Container 0.91 0.81 0.32
Mother Daughter 0.89 0.89 0.51
Highway 0.91 0.77 0.45
Carphone 0.90 0.94 0.72
Rugby 0.92 0.89 0.69
Football 0.97 0.94 0.69
Average 0.92 0.87 0.56

5.7 Summary

A novel and reliable objective temporal quality metric - PTQM has been proposed.

It considers the amount of frame loss, object motion, and local temporal quality con-

trast. Unlike conventional approaches, this metric produces not just sequence, but
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Figure 5.8: Comparison of the PTQM’s output and DMOS data at (a) 10fps, (b)
15fps, and (c) 23fps.
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Table 5.7: Performance parameter for PTQM at 15fps

15fps CP CS CR

Container 0.97 0.93 0.51
Mother Daughter 0.89 0.93 0.88
Highway 0.96 0.96 0.76
Carphone 0.97 0.93 0.74
Rugby 0.96 0.93 0.90
Football 0.97 0.85 0.71
Average 0.95 0.92 0.75

Table 5.8: Performance parameter for PTQM at 10fps

10fps CP CS CR

Container 0.97 0.86 0.54
Mother Daughter 0.98 0.82 0.39
Highway 0.97 0.96 0.57
Carphone 0.98 0.79 0.57
Rugby 0.98 0.75 0.57
Football 0.96 0.85 0.83
Average 0.97 0.84 0.58

also scene and even frame level temporal quality measurement. This hierarchical tem-

poral quality assessment is achieved by treating each frame as a potential frame loss

occasion. It provides more freedom for integrating this metric with other applications

in the future, and more insight into temporal quality analysis. Also, since motion is

essential and content dependent for temporal quality assessment, the motion map-

ping mechanism has been improved by taking scene change boundary into account.

The core of this work is that the PTQM can precisely estimate the temporal quality

degradation caused by both regular and irregular type of frame loss by calculating

the quality of each frame using temporal quality contrast and amount of frame loss.

The subjective experiment shows high temporal quality prediction accuracy between

the output of PTQM and subjective rating.

As a future plan, PTQM can be combined with spatial quality metrics to output

a spatial-temporal quality score. This metric can serve as a guidance for designing

several temporal quality enhancement algorithms, such as smart frame skipping and

frame interpolation techniques, to improve the perceptual temporal quality while also

controlling resource consumption.
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Perceptual Frame Interpolation

Quality Metric

6.1 Introduction

In many video applications such as broadcasting and high definition TV, motion

compensated frame interpolation (MCFI) is often adopted at the decoder to improve

temporal video quality by increasing the frame rate. By doing this, motion jerkiness

and jitter induced by low frame rates can be effectively removed. In MCFI, the

missing frames are interpolated using the received motion vector field (MVF) between

two temporally adjacent reconstructed frames, denoted by fn−1 and fn+1 respectively.

Based on the assumption of smooth motion trajectory, the (i, j)th pixel in the missing

frame fn can be represented as follows:

fn(i, j) =
1

2
· fn−1(i +

1

2
vh, j +

1

2
vv) +

1

2
· fn+1(i− 1

2
vh, j − 1

2
vv), (6.1)

where (vh, vv) is the received MVF in the bitstream used to reconstruct the frame

fn+1. Instead of using forward and backward predictions on the motion trajectory, this

interpolation scheme takes bidirectional predictions using the received MVF divided

by 2 to avoid missing part and overlap problems during frame interpolation. This

method is also called the direct MCFI as it assumes that the received motion vectors

(MVs) represent true motion and can be used directly. However, the received MVF

120
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is often estimated using a block matching algorithm to maximize coding efficiency,

rather than finding true motion. As a result, by averaging bidirectional predictions

for the interpolated frame in Equation (6.1), visual artifacts such as blocking and

ghost artifacts [71] can be easily observed when unreliable MVs are used.

To solve this problem, several MV processing techniques at the decoder have

been proposed to obtain a better MVF for MCFI. Using the assumption of a smooth

MVF, a vector median filter is generally employed to remove MV outliers to obtain a

smoother MVF for the interpolated frame. In [81], an adaptively weighted vector me-

dian filter exploiting prediction residues is presented. The work in [82] proposed using

a finer MVF for frame interpolation to eliminate blocking artifacts. That is, each re-

ceived MV is resampled into four MVs with smaller block sizes using a smoothness

measurement. In order to reduce ghost artifacts caused by mismatched bidirectional

predictions, the method in [83] adopts bidirectional MV processing for MCFI. Instead

of using high complexity motion re-estimation at the decoder, the authors in [83] pro-

posed selecting the best MV for each merged group from the neighboring MVs based

on minimizing the difference between forward and backward motion compensations.

They further proposed a multi-stage MV processing algorithm in [2], which corrects

unreliable MVs by gradually reducing block sizes until all ghost artifacts and blocking

artifacts can be removed effectively.

All MCFI techniques assume that temporal quality of the compressed video se-

quences improved by MCFI can be perfectly restored to before-compression levels.

However, spatial quality of interpolated images could be severely degraded. Improving

this has became a major challenge to recent MCFI research. Therefore, an accurate

and appropriate quality assessment scheme for interpolated video data is essential to

understand the performance of different MCFI techniques.

6.2 Related Works

Subjective evaluation [81, 82] is the most convincing approach because it col-

lects direct responses from end users. However, it is inconvenient, expensive, and

time consuming. Objective methods provide an alternate feasible solution. Most

research evaluates interpolated frame quality using fidelity metrics. Reference [83]



122

uses Peak-Signal-to-Noise-Ratio (PSNR), a normalized Mean-Square-Error (MSE)

between original and processed images, to measure the interpolation quality. Refer-

ence [89] measures the quality using a Structure Similarity (SSIM) metric from [30].

SSIM uses a combination of luminance, contrast, and pixel value correlation com-

parisons as the quality index. However, fidelity-only measurements could fail for the

following reasons:

1 Low resolution to supra-threshold distortion: Video quality degradation can be

separated into sub-, near-, and supra-threshold distortions according to its per-

ceptibility to human vision [51]. The sub- and near-threshold classes refer to

the types of distortion that are below or slightly above just-noticeable-difference

(JND) respectively. Supra-threshold distortion generally appears in a struc-

tured form and is known as artifacts. Blockiness and ghost artifacts shown in

Fig. 6.1(a) and (b) are known to be two major artifacts in interpolated frames.

These types of distortion are very irritating to human perception and dominate

subjective quality judgment. One of the main challenges to supra-threshold

distortion measurement is that its appearance varies with video content, and

hence, human perceived annoyance is different even with the same error en-

ergy [70]. Fidelity metrics are good for estimating the near-threshold quality

distortion, but are not sufficient to cover supra-threshold distortion.

2 Various sensitivities to different spatial-temporal locations : Visual attention-

guided quality measurement has become an important direction for video qual-

ity research [51, 90, 91]. This type of approach improves quality prediction

accuracy by considering sensitivities to different spatial-temporal regions ac-

cording to human visual attention. This phenomena is especially important in

interpolated frames because the regions with high motion usually suffer severe

quality degradation, and humans also tend to pay more attention to moving re-

gions. Hence, rather than evenly distributed weights, higher weights should be

assigned to these regions when pooling the local spatial quality measurement.

3 Pixel shift : Some MCFI schemes excel in producing good quality for moving

regions, but the side-effect is that some pixels in the static regions may be
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slightly changed. This pixel shift can be considered as sub-threshold distortion.

It is barely noticed by human eyes and the perceived quality is good. However,

fidelity metrics usually yield a low quality score since they still count it as part

of the distortion. Visual observation shows that Fig. 6.2(a) and (b) are the

same quality, but PSNR gives 3dB higher score to Fig. 6.2(a).

4 Conspicuous local distortion: In general, quality degradation caused by com-

pression usually evenly distributes through entire frame since the compression

ratios of all compression units (i.e. macroblocks) are similar. However, the

quality degradation introduced by frame interpolation may highly concentrate

in a small region from using unreliable MVs. Areas with this type of distor-

tion might be small and conventional distortion quantification is low. But its

large difference in quality to neighboring regions makes it very conspicuous and

dramatically enlarges its annoyance to human perception. Most existing qual-

ity evaluation methods consider distortion perceptibility only from psychovisual

(i.e. texture or temporal masking) or visual attention aspects. None of them

take into account the salience of high spatial quality contrast; hence, the severity

of local aggregated distortion can be incorrectly determined. In this case, the

impact from regions with low quality scores is smeared out by frame level evenly

weighted averaging. Figure 6.3(a) and Fig. 6.3(b) have very similar quality ex-

cept a noticeable distortion on the edge of the helmet in Fig. 6.3(a). However,

PSNR contradictorily assigns a lower quality value to Fig. 6.3(b). This provides

strong evidence that annoyance caused by local high quality contrast must be

considered.

In order to overcome the problems described above, a novel metric - Perceptual

Frame Interpolation Quality Metric (PFIQM) is proposed to evaluate the spatial

quality degradation introduced by frame interpolation. The focus of this metric is to

assess the spatial quality of interpolated frame, while temporal quality and motion

smoothness of interpolated content are assumed perfect and are not considered here.

This chapter is organized as follows. Section 6.3 describes the PFIQM in detail.

Section 6.4 evaluates the performance of PFIQM and other metrics by comparing the

objective scores to subjective rating. A summary of this work is given in Section 6.5.
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(a) (b)

Figure 6.1: Example of (a) blocking and (b) ghost artifacts introduced by frame
interpolation.

(a) (b)

Figure 6.2: Examples of interpolated frames with pixel shift, which are produced
by (a) direct MCFI approach and (b) multi-stage method, with the same subjective
quality but PSNR = 31.42dB and 28.38dB respectively.
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(a) (b)

Figure 6.3: Examples of strong local distortion that are produced by (a) direct MCFI
approach with PSNR = 29.63dB and (b) multi-stage with PSNR = 28.06dB.

6.3 Proposed Metric

Figure 6.4 presents the system diagram of PFIQM. Denote B, and C as recon-

structed, and interpolated frames respectively. Assume that Total Frames = B ∪ C,

and B ∩ C = ø. Original, reconstructed, and interpolated frames are used as inputs.

This metric can be separated into two principle parts, Global Quality Estimator

(GQE) and Local Distortion Estimator (LDE). The former emulates visual atten-

tion effects and estimates the frame-wide distributed distortion, and the later covers

locally aggregated quality distortion while considering spatial quality contrast. A

blockiness metric is used to estimate the amount of blocking artifacts - B, whereas

SSIM is used for estimating the severity of ghost artifact denoted as S. In the GQM,

both metrics’ outputs are adjusted by a Conspicuousness Map (CM) based on motion

and gaze centering effects. Adjusted metrics’ outputs, QB,G and QS,G for blockiness

and ghost artifacts, are normalized by neighboring reconstructed frames’ quality val-

ues and form the normalized quality scores - QB,G,norm and QS,G,norm. Subsequently,

these normalized quality scores are integrated into a Global Quality (GQ) value. For

LDE, the metrics’ outputs are adjusted by a Distortion Salience Map (DSM) and

produce the quality score of blockiness and ghost aspects for local quality distortion

measurement - DB,G and DS,G. Afterward, these distortion measurements are nor-

malized into DB,G,norm and DS,G,norm. Subsequently, these normalized local quality
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Figure 6.4: System diagram of PFIQM.

distortion measurements are combined into a Local Distortion (LD) value. Finally,

both GQ and LD values are integrated with the guidance of motion to form a final

quality score: Q.

6.3.1 Blockiness Estimator

A well known blockiness metric from [44] is adopted to measure the amount of

blocking artifacts. Quality metrics can be categorized into Full-, Reduced-, and Non-

Reference (FR, RR, and NR respectively) based on the accessibility of original video

data [21, 22]. This blockiness metric originally was a NR metric, but it has been

modified to be FR, in order to ensure high blockiness estimation accuracy. This metric

calculates the pixel value discontinuity at each 8 × 8 boundary of both original and

processed frames. Then the difference of the boundary discontinuity between original

and processed frames is used as a boundary discontinuity measurement. Because

blocking artifacts cannot be recognized in very dark or bright lighting conditions [21],

the discontinuity is weighted by a luminance masking function. The adjusted pixel

discontinuity is normalized by the inter-block pixel difference to emulate the texture

masking phenomenon [22].

Let the original and processed images be fx and fy respectively, (i, j) is the index

of a pixel and i = 1, 2 · · · , NR and j = 1, 2 · · · , NC respectively, where NR and NC

represent the height and width of a frame, and (i′, j′) is the index of an 8× 8 block,

where i′ = 1, 2, · · · , NR/8− 1 and j′ = 1, 2, · · · , NC/8− 1. The pixel discontinuity on
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the vertical block boundary, Bv, is estimated by

Bv(i, 8× j′) = ‖w(i, 8× j′) ·∆f(i, 8× j′)‖2, (6.2)

where ∆f(i, 8×j′) = |fy(i, , 8×j′)−fy(i, , 8×j′+1)|−|fx(i, , 8×j′)−fx(i, , 8×j′+1)|,
‖· ‖ is the l2 norm, and w(i, 8×j′) is the output of a luminance masking function used

to adjust the perceptual importance of each boundary discontinuity. The luminance

masking function is defined as

w(i, 8× j′) =





τ ln(1 +

√
µ(i,8×j′)

1+σ(i,8×j′)) if µ(i, 8× j′) ≤ ζ

τ ln(1 +

√
255−µ(i,8×j′)
1+σ(i,8×j′) ) otherwise

(6.3)

where

τ =
ln(1 +

√
255− ζ)

ln(1 +
√

ζ)
, (6.4)

and ζ represents the most suitable lighting condition in an 8-bit scale for human

visual perception, which is set as 81. Parameters µ(i, 8× j′) and σ(i, 8 × j′) are the

mean value and standard deviation of the pixels on the same row within two adjacent

blocks respectively, and are given by

µ(i, 8× j′) =
1

16

8∑
q=−7

fx(i, 8× j′ + q), (6.5)

and

σ(i, 8× j′) =

√√√√ 1

16

8∑
q=−7

[fx(i, 8× j′ + q)− µ(i, 8× j′)]2. (6.6)

The final vertical blockiness map, B′
v, is obtained after normalizing the discontinuity

with the average inter-pixel difference of the non-boundary pixels as

B′
v(i, 8× j′) =

7 ·Bv(i, 8× j′)∑7
q=1[

∑NC/8−1
j′=1 Ψ(i, 8× j′ + q)]0.5

, (6.7)

where

Ψ(i, 8× j′ + q) = ‖w(i, 8× j′) · [fx(i, 8× j + q)− fx(i, 8× j′ + q + 1)]‖2. (6.8)

The horizontal blockiness map, B′
h, can be obtained with the same process as for the

vertical blockiness map.
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The vertical and horizontal boundary based blockiness map is transformed to a

block basis blockiness map by

B(i′, j′) =
1

16

8∑
q=1

B′
h(8i

′, 8j′ − 8 + q) + B′
v(8i

′ − 8 + q, 8j′). (6.9)

Higher B value implies more blocking artifacts.

6.3.2 Similarity Estimator

SSIM is used to estimate the severity of ghost artifacts by measuring the deviation

of pixel values and the distribution of original and processed images. First, both the

original and processed images are low-pass filtered by a Gaussian filter with a 11×11

window and variance σ2
W . The intention of the low-pass filtering is to remove any

distortion imperceivable to human eyes. The structural similarity,ss , of (i, j)th pixel

is estimated by

ss(i, j) =
[2µx(i, j)µy(i, j) + css(1)] · [2σxy(i, j) + css(2)]

[µ2
x(i, j) + µ2

y(i, j) + css(1)] · [σ2
x(i, j) + σ2

y(i, j) + css(2)]
, (6.10)

where σxy(i, j), µx(i, j) and µy(i, j), and σx(i, j) and σy(i, j) are the correlation, mean,

and standard deviations of each 11×11 window around the (i, j)th pixel in fx and fy

respectively, and css(1) and css(2) are determined experimentally by [30], which are

given by css(1) = 6.5 and css(2) = 58.52 respectively. The similarity map is further

processed into a block basis by

S(i′, j′) =
1

64

8∑
q=1

8∑

q′=1

ss[8(i′ − 1) + q, 8(j′ − 1) + q′]. (6.11)

Higher S value implies fewer ghost artifact and better quality.

6.3.3 Global Quality Estimator (GQE)

To implement the GQE, the blockiness and structure distortion values are first

weighted by a conspicuousness map (CM). Next, the weighted metrics’ outputs are

normalized and pooled together to yield frame level blockiness and ghost artifact
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measurements. Finally, these two quality scores are integrated to form a Global

Quality (GQ) score.

Conspicuousness Map

Humans are interested in moving objects, and in addition, quality of moving

regions is usually fragile during frame interpolation. Moreover, because of human

eyes’ biological structure, the central part of an image usually draws most of the

human attention [64]. Hence, visual sensitivity to distortion decreases as spatial

location moves away from central area toward the boundary of an image. This is

applicable across different content types and camera view. Based on these reasons, a

conspicuousness map is determined by both the motion and gaze centering maps.

Assuming that the bitstream information is not accessible, the MVs are obtained

by processing a block-matching motion estimation [92] on the original video data. Let

(vi′,j′,h, vi′,j′,v) be the motion vectors of (i′, j′)th block in the horizontal and vertical

directions. The corresponding motion activity is

MA(i′, j′) =
√

v2
i′,j′,h + v2

i′,j′,v, (6.12)

which is normalized by the max and min motion activity value within each frame by

MA′(i′, j′) =
MA(i′, j′)−min(MA)

max(MA)−min(MA)
. (6.13)

Finally, the motion map, M, is obtained after MA′(i′, j′) is post-processed by a

spatial median filter as

M(i′, j′) = median1[MA′(i′w, j′w)], (6.14)

where median1 denotes one iteration median filtering, (i′w, j′w) ∈ w and w is a 3 × 3

block mask centered at (i′, j′). On the other hand, for frames with very few motion

such that
∑

i′,j′ MA(i′, j′) = 0, the quality score of all blocks are counted, and all

M(i′, j′) are assigned to 1.

A two-dimensional anisotropic Gaussian kernel, P2, is implemented to emulate the

gaze centering phenomenon as

P2(i
′, j′) =

1√
2π(σ2

h + σ2
v)/2

e
− 1

2
(
(i′−i′c)2

σ2
h

+
(j′−j′c)2

σ2
v

)
, (6.15)
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where, (i′c, j
′
c) represents the index of the spatial central point of an image, and σ2

h,

σ2
v are the width of Gaussian distribution in horizontal and vertical directions, which

are set to 800 and 500 respectively suggested by Ref. [64]. After normalization, the

final central focus map, C, is given by

C(i′, j′) =
P2(i

′, j′)−min(P2)

max(P2)−min(P2)
. (6.16)

Figure 6.5 shows the outputs of (6.16). Central regions are assigned higher values,

which correspond to higher visual sensitivity.

Figure 6.5: Value of the gaze centering map. Higher value represents stronger visual
sensitivity and decreases as spatial location moves toward the boundary.

The final conspicuousness map, CM+, in (i′, j′)th block is given by

CM+(i′, j′) = C(i′, j′) ·M(i′, j′). (6.17)

Weighted by CM+, quality scores from both blockiness and SSIM of all blocks

within a frame are averaged as

QB,G =
1

(NC

8
− 1)(NR

8
− 1)

[
∑

i′,j′
CM+(i′, j′) · B(i′, j′)], (6.18)

and

QS,G =
1

(NC

8
− 1)(NR

8
− 1)

[
∑

i′,j′
CM+(i′, j′) · S(i′, j′)]. (6.19)
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Normalization

Appearance of supra-threshold distortion varies with video content, and hence,

outputs from the blockiness metric and SSIM may occur in different ranges as video

content changes. This will cause many ambiguities when integrating multiple metrics’

outputs, and therefore, outputs from (6.18) and (6.19) must be normalized into a cer-

tain range. Another purpose of normalization is to align the semantic interpretation

of metrics’ output. Higher values of the blockiness metric suggests lower quality, but

output from SSIM is interpreted the other way around. Hence, after normalization,

higher values from both metrics means better quality.

Most frame interpolation techniques construct the interpolated frame by fetching

part of the data from neighboring reconstructed frames. This implies that (a) the

content of the interpolated frames is similar to its neighboring reconstructed frames,

and (b) quality degradation due to compression in reconstructed frames may propa-

gate to interpolated frames. Therefore, metrics’ outputs from the nearest backward

and forward reconstructed frames are employed as normalization baselines for inter-

polated frames. Consider XG as QB,G or QS,G of the interpolated frames, the metrics’

outputs are normalized by

XG,norm = βG,norm[XG − (X̄dec−1 + X̄dec+1)

2
] + ΦG,norm, (6.20)

where X̄dec−1 and X̄dec+1 are the outputs from Equation (6.18) or (6.19) of the closest

backward and forward reconstructed frames respectively, and βG,norm and ΦG,norm are

the normalization constants for global quality, which are obtained experimentally

using several interpolated frames that contain global quality distortion only. Finally,

the normalized value - XG,norm is bounded by

XG,norm =





1 if XG,norm > 1

0 if XG,norm < 0

XG,norm Otherwise

, (6.21)

to emulate the perceptual saturation phenomenon. Notations QB,G,norm and QS,G,norm

represent the normalized values from both Equation (6.18) and (6.19) for global qual-

ity assessment, and a higher value means better quality.
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Metrics Integrator

The final GQ is produced by averaging QB,G,norm and QS,G,norm as

GQ =
QB,G,norm + QS,G,norm

2
, (6.22)

where higher GQ value implies better quality.

6.3.4 Local Distortion Estimator (LDE)

Similar to the GQE, both blockiness and structural distortions are weighted ac-

cording to human visual sensitivity to estimate the quality level of a frame. Different

to the GQE, LDE determines visual sensitivity from the local distortion contrast

perspective instead of motion.

Distortion Salience Map

Since the appearance of strong local distortion varies, blockiness measurement

might not be generic enough to cover all different local distortion cases. Therefore,

outputs from Equation (6.11) are used to determine the noticeability of aggregated

quality distortion by considering local distortion contrast as

DM(i′, j′) = max(|S(i′, j′)− S(i′w, j′w)|). (6.23)

Post-processed by a three iteration median filtering and with the gaze centering map

from Equation (6.16), the final DSM of (i′, j′)th block is

DSM+(i′, j′) = median3[DM(i′w, j′w)] · C(i′, j′). (6.24)

Figure 6.6 shows an DSM extraction example. A conspicuous distortion is seen at

the edges of the helmet, DSM successfully detects it and assigns high values to those

regions.

Only the quality scores with strong DSM are considered in local distortion estima-

tion. The local quality distortion from blockiness and structural similarity aspects,

DB,L and DS,L, are estimated as

DB,L =
1

NL

[
∑

i′L,j′L

B(i′L, j′L)], (6.25)
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(a) (b)

Figure 6.6: An example of DSM determination, where (a) a noticeable local distortion
appears around the edge of the helmet, and (b) the corresponding DSM indicates a
high value on those regions.

and

DS,L =
1

NL

[
∑

i′L,j′L

S(i′L, j′L)]. (6.26)

where (i′L, j′L) and NL are indices and total number of the blocks withDSM+(i′L, j′L) ≥
0.5.

Normalization

Consider XL as either DB,L or DS,L, outputs from Equation (6.25) and (6.26) are

normalized by

XL,norm =

{
0 if NL ≤ 11

min(βL,normXL + ΦL,norm, 1), Otherwise
, (6.27)

where βL,norm, ΦL,norm are the normalization constants for local distortion, and XL,norm

is bounded by 1. The NL can be thought of as the area of strong local distortion.

If NL is less than 11, then the local distortion is considered as not-noticeable and

XL,norm is assigned to 0. Unlike GQ, higher normalized quality scores, DB,L,norm and

DS,L,norm, suggest more local distortion and worse quality.
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Metrics Integrator

The final local distortion score is given by

LD =
DB,L,norm + DS,L,norm

2
. (6.28)

6.3.5 Global and local quality integrator

Motion is used to determine the dominance between GQ and LD when forming a

final quality score. High motion results in more artifacts, and in this case, GQ is more

dominant than LD. Moreover, high motion introduces temporal masking and spatial

detail will be filtered out; thus, LD can be discarded. Therefore, the final quality of

nth interpolated frame, Qn, is given by

Qn =

{
GQn if man ≥ th

GQn − LDn

man
, if man < th

, (6.29)

where man is the average motion activity of nth frame given by

man =
1

(NC

8
− 1)(NR

8
− 1)

∑

i′,j′
MAn(i′, j′),

and th is a threshold to trigger the influence of LD. In the case that motion activity

is lower than th, LD is perceivable but its dominance is inversely proportioned to

motion, which indicates that LD is less important as motion increases. Also, the

negative sign of the LD term indicates the fact that local distortion is an additional

distortion to global quality, so GQ is decreased by a weighted LD.

6.4 Experimental Confirmation

6.4.1 Experimental Setup

A subjective test has been carried out to collect viewers’ perceived quality of

frames interpolated by different MCFI schemes. Two video clips, FOREMAN [76]

and WALK [93], were selected as test sequences because of their wide range of differ-

ent motion activity and texture. The original sequences are CIF (352 × 288) frame
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resolution with an original frame rate of 30 fps. They are encoded using H.263, but

even numbered frames are skipped to generate video bitstreams of 15 fps. The rate

control function is disabled by fixing quantization parameter (QP) values at 10. The

averaged bit rates of these two test sequences are 395.77 Kbps and 430.39 Kbps for

FOREMAN and WALK, respectively. Fourteen interpolated frames are chosen as

test materials based on the following criteria: Each selected frame has five different

Table 6.1: Test material selective criteria for PFIQM performance evaluation

Global Quality Degradation Local Distortion
i Strong Weak
ii Strong Strong
iii Weak Weak
vi Weak Strong

images produced by five different MCFI techniques - direct MCFI, vector median fil-

ter [81], MV smoothing method as described in [82], MV selection similar to [83] but

with fixed block size, and the multi-stage MV processing method in [2] respectively.

Therefore, a total of seventy interpolated images are included in test data set.

The Double Stimulus Continuous Quality Scale (DSCQS) method [18] as described

in Chapter 2.3 is adopted as the subjective test method. Original frames serve as

reference data and the interpolated frames are used as test data. One reference and

one test datum form a test case. The procedure for a test case is illustrated in Fig.

6.7, where T1 = 3 sec, showing either reference or test image data, T2 = 2 sec,

showing a gray image for buffering. The DSCQS method first presents the reference,

then the test data to participants. Subsequently, this image pair is repeated but in

random order and participants vote on quality score. Total duration of a test case is

20 sec, so the entire test session lasts 20 × 70 = 1400 sec = 23.3 min. Half an hour

has been proved as the most appropriate experimental length [18] for video subjective

test to avoid tiring assessors and thus producing unreliable data.

The assessors are asked to grade their perceived quality on a continuous linear scale

that ranges from 1 to 5 with semantic meaning of ”Bad”, ”Poor”, ”Fair”, ”Good”,

and ”Excellent” to perceived quality. Viewers are allowed to vote with 0.1 increment.

A total of ten viewers participated in the experiment composed of five expert and five

non-expert viewers. The raw scores of each test case are converted to difference scores
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T1 T1T2 T2 T1 T3T2

Vote

T2

Ref Test Ref (Test) Test (Ref)

Figure 6.7: Subjective test procedure for a test case

(between the test and reference image) to obtain a subjective Difference Mean Opinion

Score (DMOS) value for each interpolated image, which is denoted as DMOSs and

higher value represents better quality.

Objective metrics involved in performance comparison are the PFIQM, PSNR,

and SSIM. In this experiment, two outputs of PFIQM, Q from Equation (6.29) and

GQ from Equation (6.22), are used as two different metrics to evaluate the qual-

ity prediction accuracy with and without considering local quality distortion. Since

objective outputs are content dependent and also for the sake of data interpreta-

tion convenience, metrics’ outputs are normalized by the max and min value of each

sequence by

VQRn = 1 + 4
V QRn −min(V QR)

max(V QR)−min(V QR)
(6.30)

where V QRn denotes a metric’s output of nth frame, and V QR is a set of a metric’s

outputs for a sequence. According to the Phase II Final Report from Video Quality

Experts Group (VQEG) [56], the relationship between the metrics’ outputs and the

DMOSs may not be linear, as subjective testing can have nonlinear quality testing

compression at the extremes of the test range. In order to remove any nonlinearity

caused by subjective rating process and to facilitate comparison of metrics in a com-

mon analysis space, normalized metrics’ outputs are mapped by a nonlinear regression

function as

DMOSo,n =
b(1)

1 + exp[−b(2)× (VQRn − b(3))]
(6.31)

where DMOSo,n denotes the mapped objective score for nth frame, and b is a set

of parameters obtained by fitting the VQR of each metric against DMOSs. As a

result, each metric has a b parameters set and the corresponding DMOSo represents
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the objective scores that are closest to subjective ratings. The best performance of

each metric can be obtained by this mapping process.

After normalization and nonlinear transformation, outputs of all metrics range

from 1 to 5 and higher value means better quality. The DMOSo were compared with

the DMOSs values by computing the correspondences using the following metrics:

(a) Pearson correlation coefficient (CP ): This metric is used to estimate the model

prediction accuracy, which is the ability of the objective metric to predict sub-

jective ratings with minimum average error,

CP =

∑
∆DMOSo,n ·∆DMOSs,n√∑
∆DMOS2

o,n ·∆DMOS2
s,n

, (6.32)

where ∆DMOSo,n = DMOSo,n − DMOSo and ∆DMOSs,n = DMOSs,n −
DMOSs, which DMOSo, DMOSs are the mean values of mapped objective

and subjective scores respectively. Larger CP means higher prediction accuracy.

(b) Spearman rank order correlation coefficient (CS): This coefficient is designed

to determine the level of monotonicity by measuring the correlation of decreas-

ing(increasing) trend of both variables independently of the magnitude. The

equation is

CS = 1− 6
∑ (DMOSo,n −DMOSs,n)2

N(N2 − 1)
, (6.33)

where N is the number of data point. Larger CS means better prediction

performance.

(c) Root-Mean-Square-Error (CR): Root-Mean-Square-Error (RMSE) is the square

root of the mean squared difference between objective and subjective values,

which is

CR =

√∑
n

(DMOSo,n −DMOSs,n)2. (6.34)

Lower CR means less deviation between subjective and objective data and better

prediction performance.
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6.4.2 Experimental Results

The data for the DMOSo vs. DMOSs comparison are arranged into two groups,

where the first group contains all test cases and the second group only includes the

test cases with local distortion (i.e. test cases ii and vi in Table 6.1).

Figures 6.8, and 6.9, and Table 6.2 present scatter plots and quantitative cor-

respondence measurement of these two groups of data. In the analysis of all test

cases, both Q and GQ have much higher correlation and lower RMSE than PSNR

and SSIM. Hence, the PFIQM significantly outperforms both PSNR and SSIM, the

two commonly used metrics in MCFI research. SSIM is better than PSNR since it

has better capability to detect structural distortion. However, it is still worse than

the PFIQM since it does not consider blocking artifacts. Detailed comparison shows

that Q has slightly better performance than GQ, since GQ does not include local

distortion.

In the performance analysis of test cases ii and vi only, all metrics’ performance

drop dramatically but Q decreases least and still maintains very good performance

compared to other metrics. Since GQ focuses on detecting globally spread distortion,

its performance is much worse than Q. However, since GQ takes blockiness and visual

attention factors into account, it still performs better than PSNR and SSIM. It is

worth noting that the performance decrease rate of both PSNR and SSIM is large and

similar. According to Fig. 6.9(c) and (d), both PSNR and SSIM are very insensitive

to quality degradation due to local distortion. It is fair to say that these two metrics

fail to handle this type of quality impairment.

Table 6.2: Quantitative performance comparison for PFIQM, PSNR, and SSIM

All cases Only ii and vi
CP CS CR CP CS CR

PFIQM (Q) 0.87 0.88 5.21 0.80 0.83 2.72
PFIQM (GQ) 0.85 0.82 5.68 0.70 0.61 3.28

PSNR 0.63 0.60 8.46 0.44 0.45 4.15
SSIM 0.69 0.70 7.86 0.44 0.43 4.15

Figures 6.10 through 6.13 show some interpolated frames produced by different

MCFI methods, and Table 6.3 shows all metrics’ outputs processed by Equation (6.30)

and (6.31) for each image. In Fig. 6.10, visual observation gives a consensus that Fig.
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Figure 6.8: Subjective rating of all test cases vs. the corresponding objective scores
from (a) PFIQM(Q), (b) PFIQM(GQ), (c) PSNR, and (d) SSIM

6.10(a) fails in preserving mouth and nose structure and also suffers severe blockiness,

but Fig. 6.10(b) has better quality. The PFIQM and SSIM successfully reflect this

difference, but PSNR fails in this case. Figure 6.11 shows examples of a mixture

of global and local quality impairment. Both samples are highly degraded in the

moving regions, but Fig. 6.11(a) contains more blockiness than Fig. 6.11(b). Also,

Fig. 6.11(a) has a very noticeable artifact on foreman’s helmet and face. Among the

three metrics, both PSNR and SSIM tend to assign higher quality values to 6.11(a),

only PFIQM’s results are consistent with visual observation. Figure 6.12 provides an

example where both Fig. 6.12(a) and Fig. 6.12(b) have very similar visual quality.
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Figure 6.9: Subjective rating of test cases ii and vi only vs. the corresponding objec-
tive scores from (a) PFIQM(Q), (b) PFIQM(GQ), (c) PSNR, and (d) SSIM

The PFIQM assigns a similar score to these two images, but PSNR gives a much

higher score to Fig. 6.12(a). In the following, an example with weak global distortion

but salient local quality impairment is shown in Fig. 6.13. Ignoring the conspicuous

blocking artifacts on the helmet edge, the quality of these two images is very close.

However, if local distortion is counted, then Fig. 6.13(a) is worse than Fig. 6.13(b).

The PFIQM’s outputs agree with the visual judgment, but PSNR scores show a strong

contradiction. Not surprisingly, SSIM gives similar scores for both images since it does

not consider local distortion. Overall, high correlation of the PFIQM with subjective

evaluation has been proven through this exercise. The second best metric is SSIM,
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(a) (b)

Figure 6.10: Examples of severe global distortion that (a) is interpolated by the direct
approach, and (b) is produced by the multi-stage method

and PSNR performs worst in measuring the quality degradation caused by frame

interpolation.

Table 6.3: Quality scores from PFIQM, PSNR, and SSIM of several sample images

DMOSo(Q) DMOSo(PSNR) DMOSo(SSIM)

Fig. 6.10(a) 1 3.12 3.9
Fig. 6.10(b) 3.74 3.09 4.25

Fig. 6.11(a) 2.67 2.45 3.92
Fig. 6.11(b) 3.41 2.12 3.71

Fig. 6.12(a) 4.64 4.22 4.76
Fig. 6.12(b) 4.62 3.6 4.63

Fig. 6.13(a) 4.18 4.19 4.78
Fig. 6.13(b) 5 3.77 4.77

6.5 Summary

This chapter has investigated the quality prediction accuracy of two widely used

spatial quality metrics for frame interpolation. Several disadvantages of the met-

rics have been presented, and a new metric, PFIQM, that overcomes these issues is

demonstrated. This metric is designed based on prior knowledge about frame inter-

polation, such as type of artifacts, possible regions of quality degradation, and the

occurrence of highly conspicuous local distortion. Performance evaluation shows that
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(a) (b)

Figure 6.11: Examples of mixtures of global and local quality degradation that (a) is
interpolated by direct approach, and (b) is produced by the multi-stage method

(a) (b)

Figure 6.12: Examples of same visual quality but different PSNR value, where (a) is
interpolated by direct approach, and (b) is produced by multi-stage method [2]
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(a) (b)

Figure 6.13: Examples of low global quality degradation but strong local distortion,
where (a) is interpolated by vector median, and (b) is produced by the multi-stage
method

the PFIQM significantly outperforms the other metrics and is highly consistent with

subjective ratings.
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Conclusion

Video related applications are prominent in our daily life. Because of the popular-

ity of multimedia services, viewers are no longer satisfied with just the availability of

multimedia applications, but also demand better quality multimedia service. There-

fore, optimizing the compression performance of digital video systems with respect to

viewer perceived quality has become an important issue in the field of video process-

ing. Thorough understanding and accurate quantitative analysis of the video quality

distortion caused by video compression is crucial for this task.

Most video quality measurement techniques focus on developing quality metrics

for a general purpose, which outputs a single quality score for a compressed video

sequence. Very often, this type of metric uses the fidelity between compressed and

original video data, along with several human visual system (HVS) factors, to predict

viewer perceived quality. Human vision is a very complicated process; it is affected

by many high-level cognitive and low level visual biological factors. Emulating such a

system requires an elaborate implementation and results in costly computation. Also,

since this type of metric only produces a single quality score, it lacks the ability to

provide deeper and more detailed analysis of the root causes of quality degradation

from different sources; it does not help codec designer to enhance compressed video

quality in the most efficient fashion. Because of its dependency on fidelity informa-

tion, requiring the original video data greatly limits the application of this type of

metric. Aside from general-purpose metrics, some researchers have developed metrics

for certain types of artifacts introduced by video compression. However, the develop-

144
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ment of these type of metrics is still in its infancy. Thus, for the purpose of enhancing

the visual quality of compressed video, accurate and detailed quality measurements

for several pronounced artifacts are essential.

7.1 Achievements

Following an overview of video compression, types of video quality degradation

have been described, and the latest developments in video quality assessment tech-

niques have been reviewed. Then, a human visual module, the Visual Blurriness

Sensitivity Map (VBSM) designed for quality assessment and enhancement related

applications, is presented. Unlike conventional visual attention models, the VBSM

not only includes positive stimuli affecting the visual aspect, but also considers sup-

pression effects from a HVS perspective. It works in the spatial frequency domain

and on a block basis. These characteristics permit a greater variety of applications

for VBSM.

Because of current codec design, blurring artifacts have become the most pro-

nounced impairments. A thorough review of several representative blurriness metrics

has been presented, and a novel perceptual blurriness metric (PBM) for compressed

video is implemented. The PBM works without accessing original video data, and

it uses a robust estimation basis for blurriness assessment. The VBSM is employed

to emulate human visual attention and masking effects. Several cognitive factors are

considered. In contrast to many existing blurriness metrics, PBM is insensitive to

the type of video content. A subjective experiment was carried out to examine the

significance of several modules of PBM and compare the overall blurriness estimation

accuracy of PBM to other metrics. Experimental results show that PBM not only

has higher blurriness estimation accuracy than other metrics for video sequences com-

pressed by the MPEG-4 codec, but also exhibits remarkable performance for video

sequences compressed by H.264/AVC.

Temporal quality degradation is often caused by either frame skipping for the

purpose of video data size reduction or transmission errors. An overview of existing

temporal quality metrics has been given in this thesis and a new temporal quality

metric, the Perceptual Temporal Quality Metric (PTQM), was demonstrated. Most
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existing temporal quality metrics can only estimate the temporal quality degrada-

tion caused by uniformly distributed frame loss. However, the PTQM can accurately

estimate the temporal quality distortion caused by any frame loss distribution. It

also employs a robust motion mapping model to adjust the temporal quality score for

sequences with the same amount of frame loss but different motion levels. Outputs

from PTQM are arranged in a hierarchical format; they not only contain a sequence

level temporal quality score, but also those of segment and frame levels. Subjec-

tive experiments show that PTQM’s outputs highly correspond to human perceived

temporal quality.

Frame interpolation technique is a common way to enhance temporal quality by

reproducing missing frames. However, it also introduces spatial artifacts that are very

annoying and differ from compression artifacts. Conventional quality assessment ap-

proaches can not be applied to these artifacts directly. Thus, a detailed investigation

of spatial quality impairment introduced by frame interpolation is reported. Based

on this investigation, a perceptual frame interpolation quality metric (PFIQM) has

been implemented. This metric considers the following artifact characteristics: ap-

pearance, possible occurrence location, and spatial distribution. A subjective test was

carried out to compare the performance of PFIQM to two other quality metrics that

are widely used in frame interpolation quality assessment. Comparison shows that

the PFIQM is the metric that provides quality scores closest to subjective ratings.

7.2 Future work

Several artifacts that occur most often and are most pronounced in modern mul-

timedia applications have been analyzed in this thesis. The conclusions address a

strong need for an accurate measurement of each individual artifact. Based on this

foundation, several novel metrics have been developed, and experimental results show

superior performance for the proposed metrics compared to existing metrics. How-

ever, only a small number could be investigated within the scope of this thesis, and

many extensions and improvements can be contemplated.

Several direct improvements can be considered:
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• In VBSM, output of individual visual features in VBSM that belong to the same

object are grouped together in the spatial post-processing stage by a median

filter. It is a low computation solution, but lacks a sense of object orientation.

Thus, including object segmentation one might enhance the accuracy of visually

significant region determination.

• Shifting camera motion is the only type of camera motion considered in VBSM

since it is the major type of camera motion that causes temporal masking effects.

Other types of camera motion may not directly relate to temporal masking

phenomenon, but they can induce other impacts in determining human visually

significant regions. Hence, including other types of camera motion can increase

the generality of VBSM and permit wider application.

• The normalization and cognitive modules in PBM are trained by a limited

amount of training data. In order to increase the generality of their application,

these modules should be trained using a larger data set with wider coverage of

different subjects. However, as the size of training data increases, the over-

training should be cautiously avoided by measuring the correlation for each

training datum.

• Finally, the pooling method used in PFIQM is an evenly weighted average. This

part still requires more research effort for optimization, since the dominance of

each artifact may change along with the amount of artifacts, content type,

and many other subjective factors. The evenly weighted multi-metrics pooling

method can only produce a fairly good, but not the most accurate, quality

prediction performance. Therefore, a deeper and more detailed study of pooling

methods for multiple metrics is a challenging but helpful task.

7.3 Closing remarks

Video quality assessment is a complicated topic. It requires a knowledge of video

and image processing, compression, the human vision system, and psychological ef-

fects. The mainstream of this research field is to establish mathematical models to
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measure human perceived quality without carrying out subjective quality test ex-

periment by collecting viewers’ feedbacks. More than one decade of research effort

has been spent on this topic and a perfect solution for establishing good objective

quality metrics is still not in existence. As the size of video display devices gets

larger, any small quality impairment will be enlarged and become very annoying. As

a result, viewers’ expectation for displayed video quality will significantly increase as

well. Thus, producing high quality compressed video data will be more challenging

than in the past, and the role of good video quality assessment methods will become

more important. Moreover, combining low computational cost while staying close to

human perception quality metric using compression algorithms to achieve perceptual

coding is another interesting research direction. With guidance from a good metric,

the resources (i.e. bits) can be allocated in a more adaptive fashion to ensure min-

imal quality distortion of compressed video data. As two-dimensional video service

achieves its maturity, video service displayed in three-dimensions will be the next

focus in the multimedia industry. Visual quality issues in two-dimensional video data

is not entirely applicable to video data displayed in the three-dimensional domain.

Some additional effects, such as object depth and specific artifacts caused by stereo

display, must be addressed.
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