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s u m m a r y

Precipitation is the key input for hydrometeorological modeling and applications. In many regions of the
world, including populated areas, ground-based measurement of precipitation (whether from radar or
rain gauge) is either sparse in time and space or nonexistent. Therefore, high-resolution satellite-based
precipitation products are recognized as critical data sources, especially for rapidly-evolving hydromete-
orological events such as flash floods which primarily occur during summer/warm seasons. As ‘‘proof of
concept’’, a recently proposed algorithm called Rain Estimation using Forward Adjusted-advection of
Microwave Estimates (REFAME) and its variation REFAMEgeo are evaluated over the contiguous United
States during summers of 2009 and 2011. Both methods are originally designed for near real-time high
resolution precipitation estimation from remotely sensed data. High-resolution Q2 (ground radar) precip-
itation data, in conjunction with two operational near real-time satellite-based precipitation products
(PERSIANN, PERSIANN-CCS) are used as evaluation reference and for comparison. The study is performed
at half-hour temporal resolution and at a range of spatial resolutions (0.08-, 0.25-, 0.5-, and 1-degree lat-
itude/longitude). The statistical analyses suggest that REFAMEgeo performs favorably among the studied
products in terms of capturing both spatial coverage and intensity of precipitation at near real-time with
the temporal resolution offered by geostationary satellites. With respect to volume precipitation,
REFAMEgeo together with REFAME demonstrates slight overestimation of intense precipitation and
underestimation of light precipitation events. Compared to REFAME, It is observed that REFAMEgeo
maintains stable performance, even when the amount of accessible microwave (MW) overpasses is lim-
ited. Based on the encouraging outcome of this study which was intended as ‘‘proof of concept’’, further
testing for other seasons and data-rich regions is the next logical step. Upon confirmation of the relative
reliability of the algorithm, it is reasonable to recommend the use of its precipitation estimates for data-
sparse regions of the world.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Near real-time high-resolution precipitation data are critical to
a wide range of hydrometeorological studies and applications. The
report by National Weather Service (http://www.weather.gov/
floodsafety/floodsafe.shtml) indicates that flooding is the 1st
ranked source of damage in the US compared to the other weath-
er-related events during the last 30 years. According to a report by
the World Water Assessment Programme (2009), more than 7000
major disasters (flood/drought) have been recorded worldwide
since 1970, causing at least $2 trillion in damage and killing at least
ll rights reserved.
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2.5 million people. A key input into flood forecasting models is near
real-time precipitation data. While only a few countries are
equipped with a dense network of ground-radar and gauge mea-
surements, in many regions of the world near real-time high-reso-
lution precipitation data can only be obtained from remotely
sensed estimates. Besides the Tropical Rainfall Measuring Mission
(TRMM) precipitation radar, currently, passive microwave (MW)
sensors provide the most reliable instantaneous precipitation esti-
mates at global scale. These sensors are aboard Low Earth orbiting
(LEO) satellites, restricting the temporal resolution of precipitation
monitoring. On the other hand, Geosynchronous Earth-orbiting
(GEO) satellites provide high-resolution visible (VIS) and infrared
(IR) images (typically at 0.04-degree latitude/longitude grid boxes
every half-hour or less) which are useful for high-resolution mon-
itoring of precipitation systems. However, precipitation estimation
from IR imagery relies on cloud-top information, and it is generally
less accurate than MW-based precipitation retrievals.

http://www.weather.gov/floodsafety/floodsafe.shtml
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Recognition of the above-described benefits and limitations has
motivated the development of several precipitation retrieval algo-
rithms to combine information from MW and IR sensors aboard
LEO and GEO platforms (Huffman et al., 2007; Joyce et al., 2004;
Kidd et al., 2003; Kuligowski, 2002; Sorooshian et al., 2000; Turk
et al., 2000; Ushio et al., 2009, among others). For near real-time
precipitation estimation, the role of rapidly updated IR images
from GEO-satellites is critical. Therefore, three general strategies
have been employed. The first and the most common type of strat-
egy is retrieving precipitation intensity directly from GEO images
by establishing an empirical relationship between IR brightness
temperature (Tb) and the corresponding microwave precipitation
estimates. The main difference among such retrieval methods is
based on the technique used to establish the Tb–precipitation rate
(PR) relationship and may include histogram matching (e.g., Kidd
et al., 2003; Turk et al., 2000), regression (e.g., Kuligowski, 2002),
or neural network (e.g., Hsu et al., 1997; Sorooshian et al., 2000)
techniques. In all of the methods used to establish the Tb–PR rela-
tionship, the more intense precipitation will be generally assigned
to clouds with lower Tb at the top. This might be a valid assump-
tion for convective clouds. However, the inverse relationship is not
always true. High-altitude cirrus clouds, for instance, are very cold
and mistakenly depicted as raining by IR-only algorithms.
Conversely, lower-level clouds that produce rain are assigned as
non-raining clouds to IR-only algorithms. While multi-spectral
information from GEO visible (VIS) and water vapor (WV) bands
has been found effective to improve precipitation detection and
estimation from GEO platforms (e.g., Ba and Gruber, 2001;
Behrangi et al., 2009, 2010), the lack of interaction with hydrome-
teors is still a major drawback of the GEO-based precipitation esti-
mation techniques.

In the second type of the combined algorithms, applicable for
near real-time precipitation estimation, precipitation rate is de-
rived exclusively from MW sensors. In other words, through for-
ward-only propagation of precipitation along IR-derived cloud
motion vectors, a temporally and spatially complete precipitation
field can be obtained (see forward-only calculations in Joyce
et al., 2004). With this approach, MW precipitation intensity cap-
tured by the previous MW overpass is only advected and remains
unchanged until the next MW overpass becomes available. Argu-
ably, this may cause an overestimation of precipitation if the pre-
vious pass from a MW-sensor scans a mature convective
precipitation system that is about to start its decaying phase. Con-
versely, if the previous MW-sensor collects samples from the initial
stage of a growing convective precipitation system, the forward-
only advection method may yield a considerable underestimation
of both precipitation intensity and areal extent. Recognizing the is-
sue, the Global Satellite Mapping of Precipitation (GSMaP) project
has employed a Kalman filtering approach to adjust the propagated
precipitation intensities using frequent observation of cloud top Tb
to produce a high-resolution near real-time precipitation product
(GSMaP-NRT, Ushio et al., 2009). It is important to note that both
groups provide forward–backward interpolated products
(CMORPH, GSMaP-MVK), which are basically weighted averaging
of advected MW precipitation from the previous and subsequent
MW overpasses. The reliance of CMORPH and GSMaP-MVK to the
next MW overpass improves the performance of the products com-
pared to their corresponding forward-only products. However, the
next MW overpass may not appear until several hours, which may
hamper the near real-time monitoring of precipitation events.

The third combination strategy for near real-time applications
is based on obtaining the ‘‘best’’ local estimate for a given grid
box. The 3B42-RT product of the TRMM Multi-satellite Precipita-
tion Analysis (TMPA; Huffman et al., 2007) relies on collecting
available MW precipitation estimates from various satellites with-
in a fixed time bracket of 3 h and then filling the remaining gaps
with MW-calibrated IR estimates. The 3-h time bracket is the best
temporal resolution offered by 3b42-RT and is a trade-off between
collection of enough MW overpasses and precipitation production
at near real-time.

In continuation of the described efforts, Behrangi et al. (2010)
suggested an algorithm called Rain Estimation using Forward Ad-
justed-advection of Microwave Estimates (REFAME) that incorpo-
rates a GEO-based multi-feature cloud-classification technique to
adjust MW precipitation intensities as advected along cloud-mo-
tion streamlines. The proposed algorithm is flexible because it uses
a wide array of precipitation-relevant information to improve the
cloud- classification component and, as a result, the adjustment
of precipitation intensities in near real-time. Behrangi et al.
(2010) also suggested a variation of REFAME called REFAMEgeo,
which combines precipitation intensities calculated from REFAME
and GEO/IR.

The present manuscript evaluates the performance of REFAME
and REFAMEgeo over the contiguous United States using high-res-
olution ground-radar precipitation data and two operational satel-
lite-based products that offer near real-time precipitation
estimation with spatiotemporal resolutions comparable to RE-
FAME and REFAMEgeo. The study is focused on summertime over
the United States because:

(a) The original goal of the proposed algorithms is for hydro-
logic applications that require near real-time high resolution
estimation of rainfall (i.e. useful for monitoring rapidly
evolving floods). The important role of high resolution pre-
cipitation data for flood-related hydrologic simulations is
highlighted in Nikolopoulos et al. (2010). Naturally, our eval-
uation strategy should be towards our original goal. Majority
of flash floods (rapidly evolving floods) occur during sum-
mertime. Therefore, by focusing on summer the algorithms
can be evaluated under conditions that high resolution pre-
cipitation estimation data are needed the most.

(b) United States has a significantly dense network of ground
precipitation measurements over a large region covering dif-
ferent weather and climate regimes. Therefore, similar to
several other studies and at least as a first step, it is reason-
able to take advantage of such dense measurements to verify
the performance of satellite-based precipitation products
and also for proof of concept for newly developed algo-
rithms, and

(c) Within the resolution of our study (30 min, 0.08�) more than
1 billion pairs of satellite-radar precipitation data were col-
lected which creates a valuable dataset for our evaluation
and comparison purposes at high resolution.

Another hope and expectation from this ‘‘proof of Concept’’
study is that if the testing of the proposed algorithms over a
data-rich area (e.g., over the US) exhibits reasonable skills, then
it can be applied quasi-globally to provide critical high resolution
precipitation data especially over regions with sparse or nonexis-
tent ground measurements. Clearly, quality verification of high res-
olution precipitation products over other regions remains to be an
important but a difficult task due to availability and reliability is-
sues associated with ground measurements of precipitation.

A brief overview of REFAME and REFAMEgeo is provided in Sec-
tion 2. In Section 3, area and period of study as well as input data
sets used in this study are described. Description of reference pre-
cipitation dataset including ground radar and satellite precipita-
tion products is also provided in Section 3. The evaluation results
are reported and discussed in Section 4, and summary and con-
cluding remarks are presented in Section 5.
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2. An overview of REFAME and REFAMEgeo

While a more complete description of REFAME can be obtained
from Behrangi et al. (2010), a brief overview of the algorithm is
provided in this section. Within a Lagrangian framework, REFAME
provides a spatially complete MW adjusted-precipitation field at
0.08-degree resolution every half-hour and includes the following
three steps: First, a recently developed 2-D cloud-tracking algo-
rithm (Bellerby, 2006; Bellerby et al., 2009) is employed to derive
cloud-motion vectors from successive high- resolution (0.04-de-
gree latitude/longitude every 30 min) IR images. The tracking algo-
rithm is computationally efficient and has been shown to be
effective in the presence of image rotation and shear and accurate
to within 2–3 pixels (Bellerby, 2006). The tracking algorithm al-
lows REFAME to explicitly incorporate the effect of cloud motion,
growth, deformation, and dispersal (decay). In the second step,
radiative (Tb), textural (e.g., standard deviation of Tbs of neighbor-
ing grid boxes), and dynamic (gradients of Tb between successive
IR images) features of clouds are extracted and employed to clas-
sify cloudy scenes into 400 distinct clusters. Using ground precip-
itation data, a mean precipitation rate (MPR) is calculated for each
cluster. The third step includes the adjustment of advected MW
precipitation rates along cloud-motion streamlines. For each indi-
vidual grid box at time t, an adjustment-coefficient is identified
by dividing the MPR of the corresponding cluster at time t by the
MPR of the corresponding cluster at time t-1 along the cloud-mo-
tion streamlines. After multiplying the advected MW precipitation
rate by the calculated adjustment-coefficient, the adjusted-advec-
tion of the MW precipitation estimate for each grid box is obtained.

As described in Behrangi et al. (2010), the addition of the inten-
sity-adjustment procedure proposed in REFAME is effective and re-
sults in improved statistical scores compared to a scenario that
relies only on advection of MW precipitation rates. However, with
the reported setup, REFAME cannot account for precipitation
events that are not observed in previous MW overpasses because
the adjustment procedure is multiplicative. Among such events,
convective precipitation systems that are often responsible for
flash floods are critical because they may grow from initiation to
a mature stage within a few hours or less. If the most recent MW
overpass happens prior to the initiation phase of the system, the
precipitation rate can only be captured by GEO-based precipitation
retrieval methods. Recognizing this issue, REFAMEgeo was pro-
posed (Behrangi et al., 2010). By assigning proper weights to each
precipitation estimate, REFAMEgeo combines precipitation intensi-
ties calculated from REFAME and GEO/IR data. The combination
weights are obtained by analyzing the overall performance of the
two precipitation estimates with respect to a reference precipita-
tion measurement and for each time distance from previous MW
overpasses. In order to derive precipitation rates from GEO/IR
information, a method described in Behrangi et al. (2009) incorpo-
rated a cloud-classification scheme to establish a Tb-rain rate rela-
tionship. In Section 4, both near real-time precipitation products
(REFAME and REFAMEgeo) are evaluated and cross-compared with
their counterparts.
3. Study area and data set

The evaluation study is performed over the contiguous United
States during the summer (June, July, and August) of 2009 and
2011 using half-hour ground radar precipitation dataset. During
summer rapidly-evolving precipitation systems are more frequent
than other seasons which allow evaluation of REFAME and
REFAMEgeo over a period of time when maintaining high temporal
resolution is critical. In addition, quality of radar ground measure-
ments during winter, when snow and near surface mixed phase
precipitation occurs, is less reliable for evaluation of precipitation
products.

The datasets used in the present study are described below. All
of the datasets were remapped to common 30-min 0.08-degree lat-
itude/longitude resolution grid maps in the present study.

3.1. Data set used to generate REFAME and REFAMEgeo

The inputs to REFAME and REFAMEgeo include GEO-IR images
and precipitation intensities from MW sensors. Half-hourly
0.04� � 0.04� GEO-IR data were obtained from the National
Oceanic and Atmospheric Administration/National Environmental
Satellite, Data, and Information Service (NOAA/NESDIS) Environ-
mental Satellite Processing Center (ESPC) over the conterminous
United States. MW precipitation intensities are obtained from the
CPC MW combined precipitation product (hereafter referred to as
MWCOMB). For the period and location of the present study,
MWCOMB includes: (1) the Advanced Microwave Sounding Unit-
B (AMSU-B) sensors on NOAA polar-orbiting operational meteoro-
logical satellites (NOAA 15, 16, 17); (2) the Microwave Humidity
Sounder (MHS) on NOAA 18, 19, and MetOp; (3) the Special Sensor
Microwave Imager (SSM/I) on the US Defense Meteorological
Satellite Program (DMSP) satellite F-13; (4) the Tropical Rainfall
Measuring Mission (TRMM) Microwave Imager (TMI); and (5) the
Advanced Microwave Scanning Radiometer (AMSR-E) on Aqua.
The latest Goddard profiling (GPROF) rainfall-estimation algorithm
(Wilheit et al., 2003) is used to generate precipitation from TMI,
AMSR-E, and SSM/I brightness temperature channels. For MHS
and AMSU-B, the NESDIS AMSU-B rainfall algorithm (Ferraro,
1997; Vila et al., 2007) is employed to derive precipitation rates.
MWCOMB contains half-hour inter-calibrated MW precipitation
estimates at 0.0727-degree latitude/longitude resolution, in addi-
tion to flags for MW sensor type. More detailed descriptions of
the computational procedure and specifications of the MWCOMB
can be obtained from Joyce et al. (2004).

3.2. Reference ground precipitation data set

The National Mosaic and Quantitative Precipitation Estimation
(QPE) system (NMQ/Q2) (Vasiloff et al., 2007; Zhang et al., 2009;
http://www.nmq.ou.edu) was used as reference precipitation. Q2
has been developed at the NOAA/National Severe Storms Labora-
tory in cooperation with the University of Oklahoma and employs
data-quality control, multi-sensor precipitation classification, mul-
ti-sensor QPE, and evaluation components to create high spatial
and temporal resolution precipitation estimates for flood warnings
and water-resources management on the national scale. The Q2
system generates QPE products at 1-km horizontal resolution with
a 5-min update cycle. For consistency among different datasets, in
the present study, the Q2 data were remapped to common 30-min
0.08-degree latitude/longitude resolution.

3.3. High-resolution satellite-based precipitation products

In Section 2, different approaches were described to derive a
temporally and spatially complete field of high-resolution precipi-
tation intensities. The first approach derives precipitation intensi-
ties from GEO-IR images, and MW precipitation estimates are
essentially used to establish and update the Tb-rain rate relation-
ships. The second approach derives precipitation intensities di-
rectly from MW precipitation estimates, and GEO-IR images are
used mainly to propagate the MW estimates in time and space.
Therefore, for both approaches the role of GEO images is critical
to produce near real-time precipitation estimation. In the present
study, two products are selected for cross-comparison with
REFAME and REFAMEgeo. These two products are Precipitation

http://www.nmq.ou.edu
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Estimation from Remotely Sensed Information using Artificial Neu-
ral Networks (PERSIANN; Sorooshian et al., 2000; Hsu et al., 1997)
and the PERSIANN cloud-classification system (PERSIANN-CCS;
Hong et al., 2004). Both products provide half-hour precipitation
estimation identical to the time resolution offered by REFAME
and REFAMEgeo. PERSIANN-CCS is a patch-based approach that is
available quasi-globally (60oS to 60oN) every half-hour at 0.04-de-
gree latitude/longitude resolution. PERSIANN, on the other hand, is
a pixel-based approach that derives precipitation rates at a quasi-
global (60oS to 60oN) scale every half-hour and at 0.25-degree res-
olution. Both PERSIANN and PERSIANN-CCS derive precipitation
rate directly from GEO infrared images based on establishing rela-
tionships between infrared brightness temperature and rain rate
using training datasets. While PERSIANN-CCS has been operational
since 2006, employed relationships between brightness tempera-
ture and rain rate are based on initial trainings using one-year of
global MW rain rates.
4. Results

Fig. 1 shows a density scatter plot of half-hour REFAME (Fig. 1a),
REFAMEgeo (Fig. 1b), PERSIANN-CCS (Fig. 1c), and PERSIANN
(Fig. 1d) precipitation estimates (y-axis) versus the reference
half-hour Q2 precipitation rates (x-axis) at 0.5-degree resolution.
For precipitation rates between 0.1 mm/hr and 64 mm/hr, both
axes are divided into 100 evenly divided spaces in the logarithmic
scale, and the number of samples inside each grid box is counted.
The favorable case is to have the highest concentration of the pre-
cipitation intensities symmetrically distributed along the 1:1 line
shown in each panel. Therefore, although both REFAME (Fig. 1a)
Fig. 1. Density scatterplot of half-hour REFAME (panel a), REFAMEgeo (panel b), PERSIAN
reference half-hour Q2 precipitation rates (x-axis) at 0.5-degree resolution. Both axes a
samples inside each grid box is counted.
and REFAMEgeo (Fig. 1b) demonstrate a relatively high concentra-
tion of samples along 1:1 line, REFAMEgeo is considered the best.

Fig. 2 displays fractions of precipitation volume (y-axis) versus
precipitation intensity (x-axis) derived from half-hour 0.25-degree
REFAME, REFAMEgeo, PERSIANN, and PERSIANN-CCS products.
Only precipitation rates between 0.1 mm/hr and 64 mm/hr are in-
cluded in Fig. 2 and the volume fractions are calculated for 100
evenly divided precipitation-intensity bins in the logarithmic scale.
Q2 is considered as reference; therefore, the area below the Q2
curve is equal to one unit. For precipitation rates less than approx-
imately 4 mm/hr, the products, especially PERSIANN-CCS, demon-
strate considerable underestimation of precipitation volume.
However, at higher rain intensity ranges the products overestimate
the volume of total precipitation. Among the products, PERSIANN
shows a larger overestimation of rain intensities between
3 mm/hr and 20 mm/hr and PERSIANN-CCS only displays overesti-
mations for rain rates between 5 mm/hr and 16 mm/hr. The rain
volume distributions of REFAME and REFAMEgeo are similar to
that of PERSIANN at rain intensities less than about 3 mm/hr. How-
ever, at higher intensities REFAME and REFAMEgeo show less over-
estimations compared to PERSIANN. Note that the rain volume
distribution of REFAME and REFAMEgeo are fairly similar across
the range of rain intensities. It is worth mentioning that the rela-
tively different rain volume distribution of PERSIANN-CCS could
be related to two issues: (a) PERSIANN-CCS is not updated in
near-real-time using MW precipitation dataset. Therefore, unlike
REFAME, REFMEgeo and PERSIANN, it is independent of newly
available MW precipitation data; (b) unlike PERSIANN and
REFAMEgeo, PERSIANN-CCS follows a patch-based concept where
Tb-rain rate relationship is established for each class of cloud after
performing cloud segmentation and classification processes.
N-CCS (panel c), and PERSIANN (panel d) precipitation estimates (y-axis) versus the
re divided into 100 evenly divided spaces in logarithmic scale, and the number of



Fig. 2. Fractions of precipitation volume (y-axis) versus precipitation intensity (x-axis) derived from half-hour REFAME, REFAMEgeo, PERSIANN, and PERSIANN-CCS products.
Only precipitation rates between 0.1 mm/hr and 64 mm/hr are included in Fig. 2, and the precipitation fractions are calculated for 100 evenly divided precipitation-intensity
bins in logarithmic scale.
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Table 1 provides more detailed quantitative and categorical sta-
tistics for REFAME, REFAMEgeo, PERSIANN, and PERSIANN-CCS for
the summer months of 2009 and 2011 over the contiguous United
States. A detailed description of the quantitative and categorical
statistics calculated in Table 1 is provided in Appendix A. The quan-
titative statistics include correlation coefficient (COR), root-mean-
square error (RMSE), and volume bias (BIASv). Categorical statistics,
on the other hand, are calculated from the contingency table and
through identifying binary (1/0 or yes/no) flags for rain/no-rain grid
boxes and include equitable threat score (ETS), probability of detec-
tion (POD), false-alarm ratio (FAR), and areal bias (BIASa). The
statistics are derived from corresponding maps of 30-min precipita-
tion rates at 0.08-, 0.25-, 0.5-, and 1-degree latitude/longitude res-
olutions; Q2 precipitation data are used as ground reference. Note
that, because the highest resolution offered by PERSIANN is 0.25�,
statistical scores for PERSIANN are not included in the 0.08-degree
resolution table. Comparison of REFAMEgeo with REFAME and PER-
SIANN-CCS suggests that the weighted-averaging of the GEO-based
precipitation estimate with REFAME is effective and overall results
in favorable categorical scores among the other products. At 0.25-
Table 1
Quantitative and categorical statistics for REFAME, REFAMEgeo, PERSIANN, and
PERSIANN-CCS for the 3 months (June, July, and August) of the summer of 2009 and
2011 over the contiguous United States. Statistics are calculated from half-hour pairs
of satellite and Q2 products.

ETS POD FAR BIASa COR RMSE
(mm/hr)

BIASv

0.08�
REFAME 0.29 0.45 0.48 0.86 0.35 1.31 1.26
REFAMEgeo 0.31 0.50 0.48 0.95 0.40 1.20 1.12
PERSIANN-CCS 0.21 0.33 0.46 0.61 0.29 1.33 1.03

0.25�
REFAME 0.31 0.50 0.48 0.96 0.45 1.05 1.24
REFAMEgeo 0.34 0.53 0.45 0.96 0.51 0.94 1.11
PERSIANN-CCS 0.24 0.36 0.49 0.70 0.36 1.03 1.02
PERSIANN 0.26 0.41 0.51 0.85 0.41 1.00 1.14

0.50�
REFAME 0.34 0.53 0.43 0.93 0.54 0.87 1.24
REFAMEgeo 0.37 0.55 0.39 0.91 0.59 0.77 1.09
PERSIANN-CCS 0.27 0.42 0.46 0.77 0.45 0.83 1.00
PERSIANN 0.29 0.48 0.49 0.94 0.51 0.81 1.14

1�
REFAME 0.39 0.58 0.36 0.90 0.63 0.68 1.23
REFAMEgeo 0.43 0.60 0.30 0.86 0.68 0.61 1.09
PERSIANN-CCS 0.32 0.50 0.41 0.86 0.56 0.62 0.99
PERSIANN 0.33 0.52 0.40 0.88 0.62 0.63 1.13
degree resolution, REFAMEgeo demonstrates approximately 10%,
42%, and 31% gains in ETS over REFAME, PERSIANN-CCS, and PERSI-
ANN, respectively. Note that, as opposed to individual categorical
statistics, ETS allows the scores to be compared ‘‘equitably’’ across
different regimes (Schaefer, 1990) and could be used as a good mea-
sure for overall performance of the products to delineate precipita-
tion areas. The comparison is not necessarily representative if
individual scores are compared. For example, while BIASa = 1 indi-
cates that predicted and observed precipitation areas are identical,
it does not necessarily indicate a perfect match between rain/no-
rain grid boxes of observed and predicted fields. By cross-compar-
ing the quantitative statics, it is also observed that REFAMEgeo
outperforms other products, including REFAME. At 0.25-degree
resolution, for example, REFAMEgeo demonstrates approximately
13%, 42%, and 24% gains in COR over REFAME, PERSIANN-CCS, and
PERSIANN, respectively. In terms of RMSE, REFAMEgeo is also
compared favorably with other products. Assessment of the BIASv
across different spatial resolutions suggests that PERSIANN-CCS
has the best BIASv, while PERSIANN shows more than 30% overes-
timation of precipitation volume. REFAMEgeo and REFAME show
about 15% and 20% overestimations of precipitation volume across
different resolutions, slightly higher than that obtained from PERSI-
ANN-CCS.

Quantitative and categorical statistics for half-hour pairs of
instantaneous combined MW (obtained from MWCOMB) and Q2
rain products are also shown in Table 2. While the combined
MW rain estimate shows large volume Bias (BIASv), it displays
an overall higher skill than any other high resolution products
(compare Tables 1 and 2). For example, at 0.08� resolution, the
combined MW product shows ETS and COR of about 0.34 and
0.45 which are about 10% and 13% higher than those obtained from
REFAMEgeo. The lower skill of the high resolution products comes
at the expense of covering about 67% of the areas (on average every
half-hour for summer months of 2009 and 2011) over the contigu-
ous United States that are not observed by the combined MW
Table 2
Quantitative and categorical statistics calculated from half-hour pairs of MWCOMB
and Q2 rain products for summer months (June, July, and August) of 2009 and 2011
over the contiguous United States.

ETS POD FAR BIASa COR RMSE (mm/hr) BIASv

0.08� 0.34 0.47 0.39 0.78 0.45 1.31 1.41
0.25� 0.40 0.57 0.37 0.91 0.60 0.88 1.45
0.50� 0.44 0.61 0.33 0.92 0.67 0.74 1.44
1.00� 0.49 0.67 0.28 0.93 0.73 0.59 1.40
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products. Arguably, the role of the combined high resolution prod-
ucts in providing a near real-time complete spatiotemporal cover-
age of rapidly-evolving hydrometeorological events is critical for
hydrologic applications such as flash floods which primarily occur
during summer/warm seasons. It is important to note that because
the evaluation of MWCOMB and the merged products are per-
formed at high spatiotemporal resolutions it is likely that errors
in ground radar precipitation estimates as well as satellite ground
misregistration issues (Villarini et al., 2009; Kidd et al., 2003) sig-
nificantly reduce the reported skills.

As the time distance from previous MW overpasses increases,
GEO-based precipitation gains more weight in the combination
procedure employed in REFAMEgeo. Therefore, REFAMEgeo is less
vulnerable to decline in number of accessible MW overpasses in
near real-time operation. This issue is shown in Fig. 3a, where
COR of 0.08�-resolution REFAMEgeo, REFAME, and PERSIANN-CCS
with reference Q2 are compared with respect to the time distance
from previous MW overpasses. Fig. 3b displays the number of sam-
ples used to calculate the correlation coefficients. Fig. 3a shows
that, as the time distance from previous MW overpasses increases,
the COR score drops considerably for REFAME. However, REFAME-
geo is much less vulnerable to the time distance from previous MW
overpasses and consistently outperforms both REFAME and PERSI-
ANN-CCS across all time distances. This is an important feature of
REFAMEgeo that makes it suitable for near real-time operation.
PERSIANN-CCS is independent of time distance from MW overpass
because it only relies on Tb which is available every half-hour
through GEO satellite. Note that approximately one hour after
the previous MW overpass COR of REFAME becomes smaller than
PERSIANN-CCS. This suggests that, farther in time from MW over-
pass, the combination of REFAME with GEO-based precipitation
employed in REFAMEgeo is essential to maintain the performance
of the retrieved precipitant above that can be obtained from GEO-
only or MW-only estimates.

As a case study, the statistical scores for three representative
days (August 5–7, 2009) are shown in Fig. 4. The statistics are de-
Fig. 3. (a) Comparison among the correlation coefficient of REFAMEgeo, REFAME, and PE
number of samples at each time-distance used to derive the correlation coefficients repo
precipitation data from 2009.
rived at half-hour 0.25-degree resolution from corresponding maps
of REFAMEgeo, PERSIANN, PERSIANN-CCS, and reference Q2 pre-
cipitation intensities. The left side panels show quantitative statis-
tics, while the right side panels represent categorical statistics.
Among the products, REFAMEgeo performs favorably, particularly
with respect to COR, ETS, and POD, as shown in Fig. 4a, b, and d.
Performance of REFAMEgeo with respect to RMSE (Fig. 4c), BIASa
(Fig. 4g), and FAR (Fig. 4f) is also remarkable. Indicated by ETS
(Fig. 4b) as an overall detection score, it can be concluded that
REFAMEgeo outperforms PERSIANN and PERSIANN-CCS to capture
both precipitations’ areal extent and location. REFAMEgeo shows
considerably higher POD (Fig. 4d) and comparable FAR (Fig. 4f)
compared to PERSIANN and PERSIANN-CCS. Fig. 4e shows that PER-
SIANN-CCS has the best BIASv, while PERSIANN shows a relatively
significant overestimation of precipitation volume. Note that both
PERSIANN and PERSIANN-CCS almost consistently underestimate
the areal extent of precipitation (BIASa), while REFAMEgeo is sub-
ject to moderate underestimation and overestimation of precipita-
tion areas.

In Fig. 5, diurnal cycle of average precipitation intensities during
the summers of 2009 and 2011 over the contiguous United States
is shown. The x-axis shows half-hour local time bins. Within each
bin, 1-degree resolution precipitation intensities (including zero)
are averaged and the resulted average-intensities are shown in
y-axis. As evident from Fig. 5, the overall pattern is captured by
all of the products. However, significant overestimation of average
precipitation intensities is observed from late afternoon to early
morning. The observed over estimation is more significant for PER-
SIANN compared to the other products across all hours except
around noon, when PERSIANN shows minor underestimation of
rain rates. In comparison to PERSIANN, PERSIANN-CCS and to a
lesser extent REFAMEgeo show substantial underestimation of
average rain rates from early morning to early afternoon. Q2 sug-
gests that the minimum and maximum precipitation intensities
take place around 10:30 am and 4:00 pm, respectively. While most
of the products capture the time of the minimum precipitation
RSIANN-CCS with respect to time-distance from the most recent MW overpass, (b)
rted in panel (a). The figure is constructed using half-hour 0.08� latitude/longitude



Fig. 4. Statistical measures for REFAMEgeo, PERSIANN-CCS, and PERSIANN during August 5–7, 2009. The statistics are derived at half-hour 0.25-degree resolution from
corresponding maps of the satellite products and reference Q2 precipitation intensities. The left-side panels show quantitative statistics: (a) COR, (c) RMSE, and (e) BIASv,
while the right-side panels display categorical statistics: (b) ETS, (d) POD, (f) FAR, and (g) BIASa.

Fig. 5. Diurnal cycle of average precipitation intensities during the summer months of 2009 and 2011 over the contiguous United States. The x-axis shows the half-hour local
time bins. Within each bin, 1-degree resolution precipitation intensities (including zero) are averaged and the resulted average-intensities are shown in y-axis.
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intensity, they demonstrate a broad peak approximately between
4:00 pm. and 5:30 pm. local time. REFAME agrees well with Q2 be-
tween 6:00 am. and 2:00 pm. local time and together with the
other products overestimates precipitation intensities during late
afternoon and early morning. From Fig. 5, it is observed that, with-
in the rising limb of the diurnal cycle curve, the products agree
well among themselves. However, they start to exhibit large dis-
crepancies a few hours later, when a majority of convective precip-
itation systems start to grow. Note that unlike PERSIANN-CCS,
REFAME, REFAMEgeo and PERSIANN show local minimums around
2 am where Q2 diurnal cycle is almost flat. The reason for this is
under investigation and might be relevant to the MW inputs that
are not used in PERSIANN-CCS.

5. Summary and concluding remarks

In the present study, two recently developed algorithms for
near real-time high-resolution precipitation estimation (REFAME
and its variation REFAMEgeo) are evaluated during the summers
of 2009 and 2011 over the contiguous United States. Within a
Lagrangian framework, REFAME generates precipitation rates by
adjusted advection of MW-derived precipitation intensities using
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radiative and textural features extracted from more frequent
GEO-IR images. A variant of REFAME, REFAMEgeo provides pre-
cipitation intensities through weighted averaging of REFAME
and precipitation estimates derived from GEO-IR. The latter ap-
proach also allows including precipitation events that may be
missed in previous MW overpasses. The weights are identified
by considering the performance of each combination component
and the time distance from previous MW overpasses. Both RE-
FAME and REFAMEgeo generate precipitation intensities at
0.08-degree latitude/longitude resolution, every half-hour. In
the present study, two half-hour real-time high-resolution pre-
cipitation products (PERSIANN and PERSIANN-CCS) were consid-
ered for comparison with REFAME and REFAMEgeo. The Q2
precipitation data, developed at the NOAA/National Severe
Storms Laboratory in cooperation with the University of Okla-
homa, were used as reference ground truth. The evaluations were
performed at half-hour temporal resolution and at a range of spa-
tial resolutions (0.08-, 0.25-, 0.5-, and 1-degree latitude/longi-
tude). Overall, for the period and location of the study,
REFAMEgeo performs well among the studied products to esti-
mate precipitation intensity as well as to detect occurrence of
precipitation events. Cross-comparison among REFAME, REFAME-
geo, and PERSIANN-CCS suggests that REFAMEgeo has a robust
performance, particularly as the time distance from previous
MW overpasses increases. Compared to REFAME it is found that
REFAMEgeo maintains its skill relatively well as the time distance
from previous MW overpasses increases. This is an important fea-
ture of REFAMEgeo that makes it suitable for near real-time oper-
ations where a large decline in the number of accessible MW
overpasses is probable. Despite REFAMEgeo’s robust performance,
it does not replace the critical need for a sufficient number of
MW sensors with proper equator-crossing times to overcome ad-
verse impacts of time distance between MW overpasses. To a
large extent, this demand will be addressed after the successful
launch and operation of the Global Precipitation Measurement
(GPM) mission (Hou et al., 2008).

With respect to precipitation quantity, REFAMEgeo and REFAME
demonstrate slight overestimation of intense precipitation and
underestimation of light precipitation events. Inclusion of a near-
real-time bias-reduction (e.g., Tian et al., 2010) procedure is under
investigation since bias-adjusted products can lead to substantial
improvement in many applications such as hydrologic simulation
of streamflow (e.g., Behrangi et al., 2011 among others). In the
present study, REFAME and REFAMEgeo only relied on IR
(�11 lm) data to adjust the intensity of MW precipitation esti-
mates as advected forward. However, previous studies (Ba and
Gruber, 2001; Behrangi et al., 2009, among others) have shown
that additional GEO VIS/IR and water–vapor channels can advance
classification of clouds and, as a result, may lead to further
improvement in the delineation of areal extent and estimation of
precipitation intensity. With the emergence of modern imagers
on recent and future geostationary satellites (e.g., SEVERI on MSG
and the Advanced Baseline Imager (ABI) on GOES-R), more spectral
channels with higher spatial and temporal resolution are becoming
available. Future research directed to comprehensive assessment
of the role of multi-spectral information in improving algorithms,
such as REFAME and REFAMEgeo, is ongoing. In addition, develop-
ment, refinement, and testing of REFAME and REFAMEgeo for
global operation are currently underway at the Center for Hydro-
meteorology and Remote Sensing (CHRS) at the University of
‘California, Irvine.
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Appendix A. Definition of the statistical measures used in this
study

A.1. Quantitative statistics

If PRest and PRobs represent estimated and observed precipitation
rates, the quantitative statistics used in the present work are de-
fined below:

Correlation coefficient ðCORÞ

¼
PN

i¼1ððPRobsÞiðPRestÞiÞ � ½NðPRobsÞðPRestÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðPRobsÞ2i � NðPRobsÞ2

h i PN
i¼1ðPRestÞ2i � NðPRestÞ2

h ir

Root-mean-square-error ðRMSEÞ ¼ 1
N

XN

i¼1

ðPRestðiÞ � PRobsðiÞÞ2
 !0:5

Volume bias ðBIASvÞ ¼
PN

i¼1ðPRestðiÞ � PRobsðiÞÞ
N

where N is the total number of observed and estimated precipita-
tion pairs.
A.2. Categorical statistics

Categorical statistics are calculated from the binary-based con-
tingency table. The table classifies the prediction results into the
following four possibilities based on observation of precipitation
or no-precipitation occurrences:

(1) Hit (H): number of pixels correctly classified as precipitation.
(2) Miss (M): number of pixels incorrectly classified as no

precipitation.
(3) False alarm (F): number of pixels incorrectly classified as

precipitation.
(4) Correct negative (Z): number of pixels correctly classified as

no precipitation.

A perfect prediction system would produce only hits and cor-
rect negatives and no misses or false alarms. However, in reality,
predictions are not perfect. The prediction skill can be evaluated
based on indices derived from the contingency table. Among the
most commonly used statistics are:

Probability of detection ðPODÞ ¼ H=ðH þMÞ

False alarm ratio ðFARÞ ¼ F=ðH þ FÞ

Areal bias ðBIASaÞ ¼ ðH þ FÞ=ðH þMÞ

where H = hits, F = false alarm, M = misses, and Z = correct negative,
as defined above. POD and FAR range from 0 to 1, with perfection
represented by a POD of one, together with a FAR of 0. POD is sen-
sitive to the number of hits, but it ignores false alarms; FAR, on the
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other hand, is sensitive to false alarms, but it ignores misses. BIASa
considers both predictions and observations. A value of one indi-
cates that predictions and observations have identical areal cover-
age independent of location. However, a perfect BIASa score does
not necessarily indicate a perfect skill of the predictor for correct
delineation of rain areas from no-rain areas.
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